This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
DELS-MVS96.06 5696.04 6296.07 5197.77 5799.25 2798.10 4393.26 5794.42 10992.79 4588.52 11193.48 7395.06 9498.51 1698.83 199.45 3599.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS_fast96.13 198.13 2198.27 2697.97 2699.16 2899.03 4399.05 1997.24 2898.22 1094.17 3495.82 4098.07 4098.69 1798.83 1198.80 299.52 1999.10 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator93.79 897.08 3897.20 4296.95 3999.09 3099.03 4398.20 4193.33 5597.99 1593.82 3590.61 9496.80 5097.82 3997.90 5098.78 399.47 3099.26 33
MSLP-MVS++98.04 2497.93 3398.18 1899.10 2999.09 3598.34 3796.99 3497.54 3196.60 1494.82 5298.45 3698.89 697.46 6198.77 499.17 9399.37 20
DeepPCF-MVS95.28 297.00 4198.35 2195.42 6197.30 6398.94 5194.82 11996.03 4098.24 992.11 5195.80 4198.64 3395.51 8798.95 798.66 596.78 19199.20 42
SMA-MVScopyleft98.66 798.89 798.39 1099.60 199.41 1099.00 2197.63 1397.78 1895.83 2098.33 1199.83 498.85 1098.93 898.56 699.41 4999.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IS_MVSNet95.28 6596.43 5793.94 9195.30 9399.01 4795.90 9991.12 9194.13 11487.50 10691.23 8594.45 6994.17 10998.45 1998.50 799.65 299.23 37
DeepC-MVS94.87 496.76 4896.50 5597.05 3798.21 5099.28 2398.67 2897.38 2297.31 3690.36 7489.19 10493.58 7298.19 3198.31 2898.50 799.51 2499.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP98.38 1598.71 1097.99 2599.34 2299.46 899.34 697.33 2697.31 3694.25 3298.06 1499.17 1998.13 3298.98 598.46 999.55 1799.54 11
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+93.91 797.23 3697.22 4197.24 3498.89 3798.85 6298.26 4093.25 5997.99 1595.56 2490.01 10098.03 4298.05 3697.91 4998.43 1099.44 4399.35 22
DVP-MVScopyleft98.86 498.97 398.75 299.43 1499.63 199.25 1397.81 298.62 297.69 197.59 2199.90 298.93 598.99 498.42 1199.37 5899.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS98.73 698.93 598.50 799.44 1399.57 499.36 497.65 998.14 1296.51 1698.49 799.65 898.67 1898.60 1498.42 1199.40 5299.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS98.87 398.96 498.77 199.58 299.53 699.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 399.57 9
APD-MVScopyleft98.36 1698.32 2398.41 999.47 699.26 2599.12 1697.77 796.73 5296.12 1897.27 2998.88 2598.46 2698.47 1898.39 1499.52 1999.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS97.78 2798.44 1897.02 3898.73 3999.25 2798.11 4295.54 4196.66 5592.79 4598.52 699.38 997.50 4697.84 5198.39 1499.45 3599.03 68
Vis-MVSNet (Re-imp)94.46 8296.24 5992.40 11095.23 9698.64 7795.56 10790.99 9294.42 10985.02 11690.88 9294.65 6888.01 17898.17 3898.37 1699.57 1398.53 105
SED-MVS98.90 299.07 298.69 399.38 2099.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1899.02 298.26 1799.36 6099.61 6
DPE-MVScopyleft98.75 598.91 698.57 599.21 2599.54 599.42 297.78 697.49 3296.84 1098.94 199.82 598.59 2298.90 1098.22 1899.56 1599.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++98.92 199.18 198.61 499.47 699.61 299.39 397.82 198.80 196.86 998.90 299.92 198.67 1899.02 298.20 1999.43 4699.82 1
UA-Net93.96 9395.95 6491.64 11896.06 8098.59 8195.29 10990.00 10391.06 15882.87 12490.64 9398.06 4186.06 18998.14 4198.20 1999.58 1096.96 163
QAPM96.78 4797.14 4596.36 4599.05 3199.14 3498.02 4493.26 5797.27 3890.84 6491.16 8697.31 4597.64 4497.70 5598.20 1999.33 6299.18 47
X-MVS97.84 2598.19 2897.42 3299.40 1699.35 1699.06 1897.25 2797.38 3590.85 6196.06 3798.72 3098.53 2598.41 2498.15 2299.46 3199.28 28
CS-MVS96.14 5597.39 3994.68 8194.63 11598.89 5996.46 8490.44 9996.88 4888.52 9793.58 6096.27 5898.41 2798.43 2298.14 2399.63 399.52 12
ACMMPR98.40 1398.49 1398.28 1599.41 1599.40 1199.36 497.35 2398.30 695.02 2797.79 1898.39 3899.04 298.26 3498.10 2499.50 2699.22 39
CNVR-MVS98.47 1198.46 1698.48 899.40 1699.05 3699.02 2097.54 1897.73 1996.65 1397.20 3099.13 2098.85 1098.91 998.10 2499.41 4999.08 57
HFP-MVS98.48 1098.62 1198.32 1399.39 1999.33 2099.27 1197.42 2098.27 795.25 2598.34 1098.83 2799.08 198.26 3498.08 2699.48 2799.26 33
CANet96.84 4597.20 4296.42 4397.92 5599.24 2998.60 3093.51 5497.11 4293.07 3991.16 8697.24 4696.21 7498.24 3698.05 2799.22 8499.35 22
TSAR-MVS + MP.98.49 998.78 898.15 2198.14 5299.17 3299.34 697.18 3198.44 595.72 2197.84 1799.28 1298.87 799.05 198.05 2799.66 199.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test111193.94 9492.78 11795.29 6496.14 7999.42 996.79 7292.85 6695.08 9991.39 5780.69 15879.86 15495.00 9598.28 3298.00 2999.58 1098.11 127
test250694.32 8793.00 11595.87 5296.16 7799.39 1496.96 6392.80 6795.22 9594.47 2991.55 8370.45 19595.25 9198.29 2997.98 3099.59 698.10 128
ECVR-MVScopyleft94.14 8992.96 11695.52 5996.16 7799.39 1496.96 6392.80 6795.22 9592.38 4981.48 15380.31 15195.25 9198.29 2997.98 3099.59 698.05 129
SD-MVS98.52 898.77 998.23 1798.15 5199.26 2598.79 2797.59 1798.52 396.25 1797.99 1699.75 699.01 398.27 3397.97 3299.59 699.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DROMVSNet96.49 4997.63 3495.16 6594.75 10998.69 7297.39 5788.97 11996.34 5992.02 5296.04 3896.46 5298.21 2898.41 2497.96 3399.61 599.55 10
MVS_111021_HR97.04 4098.20 2795.69 5598.44 4799.29 2296.59 7993.20 6097.70 2389.94 8198.46 896.89 4896.71 6698.11 4497.95 3499.27 7399.01 71
canonicalmvs95.25 6795.45 7195.00 6995.27 9598.72 7096.89 6689.82 10796.51 5690.84 6493.72 5986.01 11897.66 4395.78 11997.94 3599.54 1899.50 13
CDPH-MVS96.84 4597.49 3696.09 4998.92 3598.85 6298.61 2995.09 4396.00 7287.29 10795.45 4697.42 4497.16 5397.83 5297.94 3599.44 4398.92 81
MVS_030496.31 5196.91 5095.62 5697.21 6599.20 3098.55 3293.10 6297.04 4589.73 8390.30 9696.35 5495.71 8098.14 4197.93 3799.38 5599.40 18
PGM-MVS97.81 2698.11 2997.46 3199.55 399.34 1999.32 994.51 4796.21 6493.07 3998.05 1597.95 4398.82 1298.22 3797.89 3899.48 2799.09 56
ACMMP_NAP98.20 1998.49 1397.85 2799.50 499.40 1199.26 1297.64 1297.47 3492.62 4897.59 2199.09 2298.71 1698.82 1297.86 3999.40 5299.19 43
ETV-MVS96.31 5197.47 3894.96 7194.79 10698.78 6596.08 9391.41 8896.16 6590.50 6895.76 4296.20 5997.39 4798.42 2397.82 4099.57 1399.18 47
TSAR-MVS + ACMM97.71 2998.60 1296.66 4298.64 4299.05 3698.85 2697.23 2998.45 489.40 8997.51 2599.27 1496.88 6298.53 1597.81 4198.96 12199.59 8
NCCC98.10 2298.05 3198.17 2099.38 2099.05 3699.00 2197.53 1998.04 1495.12 2694.80 5399.18 1898.58 2398.49 1797.78 4299.39 5498.98 75
CS-MVS-test96.19 5497.34 4094.85 7594.52 11798.20 9097.39 5788.97 11996.83 5090.45 6995.29 4795.41 6598.21 2898.41 2497.73 4399.56 1599.47 15
MP-MVScopyleft98.09 2398.30 2597.84 2899.34 2299.19 3199.23 1497.40 2197.09 4393.03 4297.58 2398.85 2698.57 2498.44 2197.69 4499.48 2799.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS98.32 1898.34 2298.29 1499.34 2299.30 2199.15 1597.35 2397.49 3295.58 2397.72 1998.62 3498.82 1298.29 2997.67 4599.51 2499.28 28
xxxxxxxxxxxxxcwj97.07 3995.99 6398.33 1199.45 1099.05 3698.27 3897.65 997.73 1997.02 798.18 1281.99 14698.11 3398.15 3997.62 4699.45 3599.19 43
SF-MVS98.39 1498.45 1798.33 1199.45 1099.05 3698.27 3897.65 997.73 1997.02 798.18 1299.25 1598.11 3398.15 3997.62 4699.45 3599.19 43
OpenMVScopyleft92.33 1195.50 5895.22 7595.82 5498.98 3298.97 4997.67 5293.04 6594.64 10589.18 9384.44 13994.79 6796.79 6397.23 6697.61 4899.24 7898.88 86
Vis-MVSNetpermissive92.77 11295.00 8190.16 13794.10 12698.79 6494.76 12188.26 12892.37 14379.95 13888.19 11391.58 8184.38 19997.59 5897.58 4999.52 1998.91 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
zzz-MVS98.43 1298.31 2498.57 599.48 599.40 1199.32 997.62 1497.70 2396.67 1296.59 3399.09 2298.86 898.65 1397.56 5099.45 3599.17 49
MAR-MVS95.50 5895.60 6795.39 6298.67 4198.18 9395.89 10189.81 10894.55 10791.97 5392.99 6490.21 9197.30 4996.79 8097.49 5198.72 14498.99 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MCST-MVS98.20 1998.36 1998.01 2499.40 1699.05 3699.00 2197.62 1497.59 3093.70 3697.42 2899.30 1198.77 1498.39 2797.48 5299.59 699.31 27
HPM-MVS++copyleft98.34 1798.47 1598.18 1899.46 999.15 3399.10 1797.69 897.67 2694.93 2897.62 2099.70 798.60 2198.45 1997.46 5399.31 6799.26 33
LS3D95.46 6195.14 7695.84 5397.91 5698.90 5898.58 3197.79 597.07 4483.65 12288.71 10788.64 10497.82 3997.49 6097.42 5499.26 7797.72 142
TSAR-MVS + GP.97.45 3298.36 1996.39 4495.56 8798.93 5397.74 5093.31 5697.61 2994.24 3398.44 999.19 1798.03 3797.60 5797.41 5599.44 4399.33 24
DPM-MVS96.86 4496.82 5196.91 4098.08 5398.20 9098.52 3497.20 3097.24 3991.42 5691.84 7898.45 3697.25 5097.07 7297.40 5698.95 12297.55 146
CSCG97.44 3397.18 4497.75 2999.47 699.52 798.55 3295.41 4297.69 2595.72 2194.29 5695.53 6498.10 3596.20 10797.38 5799.24 7899.62 4
PVSNet_BlendedMVS95.41 6395.28 7395.57 5797.42 6199.02 4595.89 10193.10 6296.16 6593.12 3791.99 7485.27 12394.66 10098.09 4597.34 5899.24 7899.08 57
PVSNet_Blended95.41 6395.28 7395.57 5797.42 6199.02 4595.89 10193.10 6296.16 6593.12 3791.99 7485.27 12394.66 10098.09 4597.34 5899.24 7899.08 57
casdiffmvs94.38 8694.15 9694.64 8394.70 11398.51 8296.03 9691.66 8395.70 8189.36 9086.48 12385.03 12896.60 6997.40 6297.30 6099.52 1998.67 97
PVSNet_Blended_VisFu94.77 7595.54 6993.87 9396.48 7298.97 4994.33 12891.84 8094.93 10190.37 7385.04 13494.99 6690.87 15698.12 4397.30 6099.30 6999.45 17
MVS_111021_LR97.16 3798.01 3296.16 4898.47 4598.98 4896.94 6593.89 5097.64 2891.44 5598.89 396.41 5397.20 5298.02 4797.29 6299.04 11698.85 90
train_agg97.65 3098.06 3097.18 3598.94 3498.91 5698.98 2597.07 3396.71 5390.66 6697.43 2799.08 2498.20 3097.96 4897.14 6399.22 8499.19 43
EIA-MVS95.50 5896.19 6094.69 8094.83 10598.88 6195.93 9891.50 8794.47 10889.43 8793.14 6392.72 7797.05 5897.82 5497.13 6499.43 4699.15 51
EPNet96.27 5396.97 4795.46 6098.47 4598.28 8697.41 5593.67 5295.86 7792.86 4497.51 2593.79 7191.76 14197.03 7497.03 6598.61 15499.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPP-MVSNet95.27 6696.18 6194.20 8994.88 10498.64 7794.97 11590.70 9595.34 8889.67 8591.66 8193.84 7095.42 8997.32 6497.00 6699.58 1099.47 15
FMVSNet293.30 10893.36 11193.22 10691.34 15795.86 15296.22 8888.24 12995.15 9889.92 8281.64 15189.36 9694.40 10696.77 8196.98 6799.21 8797.79 135
CHOSEN 280x42095.46 6197.01 4693.66 9797.28 6497.98 9896.40 8685.39 16196.10 6991.07 5996.53 3496.34 5695.61 8497.65 5696.95 6896.21 19297.49 147
baseline194.59 7994.47 8694.72 7995.16 9897.97 9996.07 9491.94 7894.86 10289.98 7991.60 8285.87 12095.64 8297.07 7296.90 6999.52 1997.06 162
MVS_Test94.82 7195.66 6693.84 9494.79 10698.35 8596.49 8389.10 11896.12 6887.09 10992.58 6990.61 8896.48 7096.51 9596.89 7099.11 10398.54 104
gg-mvs-nofinetune86.17 19288.57 16683.36 20093.44 13698.15 9496.58 8072.05 21474.12 21849.23 22264.81 21290.85 8689.90 17197.83 5296.84 7198.97 12097.41 150
CANet_DTU93.92 9596.57 5490.83 12895.63 8598.39 8496.99 6287.38 13796.26 6171.97 18196.31 3593.02 7494.53 10397.38 6396.83 7298.49 16197.79 135
OMC-MVS97.00 4196.92 4997.09 3698.69 4098.66 7497.85 4895.02 4498.09 1394.47 2993.15 6296.90 4797.38 4897.16 7096.82 7399.13 10097.65 143
FMVSNet393.79 9994.17 9493.35 10491.21 16095.99 14596.62 7788.68 12295.23 9290.40 7086.39 12491.16 8294.11 11095.96 11296.67 7499.07 10897.79 135
CNLPA96.90 4396.28 5897.64 3098.56 4498.63 7996.85 6896.60 3897.73 1997.08 689.78 10296.28 5797.80 4196.73 8396.63 7598.94 12398.14 126
UGNet94.92 6896.63 5392.93 10796.03 8198.63 7994.53 12591.52 8696.23 6390.03 7892.87 6796.10 6186.28 18896.68 8596.60 7699.16 9699.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268892.66 11492.49 12492.85 10897.13 6698.89 5995.90 9988.50 12695.32 8983.31 12371.99 19788.96 10294.10 11196.69 8496.49 7798.15 17199.10 54
CDS-MVSNet92.77 11293.60 10691.80 11692.63 14796.80 12295.24 11189.14 11790.30 16784.58 11786.76 11890.65 8790.42 16495.89 11496.49 7798.79 14098.32 120
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
diffmvs94.31 8894.21 9194.42 8694.64 11498.28 8696.36 8791.56 8496.77 5188.89 9688.97 10584.23 13296.01 7896.05 11196.41 7999.05 11598.79 94
GBi-Net93.81 9794.18 9293.38 10291.34 15795.86 15296.22 8888.68 12295.23 9290.40 7086.39 12491.16 8294.40 10696.52 9296.30 8099.21 8797.79 135
test193.81 9794.18 9293.38 10291.34 15795.86 15296.22 8888.68 12295.23 9290.40 7086.39 12491.16 8294.40 10696.52 9296.30 8099.21 8797.79 135
FMVSNet191.54 12790.93 14892.26 11290.35 16795.27 17595.22 11287.16 14091.37 15587.62 10575.45 17383.84 13594.43 10496.52 9296.30 8098.82 13397.74 141
DI_MVS_plusplus_trai94.01 9293.63 10594.44 8594.54 11698.26 8897.51 5490.63 9695.88 7689.34 9180.54 16089.36 9695.48 8896.33 10196.27 8399.17 9398.78 95
AdaColmapbinary97.53 3196.93 4898.24 1699.21 2598.77 6698.47 3597.34 2596.68 5496.52 1595.11 5096.12 6098.72 1597.19 6996.24 8499.17 9398.39 115
Fast-Effi-MVS+91.87 12092.08 13591.62 12092.91 14397.21 11494.93 11684.60 17293.61 12281.49 13383.50 14478.95 15796.62 6896.55 9096.22 8599.16 9698.51 106
PLCcopyleft94.95 397.37 3496.77 5298.07 2298.97 3398.21 8997.94 4796.85 3797.66 2797.58 393.33 6196.84 4998.01 3897.13 7196.20 8699.09 10598.01 130
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
baseline94.83 7095.82 6593.68 9694.75 10997.80 10096.51 8288.53 12597.02 4789.34 9192.93 6592.18 7994.69 9995.78 11996.08 8798.27 16998.97 79
CPTT-MVS97.78 2797.54 3598.05 2398.91 3699.05 3699.00 2196.96 3597.14 4195.92 1995.50 4498.78 2998.99 497.20 6796.07 8898.54 15899.04 67
Effi-MVS+92.93 11193.86 10091.86 11494.07 12798.09 9695.59 10685.98 15394.27 11279.54 14291.12 8981.81 14796.71 6696.67 8696.06 8999.27 7398.98 75
gm-plane-assit83.26 20285.29 19980.89 20389.52 18089.89 21370.26 21978.24 19577.11 21658.01 21974.16 18466.90 20990.63 16297.20 6796.05 9098.66 15195.68 179
DCV-MVSNet94.76 7695.12 7894.35 8795.10 10195.81 15696.46 8489.49 11396.33 6090.16 7592.55 7090.26 9095.83 7995.52 12596.03 9199.06 11199.33 24
IterMVS-LS92.56 11593.18 11291.84 11593.90 12994.97 18294.99 11486.20 15094.18 11382.68 12585.81 13087.36 11194.43 10495.31 13196.02 9298.87 12998.60 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMMPcopyleft97.37 3497.48 3797.25 3398.88 3899.28 2398.47 3596.86 3697.04 4592.15 5097.57 2496.05 6297.67 4297.27 6595.99 9399.46 3199.14 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thres100view90093.55 10492.47 12794.81 7795.33 9198.74 6796.78 7392.30 7492.63 13488.29 9887.21 11578.01 16296.78 6496.38 9795.92 9499.38 5598.40 114
thres20093.62 10192.54 12194.88 7395.36 9098.93 5396.75 7492.31 7192.84 13188.28 10086.99 11777.81 16497.13 5496.82 7795.92 9499.45 3598.49 108
TAPA-MVS94.18 596.38 5096.49 5696.25 4698.26 4998.66 7498.00 4594.96 4597.17 4089.48 8692.91 6696.35 5497.53 4596.59 8895.90 9699.28 7197.82 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVSTER94.89 6995.07 7994.68 8194.71 11196.68 12897.00 6190.57 9795.18 9793.05 4195.21 4886.41 11593.72 11897.59 5895.88 9799.00 11798.50 107
tfpn200view993.64 10092.57 12094.89 7295.33 9198.94 5196.82 6992.31 7192.63 13488.29 9887.21 11578.01 16297.12 5696.82 7795.85 9899.45 3598.56 102
thres40093.56 10392.43 12894.87 7495.40 8998.91 5696.70 7692.38 7092.93 13088.19 10286.69 12077.35 16597.13 5496.75 8295.85 9899.42 4898.56 102
GeoE92.52 11692.64 11992.39 11193.96 12897.76 10196.01 9785.60 15893.23 12683.94 11981.56 15284.80 12995.63 8396.22 10595.83 10099.19 9199.07 61
Anonymous20240521192.18 13395.04 10298.20 9096.14 9191.79 8293.93 11574.60 17988.38 10796.48 7095.17 13595.82 10199.00 11799.15 51
LGP-MVS_train94.12 9094.62 8393.53 9896.44 7397.54 10497.40 5691.84 8094.66 10481.09 13595.70 4383.36 13995.10 9396.36 10095.71 10299.32 6499.03 68
thres600view793.49 10592.37 13194.79 7895.42 8898.93 5396.58 8092.31 7193.04 12887.88 10386.62 12176.94 16897.09 5796.82 7795.63 10399.45 3598.63 99
MSDG94.82 7193.73 10396.09 4998.34 4897.43 10997.06 6096.05 3995.84 7890.56 6786.30 12889.10 10195.55 8696.13 11095.61 10499.00 11795.73 178
EPNet_dtu92.45 11795.02 8089.46 14698.02 5495.47 16794.79 12092.62 6994.97 10070.11 19294.76 5492.61 7884.07 20295.94 11395.56 10597.15 18895.82 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test92.03 11891.55 14292.58 10997.13 6698.72 7094.65 12386.54 14693.58 12382.56 12667.75 20890.47 8995.67 8195.87 11595.54 10698.91 12698.93 80
Anonymous2023121193.49 10592.33 13294.84 7694.78 10898.00 9796.11 9291.85 7994.86 10290.91 6074.69 17889.18 9996.73 6594.82 14095.51 10798.67 14899.24 36
Effi-MVS+-dtu91.78 12293.59 10789.68 14592.44 14997.11 11594.40 12784.94 16892.43 13975.48 16391.09 9083.75 13693.55 12296.61 8795.47 10897.24 18798.67 97
GG-mvs-BLEND66.17 21394.91 8232.63 2191.32 22796.64 12991.40 1760.85 22594.39 1112.20 22890.15 9995.70 632.27 22496.39 9695.44 10997.78 18095.68 179
MIMVSNet88.99 16291.07 14686.57 18886.78 20895.62 16091.20 18175.40 20890.65 16376.57 15584.05 14182.44 14591.01 15195.84 11695.38 11098.48 16293.50 200
ET-MVSNet_ETH3D93.34 10794.33 9092.18 11383.26 21497.66 10396.72 7589.89 10695.62 8487.17 10896.00 3983.69 13796.99 5993.78 15595.34 11199.06 11198.18 125
FC-MVSNet-train93.85 9693.91 9893.78 9594.94 10396.79 12594.29 12991.13 9093.84 11988.26 10190.40 9585.23 12594.65 10296.54 9195.31 11299.38 5599.28 28
CVMVSNet89.77 15191.66 14087.56 17893.21 14195.45 16891.94 17289.22 11689.62 17169.34 19883.99 14285.90 11984.81 19794.30 15095.28 11396.85 19097.09 158
UniMVSNet_ETH3D88.47 16786.00 19791.35 12291.55 15496.29 13992.53 15488.81 12185.58 20182.33 12767.63 20966.87 21094.04 11291.49 19195.24 11498.84 13298.92 81
PatchMatch-RL94.69 7794.41 8795.02 6897.63 6098.15 9494.50 12691.99 7795.32 8991.31 5895.47 4583.44 13896.02 7796.56 8995.23 11598.69 14796.67 170
TSAR-MVS + COLMAP94.79 7394.51 8595.11 6696.50 7197.54 10497.99 4694.54 4697.81 1785.88 11396.73 3281.28 15096.99 5996.29 10295.21 11698.76 14396.73 169
test0.0.03 191.97 11993.91 9889.72 14293.31 13996.40 13791.34 17887.06 14193.86 11781.67 13191.15 8889.16 10086.02 19095.08 13695.09 11798.91 12696.64 172
baseline293.01 11094.17 9491.64 11892.83 14597.49 10693.40 14087.53 13593.67 12186.07 11291.83 7986.58 11291.36 14596.38 9795.06 11898.67 14898.20 124
CLD-MVS94.79 7394.36 8995.30 6395.21 9797.46 10797.23 5992.24 7596.43 5791.77 5492.69 6884.31 13196.06 7595.52 12595.03 11999.31 6799.06 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FC-MVSNet-test91.63 12493.82 10289.08 15092.02 15296.40 13793.26 14387.26 13893.72 12077.26 15088.61 11089.86 9385.50 19295.72 12395.02 12099.16 9697.44 149
PMMVS94.61 7895.56 6893.50 9994.30 12296.74 12694.91 11789.56 11295.58 8687.72 10496.15 3692.86 7596.06 7595.47 12795.02 12098.43 16697.09 158
OPM-MVS93.61 10292.43 12895.00 6996.94 6897.34 11097.78 4994.23 4889.64 17085.53 11488.70 10882.81 14296.28 7396.28 10395.00 12299.24 7897.22 155
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PCF-MVS93.95 695.65 5795.14 7696.25 4697.73 5998.73 6997.59 5397.13 3292.50 13889.09 9589.85 10196.65 5196.90 6194.97 13994.89 12399.08 10698.38 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053094.54 8095.47 7093.46 10094.51 11898.65 7694.66 12290.72 9395.69 8386.90 11093.80 5789.44 9594.74 9796.98 7694.86 12499.19 9198.85 90
tttt051794.52 8195.44 7293.44 10194.51 11898.68 7394.61 12490.72 9395.61 8586.84 11193.78 5889.26 9894.74 9797.02 7594.86 12499.20 9098.87 88
LTVRE_ROB87.32 1687.55 18088.25 16986.73 18690.66 16295.80 15793.05 14684.77 16983.35 20760.32 21583.12 14667.39 20893.32 12594.36 14994.86 12498.28 16898.87 88
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HQP-MVS94.43 8394.57 8494.27 8896.41 7497.23 11396.89 6693.98 4995.94 7483.68 12195.01 5184.46 13095.58 8595.47 12794.85 12799.07 10899.00 72
ACMP92.88 994.43 8394.38 8894.50 8496.01 8297.69 10295.85 10492.09 7695.74 8089.12 9495.14 4982.62 14494.77 9695.73 12194.67 12899.14 9999.06 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM92.75 1094.41 8593.84 10195.09 6796.41 7496.80 12294.88 11893.54 5396.41 5890.16 7592.31 7283.11 14096.32 7296.22 10594.65 12999.22 8497.35 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+-dtu91.19 13193.64 10488.33 15892.19 15196.46 13493.99 13281.52 18992.59 13671.82 18292.17 7385.54 12191.68 14295.73 12194.64 13098.80 13898.34 117
test_part191.21 13089.47 15893.24 10594.26 12395.45 16895.26 11088.36 12788.49 18090.04 7772.61 19482.82 14193.69 12093.25 16694.62 13197.84 17999.06 62
TAMVS90.54 14090.87 15090.16 13791.48 15596.61 13093.26 14386.08 15187.71 18781.66 13283.11 14784.04 13390.42 16494.54 14394.60 13298.04 17695.48 182
TranMVSNet+NR-MVSNet89.23 15888.48 16790.11 14189.07 19295.25 17692.91 14890.43 10090.31 16677.10 15276.62 17171.57 19091.83 14092.12 18294.59 13399.32 6498.92 81
DU-MVS89.67 15288.84 16390.63 13289.26 18695.61 16192.48 15589.91 10491.22 15679.57 14077.72 16871.18 19293.21 12892.53 17694.57 13499.35 6199.05 65
CR-MVSNet90.16 14691.96 13888.06 16493.32 13895.95 14993.36 14175.99 20692.40 14175.19 16783.18 14585.37 12292.05 13695.21 13394.56 13598.47 16397.08 160
PatchT89.13 16091.71 13986.11 19292.92 14295.59 16383.64 20875.09 20991.87 15075.19 16782.63 14885.06 12792.05 13695.21 13394.56 13597.76 18197.08 160
ACMH90.77 1391.51 12891.63 14191.38 12195.62 8696.87 12091.76 17389.66 11091.58 15378.67 14486.73 11978.12 16093.77 11794.59 14294.54 13798.78 14198.98 75
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet590.36 14190.93 14889.70 14387.99 20292.25 20792.03 16883.51 17892.20 14784.13 11885.59 13186.48 11392.43 13394.61 14194.52 13898.13 17290.85 208
pm-mvs189.19 15989.02 16289.38 14890.40 16595.74 15992.05 16788.10 13186.13 19777.70 14773.72 18779.44 15688.97 17595.81 11894.51 13999.08 10697.78 140
UniMVSNet_NR-MVSNet90.35 14289.96 15490.80 12989.66 17695.83 15592.48 15590.53 9890.96 16079.57 14079.33 16477.14 16693.21 12892.91 17294.50 14099.37 5899.05 65
IB-MVS89.56 1591.71 12392.50 12390.79 13095.94 8398.44 8387.05 20091.38 8993.15 12792.98 4384.78 13585.14 12678.27 20792.47 17894.44 14199.10 10499.08 57
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IterMVS-SCA-FT90.24 14392.48 12687.63 17592.85 14494.30 19893.79 13481.47 19092.66 13369.95 19384.66 13788.38 10789.99 16995.39 13094.34 14297.74 18497.63 144
test-mter90.95 13393.54 11087.93 17090.28 16896.80 12291.44 17582.68 18492.15 14874.37 17489.57 10388.23 10990.88 15596.37 9994.31 14397.93 17897.37 151
anonymousdsp88.90 16391.00 14786.44 18988.74 19995.97 14790.40 18882.86 18288.77 17767.33 20181.18 15581.44 14990.22 16796.23 10494.27 14499.12 10299.16 50
IterMVS90.20 14492.43 12887.61 17692.82 14694.31 19794.11 13081.54 18892.97 12969.90 19484.71 13688.16 11089.96 17095.25 13294.17 14597.31 18697.46 148
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
COLMAP_ROBcopyleft90.49 1493.27 10992.71 11893.93 9297.75 5897.44 10896.07 9493.17 6195.40 8783.86 12083.76 14388.72 10393.87 11494.25 15194.11 14698.87 12995.28 184
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-LLR91.62 12593.56 10889.35 14993.31 13996.57 13192.02 16987.06 14192.34 14475.05 17090.20 9788.64 10490.93 15296.19 10894.07 14797.75 18296.90 166
TESTMET0.1,191.07 13293.56 10888.17 16090.43 16496.57 13192.02 16982.83 18392.34 14475.05 17090.20 9788.64 10490.93 15296.19 10894.07 14797.75 18296.90 166
tfpnnormal88.50 16687.01 18890.23 13591.36 15695.78 15892.74 15090.09 10283.65 20676.33 15871.46 20069.58 20191.84 13995.54 12494.02 14999.06 11199.03 68
NR-MVSNet89.34 15588.66 16490.13 14090.40 16595.61 16193.04 14789.91 10491.22 15678.96 14377.72 16868.90 20489.16 17494.24 15293.95 15099.32 6498.99 73
TransMVSNet (Re)87.73 17986.79 19088.83 15290.76 16194.40 19591.33 17989.62 11184.73 20375.41 16572.73 19271.41 19186.80 18494.53 14493.93 15199.06 11195.83 176
ACMH+90.88 1291.41 12991.13 14591.74 11795.11 10096.95 11793.13 14589.48 11492.42 14079.93 13985.13 13378.02 16193.82 11693.49 16293.88 15298.94 12397.99 131
UniMVSNet (Re)90.03 14989.61 15790.51 13389.97 17396.12 14392.32 15989.26 11590.99 15980.95 13678.25 16775.08 17591.14 14893.78 15593.87 15399.41 4999.21 41
RPMNet90.19 14592.03 13788.05 16593.46 13595.95 14993.41 13974.59 21192.40 14175.91 16184.22 14086.41 11592.49 13294.42 14793.85 15498.44 16496.96 163
Baseline_NR-MVSNet89.27 15788.01 17390.73 13189.26 18693.71 20292.71 15289.78 10990.73 16181.28 13473.53 18872.85 18492.30 13592.53 17693.84 15599.07 10898.88 86
testgi89.42 15391.50 14387.00 18592.40 15095.59 16389.15 19485.27 16592.78 13272.42 17991.75 8076.00 17184.09 20194.38 14893.82 15698.65 15296.15 173
GA-MVS89.28 15690.75 15187.57 17791.77 15396.48 13392.29 16187.58 13490.61 16465.77 20384.48 13876.84 16989.46 17295.84 11693.68 15798.52 15997.34 153
CP-MVSNet87.89 17787.27 18388.62 15489.30 18495.06 17990.60 18685.78 15587.43 19175.98 16074.60 17968.14 20790.76 15793.07 17093.60 15899.30 6998.98 75
PS-CasMVS87.33 18486.68 19388.10 16189.22 19194.93 18490.35 18985.70 15686.44 19674.01 17573.43 18966.59 21390.04 16892.92 17193.52 15999.28 7198.91 84
PEN-MVS87.22 18686.50 19588.07 16288.88 19594.44 19490.99 18386.21 14886.53 19573.66 17674.97 17666.56 21489.42 17391.20 19393.48 16099.24 7898.31 121
USDC90.69 13690.52 15290.88 12794.17 12596.43 13595.82 10586.76 14393.92 11676.27 15986.49 12274.30 17893.67 12195.04 13893.36 16198.61 15494.13 191
EG-PatchMatch MVS86.68 18887.24 18486.02 19390.58 16396.26 14091.08 18281.59 18784.96 20269.80 19671.35 20175.08 17584.23 20094.24 15293.35 16298.82 13395.46 183
WR-MVS87.93 17488.09 17187.75 17289.26 18695.28 17390.81 18486.69 14488.90 17475.29 16674.31 18373.72 18185.19 19592.26 17993.32 16399.27 7398.81 93
thisisatest051590.12 14792.06 13687.85 17190.03 17196.17 14287.83 19787.45 13691.71 15277.15 15185.40 13284.01 13485.74 19195.41 12993.30 16498.88 12898.43 110
TinyColmap89.42 15388.58 16590.40 13493.80 13395.45 16893.96 13386.54 14692.24 14676.49 15680.83 15670.44 19693.37 12494.45 14693.30 16498.26 17093.37 202
DTE-MVSNet86.67 18986.09 19687.35 18188.45 20194.08 20090.65 18586.05 15286.13 19772.19 18074.58 18166.77 21287.61 18190.31 19693.12 16699.13 10097.62 145
WR-MVS_H87.93 17487.85 17788.03 16789.62 17795.58 16590.47 18785.55 15987.20 19276.83 15474.42 18272.67 18686.37 18793.22 16793.04 16799.33 6298.83 92
MS-PatchMatch91.82 12192.51 12291.02 12495.83 8496.88 11895.05 11384.55 17493.85 11882.01 12882.51 14991.71 8090.52 16395.07 13793.03 16898.13 17294.52 186
v7n86.43 19086.52 19486.33 19087.91 20394.93 18490.15 19083.05 18086.57 19470.21 19171.48 19966.78 21187.72 17994.19 15492.96 16998.92 12598.76 96
v2v48288.25 17087.71 18088.88 15189.23 19095.28 17392.10 16587.89 13388.69 17873.31 17775.32 17471.64 18991.89 13892.10 18492.92 17098.86 13197.99 131
v1088.00 17287.96 17488.05 16589.44 18194.68 18992.36 15883.35 17989.37 17272.96 17873.98 18572.79 18591.35 14693.59 15792.88 17198.81 13698.42 112
pmmvs587.83 17888.09 17187.51 18089.59 17995.48 16689.75 19284.73 17086.07 19971.44 18480.57 15970.09 19990.74 15994.47 14592.87 17298.82 13397.10 157
v119287.51 18187.31 18287.74 17389.04 19394.87 18792.07 16685.03 16688.49 18070.32 18972.65 19370.35 19791.21 14793.59 15792.80 17398.78 14198.42 112
v114487.92 17687.79 17888.07 16289.27 18595.15 17892.17 16485.62 15788.52 17971.52 18373.80 18672.40 18791.06 15093.54 16192.80 17398.81 13698.33 118
V4288.31 16987.95 17588.73 15389.44 18195.34 17292.23 16387.21 13988.83 17574.49 17374.89 17773.43 18390.41 16692.08 18592.77 17598.60 15698.33 118
v888.21 17187.94 17688.51 15589.62 17795.01 18192.31 16084.99 16788.94 17374.70 17275.03 17573.51 18290.67 16092.11 18392.74 17698.80 13898.24 122
v124086.89 18786.75 19287.06 18488.75 19894.65 19191.30 18084.05 17587.49 19068.94 19971.96 19868.86 20590.65 16193.33 16492.72 17798.67 14898.24 122
v192192087.31 18587.13 18687.52 17988.87 19694.72 18891.96 17184.59 17388.28 18269.86 19572.50 19570.03 20091.10 14993.33 16492.61 17898.71 14598.44 109
v14419287.40 18387.20 18587.64 17488.89 19494.88 18691.65 17484.70 17187.80 18671.17 18773.20 19170.91 19390.75 15892.69 17492.49 17998.71 14598.43 110
Anonymous2023120683.84 20185.19 20082.26 20287.38 20692.87 20485.49 20483.65 17786.07 19963.44 21068.42 20569.01 20375.45 21093.34 16392.44 18098.12 17494.20 190
pmmvs685.98 19484.89 20287.25 18288.83 19794.35 19689.36 19385.30 16478.51 21575.44 16462.71 21475.41 17287.65 18093.58 15992.40 18196.89 18997.29 154
v14887.51 18186.79 19088.36 15789.39 18395.21 17789.84 19188.20 13087.61 18977.56 14873.38 19070.32 19886.80 18490.70 19592.31 18298.37 16797.98 133
EU-MVSNet85.62 19587.65 18183.24 20188.54 20092.77 20687.12 19985.32 16286.71 19364.54 20678.52 16675.11 17478.35 20692.25 18092.28 18395.58 20095.93 175
pmmvs490.55 13989.91 15591.30 12390.26 16994.95 18392.73 15187.94 13293.44 12585.35 11582.28 15076.09 17093.02 13093.56 16092.26 18498.51 16096.77 168
MVS-HIRNet85.36 19686.89 18983.57 19990.13 17094.51 19383.57 20972.61 21388.27 18371.22 18668.97 20481.81 14788.91 17693.08 16991.94 18594.97 20889.64 211
TDRefinement89.07 16188.15 17090.14 13995.16 9896.88 11895.55 10890.20 10189.68 16976.42 15776.67 17074.30 17884.85 19693.11 16891.91 18698.64 15394.47 187
SixPastTwentyTwo88.37 16889.47 15887.08 18390.01 17295.93 15187.41 19885.32 16290.26 16870.26 19086.34 12771.95 18890.93 15292.89 17391.72 18798.55 15797.22 155
MIMVSNet180.03 20680.93 20778.97 20772.46 22090.73 21180.81 21382.44 18580.39 21263.64 20857.57 21564.93 21576.37 20891.66 18991.55 18898.07 17589.70 210
test20.0382.92 20385.52 19879.90 20687.75 20491.84 20882.80 21082.99 18182.65 21160.32 21578.90 16570.50 19467.10 21492.05 18690.89 18998.44 16491.80 206
MDTV_nov1_ep1391.57 12693.18 11289.70 14393.39 13796.97 11693.53 13780.91 19195.70 8181.86 12992.40 7189.93 9293.25 12791.97 18790.80 19095.25 20594.46 188
tpm87.95 17389.44 16086.21 19192.53 14894.62 19291.40 17676.36 20391.46 15469.80 19687.43 11475.14 17391.55 14389.85 20190.60 19195.61 19996.96 163
RPSCF94.05 9194.00 9794.12 9096.20 7696.41 13696.61 7891.54 8595.83 7989.73 8396.94 3192.80 7695.35 9091.63 19090.44 19295.27 20493.94 195
pmmvs-eth3d84.33 20082.94 20585.96 19484.16 21190.94 21086.55 20183.79 17684.25 20475.85 16270.64 20256.43 22087.44 18392.20 18190.41 19397.97 17795.68 179
EPMVS90.88 13592.12 13489.44 14794.71 11197.24 11293.55 13676.81 20095.89 7581.77 13091.49 8486.47 11493.87 11490.21 19790.07 19495.92 19593.49 201
SCA90.92 13493.04 11488.45 15693.72 13497.33 11192.77 14976.08 20596.02 7178.26 14691.96 7690.86 8593.99 11390.98 19490.04 19595.88 19694.06 194
PM-MVS84.72 19984.47 20385.03 19584.67 21091.57 20986.27 20282.31 18687.65 18870.62 18876.54 17256.41 22188.75 17792.59 17589.85 19697.54 18596.66 171
ADS-MVSNet89.80 15091.33 14488.00 16894.43 12096.71 12792.29 16174.95 21096.07 7077.39 14988.67 10986.09 11793.26 12688.44 20389.57 19795.68 19893.81 198
PatchmatchNetpermissive90.56 13892.49 12488.31 15993.83 13296.86 12192.42 15776.50 20295.96 7378.31 14591.96 7689.66 9493.48 12390.04 19989.20 19895.32 20293.73 199
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer90.69 13690.48 15390.93 12694.18 12496.08 14494.03 13178.20 19693.47 12489.96 8090.97 9180.30 15293.72 11887.66 20788.75 19995.51 20196.12 174
pmmvs379.16 20780.12 20978.05 20979.36 21586.59 21678.13 21673.87 21276.42 21757.51 22070.59 20357.02 21984.66 19890.10 19888.32 20094.75 21091.77 207
MDTV_nov1_ep13_2view86.30 19188.27 16884.01 19887.71 20594.67 19088.08 19676.78 20190.59 16568.66 20080.46 16180.12 15387.58 18289.95 20088.20 20195.25 20593.90 197
CMPMVSbinary65.18 1784.76 19883.10 20486.69 18795.29 9495.05 18088.37 19585.51 16080.27 21371.31 18568.37 20673.85 18085.25 19387.72 20587.75 20294.38 21288.70 212
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dps90.11 14889.37 16190.98 12593.89 13096.21 14193.49 13877.61 19891.95 14992.74 4788.85 10678.77 15992.37 13487.71 20687.71 20395.80 19794.38 189
new_pmnet81.53 20482.68 20680.20 20483.47 21389.47 21482.21 21278.36 19487.86 18560.14 21767.90 20769.43 20282.03 20489.22 20287.47 20494.99 20787.39 213
tpmrst88.86 16589.62 15687.97 16994.33 12195.98 14692.62 15376.36 20394.62 10676.94 15385.98 12982.80 14392.80 13186.90 20987.15 20594.77 20993.93 196
N_pmnet84.80 19785.10 20184.45 19789.25 18992.86 20584.04 20786.21 14888.78 17666.73 20272.41 19674.87 17785.21 19488.32 20486.45 20695.30 20392.04 205
MDA-MVSNet-bldmvs80.11 20580.24 20879.94 20577.01 21793.21 20378.86 21585.94 15482.71 21060.86 21279.71 16351.77 22383.71 20375.60 21586.37 20793.28 21392.35 203
tpm cat188.90 16387.78 17990.22 13693.88 13195.39 17193.79 13478.11 19792.55 13789.43 8781.31 15479.84 15591.40 14484.95 21086.34 20894.68 21194.09 192
Gipumacopyleft68.35 21166.71 21470.27 21174.16 21968.78 22163.93 22271.77 21583.34 20854.57 22134.37 21931.88 22568.69 21383.30 21285.53 20988.48 21779.78 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc73.83 21376.23 21885.13 21782.27 21184.16 20565.58 20552.82 21723.31 22873.55 21191.41 19285.26 21092.97 21494.70 185
pmnet_mix0286.12 19387.12 18784.96 19689.82 17494.12 19984.88 20686.63 14591.78 15165.60 20480.76 15776.98 16786.61 18687.29 20884.80 21196.21 19294.09 192
test_method72.96 21078.68 21066.28 21450.17 22464.90 22275.45 21850.90 22187.89 18462.54 21162.98 21368.34 20670.45 21291.90 18882.41 21288.19 21892.35 203
new-patchmatchnet78.49 20878.19 21178.84 20884.13 21290.06 21277.11 21780.39 19279.57 21459.64 21866.01 21055.65 22275.62 20984.55 21180.70 21396.14 19490.77 209
PMMVS264.36 21465.94 21662.52 21567.37 22177.44 21964.39 22169.32 21961.47 22034.59 22346.09 21841.03 22448.02 22174.56 21778.23 21491.43 21582.76 215
tmp_tt66.88 21386.07 20973.86 22068.22 22033.38 22296.88 4880.67 13788.23 11278.82 15849.78 21982.68 21377.47 21583.19 221
MVEpermissive50.86 1949.54 21751.43 21747.33 21844.14 22559.20 22436.45 22660.59 22041.47 22331.14 22429.58 22017.06 22948.52 22062.22 21974.63 21663.12 22475.87 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
FPMVS75.84 20974.59 21277.29 21086.92 20783.89 21885.01 20580.05 19382.91 20960.61 21465.25 21160.41 21763.86 21575.60 21573.60 21787.29 21980.47 216
PMVScopyleft63.12 1867.27 21266.39 21568.30 21277.98 21660.24 22359.53 22376.82 19966.65 21960.74 21354.39 21659.82 21851.24 21873.92 21870.52 21883.48 22079.17 218
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN50.67 21547.85 21853.96 21664.13 22350.98 22638.06 22469.51 21751.40 22224.60 22529.46 22224.39 22756.07 21748.17 22059.70 21971.40 22270.84 220
EMVS49.98 21646.76 21953.74 21764.96 22251.29 22537.81 22569.35 21851.83 22122.69 22629.57 22125.06 22657.28 21644.81 22156.11 22070.32 22368.64 221
testmvs12.09 21816.94 2206.42 2203.15 2266.08 2279.51 2283.84 22321.46 2245.31 22727.49 2236.76 23010.89 22217.06 22215.01 2215.84 22524.75 222
test1239.58 21913.53 2214.97 2211.31 2285.47 2288.32 2292.95 22418.14 2252.03 22920.82 2242.34 23110.60 22310.00 22314.16 2224.60 22623.77 223
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def63.50 209
9.1499.28 12
SR-MVS99.45 1097.61 1699.20 16
our_test_389.78 17593.84 20185.59 203
MTAPA96.83 1199.12 21
MTMP97.18 598.83 27
Patchmatch-RL test34.61 227
XVS96.60 6999.35 1696.82 6990.85 6198.72 3099.46 31
X-MVStestdata96.60 6999.35 1696.82 6990.85 6198.72 3099.46 31
abl_696.82 4198.60 4398.74 6797.74 5093.73 5196.25 6294.37 3194.55 5598.60 3597.25 5099.27 7398.61 100
mPP-MVS99.21 2598.29 39
NP-MVS95.32 89
Patchmtry95.96 14893.36 14175.99 20675.19 167
DeepMVS_CXcopyleft86.86 21579.50 21470.43 21690.73 16163.66 20780.36 16260.83 21679.68 20576.23 21489.46 21686.53 214