This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
CS-MVS96.87 4397.41 3996.24 4597.42 6099.48 997.30 5691.83 8197.17 3993.02 4094.80 5294.45 6798.16 3098.61 1397.85 3999.69 199.50 12
TSAR-MVS + MP.98.49 998.78 898.15 1998.14 5099.17 3399.34 697.18 2998.44 595.72 1997.84 1699.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
IS_MVSNet95.28 6396.43 5693.94 8995.30 9399.01 4795.90 9891.12 9294.13 11387.50 10591.23 8394.45 6794.17 10998.45 2098.50 799.65 399.23 37
casdiffmvs_mvgpermissive94.55 7894.26 9094.88 7294.96 10398.51 8197.11 5891.82 8294.28 11089.20 9286.60 12086.85 11296.56 6797.47 6097.25 6199.64 498.83 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APDe-MVS98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 599.57 9
EC-MVSNet96.49 4997.63 3495.16 6494.75 11198.69 7097.39 5588.97 11996.34 5792.02 5296.04 3896.46 5198.21 2698.41 2497.96 3299.61 699.55 10
test250694.32 8693.00 11595.87 5196.16 7799.39 1596.96 6292.80 6495.22 9394.47 2791.55 8170.45 19595.25 9198.29 2897.98 2999.59 798.10 127
ECVR-MVScopyleft94.14 8892.96 11695.52 5896.16 7799.39 1596.96 6292.80 6495.22 9392.38 4881.48 15480.31 15095.25 9198.29 2897.98 2999.59 798.05 128
SD-MVS98.52 898.77 998.23 1598.15 4999.26 2698.79 2697.59 1598.52 396.25 1597.99 1599.75 699.01 398.27 3297.97 3199.59 799.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MCST-MVS98.20 1898.36 1998.01 2299.40 1499.05 3799.00 2097.62 1397.59 2893.70 3397.42 2799.30 1198.77 1398.39 2697.48 5099.59 799.31 27
test111193.94 9392.78 11795.29 6396.14 7999.42 1196.79 7192.85 6395.08 9791.39 5780.69 15979.86 15395.00 9598.28 3198.00 2899.58 1198.11 126
UA-Net93.96 9295.95 6291.64 11796.06 8098.59 7995.29 10990.00 10391.06 15782.87 12390.64 9198.06 4086.06 18998.14 3998.20 1999.58 1196.96 163
EPP-MVSNet95.27 6496.18 6094.20 8794.88 10598.64 7594.97 11590.70 9695.34 8689.67 8491.66 7993.84 7095.42 8997.32 6497.00 6599.58 1199.47 15
ETV-MVS96.31 5197.47 3894.96 7094.79 10898.78 6496.08 9291.41 8996.16 6290.50 6995.76 4296.20 5797.39 4598.42 2397.82 4099.57 1499.18 46
CS-MVS-test97.00 3997.85 3396.00 5097.77 5599.56 596.35 8691.95 7697.54 2992.20 4996.14 3696.00 6198.19 2898.46 1997.78 4299.57 1499.45 16
Vis-MVSNet (Re-imp)94.46 8196.24 5892.40 10895.23 9698.64 7595.56 10690.99 9394.42 10785.02 11590.88 9094.65 6688.01 17898.17 3798.37 1699.57 1498.53 103
DPE-MVScopyleft98.75 598.91 698.57 599.21 2399.54 699.42 297.78 697.49 3196.84 998.94 199.82 598.59 2198.90 1098.22 1899.56 1799.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP98.38 1498.71 1097.99 2399.34 2099.46 1099.34 697.33 2497.31 3594.25 2998.06 1399.17 1998.13 3198.98 598.46 999.55 1899.54 11
Skip Steuart: Steuart Systems R&D Blog.
canonicalmvs95.25 6595.45 6995.00 6895.27 9598.72 6896.89 6589.82 10796.51 5490.84 6593.72 5886.01 11997.66 4195.78 11997.94 3499.54 1999.50 12
casdiffmvspermissive94.38 8594.15 9694.64 8194.70 11598.51 8196.03 9591.66 8495.70 7889.36 8986.48 12485.03 12996.60 6697.40 6297.30 5899.52 2098.67 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline194.59 7794.47 8594.72 7895.16 9897.97 9996.07 9391.94 7794.86 10089.98 7891.60 8085.87 12195.64 8197.07 7296.90 6899.52 2097.06 162
APD-MVScopyleft98.36 1598.32 2398.41 899.47 599.26 2699.12 1597.77 796.73 5096.12 1697.27 2898.88 2498.46 2598.47 1898.39 1499.52 2099.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Vis-MVSNetpermissive92.77 11295.00 8090.16 13694.10 12598.79 6394.76 12188.26 12692.37 14279.95 13888.19 11191.58 8184.38 19997.59 5797.58 4899.52 2098.91 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2499.16 2699.03 4399.05 1897.24 2698.22 1094.17 3195.82 4098.07 3998.69 1698.83 1198.80 299.52 2099.10 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS98.32 1798.34 2298.29 1299.34 2099.30 2299.15 1497.35 2197.49 3195.58 2197.72 1898.62 3498.82 1198.29 2897.67 4599.51 2599.28 28
DeepC-MVS94.87 496.76 4896.50 5497.05 3598.21 4899.28 2498.67 2797.38 2097.31 3590.36 7489.19 10293.58 7298.19 2898.31 2798.50 799.51 2599.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR98.40 1298.49 1398.28 1399.41 1399.40 1399.36 497.35 2198.30 695.02 2597.79 1798.39 3799.04 298.26 3398.10 2399.50 2799.22 39
HFP-MVS98.48 1098.62 1198.32 1199.39 1799.33 2199.27 1097.42 1898.27 795.25 2398.34 1098.83 2699.08 198.26 3398.08 2599.48 2899.26 33
MP-MVScopyleft98.09 2298.30 2497.84 2699.34 2099.19 3299.23 1397.40 1997.09 4393.03 3997.58 2298.85 2598.57 2398.44 2297.69 4499.48 2899.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS97.81 2598.11 2897.46 2999.55 399.34 2099.32 994.51 4596.21 6193.07 3698.05 1497.95 4298.82 1198.22 3697.89 3799.48 2899.09 54
3Dnovator93.79 897.08 3797.20 4196.95 3799.09 2899.03 4398.20 3993.33 5297.99 1593.82 3290.61 9296.80 4997.82 3797.90 4898.78 399.47 3199.26 33
XVS96.60 6999.35 1796.82 6890.85 6298.72 3099.46 32
X-MVStestdata96.60 6999.35 1796.82 6890.85 6298.72 3099.46 32
X-MVS97.84 2498.19 2797.42 3099.40 1499.35 1799.06 1797.25 2597.38 3490.85 6296.06 3798.72 3098.53 2498.41 2498.15 2299.46 3299.28 28
ACMMPcopyleft97.37 3397.48 3797.25 3198.88 3799.28 2498.47 3496.86 3497.04 4592.15 5097.57 2396.05 6097.67 4097.27 6595.99 9299.46 3299.14 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SF-MVS98.39 1398.45 1798.33 1099.45 999.05 3798.27 3797.65 997.73 1997.02 798.18 1299.25 1598.11 3298.15 3897.62 4699.45 3699.19 43
tfpn200view993.64 10092.57 12094.89 7195.33 9198.94 5196.82 6892.31 6892.63 13388.29 9787.21 11378.01 16197.12 5396.82 7795.85 9799.45 3698.56 100
thres600view793.49 10592.37 13194.79 7795.42 8898.93 5396.58 7992.31 6893.04 12787.88 10286.62 11976.94 16897.09 5496.82 7795.63 10299.45 3698.63 97
thres20093.62 10192.54 12194.88 7295.36 9098.93 5396.75 7392.31 6892.84 13088.28 9986.99 11577.81 16497.13 5196.82 7795.92 9399.45 3698.49 106
DELS-MVS96.06 5496.04 6196.07 4997.77 5599.25 2898.10 4193.26 5494.42 10792.79 4388.52 10993.48 7395.06 9498.51 1698.83 199.45 3699.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS97.78 2698.44 1897.02 3698.73 3899.25 2898.11 4095.54 3996.66 5392.79 4398.52 699.38 997.50 4497.84 4998.39 1499.45 3699.03 65
CDPH-MVS96.84 4597.49 3696.09 4798.92 3498.85 6198.61 2895.09 4196.00 6987.29 10695.45 4697.42 4397.16 5097.83 5097.94 3499.44 4298.92 78
TSAR-MVS + GP.97.45 3198.36 1996.39 4195.56 8798.93 5397.74 4993.31 5397.61 2794.24 3098.44 999.19 1798.03 3597.60 5697.41 5399.44 4299.33 24
3Dnovator+93.91 797.23 3597.22 4097.24 3298.89 3698.85 6198.26 3893.25 5697.99 1595.56 2290.01 9898.03 4198.05 3497.91 4798.43 1099.44 4299.35 22
DVP-MVS++98.92 199.18 198.61 499.47 599.61 299.39 397.82 198.80 196.86 898.90 299.92 198.67 1799.02 298.20 1999.43 4599.82 1
EIA-MVS95.50 5696.19 5994.69 7994.83 10798.88 6095.93 9791.50 8894.47 10689.43 8693.14 6192.72 7797.05 5597.82 5297.13 6399.43 4599.15 49
thres40093.56 10392.43 12894.87 7495.40 8998.91 5696.70 7592.38 6792.93 12988.19 10186.69 11877.35 16597.13 5196.75 8295.85 9799.42 4798.56 100
SMA-MVScopyleft98.66 798.89 798.39 999.60 199.41 1299.00 2097.63 1297.78 1895.83 1898.33 1199.83 498.85 998.93 898.56 699.41 4899.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
UniMVSNet (Re)90.03 14989.61 15890.51 13289.97 17396.12 14492.32 15989.26 11590.99 15980.95 13678.25 16875.08 17591.14 14893.78 15693.87 15399.41 4899.21 41
CNVR-MVS98.47 1198.46 1698.48 799.40 1499.05 3799.02 1997.54 1697.73 1996.65 1197.20 2999.13 2098.85 998.91 998.10 2399.41 4899.08 55
MSP-MVS98.73 698.93 598.50 699.44 1199.57 499.36 497.65 998.14 1296.51 1498.49 799.65 898.67 1798.60 1498.42 1199.40 5199.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP98.20 1898.49 1397.85 2599.50 499.40 1399.26 1197.64 1197.47 3392.62 4697.59 2099.09 2298.71 1598.82 1297.86 3899.40 5199.19 43
NCCC98.10 2198.05 3098.17 1899.38 1899.05 3799.00 2097.53 1798.04 1495.12 2494.80 5299.18 1898.58 2298.49 1797.78 4299.39 5398.98 72
thres100view90093.55 10492.47 12794.81 7695.33 9198.74 6696.78 7292.30 7192.63 13388.29 9787.21 11378.01 16196.78 6196.38 9795.92 9399.38 5498.40 112
MVS_030496.31 5196.91 4995.62 5597.21 6599.20 3198.55 3193.10 5997.04 4589.73 8290.30 9496.35 5395.71 7998.14 3997.93 3699.38 5499.40 18
FC-MVSNet-train93.85 9693.91 9893.78 9394.94 10496.79 12694.29 12991.13 9193.84 11888.26 10090.40 9385.23 12694.65 10296.54 9195.31 11199.38 5499.28 28
DVP-MVScopyleft98.86 498.97 398.75 299.43 1299.63 199.25 1297.81 298.62 297.69 197.59 2099.90 298.93 598.99 498.42 1199.37 5799.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_NR-MVSNet90.35 14289.96 15590.80 12889.66 17695.83 15692.48 15590.53 9990.96 16079.57 14079.33 16577.14 16693.21 12892.91 17294.50 14099.37 5799.05 62
SED-MVS98.90 299.07 298.69 399.38 1899.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1799.02 298.26 1799.36 5999.61 6
DU-MVS89.67 15288.84 16390.63 13189.26 18695.61 16292.48 15589.91 10491.22 15579.57 14077.72 16971.18 19293.21 12892.53 17694.57 13499.35 6099.05 62
WR-MVS_H87.93 17487.85 17788.03 16689.62 17795.58 16690.47 18785.55 15787.20 19176.83 15474.42 18372.67 18686.37 18793.22 16793.04 16799.33 6198.83 89
QAPM96.78 4797.14 4496.36 4299.05 2999.14 3598.02 4393.26 5497.27 3790.84 6591.16 8497.31 4497.64 4297.70 5498.20 1999.33 6199.18 46
NR-MVSNet89.34 15588.66 16490.13 13990.40 16595.61 16293.04 14789.91 10491.22 15578.96 14377.72 16968.90 20489.16 17494.24 15393.95 15099.32 6398.99 70
TranMVSNet+NR-MVSNet89.23 15888.48 16790.11 14089.07 19295.25 17692.91 14890.43 10090.31 16677.10 15276.62 17271.57 19091.83 14092.12 18294.59 13399.32 6398.92 78
LGP-MVS_train94.12 8994.62 8293.53 9696.44 7397.54 10497.40 5491.84 7994.66 10281.09 13495.70 4383.36 14095.10 9396.36 10095.71 10199.32 6399.03 65
HPM-MVS++copyleft98.34 1698.47 1598.18 1699.46 899.15 3499.10 1697.69 897.67 2494.93 2697.62 1999.70 798.60 2098.45 2097.46 5199.31 6699.26 33
CLD-MVS94.79 7194.36 8895.30 6295.21 9797.46 10797.23 5792.24 7296.43 5591.77 5492.69 6684.31 13296.06 7395.52 12595.03 12099.31 6699.06 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CP-MVSNet87.89 17787.27 18388.62 15389.30 18495.06 17990.60 18685.78 15387.43 19075.98 16074.60 18068.14 20790.76 15793.07 17093.60 15899.30 6898.98 72
PVSNet_Blended_VisFu94.77 7395.54 6793.87 9196.48 7298.97 4994.33 12891.84 7994.93 9990.37 7385.04 13594.99 6490.87 15698.12 4197.30 5899.30 6899.45 16
PS-CasMVS87.33 18486.68 19388.10 16089.22 19194.93 18490.35 18985.70 15486.44 19574.01 17573.43 19066.59 21390.04 16892.92 17193.52 15999.28 7098.91 81
TAPA-MVS94.18 596.38 5096.49 5596.25 4398.26 4798.66 7298.00 4494.96 4397.17 3989.48 8592.91 6496.35 5397.53 4396.59 8895.90 9599.28 7097.82 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Effi-MVS+92.93 11193.86 10091.86 11394.07 12698.09 9695.59 10585.98 15194.27 11179.54 14291.12 8781.81 14696.71 6396.67 8696.06 8899.27 7298.98 72
WR-MVS87.93 17488.09 17187.75 17189.26 18695.28 17390.81 18486.69 14288.90 17475.29 16674.31 18473.72 18185.19 19592.26 17993.32 16399.27 7298.81 91
MVS_111021_HR97.04 3898.20 2695.69 5498.44 4599.29 2396.59 7893.20 5797.70 2289.94 8098.46 896.89 4796.71 6398.11 4297.95 3399.27 7299.01 68
LS3D95.46 5995.14 7595.84 5297.91 5498.90 5898.58 3097.79 597.07 4483.65 12188.71 10588.64 10497.82 3797.49 5997.42 5299.26 7597.72 141
OPM-MVS93.61 10292.43 12895.00 6896.94 6897.34 11097.78 4894.23 4689.64 17085.53 11388.70 10682.81 14296.28 7196.28 10395.00 12399.24 7697.22 155
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PEN-MVS87.22 18686.50 19588.07 16188.88 19594.44 19490.99 18386.21 14686.53 19473.66 17674.97 17766.56 21489.42 17391.20 19393.48 16099.24 7698.31 120
PVSNet_BlendedMVS95.41 6195.28 7195.57 5697.42 6099.02 4595.89 10093.10 5996.16 6293.12 3491.99 7285.27 12494.66 10098.09 4397.34 5699.24 7699.08 55
PVSNet_Blended95.41 6195.28 7195.57 5697.42 6099.02 4595.89 10093.10 5996.16 6293.12 3491.99 7285.27 12494.66 10098.09 4397.34 5699.24 7699.08 55
CSCG97.44 3297.18 4397.75 2799.47 599.52 898.55 3195.41 4097.69 2395.72 1994.29 5595.53 6398.10 3396.20 10797.38 5599.24 7699.62 4
OpenMVScopyleft92.33 1195.50 5695.22 7395.82 5398.98 3098.97 4997.67 5093.04 6294.64 10389.18 9384.44 14094.79 6596.79 6097.23 6697.61 4799.24 7698.88 83
dmvs_re91.84 12191.60 14292.12 11291.60 15397.26 11295.14 11291.96 7591.02 15880.98 13586.56 12177.96 16393.84 11694.71 14195.08 11899.22 8298.62 98
CANet96.84 4597.20 4196.42 4097.92 5399.24 3098.60 2993.51 5197.11 4293.07 3691.16 8497.24 4596.21 7298.24 3598.05 2699.22 8299.35 22
train_agg97.65 2998.06 2997.18 3398.94 3298.91 5698.98 2497.07 3196.71 5190.66 6797.43 2699.08 2398.20 2797.96 4697.14 6299.22 8299.19 43
ACMM92.75 1094.41 8493.84 10195.09 6696.41 7496.80 12394.88 11893.54 5096.41 5690.16 7592.31 7083.11 14196.32 7096.22 10594.65 13099.22 8297.35 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net93.81 9794.18 9293.38 10091.34 15795.86 15396.22 8788.68 12195.23 9090.40 7086.39 12591.16 8294.40 10696.52 9296.30 7999.21 8697.79 134
test193.81 9794.18 9293.38 10091.34 15795.86 15396.22 8788.68 12195.23 9090.40 7086.39 12591.16 8294.40 10696.52 9296.30 7999.21 8697.79 134
FMVSNet293.30 10893.36 11193.22 10391.34 15795.86 15396.22 8788.24 12795.15 9689.92 8181.64 15289.36 9694.40 10696.77 8196.98 6699.21 8697.79 134
tttt051794.52 8095.44 7093.44 9994.51 11898.68 7194.61 12490.72 9495.61 8286.84 11093.78 5789.26 9894.74 9797.02 7594.86 12599.20 8998.87 85
GeoE92.52 11692.64 11992.39 10993.96 12797.76 10196.01 9685.60 15693.23 12583.94 11881.56 15384.80 13095.63 8296.22 10595.83 9999.19 9099.07 59
thisisatest053094.54 7995.47 6893.46 9894.51 11898.65 7494.66 12290.72 9495.69 8086.90 10993.80 5689.44 9594.74 9796.98 7694.86 12599.19 9098.85 87
DI_MVS_plusplus_trai94.01 9193.63 10594.44 8394.54 11798.26 8997.51 5290.63 9795.88 7389.34 9080.54 16189.36 9695.48 8796.33 10196.27 8299.17 9298.78 93
MSLP-MVS++98.04 2397.93 3298.18 1699.10 2799.09 3698.34 3696.99 3297.54 2996.60 1294.82 5198.45 3598.89 697.46 6198.77 499.17 9299.37 20
AdaColmapbinary97.53 3096.93 4798.24 1499.21 2398.77 6598.47 3497.34 2396.68 5296.52 1395.11 4996.12 5898.72 1497.19 6996.24 8399.17 9298.39 113
Fast-Effi-MVS+91.87 12092.08 13591.62 11992.91 14297.21 11594.93 11684.60 17093.61 12181.49 13283.50 14578.95 15696.62 6596.55 9096.22 8499.16 9598.51 104
FC-MVSNet-test91.63 12593.82 10289.08 14992.02 15196.40 13893.26 14387.26 13693.72 11977.26 15088.61 10889.86 9385.50 19295.72 12395.02 12199.16 9597.44 149
UGNet94.92 6696.63 5292.93 10496.03 8198.63 7794.53 12591.52 8796.23 6090.03 7792.87 6596.10 5986.28 18896.68 8596.60 7599.16 9599.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMP92.88 994.43 8294.38 8794.50 8296.01 8297.69 10295.85 10392.09 7395.74 7789.12 9495.14 4882.62 14494.77 9695.73 12194.67 12999.14 9899.06 60
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DTE-MVSNet86.67 18986.09 19687.35 18088.45 20194.08 20090.65 18586.05 15086.13 19672.19 18074.58 18266.77 21287.61 18190.31 19693.12 16699.13 9997.62 144
OMC-MVS97.00 3996.92 4897.09 3498.69 3998.66 7297.85 4795.02 4298.09 1394.47 2793.15 6096.90 4697.38 4697.16 7096.82 7299.13 9997.65 142
anonymousdsp88.90 16391.00 14886.44 18888.74 19995.97 14890.40 18882.86 18088.77 17767.33 20181.18 15681.44 14890.22 16796.23 10494.27 14499.12 10199.16 48
MVS_Test94.82 6995.66 6493.84 9294.79 10898.35 8696.49 8289.10 11896.12 6587.09 10892.58 6790.61 8896.48 6896.51 9596.89 6999.11 10298.54 102
IB-MVS89.56 1591.71 12492.50 12390.79 12995.94 8398.44 8487.05 20091.38 9093.15 12692.98 4184.78 13685.14 12778.27 20792.47 17894.44 14199.10 10399.08 55
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PLCcopyleft94.95 397.37 3396.77 5198.07 2098.97 3198.21 9097.94 4696.85 3597.66 2597.58 393.33 5996.84 4898.01 3697.13 7196.20 8599.09 10498.01 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pm-mvs189.19 15989.02 16289.38 14790.40 16595.74 16092.05 16788.10 12986.13 19677.70 14773.72 18879.44 15588.97 17595.81 11894.51 13999.08 10597.78 139
PCF-MVS93.95 695.65 5595.14 7596.25 4397.73 5898.73 6797.59 5197.13 3092.50 13789.09 9589.85 9996.65 5096.90 5894.97 13994.89 12499.08 10598.38 114
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Baseline_NR-MVSNet89.27 15788.01 17390.73 13089.26 18693.71 20292.71 15289.78 10990.73 16181.28 13373.53 18972.85 18492.30 13592.53 17693.84 15599.07 10798.88 83
FMVSNet393.79 9994.17 9493.35 10291.21 16095.99 14696.62 7688.68 12195.23 9090.40 7086.39 12591.16 8294.11 11095.96 11296.67 7399.07 10797.79 134
HQP-MVS94.43 8294.57 8394.27 8696.41 7497.23 11496.89 6593.98 4795.94 7183.68 12095.01 5084.46 13195.58 8495.47 12794.85 12899.07 10799.00 69
ET-MVSNet_ETH3D93.34 10794.33 8992.18 11183.26 21497.66 10396.72 7489.89 10695.62 8187.17 10796.00 3983.69 13896.99 5693.78 15695.34 11099.06 11098.18 124
DCV-MVSNet94.76 7495.12 7794.35 8595.10 10195.81 15796.46 8389.49 11396.33 5890.16 7592.55 6890.26 9095.83 7895.52 12596.03 9099.06 11099.33 24
tfpnnormal88.50 16687.01 18890.23 13491.36 15695.78 15992.74 15090.09 10283.65 20576.33 15871.46 20069.58 20191.84 13995.54 12494.02 14999.06 11099.03 65
TransMVSNet (Re)87.73 17986.79 19088.83 15190.76 16194.40 19591.33 17989.62 11184.73 20275.41 16572.73 19371.41 19186.80 18494.53 14593.93 15199.06 11095.83 176
diffmvspermissive94.31 8794.21 9194.42 8494.64 11698.28 8796.36 8591.56 8596.77 4988.89 9688.97 10384.23 13396.01 7696.05 11196.41 7899.05 11498.79 92
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR97.16 3698.01 3196.16 4698.47 4398.98 4896.94 6493.89 4897.64 2691.44 5598.89 396.41 5297.20 4998.02 4597.29 6099.04 11598.85 87
Anonymous20240521192.18 13395.04 10298.20 9196.14 9091.79 8393.93 11474.60 18088.38 10796.48 6895.17 13595.82 10099.00 11699.15 49
MVSTER94.89 6795.07 7894.68 8094.71 11396.68 12997.00 6090.57 9895.18 9593.05 3895.21 4786.41 11693.72 11997.59 5795.88 9699.00 11698.50 105
MSDG94.82 6993.73 10396.09 4798.34 4697.43 10997.06 5996.05 3795.84 7590.56 6886.30 12989.10 10195.55 8596.13 11095.61 10399.00 11695.73 178
FA-MVS(training)93.94 9395.16 7492.53 10794.87 10698.57 8095.42 10879.49 19295.37 8590.98 6086.54 12294.26 6995.44 8897.80 5395.19 11698.97 11998.38 114
gg-mvs-nofinetune86.17 19288.57 16683.36 19993.44 13598.15 9496.58 7972.05 21374.12 21749.23 22264.81 21290.85 8689.90 17197.83 5096.84 7098.97 11997.41 150
TSAR-MVS + ACMM97.71 2898.60 1296.66 3998.64 4199.05 3798.85 2597.23 2798.45 489.40 8897.51 2499.27 1496.88 5998.53 1597.81 4198.96 12199.59 8
DPM-MVS96.86 4496.82 5096.91 3898.08 5198.20 9198.52 3397.20 2897.24 3891.42 5691.84 7698.45 3597.25 4897.07 7297.40 5498.95 12297.55 145
CNLPA96.90 4296.28 5797.64 2898.56 4298.63 7796.85 6796.60 3697.73 1997.08 689.78 10096.28 5697.80 3996.73 8396.63 7498.94 12398.14 125
ACMH+90.88 1291.41 13091.13 14691.74 11695.11 10096.95 11893.13 14589.48 11492.42 13979.93 13985.13 13478.02 16093.82 11793.49 16393.88 15298.94 12397.99 130
TPM-MVS98.94 3298.47 8398.04 4292.62 4696.51 3398.76 2995.94 7798.92 12597.55 145
v7n86.43 19086.52 19486.33 18987.91 20394.93 18490.15 19083.05 17886.57 19370.21 19171.48 19966.78 21187.72 17994.19 15592.96 16998.92 12598.76 94
test0.0.03 191.97 11993.91 9889.72 14193.31 13896.40 13891.34 17887.06 13993.86 11681.67 13091.15 8689.16 10086.02 19095.08 13695.09 11798.91 12796.64 172
HyFIR lowres test92.03 11891.55 14392.58 10697.13 6698.72 6894.65 12386.54 14493.58 12282.56 12567.75 20890.47 8995.67 8095.87 11595.54 10598.91 12798.93 77
thisisatest051590.12 14792.06 13687.85 17090.03 17196.17 14387.83 19787.45 13491.71 15177.15 15185.40 13384.01 13585.74 19195.41 12993.30 16498.88 12998.43 108
IterMVS-LS92.56 11593.18 11291.84 11493.90 12894.97 18294.99 11486.20 14894.18 11282.68 12485.81 13187.36 11194.43 10495.31 13196.02 9198.87 13098.60 99
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
COLMAP_ROBcopyleft90.49 1493.27 10992.71 11893.93 9097.75 5797.44 10896.07 9393.17 5895.40 8483.86 11983.76 14488.72 10393.87 11494.25 15294.11 14698.87 13095.28 184
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v2v48288.25 17087.71 18088.88 15089.23 19095.28 17392.10 16587.89 13188.69 17873.31 17775.32 17571.64 18991.89 13892.10 18492.92 17098.86 13297.99 130
UniMVSNet_ETH3D88.47 16786.00 19791.35 12191.55 15496.29 14092.53 15488.81 12085.58 20082.33 12667.63 20966.87 21094.04 11291.49 19195.24 11398.84 13398.92 78
pmmvs587.83 17888.09 17187.51 17989.59 17995.48 16789.75 19284.73 16886.07 19871.44 18480.57 16070.09 19990.74 15994.47 14692.87 17298.82 13497.10 157
EG-PatchMatch MVS86.68 18887.24 18486.02 19290.58 16396.26 14191.08 18281.59 18584.96 20169.80 19671.35 20175.08 17584.23 20094.24 15393.35 16298.82 13495.46 183
FMVSNet191.54 12890.93 14992.26 11090.35 16795.27 17595.22 11187.16 13891.37 15487.62 10475.45 17483.84 13694.43 10496.52 9296.30 7998.82 13497.74 140
v114487.92 17687.79 17888.07 16189.27 18595.15 17892.17 16485.62 15588.52 17971.52 18373.80 18772.40 18791.06 15093.54 16292.80 17398.81 13798.33 117
v1088.00 17287.96 17488.05 16489.44 18194.68 18992.36 15883.35 17789.37 17272.96 17873.98 18672.79 18591.35 14693.59 15892.88 17198.81 13798.42 110
Fast-Effi-MVS+-dtu91.19 13193.64 10488.33 15792.19 15096.46 13593.99 13281.52 18792.59 13571.82 18292.17 7185.54 12291.68 14295.73 12194.64 13198.80 13998.34 116
v888.21 17187.94 17688.51 15489.62 17795.01 18192.31 16084.99 16588.94 17374.70 17275.03 17673.51 18290.67 16092.11 18392.74 17698.80 13998.24 121
CDS-MVSNet92.77 11293.60 10691.80 11592.63 14696.80 12395.24 11089.14 11790.30 16784.58 11686.76 11690.65 8790.42 16495.89 11496.49 7698.79 14198.32 119
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v119287.51 18187.31 18287.74 17289.04 19394.87 18792.07 16685.03 16488.49 18070.32 18972.65 19470.35 19791.21 14793.59 15892.80 17398.78 14298.42 110
ACMH90.77 1391.51 12991.63 14191.38 12095.62 8696.87 12191.76 17389.66 11091.58 15278.67 14486.73 11778.12 15993.77 11894.59 14394.54 13798.78 14298.98 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TSAR-MVS + COLMAP94.79 7194.51 8495.11 6596.50 7197.54 10497.99 4594.54 4497.81 1785.88 11296.73 3181.28 14996.99 5696.29 10295.21 11598.76 14496.73 169
MAR-MVS95.50 5695.60 6595.39 6198.67 4098.18 9395.89 10089.81 10894.55 10591.97 5392.99 6290.21 9197.30 4796.79 8097.49 4998.72 14598.99 70
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v14419287.40 18387.20 18587.64 17388.89 19494.88 18691.65 17484.70 16987.80 18571.17 18773.20 19270.91 19390.75 15892.69 17492.49 17998.71 14698.43 108
v192192087.31 18587.13 18687.52 17888.87 19694.72 18891.96 17184.59 17188.28 18169.86 19572.50 19570.03 20091.10 14993.33 16592.61 17898.71 14698.44 107
PatchMatch-RL94.69 7594.41 8695.02 6797.63 5998.15 9494.50 12691.99 7495.32 8791.31 5895.47 4583.44 13996.02 7596.56 8995.23 11498.69 14896.67 170
Anonymous2023121193.49 10592.33 13294.84 7594.78 11098.00 9796.11 9191.85 7894.86 10090.91 6174.69 17989.18 9996.73 6294.82 14095.51 10698.67 14999.24 36
v124086.89 18786.75 19287.06 18388.75 19894.65 19191.30 18084.05 17387.49 18968.94 19971.96 19868.86 20590.65 16193.33 16592.72 17798.67 14998.24 121
baseline293.01 11094.17 9491.64 11792.83 14497.49 10693.40 14087.53 13393.67 12086.07 11191.83 7786.58 11391.36 14596.38 9795.06 11998.67 14998.20 123
gm-plane-assit83.26 20285.29 19980.89 20289.52 18089.89 21370.26 21978.24 19477.11 21558.01 21974.16 18566.90 20990.63 16297.20 6796.05 8998.66 15295.68 179
testgi89.42 15391.50 14487.00 18492.40 14995.59 16489.15 19485.27 16392.78 13172.42 17991.75 7876.00 17184.09 20194.38 14993.82 15698.65 15396.15 173
TDRefinement89.07 16188.15 17090.14 13895.16 9896.88 11995.55 10790.20 10189.68 16976.42 15776.67 17174.30 17884.85 19693.11 16891.91 18698.64 15494.47 187
EPNet96.27 5396.97 4695.46 5998.47 4398.28 8797.41 5393.67 4995.86 7492.86 4297.51 2493.79 7191.76 14197.03 7497.03 6498.61 15599.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
USDC90.69 13690.52 15390.88 12694.17 12496.43 13695.82 10486.76 14193.92 11576.27 15986.49 12374.30 17893.67 12195.04 13893.36 16198.61 15594.13 191
V4288.31 16987.95 17588.73 15289.44 18195.34 17292.23 16387.21 13788.83 17574.49 17374.89 17873.43 18390.41 16692.08 18592.77 17598.60 15798.33 117
SixPastTwentyTwo88.37 16889.47 15987.08 18290.01 17295.93 15287.41 19885.32 16090.26 16870.26 19086.34 12871.95 18890.93 15292.89 17391.72 18798.55 15897.22 155
CPTT-MVS97.78 2697.54 3598.05 2198.91 3599.05 3799.00 2096.96 3397.14 4195.92 1795.50 4498.78 2898.99 497.20 6796.07 8798.54 15999.04 64
GA-MVS89.28 15690.75 15287.57 17691.77 15296.48 13492.29 16187.58 13290.61 16465.77 20384.48 13976.84 16989.46 17295.84 11693.68 15798.52 16097.34 153
pmmvs490.55 13989.91 15691.30 12290.26 16994.95 18392.73 15187.94 13093.44 12485.35 11482.28 15176.09 17093.02 13093.56 16192.26 18498.51 16196.77 168
CANet_DTU93.92 9596.57 5390.83 12795.63 8598.39 8596.99 6187.38 13596.26 5971.97 18196.31 3493.02 7494.53 10397.38 6396.83 7198.49 16297.79 134
MIMVSNet88.99 16291.07 14786.57 18786.78 20895.62 16191.20 18175.40 20790.65 16376.57 15584.05 14282.44 14591.01 15195.84 11695.38 10998.48 16393.50 200
CR-MVSNet90.16 14691.96 13888.06 16393.32 13795.95 15093.36 14175.99 20592.40 14075.19 16783.18 14685.37 12392.05 13695.21 13394.56 13598.47 16497.08 160
test20.0382.92 20385.52 19879.90 20587.75 20491.84 20882.80 21082.99 17982.65 21060.32 21578.90 16670.50 19467.10 21492.05 18690.89 18998.44 16591.80 206
RPMNet90.19 14592.03 13788.05 16493.46 13495.95 15093.41 13974.59 21092.40 14075.91 16184.22 14186.41 11692.49 13294.42 14893.85 15498.44 16596.96 163
PMMVS94.61 7695.56 6693.50 9794.30 12296.74 12794.91 11789.56 11295.58 8387.72 10396.15 3592.86 7596.06 7395.47 12795.02 12198.43 16797.09 158
v14887.51 18186.79 19088.36 15689.39 18395.21 17789.84 19188.20 12887.61 18877.56 14873.38 19170.32 19886.80 18490.70 19592.31 18298.37 16897.98 132
LTVRE_ROB87.32 1687.55 18088.25 16986.73 18590.66 16295.80 15893.05 14684.77 16783.35 20660.32 21583.12 14767.39 20893.32 12594.36 15094.86 12598.28 16998.87 85
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
baseline94.83 6895.82 6393.68 9494.75 11197.80 10096.51 8188.53 12497.02 4789.34 9092.93 6392.18 7994.69 9995.78 11996.08 8698.27 17098.97 76
TinyColmap89.42 15388.58 16590.40 13393.80 13295.45 16993.96 13386.54 14492.24 14576.49 15680.83 15770.44 19693.37 12494.45 14793.30 16498.26 17193.37 202
CHOSEN 1792x268892.66 11492.49 12492.85 10597.13 6698.89 5995.90 9888.50 12595.32 8783.31 12271.99 19788.96 10294.10 11196.69 8496.49 7698.15 17299.10 52
MS-PatchMatch91.82 12292.51 12291.02 12395.83 8496.88 11995.05 11384.55 17293.85 11782.01 12782.51 15091.71 8090.52 16395.07 13793.03 16898.13 17394.52 186
FMVSNet590.36 14190.93 14989.70 14287.99 20292.25 20792.03 16883.51 17692.20 14684.13 11785.59 13286.48 11492.43 13394.61 14294.52 13898.13 17390.85 208
Anonymous2023120683.84 20185.19 20082.26 20187.38 20692.87 20485.49 20483.65 17586.07 19863.44 21068.42 20569.01 20375.45 21093.34 16492.44 18098.12 17594.20 190
MIMVSNet180.03 20680.93 20778.97 20672.46 22090.73 21180.81 21382.44 18380.39 21163.64 20857.57 21564.93 21576.37 20891.66 18991.55 18898.07 17689.70 210
TAMVS90.54 14090.87 15190.16 13691.48 15596.61 13193.26 14386.08 14987.71 18681.66 13183.11 14884.04 13490.42 16494.54 14494.60 13298.04 17795.48 182
pmmvs-eth3d84.33 20082.94 20585.96 19384.16 21190.94 21086.55 20183.79 17484.25 20375.85 16270.64 20256.43 22087.44 18392.20 18190.41 19397.97 17895.68 179
test-mter90.95 13393.54 11087.93 16990.28 16896.80 12391.44 17582.68 18292.15 14774.37 17489.57 10188.23 10990.88 15596.37 9994.31 14397.93 17997.37 151
GG-mvs-BLEND66.17 21394.91 8132.63 2181.32 22796.64 13091.40 1760.85 22494.39 1092.20 22890.15 9795.70 622.27 22496.39 9695.44 10897.78 18095.68 179
PatchT89.13 16091.71 13986.11 19192.92 14195.59 16483.64 20875.09 20891.87 14975.19 16782.63 14985.06 12892.05 13695.21 13394.56 13597.76 18197.08 160
test-LLR91.62 12693.56 10889.35 14893.31 13896.57 13292.02 16987.06 13992.34 14375.05 17090.20 9588.64 10490.93 15296.19 10894.07 14797.75 18296.90 166
TESTMET0.1,191.07 13293.56 10888.17 15990.43 16496.57 13292.02 16982.83 18192.34 14375.05 17090.20 9588.64 10490.93 15296.19 10894.07 14797.75 18296.90 166
IterMVS-SCA-FT90.24 14392.48 12687.63 17492.85 14394.30 19893.79 13481.47 18892.66 13269.95 19384.66 13888.38 10789.99 16995.39 13094.34 14297.74 18497.63 143
PM-MVS84.72 19984.47 20385.03 19484.67 21091.57 20986.27 20282.31 18487.65 18770.62 18876.54 17356.41 22188.75 17792.59 17589.85 19697.54 18596.66 171
IterMVS90.20 14492.43 12887.61 17592.82 14594.31 19794.11 13081.54 18692.97 12869.90 19484.71 13788.16 11089.96 17095.25 13294.17 14597.31 18697.46 148
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu91.78 12393.59 10789.68 14492.44 14897.11 11694.40 12784.94 16692.43 13875.48 16391.09 8883.75 13793.55 12296.61 8795.47 10797.24 18798.67 95
EPNet_dtu92.45 11795.02 7989.46 14598.02 5295.47 16894.79 12092.62 6694.97 9870.11 19294.76 5492.61 7884.07 20295.94 11395.56 10497.15 18895.82 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs685.98 19484.89 20287.25 18188.83 19794.35 19689.36 19385.30 16278.51 21475.44 16462.71 21475.41 17287.65 18093.58 16092.40 18196.89 18997.29 154
CVMVSNet89.77 15191.66 14087.56 17793.21 14095.45 16991.94 17289.22 11689.62 17169.34 19883.99 14385.90 12084.81 19794.30 15195.28 11296.85 19097.09 158
DeepPCF-MVS95.28 297.00 3998.35 2195.42 6097.30 6398.94 5194.82 11996.03 3898.24 992.11 5195.80 4198.64 3395.51 8698.95 798.66 596.78 19199.20 42
pmnet_mix0286.12 19387.12 18784.96 19589.82 17494.12 19984.88 20686.63 14391.78 15065.60 20480.76 15876.98 16786.61 18687.29 20884.80 21196.21 19294.09 192
CHOSEN 280x42095.46 5997.01 4593.66 9597.28 6497.98 9896.40 8485.39 15996.10 6691.07 5996.53 3296.34 5595.61 8397.65 5596.95 6796.21 19297.49 147
new-patchmatchnet78.49 20878.19 21178.84 20784.13 21290.06 21277.11 21780.39 19079.57 21359.64 21866.01 21055.65 22275.62 20984.55 21180.70 21396.14 19490.77 209
EPMVS90.88 13592.12 13489.44 14694.71 11397.24 11393.55 13676.81 19995.89 7281.77 12991.49 8286.47 11593.87 11490.21 19790.07 19495.92 19593.49 201
SCA90.92 13493.04 11488.45 15593.72 13397.33 11192.77 14976.08 20496.02 6878.26 14691.96 7490.86 8593.99 11390.98 19490.04 19595.88 19694.06 194
dps90.11 14889.37 16190.98 12493.89 12996.21 14293.49 13877.61 19791.95 14892.74 4588.85 10478.77 15892.37 13487.71 20687.71 20395.80 19794.38 189
ADS-MVSNet89.80 15091.33 14588.00 16794.43 12096.71 12892.29 16174.95 20996.07 6777.39 14988.67 10786.09 11893.26 12688.44 20389.57 19795.68 19893.81 198
tpm87.95 17389.44 16086.21 19092.53 14794.62 19291.40 17676.36 20291.46 15369.80 19687.43 11275.14 17391.55 14389.85 20190.60 19195.61 19996.96 163
EU-MVSNet85.62 19587.65 18183.24 20088.54 20092.77 20687.12 19985.32 16086.71 19264.54 20678.52 16775.11 17478.35 20692.25 18092.28 18395.58 20095.93 175
CostFormer90.69 13690.48 15490.93 12594.18 12396.08 14594.03 13178.20 19593.47 12389.96 7990.97 8980.30 15193.72 11987.66 20788.75 19995.51 20196.12 174
PatchmatchNetpermissive90.56 13892.49 12488.31 15893.83 13196.86 12292.42 15776.50 20195.96 7078.31 14591.96 7489.66 9493.48 12390.04 19989.20 19895.32 20293.73 199
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet84.80 19785.10 20184.45 19689.25 18992.86 20584.04 20786.21 14688.78 17666.73 20272.41 19674.87 17785.21 19488.32 20486.45 20695.30 20392.04 205
RPSCF94.05 9094.00 9794.12 8896.20 7696.41 13796.61 7791.54 8695.83 7689.73 8296.94 3092.80 7695.35 9091.63 19090.44 19295.27 20493.94 195
MDTV_nov1_ep13_2view86.30 19188.27 16884.01 19787.71 20594.67 19088.08 19676.78 20090.59 16568.66 20080.46 16280.12 15287.58 18289.95 20088.20 20195.25 20593.90 197
MDTV_nov1_ep1391.57 12793.18 11289.70 14293.39 13696.97 11793.53 13780.91 18995.70 7881.86 12892.40 6989.93 9293.25 12791.97 18790.80 19095.25 20594.46 188
new_pmnet81.53 20482.68 20680.20 20383.47 21389.47 21482.21 21278.36 19387.86 18460.14 21767.90 20769.43 20282.03 20489.22 20287.47 20494.99 20787.39 213
MVS-HIRNet85.36 19686.89 18983.57 19890.13 17094.51 19383.57 20972.61 21288.27 18271.22 18668.97 20481.81 14688.91 17693.08 16991.94 18594.97 20889.64 211
tpmrst88.86 16589.62 15787.97 16894.33 12195.98 14792.62 15376.36 20294.62 10476.94 15385.98 13082.80 14392.80 13186.90 20987.15 20594.77 20993.93 196
pmmvs379.16 20780.12 20978.05 20879.36 21586.59 21678.13 21673.87 21176.42 21657.51 22070.59 20357.02 21984.66 19890.10 19888.32 20094.75 21091.77 207
tpm cat188.90 16387.78 17990.22 13593.88 13095.39 17193.79 13478.11 19692.55 13689.43 8681.31 15579.84 15491.40 14484.95 21086.34 20894.68 21194.09 192
CMPMVSbinary65.18 1784.76 19883.10 20486.69 18695.29 9495.05 18088.37 19585.51 15880.27 21271.31 18568.37 20673.85 18085.25 19387.72 20587.75 20294.38 21288.70 212
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDA-MVSNet-bldmvs80.11 20580.24 20879.94 20477.01 21793.21 20378.86 21585.94 15282.71 20960.86 21279.71 16451.77 22383.71 20375.60 21586.37 20793.28 21392.35 203
ambc73.83 21376.23 21885.13 21782.27 21184.16 20465.58 20552.82 21723.31 22873.55 21191.41 19285.26 21092.97 21494.70 185
PMMVS264.36 21465.94 21662.52 21467.37 22177.44 21964.39 22169.32 21861.47 21934.59 22346.09 21841.03 22448.02 22174.56 21778.23 21491.43 21582.76 215
DeepMVS_CXcopyleft86.86 21579.50 21470.43 21590.73 16163.66 20780.36 16360.83 21679.68 20576.23 21489.46 21686.53 214
Gipumacopyleft68.35 21166.71 21470.27 21074.16 21968.78 22163.93 22271.77 21483.34 20754.57 22134.37 21931.88 22568.69 21383.30 21285.53 20988.48 21779.78 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method72.96 21078.68 21066.28 21350.17 22464.90 22275.45 21850.90 22087.89 18362.54 21162.98 21368.34 20670.45 21291.90 18882.41 21288.19 21892.35 203
FPMVS75.84 20974.59 21277.29 20986.92 20783.89 21885.01 20580.05 19182.91 20860.61 21465.25 21160.41 21763.86 21575.60 21573.60 21787.29 21980.47 216
PMVScopyleft63.12 1867.27 21266.39 21568.30 21177.98 21660.24 22359.53 22376.82 19866.65 21860.74 21354.39 21659.82 21851.24 21873.92 21870.52 21883.48 22079.17 218
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt66.88 21286.07 20973.86 22068.22 22033.38 22196.88 4880.67 13788.23 11078.82 15749.78 21982.68 21377.47 21583.19 221
E-PMN50.67 21547.85 21853.96 21564.13 22350.98 22638.06 22469.51 21651.40 22124.60 22529.46 22224.39 22756.07 21748.17 22059.70 21971.40 22270.84 220
EMVS49.98 21646.76 21953.74 21664.96 22251.29 22537.81 22569.35 21751.83 22022.69 22629.57 22125.06 22657.28 21644.81 22156.11 22070.32 22368.64 221
MVEpermissive50.86 1949.54 21751.43 21747.33 21744.14 22559.20 22436.45 22660.59 21941.47 22231.14 22429.58 22017.06 22948.52 22062.22 21974.63 21663.12 22475.87 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs12.09 21816.94 2206.42 2193.15 2266.08 2279.51 2283.84 22221.46 2235.31 22727.49 2236.76 23010.89 22217.06 22215.01 2215.84 22524.75 222
test1239.58 21913.53 2214.97 2201.31 2285.47 2288.32 2292.95 22318.14 2242.03 22920.82 2242.34 23110.60 22310.00 22314.16 2224.60 22623.77 223
uanet_test0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def63.50 209
9.1499.28 12
SR-MVS99.45 997.61 1499.20 16
our_test_389.78 17593.84 20185.59 203
MTAPA96.83 1099.12 21
MTMP97.18 598.83 26
Patchmatch-RL test34.61 227
mPP-MVS99.21 2398.29 38
NP-MVS95.32 87
Patchmtry95.96 14993.36 14175.99 20575.19 167