This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.92 199.18 198.61 499.47 699.61 299.39 397.82 198.80 196.86 998.90 299.92 198.67 1899.02 298.20 1999.43 4699.82 1
DVP-MVScopyleft98.86 498.97 398.75 299.43 1499.63 199.25 1397.81 298.62 297.69 197.59 2199.90 298.93 598.99 498.42 1199.37 5899.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 499.57 9
SED-MVS98.90 299.07 298.69 399.38 2099.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1899.02 298.26 1799.36 6099.61 6
LS3D95.46 6195.14 7795.84 5597.91 5698.90 6098.58 3197.79 597.07 4683.65 12388.71 10788.64 10597.82 3997.49 6197.42 5499.26 7797.72 143
DPE-MVScopyleft98.75 598.91 698.57 599.21 2599.54 699.42 297.78 697.49 3396.84 1098.94 199.82 598.59 2298.90 1098.22 1899.56 1699.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APD-MVScopyleft98.36 1698.32 2398.41 999.47 699.26 2799.12 1697.77 796.73 5296.12 1897.27 2998.88 2598.46 2698.47 1998.39 1499.52 1999.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.34 1798.47 1598.18 1899.46 999.15 3599.10 1797.69 897.67 2694.93 2897.62 2099.70 798.60 2198.45 2197.46 5399.31 6799.26 33
xxxxxxxxxxxxxcwj97.07 3995.99 6398.33 1199.45 1099.05 3898.27 3897.65 997.73 1997.02 798.18 1281.99 14798.11 3398.15 3997.62 4699.45 3599.19 43
SF-MVS98.39 1498.45 1798.33 1199.45 1099.05 3898.27 3897.65 997.73 1997.02 798.18 1299.25 1598.11 3398.15 3997.62 4699.45 3599.19 43
MSP-MVS98.73 698.93 598.50 799.44 1399.57 499.36 497.65 998.14 1296.51 1698.49 799.65 898.67 1898.60 1598.42 1199.40 5299.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP98.20 1998.49 1397.85 2799.50 499.40 1399.26 1297.64 1297.47 3592.62 4997.59 2199.09 2298.71 1698.82 1297.86 3899.40 5299.19 43
SMA-MVScopyleft98.66 798.89 798.39 1099.60 199.41 1299.00 2197.63 1397.78 1895.83 2098.33 1199.83 498.85 1098.93 898.56 699.41 4999.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS98.43 1298.31 2498.57 599.48 599.40 1399.32 997.62 1497.70 2396.67 1296.59 3399.09 2298.86 898.65 1397.56 5099.45 3599.17 49
MCST-MVS98.20 1998.36 1998.01 2499.40 1699.05 3899.00 2197.62 1497.59 3093.70 3697.42 2899.30 1198.77 1498.39 2797.48 5299.59 699.31 27
SR-MVS99.45 1097.61 1699.20 16
SD-MVS98.52 898.77 998.23 1798.15 5199.26 2798.79 2797.59 1798.52 396.25 1797.99 1699.75 699.01 398.27 3397.97 3199.59 699.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS98.47 1198.46 1698.48 899.40 1699.05 3899.02 2097.54 1897.73 1996.65 1397.20 3099.13 2098.85 1098.91 998.10 2399.41 4999.08 57
NCCC98.10 2298.05 3198.17 2099.38 2099.05 3899.00 2197.53 1998.04 1495.12 2694.80 5399.18 1898.58 2398.49 1897.78 4299.39 5498.98 75
HFP-MVS98.48 1098.62 1198.32 1399.39 1999.33 2299.27 1197.42 2098.27 795.25 2598.34 1098.83 2799.08 198.26 3498.08 2599.48 2799.26 33
MP-MVScopyleft98.09 2398.30 2597.84 2899.34 2299.19 3399.23 1497.40 2197.09 4593.03 4297.58 2398.85 2698.57 2498.44 2397.69 4499.48 2799.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS94.87 496.76 5096.50 5597.05 3798.21 5099.28 2598.67 2897.38 2297.31 3790.36 7689.19 10493.58 7398.19 2998.31 2898.50 799.51 2499.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR98.40 1398.49 1398.28 1599.41 1599.40 1399.36 497.35 2398.30 695.02 2797.79 1898.39 3899.04 298.26 3498.10 2399.50 2699.22 39
CP-MVS98.32 1898.34 2298.29 1499.34 2299.30 2399.15 1597.35 2397.49 3395.58 2397.72 1998.62 3498.82 1298.29 2997.67 4599.51 2499.28 28
AdaColmapbinary97.53 3196.93 4898.24 1699.21 2598.77 6798.47 3597.34 2596.68 5496.52 1595.11 5096.12 5998.72 1597.19 7096.24 8499.17 9398.39 115
SteuartSystems-ACMMP98.38 1598.71 1097.99 2599.34 2299.46 1099.34 697.33 2697.31 3794.25 3298.06 1499.17 1998.13 3298.98 598.46 999.55 1799.54 11
Skip Steuart: Steuart Systems R&D Blog.
X-MVS97.84 2598.19 2897.42 3299.40 1699.35 1899.06 1897.25 2797.38 3690.85 6496.06 3898.72 3098.53 2598.41 2598.15 2299.46 3199.28 28
DeepC-MVS_fast96.13 198.13 2198.27 2697.97 2699.16 2899.03 4599.05 1997.24 2898.22 1094.17 3495.82 4198.07 4098.69 1798.83 1198.80 299.52 1999.10 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM97.71 2998.60 1296.66 4298.64 4299.05 3898.85 2697.23 2998.45 489.40 9197.51 2599.27 1496.88 6298.53 1697.81 4198.96 12299.59 8
DPM-MVS96.86 4696.82 5196.91 4098.08 5398.20 9298.52 3497.20 3097.24 4091.42 5891.84 7898.45 3697.25 5097.07 7397.40 5698.95 12397.55 147
TSAR-MVS + MP.98.49 998.78 898.15 2198.14 5299.17 3499.34 697.18 3198.44 595.72 2197.84 1799.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PCF-MVS93.95 695.65 5795.14 7796.25 4697.73 6098.73 7097.59 5397.13 3292.50 13989.09 9789.85 10196.65 5196.90 6194.97 14094.89 12499.08 10698.38 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
train_agg97.65 3098.06 3097.18 3598.94 3498.91 5898.98 2597.07 3396.71 5390.66 6997.43 2799.08 2498.20 2897.96 4897.14 6399.22 8499.19 43
MSLP-MVS++98.04 2497.93 3398.18 1899.10 2999.09 3798.34 3796.99 3497.54 3196.60 1494.82 5298.45 3698.89 697.46 6298.77 499.17 9399.37 20
CPTT-MVS97.78 2797.54 3698.05 2398.91 3699.05 3899.00 2196.96 3597.14 4395.92 1995.50 4598.78 2998.99 497.20 6896.07 8898.54 15999.04 67
ACMMPcopyleft97.37 3497.48 3897.25 3398.88 3899.28 2598.47 3596.86 3697.04 4792.15 5297.57 2496.05 6197.67 4297.27 6695.99 9399.46 3199.14 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PLCcopyleft94.95 397.37 3496.77 5298.07 2298.97 3398.21 9197.94 4796.85 3797.66 2797.58 393.33 6196.84 4998.01 3897.13 7296.20 8699.09 10598.01 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA96.90 4496.28 5897.64 3098.56 4498.63 8096.85 6896.60 3897.73 1997.08 689.78 10296.28 5797.80 4196.73 8496.63 7598.94 12498.14 127
MSDG94.82 7193.73 10496.09 5098.34 4897.43 11097.06 6096.05 3995.84 7890.56 7086.30 12989.10 10295.55 8696.13 11195.61 10499.00 11795.73 179
DeepPCF-MVS95.28 297.00 4198.35 2195.42 6397.30 6598.94 5394.82 12096.03 4098.24 992.11 5395.80 4298.64 3395.51 8798.95 798.66 596.78 19299.20 42
PHI-MVS97.78 2798.44 1897.02 3898.73 3999.25 2998.11 4295.54 4196.66 5592.79 4698.52 699.38 997.50 4697.84 5198.39 1499.45 3599.03 68
CSCG97.44 3397.18 4497.75 2999.47 699.52 898.55 3295.41 4297.69 2595.72 2194.29 5795.53 6498.10 3596.20 10897.38 5799.24 7899.62 4
CDPH-MVS96.84 4797.49 3796.09 5098.92 3598.85 6398.61 2995.09 4396.00 7287.29 10895.45 4797.42 4497.16 5397.83 5297.94 3499.44 4398.92 81
OMC-MVS97.00 4196.92 4997.09 3698.69 4098.66 7597.85 4895.02 4498.09 1394.47 2993.15 6296.90 4797.38 4897.16 7196.82 7399.13 10097.65 144
TAPA-MVS94.18 596.38 5296.49 5696.25 4698.26 4998.66 7598.00 4594.96 4597.17 4189.48 8892.91 6696.35 5497.53 4596.59 8995.90 9699.28 7197.82 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + COLMAP94.79 7394.51 8695.11 6896.50 7397.54 10597.99 4694.54 4697.81 1785.88 11496.73 3281.28 15196.99 5996.29 10395.21 11698.76 14496.73 170
PGM-MVS97.81 2698.11 2997.46 3199.55 399.34 2199.32 994.51 4796.21 6493.07 3998.05 1597.95 4398.82 1298.22 3797.89 3799.48 2799.09 56
OPM-MVS93.61 10392.43 12995.00 7196.94 7097.34 11197.78 4994.23 4889.64 17185.53 11588.70 10882.81 14396.28 7396.28 10495.00 12399.24 7897.22 156
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP-MVS94.43 8394.57 8594.27 8896.41 7697.23 11496.89 6693.98 4995.94 7483.68 12295.01 5184.46 13195.58 8595.47 12894.85 12899.07 10899.00 72
MVS_111021_LR97.16 3798.01 3296.16 4998.47 4598.98 5096.94 6593.89 5097.64 2891.44 5798.89 396.41 5397.20 5298.02 4797.29 6299.04 11698.85 90
abl_696.82 4198.60 4398.74 6897.74 5093.73 5196.25 6294.37 3194.55 5698.60 3597.25 5099.27 7398.61 100
EPNet96.27 5596.97 4795.46 6298.47 4598.28 8897.41 5593.67 5295.86 7792.86 4597.51 2593.79 7291.76 14297.03 7597.03 6598.61 15599.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMM92.75 1094.41 8593.84 10295.09 6996.41 7696.80 12394.88 11993.54 5396.41 5890.16 7792.31 7283.11 14196.32 7296.22 10694.65 13099.22 8497.35 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CANet96.84 4797.20 4296.42 4397.92 5599.24 3198.60 3093.51 5497.11 4493.07 3991.16 8697.24 4696.21 7498.24 3698.05 2699.22 8499.35 22
3Dnovator93.79 897.08 3897.20 4296.95 3999.09 3099.03 4598.20 4193.33 5597.99 1593.82 3590.61 9496.80 5097.82 3997.90 5098.78 399.47 3099.26 33
TSAR-MVS + GP.97.45 3298.36 1996.39 4495.56 8998.93 5597.74 5093.31 5697.61 2994.24 3398.44 999.19 1798.03 3797.60 5897.41 5599.44 4399.33 24
DELS-MVS96.06 5696.04 6296.07 5297.77 5799.25 2998.10 4393.26 5794.42 11092.79 4688.52 11193.48 7495.06 9598.51 1798.83 199.45 3599.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM96.78 4997.14 4596.36 4599.05 3199.14 3698.02 4493.26 5797.27 3990.84 6791.16 8697.31 4597.64 4497.70 5698.20 1999.33 6299.18 47
3Dnovator+93.91 797.23 3697.22 4197.24 3498.89 3798.85 6398.26 4093.25 5997.99 1595.56 2490.01 10098.03 4298.05 3697.91 4998.43 1099.44 4399.35 22
MVS_111021_HR97.04 4098.20 2795.69 5798.44 4799.29 2496.59 7993.20 6097.70 2389.94 8398.46 896.89 4896.71 6698.11 4497.95 3399.27 7399.01 71
COLMAP_ROBcopyleft90.49 1493.27 11092.71 11993.93 9297.75 5997.44 10996.07 9493.17 6195.40 8783.86 12183.76 14488.72 10493.87 11594.25 15294.11 14798.87 13095.28 185
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVS_030496.31 5396.91 5095.62 5897.21 6799.20 3298.55 3293.10 6297.04 4789.73 8590.30 9696.35 5495.71 8098.14 4197.93 3699.38 5599.40 18
PVSNet_BlendedMVS95.41 6395.28 7395.57 5997.42 6299.02 4795.89 10193.10 6296.16 6593.12 3791.99 7485.27 12494.66 10198.09 4597.34 5899.24 7899.08 57
PVSNet_Blended95.41 6395.28 7395.57 5997.42 6299.02 4795.89 10193.10 6296.16 6593.12 3791.99 7485.27 12494.66 10198.09 4597.34 5899.24 7899.08 57
OpenMVScopyleft92.33 1195.50 5895.22 7595.82 5698.98 3298.97 5197.67 5293.04 6594.64 10689.18 9584.44 14094.79 6696.79 6397.23 6797.61 4899.24 7898.88 86
test111193.94 9492.78 11895.29 6696.14 8199.42 1196.79 7292.85 6695.08 10091.39 5980.69 15979.86 15595.00 9698.28 3298.00 2899.58 1098.11 128
test250694.32 8793.00 11695.87 5496.16 7999.39 1696.96 6392.80 6795.22 9694.47 2991.55 8370.45 19695.25 9298.29 2997.98 2999.59 698.10 129
ECVR-MVScopyleft94.14 8992.96 11795.52 6196.16 7999.39 1696.96 6392.80 6795.22 9692.38 5081.48 15480.31 15295.25 9298.29 2997.98 2999.59 698.05 130
EPNet_dtu92.45 11895.02 8189.46 14798.02 5495.47 16894.79 12192.62 6994.97 10170.11 19394.76 5592.61 7984.07 20395.94 11495.56 10597.15 18995.82 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres40093.56 10492.43 12994.87 7695.40 9198.91 5896.70 7692.38 7092.93 13188.19 10386.69 12077.35 16697.13 5496.75 8395.85 9899.42 4898.56 102
tfpn200view993.64 10192.57 12194.89 7495.33 9398.94 5396.82 6992.31 7192.63 13588.29 9987.21 11578.01 16397.12 5696.82 7895.85 9899.45 3598.56 102
thres600view793.49 10692.37 13294.79 7995.42 9098.93 5596.58 8092.31 7193.04 12987.88 10486.62 12176.94 16997.09 5796.82 7895.63 10399.45 3598.63 99
thres20093.62 10292.54 12294.88 7595.36 9298.93 5596.75 7492.31 7192.84 13288.28 10186.99 11777.81 16597.13 5496.82 7895.92 9499.45 3598.49 108
thres100view90093.55 10592.47 12894.81 7895.33 9398.74 6896.78 7392.30 7492.63 13588.29 9987.21 11578.01 16396.78 6496.38 9895.92 9499.38 5598.40 114
CLD-MVS94.79 7394.36 9095.30 6595.21 9997.46 10897.23 5992.24 7596.43 5791.77 5692.69 6884.31 13296.06 7595.52 12695.03 12099.31 6799.06 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMP92.88 994.43 8394.38 8994.50 8496.01 8497.69 10395.85 10492.09 7695.74 8089.12 9695.14 4982.62 14594.77 9795.73 12294.67 12999.14 9999.06 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PatchMatch-RL94.69 7794.41 8895.02 7097.63 6198.15 9594.50 12791.99 7795.32 9091.31 6095.47 4683.44 13996.02 7796.56 9095.23 11598.69 14896.67 171
CS-MVS-test97.00 4197.85 3496.00 5397.77 5799.56 596.35 8791.95 7897.54 3192.20 5196.14 3796.00 6298.19 2998.46 2097.78 4299.57 1399.45 16
baseline194.59 7994.47 8794.72 8095.16 10097.97 10096.07 9491.94 7994.86 10389.98 8191.60 8285.87 12195.64 8297.07 7396.90 6999.52 1997.06 163
Anonymous2023121193.49 10692.33 13394.84 7794.78 11198.00 9896.11 9291.85 8094.86 10390.91 6374.69 17989.18 10096.73 6594.82 14195.51 10798.67 14999.24 36
LGP-MVS_train94.12 9094.62 8493.53 9896.44 7597.54 10597.40 5691.84 8194.66 10581.09 13695.70 4483.36 14095.10 9496.36 10195.71 10299.32 6499.03 68
PVSNet_Blended_VisFu94.77 7595.54 6993.87 9396.48 7498.97 5194.33 12991.84 8194.93 10290.37 7585.04 13594.99 6590.87 15798.12 4397.30 6099.30 6999.45 16
CS-MVS96.87 4597.41 4096.24 4897.42 6299.48 997.30 5891.83 8397.17 4193.02 4394.80 5394.45 6898.16 3198.61 1497.85 3999.69 199.50 12
Anonymous20240521192.18 13495.04 10498.20 9296.14 9191.79 8493.93 11674.60 18088.38 10896.48 7095.17 13695.82 10199.00 11799.15 51
casdiffmvs94.38 8694.15 9794.64 8394.70 11698.51 8496.03 9691.66 8595.70 8189.36 9286.48 12485.03 12996.60 6997.40 6397.30 6099.52 1998.67 97
diffmvs94.31 8894.21 9294.42 8694.64 11798.28 8896.36 8691.56 8696.77 5188.89 9888.97 10584.23 13396.01 7896.05 11296.41 7999.05 11598.79 94
RPSCF94.05 9194.00 9894.12 9096.20 7896.41 13796.61 7891.54 8795.83 7989.73 8596.94 3192.80 7795.35 9191.63 19190.44 19395.27 20593.94 196
UGNet94.92 6896.63 5392.93 10796.03 8398.63 8094.53 12691.52 8896.23 6390.03 8092.87 6796.10 6086.28 18996.68 8696.60 7699.16 9699.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EIA-MVS95.50 5896.19 6094.69 8194.83 10898.88 6295.93 9891.50 8994.47 10989.43 8993.14 6392.72 7897.05 5897.82 5497.13 6499.43 4699.15 51
ETV-MVS96.31 5397.47 3994.96 7394.79 10998.78 6696.08 9391.41 9096.16 6590.50 7195.76 4396.20 5897.39 4798.42 2497.82 4099.57 1399.18 47
IB-MVS89.56 1591.71 12492.50 12490.79 13195.94 8598.44 8587.05 20191.38 9193.15 12892.98 4484.78 13685.14 12778.27 20892.47 17994.44 14299.10 10499.08 57
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FC-MVSNet-train93.85 9793.91 9993.78 9594.94 10596.79 12694.29 13091.13 9293.84 12088.26 10290.40 9585.23 12694.65 10396.54 9295.31 11299.38 5599.28 28
IS_MVSNet95.28 6596.43 5793.94 9195.30 9599.01 4995.90 9991.12 9394.13 11587.50 10791.23 8594.45 6894.17 11098.45 2198.50 799.65 399.23 37
Vis-MVSNet (Re-imp)94.46 8296.24 5992.40 11195.23 9898.64 7895.56 10790.99 9494.42 11085.02 11790.88 9294.65 6788.01 17998.17 3898.37 1699.57 1398.53 105
thisisatest053094.54 8095.47 7093.46 10094.51 11998.65 7794.66 12390.72 9595.69 8386.90 11193.80 5889.44 9694.74 9896.98 7794.86 12599.19 9198.85 90
tttt051794.52 8195.44 7293.44 10194.51 11998.68 7494.61 12590.72 9595.61 8586.84 11293.78 5989.26 9994.74 9897.02 7694.86 12599.20 9098.87 88
EPP-MVSNet95.27 6696.18 6194.20 8994.88 10698.64 7894.97 11690.70 9795.34 8989.67 8791.66 8193.84 7195.42 9097.32 6597.00 6699.58 1099.47 15
DI_MVS_plusplus_trai94.01 9293.63 10694.44 8594.54 11898.26 9097.51 5490.63 9895.88 7689.34 9380.54 16189.36 9795.48 8896.33 10296.27 8399.17 9398.78 95
MVSTER94.89 6995.07 8094.68 8294.71 11496.68 12997.00 6190.57 9995.18 9893.05 4195.21 4886.41 11693.72 11997.59 5995.88 9799.00 11798.50 107
UniMVSNet_NR-MVSNet90.35 14389.96 15590.80 13089.66 17795.83 15692.48 15690.53 10090.96 16179.57 14179.33 16577.14 16793.21 12992.91 17394.50 14199.37 5899.05 65
TranMVSNet+NR-MVSNet89.23 15988.48 16890.11 14289.07 19395.25 17792.91 14990.43 10190.31 16777.10 15376.62 17271.57 19191.83 14192.12 18394.59 13499.32 6498.92 81
TDRefinement89.07 16288.15 17190.14 14095.16 10096.88 11995.55 10890.20 10289.68 17076.42 15876.67 17174.30 17984.85 19793.11 16991.91 18798.64 15494.47 188
tfpnnormal88.50 16787.01 18990.23 13691.36 15795.78 15992.74 15190.09 10383.65 20776.33 15971.46 20169.58 20291.84 14095.54 12594.02 15099.06 11199.03 68
UA-Net93.96 9395.95 6491.64 11996.06 8298.59 8295.29 11090.00 10491.06 15982.87 12590.64 9398.06 4186.06 19098.14 4198.20 1999.58 1096.96 164
DU-MVS89.67 15388.84 16490.63 13389.26 18795.61 16292.48 15689.91 10591.22 15779.57 14177.72 16971.18 19393.21 12992.53 17794.57 13599.35 6199.05 65
NR-MVSNet89.34 15688.66 16590.13 14190.40 16695.61 16293.04 14889.91 10591.22 15778.96 14477.72 16968.90 20589.16 17594.24 15393.95 15199.32 6498.99 73
ET-MVSNet_ETH3D93.34 10894.33 9192.18 11483.26 21597.66 10496.72 7589.89 10795.62 8487.17 10996.00 4083.69 13896.99 5993.78 15695.34 11199.06 11198.18 126
canonicalmvs95.25 6795.45 7195.00 7195.27 9798.72 7196.89 6689.82 10896.51 5690.84 6793.72 6086.01 11997.66 4395.78 12097.94 3499.54 1899.50 12
MAR-MVS95.50 5895.60 6795.39 6498.67 4198.18 9495.89 10189.81 10994.55 10891.97 5592.99 6490.21 9297.30 4996.79 8197.49 5198.72 14598.99 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Baseline_NR-MVSNet89.27 15888.01 17490.73 13289.26 18793.71 20392.71 15389.78 11090.73 16281.28 13573.53 18972.85 18592.30 13692.53 17793.84 15699.07 10898.88 86
ACMH90.77 1391.51 12991.63 14291.38 12295.62 8896.87 12191.76 17489.66 11191.58 15478.67 14586.73 11978.12 16193.77 11894.59 14394.54 13898.78 14298.98 75
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)87.73 18086.79 19188.83 15390.76 16294.40 19691.33 18089.62 11284.73 20475.41 16672.73 19371.41 19286.80 18594.53 14593.93 15299.06 11195.83 177
PMMVS94.61 7895.56 6893.50 9994.30 12396.74 12794.91 11889.56 11395.58 8687.72 10596.15 3692.86 7696.06 7595.47 12895.02 12198.43 16797.09 159
DCV-MVSNet94.76 7695.12 7994.35 8795.10 10395.81 15796.46 8489.49 11496.33 6090.16 7792.55 7090.26 9195.83 7995.52 12696.03 9199.06 11199.33 24
ACMH+90.88 1291.41 13091.13 14691.74 11895.11 10296.95 11893.13 14689.48 11592.42 14179.93 14085.13 13478.02 16293.82 11793.49 16393.88 15398.94 12497.99 132
UniMVSNet (Re)90.03 15089.61 15890.51 13489.97 17496.12 14492.32 16089.26 11690.99 16080.95 13778.25 16875.08 17691.14 14993.78 15693.87 15499.41 4999.21 41
CVMVSNet89.77 15291.66 14187.56 17993.21 14295.45 16991.94 17389.22 11789.62 17269.34 19983.99 14385.90 12084.81 19894.30 15195.28 11396.85 19197.09 159
CDS-MVSNet92.77 11393.60 10791.80 11792.63 14896.80 12395.24 11289.14 11890.30 16884.58 11886.76 11890.65 8890.42 16595.89 11596.49 7798.79 14198.32 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_Test94.82 7195.66 6693.84 9494.79 10998.35 8796.49 8389.10 11996.12 6887.09 11092.58 6990.61 8996.48 7096.51 9696.89 7099.11 10398.54 104
DROMVSNet96.49 5197.63 3595.16 6794.75 11298.69 7397.39 5788.97 12096.34 5992.02 5496.04 3996.46 5298.21 2798.41 2597.96 3299.61 599.55 10
UniMVSNet_ETH3D88.47 16886.00 19891.35 12391.55 15596.29 14092.53 15588.81 12185.58 20282.33 12867.63 21066.87 21194.04 11391.49 19295.24 11498.84 13398.92 81
GBi-Net93.81 9894.18 9393.38 10291.34 15895.86 15396.22 8888.68 12295.23 9390.40 7286.39 12591.16 8394.40 10796.52 9396.30 8099.21 8797.79 136
test193.81 9894.18 9393.38 10291.34 15895.86 15396.22 8888.68 12295.23 9390.40 7286.39 12591.16 8394.40 10796.52 9396.30 8099.21 8797.79 136
FMVSNet393.79 10094.17 9593.35 10491.21 16195.99 14696.62 7788.68 12295.23 9390.40 7286.39 12591.16 8394.11 11195.96 11396.67 7499.07 10897.79 136
baseline94.83 7095.82 6593.68 9694.75 11297.80 10196.51 8288.53 12597.02 4989.34 9392.93 6592.18 8094.69 10095.78 12096.08 8798.27 17098.97 79
CHOSEN 1792x268892.66 11592.49 12592.85 10897.13 6898.89 6195.90 9988.50 12695.32 9083.31 12471.99 19888.96 10394.10 11296.69 8596.49 7798.15 17299.10 54
test_part191.21 13189.47 15993.24 10594.26 12495.45 16995.26 11188.36 12788.49 18190.04 7972.61 19582.82 14293.69 12193.25 16794.62 13297.84 18099.06 62
Vis-MVSNetpermissive92.77 11395.00 8290.16 13894.10 12798.79 6594.76 12288.26 12892.37 14479.95 13988.19 11391.58 8284.38 20097.59 5997.58 4999.52 1998.91 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FMVSNet293.30 10993.36 11293.22 10691.34 15895.86 15396.22 8888.24 12995.15 9989.92 8481.64 15289.36 9794.40 10796.77 8296.98 6799.21 8797.79 136
v14887.51 18286.79 19188.36 15889.39 18495.21 17889.84 19288.20 13087.61 19077.56 14973.38 19170.32 19986.80 18590.70 19692.31 18398.37 16897.98 134
pm-mvs189.19 16089.02 16389.38 14990.40 16695.74 16092.05 16888.10 13186.13 19877.70 14873.72 18879.44 15788.97 17695.81 11994.51 14099.08 10697.78 141
pmmvs490.55 14089.91 15691.30 12490.26 17094.95 18492.73 15287.94 13293.44 12685.35 11682.28 15176.09 17193.02 13193.56 16192.26 18598.51 16196.77 169
v2v48288.25 17187.71 18188.88 15289.23 19195.28 17492.10 16687.89 13388.69 17973.31 17875.32 17571.64 19091.89 13992.10 18592.92 17198.86 13297.99 132
GA-MVS89.28 15790.75 15287.57 17891.77 15496.48 13492.29 16287.58 13490.61 16565.77 20484.48 13976.84 17089.46 17395.84 11793.68 15898.52 16097.34 154
baseline293.01 11194.17 9591.64 11992.83 14697.49 10793.40 14187.53 13593.67 12286.07 11391.83 7986.58 11391.36 14696.38 9895.06 11998.67 14998.20 125
thisisatest051590.12 14892.06 13787.85 17290.03 17296.17 14387.83 19887.45 13691.71 15377.15 15285.40 13384.01 13585.74 19295.41 13093.30 16598.88 12998.43 110
CANet_DTU93.92 9696.57 5490.83 12995.63 8798.39 8696.99 6287.38 13796.26 6171.97 18296.31 3593.02 7594.53 10497.38 6496.83 7298.49 16297.79 136
FC-MVSNet-test91.63 12593.82 10389.08 15192.02 15396.40 13893.26 14487.26 13893.72 12177.26 15188.61 11089.86 9485.50 19395.72 12495.02 12199.16 9697.44 150
V4288.31 17087.95 17688.73 15489.44 18295.34 17392.23 16487.21 13988.83 17674.49 17474.89 17873.43 18490.41 16792.08 18692.77 17698.60 15798.33 119
FMVSNet191.54 12890.93 14992.26 11390.35 16895.27 17695.22 11387.16 14091.37 15687.62 10675.45 17483.84 13694.43 10596.52 9396.30 8098.82 13497.74 142
test-LLR91.62 12693.56 10989.35 15093.31 14096.57 13292.02 17087.06 14192.34 14575.05 17190.20 9788.64 10590.93 15396.19 10994.07 14897.75 18396.90 167
test0.0.03 191.97 12093.91 9989.72 14393.31 14096.40 13891.34 17987.06 14193.86 11881.67 13291.15 8889.16 10186.02 19195.08 13795.09 11898.91 12796.64 173
USDC90.69 13790.52 15390.88 12894.17 12696.43 13695.82 10586.76 14393.92 11776.27 16086.49 12374.30 17993.67 12295.04 13993.36 16298.61 15594.13 192
WR-MVS87.93 17588.09 17287.75 17389.26 18795.28 17490.81 18586.69 14488.90 17575.29 16774.31 18473.72 18285.19 19692.26 18093.32 16499.27 7398.81 93
pmnet_mix0286.12 19487.12 18884.96 19789.82 17594.12 20084.88 20786.63 14591.78 15265.60 20580.76 15876.98 16886.61 18787.29 20984.80 21296.21 19394.09 193
HyFIR lowres test92.03 11991.55 14392.58 10997.13 6898.72 7194.65 12486.54 14693.58 12482.56 12767.75 20990.47 9095.67 8195.87 11695.54 10698.91 12798.93 80
TinyColmap89.42 15488.58 16690.40 13593.80 13495.45 16993.96 13486.54 14692.24 14776.49 15780.83 15770.44 19793.37 12594.45 14793.30 16598.26 17193.37 203
PEN-MVS87.22 18786.50 19688.07 16388.88 19694.44 19590.99 18486.21 14886.53 19673.66 17774.97 17766.56 21589.42 17491.20 19493.48 16199.24 7898.31 122
N_pmnet84.80 19885.10 20284.45 19889.25 19092.86 20684.04 20886.21 14888.78 17766.73 20372.41 19774.87 17885.21 19588.32 20586.45 20795.30 20492.04 206
IterMVS-LS92.56 11693.18 11391.84 11693.90 13094.97 18394.99 11586.20 15094.18 11482.68 12685.81 13187.36 11294.43 10595.31 13296.02 9298.87 13098.60 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS90.54 14190.87 15190.16 13891.48 15696.61 13193.26 14486.08 15187.71 18881.66 13383.11 14884.04 13490.42 16594.54 14494.60 13398.04 17795.48 183
DTE-MVSNet86.67 19086.09 19787.35 18288.45 20294.08 20190.65 18686.05 15286.13 19872.19 18174.58 18266.77 21387.61 18290.31 19793.12 16799.13 10097.62 146
Effi-MVS+92.93 11293.86 10191.86 11594.07 12898.09 9795.59 10685.98 15394.27 11379.54 14391.12 8981.81 14896.71 6696.67 8796.06 8999.27 7398.98 75
MDA-MVSNet-bldmvs80.11 20680.24 20979.94 20677.01 21893.21 20478.86 21685.94 15482.71 21160.86 21379.71 16451.77 22483.71 20475.60 21686.37 20893.28 21492.35 204
CP-MVSNet87.89 17887.27 18488.62 15589.30 18595.06 18090.60 18785.78 15587.43 19275.98 16174.60 18068.14 20890.76 15893.07 17193.60 15999.30 6998.98 75
PS-CasMVS87.33 18586.68 19488.10 16289.22 19294.93 18590.35 19085.70 15686.44 19774.01 17673.43 19066.59 21490.04 16992.92 17293.52 16099.28 7198.91 84
v114487.92 17787.79 17988.07 16389.27 18695.15 17992.17 16585.62 15788.52 18071.52 18473.80 18772.40 18891.06 15193.54 16292.80 17498.81 13798.33 119
GeoE92.52 11792.64 12092.39 11293.96 12997.76 10296.01 9785.60 15893.23 12783.94 12081.56 15384.80 13095.63 8396.22 10695.83 10099.19 9199.07 61
WR-MVS_H87.93 17587.85 17888.03 16889.62 17895.58 16690.47 18885.55 15987.20 19376.83 15574.42 18372.67 18786.37 18893.22 16893.04 16899.33 6298.83 92
CMPMVSbinary65.18 1784.76 19983.10 20586.69 18895.29 9695.05 18188.37 19685.51 16080.27 21471.31 18668.37 20773.85 18185.25 19487.72 20687.75 20394.38 21388.70 213
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CHOSEN 280x42095.46 6197.01 4693.66 9797.28 6697.98 9996.40 8585.39 16196.10 6991.07 6196.53 3496.34 5695.61 8497.65 5796.95 6896.21 19397.49 148
EU-MVSNet85.62 19687.65 18283.24 20288.54 20192.77 20787.12 20085.32 16286.71 19464.54 20778.52 16775.11 17578.35 20792.25 18192.28 18495.58 20195.93 176
SixPastTwentyTwo88.37 16989.47 15987.08 18490.01 17395.93 15287.41 19985.32 16290.26 16970.26 19186.34 12871.95 18990.93 15392.89 17491.72 18898.55 15897.22 156
pmmvs685.98 19584.89 20387.25 18388.83 19894.35 19789.36 19485.30 16478.51 21675.44 16562.71 21575.41 17387.65 18193.58 16092.40 18296.89 19097.29 155
testgi89.42 15491.50 14487.00 18692.40 15195.59 16489.15 19585.27 16592.78 13372.42 18091.75 8076.00 17284.09 20294.38 14993.82 15798.65 15396.15 174
v119287.51 18287.31 18387.74 17489.04 19494.87 18892.07 16785.03 16688.49 18170.32 19072.65 19470.35 19891.21 14893.59 15892.80 17498.78 14298.42 112
v888.21 17287.94 17788.51 15689.62 17895.01 18292.31 16184.99 16788.94 17474.70 17375.03 17673.51 18390.67 16192.11 18492.74 17798.80 13998.24 123
Effi-MVS+-dtu91.78 12393.59 10889.68 14692.44 15097.11 11694.40 12884.94 16892.43 14075.48 16491.09 9083.75 13793.55 12396.61 8895.47 10897.24 18898.67 97
LTVRE_ROB87.32 1687.55 18188.25 17086.73 18790.66 16395.80 15893.05 14784.77 16983.35 20860.32 21683.12 14767.39 20993.32 12694.36 15094.86 12598.28 16998.87 88
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs587.83 17988.09 17287.51 18189.59 18095.48 16789.75 19384.73 17086.07 20071.44 18580.57 16070.09 20090.74 16094.47 14692.87 17398.82 13497.10 158
v14419287.40 18487.20 18687.64 17588.89 19594.88 18791.65 17584.70 17187.80 18771.17 18873.20 19270.91 19490.75 15992.69 17592.49 18098.71 14698.43 110
Fast-Effi-MVS+91.87 12192.08 13691.62 12192.91 14497.21 11594.93 11784.60 17293.61 12381.49 13483.50 14578.95 15896.62 6896.55 9196.22 8599.16 9698.51 106
v192192087.31 18687.13 18787.52 18088.87 19794.72 18991.96 17284.59 17388.28 18369.86 19672.50 19670.03 20191.10 15093.33 16592.61 17998.71 14698.44 109
MS-PatchMatch91.82 12292.51 12391.02 12595.83 8696.88 11995.05 11484.55 17493.85 11982.01 12982.51 15091.71 8190.52 16495.07 13893.03 16998.13 17394.52 187
v124086.89 18886.75 19387.06 18588.75 19994.65 19291.30 18184.05 17587.49 19168.94 20071.96 19968.86 20690.65 16293.33 16592.72 17898.67 14998.24 123
pmmvs-eth3d84.33 20182.94 20685.96 19584.16 21290.94 21186.55 20283.79 17684.25 20575.85 16370.64 20356.43 22187.44 18492.20 18290.41 19497.97 17895.68 180
Anonymous2023120683.84 20285.19 20182.26 20387.38 20792.87 20585.49 20583.65 17786.07 20063.44 21168.42 20669.01 20475.45 21193.34 16492.44 18198.12 17594.20 191
FMVSNet590.36 14290.93 14989.70 14487.99 20392.25 20892.03 16983.51 17892.20 14884.13 11985.59 13286.48 11492.43 13494.61 14294.52 13998.13 17390.85 209
v1088.00 17387.96 17588.05 16689.44 18294.68 19092.36 15983.35 17989.37 17372.96 17973.98 18672.79 18691.35 14793.59 15892.88 17298.81 13798.42 112
v7n86.43 19186.52 19586.33 19187.91 20494.93 18590.15 19183.05 18086.57 19570.21 19271.48 20066.78 21287.72 18094.19 15592.96 17098.92 12698.76 96
test20.0382.92 20485.52 19979.90 20787.75 20591.84 20982.80 21182.99 18182.65 21260.32 21678.90 16670.50 19567.10 21592.05 18790.89 19098.44 16591.80 207
anonymousdsp88.90 16491.00 14886.44 19088.74 20095.97 14890.40 18982.86 18288.77 17867.33 20281.18 15681.44 15090.22 16896.23 10594.27 14599.12 10299.16 50
TESTMET0.1,191.07 13393.56 10988.17 16190.43 16596.57 13292.02 17082.83 18392.34 14575.05 17190.20 9788.64 10590.93 15396.19 10994.07 14897.75 18396.90 167
test-mter90.95 13493.54 11187.93 17190.28 16996.80 12391.44 17682.68 18492.15 14974.37 17589.57 10388.23 11090.88 15696.37 10094.31 14497.93 17997.37 152
MIMVSNet180.03 20780.93 20878.97 20872.46 22190.73 21280.81 21482.44 18580.39 21363.64 20957.57 21664.93 21676.37 20991.66 19091.55 18998.07 17689.70 211
PM-MVS84.72 20084.47 20485.03 19684.67 21191.57 21086.27 20382.31 18687.65 18970.62 18976.54 17356.41 22288.75 17892.59 17689.85 19797.54 18696.66 172
EG-PatchMatch MVS86.68 18987.24 18586.02 19490.58 16496.26 14191.08 18381.59 18784.96 20369.80 19771.35 20275.08 17684.23 20194.24 15393.35 16398.82 13495.46 184
IterMVS90.20 14592.43 12987.61 17792.82 14794.31 19894.11 13181.54 18892.97 13069.90 19584.71 13788.16 11189.96 17195.25 13394.17 14697.31 18797.46 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+-dtu91.19 13293.64 10588.33 15992.19 15296.46 13593.99 13381.52 18992.59 13771.82 18392.17 7385.54 12291.68 14395.73 12294.64 13198.80 13998.34 118
IterMVS-SCA-FT90.24 14492.48 12787.63 17692.85 14594.30 19993.79 13581.47 19092.66 13469.95 19484.66 13888.38 10889.99 17095.39 13194.34 14397.74 18597.63 145
MDTV_nov1_ep1391.57 12793.18 11389.70 14493.39 13896.97 11793.53 13880.91 19195.70 8181.86 13092.40 7189.93 9393.25 12891.97 18890.80 19195.25 20694.46 189
new-patchmatchnet78.49 20978.19 21278.84 20984.13 21390.06 21377.11 21880.39 19279.57 21559.64 21966.01 21155.65 22375.62 21084.55 21280.70 21496.14 19590.77 210
FPMVS75.84 21074.59 21377.29 21186.92 20883.89 21985.01 20680.05 19382.91 21060.61 21565.25 21260.41 21863.86 21675.60 21673.60 21887.29 22080.47 217
FA-MVS(training)93.94 9495.16 7692.53 11094.87 10798.57 8395.42 10979.49 19495.37 8890.98 6286.54 12294.26 7095.44 8997.80 5595.19 11798.97 12098.38 116
new_pmnet81.53 20582.68 20780.20 20583.47 21489.47 21582.21 21378.36 19587.86 18660.14 21867.90 20869.43 20382.03 20589.22 20387.47 20594.99 20887.39 214
gm-plane-assit83.26 20385.29 20080.89 20489.52 18189.89 21470.26 22078.24 19677.11 21758.01 22074.16 18566.90 21090.63 16397.20 6896.05 9098.66 15295.68 180
CostFormer90.69 13790.48 15490.93 12794.18 12596.08 14594.03 13278.20 19793.47 12589.96 8290.97 9180.30 15393.72 11987.66 20888.75 20095.51 20296.12 175
tpm cat188.90 16487.78 18090.22 13793.88 13295.39 17293.79 13578.11 19892.55 13889.43 8981.31 15579.84 15691.40 14584.95 21186.34 20994.68 21294.09 193
dps90.11 14989.37 16290.98 12693.89 13196.21 14293.49 13977.61 19991.95 15092.74 4888.85 10678.77 16092.37 13587.71 20787.71 20495.80 19894.38 190
PMVScopyleft63.12 1867.27 21366.39 21668.30 21377.98 21760.24 22459.53 22476.82 20066.65 22060.74 21454.39 21759.82 21951.24 21973.92 21970.52 21983.48 22179.17 219
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EPMVS90.88 13692.12 13589.44 14894.71 11497.24 11393.55 13776.81 20195.89 7581.77 13191.49 8486.47 11593.87 11590.21 19890.07 19595.92 19693.49 202
MDTV_nov1_ep13_2view86.30 19288.27 16984.01 19987.71 20694.67 19188.08 19776.78 20290.59 16668.66 20180.46 16280.12 15487.58 18389.95 20188.20 20295.25 20693.90 198
PatchmatchNetpermissive90.56 13992.49 12588.31 16093.83 13396.86 12292.42 15876.50 20395.96 7378.31 14691.96 7689.66 9593.48 12490.04 20089.20 19995.32 20393.73 200
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst88.86 16689.62 15787.97 17094.33 12295.98 14792.62 15476.36 20494.62 10776.94 15485.98 13082.80 14492.80 13286.90 21087.15 20694.77 21093.93 197
tpm87.95 17489.44 16186.21 19292.53 14994.62 19391.40 17776.36 20491.46 15569.80 19787.43 11475.14 17491.55 14489.85 20290.60 19295.61 20096.96 164
SCA90.92 13593.04 11588.45 15793.72 13597.33 11292.77 15076.08 20696.02 7178.26 14791.96 7690.86 8693.99 11490.98 19590.04 19695.88 19794.06 195
CR-MVSNet90.16 14791.96 13988.06 16593.32 13995.95 15093.36 14275.99 20792.40 14275.19 16883.18 14685.37 12392.05 13795.21 13494.56 13698.47 16497.08 161
Patchmtry95.96 14993.36 14275.99 20775.19 168
MIMVSNet88.99 16391.07 14786.57 18986.78 20995.62 16191.20 18275.40 20990.65 16476.57 15684.05 14282.44 14691.01 15295.84 11795.38 11098.48 16393.50 201
PatchT89.13 16191.71 14086.11 19392.92 14395.59 16483.64 20975.09 21091.87 15175.19 16882.63 14985.06 12892.05 13795.21 13494.56 13697.76 18297.08 161
ADS-MVSNet89.80 15191.33 14588.00 16994.43 12196.71 12892.29 16274.95 21196.07 7077.39 15088.67 10986.09 11893.26 12788.44 20489.57 19895.68 19993.81 199
RPMNet90.19 14692.03 13888.05 16693.46 13695.95 15093.41 14074.59 21292.40 14275.91 16284.22 14186.41 11692.49 13394.42 14893.85 15598.44 16596.96 164
pmmvs379.16 20880.12 21078.05 21079.36 21686.59 21778.13 21773.87 21376.42 21857.51 22170.59 20457.02 22084.66 19990.10 19988.32 20194.75 21191.77 208
MVS-HIRNet85.36 19786.89 19083.57 20090.13 17194.51 19483.57 21072.61 21488.27 18471.22 18768.97 20581.81 14888.91 17793.08 17091.94 18694.97 20989.64 212
gg-mvs-nofinetune86.17 19388.57 16783.36 20193.44 13798.15 9596.58 8072.05 21574.12 21949.23 22364.81 21390.85 8789.90 17297.83 5296.84 7198.97 12097.41 151
Gipumacopyleft68.35 21266.71 21570.27 21274.16 22068.78 22263.93 22371.77 21683.34 20954.57 22234.37 22031.88 22668.69 21483.30 21385.53 21088.48 21879.78 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft86.86 21679.50 21570.43 21790.73 16263.66 20880.36 16360.83 21779.68 20676.23 21589.46 21786.53 215
E-PMN50.67 21647.85 21953.96 21764.13 22450.98 22738.06 22569.51 21851.40 22324.60 22629.46 22324.39 22856.07 21848.17 22159.70 22071.40 22370.84 221
EMVS49.98 21746.76 22053.74 21864.96 22351.29 22637.81 22669.35 21951.83 22222.69 22729.57 22225.06 22757.28 21744.81 22256.11 22170.32 22468.64 222
PMMVS264.36 21565.94 21762.52 21667.37 22277.44 22064.39 22269.32 22061.47 22134.59 22446.09 21941.03 22548.02 22274.56 21878.23 21591.43 21682.76 216
MVEpermissive50.86 1949.54 21851.43 21847.33 21944.14 22659.20 22536.45 22760.59 22141.47 22431.14 22529.58 22117.06 23048.52 22162.22 22074.63 21763.12 22575.87 220
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method72.96 21178.68 21166.28 21550.17 22564.90 22375.45 21950.90 22287.89 18562.54 21262.98 21468.34 20770.45 21391.90 18982.41 21388.19 21992.35 204
tmp_tt66.88 21486.07 21073.86 22168.22 22133.38 22396.88 5080.67 13888.23 11278.82 15949.78 22082.68 21477.47 21683.19 222
testmvs12.09 21916.94 2216.42 2213.15 2276.08 2289.51 2293.84 22421.46 2255.31 22827.49 2246.76 23110.89 22317.06 22315.01 2225.84 22624.75 223
test1239.58 22013.53 2224.97 2221.31 2295.47 2298.32 2302.95 22518.14 2262.03 23020.82 2252.34 23210.60 22410.00 22414.16 2234.60 22723.77 224
GG-mvs-BLEND66.17 21494.91 8332.63 2201.32 22896.64 13091.40 1770.85 22694.39 1122.20 22990.15 9995.70 632.27 22596.39 9795.44 10997.78 18195.68 180
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def63.50 210
9.1499.28 12
our_test_389.78 17693.84 20285.59 204
ambc73.83 21476.23 21985.13 21882.27 21284.16 20665.58 20652.82 21823.31 22973.55 21291.41 19385.26 21192.97 21594.70 186
MTAPA96.83 1199.12 21
MTMP97.18 598.83 27
Patchmatch-RL test34.61 228
XVS96.60 7199.35 1896.82 6990.85 6498.72 3099.46 31
X-MVStestdata96.60 7199.35 1896.82 6990.85 6498.72 3099.46 31
mPP-MVS99.21 2598.29 39
NP-MVS95.32 90