This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DVP-MVS++98.92 199.18 198.61 499.47 699.61 299.39 397.82 198.80 196.86 998.90 299.92 198.67 1899.02 298.20 1999.43 4699.82 1
MSP-MVS98.73 698.93 598.50 799.44 1399.57 499.36 497.65 998.14 1296.51 1698.49 799.65 898.67 1898.60 1598.42 1199.40 5299.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.52 898.77 998.23 1798.15 5199.26 2798.79 2797.59 1798.52 396.25 1797.99 1699.75 699.01 398.27 3397.97 3199.59 699.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVScopyleft98.86 498.97 398.75 299.43 1499.63 199.25 1397.81 298.62 297.69 197.59 2199.90 298.93 598.99 498.42 1199.37 5899.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CSCG97.44 3397.18 4497.75 2999.47 699.52 898.55 3295.41 4297.69 2595.72 2194.29 5795.53 6498.10 3596.20 10897.38 5799.24 7899.62 4
SED-MVS98.90 299.07 298.69 399.38 2099.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1899.02 298.26 1799.36 6099.61 6
TSAR-MVS + MP.98.49 998.78 898.15 2198.14 5299.17 3499.34 697.18 3198.44 595.72 2197.84 1799.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + ACMM97.71 2998.60 1296.66 4298.64 4299.05 3898.85 2697.23 2998.45 489.40 9197.51 2599.27 1496.88 6298.53 1697.81 4198.96 12299.59 8
APDe-MVS98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 499.57 9
DROMVSNet96.49 5197.63 3595.16 6794.75 11298.69 7397.39 5788.97 12096.34 5992.02 5496.04 3996.46 5298.21 2798.41 2597.96 3299.61 599.55 10
SteuartSystems-ACMMP98.38 1598.71 1097.99 2599.34 2299.46 1099.34 697.33 2697.31 3794.25 3298.06 1499.17 1998.13 3298.98 598.46 999.55 1799.54 11
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS96.87 4597.41 4096.24 4897.42 6299.48 997.30 5891.83 8397.17 4193.02 4394.80 5394.45 6898.16 3198.61 1497.85 3999.69 199.50 12
canonicalmvs95.25 6795.45 7195.00 7195.27 9798.72 7196.89 6689.82 10896.51 5690.84 6793.72 6086.01 11997.66 4395.78 12097.94 3499.54 1899.50 12
DPE-MVScopyleft98.75 598.91 698.57 599.21 2599.54 699.42 297.78 697.49 3396.84 1098.94 199.82 598.59 2298.90 1098.22 1899.56 1699.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
EPP-MVSNet95.27 6696.18 6194.20 8994.88 10698.64 7894.97 11690.70 9795.34 8989.67 8791.66 8193.84 7195.42 9097.32 6597.00 6699.58 1099.47 15
CS-MVS-test97.00 4197.85 3496.00 5397.77 5799.56 596.35 8791.95 7897.54 3192.20 5196.14 3796.00 6298.19 2998.46 2097.78 4299.57 1399.45 16
PVSNet_Blended_VisFu94.77 7595.54 6993.87 9396.48 7498.97 5194.33 12991.84 8194.93 10290.37 7585.04 13594.99 6590.87 15798.12 4397.30 6099.30 6999.45 16
SMA-MVScopyleft98.66 798.89 798.39 1099.60 199.41 1299.00 2197.63 1397.78 1895.83 2098.33 1199.83 498.85 1098.93 898.56 699.41 4999.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_030496.31 5396.91 5095.62 5897.21 6799.20 3298.55 3293.10 6297.04 4789.73 8590.30 9696.35 5495.71 8098.14 4197.93 3699.38 5599.40 18
MSLP-MVS++98.04 2497.93 3398.18 1899.10 2999.09 3798.34 3796.99 3497.54 3196.60 1494.82 5298.45 3698.89 697.46 6298.77 499.17 9399.37 20
DeepC-MVS94.87 496.76 5096.50 5597.05 3798.21 5099.28 2598.67 2897.38 2297.31 3790.36 7689.19 10493.58 7398.19 2998.31 2898.50 799.51 2499.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet96.84 4797.20 4296.42 4397.92 5599.24 3198.60 3093.51 5497.11 4493.07 3991.16 8697.24 4696.21 7498.24 3698.05 2699.22 8499.35 22
3Dnovator+93.91 797.23 3697.22 4197.24 3498.89 3798.85 6398.26 4093.25 5997.99 1595.56 2490.01 10098.03 4298.05 3697.91 4998.43 1099.44 4399.35 22
DCV-MVSNet94.76 7695.12 7994.35 8795.10 10395.81 15796.46 8489.49 11496.33 6090.16 7792.55 7090.26 9195.83 7995.52 12696.03 9199.06 11199.33 24
TSAR-MVS + GP.97.45 3298.36 1996.39 4495.56 8998.93 5597.74 5093.31 5697.61 2994.24 3398.44 999.19 1798.03 3797.60 5897.41 5599.44 4399.33 24
UGNet94.92 6896.63 5392.93 10796.03 8398.63 8094.53 12691.52 8896.23 6390.03 8092.87 6796.10 6086.28 18996.68 8696.60 7699.16 9699.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MCST-MVS98.20 1998.36 1998.01 2499.40 1699.05 3899.00 2197.62 1497.59 3093.70 3697.42 2899.30 1198.77 1498.39 2797.48 5299.59 699.31 27
FC-MVSNet-train93.85 9793.91 9993.78 9594.94 10596.79 12694.29 13091.13 9293.84 12088.26 10290.40 9585.23 12694.65 10396.54 9295.31 11299.38 5599.28 28
X-MVS97.84 2598.19 2897.42 3299.40 1699.35 1899.06 1897.25 2797.38 3690.85 6496.06 3898.72 3098.53 2598.41 2598.15 2299.46 3199.28 28
EPNet96.27 5596.97 4795.46 6298.47 4598.28 8897.41 5593.67 5295.86 7792.86 4597.51 2593.79 7291.76 14297.03 7597.03 6598.61 15599.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CP-MVS98.32 1898.34 2298.29 1499.34 2299.30 2399.15 1597.35 2397.49 3395.58 2397.72 1998.62 3498.82 1298.29 2997.67 4599.51 2499.28 28
DELS-MVS96.06 5696.04 6296.07 5297.77 5799.25 2998.10 4393.26 5794.42 11092.79 4688.52 11193.48 7495.06 9598.51 1798.83 199.45 3599.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HFP-MVS98.48 1098.62 1198.32 1399.39 1999.33 2299.27 1197.42 2098.27 795.25 2598.34 1098.83 2799.08 198.26 3498.08 2599.48 2799.26 33
HPM-MVS++copyleft98.34 1798.47 1598.18 1899.46 999.15 3599.10 1797.69 897.67 2694.93 2897.62 2099.70 798.60 2198.45 2197.46 5399.31 6799.26 33
3Dnovator93.79 897.08 3897.20 4296.95 3999.09 3099.03 4598.20 4193.33 5597.99 1593.82 3590.61 9496.80 5097.82 3997.90 5098.78 399.47 3099.26 33
Anonymous2023121193.49 10692.33 13394.84 7794.78 11198.00 9896.11 9291.85 8094.86 10390.91 6374.69 17989.18 10096.73 6594.82 14195.51 10798.67 14999.24 36
MP-MVScopyleft98.09 2398.30 2597.84 2899.34 2299.19 3399.23 1497.40 2197.09 4593.03 4297.58 2398.85 2698.57 2498.44 2397.69 4499.48 2799.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
IS_MVSNet95.28 6596.43 5793.94 9195.30 9599.01 4995.90 9991.12 9394.13 11587.50 10791.23 8594.45 6894.17 11098.45 2198.50 799.65 399.23 37
ACMMPR98.40 1398.49 1398.28 1599.41 1599.40 1399.36 497.35 2398.30 695.02 2797.79 1898.39 3899.04 298.26 3498.10 2399.50 2699.22 39
APD-MVScopyleft98.36 1698.32 2398.41 999.47 699.26 2799.12 1697.77 796.73 5296.12 1897.27 2998.88 2598.46 2698.47 1998.39 1499.52 1999.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet (Re)90.03 15089.61 15890.51 13489.97 17496.12 14492.32 16089.26 11690.99 16080.95 13778.25 16875.08 17691.14 14993.78 15693.87 15499.41 4999.21 41
DeepPCF-MVS95.28 297.00 4198.35 2195.42 6397.30 6598.94 5394.82 12096.03 4098.24 992.11 5395.80 4298.64 3395.51 8798.95 798.66 596.78 19299.20 42
xxxxxxxxxxxxxcwj97.07 3995.99 6398.33 1199.45 1099.05 3898.27 3897.65 997.73 1997.02 798.18 1281.99 14798.11 3398.15 3997.62 4699.45 3599.19 43
SF-MVS98.39 1498.45 1798.33 1199.45 1099.05 3898.27 3897.65 997.73 1997.02 798.18 1299.25 1598.11 3398.15 3997.62 4699.45 3599.19 43
ACMMP_NAP98.20 1998.49 1397.85 2799.50 499.40 1399.26 1297.64 1297.47 3592.62 4997.59 2199.09 2298.71 1698.82 1297.86 3899.40 5299.19 43
train_agg97.65 3098.06 3097.18 3598.94 3498.91 5898.98 2597.07 3396.71 5390.66 6997.43 2799.08 2498.20 2897.96 4897.14 6399.22 8499.19 43
ETV-MVS96.31 5397.47 3994.96 7394.79 10998.78 6696.08 9391.41 9096.16 6590.50 7195.76 4396.20 5897.39 4798.42 2497.82 4099.57 1399.18 47
QAPM96.78 4997.14 4596.36 4599.05 3199.14 3698.02 4493.26 5797.27 3990.84 6791.16 8697.31 4597.64 4497.70 5698.20 1999.33 6299.18 47
zzz-MVS98.43 1298.31 2498.57 599.48 599.40 1399.32 997.62 1497.70 2396.67 1296.59 3399.09 2298.86 898.65 1397.56 5099.45 3599.17 49
anonymousdsp88.90 16491.00 14886.44 19088.74 20095.97 14890.40 18982.86 18288.77 17867.33 20281.18 15681.44 15090.22 16896.23 10594.27 14599.12 10299.16 50
EIA-MVS95.50 5896.19 6094.69 8194.83 10898.88 6295.93 9891.50 8994.47 10989.43 8993.14 6392.72 7897.05 5897.82 5497.13 6499.43 4699.15 51
Anonymous20240521192.18 13495.04 10498.20 9296.14 9191.79 8493.93 11674.60 18088.38 10896.48 7095.17 13695.82 10199.00 11799.15 51
ACMMPcopyleft97.37 3497.48 3897.25 3398.88 3899.28 2598.47 3596.86 3697.04 4792.15 5297.57 2496.05 6197.67 4297.27 6695.99 9399.46 3199.14 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CHOSEN 1792x268892.66 11592.49 12592.85 10897.13 6898.89 6195.90 9988.50 12695.32 9083.31 12471.99 19888.96 10394.10 11296.69 8596.49 7798.15 17299.10 54
DeepC-MVS_fast96.13 198.13 2198.27 2697.97 2699.16 2899.03 4599.05 1997.24 2898.22 1094.17 3495.82 4198.07 4098.69 1798.83 1198.80 299.52 1999.10 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS97.81 2698.11 2997.46 3199.55 399.34 2199.32 994.51 4796.21 6493.07 3998.05 1597.95 4398.82 1298.22 3797.89 3799.48 2799.09 56
CNVR-MVS98.47 1198.46 1698.48 899.40 1699.05 3899.02 2097.54 1897.73 1996.65 1397.20 3099.13 2098.85 1098.91 998.10 2399.41 4999.08 57
PVSNet_BlendedMVS95.41 6395.28 7395.57 5997.42 6299.02 4795.89 10193.10 6296.16 6593.12 3791.99 7485.27 12494.66 10198.09 4597.34 5899.24 7899.08 57
PVSNet_Blended95.41 6395.28 7395.57 5997.42 6299.02 4795.89 10193.10 6296.16 6593.12 3791.99 7485.27 12494.66 10198.09 4597.34 5899.24 7899.08 57
IB-MVS89.56 1591.71 12492.50 12490.79 13195.94 8598.44 8587.05 20191.38 9193.15 12892.98 4484.78 13685.14 12778.27 20892.47 17994.44 14299.10 10499.08 57
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GeoE92.52 11792.64 12092.39 11293.96 12997.76 10296.01 9785.60 15893.23 12783.94 12081.56 15384.80 13095.63 8396.22 10695.83 10099.19 9199.07 61
test_part191.21 13189.47 15993.24 10594.26 12495.45 16995.26 11188.36 12788.49 18190.04 7972.61 19582.82 14293.69 12193.25 16794.62 13297.84 18099.06 62
ACMP92.88 994.43 8394.38 8994.50 8496.01 8497.69 10395.85 10492.09 7695.74 8089.12 9695.14 4982.62 14594.77 9795.73 12294.67 12999.14 9999.06 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS94.79 7394.36 9095.30 6595.21 9997.46 10897.23 5992.24 7596.43 5791.77 5692.69 6884.31 13296.06 7595.52 12695.03 12099.31 6799.06 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet90.35 14389.96 15590.80 13089.66 17795.83 15692.48 15690.53 10090.96 16179.57 14179.33 16577.14 16793.21 12992.91 17394.50 14199.37 5899.05 65
DU-MVS89.67 15388.84 16490.63 13389.26 18795.61 16292.48 15689.91 10591.22 15779.57 14177.72 16971.18 19393.21 12992.53 17794.57 13599.35 6199.05 65
CPTT-MVS97.78 2797.54 3698.05 2398.91 3699.05 3899.00 2196.96 3597.14 4395.92 1995.50 4598.78 2998.99 497.20 6896.07 8898.54 15999.04 67
tfpnnormal88.50 16787.01 18990.23 13691.36 15795.78 15992.74 15190.09 10383.65 20776.33 15971.46 20169.58 20291.84 14095.54 12594.02 15099.06 11199.03 68
LGP-MVS_train94.12 9094.62 8493.53 9896.44 7597.54 10597.40 5691.84 8194.66 10581.09 13695.70 4483.36 14095.10 9496.36 10195.71 10299.32 6499.03 68
PHI-MVS97.78 2798.44 1897.02 3898.73 3999.25 2998.11 4295.54 4196.66 5592.79 4698.52 699.38 997.50 4697.84 5198.39 1499.45 3599.03 68
MVS_111021_HR97.04 4098.20 2795.69 5798.44 4799.29 2496.59 7993.20 6097.70 2389.94 8398.46 896.89 4896.71 6698.11 4497.95 3399.27 7399.01 71
HQP-MVS94.43 8394.57 8594.27 8896.41 7697.23 11496.89 6693.98 4995.94 7483.68 12295.01 5184.46 13195.58 8595.47 12894.85 12899.07 10899.00 72
NR-MVSNet89.34 15688.66 16590.13 14190.40 16695.61 16293.04 14889.91 10591.22 15778.96 14477.72 16968.90 20589.16 17594.24 15393.95 15199.32 6498.99 73
MAR-MVS95.50 5895.60 6795.39 6498.67 4198.18 9495.89 10189.81 10994.55 10891.97 5592.99 6490.21 9297.30 4996.79 8197.49 5198.72 14598.99 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+92.93 11293.86 10191.86 11594.07 12898.09 9795.59 10685.98 15394.27 11379.54 14391.12 8981.81 14896.71 6696.67 8796.06 8999.27 7398.98 75
CP-MVSNet87.89 17887.27 18488.62 15589.30 18595.06 18090.60 18785.78 15587.43 19275.98 16174.60 18068.14 20890.76 15893.07 17193.60 15999.30 6998.98 75
NCCC98.10 2298.05 3198.17 2099.38 2099.05 3899.00 2197.53 1998.04 1495.12 2694.80 5399.18 1898.58 2398.49 1897.78 4299.39 5498.98 75
ACMH90.77 1391.51 12991.63 14291.38 12295.62 8896.87 12191.76 17489.66 11191.58 15478.67 14586.73 11978.12 16193.77 11894.59 14394.54 13898.78 14298.98 75
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline94.83 7095.82 6593.68 9694.75 11297.80 10196.51 8288.53 12597.02 4989.34 9392.93 6592.18 8094.69 10095.78 12096.08 8798.27 17098.97 79
HyFIR lowres test92.03 11991.55 14392.58 10997.13 6898.72 7194.65 12486.54 14693.58 12482.56 12767.75 20990.47 9095.67 8195.87 11695.54 10698.91 12798.93 80
UniMVSNet_ETH3D88.47 16886.00 19891.35 12391.55 15596.29 14092.53 15588.81 12185.58 20282.33 12867.63 21066.87 21194.04 11391.49 19295.24 11498.84 13398.92 81
CDPH-MVS96.84 4797.49 3796.09 5098.92 3598.85 6398.61 2995.09 4396.00 7287.29 10895.45 4797.42 4497.16 5397.83 5297.94 3499.44 4398.92 81
TranMVSNet+NR-MVSNet89.23 15988.48 16890.11 14289.07 19395.25 17792.91 14990.43 10190.31 16777.10 15376.62 17271.57 19191.83 14192.12 18394.59 13499.32 6498.92 81
PS-CasMVS87.33 18586.68 19488.10 16289.22 19294.93 18590.35 19085.70 15686.44 19774.01 17673.43 19066.59 21490.04 16992.92 17293.52 16099.28 7198.91 84
Vis-MVSNetpermissive92.77 11395.00 8290.16 13894.10 12798.79 6594.76 12288.26 12892.37 14479.95 13988.19 11391.58 8284.38 20097.59 5997.58 4999.52 1998.91 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Baseline_NR-MVSNet89.27 15888.01 17490.73 13289.26 18793.71 20392.71 15389.78 11090.73 16281.28 13573.53 18972.85 18592.30 13692.53 17793.84 15699.07 10898.88 86
OpenMVScopyleft92.33 1195.50 5895.22 7595.82 5698.98 3298.97 5197.67 5293.04 6594.64 10689.18 9584.44 14094.79 6696.79 6397.23 6797.61 4899.24 7898.88 86
tttt051794.52 8195.44 7293.44 10194.51 11998.68 7494.61 12590.72 9595.61 8586.84 11293.78 5989.26 9994.74 9897.02 7694.86 12599.20 9098.87 88
LTVRE_ROB87.32 1687.55 18188.25 17086.73 18790.66 16395.80 15893.05 14784.77 16983.35 20860.32 21683.12 14767.39 20993.32 12694.36 15094.86 12598.28 16998.87 88
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thisisatest053094.54 8095.47 7093.46 10094.51 11998.65 7794.66 12390.72 9595.69 8386.90 11193.80 5889.44 9694.74 9896.98 7794.86 12599.19 9198.85 90
MVS_111021_LR97.16 3798.01 3296.16 4998.47 4598.98 5096.94 6593.89 5097.64 2891.44 5798.89 396.41 5397.20 5298.02 4797.29 6299.04 11698.85 90
WR-MVS_H87.93 17587.85 17888.03 16889.62 17895.58 16690.47 18885.55 15987.20 19376.83 15574.42 18372.67 18786.37 18893.22 16893.04 16899.33 6298.83 92
WR-MVS87.93 17588.09 17287.75 17389.26 18795.28 17490.81 18586.69 14488.90 17575.29 16774.31 18473.72 18285.19 19692.26 18093.32 16499.27 7398.81 93
diffmvs94.31 8894.21 9294.42 8694.64 11798.28 8896.36 8691.56 8696.77 5188.89 9888.97 10584.23 13396.01 7896.05 11296.41 7999.05 11598.79 94
DI_MVS_plusplus_trai94.01 9293.63 10694.44 8594.54 11898.26 9097.51 5490.63 9895.88 7689.34 9380.54 16189.36 9795.48 8896.33 10296.27 8399.17 9398.78 95
v7n86.43 19186.52 19586.33 19187.91 20494.93 18590.15 19183.05 18086.57 19570.21 19271.48 20066.78 21287.72 18094.19 15592.96 17098.92 12698.76 96
Effi-MVS+-dtu91.78 12393.59 10889.68 14692.44 15097.11 11694.40 12884.94 16892.43 14075.48 16491.09 9083.75 13793.55 12396.61 8895.47 10897.24 18898.67 97
casdiffmvs94.38 8694.15 9794.64 8394.70 11698.51 8496.03 9691.66 8595.70 8189.36 9286.48 12485.03 12996.60 6997.40 6397.30 6099.52 1998.67 97
thres600view793.49 10692.37 13294.79 7995.42 9098.93 5596.58 8092.31 7193.04 12987.88 10486.62 12176.94 16997.09 5796.82 7895.63 10399.45 3598.63 99
abl_696.82 4198.60 4398.74 6897.74 5093.73 5196.25 6294.37 3194.55 5698.60 3597.25 5099.27 7398.61 100
IterMVS-LS92.56 11693.18 11391.84 11693.90 13094.97 18394.99 11586.20 15094.18 11482.68 12685.81 13187.36 11294.43 10595.31 13296.02 9298.87 13098.60 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpn200view993.64 10192.57 12194.89 7495.33 9398.94 5396.82 6992.31 7192.63 13588.29 9987.21 11578.01 16397.12 5696.82 7895.85 9899.45 3598.56 102
thres40093.56 10492.43 12994.87 7695.40 9198.91 5896.70 7692.38 7092.93 13188.19 10386.69 12077.35 16697.13 5496.75 8395.85 9899.42 4898.56 102
MVS_Test94.82 7195.66 6693.84 9494.79 10998.35 8796.49 8389.10 11996.12 6887.09 11092.58 6990.61 8996.48 7096.51 9696.89 7099.11 10398.54 104
Vis-MVSNet (Re-imp)94.46 8296.24 5992.40 11195.23 9898.64 7895.56 10790.99 9494.42 11085.02 11790.88 9294.65 6788.01 17998.17 3898.37 1699.57 1398.53 105
Fast-Effi-MVS+91.87 12192.08 13691.62 12192.91 14497.21 11594.93 11784.60 17293.61 12381.49 13483.50 14578.95 15896.62 6896.55 9196.22 8599.16 9698.51 106
MVSTER94.89 6995.07 8094.68 8294.71 11496.68 12997.00 6190.57 9995.18 9893.05 4195.21 4886.41 11693.72 11997.59 5995.88 9799.00 11798.50 107
thres20093.62 10292.54 12294.88 7595.36 9298.93 5596.75 7492.31 7192.84 13288.28 10186.99 11777.81 16597.13 5496.82 7895.92 9499.45 3598.49 108
v192192087.31 18687.13 18787.52 18088.87 19794.72 18991.96 17284.59 17388.28 18369.86 19672.50 19670.03 20191.10 15093.33 16592.61 17998.71 14698.44 109
thisisatest051590.12 14892.06 13787.85 17290.03 17296.17 14387.83 19887.45 13691.71 15377.15 15285.40 13384.01 13585.74 19295.41 13093.30 16598.88 12998.43 110
v14419287.40 18487.20 18687.64 17588.89 19594.88 18791.65 17584.70 17187.80 18771.17 18873.20 19270.91 19490.75 15992.69 17592.49 18098.71 14698.43 110
v119287.51 18287.31 18387.74 17489.04 19494.87 18892.07 16785.03 16688.49 18170.32 19072.65 19470.35 19891.21 14893.59 15892.80 17498.78 14298.42 112
v1088.00 17387.96 17588.05 16689.44 18294.68 19092.36 15983.35 17989.37 17372.96 17973.98 18672.79 18691.35 14793.59 15892.88 17298.81 13798.42 112
thres100view90093.55 10592.47 12894.81 7895.33 9398.74 6896.78 7392.30 7492.63 13588.29 9987.21 11578.01 16396.78 6496.38 9895.92 9499.38 5598.40 114
AdaColmapbinary97.53 3196.93 4898.24 1699.21 2598.77 6798.47 3597.34 2596.68 5496.52 1595.11 5096.12 5998.72 1597.19 7096.24 8499.17 9398.39 115
FA-MVS(training)93.94 9495.16 7692.53 11094.87 10798.57 8395.42 10979.49 19495.37 8890.98 6286.54 12294.26 7095.44 8997.80 5595.19 11798.97 12098.38 116
PCF-MVS93.95 695.65 5795.14 7796.25 4697.73 6098.73 7097.59 5397.13 3292.50 13989.09 9789.85 10196.65 5196.90 6194.97 14094.89 12499.08 10698.38 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Fast-Effi-MVS+-dtu91.19 13293.64 10588.33 15992.19 15296.46 13593.99 13381.52 18992.59 13771.82 18392.17 7385.54 12291.68 14395.73 12294.64 13198.80 13998.34 118
v114487.92 17787.79 17988.07 16389.27 18695.15 17992.17 16585.62 15788.52 18071.52 18473.80 18772.40 18891.06 15193.54 16292.80 17498.81 13798.33 119
V4288.31 17087.95 17688.73 15489.44 18295.34 17392.23 16487.21 13988.83 17674.49 17474.89 17873.43 18490.41 16792.08 18692.77 17698.60 15798.33 119
CDS-MVSNet92.77 11393.60 10791.80 11792.63 14896.80 12395.24 11289.14 11890.30 16884.58 11886.76 11890.65 8890.42 16595.89 11596.49 7798.79 14198.32 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PEN-MVS87.22 18786.50 19688.07 16388.88 19694.44 19590.99 18486.21 14886.53 19673.66 17774.97 17766.56 21589.42 17491.20 19493.48 16199.24 7898.31 122
v124086.89 18886.75 19387.06 18588.75 19994.65 19291.30 18184.05 17587.49 19168.94 20071.96 19968.86 20690.65 16293.33 16592.72 17898.67 14998.24 123
v888.21 17287.94 17788.51 15689.62 17895.01 18292.31 16184.99 16788.94 17474.70 17375.03 17673.51 18390.67 16192.11 18492.74 17798.80 13998.24 123
baseline293.01 11194.17 9591.64 11992.83 14697.49 10793.40 14187.53 13593.67 12286.07 11391.83 7986.58 11391.36 14696.38 9895.06 11998.67 14998.20 125
ET-MVSNet_ETH3D93.34 10894.33 9192.18 11483.26 21597.66 10496.72 7589.89 10795.62 8487.17 10996.00 4083.69 13896.99 5993.78 15695.34 11199.06 11198.18 126
CNLPA96.90 4496.28 5897.64 3098.56 4498.63 8096.85 6896.60 3897.73 1997.08 689.78 10296.28 5797.80 4196.73 8496.63 7598.94 12498.14 127
test111193.94 9492.78 11895.29 6696.14 8199.42 1196.79 7292.85 6695.08 10091.39 5980.69 15979.86 15595.00 9698.28 3298.00 2899.58 1098.11 128
test250694.32 8793.00 11695.87 5496.16 7999.39 1696.96 6392.80 6795.22 9694.47 2991.55 8370.45 19695.25 9298.29 2997.98 2999.59 698.10 129
ECVR-MVScopyleft94.14 8992.96 11795.52 6196.16 7999.39 1696.96 6392.80 6795.22 9692.38 5081.48 15480.31 15295.25 9298.29 2997.98 2999.59 698.05 130
PLCcopyleft94.95 397.37 3496.77 5298.07 2298.97 3398.21 9197.94 4796.85 3797.66 2797.58 393.33 6196.84 4998.01 3897.13 7296.20 8699.09 10598.01 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v2v48288.25 17187.71 18188.88 15289.23 19195.28 17492.10 16687.89 13388.69 17973.31 17875.32 17571.64 19091.89 13992.10 18592.92 17198.86 13297.99 132
ACMH+90.88 1291.41 13091.13 14691.74 11895.11 10296.95 11893.13 14689.48 11592.42 14179.93 14085.13 13478.02 16293.82 11793.49 16393.88 15398.94 12497.99 132
v14887.51 18286.79 19188.36 15889.39 18495.21 17889.84 19288.20 13087.61 19077.56 14973.38 19170.32 19986.80 18590.70 19692.31 18398.37 16897.98 134
TAPA-MVS94.18 596.38 5296.49 5696.25 4698.26 4998.66 7598.00 4594.96 4597.17 4189.48 8892.91 6696.35 5497.53 4596.59 8995.90 9699.28 7197.82 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU93.92 9696.57 5490.83 12995.63 8798.39 8696.99 6287.38 13796.26 6171.97 18296.31 3593.02 7594.53 10497.38 6496.83 7298.49 16297.79 136
GBi-Net93.81 9894.18 9393.38 10291.34 15895.86 15396.22 8888.68 12295.23 9390.40 7286.39 12591.16 8394.40 10796.52 9396.30 8099.21 8797.79 136
test193.81 9894.18 9393.38 10291.34 15895.86 15396.22 8888.68 12295.23 9390.40 7286.39 12591.16 8394.40 10796.52 9396.30 8099.21 8797.79 136
FMVSNet393.79 10094.17 9593.35 10491.21 16195.99 14696.62 7788.68 12295.23 9390.40 7286.39 12591.16 8394.11 11195.96 11396.67 7499.07 10897.79 136
FMVSNet293.30 10993.36 11293.22 10691.34 15895.86 15396.22 8888.24 12995.15 9989.92 8481.64 15289.36 9794.40 10796.77 8296.98 6799.21 8797.79 136
pm-mvs189.19 16089.02 16389.38 14990.40 16695.74 16092.05 16888.10 13186.13 19877.70 14873.72 18879.44 15788.97 17695.81 11994.51 14099.08 10697.78 141
FMVSNet191.54 12890.93 14992.26 11390.35 16895.27 17695.22 11387.16 14091.37 15687.62 10675.45 17483.84 13694.43 10596.52 9396.30 8098.82 13497.74 142
LS3D95.46 6195.14 7795.84 5597.91 5698.90 6098.58 3197.79 597.07 4683.65 12388.71 10788.64 10597.82 3997.49 6197.42 5499.26 7797.72 143
OMC-MVS97.00 4196.92 4997.09 3698.69 4098.66 7597.85 4895.02 4498.09 1394.47 2993.15 6296.90 4797.38 4897.16 7196.82 7399.13 10097.65 144
IterMVS-SCA-FT90.24 14492.48 12787.63 17692.85 14594.30 19993.79 13581.47 19092.66 13469.95 19484.66 13888.38 10889.99 17095.39 13194.34 14397.74 18597.63 145
DTE-MVSNet86.67 19086.09 19787.35 18288.45 20294.08 20190.65 18686.05 15286.13 19872.19 18174.58 18266.77 21387.61 18290.31 19793.12 16799.13 10097.62 146
DPM-MVS96.86 4696.82 5196.91 4098.08 5398.20 9298.52 3497.20 3097.24 4091.42 5891.84 7898.45 3697.25 5097.07 7397.40 5698.95 12397.55 147
CHOSEN 280x42095.46 6197.01 4693.66 9797.28 6697.98 9996.40 8585.39 16196.10 6991.07 6196.53 3496.34 5695.61 8497.65 5796.95 6896.21 19397.49 148
IterMVS90.20 14592.43 12987.61 17792.82 14794.31 19894.11 13181.54 18892.97 13069.90 19584.71 13788.16 11189.96 17195.25 13394.17 14697.31 18797.46 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test91.63 12593.82 10389.08 15192.02 15396.40 13893.26 14487.26 13893.72 12177.26 15188.61 11089.86 9485.50 19395.72 12495.02 12199.16 9697.44 150
gg-mvs-nofinetune86.17 19388.57 16783.36 20193.44 13798.15 9596.58 8072.05 21574.12 21949.23 22364.81 21390.85 8789.90 17297.83 5296.84 7198.97 12097.41 151
test-mter90.95 13493.54 11187.93 17190.28 16996.80 12391.44 17682.68 18492.15 14974.37 17589.57 10388.23 11090.88 15696.37 10094.31 14497.93 17997.37 152
ACMM92.75 1094.41 8593.84 10295.09 6996.41 7696.80 12394.88 11993.54 5396.41 5890.16 7792.31 7283.11 14196.32 7296.22 10694.65 13099.22 8497.35 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS89.28 15790.75 15287.57 17891.77 15496.48 13492.29 16287.58 13490.61 16565.77 20484.48 13976.84 17089.46 17395.84 11793.68 15898.52 16097.34 154
pmmvs685.98 19584.89 20387.25 18388.83 19894.35 19789.36 19485.30 16478.51 21675.44 16562.71 21575.41 17387.65 18193.58 16092.40 18296.89 19097.29 155
OPM-MVS93.61 10392.43 12995.00 7196.94 7097.34 11197.78 4994.23 4889.64 17185.53 11588.70 10882.81 14396.28 7396.28 10495.00 12399.24 7897.22 156
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SixPastTwentyTwo88.37 16989.47 15987.08 18490.01 17395.93 15287.41 19985.32 16290.26 16970.26 19186.34 12871.95 18990.93 15392.89 17491.72 18898.55 15897.22 156
pmmvs587.83 17988.09 17287.51 18189.59 18095.48 16789.75 19384.73 17086.07 20071.44 18580.57 16070.09 20090.74 16094.47 14692.87 17398.82 13497.10 158
CVMVSNet89.77 15291.66 14187.56 17993.21 14295.45 16991.94 17389.22 11789.62 17269.34 19983.99 14385.90 12084.81 19894.30 15195.28 11396.85 19197.09 159
PMMVS94.61 7895.56 6893.50 9994.30 12396.74 12794.91 11889.56 11395.58 8687.72 10596.15 3692.86 7696.06 7595.47 12895.02 12198.43 16797.09 159
CR-MVSNet90.16 14791.96 13988.06 16593.32 13995.95 15093.36 14275.99 20792.40 14275.19 16883.18 14685.37 12392.05 13795.21 13494.56 13698.47 16497.08 161
PatchT89.13 16191.71 14086.11 19392.92 14395.59 16483.64 20975.09 21091.87 15175.19 16882.63 14985.06 12892.05 13795.21 13494.56 13697.76 18297.08 161
baseline194.59 7994.47 8794.72 8095.16 10097.97 10096.07 9491.94 7994.86 10389.98 8191.60 8285.87 12195.64 8297.07 7396.90 6999.52 1997.06 163
UA-Net93.96 9395.95 6491.64 11996.06 8298.59 8295.29 11090.00 10491.06 15982.87 12590.64 9398.06 4186.06 19098.14 4198.20 1999.58 1096.96 164
tpm87.95 17489.44 16186.21 19292.53 14994.62 19391.40 17776.36 20491.46 15569.80 19787.43 11475.14 17491.55 14489.85 20290.60 19295.61 20096.96 164
RPMNet90.19 14692.03 13888.05 16693.46 13695.95 15093.41 14074.59 21292.40 14275.91 16284.22 14186.41 11692.49 13394.42 14893.85 15598.44 16596.96 164
test-LLR91.62 12693.56 10989.35 15093.31 14096.57 13292.02 17087.06 14192.34 14575.05 17190.20 9788.64 10590.93 15396.19 10994.07 14897.75 18396.90 167
TESTMET0.1,191.07 13393.56 10988.17 16190.43 16596.57 13292.02 17082.83 18392.34 14575.05 17190.20 9788.64 10590.93 15396.19 10994.07 14897.75 18396.90 167
pmmvs490.55 14089.91 15691.30 12490.26 17094.95 18492.73 15287.94 13293.44 12685.35 11682.28 15176.09 17193.02 13193.56 16192.26 18598.51 16196.77 169
TSAR-MVS + COLMAP94.79 7394.51 8695.11 6896.50 7397.54 10597.99 4694.54 4697.81 1785.88 11496.73 3281.28 15196.99 5996.29 10395.21 11698.76 14496.73 170
PatchMatch-RL94.69 7794.41 8895.02 7097.63 6198.15 9594.50 12791.99 7795.32 9091.31 6095.47 4683.44 13996.02 7796.56 9095.23 11598.69 14896.67 171
PM-MVS84.72 20084.47 20485.03 19684.67 21191.57 21086.27 20382.31 18687.65 18970.62 18976.54 17356.41 22288.75 17892.59 17689.85 19797.54 18696.66 172
test0.0.03 191.97 12093.91 9989.72 14393.31 14096.40 13891.34 17987.06 14193.86 11881.67 13291.15 8889.16 10186.02 19195.08 13795.09 11898.91 12796.64 173
testgi89.42 15491.50 14487.00 18692.40 15195.59 16489.15 19585.27 16592.78 13372.42 18091.75 8076.00 17284.09 20294.38 14993.82 15798.65 15396.15 174
CostFormer90.69 13790.48 15490.93 12794.18 12596.08 14594.03 13278.20 19793.47 12589.96 8290.97 9180.30 15393.72 11987.66 20888.75 20095.51 20296.12 175
EU-MVSNet85.62 19687.65 18283.24 20288.54 20192.77 20787.12 20085.32 16286.71 19464.54 20778.52 16775.11 17578.35 20792.25 18192.28 18495.58 20195.93 176
TransMVSNet (Re)87.73 18086.79 19188.83 15390.76 16294.40 19691.33 18089.62 11284.73 20475.41 16672.73 19371.41 19286.80 18594.53 14593.93 15299.06 11195.83 177
EPNet_dtu92.45 11895.02 8189.46 14798.02 5495.47 16894.79 12192.62 6994.97 10170.11 19394.76 5592.61 7984.07 20395.94 11495.56 10597.15 18995.82 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSDG94.82 7193.73 10496.09 5098.34 4897.43 11097.06 6096.05 3995.84 7890.56 7086.30 12989.10 10295.55 8696.13 11195.61 10499.00 11795.73 179
pmmvs-eth3d84.33 20182.94 20685.96 19584.16 21290.94 21186.55 20283.79 17684.25 20575.85 16370.64 20356.43 22187.44 18492.20 18290.41 19497.97 17895.68 180
GG-mvs-BLEND66.17 21494.91 8332.63 2201.32 22896.64 13091.40 1770.85 22694.39 1122.20 22990.15 9995.70 632.27 22596.39 9795.44 10997.78 18195.68 180
gm-plane-assit83.26 20385.29 20080.89 20489.52 18189.89 21470.26 22078.24 19677.11 21758.01 22074.16 18566.90 21090.63 16397.20 6896.05 9098.66 15295.68 180
TAMVS90.54 14190.87 15190.16 13891.48 15696.61 13193.26 14486.08 15187.71 18881.66 13383.11 14884.04 13490.42 16594.54 14494.60 13398.04 17795.48 183
EG-PatchMatch MVS86.68 18987.24 18586.02 19490.58 16496.26 14191.08 18381.59 18784.96 20369.80 19771.35 20275.08 17684.23 20194.24 15393.35 16398.82 13495.46 184
COLMAP_ROBcopyleft90.49 1493.27 11092.71 11993.93 9297.75 5997.44 10996.07 9493.17 6195.40 8783.86 12183.76 14488.72 10493.87 11594.25 15294.11 14798.87 13095.28 185
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ambc73.83 21476.23 21985.13 21882.27 21284.16 20665.58 20652.82 21823.31 22973.55 21291.41 19385.26 21192.97 21594.70 186
MS-PatchMatch91.82 12292.51 12391.02 12595.83 8696.88 11995.05 11484.55 17493.85 11982.01 12982.51 15091.71 8190.52 16495.07 13893.03 16998.13 17394.52 187
TDRefinement89.07 16288.15 17190.14 14095.16 10096.88 11995.55 10890.20 10289.68 17076.42 15876.67 17174.30 17984.85 19793.11 16991.91 18798.64 15494.47 188
MDTV_nov1_ep1391.57 12793.18 11389.70 14493.39 13896.97 11793.53 13880.91 19195.70 8181.86 13092.40 7189.93 9393.25 12891.97 18890.80 19195.25 20694.46 189
dps90.11 14989.37 16290.98 12693.89 13196.21 14293.49 13977.61 19991.95 15092.74 4888.85 10678.77 16092.37 13587.71 20787.71 20495.80 19894.38 190
Anonymous2023120683.84 20285.19 20182.26 20387.38 20792.87 20585.49 20583.65 17786.07 20063.44 21168.42 20669.01 20475.45 21193.34 16492.44 18198.12 17594.20 191
USDC90.69 13790.52 15390.88 12894.17 12696.43 13695.82 10586.76 14393.92 11776.27 16086.49 12374.30 17993.67 12295.04 13993.36 16298.61 15594.13 192
pmnet_mix0286.12 19487.12 18884.96 19789.82 17594.12 20084.88 20786.63 14591.78 15265.60 20580.76 15876.98 16886.61 18787.29 20984.80 21296.21 19394.09 193
tpm cat188.90 16487.78 18090.22 13793.88 13295.39 17293.79 13578.11 19892.55 13889.43 8981.31 15579.84 15691.40 14584.95 21186.34 20994.68 21294.09 193
SCA90.92 13593.04 11588.45 15793.72 13597.33 11292.77 15076.08 20696.02 7178.26 14791.96 7690.86 8693.99 11490.98 19590.04 19695.88 19794.06 195
RPSCF94.05 9194.00 9894.12 9096.20 7896.41 13796.61 7891.54 8795.83 7989.73 8596.94 3192.80 7795.35 9191.63 19190.44 19395.27 20593.94 196
tpmrst88.86 16689.62 15787.97 17094.33 12295.98 14792.62 15476.36 20494.62 10776.94 15485.98 13082.80 14492.80 13286.90 21087.15 20694.77 21093.93 197
MDTV_nov1_ep13_2view86.30 19288.27 16984.01 19987.71 20694.67 19188.08 19776.78 20290.59 16668.66 20180.46 16280.12 15487.58 18389.95 20188.20 20295.25 20693.90 198
ADS-MVSNet89.80 15191.33 14588.00 16994.43 12196.71 12892.29 16274.95 21196.07 7077.39 15088.67 10986.09 11893.26 12788.44 20489.57 19895.68 19993.81 199
PatchmatchNetpermissive90.56 13992.49 12588.31 16093.83 13396.86 12292.42 15876.50 20395.96 7378.31 14691.96 7689.66 9593.48 12490.04 20089.20 19995.32 20393.73 200
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet88.99 16391.07 14786.57 18986.78 20995.62 16191.20 18275.40 20990.65 16476.57 15684.05 14282.44 14691.01 15295.84 11795.38 11098.48 16393.50 201
EPMVS90.88 13692.12 13589.44 14894.71 11497.24 11393.55 13776.81 20195.89 7581.77 13191.49 8486.47 11593.87 11590.21 19890.07 19595.92 19693.49 202
TinyColmap89.42 15488.58 16690.40 13593.80 13495.45 16993.96 13486.54 14692.24 14776.49 15780.83 15770.44 19793.37 12594.45 14793.30 16598.26 17193.37 203
test_method72.96 21178.68 21166.28 21550.17 22564.90 22375.45 21950.90 22287.89 18562.54 21262.98 21468.34 20770.45 21391.90 18982.41 21388.19 21992.35 204
MDA-MVSNet-bldmvs80.11 20680.24 20979.94 20677.01 21893.21 20478.86 21685.94 15482.71 21160.86 21379.71 16451.77 22483.71 20475.60 21686.37 20893.28 21492.35 204
N_pmnet84.80 19885.10 20284.45 19889.25 19092.86 20684.04 20886.21 14888.78 17766.73 20372.41 19774.87 17885.21 19588.32 20586.45 20795.30 20492.04 206
test20.0382.92 20485.52 19979.90 20787.75 20591.84 20982.80 21182.99 18182.65 21260.32 21678.90 16670.50 19567.10 21592.05 18790.89 19098.44 16591.80 207
pmmvs379.16 20880.12 21078.05 21079.36 21686.59 21778.13 21773.87 21376.42 21857.51 22170.59 20457.02 22084.66 19990.10 19988.32 20194.75 21191.77 208
FMVSNet590.36 14290.93 14989.70 14487.99 20392.25 20892.03 16983.51 17892.20 14884.13 11985.59 13286.48 11492.43 13494.61 14294.52 13998.13 17390.85 209
new-patchmatchnet78.49 20978.19 21278.84 20984.13 21390.06 21377.11 21880.39 19279.57 21559.64 21966.01 21155.65 22375.62 21084.55 21280.70 21496.14 19590.77 210
MIMVSNet180.03 20780.93 20878.97 20872.46 22190.73 21280.81 21482.44 18580.39 21363.64 20957.57 21664.93 21676.37 20991.66 19091.55 18998.07 17689.70 211
MVS-HIRNet85.36 19786.89 19083.57 20090.13 17194.51 19483.57 21072.61 21488.27 18471.22 18768.97 20581.81 14888.91 17793.08 17091.94 18694.97 20989.64 212
CMPMVSbinary65.18 1784.76 19983.10 20586.69 18895.29 9695.05 18188.37 19685.51 16080.27 21471.31 18668.37 20773.85 18185.25 19487.72 20687.75 20394.38 21388.70 213
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet81.53 20582.68 20780.20 20583.47 21489.47 21582.21 21378.36 19587.86 18660.14 21867.90 20869.43 20382.03 20589.22 20387.47 20594.99 20887.39 214
DeepMVS_CXcopyleft86.86 21679.50 21570.43 21790.73 16263.66 20880.36 16360.83 21779.68 20676.23 21589.46 21786.53 215
PMMVS264.36 21565.94 21762.52 21667.37 22277.44 22064.39 22269.32 22061.47 22134.59 22446.09 21941.03 22548.02 22274.56 21878.23 21591.43 21682.76 216
FPMVS75.84 21074.59 21377.29 21186.92 20883.89 21985.01 20680.05 19382.91 21060.61 21565.25 21260.41 21863.86 21675.60 21673.60 21887.29 22080.47 217
Gipumacopyleft68.35 21266.71 21570.27 21274.16 22068.78 22263.93 22371.77 21683.34 20954.57 22234.37 22031.88 22668.69 21483.30 21385.53 21088.48 21879.78 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft63.12 1867.27 21366.39 21668.30 21377.98 21760.24 22459.53 22476.82 20066.65 22060.74 21454.39 21759.82 21951.24 21973.92 21970.52 21983.48 22179.17 219
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.86 1949.54 21851.43 21847.33 21944.14 22659.20 22536.45 22760.59 22141.47 22431.14 22529.58 22117.06 23048.52 22162.22 22074.63 21763.12 22575.87 220
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN50.67 21647.85 21953.96 21764.13 22450.98 22738.06 22569.51 21851.40 22324.60 22629.46 22324.39 22856.07 21848.17 22159.70 22071.40 22370.84 221
EMVS49.98 21746.76 22053.74 21864.96 22351.29 22637.81 22669.35 21951.83 22222.69 22729.57 22225.06 22757.28 21744.81 22256.11 22170.32 22468.64 222
testmvs12.09 21916.94 2216.42 2213.15 2276.08 2289.51 2293.84 22421.46 2255.31 22827.49 2246.76 23110.89 22317.06 22315.01 2225.84 22624.75 223
test1239.58 22013.53 2224.97 2221.31 2295.47 2298.32 2302.95 22518.14 2262.03 23020.82 2252.34 23210.60 22410.00 22414.16 2234.60 22723.77 224
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def63.50 210
9.1499.28 12
SR-MVS99.45 1097.61 1699.20 16
our_test_389.78 17693.84 20285.59 204
MTAPA96.83 1199.12 21
MTMP97.18 598.83 27
Patchmatch-RL test34.61 228
tmp_tt66.88 21486.07 21073.86 22168.22 22133.38 22396.88 5080.67 13888.23 11278.82 15949.78 22082.68 21477.47 21683.19 222
XVS96.60 7199.35 1896.82 6990.85 6498.72 3099.46 31
X-MVStestdata96.60 7199.35 1896.82 6990.85 6498.72 3099.46 31
mPP-MVS99.21 2598.29 39
NP-MVS95.32 90
Patchmtry95.96 14993.36 14275.99 20775.19 168