This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
mamv490.28 188.75 194.85 193.34 196.17 182.69 5791.63 186.34 197.97 194.77 366.57 12095.38 187.74 197.72 193.00 7
LCM-MVSNet86.90 288.67 281.57 2591.50 263.30 12384.80 3587.77 1086.18 296.26 296.06 190.32 184.49 7268.08 9297.05 296.93 1
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 1287.95 1892.53 1479.37 1584.79 6974.51 5196.15 392.88 8
reproduce-ours84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 171
our_new_method84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 171
reproduce_model84.87 685.80 682.05 2385.52 6678.14 1387.69 685.36 3879.26 789.12 1292.10 1977.52 2585.92 3980.47 895.20 1882.10 186
RE-MVS-def85.50 786.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5081.38 778.11 2794.46 3984.89 95
SR-MVS84.51 985.27 882.25 1988.52 3477.71 1586.81 1985.25 4077.42 1786.15 4190.24 7381.69 585.94 3677.77 3093.58 6483.09 158
SR-MVS-dyc-post84.75 785.26 983.21 486.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5079.20 1685.58 5178.11 2794.46 3984.89 95
HPM-MVS_fast84.59 885.10 1083.06 588.60 3375.83 2786.27 2786.89 1673.69 2786.17 4091.70 2978.23 2185.20 6179.45 1694.91 2888.15 48
LTVRE_ROB75.46 184.22 1084.98 1181.94 2484.82 7675.40 2991.60 387.80 873.52 2888.90 1593.06 771.39 7381.53 11981.53 492.15 8488.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMPcopyleft84.22 1084.84 1282.35 1889.23 2276.66 2687.65 785.89 2671.03 4785.85 4590.58 5478.77 1885.78 4479.37 1995.17 2084.62 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVScopyleft84.12 1284.63 1382.60 1488.21 3674.40 3585.24 3187.21 1470.69 5085.14 5790.42 6178.99 1786.62 1580.83 694.93 2786.79 64
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS84.12 1284.55 1482.80 1189.42 1879.74 688.19 584.43 6171.96 4384.70 6490.56 5577.12 2886.18 2879.24 2195.36 1382.49 178
mPP-MVS84.01 1484.39 1582.88 790.65 481.38 487.08 1382.79 8772.41 3985.11 5890.85 4776.65 3184.89 6679.30 2094.63 3682.35 180
APD-MVS_3200maxsize83.57 1784.33 1681.31 3282.83 10973.53 4485.50 3087.45 1374.11 2386.45 3890.52 5880.02 1084.48 7377.73 3194.34 5085.93 75
LPG-MVS_test83.47 2084.33 1680.90 3687.00 4070.41 6482.04 6186.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 71
APDe-MVScopyleft82.88 2784.14 1879.08 5584.80 7866.72 9486.54 2385.11 4272.00 4286.65 3591.75 2878.20 2287.04 1177.93 2994.32 5183.47 145
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
COLMAP_ROBcopyleft72.78 383.75 1584.11 1982.68 1382.97 10674.39 3687.18 1188.18 778.98 886.11 4391.47 3479.70 1485.76 4566.91 11195.46 1287.89 49
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HFP-MVS83.39 2184.03 2081.48 2789.25 2175.69 2887.01 1784.27 6470.23 5184.47 6790.43 6076.79 2985.94 3679.58 1494.23 5482.82 167
ACMMPR83.62 1683.93 2182.69 1289.78 1177.51 2287.01 1784.19 6870.23 5184.49 6690.67 5375.15 4486.37 2079.58 1494.26 5284.18 125
MTAPA83.19 2283.87 2281.13 3491.16 378.16 1284.87 3380.63 13172.08 4184.93 5990.79 4874.65 4984.42 7580.98 594.75 3280.82 210
region2R83.54 1883.86 2382.58 1589.82 1077.53 1887.06 1684.23 6770.19 5383.86 7390.72 5275.20 4386.27 2379.41 1894.25 5383.95 130
XVS83.51 1983.73 2482.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 8390.39 6573.86 5586.31 2178.84 2394.03 5684.64 105
ZNCC-MVS83.12 2483.68 2581.45 2889.14 2573.28 4686.32 2685.97 2567.39 6584.02 7190.39 6574.73 4886.46 1780.73 794.43 4384.60 110
SteuartSystems-ACMMP83.07 2583.64 2681.35 3085.14 7271.00 5885.53 2984.78 4970.91 4885.64 4890.41 6275.55 4187.69 579.75 1195.08 2385.36 86
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft83.19 2283.54 2782.14 2090.54 579.00 986.42 2583.59 7771.31 4481.26 10390.96 4274.57 5084.69 7078.41 2594.78 3182.74 170
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SED-MVS81.78 3583.48 2876.67 8586.12 5461.06 14383.62 4684.72 5272.61 3587.38 2889.70 8377.48 2685.89 4275.29 4594.39 4483.08 159
MP-MVS-pluss82.54 3083.46 2979.76 4588.88 3168.44 8081.57 6486.33 1963.17 11285.38 5591.26 3776.33 3384.67 7183.30 294.96 2686.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMP69.50 882.64 2983.38 3080.40 4186.50 4669.44 7182.30 5886.08 2466.80 6986.70 3489.99 7881.64 685.95 3574.35 5396.11 485.81 77
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM69.25 982.11 3383.31 3178.49 6688.17 3773.96 3883.11 5384.52 6066.40 7387.45 2689.16 9681.02 880.52 14274.27 5495.73 880.98 206
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMMP_NAP82.33 3183.28 3279.46 5189.28 1969.09 7883.62 4684.98 4564.77 9483.97 7291.02 4175.53 4285.93 3882.00 394.36 4883.35 151
GST-MVS82.79 2883.27 3381.34 3188.99 2773.29 4585.94 2885.13 4168.58 6284.14 7090.21 7573.37 5986.41 1879.09 2293.98 5984.30 124
PGM-MVS83.07 2583.25 3482.54 1689.57 1477.21 2482.04 6185.40 3667.96 6484.91 6290.88 4575.59 3986.57 1678.16 2694.71 3483.82 132
PMVScopyleft70.70 681.70 3683.15 3577.36 7990.35 682.82 382.15 5979.22 15774.08 2487.16 3291.97 2184.80 276.97 20264.98 12393.61 6372.28 315
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVScopyleft81.15 4183.12 3675.24 10786.16 5260.78 14983.77 4480.58 13372.48 3785.83 4690.41 6278.57 1985.69 4775.86 4294.39 4479.24 239
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft82.00 3483.02 3778.95 6085.36 6967.25 8982.91 5484.98 4573.52 2885.43 5490.03 7776.37 3286.97 1374.56 5094.02 5882.62 175
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PEN-MVS80.46 5082.91 3873.11 13789.83 939.02 33377.06 11782.61 9380.04 590.60 792.85 1074.93 4785.21 6063.15 14595.15 2195.09 2
DTE-MVSNet80.35 5282.89 3972.74 15289.84 837.34 35077.16 11481.81 10580.45 490.92 492.95 874.57 5086.12 3163.65 13894.68 3594.76 6
PS-CasMVS80.41 5182.86 4073.07 13889.93 739.21 33077.15 11581.28 11579.74 690.87 592.73 1275.03 4684.93 6563.83 13795.19 1995.07 3
DVP-MVS++81.24 3982.74 4176.76 8483.14 9960.90 14791.64 185.49 3274.03 2584.93 5990.38 6766.82 11385.90 4077.43 3490.78 11583.49 142
SMA-MVScopyleft82.12 3282.68 4280.43 4088.90 3069.52 6985.12 3284.76 5063.53 10684.23 6991.47 3472.02 6787.16 879.74 1394.36 4884.61 108
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMH+66.64 1081.20 4082.48 4377.35 8081.16 13162.39 12880.51 7287.80 873.02 3087.57 2491.08 4080.28 982.44 10464.82 12596.10 587.21 58
UA-Net81.56 3782.28 4479.40 5288.91 2969.16 7684.67 3680.01 14475.34 1979.80 11994.91 269.79 8880.25 14672.63 6694.46 3988.78 42
WR-MVS_H80.22 5482.17 4574.39 11589.46 1542.69 30378.24 10182.24 9778.21 1389.57 1092.10 1968.05 10185.59 5066.04 11695.62 1094.88 5
SF-MVS80.72 4781.80 4677.48 7782.03 11964.40 11583.41 5088.46 665.28 8584.29 6889.18 9473.73 5883.22 9276.01 4193.77 6184.81 102
CPTT-MVS81.51 3881.76 4780.76 3889.20 2378.75 1086.48 2482.03 10168.80 5880.92 10888.52 11372.00 6882.39 10574.80 4793.04 7081.14 200
APD-MVScopyleft81.13 4281.73 4879.36 5384.47 8370.53 6383.85 4283.70 7569.43 5783.67 7588.96 10375.89 3786.41 1872.62 6792.95 7181.14 200
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVSNet79.48 5881.65 4972.98 14189.66 1339.06 33276.76 11880.46 13578.91 990.32 891.70 2968.49 9684.89 6663.40 14295.12 2295.01 4
OPM-MVS80.99 4581.63 5079.07 5686.86 4469.39 7279.41 8884.00 7365.64 7785.54 5289.28 8976.32 3483.47 8874.03 5693.57 6584.35 121
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SD-MVS80.28 5381.55 5176.47 9083.57 9367.83 8483.39 5185.35 3964.42 9686.14 4287.07 13674.02 5480.97 13377.70 3292.32 8280.62 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVG-ACMP-BASELINE80.54 4881.06 5278.98 5987.01 3972.91 4780.23 8085.56 3166.56 7285.64 4889.57 8569.12 9280.55 14172.51 6893.37 6683.48 144
LS3D80.99 4580.85 5381.41 2978.37 16471.37 5487.45 885.87 2777.48 1681.98 9289.95 8069.14 9185.26 5766.15 11391.24 9787.61 53
DeepC-MVS72.44 481.00 4480.83 5481.50 2686.70 4570.03 6882.06 6087.00 1559.89 13680.91 10990.53 5672.19 6488.56 273.67 5994.52 3885.92 76
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+73.19 281.08 4380.48 5582.87 881.41 12772.03 4984.38 3886.23 2377.28 1880.65 11290.18 7659.80 18887.58 673.06 6291.34 9589.01 34
v7n79.37 6080.41 5676.28 9278.67 16355.81 18579.22 9082.51 9570.72 4987.54 2592.44 1568.00 10381.34 12172.84 6491.72 8691.69 11
9.1480.22 5780.68 13480.35 7787.69 1159.90 13583.00 8088.20 12074.57 5081.75 11773.75 5893.78 60
ACMH63.62 1477.50 7680.11 5869.68 19779.61 14356.28 18078.81 9383.62 7663.41 11087.14 3390.23 7476.11 3573.32 24467.58 9894.44 4279.44 237
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR79.62 5679.99 5978.49 6686.46 4774.79 3377.15 11585.39 3766.73 7080.39 11588.85 10574.43 5378.33 18374.73 4985.79 20682.35 180
XVG-OURS79.51 5779.82 6078.58 6586.11 5774.96 3276.33 12784.95 4766.89 6782.75 8688.99 10266.82 11378.37 18174.80 4790.76 11882.40 179
HPM-MVS++copyleft79.89 5579.80 6180.18 4389.02 2678.44 1183.49 4980.18 14164.71 9578.11 14088.39 11665.46 13183.14 9377.64 3391.20 9878.94 243
MSP-MVS80.49 4979.67 6282.96 689.70 1277.46 2387.16 1285.10 4364.94 9381.05 10688.38 11757.10 21787.10 979.75 1183.87 23584.31 122
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_040278.17 7279.48 6374.24 11783.50 9459.15 16372.52 17074.60 21575.34 1988.69 1791.81 2775.06 4582.37 10665.10 12188.68 15881.20 198
DP-MVS78.44 7079.29 6475.90 9781.86 12265.33 10679.05 9184.63 5874.83 2280.41 11486.27 16371.68 6983.45 8962.45 14992.40 7978.92 244
UniMVSNet_ETH3D76.74 8279.02 6569.92 19589.27 2043.81 29074.47 15471.70 23772.33 4085.50 5393.65 477.98 2376.88 20554.60 22191.64 8889.08 32
TSAR-MVS + MP.79.05 6178.81 6679.74 4688.94 2867.52 8786.61 2281.38 11351.71 23277.15 15191.42 3665.49 13087.20 779.44 1787.17 18984.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OMC-MVS79.41 5978.79 6781.28 3380.62 13570.71 6280.91 6984.76 5062.54 11781.77 9586.65 15271.46 7183.53 8667.95 9692.44 7889.60 24
HQP_MVS78.77 6478.78 6878.72 6285.18 7065.18 10882.74 5585.49 3265.45 8078.23 13789.11 9760.83 17786.15 2971.09 7490.94 10784.82 100
mvs_tets78.93 6278.67 6979.72 4784.81 7773.93 3980.65 7176.50 19851.98 23087.40 2791.86 2676.09 3678.53 17368.58 8790.20 12486.69 66
CNVR-MVS78.49 6878.59 7078.16 7085.86 6367.40 8878.12 10481.50 10963.92 10077.51 14886.56 15668.43 9884.82 6873.83 5791.61 9082.26 184
OurMVSNet-221017-078.57 6678.53 7178.67 6380.48 13664.16 11680.24 7982.06 10061.89 12188.77 1693.32 557.15 21582.60 10370.08 8092.80 7389.25 28
tt080576.12 8678.43 7269.20 20581.32 12841.37 31176.72 11977.64 18663.78 10382.06 9187.88 12679.78 1179.05 16364.33 12992.40 7987.17 61
test_djsdf78.88 6378.27 7380.70 3981.42 12671.24 5683.98 4075.72 20552.27 22587.37 3092.25 1768.04 10280.56 13972.28 7191.15 10090.32 21
MVSMamba_PlusPlus76.88 8078.21 7472.88 14880.83 13248.71 23983.28 5282.79 8772.78 3179.17 12691.94 2256.47 22483.95 7870.51 7886.15 20185.99 74
jajsoiax78.51 6778.16 7579.59 4984.65 8073.83 4180.42 7476.12 20051.33 24087.19 3191.51 3373.79 5778.44 17768.27 9090.13 12886.49 68
NCCC78.25 7178.04 7678.89 6185.61 6569.45 7079.80 8580.99 12465.77 7675.55 18586.25 16567.42 10685.42 5270.10 7990.88 11381.81 191
anonymousdsp78.60 6577.80 7781.00 3578.01 17074.34 3780.09 8176.12 20050.51 24989.19 1190.88 4571.45 7277.78 19573.38 6090.60 12090.90 17
MM78.15 7377.68 7879.55 5080.10 13965.47 10480.94 6878.74 16771.22 4572.40 23588.70 10760.51 17987.70 477.40 3689.13 15285.48 85
TranMVSNet+NR-MVSNet76.13 8577.66 7971.56 17084.61 8142.57 30570.98 20078.29 17768.67 6183.04 7989.26 9072.99 6180.75 13855.58 21295.47 1191.35 12
AllTest77.66 7477.43 8078.35 6879.19 15270.81 5978.60 9588.64 465.37 8380.09 11788.17 12170.33 8178.43 17855.60 20990.90 11185.81 77
EC-MVSNet77.08 7977.39 8176.14 9576.86 19156.87 17880.32 7887.52 1263.45 10874.66 20084.52 19369.87 8784.94 6469.76 8289.59 13986.60 67
PS-MVSNAJss77.54 7577.35 8278.13 7284.88 7566.37 9678.55 9679.59 15153.48 21686.29 3992.43 1662.39 15680.25 14667.90 9790.61 11987.77 50
Anonymous2023121175.54 9277.19 8370.59 17977.67 17645.70 27874.73 14880.19 14068.80 5882.95 8292.91 966.26 12276.76 20758.41 18692.77 7489.30 27
DeepPCF-MVS71.07 578.48 6977.14 8482.52 1784.39 8677.04 2576.35 12584.05 7156.66 16980.27 11685.31 18268.56 9587.03 1267.39 10391.26 9683.50 141
CDPH-MVS77.33 7777.06 8578.14 7184.21 8763.98 11876.07 13183.45 7854.20 20477.68 14787.18 13269.98 8585.37 5368.01 9492.72 7685.08 92
testf175.66 9076.57 8672.95 14267.07 32767.62 8576.10 12980.68 12964.95 9186.58 3690.94 4371.20 7571.68 26760.46 16491.13 10279.56 233
APD_test275.66 9076.57 8672.95 14267.07 32767.62 8576.10 12980.68 12964.95 9186.58 3690.94 4371.20 7571.68 26760.46 16491.13 10279.56 233
train_agg76.38 8476.55 8875.86 9885.47 6769.32 7476.42 12378.69 16854.00 20976.97 15386.74 14666.60 11881.10 12772.50 6991.56 9177.15 267
SixPastTwentyTwo75.77 8776.34 8974.06 12081.69 12454.84 19276.47 12075.49 20764.10 9987.73 2192.24 1850.45 25581.30 12367.41 10191.46 9386.04 73
DeepC-MVS_fast69.89 777.17 7876.33 9079.70 4883.90 9167.94 8280.06 8383.75 7456.73 16874.88 19585.32 18165.54 12987.79 365.61 12091.14 10183.35 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v1075.69 8976.20 9174.16 11874.44 22848.69 24075.84 13582.93 8659.02 14485.92 4489.17 9558.56 19882.74 10170.73 7689.14 15191.05 14
casdiffmvs_mvgpermissive75.26 9676.18 9272.52 15772.87 25849.47 23472.94 16884.71 5459.49 13880.90 11088.81 10670.07 8479.71 15467.40 10288.39 16188.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS76.51 8376.00 9378.06 7377.02 18364.77 11280.78 7082.66 9260.39 13274.15 20883.30 21569.65 8982.07 11269.27 8586.75 19687.36 56
nrg03074.87 10775.99 9471.52 17174.90 21749.88 23374.10 16082.58 9454.55 19683.50 7789.21 9271.51 7075.74 21561.24 15692.34 8188.94 37
MSLP-MVS++74.48 10975.78 9570.59 17984.66 7962.40 12778.65 9484.24 6660.55 13177.71 14681.98 23163.12 14777.64 19762.95 14688.14 16471.73 320
UniMVSNet_NR-MVSNet74.90 10575.65 9672.64 15583.04 10445.79 27569.26 22378.81 16366.66 7181.74 9786.88 14163.26 14681.07 12956.21 20394.98 2491.05 14
v875.07 10075.64 9773.35 13173.42 24347.46 26075.20 13881.45 11160.05 13485.64 4889.26 9058.08 20681.80 11669.71 8487.97 16990.79 18
DU-MVS74.91 10475.57 9872.93 14583.50 9445.79 27569.47 21980.14 14265.22 8681.74 9787.08 13461.82 16281.07 12956.21 20394.98 2491.93 9
UniMVSNet (Re)75.00 10275.48 9973.56 12983.14 9947.92 25170.41 20981.04 12363.67 10479.54 12186.37 16162.83 15081.82 11557.10 19595.25 1590.94 16
IS-MVSNet75.10 9975.42 10074.15 11979.23 15048.05 24979.43 8678.04 18170.09 5479.17 12688.02 12553.04 24083.60 8358.05 18893.76 6290.79 18
APD_test175.04 10175.38 10174.02 12169.89 29370.15 6676.46 12179.71 14765.50 7982.99 8188.60 11266.94 11072.35 25759.77 17588.54 15979.56 233
HQP-MVS75.24 9775.01 10275.94 9682.37 11358.80 16877.32 11184.12 6959.08 14071.58 24585.96 17558.09 20485.30 5567.38 10589.16 14883.73 137
X-MVStestdata76.81 8174.79 10382.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 839.95 42073.86 5586.31 2178.84 2394.03 5684.64 105
FC-MVSNet-test73.32 12374.78 10468.93 21579.21 15136.57 35271.82 18779.54 15357.63 15982.57 8890.38 6759.38 19178.99 16557.91 18994.56 3791.23 13
MVS_030475.45 9374.66 10577.83 7475.58 20961.53 13678.29 9977.18 19363.15 11469.97 26887.20 13157.54 21387.05 1074.05 5588.96 15584.89 95
Vis-MVSNetpermissive74.85 10874.56 10675.72 9981.63 12564.64 11376.35 12579.06 15962.85 11573.33 22388.41 11562.54 15479.59 15763.94 13682.92 24582.94 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AdaColmapbinary74.22 11074.56 10673.20 13481.95 12060.97 14579.43 8680.90 12565.57 7872.54 23381.76 23570.98 7885.26 5747.88 28090.00 12973.37 301
CSCG74.12 11174.39 10873.33 13279.35 14761.66 13577.45 11081.98 10262.47 11979.06 12880.19 25761.83 16178.79 16959.83 17487.35 17979.54 236
RPSCF75.76 8874.37 10979.93 4474.81 21977.53 1877.53 10979.30 15659.44 13978.88 12989.80 8271.26 7473.09 24657.45 19180.89 26789.17 31
PHI-MVS74.92 10374.36 11076.61 8676.40 19662.32 12980.38 7583.15 8254.16 20673.23 22580.75 24762.19 15983.86 8068.02 9390.92 11083.65 138
TAPA-MVS65.27 1275.16 9874.29 11177.77 7574.86 21868.08 8177.89 10584.04 7255.15 18476.19 18083.39 20966.91 11180.11 15060.04 17290.14 12785.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SPE-MVS-test74.89 10674.23 11276.86 8377.01 18462.94 12678.98 9284.61 5958.62 14770.17 26580.80 24666.74 11781.96 11361.74 15289.40 14685.69 82
PAPM_NR73.91 11274.16 11373.16 13581.90 12153.50 20381.28 6681.40 11266.17 7473.30 22483.31 21459.96 18483.10 9558.45 18581.66 26282.87 165
balanced_conf0373.59 11774.06 11472.17 16577.48 17947.72 25681.43 6582.20 9854.38 19779.19 12587.68 12854.41 23383.57 8463.98 13385.78 20785.22 87
NR-MVSNet73.62 11674.05 11572.33 16283.50 9443.71 29165.65 27777.32 19064.32 9775.59 18487.08 13462.45 15581.34 12154.90 21695.63 991.93 9
F-COLMAP75.29 9573.99 11679.18 5481.73 12371.90 5081.86 6382.98 8459.86 13772.27 23684.00 20064.56 14083.07 9651.48 24387.19 18882.56 177
baseline73.10 12773.96 11770.51 18171.46 26946.39 27272.08 17684.40 6255.95 17676.62 16686.46 15967.20 10778.03 19064.22 13087.27 18587.11 62
casdiffmvspermissive73.06 13073.84 11870.72 17771.32 27046.71 26870.93 20184.26 6555.62 17977.46 14987.10 13367.09 10977.81 19363.95 13486.83 19487.64 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs72.56 14373.80 11968.84 21878.74 16237.74 34671.02 19979.83 14656.12 17380.88 11189.45 8758.18 20078.28 18456.63 19793.36 6790.51 20
Anonymous2024052972.56 14373.79 12068.86 21776.89 19045.21 28168.80 23277.25 19267.16 6676.89 15790.44 5965.95 12574.19 23750.75 25090.00 12987.18 60
GeoE73.14 12673.77 12171.26 17478.09 16852.64 20874.32 15579.56 15256.32 17276.35 17883.36 21370.76 7977.96 19163.32 14381.84 25683.18 156
pmmvs671.82 15273.66 12266.31 24875.94 20542.01 30766.99 25972.53 23263.45 10876.43 17692.78 1172.95 6269.69 28251.41 24590.46 12187.22 57
test_fmvsmconf0.01_n73.91 11273.64 12374.71 10869.79 29766.25 9775.90 13379.90 14546.03 28976.48 17485.02 18567.96 10473.97 23974.47 5287.22 18683.90 131
K. test v373.67 11573.61 12473.87 12379.78 14155.62 18974.69 15062.04 31766.16 7584.76 6393.23 649.47 26080.97 13365.66 11986.67 19785.02 94
v119273.40 12173.42 12573.32 13374.65 22548.67 24172.21 17481.73 10652.76 22181.85 9384.56 19157.12 21682.24 11068.58 8787.33 18189.06 33
v114473.29 12473.39 12673.01 13974.12 23448.11 24772.01 17981.08 12253.83 21381.77 9584.68 18758.07 20781.91 11468.10 9186.86 19288.99 36
sasdasda72.29 14873.38 12769.04 20974.23 22947.37 26173.93 16283.18 8054.36 19876.61 16781.64 23772.03 6575.34 21957.12 19387.28 18384.40 118
canonicalmvs72.29 14873.38 12769.04 20974.23 22947.37 26173.93 16283.18 8054.36 19876.61 16781.64 23772.03 6575.34 21957.12 19387.28 18384.40 118
EPP-MVSNet73.86 11473.38 12775.31 10578.19 16653.35 20580.45 7377.32 19065.11 8976.47 17586.80 14249.47 26083.77 8153.89 23092.72 7688.81 41
MCST-MVS73.42 12073.34 13073.63 12781.28 12959.17 16274.80 14683.13 8345.50 29372.84 22883.78 20565.15 13580.99 13164.54 12689.09 15480.73 214
114514_t73.40 12173.33 13173.64 12684.15 8957.11 17678.20 10280.02 14343.76 31072.55 23286.07 17364.00 14383.35 9160.14 17091.03 10680.45 221
Baseline_NR-MVSNet70.62 16773.19 13262.92 28076.97 18534.44 36868.84 22870.88 25760.25 13379.50 12290.53 5661.82 16269.11 28654.67 22095.27 1485.22 87
v124073.06 13073.14 13372.84 14974.74 22147.27 26471.88 18681.11 11951.80 23182.28 9084.21 19756.22 22682.34 10768.82 8687.17 18988.91 38
VDDNet71.60 15573.13 13467.02 24186.29 4841.11 31369.97 21366.50 28368.72 6074.74 19691.70 2959.90 18575.81 21348.58 27191.72 8684.15 127
IterMVS-LS73.01 13273.12 13572.66 15473.79 23949.90 22971.63 18978.44 17358.22 14980.51 11386.63 15358.15 20279.62 15562.51 14788.20 16388.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MGCFI-Net71.70 15473.10 13667.49 23473.23 24743.08 29972.06 17782.43 9654.58 19475.97 18182.00 22972.42 6375.22 22157.84 19087.34 18084.18 125
v14419272.99 13473.06 13772.77 15074.58 22647.48 25971.90 18580.44 13651.57 23481.46 10184.11 19958.04 20882.12 11167.98 9587.47 17688.70 43
CNLPA73.44 11973.03 13874.66 10978.27 16575.29 3075.99 13278.49 17265.39 8275.67 18383.22 22061.23 17066.77 31353.70 23285.33 21381.92 190
v192192072.96 13672.98 13972.89 14774.67 22247.58 25871.92 18480.69 12851.70 23381.69 9983.89 20256.58 22282.25 10968.34 8987.36 17888.82 40
MVS_111021_HR72.98 13572.97 14072.99 14080.82 13365.47 10468.81 23072.77 22957.67 15675.76 18282.38 22771.01 7777.17 20061.38 15586.15 20176.32 275
Gipumacopyleft69.55 18272.83 14159.70 30863.63 35553.97 19980.08 8275.93 20364.24 9873.49 22088.93 10457.89 21062.46 33459.75 17691.55 9262.67 382
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.1_n73.26 12572.82 14274.56 11069.10 30366.18 9974.65 15279.34 15545.58 29275.54 18683.91 20167.19 10873.88 24273.26 6186.86 19283.63 139
DP-MVS Recon73.57 11872.69 14376.23 9382.85 10863.39 12174.32 15582.96 8557.75 15470.35 26181.98 23164.34 14284.41 7649.69 25889.95 13180.89 208
dcpmvs_271.02 16272.65 14466.16 24976.06 20450.49 22071.97 18079.36 15450.34 25082.81 8583.63 20664.38 14167.27 30461.54 15483.71 23980.71 216
v2v48272.55 14572.58 14572.43 15972.92 25746.72 26771.41 19279.13 15855.27 18281.17 10585.25 18355.41 22881.13 12667.25 10985.46 20989.43 26
test_fmvsmvis_n_192072.36 14672.49 14671.96 16671.29 27164.06 11772.79 16981.82 10440.23 34181.25 10481.04 24370.62 8068.69 28969.74 8383.60 24183.14 157
WR-MVS71.20 15972.48 14767.36 23684.98 7435.70 36064.43 29268.66 27365.05 9081.49 10086.43 16057.57 21276.48 20950.36 25493.32 6889.90 22
FMVSNet171.06 16072.48 14766.81 24277.65 17740.68 32071.96 18173.03 22461.14 12579.45 12390.36 7060.44 18075.20 22350.20 25588.05 16684.54 112
test_fmvsmconf_n72.91 13772.40 14974.46 11168.62 30766.12 10074.21 15978.80 16545.64 29174.62 20183.25 21766.80 11673.86 24372.97 6386.66 19883.39 148
CLD-MVS72.88 13872.36 15074.43 11477.03 18254.30 19668.77 23383.43 7952.12 22776.79 16274.44 32269.54 9083.91 7955.88 20693.25 6985.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+-dtu75.43 9472.28 15184.91 377.05 18183.58 278.47 9777.70 18557.68 15574.89 19478.13 29164.80 13884.26 7756.46 20185.32 21486.88 63
Effi-MVS+72.10 15072.28 15171.58 16974.21 23250.33 22274.72 14982.73 9062.62 11670.77 25776.83 30269.96 8680.97 13360.20 16678.43 29983.45 147
ETV-MVS72.72 14072.16 15374.38 11676.90 18955.95 18273.34 16584.67 5562.04 12072.19 23970.81 34965.90 12685.24 5958.64 18384.96 22181.95 189
EI-MVSNet-Vis-set72.78 13971.87 15475.54 10374.77 22059.02 16672.24 17371.56 24063.92 10078.59 13271.59 34466.22 12378.60 17267.58 9880.32 27589.00 35
CANet73.00 13371.84 15576.48 8975.82 20661.28 13974.81 14480.37 13863.17 11262.43 33880.50 25161.10 17485.16 6364.00 13284.34 23183.01 162
MVS_111021_LR72.10 15071.82 15672.95 14279.53 14573.90 4070.45 20866.64 28256.87 16476.81 16181.76 23568.78 9371.76 26561.81 15083.74 23773.18 303
PCF-MVS63.80 1372.70 14171.69 15775.72 9978.10 16760.01 15673.04 16781.50 10945.34 29879.66 12084.35 19665.15 13582.65 10248.70 26989.38 14784.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-UG-set72.63 14271.68 15875.47 10474.67 22258.64 17172.02 17871.50 24163.53 10678.58 13471.39 34865.98 12478.53 17367.30 10880.18 27889.23 29
TransMVSNet (Re)69.62 18071.63 15963.57 26976.51 19435.93 35865.75 27671.29 24861.05 12675.02 19289.90 8165.88 12770.41 27949.79 25789.48 14284.38 120
h-mvs3373.08 12871.61 16077.48 7783.89 9272.89 4870.47 20771.12 25454.28 20077.89 14183.41 20849.04 26480.98 13263.62 13990.77 11778.58 247
TSAR-MVS + GP.73.08 12871.60 16177.54 7678.99 15970.73 6174.96 14169.38 26760.73 13074.39 20578.44 28557.72 21182.78 10060.16 16889.60 13879.11 241
LCM-MVSNet-Re69.10 18971.57 16261.70 28970.37 28534.30 37061.45 31279.62 14856.81 16589.59 988.16 12368.44 9772.94 24742.30 31587.33 18177.85 260
API-MVS70.97 16371.51 16369.37 20075.20 21255.94 18380.99 6776.84 19562.48 11871.24 25377.51 29761.51 16680.96 13652.04 23985.76 20871.22 326
VDD-MVS70.81 16571.44 16468.91 21679.07 15746.51 26967.82 24670.83 25861.23 12474.07 21188.69 10859.86 18675.62 21651.11 24790.28 12384.61 108
MG-MVS70.47 16971.34 16567.85 23079.26 14940.42 32474.67 15175.15 21158.41 14868.74 28988.14 12456.08 22783.69 8259.90 17381.71 26179.43 238
3Dnovator65.95 1171.50 15771.22 16672.34 16173.16 24863.09 12478.37 9878.32 17557.67 15672.22 23884.61 19054.77 22978.47 17560.82 16281.07 26675.45 281
FA-MVS(test-final)71.27 15871.06 16771.92 16773.96 23652.32 21076.45 12276.12 20059.07 14374.04 21386.18 16652.18 24479.43 15959.75 17681.76 25784.03 128
alignmvs70.54 16871.00 16869.15 20773.50 24148.04 25069.85 21679.62 14853.94 21276.54 17182.00 22959.00 19474.68 23057.32 19287.21 18784.72 103
EG-PatchMatch MVS70.70 16670.88 16970.16 18982.64 11258.80 16871.48 19073.64 22054.98 18576.55 17081.77 23461.10 17478.94 16654.87 21780.84 26972.74 310
V4271.06 16070.83 17071.72 16867.25 32347.14 26565.94 27180.35 13951.35 23983.40 7883.23 21859.25 19278.80 16865.91 11780.81 27089.23 29
RRT-MVS70.33 17070.73 17169.14 20871.93 26545.24 28075.10 13975.08 21260.85 12978.62 13187.36 13049.54 25978.64 17160.16 16877.90 30683.55 140
MVS_Test69.84 17770.71 17267.24 23767.49 32143.25 29869.87 21581.22 11852.69 22271.57 24886.68 14962.09 16074.51 23266.05 11578.74 29483.96 129
hse-mvs272.32 14770.66 17377.31 8183.10 10371.77 5169.19 22571.45 24354.28 20077.89 14178.26 28749.04 26479.23 16063.62 13989.13 15280.92 207
mmtdpeth68.76 19470.55 17463.40 27367.06 32956.26 18168.73 23571.22 25255.47 18170.09 26688.64 11165.29 13456.89 35758.94 18289.50 14177.04 272
VPA-MVSNet68.71 19670.37 17563.72 26776.13 20038.06 34464.10 29471.48 24256.60 17174.10 21088.31 11864.78 13969.72 28147.69 28290.15 12683.37 150
PLCcopyleft62.01 1671.79 15370.28 17676.33 9180.31 13868.63 7978.18 10381.24 11654.57 19567.09 30580.63 24959.44 18981.74 11846.91 28784.17 23278.63 245
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BP-MVS171.60 15570.06 17776.20 9474.07 23555.22 19074.29 15773.44 22257.29 16173.87 21684.65 18832.57 35483.49 8772.43 7087.94 17089.89 23
ANet_high67.08 21969.94 17858.51 31857.55 38927.09 40158.43 33876.80 19663.56 10582.40 8991.93 2359.82 18764.98 32550.10 25688.86 15783.46 146
c3_l69.82 17869.89 17969.61 19866.24 33443.48 29468.12 24379.61 15051.43 23677.72 14580.18 25854.61 23278.15 18963.62 13987.50 17587.20 59
pm-mvs168.40 19969.85 18064.04 26573.10 25239.94 32764.61 29070.50 26055.52 18073.97 21489.33 8863.91 14468.38 29249.68 25988.02 16783.81 133
BH-untuned69.39 18569.46 18169.18 20677.96 17156.88 17768.47 24077.53 18756.77 16677.79 14479.63 26660.30 18280.20 14946.04 29580.65 27270.47 333
v14869.38 18669.39 18269.36 20169.14 30244.56 28568.83 22972.70 23054.79 18978.59 13284.12 19854.69 23076.74 20859.40 17982.20 25086.79 64
TinyColmap67.98 20669.28 18364.08 26367.98 31646.82 26670.04 21175.26 20953.05 21877.36 15086.79 14359.39 19072.59 25445.64 29888.01 16872.83 308
QAPM69.18 18869.26 18468.94 21471.61 26752.58 20980.37 7678.79 16649.63 25973.51 21985.14 18453.66 23779.12 16255.11 21475.54 32275.11 286
GDP-MVS70.84 16469.24 18575.62 10176.44 19555.65 18774.62 15382.78 8949.63 25972.10 24083.79 20431.86 36282.84 9964.93 12487.01 19188.39 47
MIMVSNet166.57 22569.23 18658.59 31781.26 13037.73 34764.06 29557.62 32957.02 16378.40 13690.75 4962.65 15158.10 35441.77 32189.58 14079.95 228
DPM-MVS69.98 17569.22 18772.26 16382.69 11158.82 16770.53 20681.23 11747.79 27764.16 32280.21 25551.32 25183.12 9460.14 17084.95 22274.83 287
UGNet70.20 17269.05 18873.65 12576.24 19863.64 11975.87 13472.53 23261.48 12360.93 34886.14 16952.37 24377.12 20150.67 25185.21 21580.17 227
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSFormer69.93 17669.03 18972.63 15674.93 21559.19 16083.98 4075.72 20552.27 22563.53 33276.74 30343.19 29680.56 13972.28 7178.67 29678.14 254
EI-MVSNet69.61 18169.01 19071.41 17373.94 23749.90 22971.31 19571.32 24658.22 14975.40 18970.44 35158.16 20175.85 21162.51 14779.81 28488.48 44
PVSNet_Blended_VisFu70.04 17368.88 19173.53 13082.71 11063.62 12074.81 14481.95 10348.53 27067.16 30479.18 27651.42 25078.38 18054.39 22579.72 28778.60 246
GBi-Net68.30 20168.79 19266.81 24273.14 24940.68 32071.96 18173.03 22454.81 18674.72 19790.36 7048.63 27075.20 22347.12 28485.37 21084.54 112
test168.30 20168.79 19266.81 24273.14 24940.68 32071.96 18173.03 22454.81 18674.72 19790.36 7048.63 27075.20 22347.12 28485.37 21084.54 112
OpenMVScopyleft62.51 1568.76 19468.75 19468.78 21970.56 28053.91 20078.29 9977.35 18948.85 26870.22 26383.52 20752.65 24276.93 20355.31 21381.99 25275.49 280
Fast-Effi-MVS+-dtu70.00 17468.74 19573.77 12473.47 24264.53 11471.36 19378.14 18055.81 17868.84 28774.71 31965.36 13275.75 21452.00 24079.00 29281.03 203
eth_miper_zixun_eth69.42 18468.73 19671.50 17267.99 31546.42 27067.58 24878.81 16350.72 24778.13 13980.34 25450.15 25780.34 14460.18 16784.65 22587.74 51
PAPR69.20 18768.66 19770.82 17675.15 21447.77 25475.31 13781.11 11949.62 26166.33 30779.27 27361.53 16582.96 9748.12 27781.50 26481.74 194
test_fmvsm_n_192069.63 17968.45 19873.16 13570.56 28065.86 10270.26 21078.35 17437.69 35874.29 20678.89 28161.10 17468.10 29565.87 11879.07 29185.53 84
DELS-MVS68.83 19268.31 19970.38 18270.55 28248.31 24363.78 29882.13 9954.00 20968.96 28075.17 31558.95 19580.06 15158.55 18482.74 24782.76 168
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Fast-Effi-MVS+68.81 19368.30 20070.35 18474.66 22448.61 24266.06 27078.32 17550.62 24871.48 25175.54 31068.75 9479.59 15750.55 25378.73 29582.86 166
cl____68.26 20568.26 20168.29 22564.98 34743.67 29265.89 27274.67 21350.04 25676.86 15982.42 22648.74 26875.38 21760.92 16189.81 13485.80 81
DIV-MVS_self_test68.27 20468.26 20168.29 22564.98 34743.67 29265.89 27274.67 21350.04 25676.86 15982.43 22548.74 26875.38 21760.94 16089.81 13485.81 77
FMVSNet267.48 21368.21 20365.29 25473.14 24938.94 33468.81 23071.21 25354.81 18676.73 16386.48 15848.63 27074.60 23147.98 27986.11 20482.35 180
BH-RMVSNet68.69 19768.20 20470.14 19076.40 19653.90 20164.62 28973.48 22158.01 15173.91 21581.78 23359.09 19378.22 18548.59 27077.96 30578.31 250
miper_ehance_all_eth68.36 20068.16 20568.98 21265.14 34643.34 29667.07 25878.92 16249.11 26676.21 17977.72 29453.48 23877.92 19261.16 15884.59 22785.68 83
mvs5depth66.35 22967.98 20661.47 29362.43 35951.05 21569.38 22169.24 26956.74 16773.62 21789.06 10046.96 27758.63 35055.87 20788.49 16074.73 288
tfpnnormal66.48 22667.93 20762.16 28673.40 24436.65 35163.45 30064.99 29555.97 17572.82 22987.80 12757.06 21869.10 28748.31 27587.54 17380.72 215
LFMVS67.06 22067.89 20864.56 25978.02 16938.25 34170.81 20459.60 32465.18 8771.06 25586.56 15643.85 29275.22 22146.35 29289.63 13780.21 226
AUN-MVS70.22 17167.88 20977.22 8282.96 10771.61 5269.08 22671.39 24449.17 26571.70 24378.07 29237.62 33379.21 16161.81 15089.15 15080.82 210
SDMVSNet66.36 22867.85 21061.88 28873.04 25546.14 27458.54 33671.36 24551.42 23768.93 28382.72 22265.62 12862.22 33754.41 22484.67 22377.28 263
tttt051769.46 18367.79 21174.46 11175.34 21052.72 20775.05 14063.27 31054.69 19178.87 13084.37 19526.63 38981.15 12563.95 13487.93 17189.51 25
VPNet65.58 23467.56 21259.65 30979.72 14230.17 39060.27 32362.14 31354.19 20571.24 25386.63 15358.80 19667.62 29944.17 30790.87 11481.18 199
KD-MVS_self_test66.38 22767.51 21362.97 27861.76 36334.39 36958.11 34175.30 20850.84 24677.12 15285.42 18056.84 22069.44 28351.07 24891.16 9985.08 92
diffmvspermissive67.42 21667.50 21467.20 23862.26 36145.21 28164.87 28677.04 19448.21 27171.74 24279.70 26558.40 19971.17 27164.99 12280.27 27685.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSDG67.47 21567.48 21567.46 23570.70 27654.69 19466.90 26278.17 17860.88 12870.41 26074.76 31761.22 17273.18 24547.38 28376.87 31274.49 292
EPNet69.10 18967.32 21674.46 11168.33 31161.27 14077.56 10763.57 30760.95 12756.62 37282.75 22151.53 24981.24 12454.36 22690.20 12480.88 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LF4IMVS67.50 21267.31 21768.08 22858.86 38361.93 13171.43 19175.90 20444.67 30472.42 23480.20 25657.16 21470.44 27758.99 18186.12 20371.88 318
mvsmamba68.87 19167.30 21873.57 12876.58 19353.70 20284.43 3774.25 21745.38 29776.63 16584.55 19235.85 34085.27 5649.54 26178.49 29881.75 193
EIA-MVS68.59 19867.16 21972.90 14675.18 21355.64 18869.39 22081.29 11452.44 22464.53 31870.69 35060.33 18182.30 10854.27 22776.31 31680.75 213
xiu_mvs_v1_base_debu67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
xiu_mvs_v1_base67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
xiu_mvs_v1_base_debi67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
FE-MVS68.29 20366.96 22372.26 16374.16 23354.24 19777.55 10873.42 22357.65 15872.66 23084.91 18632.02 36181.49 12048.43 27381.85 25581.04 202
Anonymous20240521166.02 23166.89 22463.43 27274.22 23138.14 34259.00 33166.13 28563.33 11169.76 27285.95 17651.88 24570.50 27644.23 30687.52 17481.64 195
fmvsm_l_conf0.5_n67.48 21366.88 22569.28 20467.41 32262.04 13070.69 20569.85 26439.46 34469.59 27381.09 24258.15 20268.73 28867.51 10078.16 30477.07 271
cl2267.14 21866.51 22669.03 21163.20 35643.46 29566.88 26376.25 19949.22 26474.48 20377.88 29345.49 28277.40 19960.64 16384.59 22786.24 69
fmvsm_s_conf0.1_n_a67.37 21766.36 22770.37 18370.86 27361.17 14174.00 16157.18 33640.77 33668.83 28880.88 24563.11 14867.61 30066.94 11074.72 32982.33 183
wuyk23d61.97 27366.25 22849.12 36758.19 38860.77 15166.32 26852.97 36355.93 17790.62 686.91 14073.07 6035.98 41420.63 41791.63 8950.62 403
MAR-MVS67.72 21066.16 22972.40 16074.45 22764.99 11174.87 14277.50 18848.67 26965.78 31168.58 37457.01 21977.79 19446.68 29081.92 25374.42 294
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SSC-MVS61.79 27666.08 23048.89 36976.91 18710.00 42653.56 36947.37 38768.20 6376.56 16989.21 9254.13 23557.59 35554.75 21874.07 33879.08 242
Anonymous2024052163.55 25666.07 23155.99 33166.18 33644.04 28968.77 23368.80 27146.99 28272.57 23185.84 17739.87 31750.22 37253.40 23792.23 8373.71 300
IterMVS-SCA-FT67.68 21166.07 23172.49 15873.34 24558.20 17363.80 29765.55 29148.10 27276.91 15682.64 22445.20 28378.84 16761.20 15777.89 30780.44 222
fmvsm_l_conf0.5_n_a66.66 22365.97 23368.72 22067.09 32561.38 13870.03 21269.15 27038.59 35268.41 29080.36 25356.56 22368.32 29366.10 11477.45 30976.46 273
fmvsm_s_conf0.5_n_a67.00 22265.95 23470.17 18869.72 29861.16 14273.34 16556.83 33940.96 33368.36 29180.08 26062.84 14967.57 30166.90 11274.50 33381.78 192
fmvsm_s_conf0.1_n66.60 22465.54 23569.77 19668.99 30459.15 16372.12 17556.74 34140.72 33868.25 29480.14 25961.18 17366.92 30767.34 10774.40 33483.23 155
mvs_anonymous65.08 23965.49 23663.83 26663.79 35337.60 34866.52 26769.82 26543.44 31573.46 22186.08 17258.79 19771.75 26651.90 24175.63 32182.15 185
sd_testset63.55 25665.38 23758.07 32073.04 25538.83 33657.41 34465.44 29251.42 23768.93 28382.72 22263.76 14558.11 35341.05 32584.67 22377.28 263
fmvsm_s_conf0.5_n66.34 23065.27 23869.57 19968.20 31259.14 16571.66 18856.48 34240.92 33467.78 29679.46 26861.23 17066.90 30867.39 10374.32 33782.66 174
ECVR-MVScopyleft64.82 24165.22 23963.60 26878.80 16031.14 38566.97 26056.47 34354.23 20269.94 26988.68 10937.23 33474.81 22945.28 30389.41 14484.86 98
test111164.62 24465.19 24062.93 27979.01 15829.91 39165.45 28054.41 35354.09 20771.47 25288.48 11437.02 33574.29 23646.83 28989.94 13284.58 111
thisisatest053067.05 22165.16 24172.73 15373.10 25250.55 21971.26 19763.91 30550.22 25374.46 20480.75 24726.81 38880.25 14659.43 17886.50 19987.37 55
FMVSNet365.00 24065.16 24164.52 26069.47 29937.56 34966.63 26570.38 26151.55 23574.72 19783.27 21637.89 33174.44 23347.12 28485.37 21081.57 196
VNet64.01 25565.15 24360.57 30373.28 24635.61 36157.60 34367.08 28054.61 19366.76 30683.37 21156.28 22566.87 30942.19 31785.20 21679.23 240
ab-mvs64.11 25365.13 24461.05 29871.99 26438.03 34567.59 24768.79 27249.08 26765.32 31486.26 16458.02 20966.85 31139.33 33379.79 28678.27 251
test_yl65.11 23765.09 24565.18 25570.59 27840.86 31663.22 30572.79 22757.91 15268.88 28579.07 27942.85 29974.89 22745.50 30084.97 21879.81 229
DCV-MVSNet65.11 23765.09 24565.18 25570.59 27840.86 31663.22 30572.79 22757.91 15268.88 28579.07 27942.85 29974.89 22745.50 30084.97 21879.81 229
RPMNet65.77 23365.08 24767.84 23166.37 33148.24 24570.93 20186.27 2054.66 19261.35 34286.77 14533.29 34885.67 4955.93 20570.17 36769.62 342
miper_enhance_ethall65.86 23265.05 24868.28 22761.62 36542.62 30464.74 28777.97 18242.52 32073.42 22272.79 33749.66 25877.68 19658.12 18784.59 22784.54 112
PVSNet_BlendedMVS65.38 23564.30 24968.61 22169.81 29449.36 23565.60 27978.96 16045.50 29359.98 35178.61 28351.82 24678.20 18644.30 30484.11 23378.27 251
BH-w/o64.81 24264.29 25066.36 24776.08 20354.71 19365.61 27875.23 21050.10 25571.05 25671.86 34354.33 23479.02 16438.20 34476.14 31765.36 368
WB-MVS60.04 29064.19 25147.59 37276.09 20110.22 42552.44 37446.74 38965.17 8874.07 21187.48 12953.48 23855.28 36149.36 26372.84 34677.28 263
patch_mono-262.73 26964.08 25258.68 31670.36 28655.87 18460.84 31864.11 30441.23 32964.04 32378.22 28860.00 18348.80 37654.17 22883.71 23971.37 323
xiu_mvs_v2_base64.43 24963.96 25365.85 25377.72 17551.32 21463.63 29972.31 23545.06 30261.70 33969.66 36262.56 15273.93 24149.06 26673.91 33972.31 314
CANet_DTU64.04 25463.83 25464.66 25868.39 30842.97 30173.45 16474.50 21652.05 22954.78 38175.44 31343.99 29170.42 27853.49 23478.41 30080.59 219
TAMVS65.31 23663.75 25569.97 19482.23 11759.76 15866.78 26463.37 30945.20 29969.79 27179.37 27247.42 27672.17 25834.48 37085.15 21777.99 258
PS-MVSNAJ64.27 25263.73 25665.90 25277.82 17351.42 21363.33 30272.33 23445.09 30161.60 34068.04 37662.39 15673.95 24049.07 26573.87 34072.34 313
PM-MVS64.49 24763.61 25767.14 24076.68 19275.15 3168.49 23942.85 40251.17 24377.85 14380.51 25045.76 27966.31 31652.83 23876.35 31559.96 391
TR-MVS64.59 24563.54 25867.73 23375.75 20850.83 21863.39 30170.29 26249.33 26371.55 24974.55 32050.94 25278.46 17640.43 32975.69 32073.89 298
MonoMVSNet62.75 26763.42 25960.73 30265.60 34040.77 31872.49 17170.56 25952.49 22375.07 19179.42 27039.52 32169.97 28046.59 29169.06 37371.44 322
CL-MVSNet_self_test62.44 27163.40 26059.55 31072.34 26132.38 37756.39 34964.84 29751.21 24267.46 30181.01 24450.75 25363.51 33238.47 34288.12 16582.75 169
OpenMVS_ROBcopyleft54.93 1763.23 26163.28 26163.07 27669.81 29445.34 27968.52 23867.14 27943.74 31170.61 25979.22 27447.90 27472.66 25048.75 26873.84 34171.21 327
pmmvs-eth3d64.41 25063.27 26267.82 23275.81 20760.18 15569.49 21862.05 31638.81 35174.13 20982.23 22843.76 29368.65 29042.53 31480.63 27474.63 289
Vis-MVSNet (Re-imp)62.74 26863.21 26361.34 29672.19 26231.56 38267.31 25653.87 35553.60 21569.88 27083.37 21140.52 31370.98 27241.40 32386.78 19581.48 197
USDC62.80 26663.10 26461.89 28765.19 34343.30 29767.42 25174.20 21835.80 37072.25 23784.48 19445.67 28071.95 26337.95 34684.97 21870.42 335
Patchmtry60.91 28263.01 26554.62 33866.10 33726.27 40767.47 25056.40 34454.05 20872.04 24186.66 15033.19 34960.17 34343.69 30887.45 17777.42 261
jason64.47 24862.84 26669.34 20376.91 18759.20 15967.15 25765.67 28835.29 37165.16 31576.74 30344.67 28770.68 27354.74 21979.28 29078.14 254
jason: jason.
cascas64.59 24562.77 26770.05 19275.27 21150.02 22661.79 31171.61 23842.46 32163.68 32968.89 37049.33 26280.35 14347.82 28184.05 23479.78 231
CDS-MVSNet64.33 25162.66 26869.35 20280.44 13758.28 17265.26 28265.66 28944.36 30567.30 30375.54 31043.27 29571.77 26437.68 34784.44 23078.01 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS63.12 26262.48 26965.02 25766.34 33352.86 20663.81 29662.25 31246.57 28571.51 25080.40 25244.60 28866.82 31251.38 24675.47 32375.38 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet-bldmvs62.34 27261.73 27064.16 26161.64 36449.90 22948.11 38757.24 33553.31 21780.95 10779.39 27149.00 26661.55 33945.92 29680.05 27981.03 203
GA-MVS62.91 26461.66 27166.66 24667.09 32544.49 28661.18 31669.36 26851.33 24069.33 27674.47 32136.83 33674.94 22650.60 25274.72 32980.57 220
PVSNet_Blended62.90 26561.64 27266.69 24569.81 29449.36 23561.23 31578.96 16042.04 32259.98 35168.86 37151.82 24678.20 18644.30 30477.77 30872.52 311
miper_lstm_enhance61.97 27361.63 27362.98 27760.04 37245.74 27747.53 38970.95 25544.04 30673.06 22678.84 28239.72 31860.33 34255.82 20884.64 22682.88 164
MVSTER63.29 26061.60 27468.36 22359.77 37846.21 27360.62 32071.32 24641.83 32475.40 18979.12 27730.25 37775.85 21156.30 20279.81 28483.03 161
lupinMVS63.36 25861.49 27568.97 21374.93 21559.19 16065.80 27564.52 30134.68 37763.53 33274.25 32543.19 29670.62 27453.88 23178.67 29677.10 268
thres600view761.82 27561.38 27663.12 27571.81 26634.93 36564.64 28856.99 33754.78 19070.33 26279.74 26432.07 35972.42 25638.61 34083.46 24282.02 187
EGC-MVSNET64.77 24361.17 27775.60 10286.90 4374.47 3484.04 3968.62 2740.60 4221.13 42491.61 3265.32 13374.15 23864.01 13188.28 16278.17 253
thres100view90061.17 28161.09 27861.39 29472.14 26335.01 36465.42 28156.99 33755.23 18370.71 25879.90 26232.07 35972.09 25935.61 36581.73 25877.08 269
D2MVS62.58 27061.05 27967.20 23863.85 35247.92 25156.29 35069.58 26639.32 34570.07 26778.19 28934.93 34372.68 24953.44 23583.74 23781.00 205
CMPMVSbinary48.73 2061.54 27960.89 28063.52 27061.08 36751.55 21268.07 24468.00 27733.88 37965.87 30981.25 24037.91 33067.71 29749.32 26482.60 24871.31 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test250661.23 28060.85 28162.38 28478.80 16027.88 39967.33 25537.42 41554.23 20267.55 30088.68 10917.87 41874.39 23446.33 29389.41 14484.86 98
EU-MVSNet60.82 28360.80 28260.86 30168.37 30941.16 31272.27 17268.27 27626.96 40269.08 27775.71 30832.09 35867.44 30255.59 21178.90 29373.97 296
ET-MVSNet_ETH3D63.32 25960.69 28371.20 17570.15 29155.66 18665.02 28564.32 30243.28 31968.99 27972.05 34225.46 39578.19 18854.16 22982.80 24679.74 232
HyFIR lowres test63.01 26360.47 28470.61 17883.04 10454.10 19859.93 32672.24 23633.67 38269.00 27875.63 30938.69 32576.93 20336.60 35775.45 32480.81 212
PAPM61.79 27660.37 28566.05 25076.09 20141.87 30869.30 22276.79 19740.64 33953.80 38679.62 26744.38 28982.92 9829.64 39173.11 34573.36 302
FPMVS59.43 29560.07 28657.51 32377.62 17871.52 5362.33 30950.92 37157.40 16069.40 27580.00 26139.14 32361.92 33837.47 35066.36 38439.09 414
tfpn200view960.35 28859.97 28761.51 29170.78 27435.35 36263.27 30357.47 33053.00 21968.31 29277.09 30032.45 35672.09 25935.61 36581.73 25877.08 269
MVS60.62 28659.97 28762.58 28268.13 31447.28 26368.59 23673.96 21932.19 38659.94 35368.86 37150.48 25477.64 19741.85 32075.74 31962.83 380
thres40060.77 28559.97 28763.15 27470.78 27435.35 36263.27 30357.47 33053.00 21968.31 29277.09 30032.45 35672.09 25935.61 36581.73 25882.02 187
ppachtmachnet_test60.26 28959.61 29062.20 28567.70 31944.33 28758.18 34060.96 32040.75 33765.80 31072.57 33841.23 30663.92 32946.87 28882.42 24978.33 249
MVP-Stereo61.56 27859.22 29168.58 22279.28 14860.44 15369.20 22471.57 23943.58 31356.42 37378.37 28639.57 32076.46 21034.86 36960.16 39968.86 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-RL test59.95 29159.12 29262.44 28372.46 26054.61 19559.63 32747.51 38641.05 33274.58 20274.30 32431.06 37165.31 32251.61 24279.85 28367.39 355
pmmvs460.78 28459.04 29366.00 25173.06 25457.67 17564.53 29160.22 32236.91 36465.96 30877.27 29839.66 31968.54 29138.87 33774.89 32871.80 319
1112_ss59.48 29458.99 29460.96 30077.84 17242.39 30661.42 31368.45 27537.96 35659.93 35467.46 37945.11 28565.07 32440.89 32771.81 35575.41 282
131459.83 29258.86 29562.74 28165.71 33944.78 28468.59 23672.63 23133.54 38461.05 34667.29 38243.62 29471.26 27049.49 26267.84 38172.19 316
Test_1112_low_res58.78 30058.69 29659.04 31579.41 14638.13 34357.62 34266.98 28134.74 37559.62 35777.56 29642.92 29863.65 33138.66 33970.73 36375.35 284
EPNet_dtu58.93 29958.52 29760.16 30767.91 31747.70 25769.97 21358.02 32849.73 25847.28 40573.02 33638.14 32762.34 33536.57 35885.99 20570.43 334
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet58.96 29758.49 29860.36 30566.37 33148.24 24570.93 20156.40 34432.87 38561.35 34286.66 15033.19 34963.22 33348.50 27270.17 36769.62 342
CVMVSNet59.21 29658.44 29961.51 29173.94 23747.76 25571.31 19564.56 30026.91 40460.34 35070.44 35136.24 33967.65 29853.57 23368.66 37669.12 347
testing358.28 30358.38 30058.00 32177.45 18026.12 40860.78 31943.00 40156.02 17470.18 26475.76 30713.27 42667.24 30548.02 27880.89 26780.65 217
baseline157.82 30658.36 30156.19 33069.17 30130.76 38862.94 30755.21 34846.04 28863.83 32778.47 28441.20 30763.68 33039.44 33268.99 37474.13 295
reproduce_monomvs58.94 29858.14 30261.35 29559.70 37940.98 31560.24 32463.51 30845.85 29068.95 28175.31 31418.27 41665.82 31851.47 24479.97 28077.26 266
SCA58.57 30258.04 30360.17 30670.17 28941.07 31465.19 28353.38 36143.34 31861.00 34773.48 33145.20 28369.38 28440.34 33070.31 36670.05 336
thisisatest051560.48 28757.86 30468.34 22467.25 32346.42 27060.58 32162.14 31340.82 33563.58 33169.12 36526.28 39178.34 18248.83 26782.13 25180.26 225
PatchMatch-RL58.68 30157.72 30561.57 29076.21 19973.59 4361.83 31049.00 38147.30 28161.08 34468.97 36750.16 25659.01 34736.06 36468.84 37552.10 401
HY-MVS49.31 1957.96 30557.59 30659.10 31466.85 33036.17 35565.13 28465.39 29339.24 34854.69 38378.14 29044.28 29067.18 30633.75 37570.79 36273.95 297
test20.0355.74 31557.51 30750.42 35859.89 37732.09 37950.63 37949.01 38050.11 25465.07 31683.23 21845.61 28148.11 38130.22 38783.82 23671.07 330
XXY-MVS55.19 32057.40 30848.56 37164.45 35034.84 36751.54 37753.59 35738.99 35063.79 32879.43 26956.59 22145.57 38736.92 35671.29 35965.25 369
thres20057.55 30757.02 30959.17 31267.89 31834.93 36558.91 33457.25 33450.24 25264.01 32471.46 34632.49 35571.39 26931.31 38379.57 28871.19 328
IB-MVS49.67 1859.69 29356.96 31067.90 22968.19 31350.30 22361.42 31365.18 29447.57 27955.83 37667.15 38323.77 40179.60 15643.56 31079.97 28073.79 299
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testgi54.00 33056.86 31145.45 38158.20 38725.81 40949.05 38349.50 37945.43 29667.84 29581.17 24151.81 24843.20 40129.30 39279.41 28967.34 357
gg-mvs-nofinetune55.75 31456.75 31252.72 34762.87 35728.04 39868.92 22741.36 41071.09 4650.80 39692.63 1320.74 40966.86 31029.97 38972.41 34963.25 379
our_test_356.46 31056.51 31356.30 32967.70 31939.66 32955.36 35852.34 36740.57 34063.85 32669.91 36140.04 31658.22 35243.49 31175.29 32771.03 331
PatchT53.35 33456.47 31443.99 38864.19 35117.46 41959.15 32843.10 40052.11 22854.74 38286.95 13929.97 38049.98 37343.62 30974.40 33464.53 377
CHOSEN 1792x268858.09 30456.30 31563.45 27179.95 14050.93 21754.07 36765.59 29028.56 39861.53 34174.33 32341.09 30966.52 31533.91 37367.69 38272.92 306
CostFormer57.35 30856.14 31660.97 29963.76 35438.43 33867.50 24960.22 32237.14 36359.12 35976.34 30532.78 35271.99 26239.12 33669.27 37272.47 312
MIMVSNet54.39 32556.12 31749.20 36572.57 25930.91 38659.98 32548.43 38341.66 32555.94 37583.86 20341.19 30850.42 37126.05 40275.38 32566.27 363
test_fmvs356.78 30955.99 31859.12 31353.96 40848.09 24858.76 33566.22 28427.54 40076.66 16468.69 37325.32 39751.31 36953.42 23673.38 34377.97 259
Anonymous2023120654.13 32655.82 31949.04 36870.89 27235.96 35751.73 37650.87 37234.86 37262.49 33779.22 27442.52 30244.29 39727.95 39881.88 25466.88 359
new-patchmatchnet52.89 33855.76 32044.26 38759.94 3766.31 42737.36 41150.76 37341.10 33064.28 32179.82 26344.77 28648.43 38036.24 36187.61 17278.03 256
FMVSNet555.08 32255.54 32153.71 34065.80 33833.50 37456.22 35152.50 36543.72 31261.06 34583.38 21025.46 39554.87 36230.11 38881.64 26372.75 309
ttmdpeth56.40 31155.45 32259.25 31155.63 39940.69 31958.94 33349.72 37736.22 36665.39 31286.97 13823.16 40456.69 35842.30 31580.74 27180.36 223
Syy-MVS54.13 32655.45 32250.18 35968.77 30523.59 41255.02 35944.55 39543.80 30858.05 36364.07 38946.22 27858.83 34846.16 29472.36 35068.12 351
tpmvs55.84 31355.45 32257.01 32560.33 37133.20 37565.89 27259.29 32647.52 28056.04 37473.60 33031.05 37268.06 29640.64 32864.64 38769.77 340
testing9155.74 31555.29 32557.08 32470.63 27730.85 38754.94 36256.31 34650.34 25057.08 36670.10 35824.50 39965.86 31736.98 35576.75 31374.53 291
MVStest155.38 31954.97 32656.58 32843.72 42140.07 32659.13 32947.09 38834.83 37376.53 17284.65 18813.55 42553.30 36755.04 21580.23 27776.38 274
MS-PatchMatch55.59 31754.89 32757.68 32269.18 30049.05 23861.00 31762.93 31135.98 36858.36 36168.93 36936.71 33766.59 31437.62 34963.30 39157.39 397
WB-MVSnew53.94 33154.76 32851.49 35371.53 26828.05 39758.22 33950.36 37437.94 35759.16 35870.17 35649.21 26351.94 36824.49 40971.80 35674.47 293
tpm256.12 31254.64 32960.55 30466.24 33436.01 35668.14 24256.77 34033.60 38358.25 36275.52 31230.25 37774.33 23533.27 37669.76 37171.32 324
testing9955.16 32154.56 33056.98 32670.13 29230.58 38954.55 36554.11 35449.53 26256.76 37070.14 35722.76 40665.79 31936.99 35476.04 31874.57 290
PatchmatchNetpermissive54.60 32454.27 33155.59 33465.17 34539.08 33166.92 26151.80 36939.89 34258.39 36073.12 33531.69 36558.33 35143.01 31358.38 40569.38 345
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WBMVS53.38 33254.14 33251.11 35570.16 29026.66 40350.52 38151.64 37039.32 34563.08 33577.16 29923.53 40255.56 35931.99 38079.88 28271.11 329
test_fmvs254.80 32354.11 33356.88 32751.76 41249.95 22856.70 34865.80 28726.22 40569.42 27465.25 38731.82 36349.98 37349.63 26070.36 36570.71 332
MDTV_nov1_ep1354.05 33465.54 34129.30 39459.00 33155.22 34735.96 36952.44 38975.98 30630.77 37459.62 34538.21 34373.33 344
test_vis1_n_192052.96 33653.50 33551.32 35459.15 38144.90 28356.13 35364.29 30330.56 39659.87 35560.68 40040.16 31547.47 38248.25 27662.46 39361.58 388
YYNet152.58 34053.50 33549.85 36154.15 40536.45 35440.53 40446.55 39138.09 35575.52 18773.31 33441.08 31043.88 39841.10 32471.14 36169.21 346
MDA-MVSNet_test_wron52.57 34153.49 33749.81 36254.24 40436.47 35340.48 40546.58 39038.13 35475.47 18873.32 33341.05 31143.85 39940.98 32671.20 36069.10 348
UnsupCasMVSNet_eth52.26 34353.29 33849.16 36655.08 40133.67 37350.03 38258.79 32737.67 35963.43 33474.75 31841.82 30445.83 38638.59 34159.42 40167.98 354
baseline255.57 31852.74 33964.05 26465.26 34244.11 28862.38 30854.43 35239.03 34951.21 39467.35 38133.66 34772.45 25537.14 35264.22 38975.60 279
UWE-MVS52.94 33752.70 34053.65 34173.56 24027.49 40057.30 34549.57 37838.56 35362.79 33671.42 34719.49 41360.41 34124.33 41177.33 31073.06 304
tpm cat154.02 32952.63 34158.19 31964.85 34939.86 32866.26 26957.28 33332.16 38756.90 36870.39 35332.75 35365.30 32334.29 37158.79 40269.41 344
pmmvs552.49 34252.58 34252.21 34954.99 40232.38 37755.45 35753.84 35632.15 38855.49 37874.81 31638.08 32857.37 35634.02 37274.40 33466.88 359
testing22253.37 33352.50 34355.98 33270.51 28329.68 39256.20 35251.85 36846.19 28756.76 37068.94 36819.18 41465.39 32125.87 40576.98 31172.87 307
tpm50.60 35252.42 34445.14 38365.18 34426.29 40660.30 32243.50 39837.41 36157.01 36779.09 27830.20 37942.32 40232.77 37866.36 38466.81 361
testing1153.13 33552.26 34555.75 33370.44 28431.73 38154.75 36352.40 36644.81 30352.36 39168.40 37521.83 40765.74 32032.64 37972.73 34769.78 339
test_fmvs1_n52.70 33952.01 34654.76 33653.83 40950.36 22155.80 35565.90 28624.96 40965.39 31260.64 40127.69 38648.46 37845.88 29767.99 37965.46 367
JIA-IIPM54.03 32851.62 34761.25 29759.14 38255.21 19159.10 33047.72 38450.85 24550.31 40085.81 17820.10 41163.97 32836.16 36255.41 41064.55 376
KD-MVS_2432*160052.05 34551.58 34853.44 34352.11 41031.20 38344.88 39764.83 29841.53 32664.37 31970.03 35915.61 42264.20 32636.25 35974.61 33164.93 373
miper_refine_blended52.05 34551.58 34853.44 34352.11 41031.20 38344.88 39764.83 29841.53 32664.37 31970.03 35915.61 42264.20 32636.25 35974.61 33164.93 373
tpmrst50.15 35651.38 35046.45 37856.05 39524.77 41064.40 29349.98 37536.14 36753.32 38869.59 36335.16 34248.69 37739.24 33458.51 40465.89 364
PVSNet43.83 2151.56 34851.17 35152.73 34668.34 31038.27 34048.22 38653.56 35936.41 36554.29 38464.94 38834.60 34454.20 36530.34 38669.87 36965.71 366
N_pmnet52.06 34451.11 35254.92 33559.64 38071.03 5737.42 41061.62 31933.68 38157.12 36572.10 33937.94 32931.03 41629.13 39771.35 35862.70 381
test_vis3_rt51.94 34751.04 35354.65 33746.32 41950.13 22544.34 39978.17 17823.62 41368.95 28162.81 39321.41 40838.52 41241.49 32272.22 35275.30 285
UnsupCasMVSNet_bld50.01 35751.03 35446.95 37458.61 38432.64 37648.31 38553.27 36234.27 37860.47 34971.53 34541.40 30547.07 38430.68 38560.78 39861.13 389
test_cas_vis1_n_192050.90 35150.92 35550.83 35754.12 40747.80 25351.44 37854.61 35126.95 40363.95 32560.85 39937.86 33244.97 39245.53 29962.97 39259.72 392
test_fmvs151.51 34950.86 35653.48 34249.72 41549.35 23754.11 36664.96 29624.64 41163.66 33059.61 40428.33 38548.45 37945.38 30267.30 38362.66 383
dmvs_re49.91 35850.77 35747.34 37359.98 37338.86 33553.18 37053.58 35839.75 34355.06 37961.58 39836.42 33844.40 39629.15 39668.23 37758.75 394
test-LLR50.43 35350.69 35849.64 36360.76 36841.87 30853.18 37045.48 39343.41 31649.41 40160.47 40229.22 38344.73 39442.09 31872.14 35362.33 386
myMVS_eth3d50.36 35450.52 35949.88 36068.77 30522.69 41455.02 35944.55 39543.80 30858.05 36364.07 38914.16 42458.83 34833.90 37472.36 35068.12 351
test_vis1_n51.27 35050.41 36053.83 33956.99 39150.01 22756.75 34760.53 32125.68 40759.74 35657.86 40529.40 38247.41 38343.10 31263.66 39064.08 378
WTY-MVS49.39 35950.31 36146.62 37761.22 36632.00 38046.61 39249.77 37633.87 38054.12 38569.55 36441.96 30345.40 38931.28 38464.42 38862.47 384
Patchmatch-test47.93 36349.96 36241.84 39157.42 39024.26 41148.75 38441.49 40939.30 34756.79 36973.48 33130.48 37633.87 41529.29 39372.61 34867.39 355
ETVMVS50.32 35549.87 36351.68 35170.30 28826.66 40352.33 37543.93 39743.54 31454.91 38067.95 37720.01 41260.17 34322.47 41373.40 34268.22 350
UBG49.18 36049.35 36448.66 37070.36 28626.56 40550.53 38045.61 39237.43 36053.37 38765.97 38423.03 40554.20 36526.29 40071.54 35765.20 370
sss47.59 36548.32 36545.40 38256.73 39433.96 37145.17 39548.51 38232.11 39052.37 39065.79 38540.39 31441.91 40531.85 38161.97 39560.35 390
test0.0.03 147.72 36448.31 36645.93 37955.53 40029.39 39346.40 39341.21 41143.41 31655.81 37767.65 37829.22 38343.77 40025.73 40669.87 36964.62 375
test-mter48.56 36248.20 36749.64 36360.76 36841.87 30853.18 37045.48 39331.91 39149.41 40160.47 40218.34 41544.73 39442.09 31872.14 35362.33 386
dmvs_testset45.26 37047.51 36838.49 39759.96 37514.71 42158.50 33743.39 39941.30 32851.79 39356.48 40639.44 32249.91 37521.42 41555.35 41150.85 402
MVS-HIRNet45.53 36947.29 36940.24 39462.29 36026.82 40256.02 35437.41 41629.74 39743.69 41581.27 23933.96 34555.48 36024.46 41056.79 40638.43 415
ADS-MVSNet248.76 36147.25 37053.29 34555.90 39740.54 32347.34 39054.99 35031.41 39350.48 39772.06 34031.23 36854.26 36425.93 40355.93 40765.07 371
EPMVS45.74 36846.53 37143.39 38954.14 40622.33 41655.02 35935.00 41834.69 37651.09 39570.20 35525.92 39342.04 40437.19 35155.50 40965.78 365
test_f43.79 37745.63 37238.24 39842.29 42438.58 33734.76 41347.68 38522.22 41667.34 30263.15 39231.82 36330.60 41739.19 33562.28 39445.53 410
ADS-MVSNet44.62 37445.58 37341.73 39255.90 39720.83 41747.34 39039.94 41331.41 39350.48 39772.06 34031.23 36839.31 41025.93 40355.93 40765.07 371
E-PMN45.17 37145.36 37444.60 38550.07 41342.75 30238.66 40842.29 40646.39 28639.55 41651.15 41226.00 39245.37 39037.68 34776.41 31445.69 409
test_vis1_rt46.70 36745.24 37551.06 35644.58 42051.04 21639.91 40667.56 27821.84 41751.94 39250.79 41333.83 34639.77 40935.25 36861.50 39662.38 385
pmmvs346.71 36645.09 37651.55 35256.76 39348.25 24455.78 35639.53 41424.13 41250.35 39963.40 39115.90 42151.08 37029.29 39370.69 36455.33 400
TESTMET0.1,145.17 37144.93 37745.89 38056.02 39638.31 33953.18 37041.94 40827.85 39944.86 41156.47 40717.93 41741.50 40738.08 34568.06 37857.85 395
dp44.09 37644.88 37841.72 39358.53 38623.18 41354.70 36442.38 40534.80 37444.25 41365.61 38624.48 40044.80 39329.77 39049.42 41357.18 398
DSMNet-mixed43.18 37944.66 37938.75 39654.75 40328.88 39657.06 34627.42 42113.47 41947.27 40677.67 29538.83 32439.29 41125.32 40860.12 40048.08 405
EMVS44.61 37544.45 38045.10 38448.91 41643.00 30037.92 40941.10 41246.75 28438.00 41848.43 41526.42 39046.27 38537.11 35375.38 32546.03 408
PMMVS44.69 37343.95 38146.92 37550.05 41453.47 20448.08 38842.40 40422.36 41544.01 41453.05 41042.60 30145.49 38831.69 38261.36 39741.79 412
mvsany_test343.76 37841.01 38252.01 35048.09 41757.74 17442.47 40123.85 42423.30 41464.80 31762.17 39627.12 38740.59 40829.17 39548.11 41457.69 396
PMMVS237.74 38340.87 38328.36 40042.41 4235.35 42824.61 41527.75 42032.15 38847.85 40470.27 35435.85 34029.51 41819.08 41867.85 38050.22 404
PVSNet_036.71 2241.12 38140.78 38442.14 39059.97 37440.13 32540.97 40342.24 40730.81 39544.86 41149.41 41440.70 31245.12 39123.15 41234.96 41741.16 413
CHOSEN 280x42041.62 38039.89 38546.80 37661.81 36251.59 21133.56 41435.74 41727.48 40137.64 41953.53 40823.24 40342.09 40327.39 39958.64 40346.72 407
new_pmnet37.55 38439.80 38630.79 39956.83 39216.46 42039.35 40730.65 41925.59 40845.26 40961.60 39724.54 39828.02 41921.60 41452.80 41247.90 406
mvsany_test137.88 38235.74 38744.28 38647.28 41849.90 22936.54 41224.37 42319.56 41845.76 40753.46 40932.99 35137.97 41326.17 40135.52 41644.99 411
MVEpermissive27.91 2336.69 38535.64 38839.84 39543.37 42235.85 35919.49 41624.61 42224.68 41039.05 41762.63 39538.67 32627.10 42021.04 41647.25 41556.56 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai31.66 38632.98 38927.71 40158.58 38512.61 42345.02 39614.24 42741.90 32347.93 40343.91 41610.65 42741.81 40614.06 41920.53 42028.72 417
cdsmvs_eth3d_5k17.71 38923.62 3900.00 4080.00 4310.00 4330.00 41970.17 2630.00 4260.00 42774.25 32568.16 1000.00 4270.00 4260.00 4250.00 423
kuosan22.02 38723.52 39117.54 40341.56 42511.24 42441.99 40213.39 42826.13 40628.87 42030.75 4189.72 42821.94 4224.77 42314.49 42119.43 418
test_method19.26 38819.12 39219.71 4029.09 4271.91 4307.79 41853.44 3601.42 42110.27 42335.80 41717.42 41925.11 42112.44 42024.38 41932.10 416
tmp_tt11.98 39014.73 3933.72 4052.28 4284.62 42919.44 41714.50 4260.47 42321.55 4219.58 42125.78 3944.57 42411.61 42127.37 4181.96 420
ab-mvs-re5.62 3917.50 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42767.46 3790.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas5.20 3926.93 3950.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42662.39 1560.00 4270.00 4260.00 4250.00 423
test1234.43 3935.78 3960.39 4070.97 4290.28 43146.33 3940.45 4300.31 4240.62 4251.50 4240.61 4300.11 4260.56 4240.63 4230.77 422
testmvs4.06 3945.28 3970.41 4060.64 4300.16 43242.54 4000.31 4310.26 4250.50 4261.40 4250.77 4290.17 4250.56 4240.55 4240.90 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS22.69 41436.10 363
FOURS189.19 2477.84 1491.64 189.11 384.05 391.57 3
MSC_two_6792asdad79.02 5783.14 9967.03 9180.75 12686.24 2477.27 3794.85 2983.78 134
PC_three_145246.98 28381.83 9486.28 16266.55 12184.47 7463.31 14490.78 11583.49 142
No_MVS79.02 5783.14 9967.03 9180.75 12686.24 2477.27 3794.85 2983.78 134
test_one_060185.84 6461.45 13785.63 3075.27 2185.62 5190.38 6776.72 30
eth-test20.00 431
eth-test0.00 431
ZD-MVS83.91 9069.36 7381.09 12158.91 14682.73 8789.11 9775.77 3886.63 1472.73 6592.93 72
IU-MVS86.12 5460.90 14780.38 13745.49 29581.31 10275.64 4494.39 4484.65 104
OPU-MVS78.65 6483.44 9766.85 9383.62 4686.12 17066.82 11386.01 3461.72 15389.79 13683.08 159
test_241102_TWO84.80 4872.61 3584.93 5989.70 8377.73 2485.89 4275.29 4594.22 5583.25 153
test_241102_ONE86.12 5461.06 14384.72 5272.64 3487.38 2889.47 8677.48 2685.74 46
save fliter87.00 4067.23 9079.24 8977.94 18356.65 170
test_0728_THIRD74.03 2585.83 4690.41 6275.58 4085.69 4777.43 3494.74 3384.31 122
test_0728_SECOND76.57 8786.20 4960.57 15283.77 4485.49 3285.90 4075.86 4294.39 4483.25 153
test072686.16 5260.78 14983.81 4385.10 4372.48 3785.27 5689.96 7978.57 19
GSMVS70.05 336
test_part285.90 6066.44 9584.61 65
sam_mvs131.41 36670.05 336
sam_mvs31.21 370
ambc70.10 19177.74 17450.21 22474.28 15877.93 18479.26 12488.29 11954.11 23679.77 15364.43 12791.10 10480.30 224
MTGPAbinary80.63 131
test_post166.63 2652.08 42230.66 37559.33 34640.34 330
test_post1.99 42330.91 37354.76 363
patchmatchnet-post68.99 36631.32 36769.38 284
GG-mvs-BLEND52.24 34860.64 37029.21 39569.73 21742.41 40345.47 40852.33 41120.43 41068.16 29425.52 40765.42 38659.36 393
MTMP84.83 3419.26 425
gm-plane-assit62.51 35833.91 37237.25 36262.71 39472.74 24838.70 338
test9_res72.12 7391.37 9477.40 262
TEST985.47 6769.32 7476.42 12378.69 16853.73 21476.97 15386.74 14666.84 11281.10 127
test_885.09 7367.89 8376.26 12878.66 17054.00 20976.89 15786.72 14866.60 11880.89 137
agg_prior270.70 7790.93 10978.55 248
agg_prior84.44 8566.02 10178.62 17176.95 15580.34 144
TestCases78.35 6879.19 15270.81 5988.64 465.37 8380.09 11788.17 12170.33 8178.43 17855.60 20990.90 11185.81 77
test_prior470.14 6777.57 106
test_prior275.57 13658.92 14576.53 17286.78 14467.83 10569.81 8192.76 75
test_prior75.27 10682.15 11859.85 15784.33 6383.39 9082.58 176
旧先验271.17 19845.11 30078.54 13561.28 34059.19 180
新几何271.33 194
新几何169.99 19388.37 3571.34 5562.08 31543.85 30774.99 19386.11 17152.85 24170.57 27550.99 24983.23 24468.05 353
旧先验184.55 8260.36 15463.69 30687.05 13754.65 23183.34 24369.66 341
无先验74.82 14370.94 25647.75 27876.85 20654.47 22272.09 317
原ACMM274.78 147
原ACMM173.90 12285.90 6065.15 11081.67 10750.97 24474.25 20786.16 16861.60 16483.54 8556.75 19691.08 10573.00 305
test22287.30 3869.15 7767.85 24559.59 32541.06 33173.05 22785.72 17948.03 27380.65 27266.92 358
testdata267.30 30348.34 274
segment_acmp68.30 99
testdata64.13 26285.87 6263.34 12261.80 31847.83 27676.42 17786.60 15548.83 26762.31 33654.46 22381.26 26566.74 362
testdata168.34 24157.24 162
test1276.51 8882.28 11660.94 14681.64 10873.60 21864.88 13785.19 6290.42 12283.38 149
plane_prior785.18 7066.21 98
plane_prior684.18 8865.31 10760.83 177
plane_prior585.49 3286.15 2971.09 7490.94 10784.82 100
plane_prior489.11 97
plane_prior365.67 10363.82 10278.23 137
plane_prior282.74 5565.45 80
plane_prior184.46 84
plane_prior65.18 10880.06 8361.88 12289.91 133
n20.00 432
nn0.00 432
door-mid55.02 349
lessismore_v072.75 15179.60 14456.83 17957.37 33283.80 7489.01 10147.45 27578.74 17064.39 12886.49 20082.69 173
LGP-MVS_train80.90 3687.00 4070.41 6486.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 71
test1182.71 91
door52.91 364
HQP5-MVS58.80 168
HQP-NCC82.37 11377.32 11159.08 14071.58 245
ACMP_Plane82.37 11377.32 11159.08 14071.58 245
BP-MVS67.38 105
HQP4-MVS71.59 24485.31 5483.74 136
HQP3-MVS84.12 6989.16 148
HQP2-MVS58.09 204
NP-MVS83.34 9863.07 12585.97 174
MDTV_nov1_ep13_2view18.41 41853.74 36831.57 39244.89 41029.90 38132.93 37771.48 321
ACMMP++_ref89.47 143
ACMMP++91.96 85
Test By Simon62.56 152
ITE_SJBPF80.35 4276.94 18673.60 4280.48 13466.87 6883.64 7686.18 16670.25 8379.90 15261.12 15988.95 15687.56 54
DeepMVS_CXcopyleft11.83 40415.51 42613.86 42211.25 4295.76 42020.85 42226.46 41917.06 4209.22 4239.69 42213.82 42212.42 419