This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.92 199.18 198.61 499.47 599.61 299.39 397.82 198.80 196.86 898.90 299.92 198.67 1799.02 298.20 1999.43 4599.82 1
DVP-MVScopyleft98.86 498.97 398.75 299.43 1299.63 199.25 1297.81 298.62 297.69 197.59 2099.90 298.93 598.99 498.42 1199.37 5799.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 599.57 9
SED-MVS98.90 299.07 298.69 399.38 1899.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1799.02 298.26 1799.36 5999.61 6
LS3D95.46 5995.14 7595.84 5297.91 5498.90 5898.58 3097.79 597.07 4483.65 12188.71 10588.64 10497.82 3797.49 5997.42 5299.26 7597.72 141
DPE-MVScopyleft98.75 598.91 698.57 599.21 2399.54 699.42 297.78 697.49 3196.84 998.94 199.82 598.59 2198.90 1098.22 1899.56 1799.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APD-MVScopyleft98.36 1598.32 2398.41 899.47 599.26 2699.12 1597.77 796.73 5096.12 1697.27 2898.88 2498.46 2598.47 1898.39 1499.52 2099.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.34 1698.47 1598.18 1699.46 899.15 3499.10 1697.69 897.67 2494.93 2697.62 1999.70 798.60 2098.45 2097.46 5199.31 6699.26 33
SF-MVS98.39 1398.45 1798.33 1099.45 999.05 3798.27 3797.65 997.73 1997.02 798.18 1299.25 1598.11 3298.15 3897.62 4699.45 3699.19 43
MSP-MVS98.73 698.93 598.50 699.44 1199.57 499.36 497.65 998.14 1296.51 1498.49 799.65 898.67 1798.60 1498.42 1199.40 5199.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP98.20 1898.49 1397.85 2599.50 499.40 1399.26 1197.64 1197.47 3392.62 4697.59 2099.09 2298.71 1598.82 1297.86 3899.40 5199.19 43
SMA-MVScopyleft98.66 798.89 798.39 999.60 199.41 1299.00 2097.63 1297.78 1895.83 1898.33 1199.83 498.85 998.93 898.56 699.41 4899.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS98.20 1898.36 1998.01 2299.40 1499.05 3799.00 2097.62 1397.59 2893.70 3397.42 2799.30 1198.77 1398.39 2697.48 5099.59 799.31 27
SR-MVS99.45 997.61 1499.20 16
SD-MVS98.52 898.77 998.23 1598.15 4999.26 2698.79 2697.59 1598.52 396.25 1597.99 1599.75 699.01 398.27 3297.97 3199.59 799.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS98.47 1198.46 1698.48 799.40 1499.05 3799.02 1997.54 1697.73 1996.65 1197.20 2999.13 2098.85 998.91 998.10 2399.41 4899.08 55
NCCC98.10 2198.05 3098.17 1899.38 1899.05 3799.00 2097.53 1798.04 1495.12 2494.80 5299.18 1898.58 2298.49 1797.78 4299.39 5398.98 72
HFP-MVS98.48 1098.62 1198.32 1199.39 1799.33 2199.27 1097.42 1898.27 795.25 2398.34 1098.83 2699.08 198.26 3398.08 2599.48 2899.26 33
MP-MVScopyleft98.09 2298.30 2497.84 2699.34 2099.19 3299.23 1397.40 1997.09 4393.03 3997.58 2298.85 2598.57 2398.44 2297.69 4499.48 2899.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS94.87 496.76 4896.50 5497.05 3598.21 4899.28 2498.67 2797.38 2097.31 3590.36 7489.19 10293.58 7298.19 2898.31 2798.50 799.51 2599.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR98.40 1298.49 1398.28 1399.41 1399.40 1399.36 497.35 2198.30 695.02 2597.79 1798.39 3799.04 298.26 3398.10 2399.50 2799.22 39
CP-MVS98.32 1798.34 2298.29 1299.34 2099.30 2299.15 1497.35 2197.49 3195.58 2197.72 1898.62 3498.82 1198.29 2897.67 4599.51 2599.28 28
AdaColmapbinary97.53 3096.93 4798.24 1499.21 2398.77 6598.47 3497.34 2396.68 5296.52 1395.11 4996.12 5898.72 1497.19 6996.24 8399.17 9298.39 113
SteuartSystems-ACMMP98.38 1498.71 1097.99 2399.34 2099.46 1099.34 697.33 2497.31 3594.25 2998.06 1399.17 1998.13 3198.98 598.46 999.55 1899.54 11
Skip Steuart: Steuart Systems R&D Blog.
X-MVS97.84 2498.19 2797.42 3099.40 1499.35 1799.06 1797.25 2597.38 3490.85 6296.06 3798.72 3098.53 2498.41 2498.15 2299.46 3299.28 28
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2499.16 2699.03 4399.05 1897.24 2698.22 1094.17 3195.82 4098.07 3998.69 1698.83 1198.80 299.52 2099.10 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM97.71 2898.60 1296.66 3998.64 4199.05 3798.85 2597.23 2798.45 489.40 8897.51 2499.27 1496.88 5998.53 1597.81 4198.96 12199.59 8
DPM-MVS96.86 4496.82 5096.91 3898.08 5198.20 9198.52 3397.20 2897.24 3891.42 5691.84 7698.45 3597.25 4897.07 7297.40 5498.95 12297.55 145
TSAR-MVS + MP.98.49 998.78 898.15 1998.14 5099.17 3399.34 697.18 2998.44 595.72 1997.84 1699.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PCF-MVS93.95 695.65 5595.14 7596.25 4397.73 5898.73 6797.59 5197.13 3092.50 13789.09 9589.85 9996.65 5096.90 5894.97 13994.89 12499.08 10598.38 114
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
train_agg97.65 2998.06 2997.18 3398.94 3298.91 5698.98 2497.07 3196.71 5190.66 6797.43 2699.08 2398.20 2797.96 4697.14 6299.22 8299.19 43
MSLP-MVS++98.04 2397.93 3298.18 1699.10 2799.09 3698.34 3696.99 3297.54 2996.60 1294.82 5198.45 3598.89 697.46 6198.77 499.17 9299.37 20
CPTT-MVS97.78 2697.54 3598.05 2198.91 3599.05 3799.00 2096.96 3397.14 4195.92 1795.50 4498.78 2898.99 497.20 6796.07 8798.54 15999.04 64
ACMMPcopyleft97.37 3397.48 3797.25 3198.88 3799.28 2498.47 3496.86 3497.04 4592.15 5097.57 2396.05 6097.67 4097.27 6595.99 9299.46 3299.14 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PLCcopyleft94.95 397.37 3396.77 5198.07 2098.97 3198.21 9097.94 4696.85 3597.66 2597.58 393.33 5996.84 4898.01 3697.13 7196.20 8599.09 10498.01 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA96.90 4296.28 5797.64 2898.56 4298.63 7796.85 6796.60 3697.73 1997.08 689.78 10096.28 5697.80 3996.73 8396.63 7498.94 12398.14 125
MSDG94.82 6993.73 10396.09 4798.34 4697.43 10997.06 5996.05 3795.84 7590.56 6886.30 12989.10 10195.55 8596.13 11095.61 10399.00 11695.73 178
DeepPCF-MVS95.28 297.00 3998.35 2195.42 6097.30 6398.94 5194.82 11996.03 3898.24 992.11 5195.80 4198.64 3395.51 8698.95 798.66 596.78 19199.20 42
PHI-MVS97.78 2698.44 1897.02 3698.73 3899.25 2898.11 4095.54 3996.66 5392.79 4398.52 699.38 997.50 4497.84 4998.39 1499.45 3699.03 65
CSCG97.44 3297.18 4397.75 2799.47 599.52 898.55 3195.41 4097.69 2395.72 1994.29 5595.53 6398.10 3396.20 10797.38 5599.24 7699.62 4
CDPH-MVS96.84 4597.49 3696.09 4798.92 3498.85 6198.61 2895.09 4196.00 6987.29 10695.45 4697.42 4397.16 5097.83 5097.94 3499.44 4298.92 78
OMC-MVS97.00 3996.92 4897.09 3498.69 3998.66 7297.85 4795.02 4298.09 1394.47 2793.15 6096.90 4697.38 4697.16 7096.82 7299.13 9997.65 142
TAPA-MVS94.18 596.38 5096.49 5596.25 4398.26 4798.66 7298.00 4494.96 4397.17 3989.48 8592.91 6496.35 5397.53 4396.59 8895.90 9599.28 7097.82 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + COLMAP94.79 7194.51 8495.11 6596.50 7197.54 10497.99 4594.54 4497.81 1785.88 11296.73 3181.28 14996.99 5696.29 10295.21 11598.76 14496.73 169
PGM-MVS97.81 2598.11 2897.46 2999.55 399.34 2099.32 994.51 4596.21 6193.07 3698.05 1497.95 4298.82 1198.22 3697.89 3799.48 2899.09 54
OPM-MVS93.61 10292.43 12895.00 6896.94 6897.34 11097.78 4894.23 4689.64 17085.53 11388.70 10682.81 14296.28 7196.28 10395.00 12399.24 7697.22 155
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP-MVS94.43 8294.57 8394.27 8696.41 7497.23 11496.89 6593.98 4795.94 7183.68 12095.01 5084.46 13195.58 8495.47 12794.85 12899.07 10799.00 69
MVS_111021_LR97.16 3698.01 3196.16 4698.47 4398.98 4896.94 6493.89 4897.64 2691.44 5598.89 396.41 5297.20 4998.02 4597.29 6099.04 11598.85 87
EPNet96.27 5396.97 4695.46 5998.47 4398.28 8797.41 5393.67 4995.86 7492.86 4297.51 2493.79 7191.76 14197.03 7497.03 6498.61 15599.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMM92.75 1094.41 8493.84 10195.09 6696.41 7496.80 12394.88 11893.54 5096.41 5690.16 7592.31 7083.11 14196.32 7096.22 10594.65 13099.22 8297.35 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CANet96.84 4597.20 4196.42 4097.92 5399.24 3098.60 2993.51 5197.11 4293.07 3691.16 8497.24 4596.21 7298.24 3598.05 2699.22 8299.35 22
3Dnovator93.79 897.08 3797.20 4196.95 3799.09 2899.03 4398.20 3993.33 5297.99 1593.82 3290.61 9296.80 4997.82 3797.90 4898.78 399.47 3199.26 33
TSAR-MVS + GP.97.45 3198.36 1996.39 4195.56 8798.93 5397.74 4993.31 5397.61 2794.24 3098.44 999.19 1798.03 3597.60 5697.41 5399.44 4299.33 24
DELS-MVS96.06 5496.04 6196.07 4997.77 5599.25 2898.10 4193.26 5494.42 10792.79 4388.52 10993.48 7395.06 9498.51 1698.83 199.45 3699.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM96.78 4797.14 4496.36 4299.05 2999.14 3598.02 4393.26 5497.27 3790.84 6591.16 8497.31 4497.64 4297.70 5498.20 1999.33 6199.18 46
3Dnovator+93.91 797.23 3597.22 4097.24 3298.89 3698.85 6198.26 3893.25 5697.99 1595.56 2290.01 9898.03 4198.05 3497.91 4798.43 1099.44 4299.35 22
MVS_111021_HR97.04 3898.20 2695.69 5498.44 4599.29 2396.59 7893.20 5797.70 2289.94 8098.46 896.89 4796.71 6398.11 4297.95 3399.27 7299.01 68
COLMAP_ROBcopyleft90.49 1493.27 10992.71 11893.93 9097.75 5797.44 10896.07 9393.17 5895.40 8483.86 11983.76 14488.72 10393.87 11494.25 15294.11 14698.87 13095.28 184
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVS_030496.31 5196.91 4995.62 5597.21 6599.20 3198.55 3193.10 5997.04 4589.73 8290.30 9496.35 5395.71 7998.14 3997.93 3699.38 5499.40 18
PVSNet_BlendedMVS95.41 6195.28 7195.57 5697.42 6099.02 4595.89 10093.10 5996.16 6293.12 3491.99 7285.27 12494.66 10098.09 4397.34 5699.24 7699.08 55
PVSNet_Blended95.41 6195.28 7195.57 5697.42 6099.02 4595.89 10093.10 5996.16 6293.12 3491.99 7285.27 12494.66 10098.09 4397.34 5699.24 7699.08 55
OpenMVScopyleft92.33 1195.50 5695.22 7395.82 5398.98 3098.97 4997.67 5093.04 6294.64 10389.18 9384.44 14094.79 6596.79 6097.23 6697.61 4799.24 7698.88 83
test111193.94 9392.78 11795.29 6396.14 7999.42 1196.79 7192.85 6395.08 9791.39 5780.69 15979.86 15395.00 9598.28 3198.00 2899.58 1198.11 126
test250694.32 8693.00 11595.87 5196.16 7799.39 1596.96 6292.80 6495.22 9394.47 2791.55 8170.45 19595.25 9198.29 2897.98 2999.59 798.10 127
ECVR-MVScopyleft94.14 8892.96 11695.52 5896.16 7799.39 1596.96 6292.80 6495.22 9392.38 4881.48 15480.31 15095.25 9198.29 2897.98 2999.59 798.05 128
EPNet_dtu92.45 11795.02 7989.46 14598.02 5295.47 16894.79 12092.62 6694.97 9870.11 19294.76 5492.61 7884.07 20295.94 11395.56 10497.15 18895.82 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres40093.56 10392.43 12894.87 7495.40 8998.91 5696.70 7592.38 6792.93 12988.19 10186.69 11877.35 16597.13 5196.75 8295.85 9799.42 4798.56 100
tfpn200view993.64 10092.57 12094.89 7195.33 9198.94 5196.82 6892.31 6892.63 13388.29 9787.21 11378.01 16197.12 5396.82 7795.85 9799.45 3698.56 100
thres600view793.49 10592.37 13194.79 7795.42 8898.93 5396.58 7992.31 6893.04 12787.88 10286.62 11976.94 16897.09 5496.82 7795.63 10299.45 3698.63 97
thres20093.62 10192.54 12194.88 7295.36 9098.93 5396.75 7392.31 6892.84 13088.28 9986.99 11577.81 16497.13 5196.82 7795.92 9399.45 3698.49 106
thres100view90093.55 10492.47 12794.81 7695.33 9198.74 6696.78 7292.30 7192.63 13388.29 9787.21 11378.01 16196.78 6196.38 9795.92 9399.38 5498.40 112
CLD-MVS94.79 7194.36 8895.30 6295.21 9797.46 10797.23 5792.24 7296.43 5591.77 5492.69 6684.31 13296.06 7395.52 12595.03 12099.31 6699.06 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMP92.88 994.43 8294.38 8794.50 8296.01 8297.69 10295.85 10392.09 7395.74 7789.12 9495.14 4882.62 14494.77 9695.73 12194.67 12999.14 9899.06 60
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PatchMatch-RL94.69 7594.41 8695.02 6797.63 5998.15 9494.50 12691.99 7495.32 8791.31 5895.47 4583.44 13996.02 7596.56 8995.23 11498.69 14896.67 170
dmvs_re91.84 12191.60 14292.12 11291.60 15397.26 11295.14 11291.96 7591.02 15880.98 13586.56 12177.96 16393.84 11694.71 14195.08 11899.22 8298.62 98
CS-MVS-test97.00 3997.85 3396.00 5097.77 5599.56 596.35 8691.95 7697.54 2992.20 4996.14 3696.00 6198.19 2898.46 1997.78 4299.57 1499.45 16
baseline194.59 7794.47 8594.72 7895.16 9897.97 9996.07 9391.94 7794.86 10089.98 7891.60 8085.87 12195.64 8197.07 7296.90 6899.52 2097.06 162
Anonymous2023121193.49 10592.33 13294.84 7594.78 11098.00 9796.11 9191.85 7894.86 10090.91 6174.69 17989.18 9996.73 6294.82 14095.51 10698.67 14999.24 36
LGP-MVS_train94.12 8994.62 8293.53 9696.44 7397.54 10497.40 5491.84 7994.66 10281.09 13495.70 4383.36 14095.10 9396.36 10095.71 10199.32 6399.03 65
PVSNet_Blended_VisFu94.77 7395.54 6793.87 9196.48 7298.97 4994.33 12891.84 7994.93 9990.37 7385.04 13594.99 6490.87 15698.12 4197.30 5899.30 6899.45 16
CS-MVS96.87 4397.41 3996.24 4597.42 6099.48 997.30 5691.83 8197.17 3993.02 4094.80 5294.45 6798.16 3098.61 1397.85 3999.69 199.50 12
casdiffmvs_mvgpermissive94.55 7894.26 9094.88 7294.96 10398.51 8197.11 5891.82 8294.28 11089.20 9286.60 12086.85 11296.56 6797.47 6097.25 6199.64 498.83 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous20240521192.18 13395.04 10298.20 9196.14 9091.79 8393.93 11474.60 18088.38 10796.48 6895.17 13595.82 10099.00 11699.15 49
casdiffmvspermissive94.38 8594.15 9694.64 8194.70 11598.51 8196.03 9591.66 8495.70 7889.36 8986.48 12485.03 12996.60 6697.40 6297.30 5899.52 2098.67 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive94.31 8794.21 9194.42 8494.64 11698.28 8796.36 8591.56 8596.77 4988.89 9688.97 10384.23 13396.01 7696.05 11196.41 7899.05 11498.79 92
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPSCF94.05 9094.00 9794.12 8896.20 7696.41 13796.61 7791.54 8695.83 7689.73 8296.94 3092.80 7695.35 9091.63 19090.44 19295.27 20493.94 195
UGNet94.92 6696.63 5292.93 10496.03 8198.63 7794.53 12591.52 8796.23 6090.03 7792.87 6596.10 5986.28 18896.68 8596.60 7599.16 9599.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EIA-MVS95.50 5696.19 5994.69 7994.83 10798.88 6095.93 9791.50 8894.47 10689.43 8693.14 6192.72 7797.05 5597.82 5297.13 6399.43 4599.15 49
ETV-MVS96.31 5197.47 3894.96 7094.79 10898.78 6496.08 9291.41 8996.16 6290.50 6995.76 4296.20 5797.39 4598.42 2397.82 4099.57 1499.18 46
IB-MVS89.56 1591.71 12492.50 12390.79 12995.94 8398.44 8487.05 20091.38 9093.15 12692.98 4184.78 13685.14 12778.27 20792.47 17894.44 14199.10 10399.08 55
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FC-MVSNet-train93.85 9693.91 9893.78 9394.94 10496.79 12694.29 12991.13 9193.84 11888.26 10090.40 9385.23 12694.65 10296.54 9195.31 11199.38 5499.28 28
IS_MVSNet95.28 6396.43 5693.94 8995.30 9399.01 4795.90 9891.12 9294.13 11387.50 10591.23 8394.45 6794.17 10998.45 2098.50 799.65 399.23 37
Vis-MVSNet (Re-imp)94.46 8196.24 5892.40 10895.23 9698.64 7595.56 10690.99 9394.42 10785.02 11590.88 9094.65 6688.01 17898.17 3798.37 1699.57 1498.53 103
thisisatest053094.54 7995.47 6893.46 9894.51 11898.65 7494.66 12290.72 9495.69 8086.90 10993.80 5689.44 9594.74 9796.98 7694.86 12599.19 9098.85 87
tttt051794.52 8095.44 7093.44 9994.51 11898.68 7194.61 12490.72 9495.61 8286.84 11093.78 5789.26 9894.74 9797.02 7594.86 12599.20 8998.87 85
EPP-MVSNet95.27 6496.18 6094.20 8794.88 10598.64 7594.97 11590.70 9695.34 8689.67 8491.66 7993.84 7095.42 8997.32 6497.00 6599.58 1199.47 15
DI_MVS_plusplus_trai94.01 9193.63 10594.44 8394.54 11798.26 8997.51 5290.63 9795.88 7389.34 9080.54 16189.36 9695.48 8796.33 10196.27 8299.17 9298.78 93
MVSTER94.89 6795.07 7894.68 8094.71 11396.68 12997.00 6090.57 9895.18 9593.05 3895.21 4786.41 11693.72 11997.59 5795.88 9699.00 11698.50 105
UniMVSNet_NR-MVSNet90.35 14289.96 15590.80 12889.66 17695.83 15692.48 15590.53 9990.96 16079.57 14079.33 16577.14 16693.21 12892.91 17294.50 14099.37 5799.05 62
TranMVSNet+NR-MVSNet89.23 15888.48 16790.11 14089.07 19295.25 17692.91 14890.43 10090.31 16677.10 15276.62 17271.57 19091.83 14092.12 18294.59 13399.32 6398.92 78
TDRefinement89.07 16188.15 17090.14 13895.16 9896.88 11995.55 10790.20 10189.68 16976.42 15776.67 17174.30 17884.85 19693.11 16891.91 18698.64 15494.47 187
tfpnnormal88.50 16687.01 18890.23 13491.36 15695.78 15992.74 15090.09 10283.65 20576.33 15871.46 20069.58 20191.84 13995.54 12494.02 14999.06 11099.03 65
UA-Net93.96 9295.95 6291.64 11796.06 8098.59 7995.29 10990.00 10391.06 15782.87 12390.64 9198.06 4086.06 18998.14 3998.20 1999.58 1196.96 163
DU-MVS89.67 15288.84 16390.63 13189.26 18695.61 16292.48 15589.91 10491.22 15579.57 14077.72 16971.18 19293.21 12892.53 17694.57 13499.35 6099.05 62
NR-MVSNet89.34 15588.66 16490.13 13990.40 16595.61 16293.04 14789.91 10491.22 15578.96 14377.72 16968.90 20489.16 17494.24 15393.95 15099.32 6398.99 70
ET-MVSNet_ETH3D93.34 10794.33 8992.18 11183.26 21497.66 10396.72 7489.89 10695.62 8187.17 10796.00 3983.69 13896.99 5693.78 15695.34 11099.06 11098.18 124
canonicalmvs95.25 6595.45 6995.00 6895.27 9598.72 6896.89 6589.82 10796.51 5490.84 6593.72 5886.01 11997.66 4195.78 11997.94 3499.54 1999.50 12
MAR-MVS95.50 5695.60 6595.39 6198.67 4098.18 9395.89 10089.81 10894.55 10591.97 5392.99 6290.21 9197.30 4796.79 8097.49 4998.72 14598.99 70
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Baseline_NR-MVSNet89.27 15788.01 17390.73 13089.26 18693.71 20292.71 15289.78 10990.73 16181.28 13373.53 18972.85 18492.30 13592.53 17693.84 15599.07 10798.88 83
ACMH90.77 1391.51 12991.63 14191.38 12095.62 8696.87 12191.76 17389.66 11091.58 15278.67 14486.73 11778.12 15993.77 11894.59 14394.54 13798.78 14298.98 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)87.73 17986.79 19088.83 15190.76 16194.40 19591.33 17989.62 11184.73 20275.41 16572.73 19371.41 19186.80 18494.53 14593.93 15199.06 11095.83 176
PMMVS94.61 7695.56 6693.50 9794.30 12296.74 12794.91 11789.56 11295.58 8387.72 10396.15 3592.86 7596.06 7395.47 12795.02 12198.43 16797.09 158
DCV-MVSNet94.76 7495.12 7794.35 8595.10 10195.81 15796.46 8389.49 11396.33 5890.16 7592.55 6890.26 9095.83 7895.52 12596.03 9099.06 11099.33 24
ACMH+90.88 1291.41 13091.13 14691.74 11695.11 10096.95 11893.13 14589.48 11492.42 13979.93 13985.13 13478.02 16093.82 11793.49 16393.88 15298.94 12397.99 130
UniMVSNet (Re)90.03 14989.61 15890.51 13289.97 17396.12 14492.32 15989.26 11590.99 15980.95 13678.25 16875.08 17591.14 14893.78 15693.87 15399.41 4899.21 41
CVMVSNet89.77 15191.66 14087.56 17793.21 14095.45 16991.94 17289.22 11689.62 17169.34 19883.99 14385.90 12084.81 19794.30 15195.28 11296.85 19097.09 158
CDS-MVSNet92.77 11293.60 10691.80 11592.63 14696.80 12395.24 11089.14 11790.30 16784.58 11686.76 11690.65 8790.42 16495.89 11496.49 7698.79 14198.32 119
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_Test94.82 6995.66 6493.84 9294.79 10898.35 8696.49 8289.10 11896.12 6587.09 10892.58 6790.61 8896.48 6896.51 9596.89 6999.11 10298.54 102
EC-MVSNet96.49 4997.63 3495.16 6494.75 11198.69 7097.39 5588.97 11996.34 5792.02 5296.04 3896.46 5198.21 2698.41 2497.96 3299.61 699.55 10
UniMVSNet_ETH3D88.47 16786.00 19791.35 12191.55 15496.29 14092.53 15488.81 12085.58 20082.33 12667.63 20966.87 21094.04 11291.49 19195.24 11398.84 13398.92 78
GBi-Net93.81 9794.18 9293.38 10091.34 15795.86 15396.22 8788.68 12195.23 9090.40 7086.39 12591.16 8294.40 10696.52 9296.30 7999.21 8697.79 134
test193.81 9794.18 9293.38 10091.34 15795.86 15396.22 8788.68 12195.23 9090.40 7086.39 12591.16 8294.40 10696.52 9296.30 7999.21 8697.79 134
FMVSNet393.79 9994.17 9493.35 10291.21 16095.99 14696.62 7688.68 12195.23 9090.40 7086.39 12591.16 8294.11 11095.96 11296.67 7399.07 10797.79 134
baseline94.83 6895.82 6393.68 9494.75 11197.80 10096.51 8188.53 12497.02 4789.34 9092.93 6392.18 7994.69 9995.78 11996.08 8698.27 17098.97 76
CHOSEN 1792x268892.66 11492.49 12492.85 10597.13 6698.89 5995.90 9888.50 12595.32 8783.31 12271.99 19788.96 10294.10 11196.69 8496.49 7698.15 17299.10 52
Vis-MVSNetpermissive92.77 11295.00 8090.16 13694.10 12598.79 6394.76 12188.26 12692.37 14279.95 13888.19 11191.58 8184.38 19997.59 5797.58 4899.52 2098.91 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FMVSNet293.30 10893.36 11193.22 10391.34 15795.86 15396.22 8788.24 12795.15 9689.92 8181.64 15289.36 9694.40 10696.77 8196.98 6699.21 8697.79 134
v14887.51 18186.79 19088.36 15689.39 18395.21 17789.84 19188.20 12887.61 18877.56 14873.38 19170.32 19886.80 18490.70 19592.31 18298.37 16897.98 132
pm-mvs189.19 15989.02 16289.38 14790.40 16595.74 16092.05 16788.10 12986.13 19677.70 14773.72 18879.44 15588.97 17595.81 11894.51 13999.08 10597.78 139
pmmvs490.55 13989.91 15691.30 12290.26 16994.95 18392.73 15187.94 13093.44 12485.35 11482.28 15176.09 17093.02 13093.56 16192.26 18498.51 16196.77 168
v2v48288.25 17087.71 18088.88 15089.23 19095.28 17392.10 16587.89 13188.69 17873.31 17775.32 17571.64 18991.89 13892.10 18492.92 17098.86 13297.99 130
GA-MVS89.28 15690.75 15287.57 17691.77 15296.48 13492.29 16187.58 13290.61 16465.77 20384.48 13976.84 16989.46 17295.84 11693.68 15798.52 16097.34 153
baseline293.01 11094.17 9491.64 11792.83 14497.49 10693.40 14087.53 13393.67 12086.07 11191.83 7786.58 11391.36 14596.38 9795.06 11998.67 14998.20 123
thisisatest051590.12 14792.06 13687.85 17090.03 17196.17 14387.83 19787.45 13491.71 15177.15 15185.40 13384.01 13585.74 19195.41 12993.30 16498.88 12998.43 108
CANet_DTU93.92 9596.57 5390.83 12795.63 8598.39 8596.99 6187.38 13596.26 5971.97 18196.31 3493.02 7494.53 10397.38 6396.83 7198.49 16297.79 134
FC-MVSNet-test91.63 12593.82 10289.08 14992.02 15196.40 13893.26 14387.26 13693.72 11977.26 15088.61 10889.86 9385.50 19295.72 12395.02 12199.16 9597.44 149
V4288.31 16987.95 17588.73 15289.44 18195.34 17292.23 16387.21 13788.83 17574.49 17374.89 17873.43 18390.41 16692.08 18592.77 17598.60 15798.33 117
FMVSNet191.54 12890.93 14992.26 11090.35 16795.27 17595.22 11187.16 13891.37 15487.62 10475.45 17483.84 13694.43 10496.52 9296.30 7998.82 13497.74 140
test-LLR91.62 12693.56 10889.35 14893.31 13896.57 13292.02 16987.06 13992.34 14375.05 17090.20 9588.64 10490.93 15296.19 10894.07 14797.75 18296.90 166
test0.0.03 191.97 11993.91 9889.72 14193.31 13896.40 13891.34 17887.06 13993.86 11681.67 13091.15 8689.16 10086.02 19095.08 13695.09 11798.91 12796.64 172
USDC90.69 13690.52 15390.88 12694.17 12496.43 13695.82 10486.76 14193.92 11576.27 15986.49 12374.30 17893.67 12195.04 13893.36 16198.61 15594.13 191
WR-MVS87.93 17488.09 17187.75 17189.26 18695.28 17390.81 18486.69 14288.90 17475.29 16674.31 18473.72 18185.19 19592.26 17993.32 16399.27 7298.81 91
pmnet_mix0286.12 19387.12 18784.96 19589.82 17494.12 19984.88 20686.63 14391.78 15065.60 20480.76 15876.98 16786.61 18687.29 20884.80 21196.21 19294.09 192
HyFIR lowres test92.03 11891.55 14392.58 10697.13 6698.72 6894.65 12386.54 14493.58 12282.56 12567.75 20890.47 8995.67 8095.87 11595.54 10598.91 12798.93 77
TinyColmap89.42 15388.58 16590.40 13393.80 13295.45 16993.96 13386.54 14492.24 14576.49 15680.83 15770.44 19693.37 12494.45 14793.30 16498.26 17193.37 202
PEN-MVS87.22 18686.50 19588.07 16188.88 19594.44 19490.99 18386.21 14686.53 19473.66 17674.97 17766.56 21489.42 17391.20 19393.48 16099.24 7698.31 120
N_pmnet84.80 19785.10 20184.45 19689.25 18992.86 20584.04 20786.21 14688.78 17666.73 20272.41 19674.87 17785.21 19488.32 20486.45 20695.30 20392.04 205
IterMVS-LS92.56 11593.18 11291.84 11493.90 12894.97 18294.99 11486.20 14894.18 11282.68 12485.81 13187.36 11194.43 10495.31 13196.02 9198.87 13098.60 99
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS90.54 14090.87 15190.16 13691.48 15596.61 13193.26 14386.08 14987.71 18681.66 13183.11 14884.04 13490.42 16494.54 14494.60 13298.04 17795.48 182
DTE-MVSNet86.67 18986.09 19687.35 18088.45 20194.08 20090.65 18586.05 15086.13 19672.19 18074.58 18266.77 21287.61 18190.31 19693.12 16699.13 9997.62 144
Effi-MVS+92.93 11193.86 10091.86 11394.07 12698.09 9695.59 10585.98 15194.27 11179.54 14291.12 8781.81 14696.71 6396.67 8696.06 8899.27 7298.98 72
MDA-MVSNet-bldmvs80.11 20580.24 20879.94 20477.01 21793.21 20378.86 21585.94 15282.71 20960.86 21279.71 16451.77 22383.71 20375.60 21586.37 20793.28 21392.35 203
CP-MVSNet87.89 17787.27 18388.62 15389.30 18495.06 17990.60 18685.78 15387.43 19075.98 16074.60 18068.14 20790.76 15793.07 17093.60 15899.30 6898.98 72
PS-CasMVS87.33 18486.68 19388.10 16089.22 19194.93 18490.35 18985.70 15486.44 19574.01 17573.43 19066.59 21390.04 16892.92 17193.52 15999.28 7098.91 81
v114487.92 17687.79 17888.07 16189.27 18595.15 17892.17 16485.62 15588.52 17971.52 18373.80 18772.40 18791.06 15093.54 16292.80 17398.81 13798.33 117
GeoE92.52 11692.64 11992.39 10993.96 12797.76 10196.01 9685.60 15693.23 12583.94 11881.56 15384.80 13095.63 8296.22 10595.83 9999.19 9099.07 59
WR-MVS_H87.93 17487.85 17788.03 16689.62 17795.58 16690.47 18785.55 15787.20 19176.83 15474.42 18372.67 18686.37 18793.22 16793.04 16799.33 6198.83 89
CMPMVSbinary65.18 1784.76 19883.10 20486.69 18695.29 9495.05 18088.37 19585.51 15880.27 21271.31 18568.37 20673.85 18085.25 19387.72 20587.75 20294.38 21288.70 212
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CHOSEN 280x42095.46 5997.01 4593.66 9597.28 6497.98 9896.40 8485.39 15996.10 6691.07 5996.53 3296.34 5595.61 8397.65 5596.95 6796.21 19297.49 147
EU-MVSNet85.62 19587.65 18183.24 20088.54 20092.77 20687.12 19985.32 16086.71 19264.54 20678.52 16775.11 17478.35 20692.25 18092.28 18395.58 20095.93 175
SixPastTwentyTwo88.37 16889.47 15987.08 18290.01 17295.93 15287.41 19885.32 16090.26 16870.26 19086.34 12871.95 18890.93 15292.89 17391.72 18798.55 15897.22 155
pmmvs685.98 19484.89 20287.25 18188.83 19794.35 19689.36 19385.30 16278.51 21475.44 16462.71 21475.41 17287.65 18093.58 16092.40 18196.89 18997.29 154
testgi89.42 15391.50 14487.00 18492.40 14995.59 16489.15 19485.27 16392.78 13172.42 17991.75 7876.00 17184.09 20194.38 14993.82 15698.65 15396.15 173
v119287.51 18187.31 18287.74 17289.04 19394.87 18792.07 16685.03 16488.49 18070.32 18972.65 19470.35 19791.21 14793.59 15892.80 17398.78 14298.42 110
v888.21 17187.94 17688.51 15489.62 17795.01 18192.31 16084.99 16588.94 17374.70 17275.03 17673.51 18290.67 16092.11 18392.74 17698.80 13998.24 121
Effi-MVS+-dtu91.78 12393.59 10789.68 14492.44 14897.11 11694.40 12784.94 16692.43 13875.48 16391.09 8883.75 13793.55 12296.61 8795.47 10797.24 18798.67 95
LTVRE_ROB87.32 1687.55 18088.25 16986.73 18590.66 16295.80 15893.05 14684.77 16783.35 20660.32 21583.12 14767.39 20893.32 12594.36 15094.86 12598.28 16998.87 85
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs587.83 17888.09 17187.51 17989.59 17995.48 16789.75 19284.73 16886.07 19871.44 18480.57 16070.09 19990.74 15994.47 14692.87 17298.82 13497.10 157
v14419287.40 18387.20 18587.64 17388.89 19494.88 18691.65 17484.70 16987.80 18571.17 18773.20 19270.91 19390.75 15892.69 17492.49 17998.71 14698.43 108
Fast-Effi-MVS+91.87 12092.08 13591.62 11992.91 14297.21 11594.93 11684.60 17093.61 12181.49 13283.50 14578.95 15696.62 6596.55 9096.22 8499.16 9598.51 104
v192192087.31 18587.13 18687.52 17888.87 19694.72 18891.96 17184.59 17188.28 18169.86 19572.50 19570.03 20091.10 14993.33 16592.61 17898.71 14698.44 107
MS-PatchMatch91.82 12292.51 12291.02 12395.83 8496.88 11995.05 11384.55 17293.85 11782.01 12782.51 15091.71 8090.52 16395.07 13793.03 16898.13 17394.52 186
v124086.89 18786.75 19287.06 18388.75 19894.65 19191.30 18084.05 17387.49 18968.94 19971.96 19868.86 20590.65 16193.33 16592.72 17798.67 14998.24 121
pmmvs-eth3d84.33 20082.94 20585.96 19384.16 21190.94 21086.55 20183.79 17484.25 20375.85 16270.64 20256.43 22087.44 18392.20 18190.41 19397.97 17895.68 179
Anonymous2023120683.84 20185.19 20082.26 20187.38 20692.87 20485.49 20483.65 17586.07 19863.44 21068.42 20569.01 20375.45 21093.34 16492.44 18098.12 17594.20 190
FMVSNet590.36 14190.93 14989.70 14287.99 20292.25 20792.03 16883.51 17692.20 14684.13 11785.59 13286.48 11492.43 13394.61 14294.52 13898.13 17390.85 208
v1088.00 17287.96 17488.05 16489.44 18194.68 18992.36 15883.35 17789.37 17272.96 17873.98 18672.79 18591.35 14693.59 15892.88 17198.81 13798.42 110
v7n86.43 19086.52 19486.33 18987.91 20394.93 18490.15 19083.05 17886.57 19370.21 19171.48 19966.78 21187.72 17994.19 15592.96 16998.92 12598.76 94
test20.0382.92 20385.52 19879.90 20587.75 20491.84 20882.80 21082.99 17982.65 21060.32 21578.90 16670.50 19467.10 21492.05 18690.89 18998.44 16591.80 206
anonymousdsp88.90 16391.00 14886.44 18888.74 19995.97 14890.40 18882.86 18088.77 17767.33 20181.18 15681.44 14890.22 16796.23 10494.27 14499.12 10199.16 48
TESTMET0.1,191.07 13293.56 10888.17 15990.43 16496.57 13292.02 16982.83 18192.34 14375.05 17090.20 9588.64 10490.93 15296.19 10894.07 14797.75 18296.90 166
test-mter90.95 13393.54 11087.93 16990.28 16896.80 12391.44 17582.68 18292.15 14774.37 17489.57 10188.23 10990.88 15596.37 9994.31 14397.93 17997.37 151
MIMVSNet180.03 20680.93 20778.97 20672.46 22090.73 21180.81 21382.44 18380.39 21163.64 20857.57 21564.93 21576.37 20891.66 18991.55 18898.07 17689.70 210
PM-MVS84.72 19984.47 20385.03 19484.67 21091.57 20986.27 20282.31 18487.65 18770.62 18876.54 17356.41 22188.75 17792.59 17589.85 19697.54 18596.66 171
EG-PatchMatch MVS86.68 18887.24 18486.02 19290.58 16396.26 14191.08 18281.59 18584.96 20169.80 19671.35 20175.08 17584.23 20094.24 15393.35 16298.82 13495.46 183
IterMVS90.20 14492.43 12887.61 17592.82 14594.31 19794.11 13081.54 18692.97 12869.90 19484.71 13788.16 11089.96 17095.25 13294.17 14597.31 18697.46 148
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+-dtu91.19 13193.64 10488.33 15792.19 15096.46 13593.99 13281.52 18792.59 13571.82 18292.17 7185.54 12291.68 14295.73 12194.64 13198.80 13998.34 116
IterMVS-SCA-FT90.24 14392.48 12687.63 17492.85 14394.30 19893.79 13481.47 18892.66 13269.95 19384.66 13888.38 10789.99 16995.39 13094.34 14297.74 18497.63 143
MDTV_nov1_ep1391.57 12793.18 11289.70 14293.39 13696.97 11793.53 13780.91 18995.70 7881.86 12892.40 6989.93 9293.25 12791.97 18790.80 19095.25 20594.46 188
new-patchmatchnet78.49 20878.19 21178.84 20784.13 21290.06 21277.11 21780.39 19079.57 21359.64 21866.01 21055.65 22275.62 20984.55 21180.70 21396.14 19490.77 209
FPMVS75.84 20974.59 21277.29 20986.92 20783.89 21885.01 20580.05 19182.91 20860.61 21465.25 21160.41 21763.86 21575.60 21573.60 21787.29 21980.47 216
FA-MVS(training)93.94 9395.16 7492.53 10794.87 10698.57 8095.42 10879.49 19295.37 8590.98 6086.54 12294.26 6995.44 8897.80 5395.19 11698.97 11998.38 114
new_pmnet81.53 20482.68 20680.20 20383.47 21389.47 21482.21 21278.36 19387.86 18460.14 21767.90 20769.43 20282.03 20489.22 20287.47 20494.99 20787.39 213
gm-plane-assit83.26 20285.29 19980.89 20289.52 18089.89 21370.26 21978.24 19477.11 21558.01 21974.16 18566.90 20990.63 16297.20 6796.05 8998.66 15295.68 179
CostFormer90.69 13690.48 15490.93 12594.18 12396.08 14594.03 13178.20 19593.47 12389.96 7990.97 8980.30 15193.72 11987.66 20788.75 19995.51 20196.12 174
tpm cat188.90 16387.78 17990.22 13593.88 13095.39 17193.79 13478.11 19692.55 13689.43 8681.31 15579.84 15491.40 14484.95 21086.34 20894.68 21194.09 192
dps90.11 14889.37 16190.98 12493.89 12996.21 14293.49 13877.61 19791.95 14892.74 4588.85 10478.77 15892.37 13487.71 20687.71 20395.80 19794.38 189
PMVScopyleft63.12 1867.27 21266.39 21568.30 21177.98 21660.24 22359.53 22376.82 19866.65 21860.74 21354.39 21659.82 21851.24 21873.92 21870.52 21883.48 22079.17 218
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EPMVS90.88 13592.12 13489.44 14694.71 11397.24 11393.55 13676.81 19995.89 7281.77 12991.49 8286.47 11593.87 11490.21 19790.07 19495.92 19593.49 201
MDTV_nov1_ep13_2view86.30 19188.27 16884.01 19787.71 20594.67 19088.08 19676.78 20090.59 16568.66 20080.46 16280.12 15287.58 18289.95 20088.20 20195.25 20593.90 197
PatchmatchNetpermissive90.56 13892.49 12488.31 15893.83 13196.86 12292.42 15776.50 20195.96 7078.31 14591.96 7489.66 9493.48 12390.04 19989.20 19895.32 20293.73 199
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst88.86 16589.62 15787.97 16894.33 12195.98 14792.62 15376.36 20294.62 10476.94 15385.98 13082.80 14392.80 13186.90 20987.15 20594.77 20993.93 196
tpm87.95 17389.44 16086.21 19092.53 14794.62 19291.40 17676.36 20291.46 15369.80 19687.43 11275.14 17391.55 14389.85 20190.60 19195.61 19996.96 163
SCA90.92 13493.04 11488.45 15593.72 13397.33 11192.77 14976.08 20496.02 6878.26 14691.96 7490.86 8593.99 11390.98 19490.04 19595.88 19694.06 194
CR-MVSNet90.16 14691.96 13888.06 16393.32 13795.95 15093.36 14175.99 20592.40 14075.19 16783.18 14685.37 12392.05 13695.21 13394.56 13598.47 16497.08 160
Patchmtry95.96 14993.36 14175.99 20575.19 167
MIMVSNet88.99 16291.07 14786.57 18786.78 20895.62 16191.20 18175.40 20790.65 16376.57 15584.05 14282.44 14591.01 15195.84 11695.38 10998.48 16393.50 200
PatchT89.13 16091.71 13986.11 19192.92 14195.59 16483.64 20875.09 20891.87 14975.19 16782.63 14985.06 12892.05 13695.21 13394.56 13597.76 18197.08 160
ADS-MVSNet89.80 15091.33 14588.00 16794.43 12096.71 12892.29 16174.95 20996.07 6777.39 14988.67 10786.09 11893.26 12688.44 20389.57 19795.68 19893.81 198
RPMNet90.19 14592.03 13788.05 16493.46 13495.95 15093.41 13974.59 21092.40 14075.91 16184.22 14186.41 11692.49 13294.42 14893.85 15498.44 16596.96 163
pmmvs379.16 20780.12 20978.05 20879.36 21586.59 21678.13 21673.87 21176.42 21657.51 22070.59 20357.02 21984.66 19890.10 19888.32 20094.75 21091.77 207
MVS-HIRNet85.36 19686.89 18983.57 19890.13 17094.51 19383.57 20972.61 21288.27 18271.22 18668.97 20481.81 14688.91 17693.08 16991.94 18594.97 20889.64 211
gg-mvs-nofinetune86.17 19288.57 16683.36 19993.44 13598.15 9496.58 7972.05 21374.12 21749.23 22264.81 21290.85 8689.90 17197.83 5096.84 7098.97 11997.41 150
Gipumacopyleft68.35 21166.71 21470.27 21074.16 21968.78 22163.93 22271.77 21483.34 20754.57 22134.37 21931.88 22568.69 21383.30 21285.53 20988.48 21779.78 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft86.86 21579.50 21470.43 21590.73 16163.66 20780.36 16360.83 21679.68 20576.23 21489.46 21686.53 214
E-PMN50.67 21547.85 21853.96 21564.13 22350.98 22638.06 22469.51 21651.40 22124.60 22529.46 22224.39 22756.07 21748.17 22059.70 21971.40 22270.84 220
EMVS49.98 21646.76 21953.74 21664.96 22251.29 22537.81 22569.35 21751.83 22022.69 22629.57 22125.06 22657.28 21644.81 22156.11 22070.32 22368.64 221
PMMVS264.36 21465.94 21662.52 21467.37 22177.44 21964.39 22169.32 21861.47 21934.59 22346.09 21841.03 22448.02 22174.56 21778.23 21491.43 21582.76 215
MVEpermissive50.86 1949.54 21751.43 21747.33 21744.14 22559.20 22436.45 22660.59 21941.47 22231.14 22429.58 22017.06 22948.52 22062.22 21974.63 21663.12 22475.87 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method72.96 21078.68 21066.28 21350.17 22464.90 22275.45 21850.90 22087.89 18362.54 21162.98 21368.34 20670.45 21291.90 18882.41 21288.19 21892.35 203
tmp_tt66.88 21286.07 20973.86 22068.22 22033.38 22196.88 4880.67 13788.23 11078.82 15749.78 21982.68 21377.47 21583.19 221
testmvs12.09 21816.94 2206.42 2193.15 2266.08 2279.51 2283.84 22221.46 2235.31 22727.49 2236.76 23010.89 22217.06 22215.01 2215.84 22524.75 222
test1239.58 21913.53 2214.97 2201.31 2285.47 2288.32 2292.95 22318.14 2242.03 22920.82 2242.34 23110.60 22310.00 22314.16 2224.60 22623.77 223
GG-mvs-BLEND66.17 21394.91 8132.63 2181.32 22796.64 13091.40 1760.85 22494.39 1092.20 22890.15 9795.70 622.27 22496.39 9695.44 10897.78 18095.68 179
uanet_test0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
TPM-MVS98.94 3298.47 8398.04 4292.62 4696.51 3398.76 2995.94 7798.92 12597.55 145
RE-MVS-def63.50 209
9.1499.28 12
our_test_389.78 17593.84 20185.59 203
ambc73.83 21376.23 21885.13 21782.27 21184.16 20465.58 20552.82 21723.31 22873.55 21191.41 19285.26 21092.97 21494.70 185
MTAPA96.83 1099.12 21
MTMP97.18 598.83 26
Patchmatch-RL test34.61 227
XVS96.60 6999.35 1796.82 6890.85 6298.72 3099.46 32
X-MVStestdata96.60 6999.35 1796.82 6890.85 6298.72 3099.46 32
mPP-MVS99.21 2398.29 38
NP-MVS95.32 87