This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
TSAR-MVS + MP.98.49 998.78 898.15 2198.14 5299.17 3299.34 697.18 3198.44 595.72 2197.84 1799.28 1298.87 799.05 198.05 2799.66 199.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DVP-MVS++98.92 199.18 198.61 499.47 699.61 299.39 397.82 198.80 196.86 998.90 299.92 198.67 1899.02 298.20 1999.43 4699.82 1
SED-MVS98.90 299.07 298.69 399.38 2099.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1899.02 298.26 1799.36 6099.61 6
DVP-MVScopyleft98.86 498.97 398.75 299.43 1499.63 199.25 1397.81 298.62 297.69 197.59 2199.90 298.93 598.99 498.42 1199.37 5899.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP98.38 1598.71 1097.99 2599.34 2299.46 899.34 697.33 2697.31 3694.25 3298.06 1499.17 1998.13 3298.98 598.46 999.55 1799.54 11
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVS98.87 398.96 498.77 199.58 299.53 699.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 399.57 9
DeepPCF-MVS95.28 297.00 4198.35 2195.42 6197.30 6398.94 5194.82 11996.03 4098.24 992.11 5195.80 4198.64 3395.51 8798.95 798.66 596.78 19199.20 42
SMA-MVScopyleft98.66 798.89 798.39 1099.60 199.41 1099.00 2197.63 1397.78 1895.83 2098.33 1199.83 498.85 1098.93 898.56 699.41 4999.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS98.47 1198.46 1698.48 899.40 1699.05 3699.02 2097.54 1897.73 1996.65 1397.20 3099.13 2098.85 1098.91 998.10 2499.41 4999.08 57
DPE-MVScopyleft98.75 598.91 698.57 599.21 2599.54 599.42 297.78 697.49 3296.84 1098.94 199.82 598.59 2298.90 1098.22 1899.56 1599.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DeepC-MVS_fast96.13 198.13 2198.27 2697.97 2699.16 2899.03 4399.05 1997.24 2898.22 1094.17 3495.82 4098.07 4098.69 1798.83 1198.80 299.52 1999.10 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP98.20 1998.49 1397.85 2799.50 499.40 1199.26 1297.64 1297.47 3492.62 4897.59 2199.09 2298.71 1698.82 1297.86 3999.40 5299.19 43
zzz-MVS98.43 1298.31 2498.57 599.48 599.40 1199.32 997.62 1497.70 2396.67 1296.59 3399.09 2298.86 898.65 1397.56 5099.45 3599.17 49
MSP-MVS98.73 698.93 598.50 799.44 1399.57 499.36 497.65 998.14 1296.51 1698.49 799.65 898.67 1898.60 1498.42 1199.40 5299.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + ACMM97.71 2998.60 1296.66 4298.64 4299.05 3698.85 2697.23 2998.45 489.40 8997.51 2599.27 1496.88 6298.53 1597.81 4198.96 12199.59 8
DELS-MVS96.06 5696.04 6296.07 5197.77 5799.25 2798.10 4393.26 5794.42 10992.79 4588.52 11193.48 7395.06 9498.51 1698.83 199.45 3599.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
NCCC98.10 2298.05 3198.17 2099.38 2099.05 3699.00 2197.53 1998.04 1495.12 2694.80 5399.18 1898.58 2398.49 1797.78 4299.39 5498.98 75
APD-MVScopyleft98.36 1698.32 2398.41 999.47 699.26 2599.12 1697.77 796.73 5296.12 1897.27 2998.88 2598.46 2698.47 1898.39 1499.52 1999.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.34 1798.47 1598.18 1899.46 999.15 3399.10 1797.69 897.67 2694.93 2897.62 2099.70 798.60 2198.45 1997.46 5399.31 6799.26 33
IS_MVSNet95.28 6596.43 5793.94 9195.30 9399.01 4795.90 9991.12 9194.13 11487.50 10691.23 8594.45 6994.17 10998.45 1998.50 799.65 299.23 37
MP-MVScopyleft98.09 2398.30 2597.84 2899.34 2299.19 3199.23 1497.40 2197.09 4393.03 4297.58 2398.85 2698.57 2498.44 2197.69 4499.48 2799.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS96.14 5597.39 3994.68 8194.63 11598.89 5996.46 8490.44 9996.88 4888.52 9793.58 6096.27 5898.41 2798.43 2298.14 2399.63 399.52 12
ETV-MVS96.31 5197.47 3894.96 7194.79 10698.78 6596.08 9391.41 8896.16 6590.50 6895.76 4296.20 5997.39 4798.42 2397.82 4099.57 1399.18 47
CS-MVS-test96.19 5497.34 4094.85 7594.52 11798.20 9097.39 5788.97 11996.83 5090.45 6995.29 4795.41 6598.21 2898.41 2497.73 4399.56 1599.47 15
X-MVS97.84 2598.19 2897.42 3299.40 1699.35 1699.06 1897.25 2797.38 3590.85 6196.06 3798.72 3098.53 2598.41 2498.15 2299.46 3199.28 28
DROMVSNet96.49 4997.63 3495.16 6594.75 10998.69 7297.39 5788.97 11996.34 5992.02 5296.04 3896.46 5298.21 2898.41 2497.96 3399.61 599.55 10
MCST-MVS98.20 1998.36 1998.01 2499.40 1699.05 3699.00 2197.62 1497.59 3093.70 3697.42 2899.30 1198.77 1498.39 2797.48 5299.59 699.31 27
DeepC-MVS94.87 496.76 4896.50 5597.05 3798.21 5099.28 2398.67 2897.38 2297.31 3690.36 7489.19 10493.58 7298.19 3198.31 2898.50 799.51 2499.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test250694.32 8793.00 11595.87 5296.16 7799.39 1496.96 6392.80 6795.22 9594.47 2991.55 8370.45 19595.25 9198.29 2997.98 3099.59 698.10 128
ECVR-MVScopyleft94.14 8992.96 11695.52 5996.16 7799.39 1496.96 6392.80 6795.22 9592.38 4981.48 15380.31 15195.25 9198.29 2997.98 3099.59 698.05 129
CP-MVS98.32 1898.34 2298.29 1499.34 2299.30 2199.15 1597.35 2397.49 3295.58 2397.72 1998.62 3498.82 1298.29 2997.67 4599.51 2499.28 28
test111193.94 9492.78 11795.29 6496.14 7999.42 996.79 7292.85 6695.08 9991.39 5780.69 15879.86 15495.00 9598.28 3298.00 2999.58 1098.11 127
SD-MVS98.52 898.77 998.23 1798.15 5199.26 2598.79 2797.59 1798.52 396.25 1797.99 1699.75 699.01 398.27 3397.97 3299.59 699.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HFP-MVS98.48 1098.62 1198.32 1399.39 1999.33 2099.27 1197.42 2098.27 795.25 2598.34 1098.83 2799.08 198.26 3498.08 2699.48 2799.26 33
ACMMPR98.40 1398.49 1398.28 1599.41 1599.40 1199.36 497.35 2398.30 695.02 2797.79 1898.39 3899.04 298.26 3498.10 2499.50 2699.22 39
CANet96.84 4597.20 4296.42 4397.92 5599.24 2998.60 3093.51 5497.11 4293.07 3991.16 8697.24 4696.21 7498.24 3698.05 2799.22 8499.35 22
PGM-MVS97.81 2698.11 2997.46 3199.55 399.34 1999.32 994.51 4796.21 6493.07 3998.05 1597.95 4398.82 1298.22 3797.89 3899.48 2799.09 56
Vis-MVSNet (Re-imp)94.46 8296.24 5992.40 11095.23 9698.64 7795.56 10790.99 9294.42 10985.02 11690.88 9294.65 6888.01 17898.17 3898.37 1699.57 1398.53 105
xxxxxxxxxxxxxcwj97.07 3995.99 6398.33 1199.45 1099.05 3698.27 3897.65 997.73 1997.02 798.18 1281.99 14698.11 3398.15 3997.62 4699.45 3599.19 43
SF-MVS98.39 1498.45 1798.33 1199.45 1099.05 3698.27 3897.65 997.73 1997.02 798.18 1299.25 1598.11 3398.15 3997.62 4699.45 3599.19 43
MVS_030496.31 5196.91 5095.62 5697.21 6599.20 3098.55 3293.10 6297.04 4589.73 8390.30 9696.35 5495.71 8098.14 4197.93 3799.38 5599.40 18
UA-Net93.96 9395.95 6491.64 11896.06 8098.59 8195.29 10990.00 10391.06 15882.87 12490.64 9398.06 4186.06 18998.14 4198.20 1999.58 1096.96 163
PVSNet_Blended_VisFu94.77 7595.54 6993.87 9396.48 7298.97 4994.33 12891.84 8094.93 10190.37 7385.04 13494.99 6690.87 15698.12 4397.30 6099.30 6999.45 17
MVS_111021_HR97.04 4098.20 2795.69 5598.44 4799.29 2296.59 7993.20 6097.70 2389.94 8198.46 896.89 4896.71 6698.11 4497.95 3499.27 7399.01 71
PVSNet_BlendedMVS95.41 6395.28 7395.57 5797.42 6199.02 4595.89 10193.10 6296.16 6593.12 3791.99 7485.27 12394.66 10098.09 4597.34 5899.24 7899.08 57
PVSNet_Blended95.41 6395.28 7395.57 5797.42 6199.02 4595.89 10193.10 6296.16 6593.12 3791.99 7485.27 12394.66 10098.09 4597.34 5899.24 7899.08 57
MVS_111021_LR97.16 3798.01 3296.16 4898.47 4598.98 4896.94 6593.89 5097.64 2891.44 5598.89 396.41 5397.20 5298.02 4797.29 6299.04 11698.85 90
train_agg97.65 3098.06 3097.18 3598.94 3498.91 5698.98 2597.07 3396.71 5390.66 6697.43 2799.08 2498.20 3097.96 4897.14 6399.22 8499.19 43
3Dnovator+93.91 797.23 3697.22 4197.24 3498.89 3798.85 6298.26 4093.25 5997.99 1595.56 2490.01 10098.03 4298.05 3697.91 4998.43 1099.44 4399.35 22
3Dnovator93.79 897.08 3897.20 4296.95 3999.09 3099.03 4398.20 4193.33 5597.99 1593.82 3590.61 9496.80 5097.82 3997.90 5098.78 399.47 3099.26 33
PHI-MVS97.78 2798.44 1897.02 3898.73 3999.25 2798.11 4295.54 4196.66 5592.79 4598.52 699.38 997.50 4697.84 5198.39 1499.45 3599.03 68
gg-mvs-nofinetune86.17 19288.57 16683.36 20093.44 13698.15 9496.58 8072.05 21474.12 21849.23 22264.81 21290.85 8689.90 17197.83 5296.84 7198.97 12097.41 150
CDPH-MVS96.84 4597.49 3696.09 4998.92 3598.85 6298.61 2995.09 4396.00 7287.29 10795.45 4697.42 4497.16 5397.83 5297.94 3599.44 4398.92 81
EIA-MVS95.50 5896.19 6094.69 8094.83 10598.88 6195.93 9891.50 8794.47 10889.43 8793.14 6392.72 7797.05 5897.82 5497.13 6499.43 4699.15 51
QAPM96.78 4797.14 4596.36 4599.05 3199.14 3498.02 4493.26 5797.27 3890.84 6491.16 8697.31 4597.64 4497.70 5598.20 1999.33 6299.18 47
CHOSEN 280x42095.46 6197.01 4693.66 9797.28 6497.98 9896.40 8685.39 16196.10 6991.07 5996.53 3496.34 5695.61 8497.65 5696.95 6896.21 19297.49 147
TSAR-MVS + GP.97.45 3298.36 1996.39 4495.56 8798.93 5397.74 5093.31 5697.61 2994.24 3398.44 999.19 1798.03 3797.60 5797.41 5599.44 4399.33 24
MVSTER94.89 6995.07 7994.68 8194.71 11196.68 12897.00 6190.57 9795.18 9793.05 4195.21 4886.41 11593.72 11897.59 5895.88 9799.00 11798.50 107
Vis-MVSNetpermissive92.77 11295.00 8190.16 13794.10 12698.79 6494.76 12188.26 12892.37 14379.95 13888.19 11391.58 8184.38 19997.59 5897.58 4999.52 1998.91 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LS3D95.46 6195.14 7695.84 5397.91 5698.90 5898.58 3197.79 597.07 4483.65 12288.71 10788.64 10497.82 3997.49 6097.42 5499.26 7797.72 142
MSLP-MVS++98.04 2497.93 3398.18 1899.10 2999.09 3598.34 3796.99 3497.54 3196.60 1494.82 5298.45 3698.89 697.46 6198.77 499.17 9399.37 20
casdiffmvs94.38 8694.15 9694.64 8394.70 11398.51 8296.03 9691.66 8395.70 8189.36 9086.48 12385.03 12896.60 6997.40 6297.30 6099.52 1998.67 97
CANet_DTU93.92 9596.57 5490.83 12895.63 8598.39 8496.99 6287.38 13796.26 6171.97 18196.31 3593.02 7494.53 10397.38 6396.83 7298.49 16197.79 135
EPP-MVSNet95.27 6696.18 6194.20 8994.88 10498.64 7794.97 11590.70 9595.34 8889.67 8591.66 8193.84 7095.42 8997.32 6497.00 6699.58 1099.47 15
ACMMPcopyleft97.37 3497.48 3797.25 3398.88 3899.28 2398.47 3596.86 3697.04 4592.15 5097.57 2496.05 6297.67 4297.27 6595.99 9399.46 3199.14 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OpenMVScopyleft92.33 1195.50 5895.22 7595.82 5498.98 3298.97 4997.67 5293.04 6594.64 10589.18 9384.44 13994.79 6796.79 6397.23 6697.61 4899.24 7898.88 86
gm-plane-assit83.26 20285.29 19980.89 20389.52 18089.89 21370.26 21978.24 19577.11 21658.01 21974.16 18466.90 20990.63 16297.20 6796.05 9098.66 15195.68 179
CPTT-MVS97.78 2797.54 3598.05 2398.91 3699.05 3699.00 2196.96 3597.14 4195.92 1995.50 4498.78 2998.99 497.20 6796.07 8898.54 15899.04 67
AdaColmapbinary97.53 3196.93 4898.24 1699.21 2598.77 6698.47 3597.34 2596.68 5496.52 1595.11 5096.12 6098.72 1597.19 6996.24 8499.17 9398.39 115
OMC-MVS97.00 4196.92 4997.09 3698.69 4098.66 7497.85 4895.02 4498.09 1394.47 2993.15 6296.90 4797.38 4897.16 7096.82 7399.13 10097.65 143
PLCcopyleft94.95 397.37 3496.77 5298.07 2298.97 3398.21 8997.94 4796.85 3797.66 2797.58 393.33 6196.84 4998.01 3897.13 7196.20 8699.09 10598.01 130
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS96.86 4496.82 5196.91 4098.08 5398.20 9098.52 3497.20 3097.24 3991.42 5691.84 7898.45 3697.25 5097.07 7297.40 5698.95 12297.55 146
baseline194.59 7994.47 8694.72 7995.16 9897.97 9996.07 9491.94 7894.86 10289.98 7991.60 8285.87 12095.64 8297.07 7296.90 6999.52 1997.06 162
EPNet96.27 5396.97 4795.46 6098.47 4598.28 8697.41 5593.67 5295.86 7792.86 4497.51 2593.79 7191.76 14197.03 7497.03 6598.61 15499.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tttt051794.52 8195.44 7293.44 10194.51 11898.68 7394.61 12490.72 9395.61 8586.84 11193.78 5889.26 9894.74 9797.02 7594.86 12499.20 9098.87 88
thisisatest053094.54 8095.47 7093.46 10094.51 11898.65 7694.66 12290.72 9395.69 8386.90 11093.80 5789.44 9594.74 9796.98 7694.86 12499.19 9198.85 90
tfpn200view993.64 10092.57 12094.89 7295.33 9198.94 5196.82 6992.31 7192.63 13488.29 9887.21 11578.01 16297.12 5696.82 7795.85 9899.45 3598.56 102
thres600view793.49 10592.37 13194.79 7895.42 8898.93 5396.58 8092.31 7193.04 12887.88 10386.62 12176.94 16897.09 5796.82 7795.63 10399.45 3598.63 99
thres20093.62 10192.54 12194.88 7395.36 9098.93 5396.75 7492.31 7192.84 13188.28 10086.99 11777.81 16497.13 5496.82 7795.92 9499.45 3598.49 108
MAR-MVS95.50 5895.60 6795.39 6298.67 4198.18 9395.89 10189.81 10894.55 10791.97 5392.99 6490.21 9197.30 4996.79 8097.49 5198.72 14498.99 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FMVSNet293.30 10893.36 11193.22 10691.34 15795.86 15296.22 8888.24 12995.15 9889.92 8281.64 15189.36 9694.40 10696.77 8196.98 6799.21 8797.79 135
thres40093.56 10392.43 12894.87 7495.40 8998.91 5696.70 7692.38 7092.93 13088.19 10286.69 12077.35 16597.13 5496.75 8295.85 9899.42 4898.56 102
CNLPA96.90 4396.28 5897.64 3098.56 4498.63 7996.85 6896.60 3897.73 1997.08 689.78 10296.28 5797.80 4196.73 8396.63 7598.94 12398.14 126
CHOSEN 1792x268892.66 11492.49 12492.85 10897.13 6698.89 5995.90 9988.50 12695.32 8983.31 12371.99 19788.96 10294.10 11196.69 8496.49 7798.15 17199.10 54
UGNet94.92 6896.63 5392.93 10796.03 8198.63 7994.53 12591.52 8696.23 6390.03 7892.87 6796.10 6186.28 18896.68 8596.60 7699.16 9699.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+92.93 11193.86 10091.86 11494.07 12798.09 9695.59 10685.98 15394.27 11279.54 14291.12 8981.81 14796.71 6696.67 8696.06 8999.27 7398.98 75
Effi-MVS+-dtu91.78 12293.59 10789.68 14592.44 14997.11 11594.40 12784.94 16892.43 13975.48 16391.09 9083.75 13693.55 12296.61 8795.47 10897.24 18798.67 97
TAPA-MVS94.18 596.38 5096.49 5696.25 4698.26 4998.66 7498.00 4594.96 4597.17 4089.48 8692.91 6696.35 5497.53 4596.59 8895.90 9699.28 7197.82 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchMatch-RL94.69 7794.41 8795.02 6897.63 6098.15 9494.50 12691.99 7795.32 8991.31 5895.47 4583.44 13896.02 7796.56 8995.23 11598.69 14796.67 170
Fast-Effi-MVS+91.87 12092.08 13591.62 12092.91 14397.21 11494.93 11684.60 17293.61 12281.49 13383.50 14478.95 15796.62 6896.55 9096.22 8599.16 9698.51 106
FC-MVSNet-train93.85 9693.91 9893.78 9594.94 10396.79 12594.29 12991.13 9093.84 11988.26 10190.40 9585.23 12594.65 10296.54 9195.31 11299.38 5599.28 28
GBi-Net93.81 9794.18 9293.38 10291.34 15795.86 15296.22 8888.68 12295.23 9290.40 7086.39 12491.16 8294.40 10696.52 9296.30 8099.21 8797.79 135
test193.81 9794.18 9293.38 10291.34 15795.86 15296.22 8888.68 12295.23 9290.40 7086.39 12491.16 8294.40 10696.52 9296.30 8099.21 8797.79 135
FMVSNet191.54 12790.93 14892.26 11290.35 16795.27 17595.22 11287.16 14091.37 15587.62 10575.45 17383.84 13594.43 10496.52 9296.30 8098.82 13397.74 141
MVS_Test94.82 7195.66 6693.84 9494.79 10698.35 8596.49 8389.10 11896.12 6887.09 10992.58 6990.61 8896.48 7096.51 9596.89 7099.11 10398.54 104
GG-mvs-BLEND66.17 21394.91 8232.63 2191.32 22796.64 12991.40 1760.85 22594.39 1112.20 22890.15 9995.70 632.27 22496.39 9695.44 10997.78 18095.68 179
thres100view90093.55 10492.47 12794.81 7795.33 9198.74 6796.78 7392.30 7492.63 13488.29 9887.21 11578.01 16296.78 6496.38 9795.92 9499.38 5598.40 114
baseline293.01 11094.17 9491.64 11892.83 14597.49 10693.40 14087.53 13593.67 12186.07 11291.83 7986.58 11291.36 14596.38 9795.06 11898.67 14898.20 124
test-mter90.95 13393.54 11087.93 17090.28 16896.80 12291.44 17582.68 18492.15 14874.37 17489.57 10388.23 10990.88 15596.37 9994.31 14397.93 17897.37 151
LGP-MVS_train94.12 9094.62 8393.53 9896.44 7397.54 10497.40 5691.84 8094.66 10481.09 13595.70 4383.36 13995.10 9396.36 10095.71 10299.32 6499.03 68
DI_MVS_plusplus_trai94.01 9293.63 10594.44 8594.54 11698.26 8897.51 5490.63 9695.88 7689.34 9180.54 16089.36 9695.48 8896.33 10196.27 8399.17 9398.78 95
TSAR-MVS + COLMAP94.79 7394.51 8595.11 6696.50 7197.54 10497.99 4694.54 4697.81 1785.88 11396.73 3281.28 15096.99 5996.29 10295.21 11698.76 14396.73 169
OPM-MVS93.61 10292.43 12895.00 6996.94 6897.34 11097.78 4994.23 4889.64 17085.53 11488.70 10882.81 14296.28 7396.28 10395.00 12299.24 7897.22 155
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
anonymousdsp88.90 16391.00 14786.44 18988.74 19995.97 14790.40 18882.86 18288.77 17767.33 20181.18 15581.44 14990.22 16796.23 10494.27 14499.12 10299.16 50
GeoE92.52 11692.64 11992.39 11193.96 12897.76 10196.01 9785.60 15893.23 12683.94 11981.56 15284.80 12995.63 8396.22 10595.83 10099.19 9199.07 61
ACMM92.75 1094.41 8593.84 10195.09 6796.41 7496.80 12294.88 11893.54 5396.41 5890.16 7592.31 7283.11 14096.32 7296.22 10594.65 12999.22 8497.35 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CSCG97.44 3397.18 4497.75 2999.47 699.52 798.55 3295.41 4297.69 2595.72 2194.29 5695.53 6498.10 3596.20 10797.38 5799.24 7899.62 4
test-LLR91.62 12593.56 10889.35 14993.31 13996.57 13192.02 16987.06 14192.34 14475.05 17090.20 9788.64 10490.93 15296.19 10894.07 14797.75 18296.90 166
TESTMET0.1,191.07 13293.56 10888.17 16090.43 16496.57 13192.02 16982.83 18392.34 14475.05 17090.20 9788.64 10490.93 15296.19 10894.07 14797.75 18296.90 166
MSDG94.82 7193.73 10396.09 4998.34 4897.43 10997.06 6096.05 3995.84 7890.56 6786.30 12889.10 10195.55 8696.13 11095.61 10499.00 11795.73 178
diffmvs94.31 8894.21 9194.42 8694.64 11498.28 8696.36 8791.56 8496.77 5188.89 9688.97 10584.23 13296.01 7896.05 11196.41 7999.05 11598.79 94
FMVSNet393.79 9994.17 9493.35 10491.21 16095.99 14596.62 7788.68 12295.23 9290.40 7086.39 12491.16 8294.11 11095.96 11296.67 7499.07 10897.79 135
EPNet_dtu92.45 11795.02 8089.46 14698.02 5495.47 16794.79 12092.62 6994.97 10070.11 19294.76 5492.61 7884.07 20295.94 11395.56 10597.15 18895.82 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CDS-MVSNet92.77 11293.60 10691.80 11692.63 14796.80 12295.24 11189.14 11790.30 16784.58 11786.76 11890.65 8790.42 16495.89 11496.49 7798.79 14098.32 120
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HyFIR lowres test92.03 11891.55 14292.58 10997.13 6698.72 7094.65 12386.54 14693.58 12382.56 12667.75 20890.47 8995.67 8195.87 11595.54 10698.91 12698.93 80
GA-MVS89.28 15690.75 15187.57 17791.77 15396.48 13392.29 16187.58 13490.61 16465.77 20384.48 13876.84 16989.46 17295.84 11693.68 15798.52 15997.34 153
MIMVSNet88.99 16291.07 14686.57 18886.78 20895.62 16091.20 18175.40 20890.65 16376.57 15584.05 14182.44 14591.01 15195.84 11695.38 11098.48 16293.50 200
pm-mvs189.19 15989.02 16289.38 14890.40 16595.74 15992.05 16788.10 13186.13 19777.70 14773.72 18779.44 15688.97 17595.81 11894.51 13999.08 10697.78 140
canonicalmvs95.25 6795.45 7195.00 6995.27 9598.72 7096.89 6689.82 10796.51 5690.84 6493.72 5986.01 11897.66 4395.78 11997.94 3599.54 1899.50 13
baseline94.83 7095.82 6593.68 9694.75 10997.80 10096.51 8288.53 12597.02 4789.34 9192.93 6592.18 7994.69 9995.78 11996.08 8798.27 16998.97 79
Fast-Effi-MVS+-dtu91.19 13193.64 10488.33 15892.19 15196.46 13493.99 13281.52 18992.59 13671.82 18292.17 7385.54 12191.68 14295.73 12194.64 13098.80 13898.34 117
ACMP92.88 994.43 8394.38 8894.50 8496.01 8297.69 10295.85 10492.09 7695.74 8089.12 9495.14 4982.62 14494.77 9695.73 12194.67 12899.14 9999.06 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FC-MVSNet-test91.63 12493.82 10289.08 15092.02 15296.40 13793.26 14387.26 13893.72 12077.26 15088.61 11089.86 9385.50 19295.72 12395.02 12099.16 9697.44 149
tfpnnormal88.50 16687.01 18890.23 13591.36 15695.78 15892.74 15090.09 10283.65 20676.33 15871.46 20069.58 20191.84 13995.54 12494.02 14999.06 11199.03 68
DCV-MVSNet94.76 7695.12 7894.35 8795.10 10195.81 15696.46 8489.49 11396.33 6090.16 7592.55 7090.26 9095.83 7995.52 12596.03 9199.06 11199.33 24
CLD-MVS94.79 7394.36 8995.30 6395.21 9797.46 10797.23 5992.24 7596.43 5791.77 5492.69 6884.31 13196.06 7595.52 12595.03 11999.31 6799.06 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-MVS94.43 8394.57 8494.27 8896.41 7497.23 11396.89 6693.98 4995.94 7483.68 12195.01 5184.46 13095.58 8595.47 12794.85 12799.07 10899.00 72
PMMVS94.61 7895.56 6893.50 9994.30 12296.74 12694.91 11789.56 11295.58 8687.72 10496.15 3692.86 7596.06 7595.47 12795.02 12098.43 16697.09 158
thisisatest051590.12 14792.06 13687.85 17190.03 17196.17 14287.83 19787.45 13691.71 15277.15 15185.40 13284.01 13485.74 19195.41 12993.30 16498.88 12898.43 110
IterMVS-SCA-FT90.24 14392.48 12687.63 17592.85 14494.30 19893.79 13481.47 19092.66 13369.95 19384.66 13788.38 10789.99 16995.39 13094.34 14297.74 18497.63 144
IterMVS-LS92.56 11593.18 11291.84 11593.90 12994.97 18294.99 11486.20 15094.18 11382.68 12585.81 13087.36 11194.43 10495.31 13196.02 9298.87 12998.60 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS90.20 14492.43 12887.61 17692.82 14694.31 19794.11 13081.54 18892.97 12969.90 19484.71 13688.16 11089.96 17095.25 13294.17 14597.31 18697.46 148
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet90.16 14691.96 13888.06 16493.32 13895.95 14993.36 14175.99 20692.40 14175.19 16783.18 14585.37 12292.05 13695.21 13394.56 13598.47 16397.08 160
PatchT89.13 16091.71 13986.11 19292.92 14295.59 16383.64 20875.09 20991.87 15075.19 16782.63 14885.06 12792.05 13695.21 13394.56 13597.76 18197.08 160
Anonymous20240521192.18 13395.04 10298.20 9096.14 9191.79 8293.93 11574.60 17988.38 10796.48 7095.17 13595.82 10199.00 11799.15 51
test0.0.03 191.97 11993.91 9889.72 14293.31 13996.40 13791.34 17887.06 14193.86 11781.67 13191.15 8889.16 10086.02 19095.08 13695.09 11798.91 12696.64 172
MS-PatchMatch91.82 12192.51 12291.02 12495.83 8496.88 11895.05 11384.55 17493.85 11882.01 12882.51 14991.71 8090.52 16395.07 13793.03 16898.13 17294.52 186
USDC90.69 13690.52 15290.88 12794.17 12596.43 13595.82 10586.76 14393.92 11676.27 15986.49 12274.30 17893.67 12195.04 13893.36 16198.61 15494.13 191
PCF-MVS93.95 695.65 5795.14 7696.25 4697.73 5998.73 6997.59 5397.13 3292.50 13889.09 9589.85 10196.65 5196.90 6194.97 13994.89 12399.08 10698.38 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Anonymous2023121193.49 10592.33 13294.84 7694.78 10898.00 9796.11 9291.85 7994.86 10290.91 6074.69 17889.18 9996.73 6594.82 14095.51 10798.67 14899.24 36
FMVSNet590.36 14190.93 14889.70 14387.99 20292.25 20792.03 16883.51 17892.20 14784.13 11885.59 13186.48 11392.43 13394.61 14194.52 13898.13 17290.85 208
ACMH90.77 1391.51 12891.63 14191.38 12195.62 8696.87 12091.76 17389.66 11091.58 15378.67 14486.73 11978.12 16093.77 11794.59 14294.54 13798.78 14198.98 75
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS90.54 14090.87 15090.16 13791.48 15596.61 13093.26 14386.08 15187.71 18781.66 13283.11 14784.04 13390.42 16494.54 14394.60 13298.04 17695.48 182
TransMVSNet (Re)87.73 17986.79 19088.83 15290.76 16194.40 19591.33 17989.62 11184.73 20375.41 16572.73 19271.41 19186.80 18494.53 14493.93 15199.06 11195.83 176
pmmvs587.83 17888.09 17187.51 18089.59 17995.48 16689.75 19284.73 17086.07 19971.44 18480.57 15970.09 19990.74 15994.47 14592.87 17298.82 13397.10 157
TinyColmap89.42 15388.58 16590.40 13493.80 13395.45 16893.96 13386.54 14692.24 14676.49 15680.83 15670.44 19693.37 12494.45 14693.30 16498.26 17093.37 202
RPMNet90.19 14592.03 13788.05 16593.46 13595.95 14993.41 13974.59 21192.40 14175.91 16184.22 14086.41 11592.49 13294.42 14793.85 15498.44 16496.96 163
testgi89.42 15391.50 14387.00 18592.40 15095.59 16389.15 19485.27 16592.78 13272.42 17991.75 8076.00 17184.09 20194.38 14893.82 15698.65 15296.15 173
LTVRE_ROB87.32 1687.55 18088.25 16986.73 18690.66 16295.80 15793.05 14684.77 16983.35 20760.32 21583.12 14667.39 20893.32 12594.36 14994.86 12498.28 16898.87 88
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CVMVSNet89.77 15191.66 14087.56 17893.21 14195.45 16891.94 17289.22 11689.62 17169.34 19883.99 14285.90 11984.81 19794.30 15095.28 11396.85 19097.09 158
COLMAP_ROBcopyleft90.49 1493.27 10992.71 11893.93 9297.75 5897.44 10896.07 9493.17 6195.40 8783.86 12083.76 14388.72 10393.87 11494.25 15194.11 14698.87 12995.28 184
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
NR-MVSNet89.34 15588.66 16490.13 14090.40 16595.61 16193.04 14789.91 10491.22 15678.96 14377.72 16868.90 20489.16 17494.24 15293.95 15099.32 6498.99 73
EG-PatchMatch MVS86.68 18887.24 18486.02 19390.58 16396.26 14091.08 18281.59 18784.96 20269.80 19671.35 20175.08 17584.23 20094.24 15293.35 16298.82 13395.46 183
v7n86.43 19086.52 19486.33 19087.91 20394.93 18490.15 19083.05 18086.57 19470.21 19171.48 19966.78 21187.72 17994.19 15492.96 16998.92 12598.76 96
ET-MVSNet_ETH3D93.34 10794.33 9092.18 11383.26 21497.66 10396.72 7589.89 10695.62 8487.17 10896.00 3983.69 13796.99 5993.78 15595.34 11199.06 11198.18 125
UniMVSNet (Re)90.03 14989.61 15790.51 13389.97 17396.12 14392.32 15989.26 11590.99 15980.95 13678.25 16775.08 17591.14 14893.78 15593.87 15399.41 4999.21 41
v119287.51 18187.31 18287.74 17389.04 19394.87 18792.07 16685.03 16688.49 18070.32 18972.65 19370.35 19791.21 14793.59 15792.80 17398.78 14198.42 112
v1088.00 17287.96 17488.05 16589.44 18194.68 18992.36 15883.35 17989.37 17272.96 17873.98 18572.79 18591.35 14693.59 15792.88 17198.81 13698.42 112
pmmvs685.98 19484.89 20287.25 18288.83 19794.35 19689.36 19385.30 16478.51 21575.44 16462.71 21475.41 17287.65 18093.58 15992.40 18196.89 18997.29 154
pmmvs490.55 13989.91 15591.30 12390.26 16994.95 18392.73 15187.94 13293.44 12585.35 11582.28 15076.09 17093.02 13093.56 16092.26 18498.51 16096.77 168
v114487.92 17687.79 17888.07 16289.27 18595.15 17892.17 16485.62 15788.52 17971.52 18373.80 18672.40 18791.06 15093.54 16192.80 17398.81 13698.33 118
ACMH+90.88 1291.41 12991.13 14591.74 11795.11 10096.95 11793.13 14589.48 11492.42 14079.93 13985.13 13378.02 16193.82 11693.49 16293.88 15298.94 12397.99 131
Anonymous2023120683.84 20185.19 20082.26 20287.38 20692.87 20485.49 20483.65 17786.07 19963.44 21068.42 20569.01 20375.45 21093.34 16392.44 18098.12 17494.20 190
v192192087.31 18587.13 18687.52 17988.87 19694.72 18891.96 17184.59 17388.28 18269.86 19572.50 19570.03 20091.10 14993.33 16492.61 17898.71 14598.44 109
v124086.89 18786.75 19287.06 18488.75 19894.65 19191.30 18084.05 17587.49 19068.94 19971.96 19868.86 20590.65 16193.33 16492.72 17798.67 14898.24 122
test_part191.21 13089.47 15893.24 10594.26 12395.45 16895.26 11088.36 12788.49 18090.04 7772.61 19482.82 14193.69 12093.25 16694.62 13197.84 17999.06 62
WR-MVS_H87.93 17487.85 17788.03 16789.62 17795.58 16590.47 18785.55 15987.20 19276.83 15474.42 18272.67 18686.37 18793.22 16793.04 16799.33 6298.83 92
TDRefinement89.07 16188.15 17090.14 13995.16 9896.88 11895.55 10890.20 10189.68 16976.42 15776.67 17074.30 17884.85 19693.11 16891.91 18698.64 15394.47 187
MVS-HIRNet85.36 19686.89 18983.57 19990.13 17094.51 19383.57 20972.61 21388.27 18371.22 18668.97 20481.81 14788.91 17693.08 16991.94 18594.97 20889.64 211
CP-MVSNet87.89 17787.27 18388.62 15489.30 18495.06 17990.60 18685.78 15587.43 19175.98 16074.60 17968.14 20790.76 15793.07 17093.60 15899.30 6998.98 75
PS-CasMVS87.33 18486.68 19388.10 16189.22 19194.93 18490.35 18985.70 15686.44 19674.01 17573.43 18966.59 21390.04 16892.92 17193.52 15999.28 7198.91 84
UniMVSNet_NR-MVSNet90.35 14289.96 15490.80 12989.66 17695.83 15592.48 15590.53 9890.96 16079.57 14079.33 16477.14 16693.21 12892.91 17294.50 14099.37 5899.05 65
SixPastTwentyTwo88.37 16889.47 15887.08 18390.01 17295.93 15187.41 19885.32 16290.26 16870.26 19086.34 12771.95 18890.93 15292.89 17391.72 18798.55 15797.22 155
v14419287.40 18387.20 18587.64 17488.89 19494.88 18691.65 17484.70 17187.80 18671.17 18773.20 19170.91 19390.75 15892.69 17492.49 17998.71 14598.43 110
PM-MVS84.72 19984.47 20385.03 19584.67 21091.57 20986.27 20282.31 18687.65 18870.62 18876.54 17256.41 22188.75 17792.59 17589.85 19697.54 18596.66 171
DU-MVS89.67 15288.84 16390.63 13289.26 18695.61 16192.48 15589.91 10491.22 15679.57 14077.72 16871.18 19293.21 12892.53 17694.57 13499.35 6199.05 65
Baseline_NR-MVSNet89.27 15788.01 17390.73 13189.26 18693.71 20292.71 15289.78 10990.73 16181.28 13473.53 18872.85 18492.30 13592.53 17693.84 15599.07 10898.88 86
IB-MVS89.56 1591.71 12392.50 12390.79 13095.94 8398.44 8387.05 20091.38 8993.15 12792.98 4384.78 13585.14 12678.27 20792.47 17894.44 14199.10 10499.08 57
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS87.93 17488.09 17187.75 17289.26 18695.28 17390.81 18486.69 14488.90 17475.29 16674.31 18373.72 18185.19 19592.26 17993.32 16399.27 7398.81 93
EU-MVSNet85.62 19587.65 18183.24 20188.54 20092.77 20687.12 19985.32 16286.71 19364.54 20678.52 16675.11 17478.35 20692.25 18092.28 18395.58 20095.93 175
pmmvs-eth3d84.33 20082.94 20585.96 19484.16 21190.94 21086.55 20183.79 17684.25 20475.85 16270.64 20256.43 22087.44 18392.20 18190.41 19397.97 17795.68 179
TranMVSNet+NR-MVSNet89.23 15888.48 16790.11 14189.07 19295.25 17692.91 14890.43 10090.31 16677.10 15276.62 17171.57 19091.83 14092.12 18294.59 13399.32 6498.92 81
v888.21 17187.94 17688.51 15589.62 17795.01 18192.31 16084.99 16788.94 17374.70 17275.03 17573.51 18290.67 16092.11 18392.74 17698.80 13898.24 122
v2v48288.25 17087.71 18088.88 15189.23 19095.28 17392.10 16587.89 13388.69 17873.31 17775.32 17471.64 18991.89 13892.10 18492.92 17098.86 13197.99 131
V4288.31 16987.95 17588.73 15389.44 18195.34 17292.23 16387.21 13988.83 17574.49 17374.89 17773.43 18390.41 16692.08 18592.77 17598.60 15698.33 118
test20.0382.92 20385.52 19879.90 20687.75 20491.84 20882.80 21082.99 18182.65 21160.32 21578.90 16570.50 19467.10 21492.05 18690.89 18998.44 16491.80 206
MDTV_nov1_ep1391.57 12693.18 11289.70 14393.39 13796.97 11693.53 13780.91 19195.70 8181.86 12992.40 7189.93 9293.25 12791.97 18790.80 19095.25 20594.46 188
test_method72.96 21078.68 21066.28 21450.17 22464.90 22275.45 21850.90 22187.89 18462.54 21162.98 21368.34 20670.45 21291.90 18882.41 21288.19 21892.35 203
MIMVSNet180.03 20680.93 20778.97 20772.46 22090.73 21180.81 21382.44 18580.39 21263.64 20857.57 21564.93 21576.37 20891.66 18991.55 18898.07 17589.70 210
RPSCF94.05 9194.00 9794.12 9096.20 7696.41 13696.61 7891.54 8595.83 7989.73 8396.94 3192.80 7695.35 9091.63 19090.44 19295.27 20493.94 195
UniMVSNet_ETH3D88.47 16786.00 19791.35 12291.55 15496.29 13992.53 15488.81 12185.58 20182.33 12767.63 20966.87 21094.04 11291.49 19195.24 11498.84 13298.92 81
ambc73.83 21376.23 21885.13 21782.27 21184.16 20565.58 20552.82 21723.31 22873.55 21191.41 19285.26 21092.97 21494.70 185
PEN-MVS87.22 18686.50 19588.07 16288.88 19594.44 19490.99 18386.21 14886.53 19573.66 17674.97 17666.56 21489.42 17391.20 19393.48 16099.24 7898.31 121
SCA90.92 13493.04 11488.45 15693.72 13497.33 11192.77 14976.08 20596.02 7178.26 14691.96 7690.86 8593.99 11390.98 19490.04 19595.88 19694.06 194
v14887.51 18186.79 19088.36 15789.39 18395.21 17789.84 19188.20 13087.61 18977.56 14873.38 19070.32 19886.80 18490.70 19592.31 18298.37 16797.98 133
DTE-MVSNet86.67 18986.09 19687.35 18188.45 20194.08 20090.65 18586.05 15286.13 19772.19 18074.58 18166.77 21287.61 18190.31 19693.12 16699.13 10097.62 145
EPMVS90.88 13592.12 13489.44 14794.71 11197.24 11293.55 13676.81 20095.89 7581.77 13091.49 8486.47 11493.87 11490.21 19790.07 19495.92 19593.49 201
pmmvs379.16 20780.12 20978.05 20979.36 21586.59 21678.13 21673.87 21276.42 21757.51 22070.59 20357.02 21984.66 19890.10 19888.32 20094.75 21091.77 207
PatchmatchNetpermissive90.56 13892.49 12488.31 15993.83 13296.86 12192.42 15776.50 20295.96 7378.31 14591.96 7689.66 9493.48 12390.04 19989.20 19895.32 20293.73 199
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep13_2view86.30 19188.27 16884.01 19887.71 20594.67 19088.08 19676.78 20190.59 16568.66 20080.46 16180.12 15387.58 18289.95 20088.20 20195.25 20593.90 197
tpm87.95 17389.44 16086.21 19192.53 14894.62 19291.40 17676.36 20391.46 15469.80 19687.43 11475.14 17391.55 14389.85 20190.60 19195.61 19996.96 163
new_pmnet81.53 20482.68 20680.20 20483.47 21389.47 21482.21 21278.36 19487.86 18560.14 21767.90 20769.43 20282.03 20489.22 20287.47 20494.99 20787.39 213
ADS-MVSNet89.80 15091.33 14488.00 16894.43 12096.71 12792.29 16174.95 21096.07 7077.39 14988.67 10986.09 11793.26 12688.44 20389.57 19795.68 19893.81 198
N_pmnet84.80 19785.10 20184.45 19789.25 18992.86 20584.04 20786.21 14888.78 17666.73 20272.41 19674.87 17785.21 19488.32 20486.45 20695.30 20392.04 205
CMPMVSbinary65.18 1784.76 19883.10 20486.69 18795.29 9495.05 18088.37 19585.51 16080.27 21371.31 18568.37 20673.85 18085.25 19387.72 20587.75 20294.38 21288.70 212
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dps90.11 14889.37 16190.98 12593.89 13096.21 14193.49 13877.61 19891.95 14992.74 4788.85 10678.77 15992.37 13487.71 20687.71 20395.80 19794.38 189
CostFormer90.69 13690.48 15390.93 12694.18 12496.08 14494.03 13178.20 19693.47 12489.96 8090.97 9180.30 15293.72 11887.66 20788.75 19995.51 20196.12 174
pmnet_mix0286.12 19387.12 18784.96 19689.82 17494.12 19984.88 20686.63 14591.78 15165.60 20480.76 15776.98 16786.61 18687.29 20884.80 21196.21 19294.09 192
tpmrst88.86 16589.62 15687.97 16994.33 12195.98 14692.62 15376.36 20394.62 10676.94 15385.98 12982.80 14392.80 13186.90 20987.15 20594.77 20993.93 196
tpm cat188.90 16387.78 17990.22 13693.88 13195.39 17193.79 13478.11 19792.55 13789.43 8781.31 15479.84 15591.40 14484.95 21086.34 20894.68 21194.09 192
new-patchmatchnet78.49 20878.19 21178.84 20884.13 21290.06 21277.11 21780.39 19279.57 21459.64 21866.01 21055.65 22275.62 20984.55 21180.70 21396.14 19490.77 209
Gipumacopyleft68.35 21166.71 21470.27 21174.16 21968.78 22163.93 22271.77 21583.34 20854.57 22134.37 21931.88 22568.69 21383.30 21285.53 20988.48 21779.78 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt66.88 21386.07 20973.86 22068.22 22033.38 22296.88 4880.67 13788.23 11278.82 15849.78 21982.68 21377.47 21583.19 221
DeepMVS_CXcopyleft86.86 21579.50 21470.43 21690.73 16163.66 20780.36 16260.83 21679.68 20576.23 21489.46 21686.53 214
MDA-MVSNet-bldmvs80.11 20580.24 20879.94 20577.01 21793.21 20378.86 21585.94 15482.71 21060.86 21279.71 16351.77 22383.71 20375.60 21586.37 20793.28 21392.35 203
FPMVS75.84 20974.59 21277.29 21086.92 20783.89 21885.01 20580.05 19382.91 20960.61 21465.25 21160.41 21763.86 21575.60 21573.60 21787.29 21980.47 216
PMMVS264.36 21465.94 21662.52 21567.37 22177.44 21964.39 22169.32 21961.47 22034.59 22346.09 21841.03 22448.02 22174.56 21778.23 21491.43 21582.76 215
PMVScopyleft63.12 1867.27 21266.39 21568.30 21277.98 21660.24 22359.53 22376.82 19966.65 21960.74 21354.39 21659.82 21851.24 21873.92 21870.52 21883.48 22079.17 218
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.86 1949.54 21751.43 21747.33 21844.14 22559.20 22436.45 22660.59 22041.47 22331.14 22429.58 22017.06 22948.52 22062.22 21974.63 21663.12 22475.87 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN50.67 21547.85 21853.96 21664.13 22350.98 22638.06 22469.51 21751.40 22224.60 22529.46 22224.39 22756.07 21748.17 22059.70 21971.40 22270.84 220
EMVS49.98 21646.76 21953.74 21764.96 22251.29 22537.81 22569.35 21851.83 22122.69 22629.57 22125.06 22657.28 21644.81 22156.11 22070.32 22368.64 221
testmvs12.09 21816.94 2206.42 2203.15 2266.08 2279.51 2283.84 22321.46 2245.31 22727.49 2236.76 23010.89 22217.06 22215.01 2215.84 22524.75 222
test1239.58 21913.53 2214.97 2211.31 2285.47 2288.32 2292.95 22418.14 2252.03 22920.82 2242.34 23110.60 22310.00 22314.16 2224.60 22623.77 223
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def63.50 209
9.1499.28 12
SR-MVS99.45 1097.61 1699.20 16
our_test_389.78 17593.84 20185.59 203
MTAPA96.83 1199.12 21
MTMP97.18 598.83 27
Patchmatch-RL test34.61 227
XVS96.60 6999.35 1696.82 6990.85 6198.72 3099.46 31
X-MVStestdata96.60 6999.35 1696.82 6990.85 6198.72 3099.46 31
abl_696.82 4198.60 4398.74 6797.74 5093.73 5196.25 6294.37 3194.55 5598.60 3597.25 5099.27 7398.61 100
mPP-MVS99.21 2598.29 39
NP-MVS95.32 89
Patchmtry95.96 14893.36 14175.99 20675.19 167