This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
HFP-MVS98.48 1098.62 1198.32 1399.39 1999.33 2299.27 1197.42 2098.27 795.25 2598.34 1098.83 2799.08 198.26 3498.08 2599.48 2799.26 33
ACMMPR98.40 1398.49 1398.28 1599.41 1599.40 1399.36 497.35 2398.30 695.02 2797.79 1898.39 3899.04 298.26 3498.10 2399.50 2699.22 39
SD-MVS98.52 898.77 998.23 1798.15 5199.26 2798.79 2797.59 1798.52 396.25 1797.99 1699.75 699.01 398.27 3397.97 3199.59 699.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CPTT-MVS97.78 2797.54 3698.05 2398.91 3699.05 3899.00 2196.96 3597.14 4395.92 1995.50 4598.78 2998.99 497.20 6896.07 8898.54 15999.04 67
DVP-MVScopyleft98.86 498.97 398.75 299.43 1499.63 199.25 1397.81 298.62 297.69 197.59 2199.90 298.93 598.99 498.42 1199.37 5899.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSLP-MVS++98.04 2497.93 3398.18 1899.10 2999.09 3798.34 3796.99 3497.54 3196.60 1494.82 5298.45 3698.89 697.46 6298.77 499.17 9399.37 20
TSAR-MVS + MP.98.49 998.78 898.15 2198.14 5299.17 3499.34 697.18 3198.44 595.72 2197.84 1799.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
zzz-MVS98.43 1298.31 2498.57 599.48 599.40 1399.32 997.62 1497.70 2396.67 1296.59 3399.09 2298.86 898.65 1397.56 5099.45 3599.17 49
APDe-MVS98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 499.57 9
SMA-MVScopyleft98.66 798.89 798.39 1099.60 199.41 1299.00 2197.63 1397.78 1895.83 2098.33 1199.83 498.85 1098.93 898.56 699.41 4999.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS98.47 1198.46 1698.48 899.40 1699.05 3899.02 2097.54 1897.73 1996.65 1397.20 3099.13 2098.85 1098.91 998.10 2399.41 4999.08 57
PGM-MVS97.81 2698.11 2997.46 3199.55 399.34 2199.32 994.51 4796.21 6493.07 3998.05 1597.95 4398.82 1298.22 3797.89 3799.48 2799.09 56
CP-MVS98.32 1898.34 2298.29 1499.34 2299.30 2399.15 1597.35 2397.49 3395.58 2397.72 1998.62 3498.82 1298.29 2997.67 4599.51 2499.28 28
MCST-MVS98.20 1998.36 1998.01 2499.40 1699.05 3899.00 2197.62 1497.59 3093.70 3697.42 2899.30 1198.77 1498.39 2797.48 5299.59 699.31 27
AdaColmapbinary97.53 3196.93 4898.24 1699.21 2598.77 6798.47 3597.34 2596.68 5496.52 1595.11 5096.12 5998.72 1597.19 7096.24 8499.17 9398.39 115
ACMMP_NAP98.20 1998.49 1397.85 2799.50 499.40 1399.26 1297.64 1297.47 3592.62 4997.59 2199.09 2298.71 1698.82 1297.86 3899.40 5299.19 43
DeepC-MVS_fast96.13 198.13 2198.27 2697.97 2699.16 2899.03 4599.05 1997.24 2898.22 1094.17 3495.82 4198.07 4098.69 1798.83 1198.80 299.52 1999.10 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++98.92 199.18 198.61 499.47 699.61 299.39 397.82 198.80 196.86 998.90 299.92 198.67 1899.02 298.20 1999.43 4699.82 1
SED-MVS98.90 299.07 298.69 399.38 2099.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1899.02 298.26 1799.36 6099.61 6
MSP-MVS98.73 698.93 598.50 799.44 1399.57 499.36 497.65 998.14 1296.51 1698.49 799.65 898.67 1898.60 1598.42 1199.40 5299.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.34 1798.47 1598.18 1899.46 999.15 3599.10 1797.69 897.67 2694.93 2897.62 2099.70 798.60 2198.45 2197.46 5399.31 6799.26 33
DPE-MVScopyleft98.75 598.91 698.57 599.21 2599.54 699.42 297.78 697.49 3396.84 1098.94 199.82 598.59 2298.90 1098.22 1899.56 1699.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC98.10 2298.05 3198.17 2099.38 2099.05 3899.00 2197.53 1998.04 1495.12 2694.80 5399.18 1898.58 2398.49 1897.78 4299.39 5498.98 75
MP-MVScopyleft98.09 2398.30 2597.84 2899.34 2299.19 3399.23 1497.40 2197.09 4593.03 4297.58 2398.85 2698.57 2498.44 2397.69 4499.48 2799.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
X-MVS97.84 2598.19 2897.42 3299.40 1699.35 1899.06 1897.25 2797.38 3690.85 6496.06 3898.72 3098.53 2598.41 2598.15 2299.46 3199.28 28
APD-MVScopyleft98.36 1698.32 2398.41 999.47 699.26 2799.12 1697.77 796.73 5296.12 1897.27 2998.88 2598.46 2698.47 1998.39 1499.52 1999.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DROMVSNet96.49 5197.63 3595.16 6794.75 11298.69 7397.39 5788.97 12096.34 5992.02 5496.04 3996.46 5298.21 2798.41 2597.96 3299.61 599.55 10
train_agg97.65 3098.06 3097.18 3598.94 3498.91 5898.98 2597.07 3396.71 5390.66 6997.43 2799.08 2498.20 2897.96 4897.14 6399.22 8499.19 43
CS-MVS-test97.00 4197.85 3496.00 5397.77 5799.56 596.35 8791.95 7897.54 3192.20 5196.14 3796.00 6298.19 2998.46 2097.78 4299.57 1399.45 16
DeepC-MVS94.87 496.76 5096.50 5597.05 3798.21 5099.28 2598.67 2897.38 2297.31 3790.36 7689.19 10493.58 7398.19 2998.31 2898.50 799.51 2499.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS96.87 4597.41 4096.24 4897.42 6299.48 997.30 5891.83 8397.17 4193.02 4394.80 5394.45 6898.16 3198.61 1497.85 3999.69 199.50 12
SteuartSystems-ACMMP98.38 1598.71 1097.99 2599.34 2299.46 1099.34 697.33 2697.31 3794.25 3298.06 1499.17 1998.13 3298.98 598.46 999.55 1799.54 11
Skip Steuart: Steuart Systems R&D Blog.
xxxxxxxxxxxxxcwj97.07 3995.99 6398.33 1199.45 1099.05 3898.27 3897.65 997.73 1997.02 798.18 1281.99 14798.11 3398.15 3997.62 4699.45 3599.19 43
SF-MVS98.39 1498.45 1798.33 1199.45 1099.05 3898.27 3897.65 997.73 1997.02 798.18 1299.25 1598.11 3398.15 3997.62 4699.45 3599.19 43
CSCG97.44 3397.18 4497.75 2999.47 699.52 898.55 3295.41 4297.69 2595.72 2194.29 5795.53 6498.10 3596.20 10897.38 5799.24 7899.62 4
3Dnovator+93.91 797.23 3697.22 4197.24 3498.89 3798.85 6398.26 4093.25 5997.99 1595.56 2490.01 10098.03 4298.05 3697.91 4998.43 1099.44 4399.35 22
TSAR-MVS + GP.97.45 3298.36 1996.39 4495.56 8998.93 5597.74 5093.31 5697.61 2994.24 3398.44 999.19 1798.03 3797.60 5897.41 5599.44 4399.33 24
PLCcopyleft94.95 397.37 3496.77 5298.07 2298.97 3398.21 9197.94 4796.85 3797.66 2797.58 393.33 6196.84 4998.01 3897.13 7296.20 8699.09 10598.01 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator93.79 897.08 3897.20 4296.95 3999.09 3099.03 4598.20 4193.33 5597.99 1593.82 3590.61 9496.80 5097.82 3997.90 5098.78 399.47 3099.26 33
LS3D95.46 6195.14 7795.84 5597.91 5698.90 6098.58 3197.79 597.07 4683.65 12388.71 10788.64 10597.82 3997.49 6197.42 5499.26 7797.72 143
CNLPA96.90 4496.28 5897.64 3098.56 4498.63 8096.85 6896.60 3897.73 1997.08 689.78 10296.28 5797.80 4196.73 8496.63 7598.94 12498.14 127
ACMMPcopyleft97.37 3497.48 3897.25 3398.88 3899.28 2598.47 3596.86 3697.04 4792.15 5297.57 2496.05 6197.67 4297.27 6695.99 9399.46 3199.14 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
canonicalmvs95.25 6795.45 7195.00 7195.27 9798.72 7196.89 6689.82 10896.51 5690.84 6793.72 6086.01 11997.66 4395.78 12097.94 3499.54 1899.50 12
QAPM96.78 4997.14 4596.36 4599.05 3199.14 3698.02 4493.26 5797.27 3990.84 6791.16 8697.31 4597.64 4497.70 5698.20 1999.33 6299.18 47
TAPA-MVS94.18 596.38 5296.49 5696.25 4698.26 4998.66 7598.00 4594.96 4597.17 4189.48 8892.91 6696.35 5497.53 4596.59 8995.90 9699.28 7197.82 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PHI-MVS97.78 2798.44 1897.02 3898.73 3999.25 2998.11 4295.54 4196.66 5592.79 4698.52 699.38 997.50 4697.84 5198.39 1499.45 3599.03 68
ETV-MVS96.31 5397.47 3994.96 7394.79 10998.78 6696.08 9391.41 9096.16 6590.50 7195.76 4396.20 5897.39 4798.42 2497.82 4099.57 1399.18 47
OMC-MVS97.00 4196.92 4997.09 3698.69 4098.66 7597.85 4895.02 4498.09 1394.47 2993.15 6296.90 4797.38 4897.16 7196.82 7399.13 10097.65 144
MAR-MVS95.50 5895.60 6795.39 6498.67 4198.18 9495.89 10189.81 10994.55 10891.97 5592.99 6490.21 9297.30 4996.79 8197.49 5198.72 14598.99 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS96.86 4696.82 5196.91 4098.08 5398.20 9298.52 3497.20 3097.24 4091.42 5891.84 7898.45 3697.25 5097.07 7397.40 5698.95 12397.55 147
abl_696.82 4198.60 4398.74 6897.74 5093.73 5196.25 6294.37 3194.55 5698.60 3597.25 5099.27 7398.61 100
MVS_111021_LR97.16 3798.01 3296.16 4998.47 4598.98 5096.94 6593.89 5097.64 2891.44 5798.89 396.41 5397.20 5298.02 4797.29 6299.04 11698.85 90
CDPH-MVS96.84 4797.49 3796.09 5098.92 3598.85 6398.61 2995.09 4396.00 7287.29 10895.45 4797.42 4497.16 5397.83 5297.94 3499.44 4398.92 81
thres40093.56 10492.43 12994.87 7695.40 9198.91 5896.70 7692.38 7092.93 13188.19 10386.69 12077.35 16697.13 5496.75 8395.85 9899.42 4898.56 102
thres20093.62 10292.54 12294.88 7595.36 9298.93 5596.75 7492.31 7192.84 13288.28 10186.99 11777.81 16597.13 5496.82 7895.92 9499.45 3598.49 108
tfpn200view993.64 10192.57 12194.89 7495.33 9398.94 5396.82 6992.31 7192.63 13588.29 9987.21 11578.01 16397.12 5696.82 7895.85 9899.45 3598.56 102
thres600view793.49 10692.37 13294.79 7995.42 9098.93 5596.58 8092.31 7193.04 12987.88 10486.62 12176.94 16997.09 5796.82 7895.63 10399.45 3598.63 99
EIA-MVS95.50 5896.19 6094.69 8194.83 10898.88 6295.93 9891.50 8994.47 10989.43 8993.14 6392.72 7897.05 5897.82 5497.13 6499.43 4699.15 51
ET-MVSNet_ETH3D93.34 10894.33 9192.18 11483.26 21597.66 10496.72 7589.89 10795.62 8487.17 10996.00 4083.69 13896.99 5993.78 15695.34 11199.06 11198.18 126
TSAR-MVS + COLMAP94.79 7394.51 8695.11 6896.50 7397.54 10597.99 4694.54 4697.81 1785.88 11496.73 3281.28 15196.99 5996.29 10395.21 11698.76 14496.73 170
PCF-MVS93.95 695.65 5795.14 7796.25 4697.73 6098.73 7097.59 5397.13 3292.50 13989.09 9789.85 10196.65 5196.90 6194.97 14094.89 12499.08 10698.38 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + ACMM97.71 2998.60 1296.66 4298.64 4299.05 3898.85 2697.23 2998.45 489.40 9197.51 2599.27 1496.88 6298.53 1697.81 4198.96 12299.59 8
OpenMVScopyleft92.33 1195.50 5895.22 7595.82 5698.98 3298.97 5197.67 5293.04 6594.64 10689.18 9584.44 14094.79 6696.79 6397.23 6797.61 4899.24 7898.88 86
thres100view90093.55 10592.47 12894.81 7895.33 9398.74 6896.78 7392.30 7492.63 13588.29 9987.21 11578.01 16396.78 6496.38 9895.92 9499.38 5598.40 114
Anonymous2023121193.49 10692.33 13394.84 7794.78 11198.00 9896.11 9291.85 8094.86 10390.91 6374.69 17989.18 10096.73 6594.82 14195.51 10798.67 14999.24 36
Effi-MVS+92.93 11293.86 10191.86 11594.07 12898.09 9795.59 10685.98 15394.27 11379.54 14391.12 8981.81 14896.71 6696.67 8796.06 8999.27 7398.98 75
MVS_111021_HR97.04 4098.20 2795.69 5798.44 4799.29 2496.59 7993.20 6097.70 2389.94 8398.46 896.89 4896.71 6698.11 4497.95 3399.27 7399.01 71
Fast-Effi-MVS+91.87 12192.08 13691.62 12192.91 14497.21 11594.93 11784.60 17293.61 12381.49 13483.50 14578.95 15896.62 6896.55 9196.22 8599.16 9698.51 106
casdiffmvs94.38 8694.15 9794.64 8394.70 11698.51 8496.03 9691.66 8595.70 8189.36 9286.48 12485.03 12996.60 6997.40 6397.30 6099.52 1998.67 97
Anonymous20240521192.18 13495.04 10498.20 9296.14 9191.79 8493.93 11674.60 18088.38 10896.48 7095.17 13695.82 10199.00 11799.15 51
MVS_Test94.82 7195.66 6693.84 9494.79 10998.35 8796.49 8389.10 11996.12 6887.09 11092.58 6990.61 8996.48 7096.51 9696.89 7099.11 10398.54 104
ACMM92.75 1094.41 8593.84 10295.09 6996.41 7696.80 12394.88 11993.54 5396.41 5890.16 7792.31 7283.11 14196.32 7296.22 10694.65 13099.22 8497.35 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS93.61 10392.43 12995.00 7196.94 7097.34 11197.78 4994.23 4889.64 17185.53 11588.70 10882.81 14396.28 7396.28 10495.00 12399.24 7897.22 156
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CANet96.84 4797.20 4296.42 4397.92 5599.24 3198.60 3093.51 5497.11 4493.07 3991.16 8697.24 4696.21 7498.24 3698.05 2699.22 8499.35 22
PMMVS94.61 7895.56 6893.50 9994.30 12396.74 12794.91 11889.56 11395.58 8687.72 10596.15 3692.86 7696.06 7595.47 12895.02 12198.43 16797.09 159
CLD-MVS94.79 7394.36 9095.30 6595.21 9997.46 10897.23 5992.24 7596.43 5791.77 5692.69 6884.31 13296.06 7595.52 12695.03 12099.31 6799.06 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchMatch-RL94.69 7794.41 8895.02 7097.63 6198.15 9594.50 12791.99 7795.32 9091.31 6095.47 4683.44 13996.02 7796.56 9095.23 11598.69 14896.67 171
diffmvs94.31 8894.21 9294.42 8694.64 11798.28 8896.36 8691.56 8696.77 5188.89 9888.97 10584.23 13396.01 7896.05 11296.41 7999.05 11598.79 94
DCV-MVSNet94.76 7695.12 7994.35 8795.10 10395.81 15796.46 8489.49 11496.33 6090.16 7792.55 7090.26 9195.83 7995.52 12696.03 9199.06 11199.33 24
MVS_030496.31 5396.91 5095.62 5897.21 6799.20 3298.55 3293.10 6297.04 4789.73 8590.30 9696.35 5495.71 8098.14 4197.93 3699.38 5599.40 18
HyFIR lowres test92.03 11991.55 14392.58 10997.13 6898.72 7194.65 12486.54 14693.58 12482.56 12767.75 20990.47 9095.67 8195.87 11695.54 10698.91 12798.93 80
baseline194.59 7994.47 8794.72 8095.16 10097.97 10096.07 9491.94 7994.86 10389.98 8191.60 8285.87 12195.64 8297.07 7396.90 6999.52 1997.06 163
GeoE92.52 11792.64 12092.39 11293.96 12997.76 10296.01 9785.60 15893.23 12783.94 12081.56 15384.80 13095.63 8396.22 10695.83 10099.19 9199.07 61
CHOSEN 280x42095.46 6197.01 4693.66 9797.28 6697.98 9996.40 8585.39 16196.10 6991.07 6196.53 3496.34 5695.61 8497.65 5796.95 6896.21 19397.49 148
HQP-MVS94.43 8394.57 8594.27 8896.41 7697.23 11496.89 6693.98 4995.94 7483.68 12295.01 5184.46 13195.58 8595.47 12894.85 12899.07 10899.00 72
MSDG94.82 7193.73 10496.09 5098.34 4897.43 11097.06 6096.05 3995.84 7890.56 7086.30 12989.10 10295.55 8696.13 11195.61 10499.00 11795.73 179
DeepPCF-MVS95.28 297.00 4198.35 2195.42 6397.30 6598.94 5394.82 12096.03 4098.24 992.11 5395.80 4298.64 3395.51 8798.95 798.66 596.78 19299.20 42
DI_MVS_plusplus_trai94.01 9293.63 10694.44 8594.54 11898.26 9097.51 5490.63 9895.88 7689.34 9380.54 16189.36 9795.48 8896.33 10296.27 8399.17 9398.78 95
FA-MVS(training)93.94 9495.16 7692.53 11094.87 10798.57 8395.42 10979.49 19495.37 8890.98 6286.54 12294.26 7095.44 8997.80 5595.19 11798.97 12098.38 116
EPP-MVSNet95.27 6696.18 6194.20 8994.88 10698.64 7894.97 11690.70 9795.34 8989.67 8791.66 8193.84 7195.42 9097.32 6597.00 6699.58 1099.47 15
RPSCF94.05 9194.00 9894.12 9096.20 7896.41 13796.61 7891.54 8795.83 7989.73 8596.94 3192.80 7795.35 9191.63 19190.44 19395.27 20593.94 196
test250694.32 8793.00 11695.87 5496.16 7999.39 1696.96 6392.80 6795.22 9694.47 2991.55 8370.45 19695.25 9298.29 2997.98 2999.59 698.10 129
ECVR-MVScopyleft94.14 8992.96 11795.52 6196.16 7999.39 1696.96 6392.80 6795.22 9692.38 5081.48 15480.31 15295.25 9298.29 2997.98 2999.59 698.05 130
LGP-MVS_train94.12 9094.62 8493.53 9896.44 7597.54 10597.40 5691.84 8194.66 10581.09 13695.70 4483.36 14095.10 9496.36 10195.71 10299.32 6499.03 68
DELS-MVS96.06 5696.04 6296.07 5297.77 5799.25 2998.10 4393.26 5794.42 11092.79 4688.52 11193.48 7495.06 9598.51 1798.83 199.45 3599.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test111193.94 9492.78 11895.29 6696.14 8199.42 1196.79 7292.85 6695.08 10091.39 5980.69 15979.86 15595.00 9698.28 3298.00 2899.58 1098.11 128
ACMP92.88 994.43 8394.38 8994.50 8496.01 8497.69 10395.85 10492.09 7695.74 8089.12 9695.14 4982.62 14594.77 9795.73 12294.67 12999.14 9999.06 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thisisatest053094.54 8095.47 7093.46 10094.51 11998.65 7794.66 12390.72 9595.69 8386.90 11193.80 5889.44 9694.74 9896.98 7794.86 12599.19 9198.85 90
tttt051794.52 8195.44 7293.44 10194.51 11998.68 7494.61 12590.72 9595.61 8586.84 11293.78 5989.26 9994.74 9897.02 7694.86 12599.20 9098.87 88
baseline94.83 7095.82 6593.68 9694.75 11297.80 10196.51 8288.53 12597.02 4989.34 9392.93 6592.18 8094.69 10095.78 12096.08 8798.27 17098.97 79
PVSNet_BlendedMVS95.41 6395.28 7395.57 5997.42 6299.02 4795.89 10193.10 6296.16 6593.12 3791.99 7485.27 12494.66 10198.09 4597.34 5899.24 7899.08 57
PVSNet_Blended95.41 6395.28 7395.57 5997.42 6299.02 4795.89 10193.10 6296.16 6593.12 3791.99 7485.27 12494.66 10198.09 4597.34 5899.24 7899.08 57
FC-MVSNet-train93.85 9793.91 9993.78 9594.94 10596.79 12694.29 13091.13 9293.84 12088.26 10290.40 9585.23 12694.65 10396.54 9295.31 11299.38 5599.28 28
CANet_DTU93.92 9696.57 5490.83 12995.63 8798.39 8696.99 6287.38 13796.26 6171.97 18296.31 3593.02 7594.53 10497.38 6496.83 7298.49 16297.79 136
FMVSNet191.54 12890.93 14992.26 11390.35 16895.27 17695.22 11387.16 14091.37 15687.62 10675.45 17483.84 13694.43 10596.52 9396.30 8098.82 13497.74 142
IterMVS-LS92.56 11693.18 11391.84 11693.90 13094.97 18394.99 11586.20 15094.18 11482.68 12685.81 13187.36 11294.43 10595.31 13296.02 9298.87 13098.60 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GBi-Net93.81 9894.18 9393.38 10291.34 15895.86 15396.22 8888.68 12295.23 9390.40 7286.39 12591.16 8394.40 10796.52 9396.30 8099.21 8797.79 136
test193.81 9894.18 9393.38 10291.34 15895.86 15396.22 8888.68 12295.23 9390.40 7286.39 12591.16 8394.40 10796.52 9396.30 8099.21 8797.79 136
FMVSNet293.30 10993.36 11293.22 10691.34 15895.86 15396.22 8888.24 12995.15 9989.92 8481.64 15289.36 9794.40 10796.77 8296.98 6799.21 8797.79 136
IS_MVSNet95.28 6596.43 5793.94 9195.30 9599.01 4995.90 9991.12 9394.13 11587.50 10791.23 8594.45 6894.17 11098.45 2198.50 799.65 399.23 37
FMVSNet393.79 10094.17 9593.35 10491.21 16195.99 14696.62 7788.68 12295.23 9390.40 7286.39 12591.16 8394.11 11195.96 11396.67 7499.07 10897.79 136
CHOSEN 1792x268892.66 11592.49 12592.85 10897.13 6898.89 6195.90 9988.50 12695.32 9083.31 12471.99 19888.96 10394.10 11296.69 8596.49 7798.15 17299.10 54
UniMVSNet_ETH3D88.47 16886.00 19891.35 12391.55 15596.29 14092.53 15588.81 12185.58 20282.33 12867.63 21066.87 21194.04 11391.49 19295.24 11498.84 13398.92 81
SCA90.92 13593.04 11588.45 15793.72 13597.33 11292.77 15076.08 20696.02 7178.26 14791.96 7690.86 8693.99 11490.98 19590.04 19695.88 19794.06 195
EPMVS90.88 13692.12 13589.44 14894.71 11497.24 11393.55 13776.81 20195.89 7581.77 13191.49 8486.47 11593.87 11590.21 19890.07 19595.92 19693.49 202
COLMAP_ROBcopyleft90.49 1493.27 11092.71 11993.93 9297.75 5997.44 10996.07 9493.17 6195.40 8783.86 12183.76 14488.72 10493.87 11594.25 15294.11 14798.87 13095.28 185
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+90.88 1291.41 13091.13 14691.74 11895.11 10296.95 11893.13 14689.48 11592.42 14179.93 14085.13 13478.02 16293.82 11793.49 16393.88 15398.94 12497.99 132
ACMH90.77 1391.51 12991.63 14291.38 12295.62 8896.87 12191.76 17489.66 11191.58 15478.67 14586.73 11978.12 16193.77 11894.59 14394.54 13898.78 14298.98 75
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer90.69 13790.48 15490.93 12794.18 12596.08 14594.03 13278.20 19793.47 12589.96 8290.97 9180.30 15393.72 11987.66 20888.75 20095.51 20296.12 175
MVSTER94.89 6995.07 8094.68 8294.71 11496.68 12997.00 6190.57 9995.18 9893.05 4195.21 4886.41 11693.72 11997.59 5995.88 9799.00 11798.50 107
test_part191.21 13189.47 15993.24 10594.26 12495.45 16995.26 11188.36 12788.49 18190.04 7972.61 19582.82 14293.69 12193.25 16794.62 13297.84 18099.06 62
USDC90.69 13790.52 15390.88 12894.17 12696.43 13695.82 10586.76 14393.92 11776.27 16086.49 12374.30 17993.67 12295.04 13993.36 16298.61 15594.13 192
Effi-MVS+-dtu91.78 12393.59 10889.68 14692.44 15097.11 11694.40 12884.94 16892.43 14075.48 16491.09 9083.75 13793.55 12396.61 8895.47 10897.24 18898.67 97
PatchmatchNetpermissive90.56 13992.49 12588.31 16093.83 13396.86 12292.42 15876.50 20395.96 7378.31 14691.96 7689.66 9593.48 12490.04 20089.20 19995.32 20393.73 200
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap89.42 15488.58 16690.40 13593.80 13495.45 16993.96 13486.54 14692.24 14776.49 15780.83 15770.44 19793.37 12594.45 14793.30 16598.26 17193.37 203
LTVRE_ROB87.32 1687.55 18188.25 17086.73 18790.66 16395.80 15893.05 14784.77 16983.35 20860.32 21683.12 14767.39 20993.32 12694.36 15094.86 12598.28 16998.87 88
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ADS-MVSNet89.80 15191.33 14588.00 16994.43 12196.71 12892.29 16274.95 21196.07 7077.39 15088.67 10986.09 11893.26 12788.44 20489.57 19895.68 19993.81 199
MDTV_nov1_ep1391.57 12793.18 11389.70 14493.39 13896.97 11793.53 13880.91 19195.70 8181.86 13092.40 7189.93 9393.25 12891.97 18890.80 19195.25 20694.46 189
UniMVSNet_NR-MVSNet90.35 14389.96 15590.80 13089.66 17795.83 15692.48 15690.53 10090.96 16179.57 14179.33 16577.14 16793.21 12992.91 17394.50 14199.37 5899.05 65
DU-MVS89.67 15388.84 16490.63 13389.26 18795.61 16292.48 15689.91 10591.22 15779.57 14177.72 16971.18 19393.21 12992.53 17794.57 13599.35 6199.05 65
pmmvs490.55 14089.91 15691.30 12490.26 17094.95 18492.73 15287.94 13293.44 12685.35 11682.28 15176.09 17193.02 13193.56 16192.26 18598.51 16196.77 169
tpmrst88.86 16689.62 15787.97 17094.33 12295.98 14792.62 15476.36 20494.62 10776.94 15485.98 13082.80 14492.80 13286.90 21087.15 20694.77 21093.93 197
RPMNet90.19 14692.03 13888.05 16693.46 13695.95 15093.41 14074.59 21292.40 14275.91 16284.22 14186.41 11692.49 13394.42 14893.85 15598.44 16596.96 164
FMVSNet590.36 14290.93 14989.70 14487.99 20392.25 20892.03 16983.51 17892.20 14884.13 11985.59 13286.48 11492.43 13494.61 14294.52 13998.13 17390.85 209
dps90.11 14989.37 16290.98 12693.89 13196.21 14293.49 13977.61 19991.95 15092.74 4888.85 10678.77 16092.37 13587.71 20787.71 20495.80 19894.38 190
Baseline_NR-MVSNet89.27 15888.01 17490.73 13289.26 18793.71 20392.71 15389.78 11090.73 16281.28 13573.53 18972.85 18592.30 13692.53 17793.84 15699.07 10898.88 86
CR-MVSNet90.16 14791.96 13988.06 16593.32 13995.95 15093.36 14275.99 20792.40 14275.19 16883.18 14685.37 12392.05 13795.21 13494.56 13698.47 16497.08 161
PatchT89.13 16191.71 14086.11 19392.92 14395.59 16483.64 20975.09 21091.87 15175.19 16882.63 14985.06 12892.05 13795.21 13494.56 13697.76 18297.08 161
v2v48288.25 17187.71 18188.88 15289.23 19195.28 17492.10 16687.89 13388.69 17973.31 17875.32 17571.64 19091.89 13992.10 18592.92 17198.86 13297.99 132
tfpnnormal88.50 16787.01 18990.23 13691.36 15795.78 15992.74 15190.09 10383.65 20776.33 15971.46 20169.58 20291.84 14095.54 12594.02 15099.06 11199.03 68
TranMVSNet+NR-MVSNet89.23 15988.48 16890.11 14289.07 19395.25 17792.91 14990.43 10190.31 16777.10 15376.62 17271.57 19191.83 14192.12 18394.59 13499.32 6498.92 81
EPNet96.27 5596.97 4795.46 6298.47 4598.28 8897.41 5593.67 5295.86 7792.86 4597.51 2593.79 7291.76 14297.03 7597.03 6598.61 15599.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Fast-Effi-MVS+-dtu91.19 13293.64 10588.33 15992.19 15296.46 13593.99 13381.52 18992.59 13771.82 18392.17 7385.54 12291.68 14395.73 12294.64 13198.80 13998.34 118
tpm87.95 17489.44 16186.21 19292.53 14994.62 19391.40 17776.36 20491.46 15569.80 19787.43 11475.14 17491.55 14489.85 20290.60 19295.61 20096.96 164
tpm cat188.90 16487.78 18090.22 13793.88 13295.39 17293.79 13578.11 19892.55 13889.43 8981.31 15579.84 15691.40 14584.95 21186.34 20994.68 21294.09 193
baseline293.01 11194.17 9591.64 11992.83 14697.49 10793.40 14187.53 13593.67 12286.07 11391.83 7986.58 11391.36 14696.38 9895.06 11998.67 14998.20 125
v1088.00 17387.96 17588.05 16689.44 18294.68 19092.36 15983.35 17989.37 17372.96 17973.98 18672.79 18691.35 14793.59 15892.88 17298.81 13798.42 112
v119287.51 18287.31 18387.74 17489.04 19494.87 18892.07 16785.03 16688.49 18170.32 19072.65 19470.35 19891.21 14893.59 15892.80 17498.78 14298.42 112
UniMVSNet (Re)90.03 15089.61 15890.51 13489.97 17496.12 14492.32 16089.26 11690.99 16080.95 13778.25 16875.08 17691.14 14993.78 15693.87 15499.41 4999.21 41
v192192087.31 18687.13 18787.52 18088.87 19794.72 18991.96 17284.59 17388.28 18369.86 19672.50 19670.03 20191.10 15093.33 16592.61 17998.71 14698.44 109
v114487.92 17787.79 17988.07 16389.27 18695.15 17992.17 16585.62 15788.52 18071.52 18473.80 18772.40 18891.06 15193.54 16292.80 17498.81 13798.33 119
MIMVSNet88.99 16391.07 14786.57 18986.78 20995.62 16191.20 18275.40 20990.65 16476.57 15684.05 14282.44 14691.01 15295.84 11795.38 11098.48 16393.50 201
test-LLR91.62 12693.56 10989.35 15093.31 14096.57 13292.02 17087.06 14192.34 14575.05 17190.20 9788.64 10590.93 15396.19 10994.07 14897.75 18396.90 167
TESTMET0.1,191.07 13393.56 10988.17 16190.43 16596.57 13292.02 17082.83 18392.34 14575.05 17190.20 9788.64 10590.93 15396.19 10994.07 14897.75 18396.90 167
SixPastTwentyTwo88.37 16989.47 15987.08 18490.01 17395.93 15287.41 19985.32 16290.26 16970.26 19186.34 12871.95 18990.93 15392.89 17491.72 18898.55 15897.22 156
test-mter90.95 13493.54 11187.93 17190.28 16996.80 12391.44 17682.68 18492.15 14974.37 17589.57 10388.23 11090.88 15696.37 10094.31 14497.93 17997.37 152
PVSNet_Blended_VisFu94.77 7595.54 6993.87 9396.48 7498.97 5194.33 12991.84 8194.93 10290.37 7585.04 13594.99 6590.87 15798.12 4397.30 6099.30 6999.45 16
CP-MVSNet87.89 17887.27 18488.62 15589.30 18595.06 18090.60 18785.78 15587.43 19275.98 16174.60 18068.14 20890.76 15893.07 17193.60 15999.30 6998.98 75
v14419287.40 18487.20 18687.64 17588.89 19594.88 18791.65 17584.70 17187.80 18771.17 18873.20 19270.91 19490.75 15992.69 17592.49 18098.71 14698.43 110
pmmvs587.83 17988.09 17287.51 18189.59 18095.48 16789.75 19384.73 17086.07 20071.44 18580.57 16070.09 20090.74 16094.47 14692.87 17398.82 13497.10 158
v888.21 17287.94 17788.51 15689.62 17895.01 18292.31 16184.99 16788.94 17474.70 17375.03 17673.51 18390.67 16192.11 18492.74 17798.80 13998.24 123
v124086.89 18886.75 19387.06 18588.75 19994.65 19291.30 18184.05 17587.49 19168.94 20071.96 19968.86 20690.65 16293.33 16592.72 17898.67 14998.24 123
gm-plane-assit83.26 20385.29 20080.89 20489.52 18189.89 21470.26 22078.24 19677.11 21758.01 22074.16 18566.90 21090.63 16397.20 6896.05 9098.66 15295.68 180
MS-PatchMatch91.82 12292.51 12391.02 12595.83 8696.88 11995.05 11484.55 17493.85 11982.01 12982.51 15091.71 8190.52 16495.07 13893.03 16998.13 17394.52 187
CDS-MVSNet92.77 11393.60 10791.80 11792.63 14896.80 12395.24 11289.14 11890.30 16884.58 11886.76 11890.65 8890.42 16595.89 11596.49 7798.79 14198.32 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS90.54 14190.87 15190.16 13891.48 15696.61 13193.26 14486.08 15187.71 18881.66 13383.11 14884.04 13490.42 16594.54 14494.60 13398.04 17795.48 183
V4288.31 17087.95 17688.73 15489.44 18295.34 17392.23 16487.21 13988.83 17674.49 17474.89 17873.43 18490.41 16792.08 18692.77 17698.60 15798.33 119
anonymousdsp88.90 16491.00 14886.44 19088.74 20095.97 14890.40 18982.86 18288.77 17867.33 20281.18 15681.44 15090.22 16896.23 10594.27 14599.12 10299.16 50
PS-CasMVS87.33 18586.68 19488.10 16289.22 19294.93 18590.35 19085.70 15686.44 19774.01 17673.43 19066.59 21490.04 16992.92 17293.52 16099.28 7198.91 84
IterMVS-SCA-FT90.24 14492.48 12787.63 17692.85 14594.30 19993.79 13581.47 19092.66 13469.95 19484.66 13888.38 10889.99 17095.39 13194.34 14397.74 18597.63 145
IterMVS90.20 14592.43 12987.61 17792.82 14794.31 19894.11 13181.54 18892.97 13069.90 19584.71 13788.16 11189.96 17195.25 13394.17 14697.31 18797.46 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
gg-mvs-nofinetune86.17 19388.57 16783.36 20193.44 13798.15 9596.58 8072.05 21574.12 21949.23 22364.81 21390.85 8789.90 17297.83 5296.84 7198.97 12097.41 151
GA-MVS89.28 15790.75 15287.57 17891.77 15496.48 13492.29 16287.58 13490.61 16565.77 20484.48 13976.84 17089.46 17395.84 11793.68 15898.52 16097.34 154
PEN-MVS87.22 18786.50 19688.07 16388.88 19694.44 19590.99 18486.21 14886.53 19673.66 17774.97 17766.56 21589.42 17491.20 19493.48 16199.24 7898.31 122
NR-MVSNet89.34 15688.66 16590.13 14190.40 16695.61 16293.04 14889.91 10591.22 15778.96 14477.72 16968.90 20589.16 17594.24 15393.95 15199.32 6498.99 73
pm-mvs189.19 16089.02 16389.38 14990.40 16695.74 16092.05 16888.10 13186.13 19877.70 14873.72 18879.44 15788.97 17695.81 11994.51 14099.08 10697.78 141
MVS-HIRNet85.36 19786.89 19083.57 20090.13 17194.51 19483.57 21072.61 21488.27 18471.22 18768.97 20581.81 14888.91 17793.08 17091.94 18694.97 20989.64 212
PM-MVS84.72 20084.47 20485.03 19684.67 21191.57 21086.27 20382.31 18687.65 18970.62 18976.54 17356.41 22288.75 17892.59 17689.85 19797.54 18696.66 172
Vis-MVSNet (Re-imp)94.46 8296.24 5992.40 11195.23 9898.64 7895.56 10790.99 9494.42 11085.02 11790.88 9294.65 6788.01 17998.17 3898.37 1699.57 1398.53 105
v7n86.43 19186.52 19586.33 19187.91 20494.93 18590.15 19183.05 18086.57 19570.21 19271.48 20066.78 21287.72 18094.19 15592.96 17098.92 12698.76 96
pmmvs685.98 19584.89 20387.25 18388.83 19894.35 19789.36 19485.30 16478.51 21675.44 16562.71 21575.41 17387.65 18193.58 16092.40 18296.89 19097.29 155
DTE-MVSNet86.67 19086.09 19787.35 18288.45 20294.08 20190.65 18686.05 15286.13 19872.19 18174.58 18266.77 21387.61 18290.31 19793.12 16799.13 10097.62 146
MDTV_nov1_ep13_2view86.30 19288.27 16984.01 19987.71 20694.67 19188.08 19776.78 20290.59 16668.66 20180.46 16280.12 15487.58 18389.95 20188.20 20295.25 20693.90 198
pmmvs-eth3d84.33 20182.94 20685.96 19584.16 21290.94 21186.55 20283.79 17684.25 20575.85 16370.64 20356.43 22187.44 18492.20 18290.41 19497.97 17895.68 180
v14887.51 18286.79 19188.36 15889.39 18495.21 17889.84 19288.20 13087.61 19077.56 14973.38 19170.32 19986.80 18590.70 19692.31 18398.37 16897.98 134
TransMVSNet (Re)87.73 18086.79 19188.83 15390.76 16294.40 19691.33 18089.62 11284.73 20475.41 16672.73 19371.41 19286.80 18594.53 14593.93 15299.06 11195.83 177
pmnet_mix0286.12 19487.12 18884.96 19789.82 17594.12 20084.88 20786.63 14591.78 15265.60 20580.76 15876.98 16886.61 18787.29 20984.80 21296.21 19394.09 193
WR-MVS_H87.93 17587.85 17888.03 16889.62 17895.58 16690.47 18885.55 15987.20 19376.83 15574.42 18372.67 18786.37 18893.22 16893.04 16899.33 6298.83 92
UGNet94.92 6896.63 5392.93 10796.03 8398.63 8094.53 12691.52 8896.23 6390.03 8092.87 6796.10 6086.28 18996.68 8696.60 7699.16 9699.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UA-Net93.96 9395.95 6491.64 11996.06 8298.59 8295.29 11090.00 10491.06 15982.87 12590.64 9398.06 4186.06 19098.14 4198.20 1999.58 1096.96 164
test0.0.03 191.97 12093.91 9989.72 14393.31 14096.40 13891.34 17987.06 14193.86 11881.67 13291.15 8889.16 10186.02 19195.08 13795.09 11898.91 12796.64 173
thisisatest051590.12 14892.06 13787.85 17290.03 17296.17 14387.83 19887.45 13691.71 15377.15 15285.40 13384.01 13585.74 19295.41 13093.30 16598.88 12998.43 110
FC-MVSNet-test91.63 12593.82 10389.08 15192.02 15396.40 13893.26 14487.26 13893.72 12177.26 15188.61 11089.86 9485.50 19395.72 12495.02 12199.16 9697.44 150
CMPMVSbinary65.18 1784.76 19983.10 20586.69 18895.29 9695.05 18188.37 19685.51 16080.27 21471.31 18668.37 20773.85 18185.25 19487.72 20687.75 20394.38 21388.70 213
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet84.80 19885.10 20284.45 19889.25 19092.86 20684.04 20886.21 14888.78 17766.73 20372.41 19774.87 17885.21 19588.32 20586.45 20795.30 20492.04 206
WR-MVS87.93 17588.09 17287.75 17389.26 18795.28 17490.81 18586.69 14488.90 17575.29 16774.31 18473.72 18285.19 19692.26 18093.32 16499.27 7398.81 93
TDRefinement89.07 16288.15 17190.14 14095.16 10096.88 11995.55 10890.20 10289.68 17076.42 15876.67 17174.30 17984.85 19793.11 16991.91 18798.64 15494.47 188
CVMVSNet89.77 15291.66 14187.56 17993.21 14295.45 16991.94 17389.22 11789.62 17269.34 19983.99 14385.90 12084.81 19894.30 15195.28 11396.85 19197.09 159
pmmvs379.16 20880.12 21078.05 21079.36 21686.59 21778.13 21773.87 21376.42 21857.51 22170.59 20457.02 22084.66 19990.10 19988.32 20194.75 21191.77 208
Vis-MVSNetpermissive92.77 11395.00 8290.16 13894.10 12798.79 6594.76 12288.26 12892.37 14479.95 13988.19 11391.58 8284.38 20097.59 5997.58 4999.52 1998.91 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EG-PatchMatch MVS86.68 18987.24 18586.02 19490.58 16496.26 14191.08 18381.59 18784.96 20369.80 19771.35 20275.08 17684.23 20194.24 15393.35 16398.82 13495.46 184
testgi89.42 15491.50 14487.00 18692.40 15195.59 16489.15 19585.27 16592.78 13372.42 18091.75 8076.00 17284.09 20294.38 14993.82 15798.65 15396.15 174
EPNet_dtu92.45 11895.02 8189.46 14798.02 5495.47 16894.79 12192.62 6994.97 10170.11 19394.76 5592.61 7984.07 20395.94 11495.56 10597.15 18995.82 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDA-MVSNet-bldmvs80.11 20680.24 20979.94 20677.01 21893.21 20478.86 21685.94 15482.71 21160.86 21379.71 16451.77 22483.71 20475.60 21686.37 20893.28 21492.35 204
new_pmnet81.53 20582.68 20780.20 20583.47 21489.47 21582.21 21378.36 19587.86 18660.14 21867.90 20869.43 20382.03 20589.22 20387.47 20594.99 20887.39 214
DeepMVS_CXcopyleft86.86 21679.50 21570.43 21790.73 16263.66 20880.36 16360.83 21779.68 20676.23 21589.46 21786.53 215
EU-MVSNet85.62 19687.65 18283.24 20288.54 20192.77 20787.12 20085.32 16286.71 19464.54 20778.52 16775.11 17578.35 20792.25 18192.28 18495.58 20195.93 176
IB-MVS89.56 1591.71 12492.50 12490.79 13195.94 8598.44 8587.05 20191.38 9193.15 12892.98 4484.78 13685.14 12778.27 20892.47 17994.44 14299.10 10499.08 57
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MIMVSNet180.03 20780.93 20878.97 20872.46 22190.73 21280.81 21482.44 18580.39 21363.64 20957.57 21664.93 21676.37 20991.66 19091.55 18998.07 17689.70 211
new-patchmatchnet78.49 20978.19 21278.84 20984.13 21390.06 21377.11 21880.39 19279.57 21559.64 21966.01 21155.65 22375.62 21084.55 21280.70 21496.14 19590.77 210
Anonymous2023120683.84 20285.19 20182.26 20387.38 20792.87 20585.49 20583.65 17786.07 20063.44 21168.42 20669.01 20475.45 21193.34 16492.44 18198.12 17594.20 191
ambc73.83 21476.23 21985.13 21882.27 21284.16 20665.58 20652.82 21823.31 22973.55 21291.41 19385.26 21192.97 21594.70 186
test_method72.96 21178.68 21166.28 21550.17 22564.90 22375.45 21950.90 22287.89 18562.54 21262.98 21468.34 20770.45 21391.90 18982.41 21388.19 21992.35 204
Gipumacopyleft68.35 21266.71 21570.27 21274.16 22068.78 22263.93 22371.77 21683.34 20954.57 22234.37 22031.88 22668.69 21483.30 21385.53 21088.48 21879.78 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test20.0382.92 20485.52 19979.90 20787.75 20591.84 20982.80 21182.99 18182.65 21260.32 21678.90 16670.50 19567.10 21592.05 18790.89 19098.44 16591.80 207
FPMVS75.84 21074.59 21377.29 21186.92 20883.89 21985.01 20680.05 19382.91 21060.61 21565.25 21260.41 21863.86 21675.60 21673.60 21887.29 22080.47 217
EMVS49.98 21746.76 22053.74 21864.96 22351.29 22637.81 22669.35 21951.83 22222.69 22729.57 22225.06 22757.28 21744.81 22256.11 22170.32 22468.64 222
E-PMN50.67 21647.85 21953.96 21764.13 22450.98 22738.06 22569.51 21851.40 22324.60 22629.46 22324.39 22856.07 21848.17 22159.70 22071.40 22370.84 221
PMVScopyleft63.12 1867.27 21366.39 21668.30 21377.98 21760.24 22459.53 22476.82 20066.65 22060.74 21454.39 21759.82 21951.24 21973.92 21970.52 21983.48 22179.17 219
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt66.88 21486.07 21073.86 22168.22 22133.38 22396.88 5080.67 13888.23 11278.82 15949.78 22082.68 21477.47 21683.19 222
MVEpermissive50.86 1949.54 21851.43 21847.33 21944.14 22659.20 22536.45 22760.59 22141.47 22431.14 22529.58 22117.06 23048.52 22162.22 22074.63 21763.12 22575.87 220
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS264.36 21565.94 21762.52 21667.37 22277.44 22064.39 22269.32 22061.47 22134.59 22446.09 21941.03 22548.02 22274.56 21878.23 21591.43 21682.76 216
testmvs12.09 21916.94 2216.42 2213.15 2276.08 2289.51 2293.84 22421.46 2255.31 22827.49 2246.76 23110.89 22317.06 22315.01 2225.84 22624.75 223
test1239.58 22013.53 2224.97 2221.31 2295.47 2298.32 2302.95 22518.14 2262.03 23020.82 2252.34 23210.60 22410.00 22414.16 2234.60 22723.77 224
GG-mvs-BLEND66.17 21494.91 8332.63 2201.32 22896.64 13091.40 1770.85 22694.39 1122.20 22990.15 9995.70 632.27 22596.39 9795.44 10997.78 18195.68 180
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def63.50 210
9.1499.28 12
SR-MVS99.45 1097.61 1699.20 16
our_test_389.78 17693.84 20285.59 204
MTAPA96.83 1199.12 21
MTMP97.18 598.83 27
Patchmatch-RL test34.61 228
XVS96.60 7199.35 1896.82 6990.85 6498.72 3099.46 31
X-MVStestdata96.60 7199.35 1896.82 6990.85 6498.72 3099.46 31
mPP-MVS99.21 2598.29 39
NP-MVS95.32 90
Patchmtry95.96 14993.36 14275.99 20775.19 168