This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
HFP-MVS98.48 998.62 1098.32 1299.39 1899.33 1699.27 1097.42 1998.27 695.25 2498.34 998.83 2699.08 198.26 2798.08 2499.48 2299.26 29
ACMMPR98.40 1298.49 1298.28 1499.41 1499.40 999.36 397.35 2298.30 595.02 2697.79 1798.39 3799.04 298.26 2798.10 2299.50 2199.22 35
SD-MVS98.52 798.77 898.23 1698.15 5099.26 2198.79 2697.59 1698.52 296.25 1697.99 1599.75 599.01 398.27 2697.97 2799.59 499.63 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CPTT-MVS97.78 2697.54 3398.05 2298.91 3599.05 3299.00 2096.96 3497.14 4095.92 1895.50 4298.78 2898.99 497.20 6196.07 8298.54 15299.04 64
DVP-MVS98.86 398.97 298.75 299.43 1399.63 199.25 1297.81 198.62 197.69 197.59 2099.90 198.93 598.99 398.42 1199.37 5299.62 3
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSLP-MVS++98.04 2397.93 3298.18 1799.10 2899.09 3198.34 3696.99 3397.54 3096.60 1394.82 4998.45 3598.89 697.46 5598.77 499.17 8799.37 16
TSAR-MVS + MP.98.49 898.78 798.15 2098.14 5199.17 2899.34 597.18 3098.44 495.72 2097.84 1699.28 1198.87 799.05 198.05 2599.66 199.60 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
zzz-MVS98.43 1198.31 2398.57 499.48 599.40 999.32 897.62 1397.70 2296.67 1196.59 3299.09 2198.86 898.65 1297.56 4399.45 3099.17 45
APDe-MVS98.87 298.96 398.77 199.58 299.53 599.44 197.81 198.22 997.33 498.70 499.33 998.86 898.96 598.40 1399.63 399.57 8
SMA-MVScopyleft98.66 698.89 698.39 999.60 199.41 899.00 2097.63 1297.78 1795.83 1998.33 1099.83 398.85 1098.93 798.56 699.41 4399.40 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS98.47 1098.46 1598.48 799.40 1599.05 3299.02 1997.54 1797.73 1896.65 1297.20 2999.13 1998.85 1098.91 898.10 2299.41 4399.08 54
PGM-MVS97.81 2598.11 2897.46 3099.55 399.34 1599.32 894.51 4696.21 6093.07 3798.05 1497.95 4298.82 1298.22 3097.89 3299.48 2299.09 53
CP-MVS98.32 1798.34 2198.29 1399.34 2199.30 1799.15 1497.35 2297.49 3195.58 2297.72 1898.62 3398.82 1298.29 2597.67 3899.51 1999.28 24
MCST-MVS98.20 1898.36 1898.01 2399.40 1599.05 3299.00 2097.62 1397.59 2993.70 3497.42 2799.30 1098.77 1498.39 2397.48 4599.59 499.31 23
AdaColmapbinary97.53 3096.93 4598.24 1599.21 2498.77 6298.47 3497.34 2496.68 5196.52 1495.11 4796.12 5898.72 1597.19 6396.24 7899.17 8798.39 112
ACMMP_NAP98.20 1898.49 1297.85 2699.50 499.40 999.26 1197.64 1197.47 3392.62 4697.59 2099.09 2198.71 1698.82 1197.86 3399.40 4699.19 39
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2599.16 2799.03 3999.05 1897.24 2798.22 994.17 3295.82 3898.07 3998.69 1798.83 1098.80 299.52 1499.10 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS98.90 199.07 198.69 399.38 1999.61 299.33 797.80 398.25 797.60 298.87 399.89 298.67 1899.02 298.26 1799.36 5499.61 5
MSP-MVS98.73 598.93 498.50 699.44 1299.57 399.36 397.65 898.14 1196.51 1598.49 699.65 798.67 1898.60 1398.42 1199.40 4699.63 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.34 1698.47 1498.18 1799.46 899.15 2999.10 1697.69 797.67 2594.93 2797.62 1999.70 698.60 2098.45 1897.46 4699.31 6199.26 29
DPE-MVScopyleft98.75 498.91 598.57 499.21 2499.54 499.42 297.78 597.49 3196.84 998.94 199.82 498.59 2198.90 998.22 1899.56 1099.48 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC98.10 2198.05 3098.17 1999.38 1999.05 3299.00 2097.53 1898.04 1395.12 2594.80 5099.18 1798.58 2298.49 1697.78 3699.39 4898.98 72
MP-MVScopyleft98.09 2298.30 2497.84 2799.34 2199.19 2799.23 1397.40 2097.09 4293.03 4097.58 2298.85 2598.57 2398.44 2097.69 3799.48 2299.23 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
X-MVS97.84 2498.19 2797.42 3199.40 1599.35 1299.06 1797.25 2697.38 3490.85 5796.06 3698.72 2998.53 2498.41 2298.15 2199.46 2699.28 24
APD-MVScopyleft98.36 1598.32 2298.41 899.47 699.26 2199.12 1597.77 696.73 4996.12 1797.27 2898.88 2498.46 2598.47 1798.39 1499.52 1499.22 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
train_agg97.65 2998.06 2997.18 3498.94 3398.91 5398.98 2497.07 3296.71 5090.66 6297.43 2699.08 2398.20 2697.96 4297.14 5799.22 7899.19 39
DeepC-MVS94.87 496.76 4796.50 5297.05 3698.21 4999.28 1998.67 2797.38 2197.31 3590.36 6989.19 10093.58 6998.19 2798.31 2498.50 799.51 1999.36 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP98.38 1498.71 997.99 2499.34 2199.46 799.34 597.33 2597.31 3594.25 3098.06 1399.17 1898.13 2898.98 498.46 999.55 1199.54 9
Skip Steuart: Steuart Systems R&D Blog.
xxxxxxxxxxxxxcwj97.07 3895.99 6098.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1181.99 14398.11 2998.15 3297.62 3999.45 3099.19 39
SF-MVS98.39 1398.45 1698.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1199.25 1498.11 2998.15 3297.62 3999.45 3099.19 39
CSCG97.44 3297.18 4097.75 2899.47 699.52 698.55 3195.41 4197.69 2495.72 2094.29 5395.53 6298.10 3196.20 10197.38 5199.24 7299.62 3
3Dnovator+93.91 797.23 3597.22 3797.24 3398.89 3698.85 5898.26 3993.25 5897.99 1495.56 2390.01 9698.03 4198.05 3297.91 4398.43 1099.44 3899.35 18
TSAR-MVS + GP.97.45 3198.36 1896.39 4395.56 8398.93 5097.74 4993.31 5597.61 2894.24 3198.44 899.19 1698.03 3397.60 5197.41 4999.44 3899.33 20
PLCcopyleft94.95 397.37 3396.77 4998.07 2198.97 3298.21 8497.94 4696.85 3697.66 2697.58 393.33 5896.84 4898.01 3497.13 6596.20 8099.09 9998.01 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator93.79 897.08 3797.20 3896.95 3899.09 2999.03 3998.20 4093.33 5497.99 1493.82 3390.61 9096.80 4997.82 3597.90 4498.78 399.47 2599.26 29
LS3D95.46 5895.14 7395.84 5197.91 5598.90 5598.58 3097.79 497.07 4383.65 11688.71 10388.64 10197.82 3597.49 5497.42 4899.26 7197.72 136
CNLPA96.90 4296.28 5597.64 2998.56 4398.63 7496.85 6496.60 3797.73 1897.08 689.78 9896.28 5697.80 3796.73 7796.63 6998.94 11798.14 123
ACMMPcopyleft97.37 3397.48 3597.25 3298.88 3799.28 1998.47 3496.86 3597.04 4492.15 4797.57 2396.05 6097.67 3897.27 5995.99 8799.46 2699.14 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
canonicalmvs95.25 6495.45 6895.00 6595.27 9198.72 6696.89 6289.82 10396.51 5390.84 6093.72 5786.01 11597.66 3995.78 11397.94 2999.54 1399.50 10
QAPM96.78 4697.14 4296.36 4499.05 3099.14 3098.02 4393.26 5697.27 3790.84 6091.16 8297.31 4497.64 4097.70 4998.20 1999.33 5699.18 43
TAPA-MVS94.18 596.38 4896.49 5396.25 4598.26 4898.66 6998.00 4494.96 4497.17 3989.48 8192.91 6396.35 5397.53 4196.59 8295.90 9099.28 6597.82 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PHI-MVS97.78 2698.44 1797.02 3798.73 3899.25 2398.11 4195.54 4096.66 5292.79 4398.52 599.38 897.50 4297.84 4598.39 1499.45 3099.03 65
ETV-MVS96.31 4997.47 3694.96 6794.79 10398.78 6196.08 8791.41 8496.16 6190.50 6495.76 4096.20 5797.39 4398.42 2197.82 3499.57 899.18 43
OMC-MVS97.00 4096.92 4697.09 3598.69 3998.66 6997.85 4795.02 4398.09 1294.47 2893.15 5996.90 4697.38 4497.16 6496.82 6799.13 9497.65 137
CS-MVS96.23 5297.15 4195.16 6195.01 9998.98 4497.13 5790.68 9296.00 6891.21 5494.03 5496.48 5197.35 4598.00 4197.43 4799.55 1199.15 47
MAR-MVS95.50 5595.60 6495.39 5998.67 4098.18 8795.89 9589.81 10494.55 10191.97 4992.99 6190.21 8897.30 4696.79 7497.49 4498.72 13898.99 70
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS96.86 4396.82 4896.91 3998.08 5298.20 8598.52 3397.20 2997.24 3891.42 5291.84 7598.45 3597.25 4797.07 6697.40 5098.95 11697.55 140
abl_696.82 4098.60 4298.74 6397.74 4993.73 5096.25 5894.37 2994.55 5298.60 3497.25 4799.27 6798.61 97
MVS_111021_LR97.16 3698.01 3196.16 4798.47 4498.98 4496.94 6193.89 4997.64 2791.44 5198.89 296.41 5297.20 4998.02 4097.29 5699.04 11098.85 87
CDPH-MVS96.84 4497.49 3496.09 4898.92 3498.85 5898.61 2895.09 4296.00 6887.29 10195.45 4497.42 4397.16 5097.83 4697.94 2999.44 3898.92 78
thres40093.56 9792.43 12294.87 7095.40 8598.91 5396.70 7192.38 6692.93 12488.19 9686.69 11677.35 16097.13 5196.75 7695.85 9299.42 4298.56 99
thres20093.62 9592.54 11594.88 6995.36 8698.93 5096.75 6992.31 6792.84 12588.28 9486.99 11377.81 15997.13 5196.82 7195.92 8899.45 3098.49 105
tfpn200view993.64 9492.57 11494.89 6895.33 8798.94 4896.82 6592.31 6792.63 12888.29 9287.21 11178.01 15797.12 5396.82 7195.85 9299.45 3098.56 99
thres600view793.49 9992.37 12594.79 7395.42 8498.93 5096.58 7592.31 6793.04 12287.88 9786.62 11776.94 16397.09 5496.82 7195.63 9799.45 3098.63 96
EIA-MVS95.50 5596.19 5794.69 7594.83 10298.88 5795.93 9291.50 8394.47 10289.43 8293.14 6092.72 7497.05 5597.82 4897.13 5899.43 4199.15 47
ET-MVSNet_ETH3D93.34 10194.33 8792.18 10783.26 20897.66 9796.72 7089.89 10295.62 8187.17 10296.00 3783.69 13496.99 5693.78 14995.34 10599.06 10598.18 122
TSAR-MVS + COLMAP94.79 7094.51 8295.11 6296.50 7097.54 9897.99 4594.54 4597.81 1685.88 10796.73 3181.28 14796.99 5696.29 9695.21 11098.76 13796.73 163
PCF-MVS93.95 695.65 5495.14 7396.25 4597.73 5898.73 6597.59 5297.13 3192.50 13289.09 9089.85 9796.65 5096.90 5894.97 13394.89 11799.08 10098.38 113
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + ACMM97.71 2898.60 1196.66 4198.64 4199.05 3298.85 2597.23 2898.45 389.40 8497.51 2499.27 1396.88 5998.53 1497.81 3598.96 11599.59 7
OpenMVScopyleft92.33 1195.50 5595.22 7295.82 5298.98 3198.97 4697.67 5193.04 6494.64 9989.18 8884.44 13594.79 6496.79 6097.23 6097.61 4199.24 7298.88 83
thres100view90093.55 9892.47 12194.81 7295.33 8798.74 6396.78 6892.30 7092.63 12888.29 9287.21 11178.01 15796.78 6196.38 9195.92 8899.38 4998.40 111
Anonymous2023121193.49 9992.33 12694.84 7194.78 10598.00 9196.11 8691.85 7594.86 9690.91 5674.69 17289.18 9696.73 6294.82 13495.51 10198.67 14299.24 32
Effi-MVS+92.93 10593.86 9791.86 10894.07 12198.09 9095.59 10085.98 14794.27 10679.54 13691.12 8581.81 14496.71 6396.67 8096.06 8399.27 6798.98 72
MVS_111021_HR97.04 3998.20 2695.69 5398.44 4699.29 1896.59 7493.20 5997.70 2289.94 7698.46 796.89 4796.71 6398.11 3797.95 2899.27 6799.01 68
Fast-Effi-MVS+91.87 11492.08 12991.62 11492.91 13797.21 10894.93 11084.60 16693.61 11681.49 12783.50 14078.95 15296.62 6596.55 8496.22 7999.16 9098.51 103
casdiffmvs94.38 8394.15 9394.64 7794.70 10998.51 7796.03 9091.66 7995.70 7889.36 8586.48 11985.03 12596.60 6697.40 5697.30 5499.52 1498.67 94
Anonymous20240521192.18 12795.04 9898.20 8596.14 8591.79 7893.93 10974.60 17388.38 10496.48 6795.17 12995.82 9599.00 11199.15 47
MVS_Test94.82 6895.66 6393.84 8894.79 10398.35 8096.49 7889.10 11496.12 6487.09 10392.58 6690.61 8596.48 6796.51 8996.89 6499.11 9798.54 101
ACMM92.75 1094.41 8293.84 9895.09 6396.41 7396.80 11694.88 11293.54 5296.41 5590.16 7092.31 6983.11 13796.32 6996.22 9994.65 12399.22 7897.35 146
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS93.61 9692.43 12295.00 6596.94 6797.34 10497.78 4894.23 4789.64 16485.53 10888.70 10482.81 13996.28 7096.28 9795.00 11699.24 7297.22 149
CANet96.84 4497.20 3896.42 4297.92 5499.24 2598.60 2993.51 5397.11 4193.07 3791.16 8297.24 4596.21 7198.24 2998.05 2599.22 7899.35 18
PMMVS94.61 7595.56 6593.50 9394.30 11696.74 12094.91 11189.56 10895.58 8387.72 9896.15 3592.86 7296.06 7295.47 12195.02 11498.43 16097.09 152
CLD-MVS94.79 7094.36 8695.30 6095.21 9397.46 10197.23 5692.24 7196.43 5491.77 5092.69 6584.31 12896.06 7295.52 11995.03 11399.31 6199.06 59
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchMatch-RL94.69 7494.41 8495.02 6497.63 5998.15 8894.50 12091.99 7395.32 8691.31 5395.47 4383.44 13596.02 7496.56 8395.23 10998.69 14196.67 164
diffmvs94.31 8494.21 8894.42 8094.64 11098.28 8196.36 8191.56 8096.77 4888.89 9188.97 10184.23 12996.01 7596.05 10596.41 7399.05 10998.79 91
DCV-MVSNet94.76 7395.12 7594.35 8195.10 9795.81 15096.46 7989.49 10996.33 5690.16 7092.55 6790.26 8795.83 7695.52 11996.03 8599.06 10599.33 20
MVS_030496.31 4996.91 4795.62 5497.21 6499.20 2698.55 3193.10 6197.04 4489.73 7890.30 9296.35 5395.71 7798.14 3497.93 3199.38 4999.40 14
HyFIR lowres test92.03 11291.55 13692.58 10397.13 6598.72 6694.65 11786.54 14093.58 11782.56 12067.75 20290.47 8695.67 7895.87 10995.54 10098.91 12098.93 77
baseline194.59 7694.47 8394.72 7495.16 9497.97 9396.07 8891.94 7494.86 9689.98 7491.60 7985.87 11795.64 7997.07 6696.90 6399.52 1497.06 156
GeoE92.52 11092.64 11392.39 10593.96 12297.76 9596.01 9185.60 15293.23 12083.94 11381.56 14884.80 12695.63 8096.22 9995.83 9499.19 8599.07 58
CHOSEN 280x42095.46 5897.01 4393.66 9197.28 6397.98 9296.40 8085.39 15596.10 6591.07 5596.53 3396.34 5595.61 8197.65 5096.95 6296.21 18697.49 141
HQP-MVS94.43 8094.57 8194.27 8296.41 7397.23 10796.89 6293.98 4895.94 7183.68 11595.01 4884.46 12795.58 8295.47 12194.85 12199.07 10299.00 69
MSDG94.82 6893.73 10096.09 4898.34 4797.43 10397.06 5896.05 3895.84 7590.56 6386.30 12489.10 9895.55 8396.13 10495.61 9899.00 11195.73 172
DeepPCF-MVS95.28 297.00 4098.35 2095.42 5897.30 6298.94 4894.82 11396.03 3998.24 892.11 4895.80 3998.64 3295.51 8498.95 698.66 596.78 18599.20 38
DI_MVS_plusplus_trai94.01 8793.63 10294.44 7994.54 11198.26 8397.51 5390.63 9395.88 7389.34 8680.54 15489.36 9395.48 8596.33 9596.27 7799.17 8798.78 92
EPP-MVSNet95.27 6396.18 5894.20 8394.88 10198.64 7294.97 10990.70 9195.34 8589.67 8091.66 7893.84 6795.42 8697.32 5897.00 6099.58 699.47 12
RPSCF94.05 8694.00 9494.12 8496.20 7596.41 13096.61 7391.54 8195.83 7689.73 7896.94 3092.80 7395.35 8791.63 18490.44 18695.27 19893.94 189
LGP-MVS_train94.12 8594.62 8093.53 9296.44 7297.54 9897.40 5591.84 7694.66 9881.09 12995.70 4183.36 13695.10 8896.36 9495.71 9699.32 5899.03 65
DELS-MVS96.06 5396.04 5996.07 5097.77 5699.25 2398.10 4293.26 5694.42 10392.79 4388.52 10793.48 7095.06 8998.51 1598.83 199.45 3099.28 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMP92.88 994.43 8094.38 8594.50 7896.01 7897.69 9695.85 9892.09 7295.74 7789.12 8995.14 4682.62 14194.77 9095.73 11594.67 12299.14 9399.06 59
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thisisatest053094.54 7795.47 6793.46 9494.51 11298.65 7194.66 11690.72 8995.69 8086.90 10493.80 5589.44 9294.74 9196.98 7094.86 11899.19 8598.85 87
tttt051794.52 7895.44 6993.44 9594.51 11298.68 6894.61 11890.72 8995.61 8286.84 10593.78 5689.26 9594.74 9197.02 6994.86 11899.20 8498.87 85
baseline94.83 6795.82 6293.68 9094.75 10697.80 9496.51 7788.53 11997.02 4689.34 8692.93 6292.18 7694.69 9395.78 11396.08 8198.27 16398.97 76
PVSNet_BlendedMVS95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9593.10 6196.16 6193.12 3591.99 7185.27 12094.66 9498.09 3897.34 5299.24 7299.08 54
PVSNet_Blended95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9593.10 6196.16 6193.12 3591.99 7185.27 12094.66 9498.09 3897.34 5299.24 7299.08 54
FC-MVSNet-train93.85 9093.91 9593.78 8994.94 10096.79 11994.29 12391.13 8693.84 11388.26 9590.40 9185.23 12294.65 9696.54 8595.31 10699.38 4999.28 24
CANet_DTU93.92 8996.57 5190.83 12295.63 8198.39 7996.99 6087.38 13196.26 5771.97 17596.31 3493.02 7194.53 9797.38 5796.83 6698.49 15597.79 129
FMVSNet191.54 12190.93 14292.26 10690.35 16195.27 16995.22 10687.16 13491.37 14987.62 9975.45 16783.84 13294.43 9896.52 8696.30 7498.82 12797.74 135
IterMVS-LS92.56 10993.18 10991.84 10993.90 12394.97 17694.99 10886.20 14494.18 10782.68 11985.81 12687.36 10894.43 9895.31 12596.02 8698.87 12398.60 98
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net93.81 9194.18 8993.38 9691.34 15195.86 14696.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 10096.52 8696.30 7499.21 8197.79 129
test193.81 9194.18 8993.38 9691.34 15195.86 14696.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 10096.52 8696.30 7499.21 8197.79 129
FMVSNet293.30 10293.36 10893.22 10091.34 15195.86 14696.22 8288.24 12395.15 9389.92 7781.64 14789.36 9394.40 10096.77 7596.98 6199.21 8197.79 129
IS_MVSNet95.28 6296.43 5493.94 8595.30 8999.01 4395.90 9391.12 8794.13 10887.50 10091.23 8194.45 6694.17 10398.45 1898.50 799.65 299.23 33
FMVSNet393.79 9394.17 9193.35 9891.21 15495.99 13996.62 7288.68 11695.23 8990.40 6586.39 12091.16 7994.11 10495.96 10696.67 6899.07 10297.79 129
CHOSEN 1792x268892.66 10892.49 11892.85 10297.13 6598.89 5695.90 9388.50 12095.32 8683.31 11771.99 19188.96 9994.10 10596.69 7896.49 7198.15 16599.10 51
UniMVSNet_ETH3D88.47 16186.00 19191.35 11691.55 14896.29 13392.53 14888.81 11585.58 19582.33 12167.63 20366.87 20494.04 10691.49 18595.24 10898.84 12698.92 78
SCA90.92 12893.04 11188.45 15093.72 12897.33 10592.77 14376.08 19996.02 6778.26 14091.96 7390.86 8293.99 10790.98 18890.04 18995.88 19094.06 188
EPMVS90.88 12992.12 12889.44 14194.71 10797.24 10693.55 13076.81 19495.89 7281.77 12491.49 8086.47 11193.87 10890.21 19190.07 18895.92 18993.49 195
COLMAP_ROBcopyleft90.49 1493.27 10392.71 11293.93 8697.75 5797.44 10296.07 8893.17 6095.40 8483.86 11483.76 13988.72 10093.87 10894.25 14594.11 14098.87 12395.28 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+90.88 1291.41 12391.13 13991.74 11195.11 9696.95 11193.13 13989.48 11092.42 13479.93 13385.13 12978.02 15693.82 11093.49 15693.88 14698.94 11797.99 125
ACMH90.77 1391.51 12291.63 13591.38 11595.62 8296.87 11491.76 16789.66 10691.58 14778.67 13886.73 11578.12 15593.77 11194.59 13694.54 13198.78 13598.98 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer90.69 13090.48 14790.93 12094.18 11896.08 13894.03 12578.20 19093.47 11889.96 7590.97 8780.30 14893.72 11287.66 20188.75 19395.51 19596.12 168
MVSTER94.89 6695.07 7694.68 7694.71 10796.68 12297.00 5990.57 9495.18 9293.05 3995.21 4586.41 11293.72 11297.59 5295.88 9199.00 11198.50 104
test_part191.21 12489.47 15293.24 9994.26 11795.45 16295.26 10488.36 12188.49 17490.04 7272.61 18882.82 13893.69 11493.25 16094.62 12597.84 17399.06 59
USDC90.69 13090.52 14690.88 12194.17 11996.43 12995.82 9986.76 13793.92 11076.27 15386.49 11874.30 17393.67 11595.04 13293.36 15598.61 14894.13 185
Effi-MVS+-dtu91.78 11693.59 10489.68 13992.44 14397.11 10994.40 12184.94 16292.43 13375.48 15791.09 8683.75 13393.55 11696.61 8195.47 10297.24 18198.67 94
PatchmatchNetpermissive90.56 13292.49 11888.31 15393.83 12696.86 11592.42 15176.50 19695.96 7078.31 13991.96 7389.66 9193.48 11790.04 19389.20 19295.32 19693.73 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap89.42 14788.58 15990.40 12893.80 12795.45 16293.96 12786.54 14092.24 14076.49 15080.83 15170.44 19093.37 11894.45 14093.30 15898.26 16493.37 196
LTVRE_ROB87.32 1687.55 17488.25 16386.73 18090.66 15695.80 15193.05 14084.77 16383.35 20160.32 20983.12 14267.39 20293.32 11994.36 14394.86 11898.28 16298.87 85
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ADS-MVSNet89.80 14491.33 13888.00 16294.43 11496.71 12192.29 15574.95 20496.07 6677.39 14388.67 10586.09 11493.26 12088.44 19789.57 19195.68 19293.81 192
MDTV_nov1_ep1391.57 12093.18 10989.70 13793.39 13196.97 11093.53 13180.91 18595.70 7881.86 12392.40 6889.93 8993.25 12191.97 18190.80 18495.25 19994.46 182
UniMVSNet_NR-MVSNet90.35 13689.96 14890.80 12389.66 17095.83 14992.48 14990.53 9590.96 15479.57 13479.33 15877.14 16193.21 12292.91 16694.50 13499.37 5299.05 62
DU-MVS89.67 14688.84 15790.63 12689.26 18095.61 15592.48 14989.91 10091.22 15079.57 13477.72 16271.18 18793.21 12292.53 17094.57 12899.35 5599.05 62
pmmvs490.55 13389.91 14991.30 11790.26 16394.95 17792.73 14587.94 12693.44 11985.35 10982.28 14676.09 16593.02 12493.56 15492.26 17898.51 15496.77 162
tpmrst88.86 15989.62 15087.97 16394.33 11595.98 14092.62 14776.36 19794.62 10076.94 14785.98 12582.80 14092.80 12586.90 20387.15 19994.77 20393.93 190
RPMNet90.19 13992.03 13188.05 15993.46 12995.95 14393.41 13374.59 20592.40 13575.91 15584.22 13686.41 11292.49 12694.42 14193.85 14898.44 15896.96 157
FMVSNet590.36 13590.93 14289.70 13787.99 19692.25 20192.03 16283.51 17292.20 14184.13 11285.59 12786.48 11092.43 12794.61 13594.52 13298.13 16690.85 202
dps90.11 14289.37 15590.98 11993.89 12496.21 13593.49 13277.61 19291.95 14392.74 4588.85 10278.77 15492.37 12887.71 20087.71 19795.80 19194.38 183
Baseline_NR-MVSNet89.27 15188.01 16790.73 12589.26 18093.71 19692.71 14689.78 10590.73 15581.28 12873.53 18272.85 17992.30 12992.53 17093.84 14999.07 10298.88 83
CR-MVSNet90.16 14091.96 13288.06 15893.32 13295.95 14393.36 13575.99 20092.40 13575.19 16183.18 14185.37 11992.05 13095.21 12794.56 12998.47 15797.08 154
PatchT89.13 15491.71 13386.11 18692.92 13695.59 15783.64 20275.09 20391.87 14475.19 16182.63 14485.06 12492.05 13095.21 12794.56 12997.76 17597.08 154
v2v48288.25 16487.71 17488.88 14589.23 18495.28 16792.10 15987.89 12788.69 17273.31 17175.32 16871.64 18491.89 13292.10 17892.92 16498.86 12597.99 125
tfpnnormal88.50 16087.01 18290.23 12991.36 15095.78 15292.74 14490.09 9883.65 20076.33 15271.46 19469.58 19591.84 13395.54 11894.02 14399.06 10599.03 65
TranMVSNet+NR-MVSNet89.23 15288.48 16190.11 13589.07 18695.25 17092.91 14290.43 9690.31 16077.10 14676.62 16571.57 18591.83 13492.12 17694.59 12799.32 5898.92 78
EPNet96.27 5196.97 4495.46 5798.47 4498.28 8197.41 5493.67 5195.86 7492.86 4297.51 2493.79 6891.76 13597.03 6897.03 5998.61 14899.28 24
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Fast-Effi-MVS+-dtu91.19 12593.64 10188.33 15292.19 14596.46 12893.99 12681.52 18392.59 13071.82 17692.17 7085.54 11891.68 13695.73 11594.64 12498.80 13298.34 114
tpm87.95 16789.44 15486.21 18592.53 14294.62 18691.40 17076.36 19791.46 14869.80 19087.43 11075.14 16891.55 13789.85 19590.60 18595.61 19396.96 157
tpm cat188.90 15787.78 17390.22 13093.88 12595.39 16593.79 12878.11 19192.55 13189.43 8281.31 14979.84 15091.40 13884.95 20486.34 20294.68 20594.09 186
baseline293.01 10494.17 9191.64 11292.83 13997.49 10093.40 13487.53 12993.67 11586.07 10691.83 7686.58 10991.36 13996.38 9195.06 11298.67 14298.20 121
v1088.00 16687.96 16888.05 15989.44 17594.68 18392.36 15283.35 17389.37 16672.96 17273.98 17972.79 18091.35 14093.59 15192.88 16598.81 13098.42 109
v119287.51 17587.31 17687.74 16789.04 18794.87 18192.07 16085.03 16088.49 17470.32 18372.65 18770.35 19191.21 14193.59 15192.80 16798.78 13598.42 109
UniMVSNet (Re)90.03 14389.61 15190.51 12789.97 16796.12 13792.32 15389.26 11190.99 15380.95 13078.25 16175.08 17091.14 14293.78 14993.87 14799.41 4399.21 37
v192192087.31 17987.13 18087.52 17388.87 19094.72 18291.96 16584.59 16788.28 17669.86 18972.50 18970.03 19491.10 14393.33 15892.61 17298.71 13998.44 106
v114487.92 17087.79 17288.07 15689.27 17995.15 17292.17 15885.62 15188.52 17371.52 17773.80 18072.40 18291.06 14493.54 15592.80 16798.81 13098.33 115
MIMVSNet88.99 15691.07 14086.57 18286.78 20295.62 15491.20 17575.40 20290.65 15776.57 14984.05 13782.44 14291.01 14595.84 11095.38 10498.48 15693.50 194
test-LLR91.62 11993.56 10589.35 14393.31 13396.57 12592.02 16387.06 13592.34 13875.05 16490.20 9388.64 10190.93 14696.19 10294.07 14197.75 17696.90 160
TESTMET0.1,191.07 12693.56 10588.17 15490.43 15896.57 12592.02 16382.83 17792.34 13875.05 16490.20 9388.64 10190.93 14696.19 10294.07 14197.75 17696.90 160
SixPastTwentyTwo88.37 16289.47 15287.08 17790.01 16695.93 14587.41 19285.32 15690.26 16270.26 18486.34 12371.95 18390.93 14692.89 16791.72 18198.55 15197.22 149
test-mter90.95 12793.54 10787.93 16490.28 16296.80 11691.44 16982.68 17892.15 14274.37 16889.57 9988.23 10690.88 14996.37 9394.31 13797.93 17297.37 145
PVSNet_Blended_VisFu94.77 7295.54 6693.87 8796.48 7198.97 4694.33 12291.84 7694.93 9590.37 6885.04 13094.99 6390.87 15098.12 3697.30 5499.30 6399.45 13
CP-MVSNet87.89 17187.27 17788.62 14889.30 17895.06 17390.60 18085.78 14987.43 18575.98 15474.60 17368.14 20190.76 15193.07 16493.60 15299.30 6398.98 72
v14419287.40 17787.20 17987.64 16888.89 18894.88 18091.65 16884.70 16587.80 18071.17 18173.20 18570.91 18890.75 15292.69 16892.49 17398.71 13998.43 107
pmmvs587.83 17288.09 16587.51 17489.59 17395.48 16089.75 18684.73 16486.07 19371.44 17880.57 15370.09 19390.74 15394.47 13992.87 16698.82 12797.10 151
v888.21 16587.94 17088.51 14989.62 17195.01 17592.31 15484.99 16188.94 16774.70 16675.03 16973.51 17790.67 15492.11 17792.74 17098.80 13298.24 119
v124086.89 18186.75 18687.06 17888.75 19294.65 18591.30 17484.05 16987.49 18468.94 19371.96 19268.86 19990.65 15593.33 15892.72 17198.67 14298.24 119
gm-plane-assit83.26 19685.29 19380.89 19789.52 17489.89 20770.26 21378.24 18977.11 21058.01 21374.16 17866.90 20390.63 15697.20 6196.05 8498.66 14595.68 173
MS-PatchMatch91.82 11592.51 11691.02 11895.83 8096.88 11295.05 10784.55 16893.85 11282.01 12282.51 14591.71 7790.52 15795.07 13193.03 16298.13 16694.52 180
CDS-MVSNet92.77 10693.60 10391.80 11092.63 14196.80 11695.24 10589.14 11390.30 16184.58 11186.76 11490.65 8490.42 15895.89 10896.49 7198.79 13498.32 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS90.54 13490.87 14490.16 13191.48 14996.61 12493.26 13786.08 14587.71 18181.66 12683.11 14384.04 13090.42 15894.54 13794.60 12698.04 17095.48 176
V4288.31 16387.95 16988.73 14789.44 17595.34 16692.23 15787.21 13388.83 16974.49 16774.89 17173.43 17890.41 16092.08 17992.77 16998.60 15098.33 115
anonymousdsp88.90 15791.00 14186.44 18388.74 19395.97 14190.40 18282.86 17688.77 17167.33 19581.18 15081.44 14690.22 16196.23 9894.27 13899.12 9699.16 46
PS-CasMVS87.33 17886.68 18788.10 15589.22 18594.93 17890.35 18385.70 15086.44 19074.01 16973.43 18366.59 20790.04 16292.92 16593.52 15399.28 6598.91 81
IterMVS-SCA-FT90.24 13792.48 12087.63 16992.85 13894.30 19293.79 12881.47 18492.66 12769.95 18784.66 13388.38 10489.99 16395.39 12494.34 13697.74 17897.63 138
IterMVS90.20 13892.43 12287.61 17092.82 14094.31 19194.11 12481.54 18292.97 12369.90 18884.71 13288.16 10789.96 16495.25 12694.17 13997.31 18097.46 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
gg-mvs-nofinetune86.17 18688.57 16083.36 19493.44 13098.15 8896.58 7572.05 20874.12 21249.23 21664.81 20690.85 8389.90 16597.83 4696.84 6598.97 11497.41 144
GA-MVS89.28 15090.75 14587.57 17191.77 14796.48 12792.29 15587.58 12890.61 15865.77 19784.48 13476.84 16489.46 16695.84 11093.68 15198.52 15397.34 147
PEN-MVS87.22 18086.50 18988.07 15688.88 18994.44 18890.99 17786.21 14286.53 18973.66 17074.97 17066.56 20889.42 16791.20 18793.48 15499.24 7298.31 118
NR-MVSNet89.34 14988.66 15890.13 13490.40 15995.61 15593.04 14189.91 10091.22 15078.96 13777.72 16268.90 19889.16 16894.24 14693.95 14499.32 5898.99 70
pm-mvs189.19 15389.02 15689.38 14290.40 15995.74 15392.05 16188.10 12586.13 19177.70 14173.72 18179.44 15188.97 16995.81 11294.51 13399.08 10097.78 134
MVS-HIRNet85.36 19086.89 18383.57 19390.13 16494.51 18783.57 20372.61 20788.27 17771.22 18068.97 19881.81 14488.91 17093.08 16391.94 17994.97 20289.64 205
PM-MVS84.72 19384.47 19785.03 18984.67 20491.57 20386.27 19682.31 18087.65 18270.62 18276.54 16656.41 21588.75 17192.59 16989.85 19097.54 17996.66 165
Vis-MVSNet (Re-imp)94.46 7996.24 5692.40 10495.23 9298.64 7295.56 10190.99 8894.42 10385.02 11090.88 8894.65 6588.01 17298.17 3198.37 1699.57 898.53 102
v7n86.43 18486.52 18886.33 18487.91 19794.93 17890.15 18483.05 17486.57 18870.21 18571.48 19366.78 20587.72 17394.19 14892.96 16398.92 11998.76 93
pmmvs685.98 18884.89 19687.25 17688.83 19194.35 19089.36 18785.30 15878.51 20975.44 15862.71 20875.41 16787.65 17493.58 15392.40 17596.89 18397.29 148
DTE-MVSNet86.67 18386.09 19087.35 17588.45 19594.08 19490.65 17986.05 14686.13 19172.19 17474.58 17566.77 20687.61 17590.31 19093.12 16099.13 9497.62 139
MDTV_nov1_ep13_2view86.30 18588.27 16284.01 19287.71 19994.67 18488.08 19076.78 19590.59 15968.66 19480.46 15580.12 14987.58 17689.95 19488.20 19595.25 19993.90 191
pmmvs-eth3d84.33 19482.94 19985.96 18884.16 20590.94 20486.55 19583.79 17084.25 19875.85 15670.64 19656.43 21487.44 17792.20 17590.41 18797.97 17195.68 173
v14887.51 17586.79 18488.36 15189.39 17795.21 17189.84 18588.20 12487.61 18377.56 14273.38 18470.32 19286.80 17890.70 18992.31 17698.37 16197.98 127
TransMVSNet (Re)87.73 17386.79 18488.83 14690.76 15594.40 18991.33 17389.62 10784.73 19775.41 15972.73 18671.41 18686.80 17894.53 13893.93 14599.06 10595.83 170
pmnet_mix0286.12 18787.12 18184.96 19089.82 16894.12 19384.88 20086.63 13991.78 14565.60 19880.76 15276.98 16286.61 18087.29 20284.80 20596.21 18694.09 186
WR-MVS_H87.93 16887.85 17188.03 16189.62 17195.58 15990.47 18185.55 15387.20 18676.83 14874.42 17672.67 18186.37 18193.22 16193.04 16199.33 5698.83 89
UGNet94.92 6596.63 5092.93 10196.03 7798.63 7494.53 11991.52 8296.23 5990.03 7392.87 6496.10 5986.28 18296.68 7996.60 7099.16 9099.32 22
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UA-Net93.96 8895.95 6191.64 11296.06 7698.59 7695.29 10390.00 9991.06 15282.87 11890.64 8998.06 4086.06 18398.14 3498.20 1999.58 696.96 157
test0.0.03 191.97 11393.91 9589.72 13693.31 13396.40 13191.34 17287.06 13593.86 11181.67 12591.15 8489.16 9786.02 18495.08 13095.09 11198.91 12096.64 166
thisisatest051590.12 14192.06 13087.85 16590.03 16596.17 13687.83 19187.45 13091.71 14677.15 14585.40 12884.01 13185.74 18595.41 12393.30 15898.88 12298.43 107
FC-MVSNet-test91.63 11893.82 9989.08 14492.02 14696.40 13193.26 13787.26 13293.72 11477.26 14488.61 10689.86 9085.50 18695.72 11795.02 11499.16 9097.44 143
CMPMVSbinary65.18 1784.76 19283.10 19886.69 18195.29 9095.05 17488.37 18985.51 15480.27 20771.31 17968.37 20073.85 17585.25 18787.72 19987.75 19694.38 20688.70 206
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet84.80 19185.10 19584.45 19189.25 18392.86 19984.04 20186.21 14288.78 17066.73 19672.41 19074.87 17285.21 18888.32 19886.45 20095.30 19792.04 199
WR-MVS87.93 16888.09 16587.75 16689.26 18095.28 16790.81 17886.69 13888.90 16875.29 16074.31 17773.72 17685.19 18992.26 17393.32 15799.27 6798.81 90
TDRefinement89.07 15588.15 16490.14 13395.16 9496.88 11295.55 10290.20 9789.68 16376.42 15176.67 16474.30 17384.85 19093.11 16291.91 18098.64 14794.47 181
CVMVSNet89.77 14591.66 13487.56 17293.21 13595.45 16291.94 16689.22 11289.62 16569.34 19283.99 13885.90 11684.81 19194.30 14495.28 10796.85 18497.09 152
pmmvs379.16 20180.12 20378.05 20379.36 20986.59 21078.13 21073.87 20676.42 21157.51 21470.59 19757.02 21384.66 19290.10 19288.32 19494.75 20491.77 201
Vis-MVSNetpermissive92.77 10695.00 7890.16 13194.10 12098.79 6094.76 11588.26 12292.37 13779.95 13288.19 10991.58 7884.38 19397.59 5297.58 4299.52 1498.91 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EG-PatchMatch MVS86.68 18287.24 17886.02 18790.58 15796.26 13491.08 17681.59 18184.96 19669.80 19071.35 19575.08 17084.23 19494.24 14693.35 15698.82 12795.46 177
testgi89.42 14791.50 13787.00 17992.40 14495.59 15789.15 18885.27 15992.78 12672.42 17391.75 7776.00 16684.09 19594.38 14293.82 15098.65 14696.15 167
EPNet_dtu92.45 11195.02 7789.46 14098.02 5395.47 16194.79 11492.62 6594.97 9470.11 18694.76 5192.61 7584.07 19695.94 10795.56 9997.15 18295.82 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDA-MVSNet-bldmvs80.11 19980.24 20279.94 19977.01 21193.21 19778.86 20985.94 14882.71 20460.86 20679.71 15751.77 21783.71 19775.60 20986.37 20193.28 20792.35 197
new_pmnet81.53 19882.68 20080.20 19883.47 20789.47 20882.21 20678.36 18887.86 17960.14 21167.90 20169.43 19682.03 19889.22 19687.47 19894.99 20187.39 207
DeepMVS_CXcopyleft86.86 20979.50 20870.43 21090.73 15563.66 20180.36 15660.83 21079.68 19976.23 20889.46 21086.53 208
EU-MVSNet85.62 18987.65 17583.24 19588.54 19492.77 20087.12 19385.32 15686.71 18764.54 20078.52 16075.11 16978.35 20092.25 17492.28 17795.58 19495.93 169
IB-MVS89.56 1591.71 11792.50 11790.79 12495.94 7998.44 7887.05 19491.38 8593.15 12192.98 4184.78 13185.14 12378.27 20192.47 17294.44 13599.10 9899.08 54
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet180.03 20080.93 20178.97 20172.46 21490.73 20580.81 20782.44 17980.39 20663.64 20257.57 20964.93 20976.37 20291.66 18391.55 18298.07 16989.70 204
new-patchmatchnet78.49 20278.19 20578.84 20284.13 20690.06 20677.11 21180.39 18679.57 20859.64 21266.01 20455.65 21675.62 20384.55 20580.70 20796.14 18890.77 203
Anonymous2023120683.84 19585.19 19482.26 19687.38 20092.87 19885.49 19883.65 17186.07 19363.44 20468.42 19969.01 19775.45 20493.34 15792.44 17498.12 16894.20 184
ambc73.83 20776.23 21285.13 21182.27 20584.16 19965.58 19952.82 21123.31 22273.55 20591.41 18685.26 20492.97 20894.70 179
test_method72.96 20478.68 20466.28 20850.17 21864.90 21675.45 21250.90 21587.89 17862.54 20562.98 20768.34 20070.45 20691.90 18282.41 20688.19 21292.35 197
Gipumacopyleft68.35 20566.71 20870.27 20574.16 21368.78 21563.93 21671.77 20983.34 20254.57 21534.37 21331.88 21968.69 20783.30 20685.53 20388.48 21179.78 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test20.0382.92 19785.52 19279.90 20087.75 19891.84 20282.80 20482.99 17582.65 20560.32 20978.90 15970.50 18967.10 20892.05 18090.89 18398.44 15891.80 200
FPMVS75.84 20374.59 20677.29 20486.92 20183.89 21285.01 19980.05 18782.91 20360.61 20865.25 20560.41 21163.86 20975.60 20973.60 21187.29 21380.47 210
EMVS49.98 21046.76 21353.74 21164.96 21651.29 21937.81 21969.35 21251.83 21522.69 22029.57 21525.06 22057.28 21044.81 21556.11 21470.32 21768.64 215
E-PMN50.67 20947.85 21253.96 21064.13 21750.98 22038.06 21869.51 21151.40 21624.60 21929.46 21624.39 22156.07 21148.17 21459.70 21371.40 21670.84 214
PMVScopyleft63.12 1867.27 20666.39 20968.30 20677.98 21060.24 21759.53 21776.82 19366.65 21360.74 20754.39 21059.82 21251.24 21273.92 21270.52 21283.48 21479.17 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt66.88 20786.07 20373.86 21468.22 21433.38 21696.88 4780.67 13188.23 10878.82 15349.78 21382.68 20777.47 20983.19 215
MVEpermissive50.86 1949.54 21151.43 21147.33 21244.14 21959.20 21836.45 22060.59 21441.47 21731.14 21829.58 21417.06 22348.52 21462.22 21374.63 21063.12 21875.87 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS264.36 20865.94 21062.52 20967.37 21577.44 21364.39 21569.32 21361.47 21434.59 21746.09 21241.03 21848.02 21574.56 21178.23 20891.43 20982.76 209
testmvs12.09 21216.94 2146.42 2143.15 2206.08 2219.51 2223.84 21721.46 2185.31 22127.49 2176.76 22410.89 21617.06 21615.01 2155.84 21924.75 216
test1239.58 21313.53 2154.97 2151.31 2225.47 2228.32 2232.95 21818.14 2192.03 22320.82 2182.34 22510.60 21710.00 21714.16 2164.60 22023.77 217
GG-mvs-BLEND66.17 20794.91 7932.63 2131.32 22196.64 12391.40 1700.85 21994.39 1052.20 22290.15 9595.70 612.27 21896.39 9095.44 10397.78 17495.68 173
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def63.50 203
9.1499.28 11
SR-MVS99.45 997.61 1599.20 15
our_test_389.78 16993.84 19585.59 197
MTAPA96.83 1099.12 20
MTMP97.18 598.83 26
Patchmatch-RL test34.61 221
XVS96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
X-MVStestdata96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
mPP-MVS99.21 2498.29 38
NP-MVS95.32 86
Patchmtry95.96 14293.36 13575.99 20075.19 161