This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS98.86 398.97 298.75 299.43 1399.63 199.25 1297.81 198.62 197.69 197.59 2099.90 198.93 598.99 398.42 1199.37 5299.62 3
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS98.87 298.96 398.77 199.58 299.53 599.44 197.81 198.22 997.33 498.70 499.33 998.86 898.96 598.40 1399.63 399.57 8
SED-MVS98.90 199.07 198.69 399.38 1999.61 299.33 797.80 398.25 797.60 298.87 399.89 298.67 1899.02 298.26 1799.36 5499.61 5
LS3D95.46 5895.14 7395.84 5197.91 5598.90 5598.58 3097.79 497.07 4383.65 11688.71 10388.64 10197.82 3597.49 5497.42 4899.26 7197.72 136
DPE-MVScopyleft98.75 498.91 598.57 499.21 2499.54 499.42 297.78 597.49 3196.84 998.94 199.82 498.59 2198.90 998.22 1899.56 1099.48 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APD-MVScopyleft98.36 1598.32 2298.41 899.47 699.26 2199.12 1597.77 696.73 4996.12 1797.27 2898.88 2498.46 2598.47 1798.39 1499.52 1499.22 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.34 1698.47 1498.18 1799.46 899.15 2999.10 1697.69 797.67 2594.93 2797.62 1999.70 698.60 2098.45 1897.46 4699.31 6199.26 29
xxxxxxxxxxxxxcwj97.07 3895.99 6098.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1181.99 14398.11 2998.15 3297.62 3999.45 3099.19 39
SF-MVS98.39 1398.45 1698.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1199.25 1498.11 2998.15 3297.62 3999.45 3099.19 39
MSP-MVS98.73 598.93 498.50 699.44 1299.57 399.36 397.65 898.14 1196.51 1598.49 699.65 798.67 1898.60 1398.42 1199.40 4699.63 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP98.20 1898.49 1297.85 2699.50 499.40 999.26 1197.64 1197.47 3392.62 4697.59 2099.09 2198.71 1698.82 1197.86 3399.40 4699.19 39
SMA-MVScopyleft98.66 698.89 698.39 999.60 199.41 899.00 2097.63 1297.78 1795.83 1998.33 1099.83 398.85 1098.93 798.56 699.41 4399.40 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS98.43 1198.31 2398.57 499.48 599.40 999.32 897.62 1397.70 2296.67 1196.59 3299.09 2198.86 898.65 1297.56 4399.45 3099.17 45
MCST-MVS98.20 1898.36 1898.01 2399.40 1599.05 3299.00 2097.62 1397.59 2993.70 3497.42 2799.30 1098.77 1498.39 2397.48 4599.59 499.31 23
SR-MVS99.45 997.61 1599.20 15
SD-MVS98.52 798.77 898.23 1698.15 5099.26 2198.79 2697.59 1698.52 296.25 1697.99 1599.75 599.01 398.27 2697.97 2799.59 499.63 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS98.47 1098.46 1598.48 799.40 1599.05 3299.02 1997.54 1797.73 1896.65 1297.20 2999.13 1998.85 1098.91 898.10 2299.41 4399.08 54
NCCC98.10 2198.05 3098.17 1999.38 1999.05 3299.00 2097.53 1898.04 1395.12 2594.80 5099.18 1798.58 2298.49 1697.78 3699.39 4898.98 72
HFP-MVS98.48 998.62 1098.32 1299.39 1899.33 1699.27 1097.42 1998.27 695.25 2498.34 998.83 2699.08 198.26 2798.08 2499.48 2299.26 29
MP-MVScopyleft98.09 2298.30 2497.84 2799.34 2199.19 2799.23 1397.40 2097.09 4293.03 4097.58 2298.85 2598.57 2398.44 2097.69 3799.48 2299.23 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS94.87 496.76 4796.50 5297.05 3698.21 4999.28 1998.67 2797.38 2197.31 3590.36 6989.19 10093.58 6998.19 2798.31 2498.50 799.51 1999.36 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR98.40 1298.49 1298.28 1499.41 1499.40 999.36 397.35 2298.30 595.02 2697.79 1798.39 3799.04 298.26 2798.10 2299.50 2199.22 35
CP-MVS98.32 1798.34 2198.29 1399.34 2199.30 1799.15 1497.35 2297.49 3195.58 2297.72 1898.62 3398.82 1298.29 2597.67 3899.51 1999.28 24
AdaColmapbinary97.53 3096.93 4598.24 1599.21 2498.77 6298.47 3497.34 2496.68 5196.52 1495.11 4796.12 5898.72 1597.19 6396.24 7899.17 8798.39 112
SteuartSystems-ACMMP98.38 1498.71 997.99 2499.34 2199.46 799.34 597.33 2597.31 3594.25 3098.06 1399.17 1898.13 2898.98 498.46 999.55 1199.54 9
Skip Steuart: Steuart Systems R&D Blog.
X-MVS97.84 2498.19 2797.42 3199.40 1599.35 1299.06 1797.25 2697.38 3490.85 5796.06 3698.72 2998.53 2498.41 2298.15 2199.46 2699.28 24
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2599.16 2799.03 3999.05 1897.24 2798.22 994.17 3295.82 3898.07 3998.69 1798.83 1098.80 299.52 1499.10 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM97.71 2898.60 1196.66 4198.64 4199.05 3298.85 2597.23 2898.45 389.40 8497.51 2499.27 1396.88 5998.53 1497.81 3598.96 11599.59 7
DPM-MVS96.86 4396.82 4896.91 3998.08 5298.20 8598.52 3397.20 2997.24 3891.42 5291.84 7598.45 3597.25 4797.07 6697.40 5098.95 11697.55 140
TSAR-MVS + MP.98.49 898.78 798.15 2098.14 5199.17 2899.34 597.18 3098.44 495.72 2097.84 1699.28 1198.87 799.05 198.05 2599.66 199.60 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PCF-MVS93.95 695.65 5495.14 7396.25 4597.73 5898.73 6597.59 5297.13 3192.50 13289.09 9089.85 9796.65 5096.90 5894.97 13394.89 11799.08 10098.38 113
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
train_agg97.65 2998.06 2997.18 3498.94 3398.91 5398.98 2497.07 3296.71 5090.66 6297.43 2699.08 2398.20 2697.96 4297.14 5799.22 7899.19 39
MSLP-MVS++98.04 2397.93 3298.18 1799.10 2899.09 3198.34 3696.99 3397.54 3096.60 1394.82 4998.45 3598.89 697.46 5598.77 499.17 8799.37 16
CPTT-MVS97.78 2697.54 3398.05 2298.91 3599.05 3299.00 2096.96 3497.14 4095.92 1895.50 4298.78 2898.99 497.20 6196.07 8298.54 15299.04 64
ACMMPcopyleft97.37 3397.48 3597.25 3298.88 3799.28 1998.47 3496.86 3597.04 4492.15 4797.57 2396.05 6097.67 3897.27 5995.99 8799.46 2699.14 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PLCcopyleft94.95 397.37 3396.77 4998.07 2198.97 3298.21 8497.94 4696.85 3697.66 2697.58 393.33 5896.84 4898.01 3497.13 6596.20 8099.09 9998.01 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA96.90 4296.28 5597.64 2998.56 4398.63 7496.85 6496.60 3797.73 1897.08 689.78 9896.28 5697.80 3796.73 7796.63 6998.94 11798.14 123
MSDG94.82 6893.73 10096.09 4898.34 4797.43 10397.06 5896.05 3895.84 7590.56 6386.30 12489.10 9895.55 8396.13 10495.61 9899.00 11195.73 172
DeepPCF-MVS95.28 297.00 4098.35 2095.42 5897.30 6298.94 4894.82 11396.03 3998.24 892.11 4895.80 3998.64 3295.51 8498.95 698.66 596.78 18599.20 38
PHI-MVS97.78 2698.44 1797.02 3798.73 3899.25 2398.11 4195.54 4096.66 5292.79 4398.52 599.38 897.50 4297.84 4598.39 1499.45 3099.03 65
CSCG97.44 3297.18 4097.75 2899.47 699.52 698.55 3195.41 4197.69 2495.72 2094.29 5395.53 6298.10 3196.20 10197.38 5199.24 7299.62 3
CDPH-MVS96.84 4497.49 3496.09 4898.92 3498.85 5898.61 2895.09 4296.00 6887.29 10195.45 4497.42 4397.16 5097.83 4697.94 2999.44 3898.92 78
OMC-MVS97.00 4096.92 4697.09 3598.69 3998.66 6997.85 4795.02 4398.09 1294.47 2893.15 5996.90 4697.38 4497.16 6496.82 6799.13 9497.65 137
TAPA-MVS94.18 596.38 4896.49 5396.25 4598.26 4898.66 6998.00 4494.96 4497.17 3989.48 8192.91 6396.35 5397.53 4196.59 8295.90 9099.28 6597.82 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + COLMAP94.79 7094.51 8295.11 6296.50 7097.54 9897.99 4594.54 4597.81 1685.88 10796.73 3181.28 14796.99 5696.29 9695.21 11098.76 13796.73 163
PGM-MVS97.81 2598.11 2897.46 3099.55 399.34 1599.32 894.51 4696.21 6093.07 3798.05 1497.95 4298.82 1298.22 3097.89 3299.48 2299.09 53
OPM-MVS93.61 9692.43 12295.00 6596.94 6797.34 10497.78 4894.23 4789.64 16485.53 10888.70 10482.81 13996.28 7096.28 9795.00 11699.24 7297.22 149
HQP-MVS94.43 8094.57 8194.27 8296.41 7397.23 10796.89 6293.98 4895.94 7183.68 11595.01 4884.46 12795.58 8295.47 12194.85 12199.07 10299.00 69
MVS_111021_LR97.16 3698.01 3196.16 4798.47 4498.98 4496.94 6193.89 4997.64 2791.44 5198.89 296.41 5297.20 4998.02 4097.29 5699.04 11098.85 87
abl_696.82 4098.60 4298.74 6397.74 4993.73 5096.25 5894.37 2994.55 5298.60 3497.25 4799.27 6798.61 97
EPNet96.27 5196.97 4495.46 5798.47 4498.28 8197.41 5493.67 5195.86 7492.86 4297.51 2493.79 6891.76 13597.03 6897.03 5998.61 14899.28 24
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMM92.75 1094.41 8293.84 9895.09 6396.41 7396.80 11694.88 11293.54 5296.41 5590.16 7092.31 6983.11 13796.32 6996.22 9994.65 12399.22 7897.35 146
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CANet96.84 4497.20 3896.42 4297.92 5499.24 2598.60 2993.51 5397.11 4193.07 3791.16 8297.24 4596.21 7198.24 2998.05 2599.22 7899.35 18
3Dnovator93.79 897.08 3797.20 3896.95 3899.09 2999.03 3998.20 4093.33 5497.99 1493.82 3390.61 9096.80 4997.82 3597.90 4498.78 399.47 2599.26 29
TSAR-MVS + GP.97.45 3198.36 1896.39 4395.56 8398.93 5097.74 4993.31 5597.61 2894.24 3198.44 899.19 1698.03 3397.60 5197.41 4999.44 3899.33 20
DELS-MVS96.06 5396.04 5996.07 5097.77 5699.25 2398.10 4293.26 5694.42 10392.79 4388.52 10793.48 7095.06 8998.51 1598.83 199.45 3099.28 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM96.78 4697.14 4296.36 4499.05 3099.14 3098.02 4393.26 5697.27 3790.84 6091.16 8297.31 4497.64 4097.70 4998.20 1999.33 5699.18 43
3Dnovator+93.91 797.23 3597.22 3797.24 3398.89 3698.85 5898.26 3993.25 5897.99 1495.56 2390.01 9698.03 4198.05 3297.91 4398.43 1099.44 3899.35 18
MVS_111021_HR97.04 3998.20 2695.69 5398.44 4699.29 1896.59 7493.20 5997.70 2289.94 7698.46 796.89 4796.71 6398.11 3797.95 2899.27 6799.01 68
COLMAP_ROBcopyleft90.49 1493.27 10392.71 11293.93 8697.75 5797.44 10296.07 8893.17 6095.40 8483.86 11483.76 13988.72 10093.87 10894.25 14594.11 14098.87 12395.28 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVS_030496.31 4996.91 4795.62 5497.21 6499.20 2698.55 3193.10 6197.04 4489.73 7890.30 9296.35 5395.71 7798.14 3497.93 3199.38 4999.40 14
PVSNet_BlendedMVS95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9593.10 6196.16 6193.12 3591.99 7185.27 12094.66 9498.09 3897.34 5299.24 7299.08 54
PVSNet_Blended95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9593.10 6196.16 6193.12 3591.99 7185.27 12094.66 9498.09 3897.34 5299.24 7299.08 54
OpenMVScopyleft92.33 1195.50 5595.22 7295.82 5298.98 3198.97 4697.67 5193.04 6494.64 9989.18 8884.44 13594.79 6496.79 6097.23 6097.61 4199.24 7298.88 83
EPNet_dtu92.45 11195.02 7789.46 14098.02 5395.47 16194.79 11492.62 6594.97 9470.11 18694.76 5192.61 7584.07 19695.94 10795.56 9997.15 18295.82 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres40093.56 9792.43 12294.87 7095.40 8598.91 5396.70 7192.38 6692.93 12488.19 9686.69 11677.35 16097.13 5196.75 7695.85 9299.42 4298.56 99
tfpn200view993.64 9492.57 11494.89 6895.33 8798.94 4896.82 6592.31 6792.63 12888.29 9287.21 11178.01 15797.12 5396.82 7195.85 9299.45 3098.56 99
thres600view793.49 9992.37 12594.79 7395.42 8498.93 5096.58 7592.31 6793.04 12287.88 9786.62 11776.94 16397.09 5496.82 7195.63 9799.45 3098.63 96
thres20093.62 9592.54 11594.88 6995.36 8698.93 5096.75 6992.31 6792.84 12588.28 9486.99 11377.81 15997.13 5196.82 7195.92 8899.45 3098.49 105
thres100view90093.55 9892.47 12194.81 7295.33 8798.74 6396.78 6892.30 7092.63 12888.29 9287.21 11178.01 15796.78 6196.38 9195.92 8899.38 4998.40 111
CLD-MVS94.79 7094.36 8695.30 6095.21 9397.46 10197.23 5692.24 7196.43 5491.77 5092.69 6584.31 12896.06 7295.52 11995.03 11399.31 6199.06 59
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMP92.88 994.43 8094.38 8594.50 7896.01 7897.69 9695.85 9892.09 7295.74 7789.12 8995.14 4682.62 14194.77 9095.73 11594.67 12299.14 9399.06 59
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PatchMatch-RL94.69 7494.41 8495.02 6497.63 5998.15 8894.50 12091.99 7395.32 8691.31 5395.47 4383.44 13596.02 7496.56 8395.23 10998.69 14196.67 164
baseline194.59 7694.47 8394.72 7495.16 9497.97 9396.07 8891.94 7494.86 9689.98 7491.60 7985.87 11795.64 7997.07 6696.90 6399.52 1497.06 156
Anonymous2023121193.49 9992.33 12694.84 7194.78 10598.00 9196.11 8691.85 7594.86 9690.91 5674.69 17289.18 9696.73 6294.82 13495.51 10198.67 14299.24 32
LGP-MVS_train94.12 8594.62 8093.53 9296.44 7297.54 9897.40 5591.84 7694.66 9881.09 12995.70 4183.36 13695.10 8896.36 9495.71 9699.32 5899.03 65
PVSNet_Blended_VisFu94.77 7295.54 6693.87 8796.48 7198.97 4694.33 12291.84 7694.93 9590.37 6885.04 13094.99 6390.87 15098.12 3697.30 5499.30 6399.45 13
Anonymous20240521192.18 12795.04 9898.20 8596.14 8591.79 7893.93 10974.60 17388.38 10496.48 6795.17 12995.82 9599.00 11199.15 47
casdiffmvs94.38 8394.15 9394.64 7794.70 10998.51 7796.03 9091.66 7995.70 7889.36 8586.48 11985.03 12596.60 6697.40 5697.30 5499.52 1498.67 94
diffmvs94.31 8494.21 8894.42 8094.64 11098.28 8196.36 8191.56 8096.77 4888.89 9188.97 10184.23 12996.01 7596.05 10596.41 7399.05 10998.79 91
RPSCF94.05 8694.00 9494.12 8496.20 7596.41 13096.61 7391.54 8195.83 7689.73 7896.94 3092.80 7395.35 8791.63 18490.44 18695.27 19893.94 189
UGNet94.92 6596.63 5092.93 10196.03 7798.63 7494.53 11991.52 8296.23 5990.03 7392.87 6496.10 5986.28 18296.68 7996.60 7099.16 9099.32 22
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EIA-MVS95.50 5596.19 5794.69 7594.83 10298.88 5795.93 9291.50 8394.47 10289.43 8293.14 6092.72 7497.05 5597.82 4897.13 5899.43 4199.15 47
ETV-MVS96.31 4997.47 3694.96 6794.79 10398.78 6196.08 8791.41 8496.16 6190.50 6495.76 4096.20 5797.39 4398.42 2197.82 3499.57 899.18 43
IB-MVS89.56 1591.71 11792.50 11790.79 12495.94 7998.44 7887.05 19491.38 8593.15 12192.98 4184.78 13185.14 12378.27 20192.47 17294.44 13599.10 9899.08 54
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FC-MVSNet-train93.85 9093.91 9593.78 8994.94 10096.79 11994.29 12391.13 8693.84 11388.26 9590.40 9185.23 12294.65 9696.54 8595.31 10699.38 4999.28 24
IS_MVSNet95.28 6296.43 5493.94 8595.30 8999.01 4395.90 9391.12 8794.13 10887.50 10091.23 8194.45 6694.17 10398.45 1898.50 799.65 299.23 33
Vis-MVSNet (Re-imp)94.46 7996.24 5692.40 10495.23 9298.64 7295.56 10190.99 8894.42 10385.02 11090.88 8894.65 6588.01 17298.17 3198.37 1699.57 898.53 102
thisisatest053094.54 7795.47 6793.46 9494.51 11298.65 7194.66 11690.72 8995.69 8086.90 10493.80 5589.44 9294.74 9196.98 7094.86 11899.19 8598.85 87
tttt051794.52 7895.44 6993.44 9594.51 11298.68 6894.61 11890.72 8995.61 8286.84 10593.78 5689.26 9594.74 9197.02 6994.86 11899.20 8498.87 85
EPP-MVSNet95.27 6396.18 5894.20 8394.88 10198.64 7294.97 10990.70 9195.34 8589.67 8091.66 7893.84 6795.42 8697.32 5897.00 6099.58 699.47 12
CS-MVS96.23 5297.15 4195.16 6195.01 9998.98 4497.13 5790.68 9296.00 6891.21 5494.03 5496.48 5197.35 4598.00 4197.43 4799.55 1199.15 47
DI_MVS_plusplus_trai94.01 8793.63 10294.44 7994.54 11198.26 8397.51 5390.63 9395.88 7389.34 8680.54 15489.36 9395.48 8596.33 9596.27 7799.17 8798.78 92
MVSTER94.89 6695.07 7694.68 7694.71 10796.68 12297.00 5990.57 9495.18 9293.05 3995.21 4586.41 11293.72 11297.59 5295.88 9199.00 11198.50 104
UniMVSNet_NR-MVSNet90.35 13689.96 14890.80 12389.66 17095.83 14992.48 14990.53 9590.96 15479.57 13479.33 15877.14 16193.21 12292.91 16694.50 13499.37 5299.05 62
TranMVSNet+NR-MVSNet89.23 15288.48 16190.11 13589.07 18695.25 17092.91 14290.43 9690.31 16077.10 14676.62 16571.57 18591.83 13492.12 17694.59 12799.32 5898.92 78
TDRefinement89.07 15588.15 16490.14 13395.16 9496.88 11295.55 10290.20 9789.68 16376.42 15176.67 16474.30 17384.85 19093.11 16291.91 18098.64 14794.47 181
tfpnnormal88.50 16087.01 18290.23 12991.36 15095.78 15292.74 14490.09 9883.65 20076.33 15271.46 19469.58 19591.84 13395.54 11894.02 14399.06 10599.03 65
UA-Net93.96 8895.95 6191.64 11296.06 7698.59 7695.29 10390.00 9991.06 15282.87 11890.64 8998.06 4086.06 18398.14 3498.20 1999.58 696.96 157
DU-MVS89.67 14688.84 15790.63 12689.26 18095.61 15592.48 14989.91 10091.22 15079.57 13477.72 16271.18 18793.21 12292.53 17094.57 12899.35 5599.05 62
NR-MVSNet89.34 14988.66 15890.13 13490.40 15995.61 15593.04 14189.91 10091.22 15078.96 13777.72 16268.90 19889.16 16894.24 14693.95 14499.32 5898.99 70
ET-MVSNet_ETH3D93.34 10194.33 8792.18 10783.26 20897.66 9796.72 7089.89 10295.62 8187.17 10296.00 3783.69 13496.99 5693.78 14995.34 10599.06 10598.18 122
canonicalmvs95.25 6495.45 6895.00 6595.27 9198.72 6696.89 6289.82 10396.51 5390.84 6093.72 5786.01 11597.66 3995.78 11397.94 2999.54 1399.50 10
MAR-MVS95.50 5595.60 6495.39 5998.67 4098.18 8795.89 9589.81 10494.55 10191.97 4992.99 6190.21 8897.30 4696.79 7497.49 4498.72 13898.99 70
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Baseline_NR-MVSNet89.27 15188.01 16790.73 12589.26 18093.71 19692.71 14689.78 10590.73 15581.28 12873.53 18272.85 17992.30 12992.53 17093.84 14999.07 10298.88 83
ACMH90.77 1391.51 12291.63 13591.38 11595.62 8296.87 11491.76 16789.66 10691.58 14778.67 13886.73 11578.12 15593.77 11194.59 13694.54 13198.78 13598.98 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)87.73 17386.79 18488.83 14690.76 15594.40 18991.33 17389.62 10784.73 19775.41 15972.73 18671.41 18686.80 17894.53 13893.93 14599.06 10595.83 170
PMMVS94.61 7595.56 6593.50 9394.30 11696.74 12094.91 11189.56 10895.58 8387.72 9896.15 3592.86 7296.06 7295.47 12195.02 11498.43 16097.09 152
DCV-MVSNet94.76 7395.12 7594.35 8195.10 9795.81 15096.46 7989.49 10996.33 5690.16 7092.55 6790.26 8795.83 7695.52 11996.03 8599.06 10599.33 20
ACMH+90.88 1291.41 12391.13 13991.74 11195.11 9696.95 11193.13 13989.48 11092.42 13479.93 13385.13 12978.02 15693.82 11093.49 15693.88 14698.94 11797.99 125
UniMVSNet (Re)90.03 14389.61 15190.51 12789.97 16796.12 13792.32 15389.26 11190.99 15380.95 13078.25 16175.08 17091.14 14293.78 14993.87 14799.41 4399.21 37
CVMVSNet89.77 14591.66 13487.56 17293.21 13595.45 16291.94 16689.22 11289.62 16569.34 19283.99 13885.90 11684.81 19194.30 14495.28 10796.85 18497.09 152
CDS-MVSNet92.77 10693.60 10391.80 11092.63 14196.80 11695.24 10589.14 11390.30 16184.58 11186.76 11490.65 8490.42 15895.89 10896.49 7198.79 13498.32 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_Test94.82 6895.66 6393.84 8894.79 10398.35 8096.49 7889.10 11496.12 6487.09 10392.58 6690.61 8596.48 6796.51 8996.89 6499.11 9798.54 101
UniMVSNet_ETH3D88.47 16186.00 19191.35 11691.55 14896.29 13392.53 14888.81 11585.58 19582.33 12167.63 20366.87 20494.04 10691.49 18595.24 10898.84 12698.92 78
GBi-Net93.81 9194.18 8993.38 9691.34 15195.86 14696.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 10096.52 8696.30 7499.21 8197.79 129
test193.81 9194.18 8993.38 9691.34 15195.86 14696.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 10096.52 8696.30 7499.21 8197.79 129
FMVSNet393.79 9394.17 9193.35 9891.21 15495.99 13996.62 7288.68 11695.23 8990.40 6586.39 12091.16 7994.11 10495.96 10696.67 6899.07 10297.79 129
baseline94.83 6795.82 6293.68 9094.75 10697.80 9496.51 7788.53 11997.02 4689.34 8692.93 6292.18 7694.69 9395.78 11396.08 8198.27 16398.97 76
CHOSEN 1792x268892.66 10892.49 11892.85 10297.13 6598.89 5695.90 9388.50 12095.32 8683.31 11771.99 19188.96 9994.10 10596.69 7896.49 7198.15 16599.10 51
test_part191.21 12489.47 15293.24 9994.26 11795.45 16295.26 10488.36 12188.49 17490.04 7272.61 18882.82 13893.69 11493.25 16094.62 12597.84 17399.06 59
Vis-MVSNetpermissive92.77 10695.00 7890.16 13194.10 12098.79 6094.76 11588.26 12292.37 13779.95 13288.19 10991.58 7884.38 19397.59 5297.58 4299.52 1498.91 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FMVSNet293.30 10293.36 10893.22 10091.34 15195.86 14696.22 8288.24 12395.15 9389.92 7781.64 14789.36 9394.40 10096.77 7596.98 6199.21 8197.79 129
v14887.51 17586.79 18488.36 15189.39 17795.21 17189.84 18588.20 12487.61 18377.56 14273.38 18470.32 19286.80 17890.70 18992.31 17698.37 16197.98 127
pm-mvs189.19 15389.02 15689.38 14290.40 15995.74 15392.05 16188.10 12586.13 19177.70 14173.72 18179.44 15188.97 16995.81 11294.51 13399.08 10097.78 134
pmmvs490.55 13389.91 14991.30 11790.26 16394.95 17792.73 14587.94 12693.44 11985.35 10982.28 14676.09 16593.02 12493.56 15492.26 17898.51 15496.77 162
v2v48288.25 16487.71 17488.88 14589.23 18495.28 16792.10 15987.89 12788.69 17273.31 17175.32 16871.64 18491.89 13292.10 17892.92 16498.86 12597.99 125
GA-MVS89.28 15090.75 14587.57 17191.77 14796.48 12792.29 15587.58 12890.61 15865.77 19784.48 13476.84 16489.46 16695.84 11093.68 15198.52 15397.34 147
baseline293.01 10494.17 9191.64 11292.83 13997.49 10093.40 13487.53 12993.67 11586.07 10691.83 7686.58 10991.36 13996.38 9195.06 11298.67 14298.20 121
thisisatest051590.12 14192.06 13087.85 16590.03 16596.17 13687.83 19187.45 13091.71 14677.15 14585.40 12884.01 13185.74 18595.41 12393.30 15898.88 12298.43 107
CANet_DTU93.92 8996.57 5190.83 12295.63 8198.39 7996.99 6087.38 13196.26 5771.97 17596.31 3493.02 7194.53 9797.38 5796.83 6698.49 15597.79 129
FC-MVSNet-test91.63 11893.82 9989.08 14492.02 14696.40 13193.26 13787.26 13293.72 11477.26 14488.61 10689.86 9085.50 18695.72 11795.02 11499.16 9097.44 143
V4288.31 16387.95 16988.73 14789.44 17595.34 16692.23 15787.21 13388.83 16974.49 16774.89 17173.43 17890.41 16092.08 17992.77 16998.60 15098.33 115
FMVSNet191.54 12190.93 14292.26 10690.35 16195.27 16995.22 10687.16 13491.37 14987.62 9975.45 16783.84 13294.43 9896.52 8696.30 7498.82 12797.74 135
test-LLR91.62 11993.56 10589.35 14393.31 13396.57 12592.02 16387.06 13592.34 13875.05 16490.20 9388.64 10190.93 14696.19 10294.07 14197.75 17696.90 160
test0.0.03 191.97 11393.91 9589.72 13693.31 13396.40 13191.34 17287.06 13593.86 11181.67 12591.15 8489.16 9786.02 18495.08 13095.09 11198.91 12096.64 166
USDC90.69 13090.52 14690.88 12194.17 11996.43 12995.82 9986.76 13793.92 11076.27 15386.49 11874.30 17393.67 11595.04 13293.36 15598.61 14894.13 185
WR-MVS87.93 16888.09 16587.75 16689.26 18095.28 16790.81 17886.69 13888.90 16875.29 16074.31 17773.72 17685.19 18992.26 17393.32 15799.27 6798.81 90
pmnet_mix0286.12 18787.12 18184.96 19089.82 16894.12 19384.88 20086.63 13991.78 14565.60 19880.76 15276.98 16286.61 18087.29 20284.80 20596.21 18694.09 186
HyFIR lowres test92.03 11291.55 13692.58 10397.13 6598.72 6694.65 11786.54 14093.58 11782.56 12067.75 20290.47 8695.67 7895.87 10995.54 10098.91 12098.93 77
TinyColmap89.42 14788.58 15990.40 12893.80 12795.45 16293.96 12786.54 14092.24 14076.49 15080.83 15170.44 19093.37 11894.45 14093.30 15898.26 16493.37 196
PEN-MVS87.22 18086.50 18988.07 15688.88 18994.44 18890.99 17786.21 14286.53 18973.66 17074.97 17066.56 20889.42 16791.20 18793.48 15499.24 7298.31 118
N_pmnet84.80 19185.10 19584.45 19189.25 18392.86 19984.04 20186.21 14288.78 17066.73 19672.41 19074.87 17285.21 18888.32 19886.45 20095.30 19792.04 199
IterMVS-LS92.56 10993.18 10991.84 10993.90 12394.97 17694.99 10886.20 14494.18 10782.68 11985.81 12687.36 10894.43 9895.31 12596.02 8698.87 12398.60 98
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS90.54 13490.87 14490.16 13191.48 14996.61 12493.26 13786.08 14587.71 18181.66 12683.11 14384.04 13090.42 15894.54 13794.60 12698.04 17095.48 176
DTE-MVSNet86.67 18386.09 19087.35 17588.45 19594.08 19490.65 17986.05 14686.13 19172.19 17474.58 17566.77 20687.61 17590.31 19093.12 16099.13 9497.62 139
Effi-MVS+92.93 10593.86 9791.86 10894.07 12198.09 9095.59 10085.98 14794.27 10679.54 13691.12 8581.81 14496.71 6396.67 8096.06 8399.27 6798.98 72
MDA-MVSNet-bldmvs80.11 19980.24 20279.94 19977.01 21193.21 19778.86 20985.94 14882.71 20460.86 20679.71 15751.77 21783.71 19775.60 20986.37 20193.28 20792.35 197
CP-MVSNet87.89 17187.27 17788.62 14889.30 17895.06 17390.60 18085.78 14987.43 18575.98 15474.60 17368.14 20190.76 15193.07 16493.60 15299.30 6398.98 72
PS-CasMVS87.33 17886.68 18788.10 15589.22 18594.93 17890.35 18385.70 15086.44 19074.01 16973.43 18366.59 20790.04 16292.92 16593.52 15399.28 6598.91 81
v114487.92 17087.79 17288.07 15689.27 17995.15 17292.17 15885.62 15188.52 17371.52 17773.80 18072.40 18291.06 14493.54 15592.80 16798.81 13098.33 115
GeoE92.52 11092.64 11392.39 10593.96 12297.76 9596.01 9185.60 15293.23 12083.94 11381.56 14884.80 12695.63 8096.22 9995.83 9499.19 8599.07 58
WR-MVS_H87.93 16887.85 17188.03 16189.62 17195.58 15990.47 18185.55 15387.20 18676.83 14874.42 17672.67 18186.37 18193.22 16193.04 16199.33 5698.83 89
CMPMVSbinary65.18 1784.76 19283.10 19886.69 18195.29 9095.05 17488.37 18985.51 15480.27 20771.31 17968.37 20073.85 17585.25 18787.72 19987.75 19694.38 20688.70 206
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CHOSEN 280x42095.46 5897.01 4393.66 9197.28 6397.98 9296.40 8085.39 15596.10 6591.07 5596.53 3396.34 5595.61 8197.65 5096.95 6296.21 18697.49 141
EU-MVSNet85.62 18987.65 17583.24 19588.54 19492.77 20087.12 19385.32 15686.71 18764.54 20078.52 16075.11 16978.35 20092.25 17492.28 17795.58 19495.93 169
SixPastTwentyTwo88.37 16289.47 15287.08 17790.01 16695.93 14587.41 19285.32 15690.26 16270.26 18486.34 12371.95 18390.93 14692.89 16791.72 18198.55 15197.22 149
pmmvs685.98 18884.89 19687.25 17688.83 19194.35 19089.36 18785.30 15878.51 20975.44 15862.71 20875.41 16787.65 17493.58 15392.40 17596.89 18397.29 148
testgi89.42 14791.50 13787.00 17992.40 14495.59 15789.15 18885.27 15992.78 12672.42 17391.75 7776.00 16684.09 19594.38 14293.82 15098.65 14696.15 167
v119287.51 17587.31 17687.74 16789.04 18794.87 18192.07 16085.03 16088.49 17470.32 18372.65 18770.35 19191.21 14193.59 15192.80 16798.78 13598.42 109
v888.21 16587.94 17088.51 14989.62 17195.01 17592.31 15484.99 16188.94 16774.70 16675.03 16973.51 17790.67 15492.11 17792.74 17098.80 13298.24 119
Effi-MVS+-dtu91.78 11693.59 10489.68 13992.44 14397.11 10994.40 12184.94 16292.43 13375.48 15791.09 8683.75 13393.55 11696.61 8195.47 10297.24 18198.67 94
LTVRE_ROB87.32 1687.55 17488.25 16386.73 18090.66 15695.80 15193.05 14084.77 16383.35 20160.32 20983.12 14267.39 20293.32 11994.36 14394.86 11898.28 16298.87 85
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs587.83 17288.09 16587.51 17489.59 17395.48 16089.75 18684.73 16486.07 19371.44 17880.57 15370.09 19390.74 15394.47 13992.87 16698.82 12797.10 151
v14419287.40 17787.20 17987.64 16888.89 18894.88 18091.65 16884.70 16587.80 18071.17 18173.20 18570.91 18890.75 15292.69 16892.49 17398.71 13998.43 107
Fast-Effi-MVS+91.87 11492.08 12991.62 11492.91 13797.21 10894.93 11084.60 16693.61 11681.49 12783.50 14078.95 15296.62 6596.55 8496.22 7999.16 9098.51 103
v192192087.31 17987.13 18087.52 17388.87 19094.72 18291.96 16584.59 16788.28 17669.86 18972.50 18970.03 19491.10 14393.33 15892.61 17298.71 13998.44 106
MS-PatchMatch91.82 11592.51 11691.02 11895.83 8096.88 11295.05 10784.55 16893.85 11282.01 12282.51 14591.71 7790.52 15795.07 13193.03 16298.13 16694.52 180
v124086.89 18186.75 18687.06 17888.75 19294.65 18591.30 17484.05 16987.49 18468.94 19371.96 19268.86 19990.65 15593.33 15892.72 17198.67 14298.24 119
pmmvs-eth3d84.33 19482.94 19985.96 18884.16 20590.94 20486.55 19583.79 17084.25 19875.85 15670.64 19656.43 21487.44 17792.20 17590.41 18797.97 17195.68 173
Anonymous2023120683.84 19585.19 19482.26 19687.38 20092.87 19885.49 19883.65 17186.07 19363.44 20468.42 19969.01 19775.45 20493.34 15792.44 17498.12 16894.20 184
FMVSNet590.36 13590.93 14289.70 13787.99 19692.25 20192.03 16283.51 17292.20 14184.13 11285.59 12786.48 11092.43 12794.61 13594.52 13298.13 16690.85 202
v1088.00 16687.96 16888.05 15989.44 17594.68 18392.36 15283.35 17389.37 16672.96 17273.98 17972.79 18091.35 14093.59 15192.88 16598.81 13098.42 109
v7n86.43 18486.52 18886.33 18487.91 19794.93 17890.15 18483.05 17486.57 18870.21 18571.48 19366.78 20587.72 17394.19 14892.96 16398.92 11998.76 93
test20.0382.92 19785.52 19279.90 20087.75 19891.84 20282.80 20482.99 17582.65 20560.32 20978.90 15970.50 18967.10 20892.05 18090.89 18398.44 15891.80 200
anonymousdsp88.90 15791.00 14186.44 18388.74 19395.97 14190.40 18282.86 17688.77 17167.33 19581.18 15081.44 14690.22 16196.23 9894.27 13899.12 9699.16 46
TESTMET0.1,191.07 12693.56 10588.17 15490.43 15896.57 12592.02 16382.83 17792.34 13875.05 16490.20 9388.64 10190.93 14696.19 10294.07 14197.75 17696.90 160
test-mter90.95 12793.54 10787.93 16490.28 16296.80 11691.44 16982.68 17892.15 14274.37 16889.57 9988.23 10690.88 14996.37 9394.31 13797.93 17297.37 145
MIMVSNet180.03 20080.93 20178.97 20172.46 21490.73 20580.81 20782.44 17980.39 20663.64 20257.57 20964.93 20976.37 20291.66 18391.55 18298.07 16989.70 204
PM-MVS84.72 19384.47 19785.03 18984.67 20491.57 20386.27 19682.31 18087.65 18270.62 18276.54 16656.41 21588.75 17192.59 16989.85 19097.54 17996.66 165
EG-PatchMatch MVS86.68 18287.24 17886.02 18790.58 15796.26 13491.08 17681.59 18184.96 19669.80 19071.35 19575.08 17084.23 19494.24 14693.35 15698.82 12795.46 177
IterMVS90.20 13892.43 12287.61 17092.82 14094.31 19194.11 12481.54 18292.97 12369.90 18884.71 13288.16 10789.96 16495.25 12694.17 13997.31 18097.46 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+-dtu91.19 12593.64 10188.33 15292.19 14596.46 12893.99 12681.52 18392.59 13071.82 17692.17 7085.54 11891.68 13695.73 11594.64 12498.80 13298.34 114
IterMVS-SCA-FT90.24 13792.48 12087.63 16992.85 13894.30 19293.79 12881.47 18492.66 12769.95 18784.66 13388.38 10489.99 16395.39 12494.34 13697.74 17897.63 138
MDTV_nov1_ep1391.57 12093.18 10989.70 13793.39 13196.97 11093.53 13180.91 18595.70 7881.86 12392.40 6889.93 8993.25 12191.97 18190.80 18495.25 19994.46 182
new-patchmatchnet78.49 20278.19 20578.84 20284.13 20690.06 20677.11 21180.39 18679.57 20859.64 21266.01 20455.65 21675.62 20384.55 20580.70 20796.14 18890.77 203
FPMVS75.84 20374.59 20677.29 20486.92 20183.89 21285.01 19980.05 18782.91 20360.61 20865.25 20560.41 21163.86 20975.60 20973.60 21187.29 21380.47 210
new_pmnet81.53 19882.68 20080.20 19883.47 20789.47 20882.21 20678.36 18887.86 17960.14 21167.90 20169.43 19682.03 19889.22 19687.47 19894.99 20187.39 207
gm-plane-assit83.26 19685.29 19380.89 19789.52 17489.89 20770.26 21378.24 18977.11 21058.01 21374.16 17866.90 20390.63 15697.20 6196.05 8498.66 14595.68 173
CostFormer90.69 13090.48 14790.93 12094.18 11896.08 13894.03 12578.20 19093.47 11889.96 7590.97 8780.30 14893.72 11287.66 20188.75 19395.51 19596.12 168
tpm cat188.90 15787.78 17390.22 13093.88 12595.39 16593.79 12878.11 19192.55 13189.43 8281.31 14979.84 15091.40 13884.95 20486.34 20294.68 20594.09 186
dps90.11 14289.37 15590.98 11993.89 12496.21 13593.49 13277.61 19291.95 14392.74 4588.85 10278.77 15492.37 12887.71 20087.71 19795.80 19194.38 183
PMVScopyleft63.12 1867.27 20666.39 20968.30 20677.98 21060.24 21759.53 21776.82 19366.65 21360.74 20754.39 21059.82 21251.24 21273.92 21270.52 21283.48 21479.17 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EPMVS90.88 12992.12 12889.44 14194.71 10797.24 10693.55 13076.81 19495.89 7281.77 12491.49 8086.47 11193.87 10890.21 19190.07 18895.92 18993.49 195
MDTV_nov1_ep13_2view86.30 18588.27 16284.01 19287.71 19994.67 18488.08 19076.78 19590.59 15968.66 19480.46 15580.12 14987.58 17689.95 19488.20 19595.25 19993.90 191
PatchmatchNetpermissive90.56 13292.49 11888.31 15393.83 12696.86 11592.42 15176.50 19695.96 7078.31 13991.96 7389.66 9193.48 11790.04 19389.20 19295.32 19693.73 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst88.86 15989.62 15087.97 16394.33 11595.98 14092.62 14776.36 19794.62 10076.94 14785.98 12582.80 14092.80 12586.90 20387.15 19994.77 20393.93 190
tpm87.95 16789.44 15486.21 18592.53 14294.62 18691.40 17076.36 19791.46 14869.80 19087.43 11075.14 16891.55 13789.85 19590.60 18595.61 19396.96 157
SCA90.92 12893.04 11188.45 15093.72 12897.33 10592.77 14376.08 19996.02 6778.26 14091.96 7390.86 8293.99 10790.98 18890.04 18995.88 19094.06 188
CR-MVSNet90.16 14091.96 13288.06 15893.32 13295.95 14393.36 13575.99 20092.40 13575.19 16183.18 14185.37 11992.05 13095.21 12794.56 12998.47 15797.08 154
Patchmtry95.96 14293.36 13575.99 20075.19 161
MIMVSNet88.99 15691.07 14086.57 18286.78 20295.62 15491.20 17575.40 20290.65 15776.57 14984.05 13782.44 14291.01 14595.84 11095.38 10498.48 15693.50 194
PatchT89.13 15491.71 13386.11 18692.92 13695.59 15783.64 20275.09 20391.87 14475.19 16182.63 14485.06 12492.05 13095.21 12794.56 12997.76 17597.08 154
ADS-MVSNet89.80 14491.33 13888.00 16294.43 11496.71 12192.29 15574.95 20496.07 6677.39 14388.67 10586.09 11493.26 12088.44 19789.57 19195.68 19293.81 192
RPMNet90.19 13992.03 13188.05 15993.46 12995.95 14393.41 13374.59 20592.40 13575.91 15584.22 13686.41 11292.49 12694.42 14193.85 14898.44 15896.96 157
pmmvs379.16 20180.12 20378.05 20379.36 20986.59 21078.13 21073.87 20676.42 21157.51 21470.59 19757.02 21384.66 19290.10 19288.32 19494.75 20491.77 201
MVS-HIRNet85.36 19086.89 18383.57 19390.13 16494.51 18783.57 20372.61 20788.27 17771.22 18068.97 19881.81 14488.91 17093.08 16391.94 17994.97 20289.64 205
gg-mvs-nofinetune86.17 18688.57 16083.36 19493.44 13098.15 8896.58 7572.05 20874.12 21249.23 21664.81 20690.85 8389.90 16597.83 4696.84 6598.97 11497.41 144
Gipumacopyleft68.35 20566.71 20870.27 20574.16 21368.78 21563.93 21671.77 20983.34 20254.57 21534.37 21331.88 21968.69 20783.30 20685.53 20388.48 21179.78 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft86.86 20979.50 20870.43 21090.73 15563.66 20180.36 15660.83 21079.68 19976.23 20889.46 21086.53 208
E-PMN50.67 20947.85 21253.96 21064.13 21750.98 22038.06 21869.51 21151.40 21624.60 21929.46 21624.39 22156.07 21148.17 21459.70 21371.40 21670.84 214
EMVS49.98 21046.76 21353.74 21164.96 21651.29 21937.81 21969.35 21251.83 21522.69 22029.57 21525.06 22057.28 21044.81 21556.11 21470.32 21768.64 215
PMMVS264.36 20865.94 21062.52 20967.37 21577.44 21364.39 21569.32 21361.47 21434.59 21746.09 21241.03 21848.02 21574.56 21178.23 20891.43 20982.76 209
MVEpermissive50.86 1949.54 21151.43 21147.33 21244.14 21959.20 21836.45 22060.59 21441.47 21731.14 21829.58 21417.06 22348.52 21462.22 21374.63 21063.12 21875.87 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method72.96 20478.68 20466.28 20850.17 21864.90 21675.45 21250.90 21587.89 17862.54 20562.98 20768.34 20070.45 20691.90 18282.41 20688.19 21292.35 197
tmp_tt66.88 20786.07 20373.86 21468.22 21433.38 21696.88 4780.67 13188.23 10878.82 15349.78 21382.68 20777.47 20983.19 215
testmvs12.09 21216.94 2146.42 2143.15 2206.08 2219.51 2223.84 21721.46 2185.31 22127.49 2176.76 22410.89 21617.06 21615.01 2155.84 21924.75 216
test1239.58 21313.53 2154.97 2151.31 2225.47 2228.32 2232.95 21818.14 2192.03 22320.82 2182.34 22510.60 21710.00 21714.16 2164.60 22023.77 217
GG-mvs-BLEND66.17 20794.91 7932.63 2131.32 22196.64 12391.40 1700.85 21994.39 1052.20 22290.15 9595.70 612.27 21896.39 9095.44 10397.78 17495.68 173
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def63.50 203
9.1499.28 11
our_test_389.78 16993.84 19585.59 197
ambc73.83 20776.23 21285.13 21182.27 20584.16 19965.58 19952.82 21123.31 22273.55 20591.41 18685.26 20492.97 20894.70 179
MTAPA96.83 1099.12 20
MTMP97.18 598.83 26
Patchmatch-RL test34.61 221
XVS96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
X-MVStestdata96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
mPP-MVS99.21 2498.29 38
NP-MVS95.32 86