This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVScopyleft98.86 498.97 398.75 299.43 1499.63 199.25 1397.81 298.62 297.69 197.59 2199.90 298.93 598.99 498.42 1199.37 5899.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DVP-MVS++98.92 199.18 198.61 499.47 699.61 299.39 397.82 198.80 196.86 998.90 299.92 198.67 1899.02 298.20 1999.43 4699.82 1
SED-MVS98.90 299.07 298.69 399.38 2099.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1899.02 298.26 1799.36 6099.61 6
MSP-MVS98.73 698.93 598.50 799.44 1399.57 499.36 497.65 998.14 1296.51 1698.49 799.65 898.67 1898.60 1598.42 1199.40 5299.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS-test97.00 4197.85 3496.00 5397.77 5799.56 596.35 8791.95 7897.54 3192.20 5196.14 3796.00 6298.19 2998.46 2097.78 4299.57 1399.45 16
DPE-MVScopyleft98.75 598.91 698.57 599.21 2599.54 699.42 297.78 697.49 3396.84 1098.94 199.82 598.59 2298.90 1098.22 1899.56 1699.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 499.57 9
CSCG97.44 3397.18 4497.75 2999.47 699.52 898.55 3295.41 4297.69 2595.72 2194.29 5795.53 6498.10 3596.20 10897.38 5799.24 7899.62 4
CS-MVS96.87 4597.41 4096.24 4897.42 6299.48 997.30 5891.83 8397.17 4193.02 4394.80 5394.45 6898.16 3198.61 1497.85 3999.69 199.50 12
SteuartSystems-ACMMP98.38 1598.71 1097.99 2599.34 2299.46 1099.34 697.33 2697.31 3794.25 3298.06 1499.17 1998.13 3298.98 598.46 999.55 1799.54 11
Skip Steuart: Steuart Systems R&D Blog.
test111193.94 9492.78 11895.29 6696.14 8199.42 1196.79 7292.85 6695.08 10091.39 5980.69 15979.86 15595.00 9698.28 3298.00 2899.58 1098.11 128
SMA-MVScopyleft98.66 798.89 798.39 1099.60 199.41 1299.00 2197.63 1397.78 1895.83 2098.33 1199.83 498.85 1098.93 898.56 699.41 4999.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.20 1998.49 1397.85 2799.50 499.40 1399.26 1297.64 1297.47 3592.62 4997.59 2199.09 2298.71 1698.82 1297.86 3899.40 5299.19 43
zzz-MVS98.43 1298.31 2498.57 599.48 599.40 1399.32 997.62 1497.70 2396.67 1296.59 3399.09 2298.86 898.65 1397.56 5099.45 3599.17 49
ACMMPR98.40 1398.49 1398.28 1599.41 1599.40 1399.36 497.35 2398.30 695.02 2797.79 1898.39 3899.04 298.26 3498.10 2399.50 2699.22 39
test250694.32 8793.00 11695.87 5496.16 7999.39 1696.96 6392.80 6795.22 9694.47 2991.55 8370.45 19695.25 9298.29 2997.98 2999.59 698.10 129
ECVR-MVScopyleft94.14 8992.96 11795.52 6196.16 7999.39 1696.96 6392.80 6795.22 9692.38 5081.48 15480.31 15295.25 9298.29 2997.98 2999.59 698.05 130
XVS96.60 7199.35 1896.82 6990.85 6498.72 3099.46 31
X-MVStestdata96.60 7199.35 1896.82 6990.85 6498.72 3099.46 31
X-MVS97.84 2598.19 2897.42 3299.40 1699.35 1899.06 1897.25 2797.38 3690.85 6496.06 3898.72 3098.53 2598.41 2598.15 2299.46 3199.28 28
PGM-MVS97.81 2698.11 2997.46 3199.55 399.34 2199.32 994.51 4796.21 6493.07 3998.05 1597.95 4398.82 1298.22 3797.89 3799.48 2799.09 56
HFP-MVS98.48 1098.62 1198.32 1399.39 1999.33 2299.27 1197.42 2098.27 795.25 2598.34 1098.83 2799.08 198.26 3498.08 2599.48 2799.26 33
CP-MVS98.32 1898.34 2298.29 1499.34 2299.30 2399.15 1597.35 2397.49 3395.58 2397.72 1998.62 3498.82 1298.29 2997.67 4599.51 2499.28 28
MVS_111021_HR97.04 4098.20 2795.69 5798.44 4799.29 2496.59 7993.20 6097.70 2389.94 8398.46 896.89 4896.71 6698.11 4497.95 3399.27 7399.01 71
ACMMPcopyleft97.37 3497.48 3897.25 3398.88 3899.28 2598.47 3596.86 3697.04 4792.15 5297.57 2496.05 6197.67 4297.27 6695.99 9399.46 3199.14 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS94.87 496.76 5096.50 5597.05 3798.21 5099.28 2598.67 2897.38 2297.31 3790.36 7689.19 10493.58 7398.19 2998.31 2898.50 799.51 2499.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS98.52 898.77 998.23 1798.15 5199.26 2798.79 2797.59 1798.52 396.25 1797.99 1699.75 699.01 398.27 3397.97 3199.59 699.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft98.36 1698.32 2398.41 999.47 699.26 2799.12 1697.77 796.73 5296.12 1897.27 2998.88 2598.46 2698.47 1998.39 1499.52 1999.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS96.06 5696.04 6296.07 5297.77 5799.25 2998.10 4393.26 5794.42 11092.79 4688.52 11193.48 7495.06 9598.51 1798.83 199.45 3599.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS97.78 2798.44 1897.02 3898.73 3999.25 2998.11 4295.54 4196.66 5592.79 4698.52 699.38 997.50 4697.84 5198.39 1499.45 3599.03 68
CANet96.84 4797.20 4296.42 4397.92 5599.24 3198.60 3093.51 5497.11 4493.07 3991.16 8697.24 4696.21 7498.24 3698.05 2699.22 8499.35 22
MVS_030496.31 5396.91 5095.62 5897.21 6799.20 3298.55 3293.10 6297.04 4789.73 8590.30 9696.35 5495.71 8098.14 4197.93 3699.38 5599.40 18
MP-MVScopyleft98.09 2398.30 2597.84 2899.34 2299.19 3399.23 1497.40 2197.09 4593.03 4297.58 2398.85 2698.57 2498.44 2397.69 4499.48 2799.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + MP.98.49 998.78 898.15 2198.14 5299.17 3499.34 697.18 3198.44 595.72 2197.84 1799.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft98.34 1798.47 1598.18 1899.46 999.15 3599.10 1797.69 897.67 2694.93 2897.62 2099.70 798.60 2198.45 2197.46 5399.31 6799.26 33
QAPM96.78 4997.14 4596.36 4599.05 3199.14 3698.02 4493.26 5797.27 3990.84 6791.16 8697.31 4597.64 4497.70 5698.20 1999.33 6299.18 47
MSLP-MVS++98.04 2497.93 3398.18 1899.10 2999.09 3798.34 3796.99 3497.54 3196.60 1494.82 5298.45 3698.89 697.46 6298.77 499.17 9399.37 20
xxxxxxxxxxxxxcwj97.07 3995.99 6398.33 1199.45 1099.05 3898.27 3897.65 997.73 1997.02 798.18 1281.99 14798.11 3398.15 3997.62 4699.45 3599.19 43
SF-MVS98.39 1498.45 1798.33 1199.45 1099.05 3898.27 3897.65 997.73 1997.02 798.18 1299.25 1598.11 3398.15 3997.62 4699.45 3599.19 43
TSAR-MVS + ACMM97.71 2998.60 1296.66 4298.64 4299.05 3898.85 2697.23 2998.45 489.40 9197.51 2599.27 1496.88 6298.53 1697.81 4198.96 12299.59 8
MCST-MVS98.20 1998.36 1998.01 2499.40 1699.05 3899.00 2197.62 1497.59 3093.70 3697.42 2899.30 1198.77 1498.39 2797.48 5299.59 699.31 27
CNVR-MVS98.47 1198.46 1698.48 899.40 1699.05 3899.02 2097.54 1897.73 1996.65 1397.20 3099.13 2098.85 1098.91 998.10 2399.41 4999.08 57
NCCC98.10 2298.05 3198.17 2099.38 2099.05 3899.00 2197.53 1998.04 1495.12 2694.80 5399.18 1898.58 2398.49 1897.78 4299.39 5498.98 75
CPTT-MVS97.78 2797.54 3698.05 2398.91 3699.05 3899.00 2196.96 3597.14 4395.92 1995.50 4598.78 2998.99 497.20 6896.07 8898.54 15999.04 67
DeepC-MVS_fast96.13 198.13 2198.27 2697.97 2699.16 2899.03 4599.05 1997.24 2898.22 1094.17 3495.82 4198.07 4098.69 1798.83 1198.80 299.52 1999.10 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator93.79 897.08 3897.20 4296.95 3999.09 3099.03 4598.20 4193.33 5597.99 1593.82 3590.61 9496.80 5097.82 3997.90 5098.78 399.47 3099.26 33
PVSNet_BlendedMVS95.41 6395.28 7395.57 5997.42 6299.02 4795.89 10193.10 6296.16 6593.12 3791.99 7485.27 12494.66 10198.09 4597.34 5899.24 7899.08 57
PVSNet_Blended95.41 6395.28 7395.57 5997.42 6299.02 4795.89 10193.10 6296.16 6593.12 3791.99 7485.27 12494.66 10198.09 4597.34 5899.24 7899.08 57
IS_MVSNet95.28 6596.43 5793.94 9195.30 9599.01 4995.90 9991.12 9394.13 11587.50 10791.23 8594.45 6894.17 11098.45 2198.50 799.65 399.23 37
MVS_111021_LR97.16 3798.01 3296.16 4998.47 4598.98 5096.94 6593.89 5097.64 2891.44 5798.89 396.41 5397.20 5298.02 4797.29 6299.04 11698.85 90
PVSNet_Blended_VisFu94.77 7595.54 6993.87 9396.48 7498.97 5194.33 12991.84 8194.93 10290.37 7585.04 13594.99 6590.87 15798.12 4397.30 6099.30 6999.45 16
OpenMVScopyleft92.33 1195.50 5895.22 7595.82 5698.98 3298.97 5197.67 5293.04 6594.64 10689.18 9584.44 14094.79 6696.79 6397.23 6797.61 4899.24 7898.88 86
tfpn200view993.64 10192.57 12194.89 7495.33 9398.94 5396.82 6992.31 7192.63 13588.29 9987.21 11578.01 16397.12 5696.82 7895.85 9899.45 3598.56 102
DeepPCF-MVS95.28 297.00 4198.35 2195.42 6397.30 6598.94 5394.82 12096.03 4098.24 992.11 5395.80 4298.64 3395.51 8798.95 798.66 596.78 19299.20 42
thres600view793.49 10692.37 13294.79 7995.42 9098.93 5596.58 8092.31 7193.04 12987.88 10486.62 12176.94 16997.09 5796.82 7895.63 10399.45 3598.63 99
thres20093.62 10292.54 12294.88 7595.36 9298.93 5596.75 7492.31 7192.84 13288.28 10186.99 11777.81 16597.13 5496.82 7895.92 9499.45 3598.49 108
TSAR-MVS + GP.97.45 3298.36 1996.39 4495.56 8998.93 5597.74 5093.31 5697.61 2994.24 3398.44 999.19 1798.03 3797.60 5897.41 5599.44 4399.33 24
train_agg97.65 3098.06 3097.18 3598.94 3498.91 5898.98 2597.07 3396.71 5390.66 6997.43 2799.08 2498.20 2897.96 4897.14 6399.22 8499.19 43
thres40093.56 10492.43 12994.87 7695.40 9198.91 5896.70 7692.38 7092.93 13188.19 10386.69 12077.35 16697.13 5496.75 8395.85 9899.42 4898.56 102
LS3D95.46 6195.14 7795.84 5597.91 5698.90 6098.58 3197.79 597.07 4683.65 12388.71 10788.64 10597.82 3997.49 6197.42 5499.26 7797.72 143
CHOSEN 1792x268892.66 11592.49 12592.85 10897.13 6898.89 6195.90 9988.50 12695.32 9083.31 12471.99 19888.96 10394.10 11296.69 8596.49 7798.15 17299.10 54
EIA-MVS95.50 5896.19 6094.69 8194.83 10898.88 6295.93 9891.50 8994.47 10989.43 8993.14 6392.72 7897.05 5897.82 5497.13 6499.43 4699.15 51
CDPH-MVS96.84 4797.49 3796.09 5098.92 3598.85 6398.61 2995.09 4396.00 7287.29 10895.45 4797.42 4497.16 5397.83 5297.94 3499.44 4398.92 81
3Dnovator+93.91 797.23 3697.22 4197.24 3498.89 3798.85 6398.26 4093.25 5997.99 1595.56 2490.01 10098.03 4298.05 3697.91 4998.43 1099.44 4399.35 22
Vis-MVSNetpermissive92.77 11395.00 8290.16 13894.10 12798.79 6594.76 12288.26 12892.37 14479.95 13988.19 11391.58 8284.38 20097.59 5997.58 4999.52 1998.91 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS96.31 5397.47 3994.96 7394.79 10998.78 6696.08 9391.41 9096.16 6590.50 7195.76 4396.20 5897.39 4798.42 2497.82 4099.57 1399.18 47
AdaColmapbinary97.53 3196.93 4898.24 1699.21 2598.77 6798.47 3597.34 2596.68 5496.52 1595.11 5096.12 5998.72 1597.19 7096.24 8499.17 9398.39 115
thres100view90093.55 10592.47 12894.81 7895.33 9398.74 6896.78 7392.30 7492.63 13588.29 9987.21 11578.01 16396.78 6496.38 9895.92 9499.38 5598.40 114
abl_696.82 4198.60 4398.74 6897.74 5093.73 5196.25 6294.37 3194.55 5698.60 3597.25 5099.27 7398.61 100
PCF-MVS93.95 695.65 5795.14 7796.25 4697.73 6098.73 7097.59 5397.13 3292.50 13989.09 9789.85 10196.65 5196.90 6194.97 14094.89 12499.08 10698.38 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
canonicalmvs95.25 6795.45 7195.00 7195.27 9798.72 7196.89 6689.82 10896.51 5690.84 6793.72 6086.01 11997.66 4395.78 12097.94 3499.54 1899.50 12
HyFIR lowres test92.03 11991.55 14392.58 10997.13 6898.72 7194.65 12486.54 14693.58 12482.56 12767.75 20990.47 9095.67 8195.87 11695.54 10698.91 12798.93 80
DROMVSNet96.49 5197.63 3595.16 6794.75 11298.69 7397.39 5788.97 12096.34 5992.02 5496.04 3996.46 5298.21 2798.41 2597.96 3299.61 599.55 10
tttt051794.52 8195.44 7293.44 10194.51 11998.68 7494.61 12590.72 9595.61 8586.84 11293.78 5989.26 9994.74 9897.02 7694.86 12599.20 9098.87 88
OMC-MVS97.00 4196.92 4997.09 3698.69 4098.66 7597.85 4895.02 4498.09 1394.47 2993.15 6296.90 4797.38 4897.16 7196.82 7399.13 10097.65 144
TAPA-MVS94.18 596.38 5296.49 5696.25 4698.26 4998.66 7598.00 4594.96 4597.17 4189.48 8892.91 6696.35 5497.53 4596.59 8995.90 9699.28 7197.82 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest053094.54 8095.47 7093.46 10094.51 11998.65 7794.66 12390.72 9595.69 8386.90 11193.80 5889.44 9694.74 9896.98 7794.86 12599.19 9198.85 90
Vis-MVSNet (Re-imp)94.46 8296.24 5992.40 11195.23 9898.64 7895.56 10790.99 9494.42 11085.02 11790.88 9294.65 6788.01 17998.17 3898.37 1699.57 1398.53 105
EPP-MVSNet95.27 6696.18 6194.20 8994.88 10698.64 7894.97 11690.70 9795.34 8989.67 8791.66 8193.84 7195.42 9097.32 6597.00 6699.58 1099.47 15
UGNet94.92 6896.63 5392.93 10796.03 8398.63 8094.53 12691.52 8896.23 6390.03 8092.87 6796.10 6086.28 18996.68 8696.60 7699.16 9699.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA96.90 4496.28 5897.64 3098.56 4498.63 8096.85 6896.60 3897.73 1997.08 689.78 10296.28 5797.80 4196.73 8496.63 7598.94 12498.14 127
UA-Net93.96 9395.95 6491.64 11996.06 8298.59 8295.29 11090.00 10491.06 15982.87 12590.64 9398.06 4186.06 19098.14 4198.20 1999.58 1096.96 164
FA-MVS(training)93.94 9495.16 7692.53 11094.87 10798.57 8395.42 10979.49 19495.37 8890.98 6286.54 12294.26 7095.44 8997.80 5595.19 11798.97 12098.38 116
casdiffmvs94.38 8694.15 9794.64 8394.70 11698.51 8496.03 9691.66 8595.70 8189.36 9286.48 12485.03 12996.60 6997.40 6397.30 6099.52 1998.67 97
IB-MVS89.56 1591.71 12492.50 12490.79 13195.94 8598.44 8587.05 20191.38 9193.15 12892.98 4484.78 13685.14 12778.27 20892.47 17994.44 14299.10 10499.08 57
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CANet_DTU93.92 9696.57 5490.83 12995.63 8798.39 8696.99 6287.38 13796.26 6171.97 18296.31 3593.02 7594.53 10497.38 6496.83 7298.49 16297.79 136
MVS_Test94.82 7195.66 6693.84 9494.79 10998.35 8796.49 8389.10 11996.12 6887.09 11092.58 6990.61 8996.48 7096.51 9696.89 7099.11 10398.54 104
diffmvs94.31 8894.21 9294.42 8694.64 11798.28 8896.36 8691.56 8696.77 5188.89 9888.97 10584.23 13396.01 7896.05 11296.41 7999.05 11598.79 94
EPNet96.27 5596.97 4795.46 6298.47 4598.28 8897.41 5593.67 5295.86 7792.86 4597.51 2593.79 7291.76 14297.03 7597.03 6598.61 15599.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DI_MVS_plusplus_trai94.01 9293.63 10694.44 8594.54 11898.26 9097.51 5490.63 9895.88 7689.34 9380.54 16189.36 9795.48 8896.33 10296.27 8399.17 9398.78 95
PLCcopyleft94.95 397.37 3496.77 5298.07 2298.97 3398.21 9197.94 4796.85 3797.66 2797.58 393.33 6196.84 4998.01 3897.13 7296.20 8699.09 10598.01 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS96.86 4696.82 5196.91 4098.08 5398.20 9298.52 3497.20 3097.24 4091.42 5891.84 7898.45 3697.25 5097.07 7397.40 5698.95 12397.55 147
Anonymous20240521192.18 13495.04 10498.20 9296.14 9191.79 8493.93 11674.60 18088.38 10896.48 7095.17 13695.82 10199.00 11799.15 51
MAR-MVS95.50 5895.60 6795.39 6498.67 4198.18 9495.89 10189.81 10994.55 10891.97 5592.99 6490.21 9297.30 4996.79 8197.49 5198.72 14598.99 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
gg-mvs-nofinetune86.17 19388.57 16783.36 20193.44 13798.15 9596.58 8072.05 21574.12 21949.23 22364.81 21390.85 8789.90 17297.83 5296.84 7198.97 12097.41 151
PatchMatch-RL94.69 7794.41 8895.02 7097.63 6198.15 9594.50 12791.99 7795.32 9091.31 6095.47 4683.44 13996.02 7796.56 9095.23 11598.69 14896.67 171
Effi-MVS+92.93 11293.86 10191.86 11594.07 12898.09 9795.59 10685.98 15394.27 11379.54 14391.12 8981.81 14896.71 6696.67 8796.06 8999.27 7398.98 75
Anonymous2023121193.49 10692.33 13394.84 7794.78 11198.00 9896.11 9291.85 8094.86 10390.91 6374.69 17989.18 10096.73 6594.82 14195.51 10798.67 14999.24 36
CHOSEN 280x42095.46 6197.01 4693.66 9797.28 6697.98 9996.40 8585.39 16196.10 6991.07 6196.53 3496.34 5695.61 8497.65 5796.95 6896.21 19397.49 148
baseline194.59 7994.47 8794.72 8095.16 10097.97 10096.07 9491.94 7994.86 10389.98 8191.60 8285.87 12195.64 8297.07 7396.90 6999.52 1997.06 163
baseline94.83 7095.82 6593.68 9694.75 11297.80 10196.51 8288.53 12597.02 4989.34 9392.93 6592.18 8094.69 10095.78 12096.08 8798.27 17098.97 79
GeoE92.52 11792.64 12092.39 11293.96 12997.76 10296.01 9785.60 15893.23 12783.94 12081.56 15384.80 13095.63 8396.22 10695.83 10099.19 9199.07 61
ACMP92.88 994.43 8394.38 8994.50 8496.01 8497.69 10395.85 10492.09 7695.74 8089.12 9695.14 4982.62 14594.77 9795.73 12294.67 12999.14 9999.06 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ET-MVSNet_ETH3D93.34 10894.33 9192.18 11483.26 21597.66 10496.72 7589.89 10795.62 8487.17 10996.00 4083.69 13896.99 5993.78 15695.34 11199.06 11198.18 126
TSAR-MVS + COLMAP94.79 7394.51 8695.11 6896.50 7397.54 10597.99 4694.54 4697.81 1785.88 11496.73 3281.28 15196.99 5996.29 10395.21 11698.76 14496.73 170
LGP-MVS_train94.12 9094.62 8493.53 9896.44 7597.54 10597.40 5691.84 8194.66 10581.09 13695.70 4483.36 14095.10 9496.36 10195.71 10299.32 6499.03 68
baseline293.01 11194.17 9591.64 11992.83 14697.49 10793.40 14187.53 13593.67 12286.07 11391.83 7986.58 11391.36 14696.38 9895.06 11998.67 14998.20 125
CLD-MVS94.79 7394.36 9095.30 6595.21 9997.46 10897.23 5992.24 7596.43 5791.77 5692.69 6884.31 13296.06 7595.52 12695.03 12099.31 6799.06 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
COLMAP_ROBcopyleft90.49 1493.27 11092.71 11993.93 9297.75 5997.44 10996.07 9493.17 6195.40 8783.86 12183.76 14488.72 10493.87 11594.25 15294.11 14798.87 13095.28 185
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MSDG94.82 7193.73 10496.09 5098.34 4897.43 11097.06 6096.05 3995.84 7890.56 7086.30 12989.10 10295.55 8696.13 11195.61 10499.00 11795.73 179
OPM-MVS93.61 10392.43 12995.00 7196.94 7097.34 11197.78 4994.23 4889.64 17185.53 11588.70 10882.81 14396.28 7396.28 10495.00 12399.24 7897.22 156
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SCA90.92 13593.04 11588.45 15793.72 13597.33 11292.77 15076.08 20696.02 7178.26 14791.96 7690.86 8693.99 11490.98 19590.04 19695.88 19794.06 195
EPMVS90.88 13692.12 13589.44 14894.71 11497.24 11393.55 13776.81 20195.89 7581.77 13191.49 8486.47 11593.87 11590.21 19890.07 19595.92 19693.49 202
HQP-MVS94.43 8394.57 8594.27 8896.41 7697.23 11496.89 6693.98 4995.94 7483.68 12295.01 5184.46 13195.58 8595.47 12894.85 12899.07 10899.00 72
Fast-Effi-MVS+91.87 12192.08 13691.62 12192.91 14497.21 11594.93 11784.60 17293.61 12381.49 13483.50 14578.95 15896.62 6896.55 9196.22 8599.16 9698.51 106
Effi-MVS+-dtu91.78 12393.59 10889.68 14692.44 15097.11 11694.40 12884.94 16892.43 14075.48 16491.09 9083.75 13793.55 12396.61 8895.47 10897.24 18898.67 97
MDTV_nov1_ep1391.57 12793.18 11389.70 14493.39 13896.97 11793.53 13880.91 19195.70 8181.86 13092.40 7189.93 9393.25 12891.97 18890.80 19195.25 20694.46 189
ACMH+90.88 1291.41 13091.13 14691.74 11895.11 10296.95 11893.13 14689.48 11592.42 14179.93 14085.13 13478.02 16293.82 11793.49 16393.88 15398.94 12497.99 132
MS-PatchMatch91.82 12292.51 12391.02 12595.83 8696.88 11995.05 11484.55 17493.85 11982.01 12982.51 15091.71 8190.52 16495.07 13893.03 16998.13 17394.52 187
TDRefinement89.07 16288.15 17190.14 14095.16 10096.88 11995.55 10890.20 10289.68 17076.42 15876.67 17174.30 17984.85 19793.11 16991.91 18798.64 15494.47 188
ACMH90.77 1391.51 12991.63 14291.38 12295.62 8896.87 12191.76 17489.66 11191.58 15478.67 14586.73 11978.12 16193.77 11894.59 14394.54 13898.78 14298.98 75
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchmatchNetpermissive90.56 13992.49 12588.31 16093.83 13396.86 12292.42 15876.50 20395.96 7378.31 14691.96 7689.66 9593.48 12490.04 20089.20 19995.32 20393.73 200
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-mter90.95 13493.54 11187.93 17190.28 16996.80 12391.44 17682.68 18492.15 14974.37 17589.57 10388.23 11090.88 15696.37 10094.31 14497.93 17997.37 152
CDS-MVSNet92.77 11393.60 10791.80 11792.63 14896.80 12395.24 11289.14 11890.30 16884.58 11886.76 11890.65 8890.42 16595.89 11596.49 7798.79 14198.32 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMM92.75 1094.41 8593.84 10295.09 6996.41 7696.80 12394.88 11993.54 5396.41 5890.16 7792.31 7283.11 14196.32 7296.22 10694.65 13099.22 8497.35 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train93.85 9793.91 9993.78 9594.94 10596.79 12694.29 13091.13 9293.84 12088.26 10290.40 9585.23 12694.65 10396.54 9295.31 11299.38 5599.28 28
PMMVS94.61 7895.56 6893.50 9994.30 12396.74 12794.91 11889.56 11395.58 8687.72 10596.15 3692.86 7696.06 7595.47 12895.02 12198.43 16797.09 159
ADS-MVSNet89.80 15191.33 14588.00 16994.43 12196.71 12892.29 16274.95 21196.07 7077.39 15088.67 10986.09 11893.26 12788.44 20489.57 19895.68 19993.81 199
MVSTER94.89 6995.07 8094.68 8294.71 11496.68 12997.00 6190.57 9995.18 9893.05 4195.21 4886.41 11693.72 11997.59 5995.88 9799.00 11798.50 107
GG-mvs-BLEND66.17 21494.91 8332.63 2201.32 22896.64 13091.40 1770.85 22694.39 1122.20 22990.15 9995.70 632.27 22596.39 9795.44 10997.78 18195.68 180
TAMVS90.54 14190.87 15190.16 13891.48 15696.61 13193.26 14486.08 15187.71 18881.66 13383.11 14884.04 13490.42 16594.54 14494.60 13398.04 17795.48 183
test-LLR91.62 12693.56 10989.35 15093.31 14096.57 13292.02 17087.06 14192.34 14575.05 17190.20 9788.64 10590.93 15396.19 10994.07 14897.75 18396.90 167
TESTMET0.1,191.07 13393.56 10988.17 16190.43 16596.57 13292.02 17082.83 18392.34 14575.05 17190.20 9788.64 10590.93 15396.19 10994.07 14897.75 18396.90 167
GA-MVS89.28 15790.75 15287.57 17891.77 15496.48 13492.29 16287.58 13490.61 16565.77 20484.48 13976.84 17089.46 17395.84 11793.68 15898.52 16097.34 154
Fast-Effi-MVS+-dtu91.19 13293.64 10588.33 15992.19 15296.46 13593.99 13381.52 18992.59 13771.82 18392.17 7385.54 12291.68 14395.73 12294.64 13198.80 13998.34 118
USDC90.69 13790.52 15390.88 12894.17 12696.43 13695.82 10586.76 14393.92 11776.27 16086.49 12374.30 17993.67 12295.04 13993.36 16298.61 15594.13 192
RPSCF94.05 9194.00 9894.12 9096.20 7896.41 13796.61 7891.54 8795.83 7989.73 8596.94 3192.80 7795.35 9191.63 19190.44 19395.27 20593.94 196
FC-MVSNet-test91.63 12593.82 10389.08 15192.02 15396.40 13893.26 14487.26 13893.72 12177.26 15188.61 11089.86 9485.50 19395.72 12495.02 12199.16 9697.44 150
test0.0.03 191.97 12093.91 9989.72 14393.31 14096.40 13891.34 17987.06 14193.86 11881.67 13291.15 8889.16 10186.02 19195.08 13795.09 11898.91 12796.64 173
UniMVSNet_ETH3D88.47 16886.00 19891.35 12391.55 15596.29 14092.53 15588.81 12185.58 20282.33 12867.63 21066.87 21194.04 11391.49 19295.24 11498.84 13398.92 81
EG-PatchMatch MVS86.68 18987.24 18586.02 19490.58 16496.26 14191.08 18381.59 18784.96 20369.80 19771.35 20275.08 17684.23 20194.24 15393.35 16398.82 13495.46 184
dps90.11 14989.37 16290.98 12693.89 13196.21 14293.49 13977.61 19991.95 15092.74 4888.85 10678.77 16092.37 13587.71 20787.71 20495.80 19894.38 190
thisisatest051590.12 14892.06 13787.85 17290.03 17296.17 14387.83 19887.45 13691.71 15377.15 15285.40 13384.01 13585.74 19295.41 13093.30 16598.88 12998.43 110
UniMVSNet (Re)90.03 15089.61 15890.51 13489.97 17496.12 14492.32 16089.26 11690.99 16080.95 13778.25 16875.08 17691.14 14993.78 15693.87 15499.41 4999.21 41
CostFormer90.69 13790.48 15490.93 12794.18 12596.08 14594.03 13278.20 19793.47 12589.96 8290.97 9180.30 15393.72 11987.66 20888.75 20095.51 20296.12 175
FMVSNet393.79 10094.17 9593.35 10491.21 16195.99 14696.62 7788.68 12295.23 9390.40 7286.39 12591.16 8394.11 11195.96 11396.67 7499.07 10897.79 136
tpmrst88.86 16689.62 15787.97 17094.33 12295.98 14792.62 15476.36 20494.62 10776.94 15485.98 13082.80 14492.80 13286.90 21087.15 20694.77 21093.93 197
anonymousdsp88.90 16491.00 14886.44 19088.74 20095.97 14890.40 18982.86 18288.77 17867.33 20281.18 15681.44 15090.22 16896.23 10594.27 14599.12 10299.16 50
Patchmtry95.96 14993.36 14275.99 20775.19 168
CR-MVSNet90.16 14791.96 13988.06 16593.32 13995.95 15093.36 14275.99 20792.40 14275.19 16883.18 14685.37 12392.05 13795.21 13494.56 13698.47 16497.08 161
RPMNet90.19 14692.03 13888.05 16693.46 13695.95 15093.41 14074.59 21292.40 14275.91 16284.22 14186.41 11692.49 13394.42 14893.85 15598.44 16596.96 164
SixPastTwentyTwo88.37 16989.47 15987.08 18490.01 17395.93 15287.41 19985.32 16290.26 16970.26 19186.34 12871.95 18990.93 15392.89 17491.72 18898.55 15897.22 156
GBi-Net93.81 9894.18 9393.38 10291.34 15895.86 15396.22 8888.68 12295.23 9390.40 7286.39 12591.16 8394.40 10796.52 9396.30 8099.21 8797.79 136
test193.81 9894.18 9393.38 10291.34 15895.86 15396.22 8888.68 12295.23 9390.40 7286.39 12591.16 8394.40 10796.52 9396.30 8099.21 8797.79 136
FMVSNet293.30 10993.36 11293.22 10691.34 15895.86 15396.22 8888.24 12995.15 9989.92 8481.64 15289.36 9794.40 10796.77 8296.98 6799.21 8797.79 136
UniMVSNet_NR-MVSNet90.35 14389.96 15590.80 13089.66 17795.83 15692.48 15690.53 10090.96 16179.57 14179.33 16577.14 16793.21 12992.91 17394.50 14199.37 5899.05 65
DCV-MVSNet94.76 7695.12 7994.35 8795.10 10395.81 15796.46 8489.49 11496.33 6090.16 7792.55 7090.26 9195.83 7995.52 12696.03 9199.06 11199.33 24
LTVRE_ROB87.32 1687.55 18188.25 17086.73 18790.66 16395.80 15893.05 14784.77 16983.35 20860.32 21683.12 14767.39 20993.32 12694.36 15094.86 12598.28 16998.87 88
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tfpnnormal88.50 16787.01 18990.23 13691.36 15795.78 15992.74 15190.09 10383.65 20776.33 15971.46 20169.58 20291.84 14095.54 12594.02 15099.06 11199.03 68
pm-mvs189.19 16089.02 16389.38 14990.40 16695.74 16092.05 16888.10 13186.13 19877.70 14873.72 18879.44 15788.97 17695.81 11994.51 14099.08 10697.78 141
MIMVSNet88.99 16391.07 14786.57 18986.78 20995.62 16191.20 18275.40 20990.65 16476.57 15684.05 14282.44 14691.01 15295.84 11795.38 11098.48 16393.50 201
DU-MVS89.67 15388.84 16490.63 13389.26 18795.61 16292.48 15689.91 10591.22 15779.57 14177.72 16971.18 19393.21 12992.53 17794.57 13599.35 6199.05 65
NR-MVSNet89.34 15688.66 16590.13 14190.40 16695.61 16293.04 14889.91 10591.22 15778.96 14477.72 16968.90 20589.16 17594.24 15393.95 15199.32 6498.99 73
testgi89.42 15491.50 14487.00 18692.40 15195.59 16489.15 19585.27 16592.78 13372.42 18091.75 8076.00 17284.09 20294.38 14993.82 15798.65 15396.15 174
PatchT89.13 16191.71 14086.11 19392.92 14395.59 16483.64 20975.09 21091.87 15175.19 16882.63 14985.06 12892.05 13795.21 13494.56 13697.76 18297.08 161
WR-MVS_H87.93 17587.85 17888.03 16889.62 17895.58 16690.47 18885.55 15987.20 19376.83 15574.42 18372.67 18786.37 18893.22 16893.04 16899.33 6298.83 92
pmmvs587.83 17988.09 17287.51 18189.59 18095.48 16789.75 19384.73 17086.07 20071.44 18580.57 16070.09 20090.74 16094.47 14692.87 17398.82 13497.10 158
EPNet_dtu92.45 11895.02 8189.46 14798.02 5495.47 16894.79 12192.62 6994.97 10170.11 19394.76 5592.61 7984.07 20395.94 11495.56 10597.15 18995.82 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_part191.21 13189.47 15993.24 10594.26 12495.45 16995.26 11188.36 12788.49 18190.04 7972.61 19582.82 14293.69 12193.25 16794.62 13297.84 18099.06 62
CVMVSNet89.77 15291.66 14187.56 17993.21 14295.45 16991.94 17389.22 11789.62 17269.34 19983.99 14385.90 12084.81 19894.30 15195.28 11396.85 19197.09 159
TinyColmap89.42 15488.58 16690.40 13593.80 13495.45 16993.96 13486.54 14692.24 14776.49 15780.83 15770.44 19793.37 12594.45 14793.30 16598.26 17193.37 203
tpm cat188.90 16487.78 18090.22 13793.88 13295.39 17293.79 13578.11 19892.55 13889.43 8981.31 15579.84 15691.40 14584.95 21186.34 20994.68 21294.09 193
V4288.31 17087.95 17688.73 15489.44 18295.34 17392.23 16487.21 13988.83 17674.49 17474.89 17873.43 18490.41 16792.08 18692.77 17698.60 15798.33 119
v2v48288.25 17187.71 18188.88 15289.23 19195.28 17492.10 16687.89 13388.69 17973.31 17875.32 17571.64 19091.89 13992.10 18592.92 17198.86 13297.99 132
WR-MVS87.93 17588.09 17287.75 17389.26 18795.28 17490.81 18586.69 14488.90 17575.29 16774.31 18473.72 18285.19 19692.26 18093.32 16499.27 7398.81 93
FMVSNet191.54 12890.93 14992.26 11390.35 16895.27 17695.22 11387.16 14091.37 15687.62 10675.45 17483.84 13694.43 10596.52 9396.30 8098.82 13497.74 142
TranMVSNet+NR-MVSNet89.23 15988.48 16890.11 14289.07 19395.25 17792.91 14990.43 10190.31 16777.10 15376.62 17271.57 19191.83 14192.12 18394.59 13499.32 6498.92 81
v14887.51 18286.79 19188.36 15889.39 18495.21 17889.84 19288.20 13087.61 19077.56 14973.38 19170.32 19986.80 18590.70 19692.31 18398.37 16897.98 134
v114487.92 17787.79 17988.07 16389.27 18695.15 17992.17 16585.62 15788.52 18071.52 18473.80 18772.40 18891.06 15193.54 16292.80 17498.81 13798.33 119
CP-MVSNet87.89 17887.27 18488.62 15589.30 18595.06 18090.60 18785.78 15587.43 19275.98 16174.60 18068.14 20890.76 15893.07 17193.60 15999.30 6998.98 75
CMPMVSbinary65.18 1784.76 19983.10 20586.69 18895.29 9695.05 18188.37 19685.51 16080.27 21471.31 18668.37 20773.85 18185.25 19487.72 20687.75 20394.38 21388.70 213
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v888.21 17287.94 17788.51 15689.62 17895.01 18292.31 16184.99 16788.94 17474.70 17375.03 17673.51 18390.67 16192.11 18492.74 17798.80 13998.24 123
IterMVS-LS92.56 11693.18 11391.84 11693.90 13094.97 18394.99 11586.20 15094.18 11482.68 12685.81 13187.36 11294.43 10595.31 13296.02 9298.87 13098.60 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs490.55 14089.91 15691.30 12490.26 17094.95 18492.73 15287.94 13293.44 12685.35 11682.28 15176.09 17193.02 13193.56 16192.26 18598.51 16196.77 169
v7n86.43 19186.52 19586.33 19187.91 20494.93 18590.15 19183.05 18086.57 19570.21 19271.48 20066.78 21287.72 18094.19 15592.96 17098.92 12698.76 96
PS-CasMVS87.33 18586.68 19488.10 16289.22 19294.93 18590.35 19085.70 15686.44 19774.01 17673.43 19066.59 21490.04 16992.92 17293.52 16099.28 7198.91 84
v14419287.40 18487.20 18687.64 17588.89 19594.88 18791.65 17584.70 17187.80 18771.17 18873.20 19270.91 19490.75 15992.69 17592.49 18098.71 14698.43 110
v119287.51 18287.31 18387.74 17489.04 19494.87 18892.07 16785.03 16688.49 18170.32 19072.65 19470.35 19891.21 14893.59 15892.80 17498.78 14298.42 112
v192192087.31 18687.13 18787.52 18088.87 19794.72 18991.96 17284.59 17388.28 18369.86 19672.50 19670.03 20191.10 15093.33 16592.61 17998.71 14698.44 109
v1088.00 17387.96 17588.05 16689.44 18294.68 19092.36 15983.35 17989.37 17372.96 17973.98 18672.79 18691.35 14793.59 15892.88 17298.81 13798.42 112
MDTV_nov1_ep13_2view86.30 19288.27 16984.01 19987.71 20694.67 19188.08 19776.78 20290.59 16668.66 20180.46 16280.12 15487.58 18389.95 20188.20 20295.25 20693.90 198
v124086.89 18886.75 19387.06 18588.75 19994.65 19291.30 18184.05 17587.49 19168.94 20071.96 19968.86 20690.65 16293.33 16592.72 17898.67 14998.24 123
tpm87.95 17489.44 16186.21 19292.53 14994.62 19391.40 17776.36 20491.46 15569.80 19787.43 11475.14 17491.55 14489.85 20290.60 19295.61 20096.96 164
MVS-HIRNet85.36 19786.89 19083.57 20090.13 17194.51 19483.57 21072.61 21488.27 18471.22 18768.97 20581.81 14888.91 17793.08 17091.94 18694.97 20989.64 212
PEN-MVS87.22 18786.50 19688.07 16388.88 19694.44 19590.99 18486.21 14886.53 19673.66 17774.97 17766.56 21589.42 17491.20 19493.48 16199.24 7898.31 122
TransMVSNet (Re)87.73 18086.79 19188.83 15390.76 16294.40 19691.33 18089.62 11284.73 20475.41 16672.73 19371.41 19286.80 18594.53 14593.93 15299.06 11195.83 177
pmmvs685.98 19584.89 20387.25 18388.83 19894.35 19789.36 19485.30 16478.51 21675.44 16562.71 21575.41 17387.65 18193.58 16092.40 18296.89 19097.29 155
IterMVS90.20 14592.43 12987.61 17792.82 14794.31 19894.11 13181.54 18892.97 13069.90 19584.71 13788.16 11189.96 17195.25 13394.17 14697.31 18797.46 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.24 14492.48 12787.63 17692.85 14594.30 19993.79 13581.47 19092.66 13469.95 19484.66 13888.38 10889.99 17095.39 13194.34 14397.74 18597.63 145
pmnet_mix0286.12 19487.12 18884.96 19789.82 17594.12 20084.88 20786.63 14591.78 15265.60 20580.76 15876.98 16886.61 18787.29 20984.80 21296.21 19394.09 193
DTE-MVSNet86.67 19086.09 19787.35 18288.45 20294.08 20190.65 18686.05 15286.13 19872.19 18174.58 18266.77 21387.61 18290.31 19793.12 16799.13 10097.62 146
our_test_389.78 17693.84 20285.59 204
Baseline_NR-MVSNet89.27 15888.01 17490.73 13289.26 18793.71 20392.71 15389.78 11090.73 16281.28 13573.53 18972.85 18592.30 13692.53 17793.84 15699.07 10898.88 86
MDA-MVSNet-bldmvs80.11 20680.24 20979.94 20677.01 21893.21 20478.86 21685.94 15482.71 21160.86 21379.71 16451.77 22483.71 20475.60 21686.37 20893.28 21492.35 204
Anonymous2023120683.84 20285.19 20182.26 20387.38 20792.87 20585.49 20583.65 17786.07 20063.44 21168.42 20669.01 20475.45 21193.34 16492.44 18198.12 17594.20 191
N_pmnet84.80 19885.10 20284.45 19889.25 19092.86 20684.04 20886.21 14888.78 17766.73 20372.41 19774.87 17885.21 19588.32 20586.45 20795.30 20492.04 206
EU-MVSNet85.62 19687.65 18283.24 20288.54 20192.77 20787.12 20085.32 16286.71 19464.54 20778.52 16775.11 17578.35 20792.25 18192.28 18495.58 20195.93 176
FMVSNet590.36 14290.93 14989.70 14487.99 20392.25 20892.03 16983.51 17892.20 14884.13 11985.59 13286.48 11492.43 13494.61 14294.52 13998.13 17390.85 209
test20.0382.92 20485.52 19979.90 20787.75 20591.84 20982.80 21182.99 18182.65 21260.32 21678.90 16670.50 19567.10 21592.05 18790.89 19098.44 16591.80 207
PM-MVS84.72 20084.47 20485.03 19684.67 21191.57 21086.27 20382.31 18687.65 18970.62 18976.54 17356.41 22288.75 17892.59 17689.85 19797.54 18696.66 172
pmmvs-eth3d84.33 20182.94 20685.96 19584.16 21290.94 21186.55 20283.79 17684.25 20575.85 16370.64 20356.43 22187.44 18492.20 18290.41 19497.97 17895.68 180
MIMVSNet180.03 20780.93 20878.97 20872.46 22190.73 21280.81 21482.44 18580.39 21363.64 20957.57 21664.93 21676.37 20991.66 19091.55 18998.07 17689.70 211
new-patchmatchnet78.49 20978.19 21278.84 20984.13 21390.06 21377.11 21880.39 19279.57 21559.64 21966.01 21155.65 22375.62 21084.55 21280.70 21496.14 19590.77 210
gm-plane-assit83.26 20385.29 20080.89 20489.52 18189.89 21470.26 22078.24 19677.11 21758.01 22074.16 18566.90 21090.63 16397.20 6896.05 9098.66 15295.68 180
new_pmnet81.53 20582.68 20780.20 20583.47 21489.47 21582.21 21378.36 19587.86 18660.14 21867.90 20869.43 20382.03 20589.22 20387.47 20594.99 20887.39 214
DeepMVS_CXcopyleft86.86 21679.50 21570.43 21790.73 16263.66 20880.36 16360.83 21779.68 20676.23 21589.46 21786.53 215
pmmvs379.16 20880.12 21078.05 21079.36 21686.59 21778.13 21773.87 21376.42 21857.51 22170.59 20457.02 22084.66 19990.10 19988.32 20194.75 21191.77 208
ambc73.83 21476.23 21985.13 21882.27 21284.16 20665.58 20652.82 21823.31 22973.55 21291.41 19385.26 21192.97 21594.70 186
FPMVS75.84 21074.59 21377.29 21186.92 20883.89 21985.01 20680.05 19382.91 21060.61 21565.25 21260.41 21863.86 21675.60 21673.60 21887.29 22080.47 217
PMMVS264.36 21565.94 21762.52 21667.37 22277.44 22064.39 22269.32 22061.47 22134.59 22446.09 21941.03 22548.02 22274.56 21878.23 21591.43 21682.76 216
tmp_tt66.88 21486.07 21073.86 22168.22 22133.38 22396.88 5080.67 13888.23 11278.82 15949.78 22082.68 21477.47 21683.19 222
Gipumacopyleft68.35 21266.71 21570.27 21274.16 22068.78 22263.93 22371.77 21683.34 20954.57 22234.37 22031.88 22668.69 21483.30 21385.53 21088.48 21879.78 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method72.96 21178.68 21166.28 21550.17 22564.90 22375.45 21950.90 22287.89 18562.54 21262.98 21468.34 20770.45 21391.90 18982.41 21388.19 21992.35 204
PMVScopyleft63.12 1867.27 21366.39 21668.30 21377.98 21760.24 22459.53 22476.82 20066.65 22060.74 21454.39 21759.82 21951.24 21973.92 21970.52 21983.48 22179.17 219
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.86 1949.54 21851.43 21847.33 21944.14 22659.20 22536.45 22760.59 22141.47 22431.14 22529.58 22117.06 23048.52 22162.22 22074.63 21763.12 22575.87 220
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS49.98 21746.76 22053.74 21864.96 22351.29 22637.81 22669.35 21951.83 22222.69 22729.57 22225.06 22757.28 21744.81 22256.11 22170.32 22468.64 222
E-PMN50.67 21647.85 21953.96 21764.13 22450.98 22738.06 22569.51 21851.40 22324.60 22629.46 22324.39 22856.07 21848.17 22159.70 22071.40 22370.84 221
testmvs12.09 21916.94 2216.42 2213.15 2276.08 2289.51 2293.84 22421.46 2255.31 22827.49 2246.76 23110.89 22317.06 22315.01 2225.84 22624.75 223
test1239.58 22013.53 2224.97 2221.31 2295.47 2298.32 2302.95 22518.14 2262.03 23020.82 2252.34 23210.60 22410.00 22414.16 2234.60 22723.77 224
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def63.50 210
9.1499.28 12
SR-MVS99.45 1097.61 1699.20 16
MTAPA96.83 1199.12 21
MTMP97.18 598.83 27
Patchmatch-RL test34.61 228
mPP-MVS99.21 2598.29 39
NP-MVS95.32 90