This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
test_0728_THIRD97.32 2999.45 1699.46 1497.88 199.94 398.47 2499.86 199.85 4
PC_three_145295.08 14299.60 1099.16 6397.86 298.47 25997.52 8399.72 4699.74 30
DVP-MVS++99.08 298.89 299.64 399.17 8899.23 799.69 198.88 5097.32 2999.53 1499.47 1197.81 399.94 398.47 2499.72 4699.74 30
OPU-MVS99.37 2099.24 8199.05 1499.02 7399.16 6397.81 399.37 15597.24 9299.73 4399.70 46
SteuartSystems-ACMMP98.90 698.75 699.36 2199.22 8398.43 3399.10 5798.87 5797.38 2699.35 2299.40 1897.78 599.87 4597.77 6299.85 599.78 15
Skip Steuart: Steuart Systems R&D Blog.
test_one_060199.66 2699.25 298.86 6397.55 1699.20 2899.47 1197.57 6
SED-MVS99.09 198.91 199.63 499.71 1999.24 599.02 7398.87 5797.65 1099.73 299.48 997.53 799.94 398.43 2899.81 1299.70 46
test_241102_ONE99.71 1999.24 598.87 5797.62 1299.73 299.39 1997.53 799.74 97
DVP-MVScopyleft99.03 398.83 599.63 499.72 1299.25 298.97 8298.58 13797.62 1299.45 1699.46 1497.42 999.94 398.47 2499.81 1299.69 49
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.72 1299.25 299.06 6298.88 5097.62 1299.56 1199.50 697.42 9
test_241102_TWO98.87 5797.65 1099.53 1499.48 997.34 1199.94 398.43 2899.80 1999.83 7
DPE-MVScopyleft98.92 598.67 899.65 299.58 3299.20 998.42 18598.91 4497.58 1599.54 1399.46 1497.10 1299.94 397.64 7299.84 1099.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS98.78 798.56 1299.45 1599.32 5998.87 1998.47 17798.81 7497.72 798.76 5699.16 6397.05 1399.78 8798.06 4399.66 5499.69 49
segment_acmp96.85 14
patch_mono-298.36 4098.87 396.82 19699.53 3690.68 29998.64 15399.29 897.88 599.19 3099.52 396.80 1599.97 199.11 399.86 199.82 10
MCST-MVS98.65 1198.37 2199.48 1399.60 3198.87 1998.41 18698.68 11297.04 4998.52 7298.80 11496.78 1699.83 5597.93 5099.61 6399.74 30
APDe-MVS99.02 498.84 499.55 999.57 3398.96 1699.39 1298.93 3897.38 2699.41 1899.54 196.66 1799.84 5398.86 899.85 599.87 1
NCCC98.61 1498.35 2499.38 1899.28 7198.61 2698.45 17898.76 9397.82 698.45 7698.93 10096.65 1899.83 5597.38 8999.41 9399.71 42
SD-MVS98.64 1298.68 798.53 7899.33 5698.36 4098.90 9398.85 6697.28 3299.72 499.39 1996.63 1997.60 32798.17 3899.85 599.64 64
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS98.34 4398.06 4799.18 4099.15 9498.12 5499.04 6799.09 2193.32 22098.83 5299.10 7296.54 2099.83 5597.70 6999.76 3499.59 72
SMA-MVScopyleft98.58 1998.25 3699.56 899.51 3999.04 1598.95 8698.80 8293.67 20699.37 2199.52 396.52 2199.89 3698.06 4399.81 1299.76 27
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++98.56 2498.57 1198.55 7499.26 7496.80 9898.71 13999.05 2597.28 3298.84 5099.28 4096.47 2299.40 15398.52 2299.70 4999.47 92
TSAR-MVS + MP.98.78 798.62 999.24 3599.69 2498.28 4599.14 4898.66 12096.84 5799.56 1199.31 3796.34 2399.70 10598.32 3499.73 4399.73 35
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS98.59 1798.32 3299.41 1799.54 3598.71 2299.04 6798.81 7495.12 13799.32 2399.39 1996.22 2499.84 5397.72 6599.73 4399.67 58
TSAR-MVS + GP.98.38 3898.24 3898.81 6199.22 8397.25 8498.11 22298.29 19897.19 4098.99 4199.02 8496.22 2499.67 11298.52 2298.56 13599.51 82
TEST999.31 6198.50 2997.92 23798.73 10092.63 24497.74 11698.68 12696.20 2699.80 74
train_agg97.97 5197.52 6699.33 2699.31 6198.50 2997.92 23798.73 10092.98 23397.74 11698.68 12696.20 2699.80 7496.59 12299.57 7099.68 54
test_899.29 6798.44 3197.89 24398.72 10292.98 23397.70 12098.66 12996.20 2699.80 74
DeepPCF-MVS96.37 297.93 5598.48 1796.30 24699.00 10689.54 31797.43 27698.87 5798.16 299.26 2699.38 2496.12 2999.64 11798.30 3599.77 2899.72 38
HFP-MVS98.63 1398.40 1899.32 2799.72 1298.29 4499.23 3198.96 3396.10 9098.94 4299.17 6096.06 3099.92 2397.62 7399.78 2699.75 28
9.1498.06 4799.47 4798.71 13998.82 6994.36 16999.16 3399.29 3996.05 3199.81 6797.00 9999.71 48
CP-MVS98.57 2298.36 2299.19 3899.66 2697.86 6199.34 1898.87 5795.96 9598.60 6999.13 6896.05 3199.94 397.77 6299.86 199.77 21
MSP-MVS98.74 998.55 1399.29 2899.75 398.23 4699.26 2798.88 5097.52 1799.41 1898.78 11696.00 3399.79 8497.79 6199.59 6699.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_111021_HR98.47 3298.34 2798.88 6099.22 8397.32 7797.91 23999.58 397.20 3998.33 8399.00 8995.99 3499.64 11798.05 4599.76 3499.69 49
test_prior297.80 25196.12 8997.89 11098.69 12595.96 3596.89 10899.60 64
CDPH-MVS97.94 5497.49 6799.28 3199.47 4798.44 3197.91 23998.67 11792.57 24898.77 5598.85 10895.93 3699.72 9995.56 15899.69 5099.68 54
region2R98.61 1498.38 2099.29 2899.74 798.16 5199.23 3198.93 3896.15 8798.94 4299.17 6095.91 3799.94 397.55 8099.79 2399.78 15
XVS98.70 1098.49 1599.34 2399.70 2298.35 4199.29 2298.88 5097.40 2398.46 7399.20 5395.90 3899.89 3697.85 5699.74 4199.78 15
X-MVStestdata94.06 26592.30 28699.34 2399.70 2298.35 4199.29 2298.88 5097.40 2398.46 7343.50 37495.90 3899.89 3697.85 5699.74 4199.78 15
dcpmvs_298.08 4998.59 1096.56 22099.57 3390.34 30699.15 4698.38 18096.82 5999.29 2499.49 895.78 4099.57 12898.94 699.86 199.77 21
CS-MVS98.44 3498.49 1598.31 9799.08 9996.73 10299.67 398.47 16297.17 4198.94 4299.10 7295.73 4199.13 17898.71 1199.49 8499.09 145
ZD-MVS99.46 4998.70 2398.79 8793.21 22598.67 6198.97 9195.70 4299.83 5596.07 13799.58 69
HPM-MVS++copyleft98.58 1998.25 3699.55 999.50 4199.08 1198.72 13898.66 12097.51 1898.15 8698.83 11195.70 4299.92 2397.53 8299.67 5299.66 61
ACMMPR98.59 1798.36 2299.29 2899.74 798.15 5299.23 3198.95 3496.10 9098.93 4699.19 5895.70 4299.94 397.62 7399.79 2399.78 15
旧先验199.29 6797.48 7398.70 10899.09 7895.56 4599.47 8799.61 68
PGM-MVS98.49 2998.23 3999.27 3399.72 1298.08 5598.99 7999.49 595.43 11999.03 3699.32 3595.56 4599.94 396.80 11899.77 2899.78 15
APD-MVScopyleft98.35 4298.00 5099.42 1699.51 3998.72 2198.80 11998.82 6994.52 16499.23 2799.25 4795.54 4799.80 7496.52 12699.77 2899.74 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZNCC-MVS98.49 2998.20 4199.35 2299.73 1198.39 3499.19 4198.86 6395.77 10398.31 8599.10 7295.46 4899.93 1897.57 7999.81 1299.74 30
mPP-MVS98.51 2898.26 3599.25 3499.75 398.04 5699.28 2498.81 7496.24 8398.35 8299.23 4895.46 4899.94 397.42 8799.81 1299.77 21
EI-MVSNet-Vis-set98.47 3298.39 1998.69 6599.46 4996.49 11698.30 19798.69 10997.21 3898.84 5099.36 2995.41 5099.78 8798.62 1399.65 5599.80 12
ETV-MVS97.96 5297.81 5398.40 9298.42 15397.27 7998.73 13498.55 14396.84 5798.38 7997.44 24595.39 5199.35 15697.62 7398.89 11798.58 188
SR-MVS98.57 2298.35 2499.24 3599.53 3698.18 4999.09 5898.82 6996.58 6999.10 3599.32 3595.39 5199.82 6297.70 6999.63 6099.72 38
ACMMP_NAP98.61 1498.30 3399.55 999.62 3098.95 1798.82 11298.81 7495.80 10299.16 3399.47 1195.37 5399.92 2397.89 5399.75 3899.79 13
CSCG97.85 5897.74 5698.20 10599.67 2595.16 17799.22 3599.32 793.04 23197.02 14698.92 10295.36 5499.91 3197.43 8699.64 5999.52 79
SR-MVS-dyc-post98.54 2698.35 2499.13 4599.49 4597.86 6199.11 5498.80 8296.49 7299.17 3199.35 3195.34 5599.82 6297.72 6599.65 5599.71 42
DP-MVS Recon97.86 5797.46 7099.06 5099.53 3698.35 4198.33 19098.89 4792.62 24598.05 9298.94 9995.34 5599.65 11596.04 14199.42 9299.19 131
APD-MVS_3200maxsize98.53 2798.33 3199.15 4499.50 4197.92 6099.15 4698.81 7496.24 8399.20 2899.37 2595.30 5799.80 7497.73 6499.67 5299.72 38
RE-MVS-def98.34 2799.49 4597.86 6199.11 5498.80 8296.49 7299.17 3199.35 3195.29 5897.72 6599.65 5599.71 42
GST-MVS98.43 3598.12 4499.34 2399.72 1298.38 3599.09 5898.82 6995.71 10798.73 5999.06 8295.27 5999.93 1897.07 9899.63 6099.72 38
DeepC-MVS_fast96.70 198.55 2598.34 2799.18 4099.25 7598.04 5698.50 17498.78 8997.72 798.92 4799.28 4095.27 5999.82 6297.55 8099.77 2899.69 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss98.31 4697.92 5299.49 1299.72 1298.88 1898.43 18398.78 8994.10 17597.69 12199.42 1795.25 6199.92 2398.09 4299.80 1999.67 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CS-MVS-test98.49 2998.50 1498.46 8599.20 8697.05 8999.64 498.50 15697.45 2298.88 4899.14 6795.25 6199.15 17598.83 999.56 7699.20 127
EI-MVSNet-UG-set98.41 3698.34 2798.61 7099.45 5296.32 12598.28 20098.68 11297.17 4198.74 5799.37 2595.25 6199.79 8498.57 1499.54 7999.73 35
原ACMM198.65 6899.32 5996.62 10598.67 11793.27 22497.81 11198.97 9195.18 6499.83 5593.84 21199.46 9099.50 84
HPM-MVS_fast98.38 3898.13 4399.12 4799.75 397.86 6199.44 1198.82 6994.46 16798.94 4299.20 5395.16 6599.74 9797.58 7699.85 599.77 21
test1299.18 4099.16 9298.19 4898.53 14798.07 9195.13 6699.72 9999.56 7699.63 66
HPM-MVScopyleft98.36 4098.10 4699.13 4599.74 797.82 6599.53 898.80 8294.63 16098.61 6898.97 9195.13 6699.77 9297.65 7199.83 1199.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPM-MVS97.55 7796.99 9099.23 3799.04 10198.55 2797.17 29998.35 18494.85 15297.93 10798.58 13795.07 6899.71 10492.60 24599.34 9999.43 101
MVS_111021_LR98.34 4398.23 3998.67 6799.27 7296.90 9597.95 23599.58 397.14 4498.44 7799.01 8895.03 6999.62 12397.91 5199.75 3899.50 84
EIA-MVS97.75 6197.58 6198.27 9998.38 15696.44 11899.01 7598.60 13095.88 9997.26 13597.53 23994.97 7099.33 15897.38 8999.20 10499.05 151
DELS-MVS98.40 3798.20 4198.99 5299.00 10697.66 6697.75 25598.89 4797.71 998.33 8398.97 9194.97 7099.88 4498.42 3099.76 3499.42 103
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft95.07 497.20 9696.78 10098.44 8799.29 6796.31 12798.14 21798.76 9392.41 25496.39 17698.31 16994.92 7299.78 8794.06 20598.77 12599.23 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MTAPA98.58 1998.29 3499.46 1499.76 298.64 2598.90 9398.74 9797.27 3698.02 9799.39 1994.81 7399.96 297.91 5199.79 2399.77 21
Test By Simon94.64 74
新几何199.16 4399.34 5498.01 5898.69 10990.06 31498.13 8798.95 9894.60 7599.89 3691.97 26599.47 8799.59 72
MP-MVScopyleft98.33 4598.01 4999.28 3199.75 398.18 4999.22 3598.79 8796.13 8897.92 10899.23 4894.54 7699.94 396.74 12199.78 2699.73 35
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
pcd_1.5k_mvsjas7.88 34810.50 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38094.51 770.00 3810.00 3790.00 3790.00 377
PS-MVSNAJss96.43 12596.26 12296.92 19195.84 32195.08 18299.16 4598.50 15695.87 10093.84 25098.34 16694.51 7798.61 24296.88 11093.45 25197.06 230
PS-MVSNAJ97.73 6297.77 5497.62 14998.68 13595.58 16097.34 28598.51 15197.29 3198.66 6597.88 20694.51 7799.90 3497.87 5599.17 10697.39 222
API-MVS97.41 8697.25 7997.91 12398.70 13296.80 9898.82 11298.69 10994.53 16298.11 8898.28 17194.50 8099.57 12894.12 20299.49 8497.37 224
ACMMPcopyleft98.23 4797.95 5199.09 4899.74 797.62 6999.03 7099.41 695.98 9397.60 12999.36 2994.45 8199.93 1897.14 9598.85 12199.70 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
testdata98.26 10199.20 8695.36 16998.68 11291.89 27098.60 6999.10 7294.44 8299.82 6294.27 19799.44 9199.58 76
xiu_mvs_v2_base97.66 6897.70 5797.56 15398.61 14295.46 16697.44 27498.46 16397.15 4398.65 6698.15 18394.33 8399.80 7497.84 5898.66 13097.41 220
mvsany_test197.69 6697.70 5797.66 14798.24 17194.18 22597.53 27197.53 28495.52 11599.66 699.51 594.30 8499.56 13198.38 3198.62 13199.23 124
PAPR96.84 11096.24 12398.65 6898.72 13196.92 9497.36 28398.57 13993.33 21996.67 16197.57 23694.30 8499.56 13191.05 28298.59 13399.47 92
PAPM_NR97.46 7997.11 8498.50 8099.50 4196.41 12198.63 15598.60 13095.18 13497.06 14498.06 18994.26 8699.57 12893.80 21398.87 12099.52 79
test22299.23 8297.17 8797.40 27798.66 12088.68 33198.05 9298.96 9694.14 8799.53 8099.61 68
EPP-MVSNet97.46 7997.28 7897.99 11998.64 13995.38 16899.33 2198.31 19093.61 21097.19 13799.07 8194.05 8899.23 16596.89 10898.43 14399.37 106
F-COLMAP97.09 10296.80 9797.97 12099.45 5294.95 19098.55 16898.62 12993.02 23296.17 18198.58 13794.01 8999.81 6793.95 20798.90 11699.14 140
TAPA-MVS93.98 795.35 18594.56 20097.74 13799.13 9594.83 19698.33 19098.64 12586.62 33996.29 17898.61 13294.00 9099.29 16080.00 35699.41 9399.09 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MG-MVS97.81 5997.60 6098.44 8799.12 9695.97 14197.75 25598.78 8996.89 5698.46 7399.22 5093.90 9199.68 11194.81 17899.52 8199.67 58
DROMVSNet98.21 4898.11 4598.49 8298.34 16497.26 8399.61 598.43 17196.78 6098.87 4998.84 10993.72 9299.01 19998.91 799.50 8299.19 131
CDS-MVSNet96.99 10496.69 10597.90 12498.05 19295.98 13698.20 20898.33 18793.67 20696.95 14798.49 14593.54 9398.42 26595.24 16997.74 16899.31 113
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS97.02 10396.79 9997.70 14198.06 19195.31 17398.52 16998.31 19093.95 18497.05 14598.61 13293.49 9498.52 25395.33 16397.81 16499.29 118
CNLPA97.45 8297.03 8898.73 6399.05 10097.44 7698.07 22498.53 14795.32 12796.80 15898.53 14193.32 9599.72 9994.31 19699.31 10199.02 153
OMC-MVS97.55 7797.34 7698.20 10599.33 5695.92 14898.28 20098.59 13295.52 11597.97 10299.10 7293.28 9699.49 14495.09 17198.88 11899.19 131
UA-Net97.96 5297.62 5998.98 5398.86 11897.47 7498.89 9799.08 2296.67 6698.72 6099.54 193.15 9799.81 6794.87 17498.83 12299.65 62
CPTT-MVS97.72 6397.32 7798.92 5799.64 2897.10 8899.12 5298.81 7492.34 25698.09 9099.08 8093.01 9899.92 2396.06 14099.77 2899.75 28
114514_t96.93 10696.27 12198.92 5799.50 4197.63 6898.85 10698.90 4584.80 35197.77 11299.11 7092.84 9999.66 11494.85 17599.77 2899.47 92
PVSNet_Blended_VisFu97.70 6597.46 7098.44 8799.27 7295.91 14998.63 15599.16 1894.48 16697.67 12298.88 10592.80 10099.91 3197.11 9699.12 10799.50 84
PVSNet_BlendedMVS96.73 11396.60 10997.12 17599.25 7595.35 17198.26 20399.26 994.28 17097.94 10597.46 24292.74 10199.81 6796.88 11093.32 25496.20 317
PVSNet_Blended97.38 8897.12 8398.14 10899.25 7595.35 17197.28 29099.26 993.13 22897.94 10598.21 17992.74 10199.81 6796.88 11099.40 9599.27 120
MVS_Test97.28 9197.00 8998.13 11098.33 16695.97 14198.74 13098.07 23994.27 17198.44 7798.07 18892.48 10399.26 16196.43 12998.19 15299.16 137
miper_enhance_ethall95.10 19994.75 19296.12 25397.53 22793.73 23996.61 33198.08 23792.20 26493.89 24696.65 30392.44 10498.30 28694.21 19991.16 28096.34 310
MVSFormer97.57 7597.49 6797.84 12698.07 18995.76 15599.47 998.40 17594.98 14598.79 5398.83 11192.34 10598.41 27396.91 10499.59 6699.34 107
lupinMVS97.44 8397.22 8198.12 11298.07 18995.76 15597.68 26097.76 26594.50 16598.79 5398.61 13292.34 10599.30 15997.58 7699.59 6699.31 113
CHOSEN 280x42097.18 9797.18 8297.20 16898.81 12393.27 25695.78 34499.15 1995.25 13196.79 15998.11 18692.29 10799.07 18998.56 1599.85 599.25 123
canonicalmvs97.67 6797.23 8098.98 5398.70 13298.38 3599.34 1898.39 17796.76 6297.67 12297.40 24892.26 10899.49 14498.28 3696.28 20599.08 149
IterMVS-LS95.46 17495.21 17096.22 24998.12 18693.72 24098.32 19498.13 22593.71 19994.26 22897.31 25292.24 10998.10 30094.63 18290.12 29196.84 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 14695.83 13896.36 24197.93 19993.70 24198.12 22098.27 19993.70 20195.07 19899.02 8492.23 11098.54 25194.68 18093.46 24996.84 256
WTY-MVS97.37 8996.92 9398.72 6498.86 11896.89 9798.31 19598.71 10595.26 13097.67 12298.56 14092.21 11199.78 8795.89 14596.85 18499.48 90
Effi-MVS+97.12 10096.69 10598.39 9398.19 17996.72 10397.37 28198.43 17193.71 19997.65 12598.02 19292.20 11299.25 16296.87 11397.79 16599.19 131
1112_ss96.63 11696.00 13298.50 8098.56 14496.37 12298.18 21498.10 23292.92 23694.84 20398.43 15292.14 11399.58 12794.35 19396.51 19599.56 78
LS3D97.16 9896.66 10898.68 6698.53 14797.19 8698.93 9098.90 4592.83 24095.99 18699.37 2592.12 11499.87 4593.67 21799.57 7098.97 158
nrg03096.28 13595.72 14397.96 12296.90 27198.15 5299.39 1298.31 19095.47 11794.42 22198.35 16292.09 11598.69 23597.50 8489.05 30897.04 231
mvs_anonymous96.70 11596.53 11397.18 17098.19 17993.78 23498.31 19598.19 21194.01 18094.47 21598.27 17492.08 11698.46 26097.39 8897.91 16099.31 113
FC-MVSNet-test96.42 12696.05 12997.53 15496.95 26697.27 7999.36 1599.23 1395.83 10193.93 24498.37 16092.00 11798.32 28296.02 14292.72 26397.00 234
FIs96.51 12396.12 12697.67 14497.13 25797.54 7299.36 1599.22 1595.89 9794.03 24198.35 16291.98 11898.44 26396.40 13092.76 26297.01 233
sss97.39 8796.98 9198.61 7098.60 14396.61 10798.22 20598.93 3893.97 18398.01 10098.48 14691.98 11899.85 5096.45 12898.15 15399.39 104
miper_ehance_all_eth95.01 20394.69 19595.97 25897.70 21393.31 25597.02 30798.07 23992.23 26193.51 26396.96 28591.85 12098.15 29693.68 21591.16 28096.44 307
DP-MVS96.59 11895.93 13598.57 7299.34 5496.19 13198.70 14398.39 17789.45 32494.52 21399.35 3191.85 12099.85 5092.89 24198.88 11899.68 54
Test_1112_low_res96.34 13295.66 15198.36 9498.56 14495.94 14497.71 25898.07 23992.10 26594.79 20797.29 25391.75 12299.56 13194.17 20096.50 19699.58 76
UniMVSNet_NR-MVSNet95.71 16295.15 17297.40 16096.84 27496.97 9198.74 13099.24 1195.16 13593.88 24797.72 22191.68 12398.31 28495.81 14887.25 32896.92 240
UniMVSNet (Re)95.78 15895.19 17197.58 15196.99 26497.47 7498.79 12499.18 1795.60 11193.92 24597.04 27691.68 12398.48 25695.80 15087.66 32396.79 260
casdiffmvs_mvgpermissive97.72 6397.48 6998.44 8798.42 15396.59 11098.92 9198.44 16796.20 8597.76 11399.20 5391.66 12599.23 16598.27 3798.41 14499.49 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS93.96 896.82 11196.23 12498.57 7298.46 15197.00 9098.14 21798.21 20793.95 18496.72 16097.99 19691.58 12699.76 9394.51 18996.54 19498.95 161
xiu_mvs_v1_base_debu97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
xiu_mvs_v1_base97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
xiu_mvs_v1_base_debi97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
MAR-MVS96.91 10796.40 11698.45 8698.69 13496.90 9598.66 15198.68 11292.40 25597.07 14397.96 19991.54 13099.75 9593.68 21598.92 11598.69 178
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CANet98.05 5097.76 5598.90 5998.73 12797.27 7998.35 18898.78 8997.37 2897.72 11998.96 9691.53 13199.92 2398.79 1099.65 5599.51 82
c3_l94.79 21594.43 21095.89 26397.75 20893.12 26297.16 30198.03 24792.23 26193.46 26697.05 27591.39 13298.01 30893.58 22089.21 30696.53 294
EPNet97.28 9196.87 9598.51 7994.98 33796.14 13298.90 9397.02 31698.28 195.99 18699.11 7091.36 13399.89 3696.98 10099.19 10599.50 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline97.64 6997.44 7298.25 10298.35 15996.20 12999.00 7798.32 18896.33 8298.03 9599.17 6091.35 13499.16 17298.10 4198.29 15199.39 104
131496.25 13795.73 14297.79 13197.13 25795.55 16398.19 21198.59 13293.47 21492.03 30597.82 21491.33 13599.49 14494.62 18498.44 14198.32 198
diffmvspermissive97.58 7497.40 7498.13 11098.32 16895.81 15498.06 22598.37 18196.20 8598.74 5798.89 10491.31 13699.25 16298.16 3998.52 13699.34 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM94.95 20994.00 23097.78 13297.04 26195.65 15896.03 34098.25 20491.23 29394.19 23397.80 21691.27 13798.86 22282.61 35097.61 17298.84 168
casdiffmvspermissive97.63 7097.41 7398.28 9898.33 16696.14 13298.82 11298.32 18896.38 8097.95 10399.21 5191.23 13899.23 16598.12 4098.37 14599.48 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason97.32 9097.08 8698.06 11697.45 23595.59 15997.87 24597.91 25994.79 15398.55 7198.83 11191.12 13999.23 16597.58 7699.60 6499.34 107
jason: jason.
IS-MVSNet97.22 9396.88 9498.25 10298.85 12096.36 12399.19 4197.97 25295.39 12197.23 13698.99 9091.11 14098.93 21194.60 18598.59 13399.47 92
PMMVS96.60 11796.33 11897.41 15897.90 20193.93 23097.35 28498.41 17392.84 23997.76 11397.45 24491.10 14199.20 16996.26 13397.91 16099.11 143
MVS94.67 22393.54 26298.08 11496.88 27296.56 11298.19 21198.50 15678.05 36192.69 28898.02 19291.07 14299.63 12090.09 29398.36 14798.04 205
Fast-Effi-MVS+96.28 13595.70 14898.03 11798.29 17095.97 14198.58 16198.25 20491.74 27395.29 19597.23 25791.03 14399.15 17592.90 23997.96 15998.97 158
mvsmamba96.57 12196.32 11997.32 16496.60 28696.43 11999.54 797.98 25096.49 7295.20 19698.64 13090.82 14498.55 24997.97 4793.65 24496.98 235
Effi-MVS+-dtu96.29 13396.56 11095.51 27597.89 20290.22 30798.80 11998.10 23296.57 7196.45 17596.66 30190.81 14598.91 21395.72 15297.99 15797.40 221
test_yl97.22 9396.78 10098.54 7698.73 12796.60 10898.45 17898.31 19094.70 15498.02 9798.42 15490.80 14699.70 10596.81 11696.79 18699.34 107
DCV-MVSNet97.22 9396.78 10098.54 7698.73 12796.60 10898.45 17898.31 19094.70 15498.02 9798.42 15490.80 14699.70 10596.81 11696.79 18699.34 107
alignmvs97.56 7697.07 8799.01 5198.66 13798.37 3998.83 11098.06 24496.74 6398.00 10197.65 22890.80 14699.48 14898.37 3296.56 19399.19 131
AdaColmapbinary97.15 9996.70 10498.48 8399.16 9296.69 10498.01 23098.89 4794.44 16896.83 15498.68 12690.69 14999.76 9394.36 19299.29 10298.98 157
cdsmvs_eth3d_5k23.98 34431.98 3460.00 3620.00 3850.00 3860.00 37398.59 1320.00 3800.00 38198.61 13290.60 1500.00 3810.00 3790.00 3790.00 377
eth_miper_zixun_eth94.68 22094.41 21195.47 27797.64 21691.71 28196.73 32898.07 23992.71 24393.64 25697.21 25990.54 15198.17 29593.38 22389.76 29596.54 292
DeepC-MVS95.98 397.88 5697.58 6198.77 6299.25 7596.93 9398.83 11098.75 9596.96 5396.89 15399.50 690.46 15299.87 4597.84 5899.76 3499.52 79
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H95.05 20294.46 20696.81 19796.86 27395.82 15399.24 3099.24 1193.87 18892.53 29396.84 29590.37 15398.24 29293.24 22787.93 32096.38 309
EPNet_dtu95.21 19394.95 18495.99 25696.17 30790.45 30398.16 21697.27 30496.77 6193.14 27698.33 16790.34 15498.42 26585.57 33598.81 12499.09 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VNet97.79 6097.40 7498.96 5598.88 11697.55 7198.63 15598.93 3896.74 6399.02 3798.84 10990.33 15599.83 5598.53 1696.66 18999.50 84
MSDG95.93 15095.30 16797.83 12798.90 11495.36 16996.83 32498.37 18191.32 28894.43 22098.73 12290.27 15699.60 12590.05 29698.82 12398.52 189
LCM-MVSNet-Re95.22 19295.32 16494.91 29398.18 18187.85 34498.75 12795.66 34595.11 13888.96 33196.85 29490.26 15797.65 32595.65 15698.44 14199.22 126
Vis-MVSNet (Re-imp)96.87 10996.55 11197.83 12798.73 12795.46 16699.20 3998.30 19694.96 14796.60 16598.87 10690.05 15898.59 24593.67 21798.60 13299.46 96
miper_lstm_enhance94.33 24594.07 22595.11 28897.75 20890.97 29397.22 29398.03 24791.67 27792.76 28596.97 28390.03 15997.78 32392.51 25289.64 29796.56 289
baseline195.84 15595.12 17598.01 11898.49 15095.98 13698.73 13497.03 31495.37 12496.22 17998.19 18189.96 16099.16 17294.60 18587.48 32498.90 164
MDTV_nov1_ep13_2view84.26 35396.89 31990.97 29997.90 10989.89 16193.91 20999.18 136
h-mvs3396.17 13895.62 15297.81 13099.03 10294.45 21298.64 15398.75 9597.48 1998.67 6198.72 12389.76 16299.86 4997.95 4881.59 35099.11 143
hse-mvs295.71 16295.30 16796.93 18898.50 14893.53 24698.36 18798.10 23297.48 1998.67 6197.99 19689.76 16299.02 19797.95 4880.91 35498.22 200
GeoE96.58 12096.07 12898.10 11398.35 15995.89 15199.34 1898.12 22693.12 22996.09 18298.87 10689.71 16498.97 20192.95 23798.08 15699.43 101
our_test_393.65 27293.30 26994.69 30195.45 33289.68 31596.91 31497.65 27091.97 26891.66 30996.88 29189.67 16597.93 31588.02 32191.49 27596.48 304
tpmrst95.63 16795.69 14995.44 27997.54 22588.54 33396.97 30997.56 27793.50 21397.52 13196.93 28989.49 16699.16 17295.25 16896.42 19898.64 184
D2MVS95.18 19595.08 17795.48 27697.10 25992.07 27398.30 19799.13 2094.02 17992.90 28196.73 29889.48 16798.73 23394.48 19093.60 24795.65 330
FA-MVS(test-final)96.41 13095.94 13497.82 12998.21 17595.20 17697.80 25197.58 27593.21 22597.36 13397.70 22289.47 16899.56 13194.12 20297.99 15798.71 177
sam_mvs189.45 16999.20 127
patchmatchnet-post95.10 33789.42 17098.89 217
3Dnovator+94.38 697.43 8496.78 10099.38 1897.83 20498.52 2899.37 1498.71 10597.09 4892.99 28099.13 6889.36 17199.89 3696.97 10199.57 7099.71 42
NR-MVSNet94.98 20794.16 22097.44 15696.53 29097.22 8598.74 13098.95 3494.96 14789.25 33097.69 22489.32 17298.18 29494.59 18787.40 32696.92 240
HyFIR lowres test96.90 10896.49 11498.14 10899.33 5695.56 16197.38 27999.65 292.34 25697.61 12898.20 18089.29 17399.10 18696.97 10197.60 17399.77 21
RRT_MVS95.98 14595.78 14096.56 22096.48 29494.22 22499.57 697.92 25795.89 9793.95 24398.70 12489.27 17498.42 26597.23 9393.02 25897.04 231
3Dnovator94.51 597.46 7996.93 9299.07 4997.78 20697.64 6799.35 1799.06 2397.02 5093.75 25599.16 6389.25 17599.92 2397.22 9499.75 3899.64 64
PatchmatchNetpermissive95.71 16295.52 15396.29 24797.58 22090.72 29896.84 32397.52 28594.06 17697.08 14196.96 28589.24 17698.90 21692.03 26398.37 14599.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1395.40 15597.48 22988.34 33796.85 32297.29 30293.74 19697.48 13297.26 25489.18 17799.05 19091.92 26697.43 176
test_djsdf96.00 14495.69 14996.93 18895.72 32395.49 16599.47 998.40 17594.98 14594.58 21197.86 20789.16 17898.41 27396.91 10494.12 23096.88 249
DIV-MVS_self_test94.52 23494.03 22695.99 25697.57 22493.38 25397.05 30597.94 25591.74 27392.81 28397.10 26389.12 17998.07 30492.60 24590.30 28896.53 294
QAPM96.29 13395.40 15598.96 5597.85 20397.60 7099.23 3198.93 3889.76 31993.11 27799.02 8489.11 18099.93 1891.99 26499.62 6299.34 107
pmmvs494.69 21893.99 23296.81 19795.74 32295.94 14497.40 27797.67 26990.42 30893.37 26797.59 23489.08 18198.20 29392.97 23691.67 27396.30 314
cl____94.51 23594.01 22996.02 25597.58 22093.40 25297.05 30597.96 25491.73 27592.76 28597.08 26989.06 18298.13 29892.61 24490.29 28996.52 297
sam_mvs88.99 183
Patchmatch-test94.42 24193.68 25696.63 21097.60 21991.76 27894.83 35497.49 28989.45 32494.14 23597.10 26388.99 18398.83 22585.37 33898.13 15499.29 118
Patchmatch-RL test91.49 29790.85 29893.41 32091.37 35984.40 35292.81 36295.93 34391.87 27187.25 34194.87 33988.99 18396.53 35092.54 25182.00 34799.30 116
Fast-Effi-MVS+-dtu95.87 15395.85 13795.91 26197.74 21191.74 28098.69 14598.15 22295.56 11394.92 20197.68 22788.98 18698.79 22993.19 22997.78 16697.20 228
BH-untuned95.95 14795.72 14396.65 20698.55 14692.26 27098.23 20497.79 26493.73 19794.62 21098.01 19488.97 18799.00 20093.04 23498.51 13798.68 179
XVG-OURS96.55 12296.41 11596.99 18298.75 12693.76 23597.50 27398.52 14995.67 10996.83 15499.30 3888.95 18899.53 13995.88 14696.26 20697.69 216
PVSNet91.96 1896.35 13196.15 12596.96 18699.17 8892.05 27496.08 33798.68 11293.69 20297.75 11597.80 21688.86 18999.69 11094.26 19899.01 11299.15 138
test_post31.83 37788.83 19098.91 213
v894.47 23893.77 24896.57 21996.36 29994.83 19699.05 6498.19 21191.92 26993.16 27396.97 28388.82 19198.48 25691.69 27187.79 32196.39 308
BH-w/o95.38 18195.08 17796.26 24898.34 16491.79 27797.70 25997.43 29492.87 23894.24 23097.22 25888.66 19298.84 22391.55 27397.70 17098.16 203
tpmvs94.60 22694.36 21395.33 28297.46 23188.60 33296.88 32097.68 26891.29 29093.80 25296.42 31188.58 19399.24 16491.06 28096.04 21398.17 202
DU-MVS95.42 17894.76 19197.40 16096.53 29096.97 9198.66 15198.99 3095.43 11993.88 24797.69 22488.57 19498.31 28495.81 14887.25 32896.92 240
Baseline_NR-MVSNet94.35 24493.81 24495.96 25996.20 30594.05 22898.61 15896.67 33391.44 28293.85 24997.60 23388.57 19498.14 29794.39 19186.93 33195.68 329
PCF-MVS93.45 1194.68 22093.43 26698.42 9198.62 14196.77 10095.48 34898.20 20984.63 35293.34 26898.32 16888.55 19699.81 6784.80 34298.96 11498.68 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14894.29 24893.76 25095.91 26196.10 31092.93 26598.58 16197.97 25292.59 24793.47 26596.95 28788.53 19798.32 28292.56 24987.06 33096.49 303
PatchMatch-RL96.59 11896.03 13198.27 9999.31 6196.51 11597.91 23999.06 2393.72 19896.92 15198.06 18988.50 19899.65 11591.77 26999.00 11398.66 182
V4294.78 21694.14 22296.70 20396.33 30295.22 17598.97 8298.09 23692.32 25894.31 22697.06 27388.39 19998.55 24992.90 23988.87 31296.34 310
v7n94.19 25493.43 26696.47 23295.90 31894.38 21799.26 2798.34 18691.99 26792.76 28597.13 26288.31 20098.52 25389.48 30887.70 32296.52 297
TranMVSNet+NR-MVSNet95.14 19794.48 20497.11 17696.45 29696.36 12399.03 7099.03 2695.04 14393.58 25897.93 20188.27 20198.03 30794.13 20186.90 33396.95 239
MVSTER96.06 14295.72 14397.08 17898.23 17395.93 14798.73 13498.27 19994.86 15195.07 19898.09 18788.21 20298.54 25196.59 12293.46 24996.79 260
CHOSEN 1792x268897.12 10096.80 9798.08 11499.30 6594.56 21098.05 22699.71 193.57 21197.09 14098.91 10388.17 20399.89 3696.87 11399.56 7699.81 11
CR-MVSNet94.76 21794.15 22196.59 21697.00 26293.43 24994.96 35097.56 27792.46 24996.93 14996.24 31488.15 20497.88 32087.38 32496.65 19098.46 191
Patchmtry93.22 28192.35 28595.84 26596.77 27693.09 26394.66 35797.56 27787.37 33792.90 28196.24 31488.15 20497.90 31687.37 32590.10 29296.53 294
v1094.29 24893.55 26196.51 22896.39 29894.80 19898.99 7998.19 21191.35 28693.02 27996.99 28188.09 20698.41 27390.50 28988.41 31696.33 312
ppachtmachnet_test93.22 28192.63 28194.97 29295.45 33290.84 29596.88 32097.88 26090.60 30392.08 30497.26 25488.08 20797.86 32185.12 33990.33 28796.22 316
Vis-MVSNetpermissive97.42 8597.11 8498.34 9598.66 13796.23 12899.22 3599.00 2896.63 6898.04 9499.21 5188.05 20899.35 15696.01 14399.21 10399.45 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v114494.59 22893.92 23596.60 21596.21 30494.78 20098.59 15998.14 22491.86 27294.21 23297.02 27887.97 20998.41 27391.72 27089.57 29896.61 282
PatchT93.06 28591.97 29096.35 24296.69 28292.67 26794.48 35897.08 31086.62 33997.08 14192.23 35887.94 21097.90 31678.89 36096.69 18898.49 190
ADS-MVSNet294.58 22994.40 21295.11 28898.00 19388.74 33096.04 33897.30 30190.15 31296.47 17396.64 30487.89 21197.56 33090.08 29497.06 18099.02 153
ADS-MVSNet95.00 20494.45 20896.63 21098.00 19391.91 27696.04 33897.74 26790.15 31296.47 17396.64 30487.89 21198.96 20590.08 29497.06 18099.02 153
XVG-OURS-SEG-HR96.51 12396.34 11797.02 18198.77 12593.76 23597.79 25398.50 15695.45 11896.94 14899.09 7887.87 21399.55 13896.76 12095.83 21597.74 213
test_post196.68 32930.43 37887.85 21498.69 23592.59 247
iter_conf_final96.42 12696.12 12697.34 16398.46 15196.55 11499.08 6098.06 24496.03 9295.63 19098.46 15087.72 21598.59 24597.84 5893.80 23996.87 251
test-LLR95.10 19994.87 18895.80 26696.77 27689.70 31396.91 31495.21 34895.11 13894.83 20595.72 32987.71 21698.97 20193.06 23298.50 13898.72 175
test0.0.03 194.08 26393.51 26395.80 26695.53 32992.89 26697.38 27995.97 34195.11 13892.51 29596.66 30187.71 21696.94 34187.03 32693.67 24297.57 218
JIA-IIPM93.35 27692.49 28395.92 26096.48 29490.65 30095.01 34996.96 31885.93 34596.08 18387.33 36487.70 21898.78 23091.35 27595.58 21698.34 196
v2v48294.69 21894.03 22696.65 20696.17 30794.79 19998.67 14998.08 23792.72 24294.00 24297.16 26187.69 21998.45 26192.91 23888.87 31296.72 268
CVMVSNet95.43 17796.04 13093.57 31897.93 19983.62 35598.12 22098.59 13295.68 10896.56 16699.02 8487.51 22097.51 33293.56 22197.44 17599.60 70
WR-MVS95.15 19694.46 20697.22 16796.67 28496.45 11798.21 20698.81 7494.15 17393.16 27397.69 22487.51 22098.30 28695.29 16688.62 31496.90 247
anonymousdsp95.42 17894.91 18596.94 18795.10 33695.90 15099.14 4898.41 17393.75 19493.16 27397.46 24287.50 22298.41 27395.63 15794.03 23296.50 302
v14419294.39 24393.70 25496.48 23196.06 31294.35 21898.58 16198.16 22191.45 28194.33 22597.02 27887.50 22298.45 26191.08 27989.11 30796.63 280
baseline295.11 19894.52 20296.87 19396.65 28593.56 24398.27 20294.10 36293.45 21592.02 30697.43 24687.45 22499.19 17093.88 21097.41 17797.87 209
EU-MVSNet93.66 27094.14 22292.25 33395.96 31783.38 35698.52 16998.12 22694.69 15692.61 29098.13 18587.36 22596.39 35291.82 26790.00 29396.98 235
CP-MVSNet94.94 21194.30 21496.83 19596.72 28195.56 16199.11 5498.95 3493.89 18692.42 29897.90 20387.19 22698.12 29994.32 19588.21 31796.82 259
HQP_MVS96.14 13995.90 13696.85 19497.42 23794.60 20898.80 11998.56 14197.28 3295.34 19398.28 17187.09 22799.03 19496.07 13794.27 22296.92 240
plane_prior697.35 24294.61 20687.09 227
RPSCF94.87 21395.40 15593.26 32498.89 11582.06 36098.33 19098.06 24490.30 31196.56 16699.26 4387.09 22799.49 14493.82 21296.32 20198.24 199
RPMNet92.81 28791.34 29597.24 16697.00 26293.43 24994.96 35098.80 8282.27 35696.93 14992.12 35986.98 23099.82 6276.32 36496.65 19098.46 191
v119294.32 24693.58 25996.53 22696.10 31094.45 21298.50 17498.17 21991.54 27994.19 23397.06 27386.95 23198.43 26490.14 29289.57 29896.70 272
CANet_DTU96.96 10596.55 11198.21 10498.17 18396.07 13497.98 23398.21 20797.24 3797.13 13998.93 10086.88 23299.91 3195.00 17399.37 9898.66 182
HQP2-MVS86.75 233
HQP-MVS95.72 16195.40 15596.69 20497.20 25094.25 22298.05 22698.46 16396.43 7594.45 21697.73 21986.75 23398.96 20595.30 16494.18 22696.86 254
OpenMVScopyleft93.04 1395.83 15695.00 18098.32 9697.18 25497.32 7799.21 3898.97 3189.96 31591.14 31399.05 8386.64 23599.92 2393.38 22399.47 8797.73 214
cl2294.68 22094.19 21896.13 25298.11 18793.60 24296.94 31198.31 19092.43 25393.32 26996.87 29386.51 23698.28 29094.10 20491.16 28096.51 300
ET-MVSNet_ETH3D94.13 25892.98 27497.58 15198.22 17496.20 12997.31 28895.37 34794.53 16279.56 36097.63 23286.51 23697.53 33196.91 10490.74 28499.02 153
YYNet190.70 30789.39 31094.62 30494.79 34290.65 30097.20 29597.46 29087.54 33672.54 36695.74 32586.51 23696.66 34886.00 33286.76 33596.54 292
MDA-MVSNet_test_wron90.71 30689.38 31194.68 30294.83 34090.78 29797.19 29697.46 29087.60 33572.41 36795.72 32986.51 23696.71 34785.92 33386.80 33496.56 289
v192192094.20 25393.47 26596.40 24095.98 31594.08 22798.52 16998.15 22291.33 28794.25 22997.20 26086.41 24098.42 26590.04 29789.39 30496.69 277
COLMAP_ROBcopyleft93.27 1295.33 18794.87 18896.71 20199.29 6793.24 25898.58 16198.11 22989.92 31693.57 25999.10 7286.37 24199.79 8490.78 28598.10 15597.09 229
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVP-Stereo94.28 25093.92 23595.35 28194.95 33892.60 26897.97 23497.65 27091.61 27890.68 31897.09 26786.32 24298.42 26589.70 30399.34 9995.02 341
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CLD-MVS95.62 16895.34 16196.46 23597.52 22893.75 23797.27 29198.46 16395.53 11494.42 22198.00 19586.21 24398.97 20196.25 13594.37 22096.66 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpm cat193.36 27592.80 27795.07 29097.58 22087.97 34296.76 32697.86 26182.17 35793.53 26096.04 32286.13 24499.13 17889.24 31195.87 21498.10 204
PEN-MVS94.42 24193.73 25296.49 22996.28 30394.84 19499.17 4499.00 2893.51 21292.23 30197.83 21386.10 24597.90 31692.55 25086.92 33296.74 265
v124094.06 26593.29 27096.34 24396.03 31493.90 23198.44 18198.17 21991.18 29694.13 23697.01 28086.05 24698.42 26589.13 31389.50 30296.70 272
CostFormer94.95 20994.73 19395.60 27497.28 24489.06 32497.53 27196.89 32489.66 32196.82 15696.72 29986.05 24698.95 21095.53 15996.13 21198.79 170
ACMM93.85 995.69 16595.38 15996.61 21397.61 21893.84 23398.91 9298.44 16795.25 13194.28 22798.47 14886.04 24899.12 18095.50 16093.95 23596.87 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet93.98 26793.26 27196.14 25196.06 31294.39 21699.20 3998.86 6393.06 23091.78 30797.81 21585.87 24997.58 32990.53 28886.17 33796.46 306
bld_raw_dy_0_6495.74 16095.31 16697.03 18096.35 30095.76 15599.12 5297.37 29995.97 9494.70 20998.48 14685.80 25098.49 25596.55 12493.48 24896.84 256
VPA-MVSNet95.75 15995.11 17697.69 14297.24 24697.27 7998.94 8899.23 1395.13 13695.51 19297.32 25185.73 25198.91 21397.33 9189.55 30096.89 248
EPMVS94.99 20594.48 20496.52 22797.22 24891.75 27997.23 29291.66 37094.11 17497.28 13496.81 29685.70 25298.84 22393.04 23497.28 17898.97 158
TransMVSNet (Re)92.67 28991.51 29496.15 25096.58 28894.65 20198.90 9396.73 32990.86 30189.46 32997.86 20785.62 25398.09 30286.45 32981.12 35195.71 328
AUN-MVS94.53 23393.73 25296.92 19198.50 14893.52 24798.34 18998.10 23293.83 19195.94 18897.98 19885.59 25499.03 19494.35 19380.94 35398.22 200
iter_conf0596.13 14095.79 13997.15 17298.16 18495.99 13598.88 10097.98 25095.91 9695.58 19198.46 15085.53 25598.59 24597.88 5493.75 24096.86 254
dp94.15 25793.90 23894.90 29497.31 24386.82 34996.97 30997.19 30891.22 29496.02 18596.61 30685.51 25699.02 19790.00 29894.30 22198.85 166
LPG-MVS_test95.62 16895.34 16196.47 23297.46 23193.54 24498.99 7998.54 14594.67 15894.36 22398.77 11885.39 25799.11 18295.71 15394.15 22896.76 263
LGP-MVS_train96.47 23297.46 23193.54 24498.54 14594.67 15894.36 22398.77 11885.39 25799.11 18295.71 15394.15 22896.76 263
PS-CasMVS94.67 22393.99 23296.71 20196.68 28395.26 17499.13 5199.03 2693.68 20492.33 29997.95 20085.35 25998.10 30093.59 21988.16 31996.79 260
ab-mvs96.42 12695.71 14698.55 7498.63 14096.75 10197.88 24498.74 9793.84 18996.54 17098.18 18285.34 26099.75 9595.93 14496.35 19999.15 138
N_pmnet87.12 32587.77 32385.17 34695.46 33161.92 37697.37 28170.66 38285.83 34688.73 33696.04 32285.33 26197.76 32480.02 35590.48 28695.84 325
FE-MVS95.62 16894.90 18697.78 13298.37 15894.92 19197.17 29997.38 29890.95 30097.73 11897.70 22285.32 26299.63 12091.18 27798.33 14898.79 170
OPM-MVS95.69 16595.33 16396.76 19996.16 30994.63 20398.43 18398.39 17796.64 6795.02 20098.78 11685.15 26399.05 19095.21 17094.20 22596.60 283
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BH-RMVSNet95.92 15195.32 16497.69 14298.32 16894.64 20298.19 21197.45 29294.56 16196.03 18498.61 13285.02 26499.12 18090.68 28799.06 10899.30 116
DSMNet-mixed92.52 29192.58 28292.33 33194.15 34682.65 35898.30 19794.26 35989.08 32992.65 28995.73 32785.01 26595.76 35586.24 33097.76 16798.59 186
tfpnnormal93.66 27092.70 28096.55 22596.94 26795.94 14498.97 8299.19 1691.04 29891.38 31197.34 24984.94 26698.61 24285.45 33789.02 31095.11 338
LTVRE_ROB92.95 1594.60 22693.90 23896.68 20597.41 24094.42 21498.52 16998.59 13291.69 27691.21 31298.35 16284.87 26799.04 19391.06 28093.44 25296.60 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XXY-MVS95.20 19494.45 20897.46 15596.75 27996.56 11298.86 10598.65 12493.30 22293.27 27098.27 17484.85 26898.87 22094.82 17791.26 27996.96 237
thisisatest051595.61 17194.89 18797.76 13598.15 18595.15 17996.77 32594.41 35692.95 23597.18 13897.43 24684.78 26999.45 15294.63 18297.73 16998.68 179
CL-MVSNet_self_test90.11 31089.14 31393.02 32791.86 35888.23 34096.51 33498.07 23990.49 30490.49 32094.41 34184.75 27095.34 35880.79 35474.95 36495.50 331
AllTest95.24 19194.65 19696.99 18299.25 7593.21 25998.59 15998.18 21491.36 28493.52 26198.77 11884.67 27199.72 9989.70 30397.87 16298.02 206
TestCases96.99 18299.25 7593.21 25998.18 21491.36 28493.52 26198.77 11884.67 27199.72 9989.70 30397.87 16298.02 206
thres20095.25 19094.57 19997.28 16598.81 12394.92 19198.20 20897.11 30995.24 13396.54 17096.22 31884.58 27399.53 13987.93 32296.50 19697.39 222
pm-mvs193.94 26893.06 27396.59 21696.49 29395.16 17798.95 8698.03 24792.32 25891.08 31497.84 21084.54 27498.41 27392.16 25786.13 33996.19 318
ACMP93.49 1095.34 18694.98 18296.43 23797.67 21493.48 24898.73 13498.44 16794.94 15092.53 29398.53 14184.50 27599.14 17795.48 16194.00 23396.66 278
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres100view90095.38 18194.70 19497.41 15898.98 11094.92 19198.87 10396.90 32295.38 12296.61 16496.88 29184.29 27699.56 13188.11 31896.29 20297.76 211
thres600view795.49 17294.77 19097.67 14498.98 11095.02 18398.85 10696.90 32295.38 12296.63 16396.90 29084.29 27699.59 12688.65 31796.33 20098.40 193
FMVSNet394.97 20894.26 21597.11 17698.18 18196.62 10598.56 16798.26 20393.67 20694.09 23797.10 26384.25 27898.01 30892.08 25992.14 26696.70 272
tfpn200view995.32 18894.62 19797.43 15798.94 11294.98 18798.68 14696.93 32095.33 12596.55 16896.53 30784.23 27999.56 13188.11 31896.29 20297.76 211
thres40095.38 18194.62 19797.65 14898.94 11294.98 18798.68 14696.93 32095.33 12596.55 16896.53 30784.23 27999.56 13188.11 31896.29 20298.40 193
cascas94.63 22593.86 24196.93 18896.91 27094.27 22096.00 34198.51 15185.55 34894.54 21296.23 31684.20 28198.87 22095.80 15096.98 18397.66 217
tpm94.13 25893.80 24595.12 28796.50 29287.91 34397.44 27495.89 34492.62 24596.37 17796.30 31384.13 28298.30 28693.24 22791.66 27499.14 140
tttt051796.07 14195.51 15497.78 13298.41 15594.84 19499.28 2494.33 35894.26 17297.64 12698.64 13084.05 28399.47 15095.34 16297.60 17399.03 152
IterMVS94.09 26293.85 24294.80 29997.99 19590.35 30597.18 29798.12 22693.68 20492.46 29797.34 24984.05 28397.41 33492.51 25291.33 27696.62 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 26093.87 24094.85 29697.98 19790.56 30297.18 29798.11 22993.75 19492.58 29197.48 24183.97 28597.41 33492.48 25491.30 27796.58 285
SCA95.46 17495.13 17396.46 23597.67 21491.29 28997.33 28697.60 27494.68 15796.92 15197.10 26383.97 28598.89 21792.59 24798.32 15099.20 127
TR-MVS94.94 21194.20 21797.17 17197.75 20894.14 22697.59 26897.02 31692.28 26095.75 18997.64 23083.88 28798.96 20589.77 30096.15 21098.40 193
jajsoiax95.45 17695.03 17996.73 20095.42 33494.63 20399.14 4898.52 14995.74 10493.22 27198.36 16183.87 28898.65 24096.95 10394.04 23196.91 245
Anonymous2023120691.66 29691.10 29693.33 32294.02 35087.35 34698.58 16197.26 30590.48 30590.16 32296.31 31283.83 28996.53 35079.36 35889.90 29496.12 319
thisisatest053096.01 14395.36 16097.97 12098.38 15695.52 16498.88 10094.19 36094.04 17797.64 12698.31 16983.82 29099.46 15195.29 16697.70 17098.93 162
tpm294.19 25493.76 25095.46 27897.23 24789.04 32597.31 28896.85 32887.08 33896.21 18096.79 29783.75 29198.74 23292.43 25596.23 20898.59 186
mvs_tets95.41 18095.00 18096.65 20695.58 32794.42 21499.00 7798.55 14395.73 10693.21 27298.38 15983.45 29298.63 24197.09 9794.00 23396.91 245
OurMVSNet-221017-094.21 25294.00 23094.85 29695.60 32689.22 32298.89 9797.43 29495.29 12892.18 30298.52 14482.86 29398.59 24593.46 22291.76 27196.74 265
UGNet96.78 11296.30 12098.19 10798.24 17195.89 15198.88 10098.93 3897.39 2596.81 15797.84 21082.60 29499.90 3496.53 12599.49 8498.79 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs593.65 27292.97 27595.68 27095.49 33092.37 26998.20 20897.28 30389.66 32192.58 29197.26 25482.14 29598.09 30293.18 23090.95 28396.58 285
ACMH92.88 1694.55 23093.95 23496.34 24397.63 21793.26 25798.81 11898.49 16193.43 21689.74 32598.53 14181.91 29699.08 18893.69 21493.30 25596.70 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ITE_SJBPF95.44 27997.42 23791.32 28897.50 28795.09 14193.59 25798.35 16281.70 29798.88 21989.71 30293.39 25396.12 319
Anonymous2023121194.10 26193.26 27196.61 21399.11 9794.28 21999.01 7598.88 5086.43 34192.81 28397.57 23681.66 29898.68 23894.83 17689.02 31096.88 249
test111195.94 14995.78 14096.41 23898.99 10990.12 30899.04 6792.45 36896.99 5298.03 9599.27 4281.40 29999.48 14896.87 11399.04 10999.63 66
ECVR-MVScopyleft95.95 14795.71 14696.65 20699.02 10390.86 29499.03 7091.80 36996.96 5398.10 8999.26 4381.31 30099.51 14396.90 10799.04 10999.59 72
GBi-Net94.49 23693.80 24596.56 22098.21 17595.00 18498.82 11298.18 21492.46 24994.09 23797.07 27081.16 30197.95 31292.08 25992.14 26696.72 268
test194.49 23693.80 24596.56 22098.21 17595.00 18498.82 11298.18 21492.46 24994.09 23797.07 27081.16 30197.95 31292.08 25992.14 26696.72 268
FMVSNet294.47 23893.61 25897.04 17998.21 17596.43 11998.79 12498.27 19992.46 24993.50 26497.09 26781.16 30198.00 31091.09 27891.93 26996.70 272
GA-MVS94.81 21494.03 22697.14 17397.15 25693.86 23296.76 32697.58 27594.00 18194.76 20897.04 27680.91 30498.48 25691.79 26896.25 20799.09 145
SixPastTwentyTwo93.34 27792.86 27694.75 30095.67 32489.41 32098.75 12796.67 33393.89 18690.15 32398.25 17780.87 30598.27 29190.90 28390.64 28596.57 287
ACMH+92.99 1494.30 24793.77 24895.88 26497.81 20592.04 27598.71 13998.37 18193.99 18290.60 31998.47 14880.86 30699.05 19092.75 24392.40 26596.55 291
gg-mvs-nofinetune92.21 29390.58 30197.13 17496.75 27995.09 18195.85 34289.40 37485.43 34994.50 21481.98 36780.80 30798.40 27992.16 25798.33 14897.88 208
test20.0390.89 30590.38 30392.43 33093.48 35288.14 34198.33 19097.56 27793.40 21787.96 33896.71 30080.69 30894.13 36479.15 35986.17 33795.01 342
VPNet94.99 20594.19 21897.40 16097.16 25596.57 11198.71 13998.97 3195.67 10994.84 20398.24 17880.36 30998.67 23996.46 12787.32 32796.96 237
test_fmvs196.42 12696.67 10795.66 27198.82 12288.53 33498.80 11998.20 20996.39 7999.64 899.20 5380.35 31099.67 11299.04 499.57 7098.78 173
GG-mvs-BLEND96.59 21696.34 30194.98 18796.51 33488.58 37593.10 27894.34 34580.34 31198.05 30689.53 30696.99 18296.74 265
KD-MVS_self_test90.38 30889.38 31193.40 32192.85 35588.94 32897.95 23597.94 25590.35 31090.25 32193.96 34679.82 31295.94 35484.62 34476.69 36295.33 333
PVSNet_088.72 1991.28 30090.03 30695.00 29197.99 19587.29 34794.84 35398.50 15692.06 26689.86 32495.19 33579.81 31399.39 15492.27 25669.79 36798.33 197
MS-PatchMatch93.84 26993.63 25794.46 31096.18 30689.45 31897.76 25498.27 19992.23 26192.13 30397.49 24079.50 31498.69 23589.75 30199.38 9795.25 334
MVS-HIRNet89.46 31788.40 31692.64 32997.58 22082.15 35994.16 36193.05 36775.73 36390.90 31582.52 36679.42 31598.33 28183.53 34798.68 12697.43 219
MDA-MVSNet-bldmvs89.97 31288.35 31794.83 29895.21 33591.34 28697.64 26497.51 28688.36 33371.17 36896.13 32079.22 31696.63 34983.65 34686.27 33696.52 297
XVG-ACMP-BASELINE94.54 23194.14 22295.75 26996.55 28991.65 28298.11 22298.44 16794.96 14794.22 23197.90 20379.18 31799.11 18294.05 20693.85 23796.48 304
Anonymous2024052995.10 19994.22 21697.75 13699.01 10594.26 22198.87 10398.83 6885.79 34796.64 16298.97 9178.73 31899.85 5096.27 13294.89 21999.12 142
TESTMET0.1,194.18 25693.69 25595.63 27296.92 26889.12 32396.91 31494.78 35393.17 22794.88 20296.45 31078.52 31998.92 21293.09 23198.50 13898.85 166
test_vis1_n_192096.71 11496.84 9696.31 24599.11 9789.74 31299.05 6498.58 13798.08 399.87 199.37 2578.48 32099.93 1899.29 199.69 5099.27 120
pmmvs-eth3d90.36 30989.05 31494.32 31291.10 36192.12 27197.63 26796.95 31988.86 33084.91 35493.13 35378.32 32196.74 34488.70 31681.81 34994.09 351
KD-MVS_2432*160089.61 31587.96 32194.54 30594.06 34891.59 28395.59 34697.63 27289.87 31788.95 33294.38 34378.28 32296.82 34284.83 34068.05 36895.21 335
miper_refine_blended89.61 31587.96 32194.54 30594.06 34891.59 28395.59 34697.63 27289.87 31788.95 33294.38 34378.28 32296.82 34284.83 34068.05 36895.21 335
Anonymous20240521195.28 18994.49 20397.67 14499.00 10693.75 23798.70 14397.04 31390.66 30296.49 17298.80 11478.13 32499.83 5596.21 13695.36 21899.44 99
IB-MVS91.98 1793.27 27991.97 29097.19 16997.47 23093.41 25197.09 30495.99 34093.32 22092.47 29695.73 32778.06 32599.53 13994.59 18782.98 34598.62 185
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LF4IMVS93.14 28492.79 27894.20 31395.88 31988.67 33197.66 26297.07 31193.81 19291.71 30897.65 22877.96 32698.81 22791.47 27491.92 27095.12 337
test-mter94.08 26393.51 26395.80 26696.77 27689.70 31396.91 31495.21 34892.89 23794.83 20595.72 32977.69 32798.97 20193.06 23298.50 13898.72 175
USDC93.33 27892.71 27995.21 28496.83 27590.83 29696.91 31497.50 28793.84 18990.72 31798.14 18477.69 32798.82 22689.51 30793.21 25795.97 323
test_040291.32 29890.27 30494.48 30896.60 28691.12 29198.50 17497.22 30786.10 34488.30 33796.98 28277.65 32997.99 31178.13 36292.94 26094.34 345
K. test v392.55 29091.91 29294.48 30895.64 32589.24 32199.07 6194.88 35294.04 17786.78 34497.59 23477.64 33097.64 32692.08 25989.43 30396.57 287
TDRefinement91.06 30389.68 30895.21 28485.35 37291.49 28598.51 17397.07 31191.47 28088.83 33597.84 21077.31 33199.09 18792.79 24277.98 36095.04 340
test250694.44 24093.91 23796.04 25499.02 10388.99 32799.06 6279.47 38196.96 5398.36 8099.26 4377.21 33299.52 14296.78 11999.04 10999.59 72
new_pmnet90.06 31189.00 31593.22 32594.18 34588.32 33896.42 33696.89 32486.19 34285.67 35193.62 34877.18 33397.10 33881.61 35289.29 30594.23 347
Anonymous2024052191.18 30190.44 30293.42 31993.70 35188.47 33598.94 8897.56 27788.46 33289.56 32895.08 33877.15 33496.97 34083.92 34589.55 30094.82 343
tt080594.54 23193.85 24296.63 21097.98 19793.06 26498.77 12697.84 26293.67 20693.80 25298.04 19176.88 33598.96 20594.79 17992.86 26197.86 210
new-patchmatchnet88.50 32087.45 32491.67 33590.31 36385.89 35197.16 30197.33 30089.47 32383.63 35692.77 35576.38 33695.06 36182.70 34977.29 36194.06 353
lessismore_v094.45 31194.93 33988.44 33691.03 37186.77 34597.64 23076.23 33798.42 26590.31 29185.64 34096.51 300
TinyColmap92.31 29291.53 29394.65 30396.92 26889.75 31196.92 31296.68 33290.45 30789.62 32697.85 20976.06 33898.81 22786.74 32792.51 26495.41 332
pmmvs691.77 29590.63 30095.17 28694.69 34491.24 29098.67 14997.92 25786.14 34389.62 32697.56 23875.79 33998.34 28090.75 28684.56 34195.94 324
MIMVSNet93.26 28092.21 28796.41 23897.73 21293.13 26195.65 34597.03 31491.27 29294.04 24096.06 32175.33 34097.19 33786.56 32896.23 20898.92 163
UnsupCasMVSNet_eth90.99 30489.92 30794.19 31494.08 34789.83 31097.13 30398.67 11793.69 20285.83 35096.19 31975.15 34196.74 34489.14 31279.41 35696.00 322
LFMVS95.86 15494.98 18298.47 8498.87 11796.32 12598.84 10996.02 33993.40 21798.62 6799.20 5374.99 34299.63 12097.72 6597.20 17999.46 96
CMPMVSbinary66.06 2189.70 31389.67 30989.78 33893.19 35376.56 36397.00 30898.35 18480.97 35881.57 35897.75 21874.75 34398.61 24289.85 29993.63 24594.17 349
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet591.81 29490.92 29794.49 30797.21 24992.09 27298.00 23297.55 28289.31 32790.86 31695.61 33374.48 34495.32 35985.57 33589.70 29696.07 321
testgi93.06 28592.45 28494.88 29596.43 29789.90 30998.75 12797.54 28395.60 11191.63 31097.91 20274.46 34597.02 33986.10 33193.67 24297.72 215
VDD-MVS95.82 15795.23 16997.61 15098.84 12193.98 22998.68 14697.40 29695.02 14497.95 10399.34 3474.37 34699.78 8798.64 1296.80 18599.08 149
test_fmvs1_n95.90 15295.99 13395.63 27298.67 13688.32 33899.26 2798.22 20696.40 7899.67 599.26 4373.91 34799.70 10599.02 599.50 8298.87 165
FMVSNet193.19 28392.07 28896.56 22097.54 22595.00 18498.82 11298.18 21490.38 30992.27 30097.07 27073.68 34897.95 31289.36 31091.30 27796.72 268
VDDNet95.36 18494.53 20197.86 12598.10 18895.13 18098.85 10697.75 26690.46 30698.36 8099.39 1973.27 34999.64 11797.98 4696.58 19298.81 169
UniMVSNet_ETH3D94.24 25193.33 26896.97 18597.19 25393.38 25398.74 13098.57 13991.21 29593.81 25198.58 13772.85 35098.77 23195.05 17293.93 23698.77 174
DeepMVS_CXcopyleft86.78 34397.09 26072.30 37095.17 35175.92 36284.34 35595.19 33570.58 35195.35 35779.98 35789.04 30992.68 360
test_fmvs293.43 27493.58 25992.95 32896.97 26583.91 35499.19 4197.24 30695.74 10495.20 19698.27 17469.65 35298.72 23496.26 13393.73 24196.24 315
OpenMVS_ROBcopyleft86.42 2089.00 31887.43 32593.69 31793.08 35489.42 31997.91 23996.89 32478.58 36085.86 34994.69 34069.48 35398.29 28977.13 36393.29 25693.36 357
EGC-MVSNET75.22 33669.54 33992.28 33294.81 34189.58 31697.64 26496.50 3361.82 3795.57 38095.74 32568.21 35496.26 35373.80 36691.71 27290.99 361
EG-PatchMatch MVS91.13 30290.12 30594.17 31594.73 34389.00 32698.13 21997.81 26389.22 32885.32 35396.46 30967.71 35598.42 26587.89 32393.82 23895.08 339
MIMVSNet189.67 31488.28 31893.82 31692.81 35691.08 29298.01 23097.45 29287.95 33487.90 33995.87 32467.63 35694.56 36378.73 36188.18 31895.83 326
test_vis1_n95.47 17395.13 17396.49 22997.77 20790.41 30499.27 2698.11 22996.58 6999.66 699.18 5967.00 35799.62 12399.21 299.40 9599.44 99
pmmvs386.67 32684.86 33092.11 33488.16 36687.19 34896.63 33094.75 35479.88 35987.22 34292.75 35666.56 35895.20 36081.24 35376.56 36393.96 354
MVS_030492.81 28792.01 28995.23 28397.46 23191.33 28798.17 21598.81 7491.13 29793.80 25295.68 33266.08 35998.06 30590.79 28496.13 21196.32 313
tmp_tt68.90 33866.97 34074.68 35550.78 38259.95 37887.13 36783.47 37838.80 37562.21 37196.23 31664.70 36076.91 37788.91 31530.49 37587.19 366
UnsupCasMVSNet_bld87.17 32385.12 32993.31 32391.94 35788.77 32994.92 35298.30 19684.30 35382.30 35790.04 36163.96 36197.25 33685.85 33474.47 36693.93 355
test_vis1_rt91.29 29990.65 29993.19 32697.45 23586.25 35098.57 16690.90 37293.30 22286.94 34393.59 34962.07 36299.11 18297.48 8595.58 21694.22 348
APD_test188.22 32188.01 32088.86 34095.98 31574.66 36997.21 29496.44 33783.96 35486.66 34697.90 20360.95 36397.84 32282.73 34890.23 29094.09 351
test_method79.03 32978.17 33181.63 35186.06 37154.40 38182.75 37096.89 32439.54 37480.98 35995.57 33458.37 36494.73 36284.74 34378.61 35795.75 327
mvsany_test388.80 31988.04 31991.09 33789.78 36481.57 36197.83 25095.49 34693.81 19287.53 34093.95 34756.14 36597.43 33394.68 18083.13 34494.26 346
PM-MVS87.77 32286.55 32791.40 33691.03 36283.36 35796.92 31295.18 35091.28 29186.48 34893.42 35053.27 36696.74 34489.43 30981.97 34894.11 350
ambc89.49 33986.66 36975.78 36492.66 36396.72 33086.55 34792.50 35746.01 36797.90 31690.32 29082.09 34694.80 344
Gipumacopyleft78.40 33376.75 33683.38 34895.54 32880.43 36279.42 37197.40 29664.67 36873.46 36580.82 36945.65 36893.14 36866.32 37087.43 32576.56 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvs387.17 32387.06 32687.50 34291.21 36075.66 36599.05 6496.61 33592.79 24188.85 33492.78 35443.72 36993.49 36593.95 20784.56 34193.34 358
EMVS64.07 34163.26 34466.53 35881.73 37558.81 38091.85 36484.75 37751.93 37359.09 37375.13 37243.32 37079.09 37642.03 37539.47 37361.69 372
test_f86.07 32785.39 32888.10 34189.28 36575.57 36697.73 25796.33 33889.41 32685.35 35291.56 36043.31 37195.53 35691.32 27684.23 34393.21 359
E-PMN64.94 34064.25 34267.02 35782.28 37459.36 37991.83 36585.63 37652.69 37160.22 37277.28 37141.06 37280.12 37546.15 37441.14 37261.57 373
FPMVS77.62 33577.14 33579.05 35379.25 37660.97 37795.79 34395.94 34265.96 36767.93 36994.40 34237.73 37388.88 37268.83 36988.46 31587.29 365
PMMVS277.95 33475.44 33885.46 34582.54 37374.95 36794.23 36093.08 36672.80 36474.68 36287.38 36336.36 37491.56 37073.95 36563.94 37089.87 362
testf179.02 33077.70 33282.99 34988.10 36766.90 37394.67 35593.11 36471.08 36574.02 36393.41 35134.15 37593.25 36672.25 36778.50 35888.82 363
APD_test279.02 33077.70 33282.99 34988.10 36766.90 37394.67 35593.11 36471.08 36574.02 36393.41 35134.15 37593.25 36672.25 36778.50 35888.82 363
LCM-MVSNet78.70 33276.24 33786.08 34477.26 37871.99 37194.34 35996.72 33061.62 36976.53 36189.33 36233.91 37792.78 36981.85 35174.60 36593.46 356
ANet_high69.08 33765.37 34180.22 35265.99 38071.96 37290.91 36690.09 37382.62 35549.93 37578.39 37029.36 37881.75 37362.49 37138.52 37486.95 367
test_vis3_rt79.22 32877.40 33484.67 34786.44 37074.85 36897.66 26281.43 37984.98 35067.12 37081.91 36828.09 37997.60 32788.96 31480.04 35581.55 368
PMVScopyleft61.03 2365.95 33963.57 34373.09 35657.90 38151.22 38285.05 36993.93 36354.45 37044.32 37683.57 36513.22 38089.15 37158.68 37281.00 35278.91 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12320.95 34623.72 34912.64 36013.54 3848.19 38496.55 3336.13 3857.48 37816.74 37837.98 37612.97 3816.05 37916.69 3775.43 37823.68 374
wuyk23d30.17 34330.18 34730.16 35978.61 37743.29 38366.79 37214.21 38317.31 37614.82 37911.93 37911.55 38241.43 37837.08 37619.30 3765.76 376
MVEpermissive62.14 2263.28 34259.38 34574.99 35474.33 37965.47 37585.55 36880.50 38052.02 37251.10 37475.00 37310.91 38380.50 37451.60 37353.40 37178.99 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs21.48 34524.95 34811.09 36114.89 3836.47 38596.56 3329.87 3847.55 37717.93 37739.02 3759.43 3845.90 38016.56 37812.72 37720.91 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.20 34710.94 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38198.43 1520.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.82 198.66 2499.69 198.95 3497.46 2199.39 20
MSC_two_6792asdad99.62 699.17 8899.08 1198.63 12799.94 398.53 1699.80 1999.86 2
No_MVS99.62 699.17 8899.08 1198.63 12799.94 398.53 1699.80 1999.86 2
eth-test20.00 385
eth-test0.00 385
IU-MVS99.71 1999.23 798.64 12595.28 12999.63 998.35 3399.81 1299.83 7
save fliter99.46 4998.38 3598.21 20698.71 10597.95 4
test_0728_SECOND99.71 199.72 1299.35 198.97 8298.88 5099.94 398.47 2499.81 1299.84 6
GSMVS99.20 127
test_part299.63 2999.18 1099.27 25
MTGPAbinary98.74 97
MTMP98.89 9794.14 361
gm-plane-assit95.88 31987.47 34589.74 32096.94 28899.19 17093.32 226
test9_res96.39 13199.57 7099.69 49
agg_prior295.87 14799.57 7099.68 54
agg_prior99.30 6598.38 3598.72 10297.57 13099.81 67
test_prior498.01 5897.86 246
test_prior99.19 3899.31 6198.22 4798.84 6799.70 10599.65 62
旧先验297.57 27091.30 28998.67 6199.80 7495.70 155
新几何297.64 264
无先验97.58 26998.72 10291.38 28399.87 4593.36 22599.60 70
原ACMM297.67 261
testdata299.89 3691.65 272
testdata197.32 28796.34 81
plane_prior797.42 23794.63 203
plane_prior598.56 14199.03 19496.07 13794.27 22296.92 240
plane_prior498.28 171
plane_prior394.61 20697.02 5095.34 193
plane_prior298.80 11997.28 32
plane_prior197.37 241
plane_prior94.60 20898.44 18196.74 6394.22 224
n20.00 386
nn0.00 386
door-mid94.37 357
test1198.66 120
door94.64 355
HQP5-MVS94.25 222
HQP-NCC97.20 25098.05 22696.43 7594.45 216
ACMP_Plane97.20 25098.05 22696.43 7594.45 216
BP-MVS95.30 164
HQP4-MVS94.45 21698.96 20596.87 251
HQP3-MVS98.46 16394.18 226
NP-MVS97.28 24494.51 21197.73 219
ACMMP++_ref92.97 259
ACMMP++93.61 246