| SMA-MVS |  | | 98.66 7 | 98.89 7 | 98.39 9 | 99.60 1 | 99.41 12 | 99.00 20 | 97.63 12 | 97.78 18 | 95.83 18 | 98.33 11 | 99.83 4 | 98.85 9 | 98.93 8 | 98.56 6 | 99.41 49 | 99.40 19 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| APDe-MVS |  | | 98.87 3 | 98.96 4 | 98.77 1 | 99.58 2 | 99.53 7 | 99.44 1 | 97.81 2 | 98.22 10 | 97.33 4 | 98.70 5 | 99.33 10 | 98.86 8 | 98.96 6 | 98.40 13 | 99.63 5 | 99.57 9 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| PGM-MVS | | | 97.81 25 | 98.11 28 | 97.46 29 | 99.55 3 | 99.34 20 | 99.32 9 | 94.51 45 | 96.21 62 | 93.07 36 | 98.05 14 | 97.95 42 | 98.82 11 | 98.22 36 | 97.89 38 | 99.48 29 | 99.09 55 |
|
| ACMMP_NAP | | | 98.20 18 | 98.49 13 | 97.85 25 | 99.50 4 | 99.40 13 | 99.26 11 | 97.64 11 | 97.47 33 | 92.62 46 | 97.59 20 | 99.09 22 | 98.71 15 | 98.82 12 | 97.86 39 | 99.40 52 | 99.19 44 |
|
| DVP-MVS++ | | | 98.92 1 | 99.18 1 | 98.61 4 | 99.47 5 | 99.61 2 | 99.39 3 | 97.82 1 | 98.80 1 | 96.86 8 | 98.90 2 | 99.92 1 | 98.67 17 | 99.02 2 | 98.20 19 | 99.43 46 | 99.82 1 |
|
| APD-MVS |  | | 98.36 15 | 98.32 23 | 98.41 8 | 99.47 5 | 99.26 26 | 99.12 15 | 97.77 7 | 96.73 50 | 96.12 16 | 97.27 28 | 98.88 24 | 98.46 25 | 98.47 18 | 98.39 14 | 99.52 21 | 99.22 40 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| CSCG | | | 97.44 32 | 97.18 43 | 97.75 27 | 99.47 5 | 99.52 8 | 98.55 31 | 95.41 40 | 97.69 23 | 95.72 19 | 94.29 55 | 95.53 63 | 98.10 33 | 96.20 107 | 97.38 56 | 99.24 77 | 99.62 4 |
|
| HPM-MVS++ |  | | 98.34 16 | 98.47 15 | 98.18 16 | 99.46 8 | 99.15 34 | 99.10 16 | 97.69 8 | 97.67 24 | 94.93 26 | 97.62 19 | 99.70 7 | 98.60 20 | 98.45 20 | 97.46 52 | 99.31 67 | 99.26 34 |
|
| SF-MVS | | | 98.39 13 | 98.45 17 | 98.33 10 | 99.45 9 | 99.05 37 | 98.27 37 | 97.65 9 | 97.73 19 | 97.02 7 | 98.18 12 | 99.25 15 | 98.11 32 | 98.15 38 | 97.62 47 | 99.45 37 | 99.19 44 |
|
| SR-MVS | | | | | | 99.45 9 | | | 97.61 14 | | | | 99.20 16 | | | | | |
|
| MSP-MVS | | | 98.73 6 | 98.93 5 | 98.50 6 | 99.44 11 | 99.57 4 | 99.36 4 | 97.65 9 | 98.14 12 | 96.51 14 | 98.49 7 | 99.65 8 | 98.67 17 | 98.60 14 | 98.42 11 | 99.40 52 | 99.63 2 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DVP-MVS |  | | 98.86 4 | 98.97 3 | 98.75 2 | 99.43 12 | 99.63 1 | 99.25 12 | 97.81 2 | 98.62 2 | 97.69 1 | 97.59 20 | 99.90 2 | 98.93 5 | 98.99 4 | 98.42 11 | 99.37 58 | 99.62 4 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| ACMMPR | | | 98.40 12 | 98.49 13 | 98.28 13 | 99.41 13 | 99.40 13 | 99.36 4 | 97.35 21 | 98.30 6 | 95.02 25 | 97.79 17 | 98.39 37 | 99.04 2 | 98.26 33 | 98.10 23 | 99.50 28 | 99.22 40 |
|
| X-MVS | | | 97.84 24 | 98.19 27 | 97.42 30 | 99.40 14 | 99.35 17 | 99.06 17 | 97.25 25 | 97.38 34 | 90.85 62 | 96.06 37 | 98.72 30 | 98.53 24 | 98.41 24 | 98.15 22 | 99.46 33 | 99.28 29 |
|
| MCST-MVS | | | 98.20 18 | 98.36 19 | 98.01 22 | 99.40 14 | 99.05 37 | 99.00 20 | 97.62 13 | 97.59 28 | 93.70 33 | 97.42 27 | 99.30 11 | 98.77 13 | 98.39 26 | 97.48 51 | 99.59 7 | 99.31 28 |
|
| CNVR-MVS | | | 98.47 11 | 98.46 16 | 98.48 7 | 99.40 14 | 99.05 37 | 99.02 19 | 97.54 16 | 97.73 19 | 96.65 11 | 97.20 29 | 99.13 20 | 98.85 9 | 98.91 9 | 98.10 23 | 99.41 49 | 99.08 56 |
|
| HFP-MVS | | | 98.48 10 | 98.62 11 | 98.32 11 | 99.39 17 | 99.33 21 | 99.27 10 | 97.42 18 | 98.27 7 | 95.25 23 | 98.34 10 | 98.83 26 | 99.08 1 | 98.26 33 | 98.08 25 | 99.48 29 | 99.26 34 |
|
| SED-MVS | | | 98.90 2 | 99.07 2 | 98.69 3 | 99.38 18 | 99.61 2 | 99.33 8 | 97.80 4 | 98.25 8 | 97.60 2 | 98.87 4 | 99.89 3 | 98.67 17 | 99.02 2 | 98.26 17 | 99.36 60 | 99.61 6 |
|
| NCCC | | | 98.10 21 | 98.05 30 | 98.17 18 | 99.38 18 | 99.05 37 | 99.00 20 | 97.53 17 | 98.04 14 | 95.12 24 | 94.80 52 | 99.18 18 | 98.58 22 | 98.49 17 | 97.78 43 | 99.39 54 | 98.98 73 |
|
| MP-MVS |  | | 98.09 22 | 98.30 24 | 97.84 26 | 99.34 20 | 99.19 32 | 99.23 13 | 97.40 19 | 97.09 43 | 93.03 39 | 97.58 22 | 98.85 25 | 98.57 23 | 98.44 22 | 97.69 45 | 99.48 29 | 99.23 38 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| CP-MVS | | | 98.32 17 | 98.34 22 | 98.29 12 | 99.34 20 | 99.30 22 | 99.15 14 | 97.35 21 | 97.49 31 | 95.58 21 | 97.72 18 | 98.62 34 | 98.82 11 | 98.29 28 | 97.67 46 | 99.51 26 | 99.28 29 |
|
| SteuartSystems-ACMMP | | | 98.38 14 | 98.71 10 | 97.99 23 | 99.34 20 | 99.46 10 | 99.34 6 | 97.33 24 | 97.31 35 | 94.25 29 | 98.06 13 | 99.17 19 | 98.13 31 | 98.98 5 | 98.46 9 | 99.55 18 | 99.54 11 |
| Skip Steuart: Steuart Systems R&D Blog. |
| DPE-MVS |  | | 98.75 5 | 98.91 6 | 98.57 5 | 99.21 23 | 99.54 6 | 99.42 2 | 97.78 6 | 97.49 31 | 96.84 9 | 98.94 1 | 99.82 5 | 98.59 21 | 98.90 10 | 98.22 18 | 99.56 17 | 99.48 15 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| mPP-MVS | | | | | | 99.21 23 | | | | | | | 98.29 38 | | | | | |
|
| AdaColmap |  | | 97.53 30 | 96.93 47 | 98.24 14 | 99.21 23 | 98.77 65 | 98.47 34 | 97.34 23 | 96.68 52 | 96.52 13 | 95.11 49 | 96.12 58 | 98.72 14 | 97.19 69 | 96.24 84 | 99.17 93 | 98.39 114 |
|
| DeepC-MVS_fast | | 96.13 1 | 98.13 20 | 98.27 25 | 97.97 24 | 99.16 26 | 99.03 43 | 99.05 18 | 97.24 26 | 98.22 10 | 94.17 31 | 95.82 40 | 98.07 39 | 98.69 16 | 98.83 11 | 98.80 2 | 99.52 21 | 99.10 53 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MSLP-MVS++ | | | 98.04 23 | 97.93 32 | 98.18 16 | 99.10 27 | 99.09 36 | 98.34 36 | 96.99 32 | 97.54 29 | 96.60 12 | 94.82 51 | 98.45 35 | 98.89 6 | 97.46 61 | 98.77 4 | 99.17 93 | 99.37 21 |
|
| 3Dnovator | | 93.79 8 | 97.08 37 | 97.20 41 | 96.95 37 | 99.09 28 | 99.03 43 | 98.20 39 | 93.33 52 | 97.99 15 | 93.82 32 | 90.61 93 | 96.80 49 | 97.82 37 | 97.90 48 | 98.78 3 | 99.47 32 | 99.26 34 |
|
| QAPM | | | 96.78 47 | 97.14 44 | 96.36 42 | 99.05 29 | 99.14 35 | 98.02 43 | 93.26 54 | 97.27 37 | 90.84 65 | 91.16 85 | 97.31 44 | 97.64 43 | 97.70 54 | 98.20 19 | 99.33 62 | 99.18 47 |
|
| OpenMVS |  | 92.33 11 | 95.50 56 | 95.22 74 | 95.82 53 | 98.98 30 | 98.97 49 | 97.67 50 | 93.04 62 | 94.64 104 | 89.18 94 | 84.44 141 | 94.79 65 | 96.79 61 | 97.23 66 | 97.61 48 | 99.24 77 | 98.88 84 |
|
| PLC |  | 94.95 3 | 97.37 33 | 96.77 51 | 98.07 20 | 98.97 31 | 98.21 91 | 97.94 46 | 96.85 35 | 97.66 25 | 97.58 3 | 93.33 60 | 96.84 48 | 98.01 36 | 97.13 71 | 96.20 86 | 99.09 105 | 98.01 130 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| TPM-MVS | | | | | | 98.94 32 | 98.47 84 | 98.04 42 | | | 92.62 46 | 96.51 33 | 98.76 29 | 95.94 78 | | | 98.92 126 | 97.55 146 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| train_agg | | | 97.65 29 | 98.06 29 | 97.18 33 | 98.94 32 | 98.91 56 | 98.98 24 | 97.07 31 | 96.71 51 | 90.66 68 | 97.43 26 | 99.08 23 | 98.20 27 | 97.96 46 | 97.14 63 | 99.22 83 | 99.19 44 |
|
| CDPH-MVS | | | 96.84 45 | 97.49 36 | 96.09 47 | 98.92 34 | 98.85 61 | 98.61 28 | 95.09 41 | 96.00 70 | 87.29 107 | 95.45 46 | 97.42 43 | 97.16 51 | 97.83 50 | 97.94 34 | 99.44 43 | 98.92 79 |
|
| CPTT-MVS | | | 97.78 26 | 97.54 35 | 98.05 21 | 98.91 35 | 99.05 37 | 99.00 20 | 96.96 33 | 97.14 41 | 95.92 17 | 95.50 44 | 98.78 28 | 98.99 4 | 97.20 67 | 96.07 88 | 98.54 160 | 99.04 65 |
|
| 3Dnovator+ | | 93.91 7 | 97.23 35 | 97.22 40 | 97.24 32 | 98.89 36 | 98.85 61 | 98.26 38 | 93.25 56 | 97.99 15 | 95.56 22 | 90.01 99 | 98.03 41 | 98.05 34 | 97.91 47 | 98.43 10 | 99.44 43 | 99.35 23 |
|
| ACMMP |  | | 97.37 33 | 97.48 37 | 97.25 31 | 98.88 37 | 99.28 24 | 98.47 34 | 96.86 34 | 97.04 45 | 92.15 50 | 97.57 23 | 96.05 60 | 97.67 40 | 97.27 65 | 95.99 93 | 99.46 33 | 99.14 52 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| PHI-MVS | | | 97.78 26 | 98.44 18 | 97.02 36 | 98.73 38 | 99.25 28 | 98.11 40 | 95.54 39 | 96.66 53 | 92.79 43 | 98.52 6 | 99.38 9 | 97.50 45 | 97.84 49 | 98.39 14 | 99.45 37 | 99.03 66 |
|
| OMC-MVS | | | 97.00 39 | 96.92 48 | 97.09 34 | 98.69 39 | 98.66 73 | 97.85 47 | 95.02 42 | 98.09 13 | 94.47 27 | 93.15 61 | 96.90 46 | 97.38 47 | 97.16 70 | 96.82 73 | 99.13 100 | 97.65 143 |
|
| MAR-MVS | | | 95.50 56 | 95.60 65 | 95.39 61 | 98.67 40 | 98.18 94 | 95.89 101 | 89.81 109 | 94.55 106 | 91.97 53 | 92.99 63 | 90.21 91 | 97.30 48 | 96.79 80 | 97.49 50 | 98.72 146 | 98.99 71 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| TSAR-MVS + ACMM | | | 97.71 28 | 98.60 12 | 96.66 39 | 98.64 41 | 99.05 37 | 98.85 25 | 97.23 27 | 98.45 4 | 89.40 89 | 97.51 24 | 99.27 14 | 96.88 60 | 98.53 15 | 97.81 42 | 98.96 122 | 99.59 8 |
|
| CNLPA | | | 96.90 42 | 96.28 57 | 97.64 28 | 98.56 42 | 98.63 78 | 96.85 68 | 96.60 36 | 97.73 19 | 97.08 6 | 89.78 101 | 96.28 56 | 97.80 39 | 96.73 83 | 96.63 75 | 98.94 124 | 98.14 126 |
|
| EPNet | | | 96.27 53 | 96.97 46 | 95.46 59 | 98.47 43 | 98.28 88 | 97.41 53 | 93.67 49 | 95.86 75 | 92.86 42 | 97.51 24 | 93.79 71 | 91.76 142 | 97.03 74 | 97.03 65 | 98.61 156 | 99.28 29 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MVS_111021_LR | | | 97.16 36 | 98.01 31 | 96.16 46 | 98.47 43 | 98.98 48 | 96.94 64 | 93.89 48 | 97.64 26 | 91.44 55 | 98.89 3 | 96.41 52 | 97.20 50 | 98.02 45 | 97.29 61 | 99.04 116 | 98.85 88 |
|
| MVS_111021_HR | | | 97.04 38 | 98.20 26 | 95.69 54 | 98.44 45 | 99.29 23 | 96.59 79 | 93.20 57 | 97.70 22 | 89.94 81 | 98.46 8 | 96.89 47 | 96.71 64 | 98.11 42 | 97.95 33 | 99.27 73 | 99.01 69 |
|
| MSDG | | | 94.82 70 | 93.73 104 | 96.09 47 | 98.34 46 | 97.43 110 | 97.06 59 | 96.05 37 | 95.84 76 | 90.56 69 | 86.30 130 | 89.10 101 | 95.55 86 | 96.13 110 | 95.61 104 | 99.00 117 | 95.73 179 |
|
| TAPA-MVS | | 94.18 5 | 96.38 50 | 96.49 55 | 96.25 43 | 98.26 47 | 98.66 73 | 98.00 44 | 94.96 43 | 97.17 39 | 89.48 86 | 92.91 65 | 96.35 53 | 97.53 44 | 96.59 88 | 95.90 96 | 99.28 71 | 97.82 134 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| DeepC-MVS | | 94.87 4 | 96.76 48 | 96.50 54 | 97.05 35 | 98.21 48 | 99.28 24 | 98.67 27 | 97.38 20 | 97.31 35 | 90.36 75 | 89.19 103 | 93.58 72 | 98.19 28 | 98.31 27 | 98.50 7 | 99.51 26 | 99.36 22 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SD-MVS | | | 98.52 8 | 98.77 9 | 98.23 15 | 98.15 49 | 99.26 26 | 98.79 26 | 97.59 15 | 98.52 3 | 96.25 15 | 97.99 15 | 99.75 6 | 99.01 3 | 98.27 32 | 97.97 31 | 99.59 7 | 99.63 2 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| TSAR-MVS + MP. | | | 98.49 9 | 98.78 8 | 98.15 19 | 98.14 50 | 99.17 33 | 99.34 6 | 97.18 29 | 98.44 5 | 95.72 19 | 97.84 16 | 99.28 12 | 98.87 7 | 99.05 1 | 98.05 26 | 99.66 2 | 99.60 7 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| DPM-MVS | | | 96.86 44 | 96.82 50 | 96.91 38 | 98.08 51 | 98.20 92 | 98.52 33 | 97.20 28 | 97.24 38 | 91.42 56 | 91.84 77 | 98.45 35 | 97.25 49 | 97.07 72 | 97.40 55 | 98.95 123 | 97.55 146 |
|
| EPNet_dtu | | | 92.45 118 | 95.02 80 | 89.46 146 | 98.02 52 | 95.47 169 | 94.79 121 | 92.62 66 | 94.97 99 | 70.11 193 | 94.76 54 | 92.61 78 | 84.07 203 | 95.94 113 | 95.56 105 | 97.15 189 | 95.82 178 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CANet | | | 96.84 45 | 97.20 41 | 96.42 40 | 97.92 53 | 99.24 30 | 98.60 29 | 93.51 51 | 97.11 42 | 93.07 36 | 91.16 85 | 97.24 45 | 96.21 73 | 98.24 35 | 98.05 26 | 99.22 83 | 99.35 23 |
|
| LS3D | | | 95.46 59 | 95.14 76 | 95.84 52 | 97.91 54 | 98.90 58 | 98.58 30 | 97.79 5 | 97.07 44 | 83.65 122 | 88.71 106 | 88.64 104 | 97.82 37 | 97.49 59 | 97.42 53 | 99.26 76 | 97.72 142 |
|
| CS-MVS-test | | | 97.00 39 | 97.85 33 | 96.00 50 | 97.77 55 | 99.56 5 | 96.35 87 | 91.95 76 | 97.54 29 | 92.20 49 | 96.14 36 | 96.00 61 | 98.19 28 | 98.46 19 | 97.78 43 | 99.57 14 | 99.45 17 |
|
| DELS-MVS | | | 96.06 54 | 96.04 61 | 96.07 49 | 97.77 55 | 99.25 28 | 98.10 41 | 93.26 54 | 94.42 108 | 92.79 43 | 88.52 110 | 93.48 73 | 95.06 95 | 98.51 16 | 98.83 1 | 99.45 37 | 99.28 29 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| COLMAP_ROB |  | 90.49 14 | 93.27 110 | 92.71 119 | 93.93 91 | 97.75 57 | 97.44 109 | 96.07 94 | 93.17 58 | 95.40 85 | 83.86 120 | 83.76 145 | 88.72 103 | 93.87 115 | 94.25 153 | 94.11 147 | 98.87 131 | 95.28 185 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| PCF-MVS | | 93.95 6 | 95.65 55 | 95.14 76 | 96.25 43 | 97.73 58 | 98.73 67 | 97.59 51 | 97.13 30 | 92.50 138 | 89.09 96 | 89.85 100 | 96.65 50 | 96.90 59 | 94.97 140 | 94.89 125 | 99.08 106 | 98.38 115 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| PatchMatch-RL | | | 94.69 76 | 94.41 87 | 95.02 67 | 97.63 59 | 98.15 95 | 94.50 127 | 91.99 74 | 95.32 88 | 91.31 58 | 95.47 45 | 83.44 140 | 96.02 76 | 96.56 89 | 95.23 115 | 98.69 149 | 96.67 171 |
|
| CS-MVS | | | 96.87 43 | 97.41 39 | 96.24 45 | 97.42 60 | 99.48 9 | 97.30 56 | 91.83 81 | 97.17 39 | 93.02 40 | 94.80 52 | 94.45 67 | 98.16 30 | 98.61 13 | 97.85 40 | 99.69 1 | 99.50 12 |
|
| PVSNet_BlendedMVS | | | 95.41 61 | 95.28 72 | 95.57 56 | 97.42 60 | 99.02 45 | 95.89 101 | 93.10 59 | 96.16 63 | 93.12 34 | 91.99 73 | 85.27 125 | 94.66 101 | 98.09 43 | 97.34 57 | 99.24 77 | 99.08 56 |
|
| PVSNet_Blended | | | 95.41 61 | 95.28 72 | 95.57 56 | 97.42 60 | 99.02 45 | 95.89 101 | 93.10 59 | 96.16 63 | 93.12 34 | 91.99 73 | 85.27 125 | 94.66 101 | 98.09 43 | 97.34 57 | 99.24 77 | 99.08 56 |
|
| DeepPCF-MVS | | 95.28 2 | 97.00 39 | 98.35 21 | 95.42 60 | 97.30 63 | 98.94 51 | 94.82 120 | 96.03 38 | 98.24 9 | 92.11 51 | 95.80 41 | 98.64 33 | 95.51 87 | 98.95 7 | 98.66 5 | 96.78 192 | 99.20 43 |
|
| CHOSEN 280x420 | | | 95.46 59 | 97.01 45 | 93.66 96 | 97.28 64 | 97.98 99 | 96.40 85 | 85.39 160 | 96.10 67 | 91.07 59 | 96.53 32 | 96.34 55 | 95.61 84 | 97.65 55 | 96.95 68 | 96.21 193 | 97.49 148 |
|
| MVS_0304 | | | 96.31 51 | 96.91 49 | 95.62 55 | 97.21 65 | 99.20 31 | 98.55 31 | 93.10 59 | 97.04 45 | 89.73 83 | 90.30 95 | 96.35 53 | 95.71 80 | 98.14 39 | 97.93 37 | 99.38 55 | 99.40 19 |
|
| CHOSEN 1792x2688 | | | 92.66 115 | 92.49 125 | 92.85 106 | 97.13 66 | 98.89 59 | 95.90 99 | 88.50 126 | 95.32 88 | 83.31 123 | 71.99 199 | 88.96 102 | 94.10 112 | 96.69 84 | 96.49 77 | 98.15 173 | 99.10 53 |
|
| HyFIR lowres test | | | 92.03 119 | 91.55 144 | 92.58 107 | 97.13 66 | 98.72 68 | 94.65 124 | 86.54 145 | 93.58 123 | 82.56 126 | 67.75 210 | 90.47 89 | 95.67 81 | 95.87 115 | 95.54 106 | 98.91 128 | 98.93 78 |
|
| OPM-MVS | | | 93.61 103 | 92.43 129 | 95.00 68 | 96.94 68 | 97.34 111 | 97.78 48 | 94.23 46 | 89.64 171 | 85.53 114 | 88.70 107 | 82.81 143 | 96.28 72 | 96.28 103 | 95.00 124 | 99.24 77 | 97.22 156 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| XVS | | | | | | 96.60 69 | 99.35 17 | 96.82 69 | | | 90.85 62 | | 98.72 30 | | | | 99.46 33 | |
|
| X-MVStestdata | | | | | | 96.60 69 | 99.35 17 | 96.82 69 | | | 90.85 62 | | 98.72 30 | | | | 99.46 33 | |
|
| TSAR-MVS + COLMAP | | | 94.79 72 | 94.51 85 | 95.11 65 | 96.50 71 | 97.54 105 | 97.99 45 | 94.54 44 | 97.81 17 | 85.88 113 | 96.73 31 | 81.28 150 | 96.99 57 | 96.29 102 | 95.21 116 | 98.76 145 | 96.73 170 |
|
| PVSNet_Blended_VisFu | | | 94.77 74 | 95.54 67 | 93.87 92 | 96.48 72 | 98.97 49 | 94.33 129 | 91.84 79 | 94.93 100 | 90.37 74 | 85.04 136 | 94.99 64 | 90.87 157 | 98.12 41 | 97.30 59 | 99.30 69 | 99.45 17 |
|
| LGP-MVS_train | | | 94.12 90 | 94.62 83 | 93.53 97 | 96.44 73 | 97.54 105 | 97.40 54 | 91.84 79 | 94.66 103 | 81.09 135 | 95.70 43 | 83.36 141 | 95.10 94 | 96.36 100 | 95.71 102 | 99.32 64 | 99.03 66 |
|
| HQP-MVS | | | 94.43 83 | 94.57 84 | 94.27 87 | 96.41 74 | 97.23 115 | 96.89 65 | 93.98 47 | 95.94 72 | 83.68 121 | 95.01 50 | 84.46 132 | 95.58 85 | 95.47 128 | 94.85 129 | 99.07 108 | 99.00 70 |
|
| ACMM | | 92.75 10 | 94.41 85 | 93.84 102 | 95.09 66 | 96.41 74 | 96.80 124 | 94.88 119 | 93.54 50 | 96.41 57 | 90.16 76 | 92.31 71 | 83.11 142 | 96.32 71 | 96.22 105 | 94.65 131 | 99.22 83 | 97.35 153 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| RPSCF | | | 94.05 91 | 94.00 98 | 94.12 89 | 96.20 76 | 96.41 138 | 96.61 78 | 91.54 86 | 95.83 77 | 89.73 83 | 96.94 30 | 92.80 76 | 95.35 91 | 91.63 191 | 90.44 193 | 95.27 205 | 93.94 196 |
|
| test2506 | | | 94.32 87 | 93.00 116 | 95.87 51 | 96.16 77 | 99.39 15 | 96.96 62 | 92.80 64 | 95.22 94 | 94.47 27 | 91.55 82 | 70.45 196 | 95.25 92 | 98.29 28 | 97.98 29 | 99.59 7 | 98.10 128 |
|
| ECVR-MVS |  | | 94.14 89 | 92.96 117 | 95.52 58 | 96.16 77 | 99.39 15 | 96.96 62 | 92.80 64 | 95.22 94 | 92.38 48 | 81.48 155 | 80.31 151 | 95.25 92 | 98.29 28 | 97.98 29 | 99.59 7 | 98.05 129 |
|
| test1111 | | | 93.94 94 | 92.78 118 | 95.29 63 | 96.14 79 | 99.42 11 | 96.79 72 | 92.85 63 | 95.08 98 | 91.39 57 | 80.69 160 | 79.86 154 | 95.00 96 | 98.28 31 | 98.00 28 | 99.58 11 | 98.11 127 |
|
| UA-Net | | | 93.96 93 | 95.95 62 | 91.64 118 | 96.06 80 | 98.59 80 | 95.29 110 | 90.00 103 | 91.06 158 | 82.87 124 | 90.64 92 | 98.06 40 | 86.06 190 | 98.14 39 | 98.20 19 | 99.58 11 | 96.96 164 |
|
| UGNet | | | 94.92 67 | 96.63 52 | 92.93 105 | 96.03 81 | 98.63 78 | 94.53 126 | 91.52 87 | 96.23 61 | 90.03 78 | 92.87 66 | 96.10 59 | 86.28 189 | 96.68 85 | 96.60 76 | 99.16 96 | 99.32 27 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| ACMP | | 92.88 9 | 94.43 83 | 94.38 88 | 94.50 83 | 96.01 82 | 97.69 103 | 95.85 104 | 92.09 73 | 95.74 78 | 89.12 95 | 95.14 48 | 82.62 145 | 94.77 97 | 95.73 122 | 94.67 130 | 99.14 99 | 99.06 61 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| IB-MVS | | 89.56 15 | 91.71 125 | 92.50 124 | 90.79 130 | 95.94 83 | 98.44 85 | 87.05 201 | 91.38 90 | 93.15 127 | 92.98 41 | 84.78 137 | 85.14 128 | 78.27 208 | 92.47 179 | 94.44 142 | 99.10 104 | 99.08 56 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MS-PatchMatch | | | 91.82 123 | 92.51 123 | 91.02 124 | 95.83 84 | 96.88 120 | 95.05 114 | 84.55 174 | 93.85 118 | 82.01 128 | 82.51 151 | 91.71 80 | 90.52 164 | 95.07 138 | 93.03 169 | 98.13 174 | 94.52 187 |
|
| CANet_DTU | | | 93.92 96 | 96.57 53 | 90.83 128 | 95.63 85 | 98.39 86 | 96.99 61 | 87.38 136 | 96.26 60 | 71.97 182 | 96.31 34 | 93.02 74 | 94.53 104 | 97.38 63 | 96.83 72 | 98.49 163 | 97.79 135 |
|
| ACMH | | 90.77 13 | 91.51 130 | 91.63 142 | 91.38 121 | 95.62 86 | 96.87 122 | 91.76 174 | 89.66 111 | 91.58 153 | 78.67 145 | 86.73 118 | 78.12 160 | 93.77 119 | 94.59 144 | 94.54 138 | 98.78 143 | 98.98 73 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| TSAR-MVS + GP. | | | 97.45 31 | 98.36 19 | 96.39 41 | 95.56 87 | 98.93 53 | 97.74 49 | 93.31 53 | 97.61 27 | 94.24 30 | 98.44 9 | 99.19 17 | 98.03 35 | 97.60 56 | 97.41 54 | 99.44 43 | 99.33 25 |
|
| thres600view7 | | | 93.49 106 | 92.37 132 | 94.79 78 | 95.42 88 | 98.93 53 | 96.58 80 | 92.31 68 | 93.04 128 | 87.88 103 | 86.62 120 | 76.94 169 | 97.09 55 | 96.82 77 | 95.63 103 | 99.45 37 | 98.63 98 |
|
| thres400 | | | 93.56 104 | 92.43 129 | 94.87 75 | 95.40 89 | 98.91 56 | 96.70 76 | 92.38 67 | 92.93 130 | 88.19 102 | 86.69 119 | 77.35 166 | 97.13 52 | 96.75 82 | 95.85 98 | 99.42 48 | 98.56 101 |
|
| thres200 | | | 93.62 102 | 92.54 122 | 94.88 73 | 95.36 90 | 98.93 53 | 96.75 74 | 92.31 68 | 92.84 131 | 88.28 100 | 86.99 116 | 77.81 165 | 97.13 52 | 96.82 77 | 95.92 94 | 99.45 37 | 98.49 107 |
|
| thres100view900 | | | 93.55 105 | 92.47 128 | 94.81 77 | 95.33 91 | 98.74 66 | 96.78 73 | 92.30 71 | 92.63 134 | 88.29 98 | 87.21 114 | 78.01 162 | 96.78 62 | 96.38 97 | 95.92 94 | 99.38 55 | 98.40 113 |
|
| tfpn200view9 | | | 93.64 101 | 92.57 121 | 94.89 72 | 95.33 91 | 98.94 51 | 96.82 69 | 92.31 68 | 92.63 134 | 88.29 98 | 87.21 114 | 78.01 162 | 97.12 54 | 96.82 77 | 95.85 98 | 99.45 37 | 98.56 101 |
|
| IS_MVSNet | | | 95.28 63 | 96.43 56 | 93.94 90 | 95.30 93 | 99.01 47 | 95.90 99 | 91.12 92 | 94.13 114 | 87.50 106 | 91.23 84 | 94.45 67 | 94.17 110 | 98.45 20 | 98.50 7 | 99.65 3 | 99.23 38 |
|
| CMPMVS |  | 65.18 17 | 84.76 199 | 83.10 205 | 86.69 187 | 95.29 94 | 95.05 181 | 88.37 196 | 85.51 159 | 80.27 214 | 71.31 186 | 68.37 208 | 73.85 181 | 85.25 194 | 87.72 206 | 87.75 203 | 94.38 213 | 88.70 213 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| sasdasda | | | 95.25 65 | 95.45 69 | 95.00 68 | 95.27 95 | 98.72 68 | 96.89 65 | 89.82 107 | 96.51 54 | 90.84 65 | 93.72 58 | 86.01 119 | 97.66 41 | 95.78 119 | 97.94 34 | 99.54 19 | 99.50 12 |
|
| canonicalmvs | | | 95.25 65 | 95.45 69 | 95.00 68 | 95.27 95 | 98.72 68 | 96.89 65 | 89.82 107 | 96.51 54 | 90.84 65 | 93.72 58 | 86.01 119 | 97.66 41 | 95.78 119 | 97.94 34 | 99.54 19 | 99.50 12 |
|
| Vis-MVSNet (Re-imp) | | | 94.46 82 | 96.24 58 | 92.40 109 | 95.23 97 | 98.64 76 | 95.56 107 | 90.99 93 | 94.42 108 | 85.02 116 | 90.88 91 | 94.65 66 | 88.01 179 | 98.17 37 | 98.37 16 | 99.57 14 | 98.53 104 |
|
| CLD-MVS | | | 94.79 72 | 94.36 89 | 95.30 62 | 95.21 98 | 97.46 108 | 97.23 57 | 92.24 72 | 96.43 56 | 91.77 54 | 92.69 67 | 84.31 133 | 96.06 74 | 95.52 126 | 95.03 121 | 99.31 67 | 99.06 61 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| baseline1 | | | 94.59 78 | 94.47 86 | 94.72 79 | 95.16 99 | 97.97 100 | 96.07 94 | 91.94 77 | 94.86 101 | 89.98 79 | 91.60 81 | 85.87 122 | 95.64 82 | 97.07 72 | 96.90 69 | 99.52 21 | 97.06 163 |
|
| TDRefinement | | | 89.07 162 | 88.15 171 | 90.14 139 | 95.16 99 | 96.88 120 | 95.55 108 | 90.20 101 | 89.68 170 | 76.42 158 | 76.67 173 | 74.30 179 | 84.85 197 | 93.11 169 | 91.91 187 | 98.64 155 | 94.47 188 |
|
| ACMH+ | | 90.88 12 | 91.41 131 | 91.13 147 | 91.74 117 | 95.11 101 | 96.95 119 | 93.13 146 | 89.48 115 | 92.42 140 | 79.93 140 | 85.13 135 | 78.02 161 | 93.82 118 | 93.49 164 | 93.88 153 | 98.94 124 | 97.99 131 |
|
| DCV-MVSNet | | | 94.76 75 | 95.12 78 | 94.35 86 | 95.10 102 | 95.81 158 | 96.46 84 | 89.49 114 | 96.33 59 | 90.16 76 | 92.55 69 | 90.26 90 | 95.83 79 | 95.52 126 | 96.03 91 | 99.06 111 | 99.33 25 |
|
| Anonymous202405211 | | | | 92.18 134 | | 95.04 103 | 98.20 92 | 96.14 91 | 91.79 83 | 93.93 115 | | 74.60 182 | 88.38 107 | 96.48 69 | 95.17 136 | 95.82 101 | 99.00 117 | 99.15 50 |
|
| casdiffmvs_mvg |  | | 94.55 79 | 94.26 91 | 94.88 73 | 94.96 104 | 98.51 82 | 97.11 58 | 91.82 82 | 94.28 111 | 89.20 93 | 86.60 121 | 86.85 112 | 96.56 68 | 97.47 60 | 97.25 62 | 99.64 4 | 98.83 90 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| FC-MVSNet-train | | | 93.85 97 | 93.91 99 | 93.78 94 | 94.94 105 | 96.79 127 | 94.29 130 | 91.13 91 | 93.84 119 | 88.26 101 | 90.40 94 | 85.23 127 | 94.65 103 | 96.54 91 | 95.31 112 | 99.38 55 | 99.28 29 |
|
| EPP-MVSNet | | | 95.27 64 | 96.18 60 | 94.20 88 | 94.88 106 | 98.64 76 | 94.97 116 | 90.70 96 | 95.34 87 | 89.67 85 | 91.66 80 | 93.84 70 | 95.42 90 | 97.32 64 | 97.00 66 | 99.58 11 | 99.47 16 |
|
| FA-MVS(training) | | | 93.94 94 | 95.16 75 | 92.53 108 | 94.87 107 | 98.57 81 | 95.42 109 | 79.49 194 | 95.37 86 | 90.98 60 | 86.54 123 | 94.26 69 | 95.44 89 | 97.80 53 | 95.19 117 | 98.97 120 | 98.38 115 |
|
| EIA-MVS | | | 95.50 56 | 96.19 59 | 94.69 80 | 94.83 108 | 98.88 60 | 95.93 98 | 91.50 88 | 94.47 107 | 89.43 87 | 93.14 62 | 92.72 77 | 97.05 56 | 97.82 52 | 97.13 64 | 99.43 46 | 99.15 50 |
|
| ETV-MVS | | | 96.31 51 | 97.47 38 | 94.96 71 | 94.79 109 | 98.78 64 | 96.08 93 | 91.41 89 | 96.16 63 | 90.50 70 | 95.76 42 | 96.20 57 | 97.39 46 | 98.42 23 | 97.82 41 | 99.57 14 | 99.18 47 |
|
| MVS_Test | | | 94.82 70 | 95.66 64 | 93.84 93 | 94.79 109 | 98.35 87 | 96.49 83 | 89.10 119 | 96.12 66 | 87.09 109 | 92.58 68 | 90.61 88 | 96.48 69 | 96.51 95 | 96.89 70 | 99.11 103 | 98.54 103 |
|
| Anonymous20231211 | | | 93.49 106 | 92.33 133 | 94.84 76 | 94.78 111 | 98.00 98 | 96.11 92 | 91.85 78 | 94.86 101 | 90.91 61 | 74.69 181 | 89.18 99 | 96.73 63 | 94.82 141 | 95.51 107 | 98.67 150 | 99.24 37 |
|
| baseline | | | 94.83 69 | 95.82 63 | 93.68 95 | 94.75 112 | 97.80 101 | 96.51 82 | 88.53 125 | 97.02 47 | 89.34 91 | 92.93 64 | 92.18 79 | 94.69 100 | 95.78 119 | 96.08 87 | 98.27 171 | 98.97 77 |
|
| EC-MVSNet | | | 96.49 49 | 97.63 34 | 95.16 64 | 94.75 112 | 98.69 71 | 97.39 55 | 88.97 120 | 96.34 58 | 92.02 52 | 96.04 38 | 96.46 51 | 98.21 26 | 98.41 24 | 97.96 32 | 99.61 6 | 99.55 10 |
|
| MVSTER | | | 94.89 68 | 95.07 79 | 94.68 81 | 94.71 114 | 96.68 130 | 97.00 60 | 90.57 98 | 95.18 96 | 93.05 38 | 95.21 47 | 86.41 116 | 93.72 120 | 97.59 57 | 95.88 97 | 99.00 117 | 98.50 106 |
|
| EPMVS | | | 90.88 136 | 92.12 135 | 89.44 147 | 94.71 114 | 97.24 114 | 93.55 137 | 76.81 201 | 95.89 73 | 81.77 130 | 91.49 83 | 86.47 115 | 93.87 115 | 90.21 198 | 90.07 195 | 95.92 196 | 93.49 202 |
|
| casdiffmvs |  | | 94.38 86 | 94.15 97 | 94.64 82 | 94.70 116 | 98.51 82 | 96.03 96 | 91.66 84 | 95.70 79 | 89.36 90 | 86.48 125 | 85.03 130 | 96.60 67 | 97.40 62 | 97.30 59 | 99.52 21 | 98.67 96 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| diffmvs |  | | 94.31 88 | 94.21 92 | 94.42 85 | 94.64 117 | 98.28 88 | 96.36 86 | 91.56 85 | 96.77 49 | 88.89 97 | 88.97 104 | 84.23 134 | 96.01 77 | 96.05 111 | 96.41 79 | 99.05 115 | 98.79 93 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DI_MVS_plusplus_trai | | | 94.01 92 | 93.63 106 | 94.44 84 | 94.54 118 | 98.26 90 | 97.51 52 | 90.63 97 | 95.88 74 | 89.34 91 | 80.54 162 | 89.36 96 | 95.48 88 | 96.33 101 | 96.27 83 | 99.17 93 | 98.78 94 |
|
| thisisatest0530 | | | 94.54 80 | 95.47 68 | 93.46 99 | 94.51 119 | 98.65 75 | 94.66 123 | 90.72 94 | 95.69 81 | 86.90 110 | 93.80 56 | 89.44 95 | 94.74 98 | 96.98 76 | 94.86 126 | 99.19 91 | 98.85 88 |
|
| tttt0517 | | | 94.52 81 | 95.44 71 | 93.44 100 | 94.51 119 | 98.68 72 | 94.61 125 | 90.72 94 | 95.61 83 | 86.84 111 | 93.78 57 | 89.26 98 | 94.74 98 | 97.02 75 | 94.86 126 | 99.20 90 | 98.87 86 |
|
| ADS-MVSNet | | | 89.80 151 | 91.33 146 | 88.00 168 | 94.43 121 | 96.71 129 | 92.29 162 | 74.95 211 | 96.07 68 | 77.39 150 | 88.67 108 | 86.09 118 | 93.26 127 | 88.44 204 | 89.57 198 | 95.68 199 | 93.81 199 |
|
| tpmrst | | | 88.86 166 | 89.62 158 | 87.97 169 | 94.33 122 | 95.98 148 | 92.62 154 | 76.36 204 | 94.62 105 | 76.94 154 | 85.98 131 | 82.80 144 | 92.80 132 | 86.90 210 | 87.15 206 | 94.77 210 | 93.93 197 |
|
| PMMVS | | | 94.61 77 | 95.56 66 | 93.50 98 | 94.30 123 | 96.74 128 | 94.91 118 | 89.56 113 | 95.58 84 | 87.72 104 | 96.15 35 | 92.86 75 | 96.06 74 | 95.47 128 | 95.02 122 | 98.43 168 | 97.09 159 |
|
| CostFormer | | | 90.69 137 | 90.48 155 | 90.93 126 | 94.18 124 | 96.08 146 | 94.03 132 | 78.20 197 | 93.47 124 | 89.96 80 | 90.97 90 | 80.30 152 | 93.72 120 | 87.66 208 | 88.75 200 | 95.51 202 | 96.12 175 |
|
| USDC | | | 90.69 137 | 90.52 154 | 90.88 127 | 94.17 125 | 96.43 137 | 95.82 105 | 86.76 142 | 93.92 116 | 76.27 160 | 86.49 124 | 74.30 179 | 93.67 122 | 95.04 139 | 93.36 162 | 98.61 156 | 94.13 192 |
|
| Vis-MVSNet |  | | 92.77 113 | 95.00 81 | 90.16 137 | 94.10 126 | 98.79 63 | 94.76 122 | 88.26 127 | 92.37 143 | 79.95 139 | 88.19 112 | 91.58 81 | 84.38 200 | 97.59 57 | 97.58 49 | 99.52 21 | 98.91 82 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| Effi-MVS+ | | | 92.93 112 | 93.86 101 | 91.86 114 | 94.07 127 | 98.09 97 | 95.59 106 | 85.98 152 | 94.27 112 | 79.54 143 | 91.12 88 | 81.81 147 | 96.71 64 | 96.67 86 | 96.06 89 | 99.27 73 | 98.98 73 |
|
| GeoE | | | 92.52 117 | 92.64 120 | 92.39 110 | 93.96 128 | 97.76 102 | 96.01 97 | 85.60 157 | 93.23 126 | 83.94 119 | 81.56 154 | 84.80 131 | 95.63 83 | 96.22 105 | 95.83 100 | 99.19 91 | 99.07 60 |
|
| IterMVS-LS | | | 92.56 116 | 93.18 113 | 91.84 115 | 93.90 129 | 94.97 183 | 94.99 115 | 86.20 149 | 94.18 113 | 82.68 125 | 85.81 132 | 87.36 111 | 94.43 105 | 95.31 132 | 96.02 92 | 98.87 131 | 98.60 100 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| dps | | | 90.11 149 | 89.37 162 | 90.98 125 | 93.89 130 | 96.21 143 | 93.49 139 | 77.61 199 | 91.95 149 | 92.74 45 | 88.85 105 | 78.77 159 | 92.37 135 | 87.71 207 | 87.71 204 | 95.80 198 | 94.38 190 |
|
| tpm cat1 | | | 88.90 164 | 87.78 180 | 90.22 136 | 93.88 131 | 95.39 172 | 93.79 135 | 78.11 198 | 92.55 137 | 89.43 87 | 81.31 156 | 79.84 155 | 91.40 145 | 84.95 211 | 86.34 209 | 94.68 212 | 94.09 193 |
|
| PatchmatchNet |  | | 90.56 139 | 92.49 125 | 88.31 159 | 93.83 132 | 96.86 123 | 92.42 158 | 76.50 203 | 95.96 71 | 78.31 146 | 91.96 75 | 89.66 94 | 93.48 124 | 90.04 200 | 89.20 199 | 95.32 203 | 93.73 200 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| TinyColmap | | | 89.42 154 | 88.58 166 | 90.40 134 | 93.80 133 | 95.45 170 | 93.96 134 | 86.54 145 | 92.24 146 | 76.49 157 | 80.83 158 | 70.44 197 | 93.37 125 | 94.45 148 | 93.30 165 | 98.26 172 | 93.37 203 |
|
| SCA | | | 90.92 135 | 93.04 115 | 88.45 156 | 93.72 134 | 97.33 112 | 92.77 150 | 76.08 206 | 96.02 69 | 78.26 147 | 91.96 75 | 90.86 85 | 93.99 114 | 90.98 195 | 90.04 196 | 95.88 197 | 94.06 195 |
|
| RPMNet | | | 90.19 146 | 92.03 138 | 88.05 165 | 93.46 135 | 95.95 151 | 93.41 140 | 74.59 212 | 92.40 141 | 75.91 162 | 84.22 142 | 86.41 116 | 92.49 133 | 94.42 149 | 93.85 155 | 98.44 166 | 96.96 164 |
|
| gg-mvs-nofinetune | | | 86.17 193 | 88.57 167 | 83.36 200 | 93.44 136 | 98.15 95 | 96.58 80 | 72.05 215 | 74.12 219 | 49.23 223 | 64.81 214 | 90.85 86 | 89.90 172 | 97.83 50 | 96.84 71 | 98.97 120 | 97.41 151 |
|
| MDTV_nov1_ep13 | | | 91.57 128 | 93.18 113 | 89.70 143 | 93.39 137 | 96.97 118 | 93.53 138 | 80.91 191 | 95.70 79 | 81.86 129 | 92.40 70 | 89.93 92 | 93.25 128 | 91.97 188 | 90.80 191 | 95.25 206 | 94.46 189 |
|
| CR-MVSNet | | | 90.16 147 | 91.96 139 | 88.06 164 | 93.32 138 | 95.95 151 | 93.36 142 | 75.99 207 | 92.40 141 | 75.19 168 | 83.18 147 | 85.37 124 | 92.05 137 | 95.21 134 | 94.56 136 | 98.47 165 | 97.08 161 |
|
| test-LLR | | | 91.62 127 | 93.56 109 | 89.35 149 | 93.31 139 | 96.57 133 | 92.02 170 | 87.06 140 | 92.34 144 | 75.05 171 | 90.20 96 | 88.64 104 | 90.93 153 | 96.19 108 | 94.07 148 | 97.75 183 | 96.90 167 |
|
| test0.0.03 1 | | | 91.97 120 | 93.91 99 | 89.72 142 | 93.31 139 | 96.40 139 | 91.34 179 | 87.06 140 | 93.86 117 | 81.67 131 | 91.15 87 | 89.16 100 | 86.02 191 | 95.08 137 | 95.09 118 | 98.91 128 | 96.64 173 |
|
| CVMVSNet | | | 89.77 152 | 91.66 141 | 87.56 178 | 93.21 141 | 95.45 170 | 91.94 173 | 89.22 117 | 89.62 172 | 69.34 199 | 83.99 144 | 85.90 121 | 84.81 198 | 94.30 152 | 95.28 113 | 96.85 191 | 97.09 159 |
|
| PatchT | | | 89.13 161 | 91.71 140 | 86.11 192 | 92.92 142 | 95.59 165 | 83.64 209 | 75.09 210 | 91.87 150 | 75.19 168 | 82.63 150 | 85.06 129 | 92.05 137 | 95.21 134 | 94.56 136 | 97.76 182 | 97.08 161 |
|
| Fast-Effi-MVS+ | | | 91.87 121 | 92.08 136 | 91.62 120 | 92.91 143 | 97.21 116 | 94.93 117 | 84.60 172 | 93.61 122 | 81.49 133 | 83.50 146 | 78.95 157 | 96.62 66 | 96.55 90 | 96.22 85 | 99.16 96 | 98.51 105 |
|
| IterMVS-SCA-FT | | | 90.24 144 | 92.48 127 | 87.63 175 | 92.85 144 | 94.30 199 | 93.79 135 | 81.47 190 | 92.66 133 | 69.95 194 | 84.66 139 | 88.38 107 | 89.99 170 | 95.39 131 | 94.34 143 | 97.74 185 | 97.63 144 |
|
| baseline2 | | | 93.01 111 | 94.17 95 | 91.64 118 | 92.83 145 | 97.49 107 | 93.40 141 | 87.53 134 | 93.67 121 | 86.07 112 | 91.83 78 | 86.58 113 | 91.36 146 | 96.38 97 | 95.06 120 | 98.67 150 | 98.20 124 |
|
| IterMVS | | | 90.20 145 | 92.43 129 | 87.61 176 | 92.82 146 | 94.31 198 | 94.11 131 | 81.54 188 | 92.97 129 | 69.90 195 | 84.71 138 | 88.16 110 | 89.96 171 | 95.25 133 | 94.17 146 | 97.31 187 | 97.46 149 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CDS-MVSNet | | | 92.77 113 | 93.60 107 | 91.80 116 | 92.63 147 | 96.80 124 | 95.24 111 | 89.14 118 | 90.30 168 | 84.58 117 | 86.76 117 | 90.65 87 | 90.42 165 | 95.89 114 | 96.49 77 | 98.79 142 | 98.32 120 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| tpm | | | 87.95 174 | 89.44 161 | 86.21 191 | 92.53 148 | 94.62 193 | 91.40 177 | 76.36 204 | 91.46 154 | 69.80 197 | 87.43 113 | 75.14 174 | 91.55 144 | 89.85 202 | 90.60 192 | 95.61 200 | 96.96 164 |
|
| Effi-MVS+-dtu | | | 91.78 124 | 93.59 108 | 89.68 145 | 92.44 149 | 97.11 117 | 94.40 128 | 84.94 168 | 92.43 139 | 75.48 164 | 91.09 89 | 83.75 138 | 93.55 123 | 96.61 87 | 95.47 108 | 97.24 188 | 98.67 96 |
|
| testgi | | | 89.42 154 | 91.50 145 | 87.00 185 | 92.40 150 | 95.59 165 | 89.15 195 | 85.27 164 | 92.78 132 | 72.42 180 | 91.75 79 | 76.00 172 | 84.09 202 | 94.38 150 | 93.82 157 | 98.65 154 | 96.15 174 |
|
| Fast-Effi-MVS+-dtu | | | 91.19 132 | 93.64 105 | 88.33 158 | 92.19 151 | 96.46 136 | 93.99 133 | 81.52 189 | 92.59 136 | 71.82 183 | 92.17 72 | 85.54 123 | 91.68 143 | 95.73 122 | 94.64 132 | 98.80 140 | 98.34 117 |
|
| FC-MVSNet-test | | | 91.63 126 | 93.82 103 | 89.08 150 | 92.02 152 | 96.40 139 | 93.26 144 | 87.26 137 | 93.72 120 | 77.26 151 | 88.61 109 | 89.86 93 | 85.50 193 | 95.72 124 | 95.02 122 | 99.16 96 | 97.44 150 |
|
| GA-MVS | | | 89.28 157 | 90.75 153 | 87.57 177 | 91.77 153 | 96.48 135 | 92.29 162 | 87.58 133 | 90.61 165 | 65.77 204 | 84.48 140 | 76.84 170 | 89.46 173 | 95.84 116 | 93.68 158 | 98.52 161 | 97.34 154 |
|
| dmvs_re | | | 91.84 122 | 91.60 143 | 92.12 113 | 91.60 154 | 97.26 113 | 95.14 113 | 91.96 75 | 91.02 159 | 80.98 136 | 86.56 122 | 77.96 164 | 93.84 117 | 94.71 142 | 95.08 119 | 99.22 83 | 98.62 99 |
|
| UniMVSNet_ETH3D | | | 88.47 168 | 86.00 198 | 91.35 122 | 91.55 155 | 96.29 141 | 92.53 155 | 88.81 121 | 85.58 201 | 82.33 127 | 67.63 211 | 66.87 211 | 94.04 113 | 91.49 192 | 95.24 114 | 98.84 134 | 98.92 79 |
|
| TAMVS | | | 90.54 141 | 90.87 152 | 90.16 137 | 91.48 156 | 96.61 132 | 93.26 144 | 86.08 150 | 87.71 187 | 81.66 132 | 83.11 149 | 84.04 135 | 90.42 165 | 94.54 145 | 94.60 133 | 98.04 178 | 95.48 183 |
|
| tfpnnormal | | | 88.50 167 | 87.01 189 | 90.23 135 | 91.36 157 | 95.78 160 | 92.74 151 | 90.09 102 | 83.65 206 | 76.33 159 | 71.46 202 | 69.58 202 | 91.84 140 | 95.54 125 | 94.02 150 | 99.06 111 | 99.03 66 |
|
| GBi-Net | | | 93.81 98 | 94.18 93 | 93.38 101 | 91.34 158 | 95.86 154 | 96.22 88 | 88.68 122 | 95.23 91 | 90.40 71 | 86.39 126 | 91.16 82 | 94.40 107 | 96.52 92 | 96.30 80 | 99.21 87 | 97.79 135 |
|
| test1 | | | 93.81 98 | 94.18 93 | 93.38 101 | 91.34 158 | 95.86 154 | 96.22 88 | 88.68 122 | 95.23 91 | 90.40 71 | 86.39 126 | 91.16 82 | 94.40 107 | 96.52 92 | 96.30 80 | 99.21 87 | 97.79 135 |
|
| FMVSNet2 | | | 93.30 109 | 93.36 112 | 93.22 104 | 91.34 158 | 95.86 154 | 96.22 88 | 88.24 128 | 95.15 97 | 89.92 82 | 81.64 153 | 89.36 96 | 94.40 107 | 96.77 81 | 96.98 67 | 99.21 87 | 97.79 135 |
|
| FMVSNet3 | | | 93.79 100 | 94.17 95 | 93.35 103 | 91.21 161 | 95.99 147 | 96.62 77 | 88.68 122 | 95.23 91 | 90.40 71 | 86.39 126 | 91.16 82 | 94.11 111 | 95.96 112 | 96.67 74 | 99.07 108 | 97.79 135 |
|
| TransMVSNet (Re) | | | 87.73 180 | 86.79 191 | 88.83 152 | 90.76 162 | 94.40 196 | 91.33 180 | 89.62 112 | 84.73 203 | 75.41 166 | 72.73 195 | 71.41 192 | 86.80 185 | 94.53 146 | 93.93 152 | 99.06 111 | 95.83 177 |
|
| LTVRE_ROB | | 87.32 16 | 87.55 181 | 88.25 170 | 86.73 186 | 90.66 163 | 95.80 159 | 93.05 147 | 84.77 169 | 83.35 207 | 60.32 216 | 83.12 148 | 67.39 209 | 93.32 126 | 94.36 151 | 94.86 126 | 98.28 170 | 98.87 86 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| EG-PatchMatch MVS | | | 86.68 189 | 87.24 185 | 86.02 193 | 90.58 164 | 96.26 142 | 91.08 183 | 81.59 187 | 84.96 202 | 69.80 197 | 71.35 203 | 75.08 176 | 84.23 201 | 94.24 154 | 93.35 163 | 98.82 135 | 95.46 184 |
|
| TESTMET0.1,1 | | | 91.07 133 | 93.56 109 | 88.17 160 | 90.43 165 | 96.57 133 | 92.02 170 | 82.83 183 | 92.34 144 | 75.05 171 | 90.20 96 | 88.64 104 | 90.93 153 | 96.19 108 | 94.07 148 | 97.75 183 | 96.90 167 |
|
| pm-mvs1 | | | 89.19 160 | 89.02 163 | 89.38 148 | 90.40 166 | 95.74 161 | 92.05 168 | 88.10 130 | 86.13 197 | 77.70 148 | 73.72 190 | 79.44 156 | 88.97 176 | 95.81 118 | 94.51 140 | 99.08 106 | 97.78 140 |
|
| NR-MVSNet | | | 89.34 156 | 88.66 165 | 90.13 140 | 90.40 166 | 95.61 163 | 93.04 148 | 89.91 104 | 91.22 156 | 78.96 144 | 77.72 170 | 68.90 205 | 89.16 175 | 94.24 154 | 93.95 151 | 99.32 64 | 98.99 71 |
|
| FMVSNet1 | | | 91.54 129 | 90.93 150 | 92.26 111 | 90.35 168 | 95.27 176 | 95.22 112 | 87.16 139 | 91.37 155 | 87.62 105 | 75.45 176 | 83.84 137 | 94.43 105 | 96.52 92 | 96.30 80 | 98.82 135 | 97.74 141 |
|
| test-mter | | | 90.95 134 | 93.54 111 | 87.93 170 | 90.28 169 | 96.80 124 | 91.44 176 | 82.68 184 | 92.15 148 | 74.37 175 | 89.57 102 | 88.23 109 | 90.88 156 | 96.37 99 | 94.31 144 | 97.93 180 | 97.37 152 |
|
| pmmvs4 | | | 90.55 140 | 89.91 157 | 91.30 123 | 90.26 170 | 94.95 184 | 92.73 152 | 87.94 131 | 93.44 125 | 85.35 115 | 82.28 152 | 76.09 171 | 93.02 131 | 93.56 162 | 92.26 185 | 98.51 162 | 96.77 169 |
|
| MVS-HIRNet | | | 85.36 197 | 86.89 190 | 83.57 199 | 90.13 171 | 94.51 194 | 83.57 210 | 72.61 214 | 88.27 183 | 71.22 187 | 68.97 206 | 81.81 147 | 88.91 177 | 93.08 170 | 91.94 186 | 94.97 209 | 89.64 212 |
|
| thisisatest0515 | | | 90.12 148 | 92.06 137 | 87.85 171 | 90.03 172 | 96.17 144 | 87.83 198 | 87.45 135 | 91.71 152 | 77.15 152 | 85.40 134 | 84.01 136 | 85.74 192 | 95.41 130 | 93.30 165 | 98.88 130 | 98.43 109 |
|
| SixPastTwentyTwo | | | 88.37 169 | 89.47 160 | 87.08 183 | 90.01 173 | 95.93 153 | 87.41 199 | 85.32 161 | 90.26 169 | 70.26 191 | 86.34 129 | 71.95 189 | 90.93 153 | 92.89 174 | 91.72 188 | 98.55 159 | 97.22 156 |
|
| UniMVSNet (Re) | | | 90.03 150 | 89.61 159 | 90.51 133 | 89.97 174 | 96.12 145 | 92.32 160 | 89.26 116 | 90.99 160 | 80.95 137 | 78.25 169 | 75.08 176 | 91.14 149 | 93.78 157 | 93.87 154 | 99.41 49 | 99.21 42 |
|
| pmnet_mix02 | | | 86.12 194 | 87.12 188 | 84.96 196 | 89.82 175 | 94.12 200 | 84.88 207 | 86.63 144 | 91.78 151 | 65.60 205 | 80.76 159 | 76.98 168 | 86.61 187 | 87.29 209 | 84.80 212 | 96.21 193 | 94.09 193 |
|
| our_test_3 | | | | | | 89.78 176 | 93.84 202 | 85.59 204 | | | | | | | | | | |
|
| UniMVSNet_NR-MVSNet | | | 90.35 143 | 89.96 156 | 90.80 129 | 89.66 177 | 95.83 157 | 92.48 156 | 90.53 99 | 90.96 161 | 79.57 141 | 79.33 166 | 77.14 167 | 93.21 129 | 92.91 173 | 94.50 141 | 99.37 58 | 99.05 63 |
|
| v8 | | | 88.21 172 | 87.94 177 | 88.51 155 | 89.62 178 | 95.01 182 | 92.31 161 | 84.99 166 | 88.94 174 | 74.70 173 | 75.03 178 | 73.51 183 | 90.67 161 | 92.11 184 | 92.74 177 | 98.80 140 | 98.24 122 |
|
| WR-MVS_H | | | 87.93 175 | 87.85 178 | 88.03 167 | 89.62 178 | 95.58 167 | 90.47 188 | 85.55 158 | 87.20 192 | 76.83 155 | 74.42 185 | 72.67 187 | 86.37 188 | 93.22 168 | 93.04 168 | 99.33 62 | 98.83 90 |
|
| pmmvs5 | | | 87.83 179 | 88.09 172 | 87.51 180 | 89.59 180 | 95.48 168 | 89.75 193 | 84.73 170 | 86.07 199 | 71.44 185 | 80.57 161 | 70.09 200 | 90.74 160 | 94.47 147 | 92.87 173 | 98.82 135 | 97.10 158 |
|
| gm-plane-assit | | | 83.26 203 | 85.29 200 | 80.89 203 | 89.52 181 | 89.89 214 | 70.26 220 | 78.24 196 | 77.11 217 | 58.01 220 | 74.16 187 | 66.90 210 | 90.63 163 | 97.20 67 | 96.05 90 | 98.66 153 | 95.68 180 |
|
| v10 | | | 88.00 173 | 87.96 175 | 88.05 165 | 89.44 182 | 94.68 190 | 92.36 159 | 83.35 179 | 89.37 173 | 72.96 179 | 73.98 188 | 72.79 186 | 91.35 147 | 93.59 159 | 92.88 172 | 98.81 138 | 98.42 111 |
|
| V42 | | | 88.31 170 | 87.95 176 | 88.73 153 | 89.44 182 | 95.34 173 | 92.23 164 | 87.21 138 | 88.83 176 | 74.49 174 | 74.89 180 | 73.43 184 | 90.41 167 | 92.08 186 | 92.77 176 | 98.60 158 | 98.33 118 |
|
| v148 | | | 87.51 182 | 86.79 191 | 88.36 157 | 89.39 184 | 95.21 178 | 89.84 192 | 88.20 129 | 87.61 189 | 77.56 149 | 73.38 193 | 70.32 199 | 86.80 185 | 90.70 196 | 92.31 183 | 98.37 169 | 97.98 133 |
|
| CP-MVSNet | | | 87.89 178 | 87.27 184 | 88.62 154 | 89.30 185 | 95.06 180 | 90.60 187 | 85.78 154 | 87.43 191 | 75.98 161 | 74.60 182 | 68.14 208 | 90.76 158 | 93.07 171 | 93.60 159 | 99.30 69 | 98.98 73 |
|
| v1144 | | | 87.92 177 | 87.79 179 | 88.07 162 | 89.27 186 | 95.15 179 | 92.17 165 | 85.62 156 | 88.52 180 | 71.52 184 | 73.80 189 | 72.40 188 | 91.06 151 | 93.54 163 | 92.80 174 | 98.81 138 | 98.33 118 |
|
| DU-MVS | | | 89.67 153 | 88.84 164 | 90.63 132 | 89.26 187 | 95.61 163 | 92.48 156 | 89.91 104 | 91.22 156 | 79.57 141 | 77.72 170 | 71.18 193 | 93.21 129 | 92.53 177 | 94.57 135 | 99.35 61 | 99.05 63 |
|
| WR-MVS | | | 87.93 175 | 88.09 172 | 87.75 172 | 89.26 187 | 95.28 174 | 90.81 185 | 86.69 143 | 88.90 175 | 75.29 167 | 74.31 186 | 73.72 182 | 85.19 196 | 92.26 180 | 93.32 164 | 99.27 73 | 98.81 92 |
|
| Baseline_NR-MVSNet | | | 89.27 158 | 88.01 174 | 90.73 131 | 89.26 187 | 93.71 203 | 92.71 153 | 89.78 110 | 90.73 162 | 81.28 134 | 73.53 191 | 72.85 185 | 92.30 136 | 92.53 177 | 93.84 156 | 99.07 108 | 98.88 84 |
|
| N_pmnet | | | 84.80 198 | 85.10 202 | 84.45 197 | 89.25 190 | 92.86 206 | 84.04 208 | 86.21 147 | 88.78 177 | 66.73 203 | 72.41 198 | 74.87 178 | 85.21 195 | 88.32 205 | 86.45 207 | 95.30 204 | 92.04 206 |
|
| v2v482 | | | 88.25 171 | 87.71 181 | 88.88 151 | 89.23 191 | 95.28 174 | 92.10 166 | 87.89 132 | 88.69 179 | 73.31 178 | 75.32 177 | 71.64 190 | 91.89 139 | 92.10 185 | 92.92 171 | 98.86 133 | 97.99 131 |
|
| PS-CasMVS | | | 87.33 185 | 86.68 194 | 88.10 161 | 89.22 192 | 94.93 185 | 90.35 190 | 85.70 155 | 86.44 196 | 74.01 176 | 73.43 192 | 66.59 214 | 90.04 169 | 92.92 172 | 93.52 160 | 99.28 71 | 98.91 82 |
|
| TranMVSNet+NR-MVSNet | | | 89.23 159 | 88.48 168 | 90.11 141 | 89.07 193 | 95.25 177 | 92.91 149 | 90.43 100 | 90.31 167 | 77.10 153 | 76.62 174 | 71.57 191 | 91.83 141 | 92.12 183 | 94.59 134 | 99.32 64 | 98.92 79 |
|
| v1192 | | | 87.51 182 | 87.31 183 | 87.74 173 | 89.04 194 | 94.87 188 | 92.07 167 | 85.03 165 | 88.49 181 | 70.32 190 | 72.65 196 | 70.35 198 | 91.21 148 | 93.59 159 | 92.80 174 | 98.78 143 | 98.42 111 |
|
| v144192 | | | 87.40 184 | 87.20 186 | 87.64 174 | 88.89 195 | 94.88 187 | 91.65 175 | 84.70 171 | 87.80 186 | 71.17 188 | 73.20 194 | 70.91 194 | 90.75 159 | 92.69 175 | 92.49 180 | 98.71 147 | 98.43 109 |
|
| PEN-MVS | | | 87.22 187 | 86.50 196 | 88.07 162 | 88.88 196 | 94.44 195 | 90.99 184 | 86.21 147 | 86.53 195 | 73.66 177 | 74.97 179 | 66.56 215 | 89.42 174 | 91.20 194 | 93.48 161 | 99.24 77 | 98.31 121 |
|
| v1921920 | | | 87.31 186 | 87.13 187 | 87.52 179 | 88.87 197 | 94.72 189 | 91.96 172 | 84.59 173 | 88.28 182 | 69.86 196 | 72.50 197 | 70.03 201 | 91.10 150 | 93.33 166 | 92.61 179 | 98.71 147 | 98.44 108 |
|
| pmmvs6 | | | 85.98 195 | 84.89 203 | 87.25 182 | 88.83 198 | 94.35 197 | 89.36 194 | 85.30 163 | 78.51 216 | 75.44 165 | 62.71 216 | 75.41 173 | 87.65 181 | 93.58 161 | 92.40 182 | 96.89 190 | 97.29 155 |
|
| v1240 | | | 86.89 188 | 86.75 193 | 87.06 184 | 88.75 199 | 94.65 192 | 91.30 181 | 84.05 175 | 87.49 190 | 68.94 200 | 71.96 200 | 68.86 206 | 90.65 162 | 93.33 166 | 92.72 178 | 98.67 150 | 98.24 122 |
|
| anonymousdsp | | | 88.90 164 | 91.00 149 | 86.44 189 | 88.74 200 | 95.97 149 | 90.40 189 | 82.86 182 | 88.77 178 | 67.33 202 | 81.18 157 | 81.44 149 | 90.22 168 | 96.23 104 | 94.27 145 | 99.12 102 | 99.16 49 |
|
| EU-MVSNet | | | 85.62 196 | 87.65 182 | 83.24 201 | 88.54 201 | 92.77 207 | 87.12 200 | 85.32 161 | 86.71 193 | 64.54 207 | 78.52 168 | 75.11 175 | 78.35 207 | 92.25 181 | 92.28 184 | 95.58 201 | 95.93 176 |
|
| DTE-MVSNet | | | 86.67 190 | 86.09 197 | 87.35 181 | 88.45 202 | 94.08 201 | 90.65 186 | 86.05 151 | 86.13 197 | 72.19 181 | 74.58 184 | 66.77 213 | 87.61 182 | 90.31 197 | 93.12 167 | 99.13 100 | 97.62 145 |
|
| FMVSNet5 | | | 90.36 142 | 90.93 150 | 89.70 143 | 87.99 203 | 92.25 208 | 92.03 169 | 83.51 178 | 92.20 147 | 84.13 118 | 85.59 133 | 86.48 114 | 92.43 134 | 94.61 143 | 94.52 139 | 98.13 174 | 90.85 209 |
|
| v7n | | | 86.43 191 | 86.52 195 | 86.33 190 | 87.91 204 | 94.93 185 | 90.15 191 | 83.05 180 | 86.57 194 | 70.21 192 | 71.48 201 | 66.78 212 | 87.72 180 | 94.19 156 | 92.96 170 | 98.92 126 | 98.76 95 |
|
| test20.03 | | | 82.92 204 | 85.52 199 | 79.90 206 | 87.75 205 | 91.84 209 | 82.80 211 | 82.99 181 | 82.65 211 | 60.32 216 | 78.90 167 | 70.50 195 | 67.10 215 | 92.05 187 | 90.89 190 | 98.44 166 | 91.80 207 |
|
| MDTV_nov1_ep13_2view | | | 86.30 192 | 88.27 169 | 84.01 198 | 87.71 206 | 94.67 191 | 88.08 197 | 76.78 202 | 90.59 166 | 68.66 201 | 80.46 163 | 80.12 153 | 87.58 183 | 89.95 201 | 88.20 202 | 95.25 206 | 93.90 198 |
|
| Anonymous20231206 | | | 83.84 202 | 85.19 201 | 82.26 202 | 87.38 207 | 92.87 205 | 85.49 205 | 83.65 177 | 86.07 199 | 63.44 211 | 68.42 207 | 69.01 204 | 75.45 211 | 93.34 165 | 92.44 181 | 98.12 176 | 94.20 191 |
|
| FPMVS | | | 75.84 210 | 74.59 214 | 77.29 210 | 86.92 208 | 83.89 219 | 85.01 206 | 80.05 193 | 82.91 209 | 60.61 215 | 65.25 213 | 60.41 219 | 63.86 216 | 75.60 217 | 73.60 219 | 87.29 220 | 80.47 217 |
|
| MIMVSNet | | | 88.99 163 | 91.07 148 | 86.57 188 | 86.78 209 | 95.62 162 | 91.20 182 | 75.40 209 | 90.65 164 | 76.57 156 | 84.05 143 | 82.44 146 | 91.01 152 | 95.84 116 | 95.38 110 | 98.48 164 | 93.50 201 |
|
| tmp_tt | | | | | 66.88 213 | 86.07 210 | 73.86 222 | 68.22 221 | 33.38 223 | 96.88 48 | 80.67 138 | 88.23 111 | 78.82 158 | 49.78 220 | 82.68 214 | 77.47 217 | 83.19 222 | |
|
| WB-MVS | | | 69.22 212 | 76.91 213 | 60.24 216 | 85.80 211 | 79.37 220 | 56.86 225 | 84.96 167 | 81.50 212 | 18.16 228 | 76.85 172 | 61.07 217 | 34.23 223 | 82.46 215 | 81.81 214 | 81.43 223 | 75.31 221 |
|
| PM-MVS | | | 84.72 200 | 84.47 204 | 85.03 195 | 84.67 212 | 91.57 210 | 86.27 203 | 82.31 186 | 87.65 188 | 70.62 189 | 76.54 175 | 56.41 223 | 88.75 178 | 92.59 176 | 89.85 197 | 97.54 186 | 96.66 172 |
|
| pmmvs-eth3d | | | 84.33 201 | 82.94 206 | 85.96 194 | 84.16 213 | 90.94 211 | 86.55 202 | 83.79 176 | 84.25 204 | 75.85 163 | 70.64 204 | 56.43 222 | 87.44 184 | 92.20 182 | 90.41 194 | 97.97 179 | 95.68 180 |
|
| new-patchmatchnet | | | 78.49 209 | 78.19 212 | 78.84 208 | 84.13 214 | 90.06 213 | 77.11 218 | 80.39 192 | 79.57 215 | 59.64 219 | 66.01 212 | 55.65 224 | 75.62 210 | 84.55 212 | 80.70 215 | 96.14 195 | 90.77 210 |
|
| new_pmnet | | | 81.53 205 | 82.68 207 | 80.20 204 | 83.47 215 | 89.47 215 | 82.21 213 | 78.36 195 | 87.86 185 | 60.14 218 | 67.90 209 | 69.43 203 | 82.03 205 | 89.22 203 | 87.47 205 | 94.99 208 | 87.39 214 |
|
| ET-MVSNet_ETH3D | | | 93.34 108 | 94.33 90 | 92.18 112 | 83.26 216 | 97.66 104 | 96.72 75 | 89.89 106 | 95.62 82 | 87.17 108 | 96.00 39 | 83.69 139 | 96.99 57 | 93.78 157 | 95.34 111 | 99.06 111 | 98.18 125 |
|
| pmmvs3 | | | 79.16 208 | 80.12 210 | 78.05 209 | 79.36 217 | 86.59 217 | 78.13 217 | 73.87 213 | 76.42 218 | 57.51 221 | 70.59 205 | 57.02 221 | 84.66 199 | 90.10 199 | 88.32 201 | 94.75 211 | 91.77 208 |
|
| PMVS |  | 63.12 18 | 67.27 214 | 66.39 217 | 68.30 212 | 77.98 218 | 60.24 225 | 59.53 224 | 76.82 200 | 66.65 220 | 60.74 214 | 54.39 218 | 59.82 220 | 51.24 219 | 73.92 220 | 70.52 220 | 83.48 221 | 79.17 219 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MDA-MVSNet-bldmvs | | | 80.11 206 | 80.24 209 | 79.94 205 | 77.01 219 | 93.21 204 | 78.86 216 | 85.94 153 | 82.71 210 | 60.86 213 | 79.71 165 | 51.77 225 | 83.71 204 | 75.60 217 | 86.37 208 | 93.28 214 | 92.35 204 |
|
| ambc | | | | 73.83 215 | | 76.23 220 | 85.13 218 | 82.27 212 | | 84.16 205 | 65.58 206 | 52.82 219 | 23.31 230 | 73.55 212 | 91.41 193 | 85.26 211 | 92.97 215 | 94.70 186 |
|
| Gipuma |  | | 68.35 213 | 66.71 216 | 70.27 211 | 74.16 221 | 68.78 223 | 63.93 223 | 71.77 216 | 83.34 208 | 54.57 222 | 34.37 221 | 31.88 227 | 68.69 214 | 83.30 213 | 85.53 210 | 88.48 218 | 79.78 218 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MIMVSNet1 | | | 80.03 207 | 80.93 208 | 78.97 207 | 72.46 222 | 90.73 212 | 80.81 214 | 82.44 185 | 80.39 213 | 63.64 209 | 57.57 217 | 64.93 216 | 76.37 209 | 91.66 190 | 91.55 189 | 98.07 177 | 89.70 211 |
|
| PMMVS2 | | | 64.36 216 | 65.94 218 | 62.52 215 | 67.37 223 | 77.44 221 | 64.39 222 | 69.32 220 | 61.47 221 | 34.59 224 | 46.09 220 | 41.03 226 | 48.02 222 | 74.56 219 | 78.23 216 | 91.43 216 | 82.76 216 |
|
| EMVS | | | 49.98 218 | 46.76 221 | 53.74 218 | 64.96 224 | 51.29 227 | 37.81 227 | 69.35 219 | 51.83 222 | 22.69 227 | 29.57 223 | 25.06 228 | 57.28 217 | 44.81 223 | 56.11 222 | 70.32 225 | 68.64 223 |
|
| E-PMN | | | 50.67 217 | 47.85 220 | 53.96 217 | 64.13 225 | 50.98 228 | 38.06 226 | 69.51 218 | 51.40 223 | 24.60 226 | 29.46 224 | 24.39 229 | 56.07 218 | 48.17 222 | 59.70 221 | 71.40 224 | 70.84 222 |
|
| test_method | | | 72.96 211 | 78.68 211 | 66.28 214 | 50.17 226 | 64.90 224 | 75.45 219 | 50.90 222 | 87.89 184 | 62.54 212 | 62.98 215 | 68.34 207 | 70.45 213 | 91.90 189 | 82.41 213 | 88.19 219 | 92.35 204 |
|
| MVE |  | 50.86 19 | 49.54 219 | 51.43 219 | 47.33 219 | 44.14 227 | 59.20 226 | 36.45 228 | 60.59 221 | 41.47 224 | 31.14 225 | 29.58 222 | 17.06 231 | 48.52 221 | 62.22 221 | 74.63 218 | 63.12 226 | 75.87 220 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| testmvs | | | 12.09 220 | 16.94 222 | 6.42 221 | 3.15 228 | 6.08 229 | 9.51 230 | 3.84 224 | 21.46 225 | 5.31 229 | 27.49 225 | 6.76 232 | 10.89 224 | 17.06 224 | 15.01 223 | 5.84 227 | 24.75 224 |
|
| GG-mvs-BLEND | | | 66.17 215 | 94.91 82 | 32.63 220 | 1.32 229 | 96.64 131 | 91.40 177 | 0.85 226 | 94.39 110 | 2.20 230 | 90.15 98 | 95.70 62 | 2.27 226 | 96.39 96 | 95.44 109 | 97.78 181 | 95.68 180 |
|
| test123 | | | 9.58 221 | 13.53 223 | 4.97 222 | 1.31 230 | 5.47 230 | 8.32 231 | 2.95 225 | 18.14 226 | 2.03 231 | 20.82 226 | 2.34 233 | 10.60 225 | 10.00 225 | 14.16 224 | 4.60 228 | 23.77 225 |
|
| uanet_test | | | 0.00 222 | 0.00 224 | 0.00 223 | 0.00 231 | 0.00 231 | 0.00 232 | 0.00 227 | 0.00 227 | 0.00 232 | 0.00 227 | 0.00 234 | 0.00 227 | 0.00 226 | 0.00 225 | 0.00 229 | 0.00 226 |
|
| sosnet-low-res | | | 0.00 222 | 0.00 224 | 0.00 223 | 0.00 231 | 0.00 231 | 0.00 232 | 0.00 227 | 0.00 227 | 0.00 232 | 0.00 227 | 0.00 234 | 0.00 227 | 0.00 226 | 0.00 225 | 0.00 229 | 0.00 226 |
|
| sosnet | | | 0.00 222 | 0.00 224 | 0.00 223 | 0.00 231 | 0.00 231 | 0.00 232 | 0.00 227 | 0.00 227 | 0.00 232 | 0.00 227 | 0.00 234 | 0.00 227 | 0.00 226 | 0.00 225 | 0.00 229 | 0.00 226 |
|
| RE-MVS-def | | | | | | | | | | | 63.50 210 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 99.28 12 | | | | | |
|
| MTAPA | | | | | | | | | | | 96.83 10 | | 99.12 21 | | | | | |
|
| MTMP | | | | | | | | | | | 97.18 5 | | 98.83 26 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 34.61 229 | | | | | | | | | | |
|
| NP-MVS | | | | | | | | | | 95.32 88 | | | | | | | | |
|
| Patchmtry | | | | | | | 95.96 150 | 93.36 142 | 75.99 207 | | 75.19 168 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 86.86 216 | 79.50 215 | 70.43 217 | 90.73 162 | 63.66 208 | 80.36 164 | 60.83 218 | 79.68 206 | 76.23 216 | | 89.46 217 | 86.53 215 |
|