This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SMA-MVScopyleft98.66 798.89 798.39 999.60 199.41 1299.00 2097.63 1297.78 1895.83 1898.33 1199.83 498.85 998.93 898.56 699.41 4999.40 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVScopyleft98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 599.57 9
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS97.81 2598.11 2897.46 2999.55 399.34 2099.32 994.51 4596.21 6293.07 3698.05 1497.95 4298.82 1198.22 3697.89 3899.48 2999.09 55
ACMMP_NAP98.20 1898.49 1397.85 2599.50 499.40 1399.26 1197.64 1197.47 3392.62 4697.59 2099.09 2298.71 1598.82 1297.86 3999.40 5299.19 44
DVP-MVS++98.92 199.18 198.61 499.47 599.61 299.39 397.82 198.80 196.86 898.90 299.92 198.67 1799.02 298.20 1999.43 4699.82 1
APD-MVScopyleft98.36 1598.32 2398.41 899.47 599.26 2699.12 1597.77 796.73 5096.12 1697.27 2898.88 2498.46 2598.47 1898.39 1499.52 2199.22 40
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG97.44 3297.18 4397.75 2799.47 599.52 898.55 3195.41 4097.69 2395.72 1994.29 5595.53 6398.10 3396.20 10797.38 5699.24 7799.62 4
HPM-MVS++copyleft98.34 1698.47 1598.18 1699.46 899.15 3499.10 1697.69 897.67 2494.93 2697.62 1999.70 798.60 2098.45 2097.46 5299.31 6799.26 34
SF-MVS98.39 1398.45 1798.33 1099.45 999.05 3798.27 3797.65 997.73 1997.02 798.18 1299.25 1598.11 3298.15 3897.62 4799.45 3799.19 44
SR-MVS99.45 997.61 1499.20 16
MSP-MVS98.73 698.93 598.50 699.44 1199.57 499.36 497.65 998.14 1296.51 1498.49 799.65 898.67 1798.60 1498.42 1199.40 5299.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVScopyleft98.86 498.97 398.75 299.43 1299.63 199.25 1297.81 298.62 297.69 197.59 2099.90 298.93 598.99 498.42 1199.37 5899.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ACMMPR98.40 1298.49 1398.28 1399.41 1399.40 1399.36 497.35 2198.30 695.02 2597.79 1798.39 3799.04 298.26 3398.10 2399.50 2899.22 40
X-MVS97.84 2498.19 2797.42 3099.40 1499.35 1799.06 1797.25 2597.38 3490.85 6296.06 3798.72 3098.53 2498.41 2498.15 2299.46 3399.28 29
MCST-MVS98.20 1898.36 1998.01 2299.40 1499.05 3799.00 2097.62 1397.59 2893.70 3397.42 2799.30 1198.77 1398.39 2697.48 5199.59 799.31 28
CNVR-MVS98.47 1198.46 1698.48 799.40 1499.05 3799.02 1997.54 1697.73 1996.65 1197.20 2999.13 2098.85 998.91 998.10 2399.41 4999.08 56
HFP-MVS98.48 1098.62 1198.32 1199.39 1799.33 2199.27 1097.42 1898.27 795.25 2398.34 1098.83 2699.08 198.26 3398.08 2599.48 2999.26 34
SED-MVS98.90 299.07 298.69 399.38 1899.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1799.02 298.26 1799.36 6099.61 6
NCCC98.10 2198.05 3098.17 1899.38 1899.05 3799.00 2097.53 1798.04 1495.12 2494.80 5299.18 1898.58 2298.49 1797.78 4399.39 5498.98 73
MP-MVScopyleft98.09 2298.30 2497.84 2699.34 2099.19 3299.23 1397.40 1997.09 4393.03 3997.58 2298.85 2598.57 2398.44 2297.69 4599.48 2999.23 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS98.32 1798.34 2298.29 1299.34 2099.30 2299.15 1497.35 2197.49 3195.58 2197.72 1898.62 3498.82 1198.29 2897.67 4699.51 2699.28 29
SteuartSystems-ACMMP98.38 1498.71 1097.99 2399.34 2099.46 1099.34 697.33 2497.31 3594.25 2998.06 1399.17 1998.13 3198.98 598.46 999.55 1899.54 11
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVScopyleft98.75 598.91 698.57 599.21 2399.54 699.42 297.78 697.49 3196.84 998.94 199.82 598.59 2198.90 1098.22 1899.56 1799.48 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mPP-MVS99.21 2398.29 38
AdaColmapbinary97.53 3096.93 4798.24 1499.21 2398.77 6598.47 3497.34 2396.68 5296.52 1395.11 4996.12 5898.72 1497.19 6996.24 8499.17 9398.39 114
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2499.16 2699.03 4399.05 1897.24 2698.22 1094.17 3195.82 4098.07 3998.69 1698.83 1198.80 299.52 2199.10 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++98.04 2397.93 3298.18 1699.10 2799.09 3698.34 3696.99 3297.54 2996.60 1294.82 5198.45 3598.89 697.46 6198.77 499.17 9399.37 21
3Dnovator93.79 897.08 3797.20 4196.95 3799.09 2899.03 4398.20 3993.33 5297.99 1593.82 3290.61 9396.80 4997.82 3797.90 4898.78 399.47 3299.26 34
QAPM96.78 4797.14 4496.36 4299.05 2999.14 3598.02 4393.26 5497.27 3790.84 6591.16 8597.31 4497.64 4397.70 5498.20 1999.33 6299.18 47
OpenMVScopyleft92.33 1195.50 5695.22 7495.82 5398.98 3098.97 4997.67 5093.04 6294.64 10489.18 9484.44 14194.79 6596.79 6197.23 6697.61 4899.24 7798.88 84
PLCcopyleft94.95 397.37 3396.77 5198.07 2098.97 3198.21 9197.94 4696.85 3597.66 2597.58 393.33 6096.84 4898.01 3697.13 7196.20 8699.09 10598.01 130
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TPM-MVS98.94 3298.47 8498.04 4292.62 4696.51 3398.76 2995.94 7898.92 12697.55 146
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
train_agg97.65 2998.06 2997.18 3398.94 3298.91 5698.98 2497.07 3196.71 5190.66 6897.43 2699.08 2398.20 2797.96 4697.14 6399.22 8399.19 44
CDPH-MVS96.84 4597.49 3696.09 4798.92 3498.85 6198.61 2895.09 4196.00 7087.29 10795.45 4697.42 4397.16 5197.83 5097.94 3499.44 4398.92 79
CPTT-MVS97.78 2697.54 3598.05 2198.91 3599.05 3799.00 2096.96 3397.14 4195.92 1795.50 4498.78 2898.99 497.20 6796.07 8898.54 16099.04 65
3Dnovator+93.91 797.23 3597.22 4097.24 3298.89 3698.85 6198.26 3893.25 5697.99 1595.56 2290.01 9998.03 4198.05 3497.91 4798.43 1099.44 4399.35 23
ACMMPcopyleft97.37 3397.48 3797.25 3198.88 3799.28 2498.47 3496.86 3497.04 4592.15 5097.57 2396.05 6097.67 4097.27 6595.99 9399.46 3399.14 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS97.78 2698.44 1897.02 3698.73 3899.25 2898.11 4095.54 3996.66 5392.79 4398.52 699.38 997.50 4597.84 4998.39 1499.45 3799.03 66
OMC-MVS97.00 3996.92 4897.09 3498.69 3998.66 7397.85 4795.02 4298.09 1394.47 2793.15 6196.90 4697.38 4797.16 7096.82 7399.13 10097.65 143
MAR-MVS95.50 5695.60 6595.39 6198.67 4098.18 9495.89 10189.81 10994.55 10691.97 5392.99 6390.21 9197.30 4896.79 8097.49 5098.72 14698.99 71
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + ACMM97.71 2898.60 1296.66 3998.64 4199.05 3798.85 2597.23 2798.45 489.40 8997.51 2499.27 1496.88 6098.53 1597.81 4298.96 12299.59 8
CNLPA96.90 4296.28 5797.64 2898.56 4298.63 7896.85 6896.60 3697.73 1997.08 689.78 10196.28 5697.80 3996.73 8396.63 7598.94 12498.14 126
EPNet96.27 5396.97 4695.46 5998.47 4398.28 8897.41 5393.67 4995.86 7592.86 4297.51 2493.79 7191.76 14297.03 7497.03 6598.61 15699.28 29
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_LR97.16 3698.01 3196.16 4698.47 4398.98 4896.94 6493.89 4897.64 2691.44 5598.89 396.41 5297.20 5098.02 4597.29 6199.04 11698.85 88
MVS_111021_HR97.04 3898.20 2695.69 5498.44 4599.29 2396.59 7993.20 5797.70 2289.94 8198.46 896.89 4796.71 6498.11 4297.95 3399.27 7399.01 69
MSDG94.82 7093.73 10496.09 4798.34 4697.43 11097.06 5996.05 3795.84 7690.56 6986.30 13089.10 10195.55 8696.13 11095.61 10499.00 11795.73 179
TAPA-MVS94.18 596.38 5096.49 5596.25 4398.26 4798.66 7398.00 4494.96 4397.17 3989.48 8692.91 6596.35 5397.53 4496.59 8895.90 9699.28 7197.82 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepC-MVS94.87 496.76 4896.50 5497.05 3598.21 4899.28 2498.67 2797.38 2097.31 3590.36 7589.19 10393.58 7298.19 2898.31 2798.50 799.51 2699.36 22
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS98.52 898.77 998.23 1598.15 4999.26 2698.79 2697.59 1598.52 396.25 1597.99 1599.75 699.01 398.27 3297.97 3199.59 799.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.98.49 998.78 898.15 1998.14 5099.17 3399.34 697.18 2998.44 595.72 1997.84 1699.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS96.86 4496.82 5096.91 3898.08 5198.20 9298.52 3397.20 2897.24 3891.42 5691.84 7798.45 3597.25 4997.07 7297.40 5598.95 12397.55 146
EPNet_dtu92.45 11895.02 8089.46 14698.02 5295.47 16994.79 12192.62 6694.97 9970.11 19394.76 5492.61 7884.07 20395.94 11395.56 10597.15 18995.82 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet96.84 4597.20 4196.42 4097.92 5399.24 3098.60 2993.51 5197.11 4293.07 3691.16 8597.24 4596.21 7398.24 3598.05 2699.22 8399.35 23
LS3D95.46 5995.14 7695.84 5297.91 5498.90 5898.58 3097.79 597.07 4483.65 12288.71 10688.64 10497.82 3797.49 5997.42 5399.26 7697.72 142
CS-MVS-test97.00 3997.85 3396.00 5097.77 5599.56 596.35 8791.95 7697.54 2992.20 4996.14 3696.00 6198.19 2898.46 1997.78 4399.57 1499.45 17
DELS-MVS96.06 5496.04 6196.07 4997.77 5599.25 2898.10 4193.26 5494.42 10892.79 4388.52 11093.48 7395.06 9598.51 1698.83 199.45 3799.28 29
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
COLMAP_ROBcopyleft90.49 1493.27 11092.71 11993.93 9197.75 5797.44 10996.07 9493.17 5895.40 8583.86 12083.76 14588.72 10393.87 11594.25 15394.11 14798.87 13195.28 185
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PCF-MVS93.95 695.65 5595.14 7696.25 4397.73 5898.73 6797.59 5197.13 3092.50 13889.09 9689.85 10096.65 5096.90 5994.97 14094.89 12599.08 10698.38 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchMatch-RL94.69 7694.41 8795.02 6797.63 5998.15 9594.50 12791.99 7495.32 8891.31 5895.47 4583.44 14096.02 7696.56 8995.23 11598.69 14996.67 171
CS-MVS96.87 4397.41 3996.24 4597.42 6099.48 997.30 5691.83 8197.17 3993.02 4094.80 5294.45 6798.16 3098.61 1397.85 4099.69 199.50 12
PVSNet_BlendedMVS95.41 6195.28 7295.57 5697.42 6099.02 4595.89 10193.10 5996.16 6393.12 3491.99 7385.27 12594.66 10198.09 4397.34 5799.24 7799.08 56
PVSNet_Blended95.41 6195.28 7295.57 5697.42 6099.02 4595.89 10193.10 5996.16 6393.12 3491.99 7385.27 12594.66 10198.09 4397.34 5799.24 7799.08 56
DeepPCF-MVS95.28 297.00 3998.35 2195.42 6097.30 6398.94 5194.82 12096.03 3898.24 992.11 5195.80 4198.64 3395.51 8798.95 798.66 596.78 19299.20 43
CHOSEN 280x42095.46 5997.01 4593.66 9697.28 6497.98 9996.40 8585.39 16096.10 6791.07 5996.53 3296.34 5595.61 8497.65 5596.95 6896.21 19397.49 148
MVS_030496.31 5196.91 4995.62 5597.21 6599.20 3198.55 3193.10 5997.04 4589.73 8390.30 9596.35 5395.71 8098.14 3997.93 3799.38 5599.40 19
CHOSEN 1792x268892.66 11592.49 12592.85 10697.13 6698.89 5995.90 9988.50 12695.32 8883.31 12371.99 19988.96 10294.10 11296.69 8496.49 7798.15 17399.10 53
HyFIR lowres test92.03 11991.55 14492.58 10797.13 6698.72 6894.65 12486.54 14593.58 12382.56 12667.75 21090.47 8995.67 8195.87 11595.54 10698.91 12898.93 78
OPM-MVS93.61 10392.43 12995.00 6896.94 6897.34 11197.78 4894.23 4689.64 17185.53 11488.70 10782.81 14396.28 7296.28 10395.00 12499.24 7797.22 156
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVS96.60 6999.35 1796.82 6990.85 6298.72 3099.46 33
X-MVStestdata96.60 6999.35 1796.82 6990.85 6298.72 3099.46 33
TSAR-MVS + COLMAP94.79 7294.51 8595.11 6596.50 7197.54 10597.99 4594.54 4497.81 1785.88 11396.73 3181.28 15096.99 5796.29 10295.21 11698.76 14596.73 170
PVSNet_Blended_VisFu94.77 7495.54 6793.87 9296.48 7298.97 4994.33 12991.84 7994.93 10090.37 7485.04 13694.99 6490.87 15798.12 4197.30 5999.30 6999.45 17
LGP-MVS_train94.12 9094.62 8393.53 9796.44 7397.54 10597.40 5491.84 7994.66 10381.09 13595.70 4383.36 14195.10 9496.36 10095.71 10299.32 6499.03 66
HQP-MVS94.43 8394.57 8494.27 8796.41 7497.23 11596.89 6593.98 4795.94 7283.68 12195.01 5084.46 13295.58 8595.47 12894.85 12999.07 10899.00 70
ACMM92.75 1094.41 8593.84 10295.09 6696.41 7496.80 12494.88 11993.54 5096.41 5790.16 7692.31 7183.11 14296.32 7196.22 10594.65 13199.22 8397.35 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RPSCF94.05 9194.00 9894.12 8996.20 7696.41 13896.61 7891.54 8695.83 7789.73 8396.94 3092.80 7695.35 9191.63 19190.44 19395.27 20593.94 196
test250694.32 8793.00 11695.87 5196.16 7799.39 1596.96 6292.80 6495.22 9494.47 2791.55 8270.45 19695.25 9298.29 2897.98 2999.59 798.10 128
ECVR-MVScopyleft94.14 8992.96 11795.52 5896.16 7799.39 1596.96 6292.80 6495.22 9492.38 4881.48 15580.31 15195.25 9298.29 2897.98 2999.59 798.05 129
test111193.94 9492.78 11895.29 6396.14 7999.42 1196.79 7292.85 6395.08 9891.39 5780.69 16079.86 15495.00 9698.28 3198.00 2899.58 1198.11 127
UA-Net93.96 9395.95 6291.64 11896.06 8098.59 8095.29 11090.00 10391.06 15882.87 12490.64 9298.06 4086.06 19098.14 3998.20 1999.58 1196.96 164
UGNet94.92 6796.63 5292.93 10596.03 8198.63 7894.53 12691.52 8796.23 6190.03 7892.87 6696.10 5986.28 18996.68 8596.60 7699.16 9699.32 27
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMP92.88 994.43 8394.38 8894.50 8396.01 8297.69 10395.85 10492.09 7395.74 7889.12 9595.14 4882.62 14594.77 9795.73 12294.67 13099.14 9999.06 61
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IB-MVS89.56 1591.71 12592.50 12490.79 13095.94 8398.44 8587.05 20191.38 9093.15 12792.98 4184.78 13785.14 12878.27 20892.47 17994.44 14299.10 10499.08 56
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MS-PatchMatch91.82 12392.51 12391.02 12495.83 8496.88 12095.05 11484.55 17493.85 11882.01 12882.51 15191.71 8090.52 16495.07 13893.03 16998.13 17494.52 187
CANet_DTU93.92 9696.57 5390.83 12895.63 8598.39 8696.99 6187.38 13696.26 6071.97 18296.31 3493.02 7494.53 10497.38 6396.83 7298.49 16397.79 135
ACMH90.77 1391.51 13091.63 14291.38 12195.62 8696.87 12291.76 17489.66 11191.58 15378.67 14586.73 11878.12 16093.77 11994.59 14494.54 13898.78 14398.98 73
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TSAR-MVS + GP.97.45 3198.36 1996.39 4195.56 8798.93 5397.74 4993.31 5397.61 2794.24 3098.44 999.19 1798.03 3597.60 5697.41 5499.44 4399.33 25
thres600view793.49 10692.37 13294.79 7895.42 8898.93 5396.58 8092.31 6893.04 12887.88 10386.62 12076.94 16997.09 5596.82 7795.63 10399.45 3798.63 98
thres40093.56 10492.43 12994.87 7595.40 8998.91 5696.70 7692.38 6792.93 13088.19 10286.69 11977.35 16697.13 5296.75 8295.85 9899.42 4898.56 101
thres20093.62 10292.54 12294.88 7395.36 9098.93 5396.75 7492.31 6892.84 13188.28 10086.99 11677.81 16597.13 5296.82 7795.92 9499.45 3798.49 107
thres100view90093.55 10592.47 12894.81 7795.33 9198.74 6696.78 7392.30 7192.63 13488.29 9887.21 11478.01 16296.78 6296.38 9795.92 9499.38 5598.40 113
tfpn200view993.64 10192.57 12194.89 7295.33 9198.94 5196.82 6992.31 6892.63 13488.29 9887.21 11478.01 16297.12 5496.82 7795.85 9899.45 3798.56 101
IS_MVSNet95.28 6396.43 5693.94 9095.30 9399.01 4795.90 9991.12 9294.13 11487.50 10691.23 8494.45 6794.17 11098.45 2098.50 799.65 399.23 38
CMPMVSbinary65.18 1784.76 19983.10 20586.69 18795.29 9495.05 18188.37 19685.51 15980.27 21471.31 18668.37 20873.85 18185.25 19487.72 20687.75 20394.38 21388.70 213
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
sasdasda95.25 6595.45 6995.00 6895.27 9598.72 6896.89 6589.82 10796.51 5490.84 6593.72 5886.01 11997.66 4195.78 11997.94 3499.54 1999.50 12
canonicalmvs95.25 6595.45 6995.00 6895.27 9598.72 6896.89 6589.82 10796.51 5490.84 6593.72 5886.01 11997.66 4195.78 11997.94 3499.54 1999.50 12
Vis-MVSNet (Re-imp)94.46 8296.24 5892.40 10995.23 9798.64 7695.56 10790.99 9394.42 10885.02 11690.88 9194.65 6688.01 17998.17 3798.37 1699.57 1498.53 104
CLD-MVS94.79 7294.36 8995.30 6295.21 9897.46 10897.23 5792.24 7296.43 5691.77 5492.69 6784.31 13396.06 7495.52 12695.03 12199.31 6799.06 61
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline194.59 7894.47 8694.72 7995.16 9997.97 10096.07 9491.94 7794.86 10189.98 7991.60 8185.87 12295.64 8297.07 7296.90 6999.52 2197.06 163
TDRefinement89.07 16288.15 17190.14 13995.16 9996.88 12095.55 10890.20 10189.68 17076.42 15876.67 17374.30 17984.85 19793.11 16991.91 18798.64 15594.47 188
ACMH+90.88 1291.41 13191.13 14791.74 11795.11 10196.95 11993.13 14689.48 11592.42 14079.93 14085.13 13578.02 16193.82 11893.49 16493.88 15398.94 12497.99 131
DCV-MVSNet94.76 7595.12 7894.35 8695.10 10295.81 15896.46 8489.49 11496.33 5990.16 7692.55 6990.26 9095.83 7995.52 12696.03 9199.06 11199.33 25
Anonymous20240521192.18 13495.04 10398.20 9296.14 9191.79 8393.93 11574.60 18288.38 10796.48 6995.17 13695.82 10199.00 11799.15 50
casdiffmvs_mvgpermissive94.55 7994.26 9194.88 7394.96 10498.51 8297.11 5891.82 8294.28 11189.20 9386.60 12186.85 11296.56 6897.47 6097.25 6299.64 498.83 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FC-MVSNet-train93.85 9793.91 9993.78 9494.94 10596.79 12794.29 13091.13 9193.84 11988.26 10190.40 9485.23 12794.65 10396.54 9195.31 11299.38 5599.28 29
EPP-MVSNet95.27 6496.18 6094.20 8894.88 10698.64 7694.97 11690.70 9695.34 8789.67 8591.66 8093.84 7095.42 9097.32 6497.00 6699.58 1199.47 16
FA-MVS(training)93.94 9495.16 7592.53 10894.87 10798.57 8195.42 10979.49 19495.37 8690.98 6086.54 12394.26 6995.44 8997.80 5395.19 11798.97 12098.38 115
EIA-MVS95.50 5696.19 5994.69 8094.83 10898.88 6095.93 9891.50 8894.47 10789.43 8793.14 6292.72 7797.05 5697.82 5297.13 6499.43 4699.15 50
ETV-MVS96.31 5197.47 3894.96 7194.79 10998.78 6496.08 9391.41 8996.16 6390.50 7095.76 4296.20 5797.39 4698.42 2397.82 4199.57 1499.18 47
MVS_Test94.82 7095.66 6493.84 9394.79 10998.35 8796.49 8389.10 11996.12 6687.09 10992.58 6890.61 8896.48 6996.51 9596.89 7099.11 10398.54 103
Anonymous2023121193.49 10692.33 13394.84 7694.78 11198.00 9896.11 9291.85 7894.86 10190.91 6174.69 18189.18 9996.73 6394.82 14195.51 10798.67 15099.24 37
baseline94.83 6995.82 6393.68 9594.75 11297.80 10196.51 8288.53 12597.02 4789.34 9192.93 6492.18 7994.69 10095.78 11996.08 8798.27 17198.97 77
EC-MVSNet96.49 4997.63 3495.16 6494.75 11298.69 7197.39 5588.97 12096.34 5892.02 5296.04 3896.46 5198.21 2698.41 2497.96 3299.61 699.55 10
MVSTER94.89 6895.07 7994.68 8194.71 11496.68 13097.00 6090.57 9895.18 9693.05 3895.21 4786.41 11693.72 12097.59 5795.88 9799.00 11798.50 106
EPMVS90.88 13692.12 13589.44 14794.71 11497.24 11493.55 13776.81 20195.89 7381.77 13091.49 8386.47 11593.87 11590.21 19890.07 19595.92 19693.49 202
casdiffmvspermissive94.38 8694.15 9794.64 8294.70 11698.51 8296.03 9691.66 8495.70 7989.36 9086.48 12585.03 13096.60 6797.40 6297.30 5999.52 2198.67 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive94.31 8894.21 9294.42 8594.64 11798.28 8896.36 8691.56 8596.77 4988.89 9788.97 10484.23 13496.01 7796.05 11196.41 7999.05 11598.79 93
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DI_MVS_plusplus_trai94.01 9293.63 10694.44 8494.54 11898.26 9097.51 5290.63 9795.88 7489.34 9180.54 16289.36 9695.48 8896.33 10196.27 8399.17 9398.78 94
thisisatest053094.54 8095.47 6893.46 9994.51 11998.65 7594.66 12390.72 9495.69 8186.90 11093.80 5689.44 9594.74 9896.98 7694.86 12699.19 9198.85 88
tttt051794.52 8195.44 7193.44 10094.51 11998.68 7294.61 12590.72 9495.61 8386.84 11193.78 5789.26 9894.74 9897.02 7594.86 12699.20 9098.87 86
ADS-MVSNet89.80 15191.33 14688.00 16894.43 12196.71 12992.29 16274.95 21196.07 6877.39 15088.67 10886.09 11893.26 12788.44 20489.57 19895.68 19993.81 199
tpmrst88.86 16689.62 15887.97 16994.33 12295.98 14892.62 15476.36 20494.62 10576.94 15485.98 13182.80 14492.80 13286.90 21087.15 20694.77 21093.93 197
PMMVS94.61 7795.56 6693.50 9894.30 12396.74 12894.91 11889.56 11395.58 8487.72 10496.15 3592.86 7596.06 7495.47 12895.02 12298.43 16897.09 159
CostFormer90.69 13790.48 15590.93 12694.18 12496.08 14694.03 13278.20 19793.47 12489.96 8090.97 9080.30 15293.72 12087.66 20888.75 20095.51 20296.12 175
USDC90.69 13790.52 15490.88 12794.17 12596.43 13795.82 10586.76 14293.92 11676.27 16086.49 12474.30 17993.67 12295.04 13993.36 16298.61 15694.13 192
Vis-MVSNetpermissive92.77 11395.00 8190.16 13794.10 12698.79 6394.76 12288.26 12792.37 14379.95 13988.19 11291.58 8184.38 20097.59 5797.58 4999.52 2198.91 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+92.93 11293.86 10191.86 11494.07 12798.09 9795.59 10685.98 15294.27 11279.54 14391.12 8881.81 14796.71 6496.67 8696.06 8999.27 7398.98 73
GeoE92.52 11792.64 12092.39 11093.96 12897.76 10296.01 9785.60 15793.23 12683.94 11981.56 15484.80 13195.63 8396.22 10595.83 10099.19 9199.07 60
IterMVS-LS92.56 11693.18 11391.84 11593.90 12994.97 18394.99 11586.20 14994.18 11382.68 12585.81 13287.36 11194.43 10595.31 13296.02 9298.87 13198.60 100
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dps90.11 14989.37 16290.98 12593.89 13096.21 14393.49 13977.61 19991.95 14992.74 4588.85 10578.77 15992.37 13587.71 20787.71 20495.80 19894.38 190
tpm cat188.90 16487.78 18090.22 13693.88 13195.39 17293.79 13578.11 19892.55 13789.43 8781.31 15679.84 15591.40 14584.95 21186.34 20994.68 21294.09 193
PatchmatchNetpermissive90.56 13992.49 12588.31 15993.83 13296.86 12392.42 15876.50 20395.96 7178.31 14691.96 7589.66 9493.48 12490.04 20089.20 19995.32 20393.73 200
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap89.42 15488.58 16690.40 13493.80 13395.45 17093.96 13486.54 14592.24 14676.49 15780.83 15870.44 19793.37 12594.45 14893.30 16598.26 17293.37 203
SCA90.92 13593.04 11588.45 15693.72 13497.33 11292.77 15076.08 20696.02 6978.26 14791.96 7590.86 8593.99 11490.98 19590.04 19695.88 19794.06 195
RPMNet90.19 14692.03 13888.05 16593.46 13595.95 15193.41 14074.59 21292.40 14175.91 16284.22 14286.41 11692.49 13394.42 14993.85 15598.44 16696.96 164
gg-mvs-nofinetune86.17 19388.57 16783.36 20093.44 13698.15 9596.58 8072.05 21574.12 21949.23 22364.81 21490.85 8689.90 17297.83 5096.84 7198.97 12097.41 151
MDTV_nov1_ep1391.57 12893.18 11389.70 14393.39 13796.97 11893.53 13880.91 19195.70 7981.86 12992.40 7089.93 9293.25 12891.97 18890.80 19195.25 20694.46 189
CR-MVSNet90.16 14791.96 13988.06 16493.32 13895.95 15193.36 14275.99 20792.40 14175.19 16883.18 14785.37 12492.05 13795.21 13494.56 13698.47 16597.08 161
test-LLR91.62 12793.56 10989.35 14993.31 13996.57 13392.02 17087.06 14092.34 14475.05 17190.20 9688.64 10490.93 15396.19 10894.07 14897.75 18396.90 167
test0.0.03 191.97 12093.91 9989.72 14293.31 13996.40 13991.34 17987.06 14093.86 11781.67 13191.15 8789.16 10086.02 19195.08 13795.09 11898.91 12896.64 173
CVMVSNet89.77 15291.66 14187.56 17893.21 14195.45 17091.94 17389.22 11789.62 17269.34 19983.99 14485.90 12184.81 19894.30 15295.28 11396.85 19197.09 159
PatchT89.13 16191.71 14086.11 19292.92 14295.59 16583.64 20975.09 21091.87 15075.19 16882.63 15085.06 12992.05 13795.21 13494.56 13697.76 18297.08 161
Fast-Effi-MVS+91.87 12192.08 13691.62 12092.91 14397.21 11694.93 11784.60 17293.61 12281.49 13383.50 14678.95 15796.62 6696.55 9096.22 8599.16 9698.51 105
IterMVS-SCA-FT90.24 14492.48 12787.63 17592.85 14494.30 19993.79 13581.47 19092.66 13369.95 19484.66 13988.38 10789.99 17095.39 13194.34 14397.74 18597.63 144
baseline293.01 11194.17 9591.64 11892.83 14597.49 10793.40 14187.53 13493.67 12186.07 11291.83 7886.58 11391.36 14696.38 9795.06 12098.67 15098.20 124
IterMVS90.20 14592.43 12987.61 17692.82 14694.31 19894.11 13181.54 18892.97 12969.90 19584.71 13888.16 11089.96 17195.25 13394.17 14697.31 18797.46 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet92.77 11393.60 10791.80 11692.63 14796.80 12495.24 11189.14 11890.30 16884.58 11786.76 11790.65 8790.42 16595.89 11496.49 7798.79 14298.32 120
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm87.95 17489.44 16186.21 19192.53 14894.62 19391.40 17776.36 20491.46 15469.80 19787.43 11375.14 17491.55 14489.85 20290.60 19295.61 20096.96 164
Effi-MVS+-dtu91.78 12493.59 10889.68 14592.44 14997.11 11794.40 12884.94 16892.43 13975.48 16491.09 8983.75 13893.55 12396.61 8795.47 10897.24 18898.67 96
testgi89.42 15491.50 14587.00 18592.40 15095.59 16589.15 19585.27 16492.78 13272.42 18091.75 7976.00 17284.09 20294.38 15093.82 15798.65 15496.15 174
Fast-Effi-MVS+-dtu91.19 13293.64 10588.33 15892.19 15196.46 13693.99 13381.52 18992.59 13671.82 18392.17 7285.54 12391.68 14395.73 12294.64 13298.80 14098.34 117
FC-MVSNet-test91.63 12693.82 10389.08 15092.02 15296.40 13993.26 14487.26 13793.72 12077.26 15188.61 10989.86 9385.50 19395.72 12495.02 12299.16 9697.44 150
GA-MVS89.28 15790.75 15387.57 17791.77 15396.48 13592.29 16287.58 13390.61 16565.77 20484.48 14076.84 17089.46 17395.84 11693.68 15898.52 16197.34 154
dmvs_re91.84 12291.60 14392.12 11391.60 15497.26 11395.14 11391.96 7591.02 15980.98 13686.56 12277.96 16493.84 11794.71 14295.08 11999.22 8398.62 99
UniMVSNet_ETH3D88.47 16886.00 19891.35 12291.55 15596.29 14192.53 15588.81 12185.58 20182.33 12767.63 21166.87 21194.04 11391.49 19295.24 11498.84 13498.92 79
TAMVS90.54 14190.87 15290.16 13791.48 15696.61 13293.26 14486.08 15087.71 18781.66 13283.11 14984.04 13590.42 16594.54 14594.60 13398.04 17895.48 183
tfpnnormal88.50 16787.01 18990.23 13591.36 15795.78 16092.74 15190.09 10283.65 20676.33 15971.46 20269.58 20291.84 14095.54 12594.02 15099.06 11199.03 66
GBi-Net93.81 9894.18 9393.38 10191.34 15895.86 15496.22 8888.68 12295.23 9190.40 7186.39 12691.16 8294.40 10796.52 9296.30 8099.21 8797.79 135
test193.81 9894.18 9393.38 10191.34 15895.86 15496.22 8888.68 12295.23 9190.40 7186.39 12691.16 8294.40 10796.52 9296.30 8099.21 8797.79 135
FMVSNet293.30 10993.36 11293.22 10491.34 15895.86 15496.22 8888.24 12895.15 9789.92 8281.64 15389.36 9694.40 10796.77 8196.98 6799.21 8797.79 135
FMVSNet393.79 10094.17 9593.35 10391.21 16195.99 14796.62 7788.68 12295.23 9190.40 7186.39 12691.16 8294.11 11195.96 11296.67 7499.07 10897.79 135
TransMVSNet (Re)87.73 18086.79 19188.83 15290.76 16294.40 19691.33 18089.62 11284.73 20375.41 16672.73 19571.41 19286.80 18594.53 14693.93 15299.06 11195.83 177
LTVRE_ROB87.32 1687.55 18188.25 17086.73 18690.66 16395.80 15993.05 14784.77 16983.35 20760.32 21683.12 14867.39 20993.32 12694.36 15194.86 12698.28 17098.87 86
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EG-PatchMatch MVS86.68 18987.24 18586.02 19390.58 16496.26 14291.08 18381.59 18784.96 20269.80 19771.35 20375.08 17684.23 20194.24 15493.35 16398.82 13595.46 184
TESTMET0.1,191.07 13393.56 10988.17 16090.43 16596.57 13392.02 17082.83 18392.34 14475.05 17190.20 9688.64 10490.93 15396.19 10894.07 14897.75 18396.90 167
pm-mvs189.19 16089.02 16389.38 14890.40 16695.74 16192.05 16888.10 13086.13 19777.70 14873.72 19079.44 15688.97 17695.81 11894.51 14099.08 10697.78 140
NR-MVSNet89.34 15688.66 16590.13 14090.40 16695.61 16393.04 14889.91 10491.22 15678.96 14477.72 17068.90 20589.16 17594.24 15493.95 15199.32 6498.99 71
FMVSNet191.54 12990.93 15092.26 11190.35 16895.27 17695.22 11287.16 13991.37 15587.62 10575.45 17683.84 13794.43 10596.52 9296.30 8098.82 13597.74 141
test-mter90.95 13493.54 11187.93 17090.28 16996.80 12491.44 17682.68 18492.15 14874.37 17589.57 10288.23 10990.88 15696.37 9994.31 14497.93 18097.37 152
pmmvs490.55 14089.91 15791.30 12390.26 17094.95 18492.73 15287.94 13193.44 12585.35 11582.28 15276.09 17193.02 13193.56 16292.26 18598.51 16296.77 169
MVS-HIRNet85.36 19786.89 19083.57 19990.13 17194.51 19483.57 21072.61 21488.27 18371.22 18768.97 20681.81 14788.91 17793.08 17091.94 18694.97 20989.64 212
thisisatest051590.12 14892.06 13787.85 17190.03 17296.17 14487.83 19887.45 13591.71 15277.15 15285.40 13484.01 13685.74 19295.41 13093.30 16598.88 13098.43 109
SixPastTwentyTwo88.37 16989.47 16087.08 18390.01 17395.93 15387.41 19985.32 16190.26 16970.26 19186.34 12971.95 18990.93 15392.89 17491.72 18898.55 15997.22 156
UniMVSNet (Re)90.03 15089.61 15990.51 13389.97 17496.12 14592.32 16089.26 11690.99 16080.95 13778.25 16975.08 17691.14 14993.78 15793.87 15499.41 4999.21 42
pmnet_mix0286.12 19487.12 18884.96 19689.82 17594.12 20084.88 20786.63 14491.78 15165.60 20580.76 15976.98 16886.61 18787.29 20984.80 21296.21 19394.09 193
our_test_389.78 17693.84 20285.59 204
UniMVSNet_NR-MVSNet90.35 14389.96 15690.80 12989.66 17795.83 15792.48 15690.53 9990.96 16179.57 14179.33 16677.14 16793.21 12992.91 17394.50 14199.37 5899.05 63
v888.21 17287.94 17788.51 15589.62 17895.01 18292.31 16184.99 16688.94 17474.70 17375.03 17873.51 18390.67 16192.11 18492.74 17798.80 14098.24 122
WR-MVS_H87.93 17587.85 17888.03 16789.62 17895.58 16790.47 18885.55 15887.20 19276.83 15574.42 18572.67 18786.37 18893.22 16893.04 16899.33 6298.83 90
pmmvs587.83 17988.09 17287.51 18089.59 18095.48 16889.75 19384.73 17086.07 19971.44 18580.57 16170.09 20090.74 16094.47 14792.87 17398.82 13597.10 158
gm-plane-assit83.26 20385.29 20080.89 20389.52 18189.89 21470.26 22078.24 19677.11 21758.01 22074.16 18766.90 21090.63 16397.20 6796.05 9098.66 15395.68 180
v1088.00 17387.96 17588.05 16589.44 18294.68 19092.36 15983.35 17989.37 17372.96 17973.98 18872.79 18691.35 14793.59 15992.88 17298.81 13898.42 111
V4288.31 17087.95 17688.73 15389.44 18295.34 17392.23 16487.21 13888.83 17674.49 17474.89 18073.43 18490.41 16792.08 18692.77 17698.60 15898.33 118
v14887.51 18286.79 19188.36 15789.39 18495.21 17889.84 19288.20 12987.61 18977.56 14973.38 19370.32 19986.80 18590.70 19692.31 18398.37 16997.98 133
CP-MVSNet87.89 17887.27 18488.62 15489.30 18595.06 18090.60 18785.78 15487.43 19175.98 16174.60 18268.14 20890.76 15893.07 17193.60 15999.30 6998.98 73
v114487.92 17787.79 17988.07 16289.27 18695.15 17992.17 16585.62 15688.52 18071.52 18473.80 18972.40 18891.06 15193.54 16392.80 17498.81 13898.33 118
DU-MVS89.67 15388.84 16490.63 13289.26 18795.61 16392.48 15689.91 10491.22 15679.57 14177.72 17071.18 19393.21 12992.53 17794.57 13599.35 6199.05 63
WR-MVS87.93 17588.09 17287.75 17289.26 18795.28 17490.81 18586.69 14388.90 17575.29 16774.31 18673.72 18285.19 19692.26 18093.32 16499.27 7398.81 92
Baseline_NR-MVSNet89.27 15888.01 17490.73 13189.26 18793.71 20392.71 15389.78 11090.73 16281.28 13473.53 19172.85 18592.30 13692.53 17793.84 15699.07 10898.88 84
N_pmnet84.80 19885.10 20284.45 19789.25 19092.86 20684.04 20886.21 14788.78 17766.73 20372.41 19874.87 17885.21 19588.32 20586.45 20795.30 20492.04 206
v2v48288.25 17187.71 18188.88 15189.23 19195.28 17492.10 16687.89 13288.69 17973.31 17875.32 17771.64 19091.89 13992.10 18592.92 17198.86 13397.99 131
PS-CasMVS87.33 18586.68 19488.10 16189.22 19294.93 18590.35 19085.70 15586.44 19674.01 17673.43 19266.59 21490.04 16992.92 17293.52 16099.28 7198.91 82
TranMVSNet+NR-MVSNet89.23 15988.48 16890.11 14189.07 19395.25 17792.91 14990.43 10090.31 16777.10 15376.62 17471.57 19191.83 14192.12 18394.59 13499.32 6498.92 79
v119287.51 18287.31 18387.74 17389.04 19494.87 18892.07 16785.03 16588.49 18170.32 19072.65 19670.35 19891.21 14893.59 15992.80 17498.78 14398.42 111
v14419287.40 18487.20 18687.64 17488.89 19594.88 18791.65 17584.70 17187.80 18671.17 18873.20 19470.91 19490.75 15992.69 17592.49 18098.71 14798.43 109
PEN-MVS87.22 18786.50 19688.07 16288.88 19694.44 19590.99 18486.21 14786.53 19573.66 17774.97 17966.56 21589.42 17491.20 19493.48 16199.24 7798.31 121
v192192087.31 18687.13 18787.52 17988.87 19794.72 18991.96 17284.59 17388.28 18269.86 19672.50 19770.03 20191.10 15093.33 16692.61 17998.71 14798.44 108
pmmvs685.98 19584.89 20387.25 18288.83 19894.35 19789.36 19485.30 16378.51 21675.44 16562.71 21675.41 17387.65 18193.58 16192.40 18296.89 19097.29 155
v124086.89 18886.75 19387.06 18488.75 19994.65 19291.30 18184.05 17587.49 19068.94 20071.96 20068.86 20690.65 16293.33 16692.72 17898.67 15098.24 122
anonymousdsp88.90 16491.00 14986.44 18988.74 20095.97 14990.40 18982.86 18288.77 17867.33 20281.18 15781.44 14990.22 16896.23 10494.27 14599.12 10299.16 49
EU-MVSNet85.62 19687.65 18283.24 20188.54 20192.77 20787.12 20085.32 16186.71 19364.54 20778.52 16875.11 17578.35 20792.25 18192.28 18495.58 20195.93 176
DTE-MVSNet86.67 19086.09 19787.35 18188.45 20294.08 20190.65 18686.05 15186.13 19772.19 18174.58 18466.77 21387.61 18290.31 19793.12 16799.13 10097.62 145
FMVSNet590.36 14290.93 15089.70 14387.99 20392.25 20892.03 16983.51 17892.20 14784.13 11885.59 13386.48 11492.43 13494.61 14394.52 13998.13 17490.85 209
v7n86.43 19186.52 19586.33 19087.91 20494.93 18590.15 19183.05 18086.57 19470.21 19271.48 20166.78 21287.72 18094.19 15692.96 17098.92 12698.76 95
test20.0382.92 20485.52 19979.90 20687.75 20591.84 20982.80 21182.99 18182.65 21160.32 21678.90 16770.50 19567.10 21592.05 18790.89 19098.44 16691.80 207
MDTV_nov1_ep13_2view86.30 19288.27 16984.01 19887.71 20694.67 19188.08 19776.78 20290.59 16668.66 20180.46 16380.12 15387.58 18389.95 20188.20 20295.25 20693.90 198
Anonymous2023120683.84 20285.19 20182.26 20287.38 20792.87 20585.49 20583.65 17786.07 19963.44 21168.42 20769.01 20475.45 21193.34 16592.44 18198.12 17694.20 191
FPMVS75.84 21074.59 21477.29 21086.92 20883.89 21985.01 20680.05 19382.91 20960.61 21565.25 21360.41 21963.86 21675.60 21773.60 21987.29 22080.47 217
MIMVSNet88.99 16391.07 14886.57 18886.78 20995.62 16291.20 18275.40 20990.65 16476.57 15684.05 14382.44 14691.01 15295.84 11695.38 11098.48 16493.50 201
tmp_tt66.88 21386.07 21073.86 22268.22 22133.38 22396.88 4880.67 13888.23 11178.82 15849.78 22082.68 21477.47 21783.19 222
WB-MVS69.22 21276.91 21360.24 21685.80 21179.37 22056.86 22584.96 16781.50 21218.16 22876.85 17261.07 21734.23 22382.46 21581.81 21481.43 22375.31 221
PM-MVS84.72 20084.47 20485.03 19584.67 21291.57 21086.27 20382.31 18687.65 18870.62 18976.54 17556.41 22388.75 17892.59 17689.85 19797.54 18696.66 172
pmmvs-eth3d84.33 20182.94 20685.96 19484.16 21390.94 21186.55 20283.79 17684.25 20475.85 16370.64 20456.43 22287.44 18492.20 18290.41 19497.97 17995.68 180
new-patchmatchnet78.49 20978.19 21278.84 20884.13 21490.06 21377.11 21880.39 19279.57 21559.64 21966.01 21255.65 22475.62 21084.55 21280.70 21596.14 19590.77 210
new_pmnet81.53 20582.68 20780.20 20483.47 21589.47 21582.21 21378.36 19587.86 18560.14 21867.90 20969.43 20382.03 20589.22 20387.47 20594.99 20887.39 214
ET-MVSNet_ETH3D93.34 10894.33 9092.18 11283.26 21697.66 10496.72 7589.89 10695.62 8287.17 10896.00 3983.69 13996.99 5793.78 15795.34 11199.06 11198.18 125
pmmvs379.16 20880.12 21078.05 20979.36 21786.59 21778.13 21773.87 21376.42 21857.51 22170.59 20557.02 22184.66 19990.10 19988.32 20194.75 21191.77 208
PMVScopyleft63.12 1867.27 21466.39 21768.30 21277.98 21860.24 22559.53 22476.82 20066.65 22060.74 21454.39 21859.82 22051.24 21973.92 22070.52 22083.48 22179.17 219
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MDA-MVSNet-bldmvs80.11 20680.24 20979.94 20577.01 21993.21 20478.86 21685.94 15382.71 21060.86 21379.71 16551.77 22583.71 20475.60 21786.37 20893.28 21492.35 204
ambc73.83 21576.23 22085.13 21882.27 21284.16 20565.58 20652.82 21923.31 23073.55 21291.41 19385.26 21192.97 21594.70 186
Gipumacopyleft68.35 21366.71 21670.27 21174.16 22168.78 22363.93 22371.77 21683.34 20854.57 22234.37 22131.88 22768.69 21483.30 21385.53 21088.48 21879.78 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MIMVSNet180.03 20780.93 20878.97 20772.46 22290.73 21280.81 21482.44 18580.39 21363.64 20957.57 21764.93 21676.37 20991.66 19091.55 18998.07 17789.70 211
PMMVS264.36 21665.94 21862.52 21567.37 22377.44 22164.39 22269.32 22061.47 22134.59 22446.09 22041.03 22648.02 22274.56 21978.23 21691.43 21682.76 216
EMVS49.98 21846.76 22153.74 21864.96 22451.29 22737.81 22769.35 21951.83 22222.69 22729.57 22325.06 22857.28 21744.81 22356.11 22270.32 22568.64 223
E-PMN50.67 21747.85 22053.96 21764.13 22550.98 22838.06 22669.51 21851.40 22324.60 22629.46 22424.39 22956.07 21848.17 22259.70 22171.40 22470.84 222
test_method72.96 21178.68 21166.28 21450.17 22664.90 22475.45 21950.90 22287.89 18462.54 21262.98 21568.34 20770.45 21391.90 18982.41 21388.19 21992.35 204
MVEpermissive50.86 1949.54 21951.43 21947.33 21944.14 22759.20 22636.45 22860.59 22141.47 22431.14 22529.58 22217.06 23148.52 22162.22 22174.63 21863.12 22675.87 220
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs12.09 22016.94 2226.42 2213.15 2286.08 2299.51 2303.84 22421.46 2255.31 22927.49 2256.76 23210.89 22417.06 22415.01 2235.84 22724.75 224
GG-mvs-BLEND66.17 21594.91 8232.63 2201.32 22996.64 13191.40 1770.85 22694.39 1102.20 23090.15 9895.70 622.27 22696.39 9695.44 10997.78 18195.68 180
test1239.58 22113.53 2234.97 2221.31 2305.47 2308.32 2312.95 22518.14 2262.03 23120.82 2262.34 23310.60 22510.00 22514.16 2244.60 22823.77 225
uanet_test0.00 2220.00 2240.00 2230.00 2310.00 2310.00 2320.00 2270.00 2270.00 2320.00 2270.00 2340.00 2270.00 2260.00 2250.00 2290.00 226
sosnet-low-res0.00 2220.00 2240.00 2230.00 2310.00 2310.00 2320.00 2270.00 2270.00 2320.00 2270.00 2340.00 2270.00 2260.00 2250.00 2290.00 226
sosnet0.00 2220.00 2240.00 2230.00 2310.00 2310.00 2320.00 2270.00 2270.00 2320.00 2270.00 2340.00 2270.00 2260.00 2250.00 2290.00 226
RE-MVS-def63.50 210
9.1499.28 12
MTAPA96.83 1099.12 21
MTMP97.18 598.83 26
Patchmatch-RL test34.61 229
NP-MVS95.32 88
Patchmtry95.96 15093.36 14275.99 20775.19 168
DeepMVS_CXcopyleft86.86 21679.50 21570.43 21790.73 16263.66 20880.36 16460.83 21879.68 20676.23 21689.46 21786.53 215