This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVScopyleft98.86 498.97 398.75 299.43 1499.63 199.25 1397.81 298.62 297.69 197.59 2199.90 298.93 598.99 498.42 1199.37 5899.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DVP-MVS++98.92 199.18 198.61 499.47 699.61 299.39 397.82 198.80 196.86 998.90 299.92 198.67 1899.02 298.20 1999.43 4699.82 1
SED-MVS98.90 299.07 298.69 399.38 2099.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1899.02 298.26 1799.36 6099.61 6
MSP-MVS98.73 698.93 598.50 799.44 1399.57 499.36 497.65 998.14 1296.51 1698.49 799.65 898.67 1898.60 1498.42 1199.40 5299.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft98.75 598.91 698.57 599.21 2599.54 599.42 297.78 697.49 3296.84 1098.94 199.82 598.59 2298.90 1098.22 1899.56 1599.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS98.87 398.96 498.77 199.58 299.53 699.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 399.57 9
CSCG97.44 3397.18 4497.75 2999.47 699.52 798.55 3295.41 4297.69 2595.72 2194.29 5695.53 6498.10 3596.20 10797.38 5799.24 7899.62 4
SteuartSystems-ACMMP98.38 1598.71 1097.99 2599.34 2299.46 899.34 697.33 2697.31 3694.25 3298.06 1499.17 1998.13 3298.98 598.46 999.55 1799.54 11
Skip Steuart: Steuart Systems R&D Blog.
test111193.94 9492.78 11795.29 6496.14 7999.42 996.79 7292.85 6695.08 9991.39 5780.69 15879.86 15495.00 9598.28 3298.00 2999.58 1098.11 127
SMA-MVScopyleft98.66 798.89 798.39 1099.60 199.41 1099.00 2197.63 1397.78 1895.83 2098.33 1199.83 498.85 1098.93 898.56 699.41 4999.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.20 1998.49 1397.85 2799.50 499.40 1199.26 1297.64 1297.47 3492.62 4897.59 2199.09 2298.71 1698.82 1297.86 3999.40 5299.19 43
zzz-MVS98.43 1298.31 2498.57 599.48 599.40 1199.32 997.62 1497.70 2396.67 1296.59 3399.09 2298.86 898.65 1397.56 5099.45 3599.17 49
ACMMPR98.40 1398.49 1398.28 1599.41 1599.40 1199.36 497.35 2398.30 695.02 2797.79 1898.39 3899.04 298.26 3498.10 2499.50 2699.22 39
test250694.32 8793.00 11595.87 5296.16 7799.39 1496.96 6392.80 6795.22 9594.47 2991.55 8370.45 19595.25 9198.29 2997.98 3099.59 698.10 128
ECVR-MVScopyleft94.14 8992.96 11695.52 5996.16 7799.39 1496.96 6392.80 6795.22 9592.38 4981.48 15380.31 15195.25 9198.29 2997.98 3099.59 698.05 129
XVS96.60 6999.35 1696.82 6990.85 6198.72 3099.46 31
X-MVStestdata96.60 6999.35 1696.82 6990.85 6198.72 3099.46 31
X-MVS97.84 2598.19 2897.42 3299.40 1699.35 1699.06 1897.25 2797.38 3590.85 6196.06 3798.72 3098.53 2598.41 2498.15 2299.46 3199.28 28
PGM-MVS97.81 2698.11 2997.46 3199.55 399.34 1999.32 994.51 4796.21 6493.07 3998.05 1597.95 4398.82 1298.22 3797.89 3899.48 2799.09 56
HFP-MVS98.48 1098.62 1198.32 1399.39 1999.33 2099.27 1197.42 2098.27 795.25 2598.34 1098.83 2799.08 198.26 3498.08 2699.48 2799.26 33
CP-MVS98.32 1898.34 2298.29 1499.34 2299.30 2199.15 1597.35 2397.49 3295.58 2397.72 1998.62 3498.82 1298.29 2997.67 4599.51 2499.28 28
MVS_111021_HR97.04 4098.20 2795.69 5598.44 4799.29 2296.59 7993.20 6097.70 2389.94 8198.46 896.89 4896.71 6698.11 4497.95 3499.27 7399.01 71
ACMMPcopyleft97.37 3497.48 3797.25 3398.88 3899.28 2398.47 3596.86 3697.04 4592.15 5097.57 2496.05 6297.67 4297.27 6595.99 9399.46 3199.14 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS94.87 496.76 4896.50 5597.05 3798.21 5099.28 2398.67 2897.38 2297.31 3690.36 7489.19 10493.58 7298.19 3198.31 2898.50 799.51 2499.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS98.52 898.77 998.23 1798.15 5199.26 2598.79 2797.59 1798.52 396.25 1797.99 1699.75 699.01 398.27 3397.97 3299.59 699.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft98.36 1698.32 2398.41 999.47 699.26 2599.12 1697.77 796.73 5296.12 1897.27 2998.88 2598.46 2698.47 1898.39 1499.52 1999.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS96.06 5696.04 6296.07 5197.77 5799.25 2798.10 4393.26 5794.42 10992.79 4588.52 11193.48 7395.06 9498.51 1698.83 199.45 3599.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS97.78 2798.44 1897.02 3898.73 3999.25 2798.11 4295.54 4196.66 5592.79 4598.52 699.38 997.50 4697.84 5198.39 1499.45 3599.03 68
CANet96.84 4597.20 4296.42 4397.92 5599.24 2998.60 3093.51 5497.11 4293.07 3991.16 8697.24 4696.21 7498.24 3698.05 2799.22 8499.35 22
MVS_030496.31 5196.91 5095.62 5697.21 6599.20 3098.55 3293.10 6297.04 4589.73 8390.30 9696.35 5495.71 8098.14 4197.93 3799.38 5599.40 18
MP-MVScopyleft98.09 2398.30 2597.84 2899.34 2299.19 3199.23 1497.40 2197.09 4393.03 4297.58 2398.85 2698.57 2498.44 2197.69 4499.48 2799.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + MP.98.49 998.78 898.15 2198.14 5299.17 3299.34 697.18 3198.44 595.72 2197.84 1799.28 1298.87 799.05 198.05 2799.66 199.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft98.34 1798.47 1598.18 1899.46 999.15 3399.10 1797.69 897.67 2694.93 2897.62 2099.70 798.60 2198.45 1997.46 5399.31 6799.26 33
QAPM96.78 4797.14 4596.36 4599.05 3199.14 3498.02 4493.26 5797.27 3890.84 6491.16 8697.31 4597.64 4497.70 5598.20 1999.33 6299.18 47
MSLP-MVS++98.04 2497.93 3398.18 1899.10 2999.09 3598.34 3796.99 3497.54 3196.60 1494.82 5298.45 3698.89 697.46 6198.77 499.17 9399.37 20
xxxxxxxxxxxxxcwj97.07 3995.99 6398.33 1199.45 1099.05 3698.27 3897.65 997.73 1997.02 798.18 1281.99 14698.11 3398.15 3997.62 4699.45 3599.19 43
SF-MVS98.39 1498.45 1798.33 1199.45 1099.05 3698.27 3897.65 997.73 1997.02 798.18 1299.25 1598.11 3398.15 3997.62 4699.45 3599.19 43
TSAR-MVS + ACMM97.71 2998.60 1296.66 4298.64 4299.05 3698.85 2697.23 2998.45 489.40 8997.51 2599.27 1496.88 6298.53 1597.81 4198.96 12199.59 8
MCST-MVS98.20 1998.36 1998.01 2499.40 1699.05 3699.00 2197.62 1497.59 3093.70 3697.42 2899.30 1198.77 1498.39 2797.48 5299.59 699.31 27
CNVR-MVS98.47 1198.46 1698.48 899.40 1699.05 3699.02 2097.54 1897.73 1996.65 1397.20 3099.13 2098.85 1098.91 998.10 2499.41 4999.08 57
NCCC98.10 2298.05 3198.17 2099.38 2099.05 3699.00 2197.53 1998.04 1495.12 2694.80 5399.18 1898.58 2398.49 1797.78 4299.39 5498.98 75
CPTT-MVS97.78 2797.54 3598.05 2398.91 3699.05 3699.00 2196.96 3597.14 4195.92 1995.50 4498.78 2998.99 497.20 6796.07 8898.54 15899.04 67
DeepC-MVS_fast96.13 198.13 2198.27 2697.97 2699.16 2899.03 4399.05 1997.24 2898.22 1094.17 3495.82 4098.07 4098.69 1798.83 1198.80 299.52 1999.10 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator93.79 897.08 3897.20 4296.95 3999.09 3099.03 4398.20 4193.33 5597.99 1593.82 3590.61 9496.80 5097.82 3997.90 5098.78 399.47 3099.26 33
PVSNet_BlendedMVS95.41 6395.28 7395.57 5797.42 6199.02 4595.89 10193.10 6296.16 6593.12 3791.99 7485.27 12394.66 10098.09 4597.34 5899.24 7899.08 57
PVSNet_Blended95.41 6395.28 7395.57 5797.42 6199.02 4595.89 10193.10 6296.16 6593.12 3791.99 7485.27 12394.66 10098.09 4597.34 5899.24 7899.08 57
IS_MVSNet95.28 6596.43 5793.94 9195.30 9399.01 4795.90 9991.12 9194.13 11487.50 10691.23 8594.45 6994.17 10998.45 1998.50 799.65 299.23 37
MVS_111021_LR97.16 3798.01 3296.16 4898.47 4598.98 4896.94 6593.89 5097.64 2891.44 5598.89 396.41 5397.20 5298.02 4797.29 6299.04 11698.85 90
PVSNet_Blended_VisFu94.77 7595.54 6993.87 9396.48 7298.97 4994.33 12891.84 8094.93 10190.37 7385.04 13494.99 6690.87 15698.12 4397.30 6099.30 6999.45 17
OpenMVScopyleft92.33 1195.50 5895.22 7595.82 5498.98 3298.97 4997.67 5293.04 6594.64 10589.18 9384.44 13994.79 6796.79 6397.23 6697.61 4899.24 7898.88 86
tfpn200view993.64 10092.57 12094.89 7295.33 9198.94 5196.82 6992.31 7192.63 13488.29 9887.21 11578.01 16297.12 5696.82 7795.85 9899.45 3598.56 102
DeepPCF-MVS95.28 297.00 4198.35 2195.42 6197.30 6398.94 5194.82 11996.03 4098.24 992.11 5195.80 4198.64 3395.51 8798.95 798.66 596.78 19199.20 42
thres600view793.49 10592.37 13194.79 7895.42 8898.93 5396.58 8092.31 7193.04 12887.88 10386.62 12176.94 16897.09 5796.82 7795.63 10399.45 3598.63 99
thres20093.62 10192.54 12194.88 7395.36 9098.93 5396.75 7492.31 7192.84 13188.28 10086.99 11777.81 16497.13 5496.82 7795.92 9499.45 3598.49 108
TSAR-MVS + GP.97.45 3298.36 1996.39 4495.56 8798.93 5397.74 5093.31 5697.61 2994.24 3398.44 999.19 1798.03 3797.60 5797.41 5599.44 4399.33 24
train_agg97.65 3098.06 3097.18 3598.94 3498.91 5698.98 2597.07 3396.71 5390.66 6697.43 2799.08 2498.20 3097.96 4897.14 6399.22 8499.19 43
thres40093.56 10392.43 12894.87 7495.40 8998.91 5696.70 7692.38 7092.93 13088.19 10286.69 12077.35 16597.13 5496.75 8295.85 9899.42 4898.56 102
LS3D95.46 6195.14 7695.84 5397.91 5698.90 5898.58 3197.79 597.07 4483.65 12288.71 10788.64 10497.82 3997.49 6097.42 5499.26 7797.72 142
CS-MVS96.14 5597.39 3994.68 8194.63 11598.89 5996.46 8490.44 9996.88 4888.52 9793.58 6096.27 5898.41 2798.43 2298.14 2399.63 399.52 12
CHOSEN 1792x268892.66 11492.49 12492.85 10897.13 6698.89 5995.90 9988.50 12695.32 8983.31 12371.99 19788.96 10294.10 11196.69 8496.49 7798.15 17199.10 54
EIA-MVS95.50 5896.19 6094.69 8094.83 10598.88 6195.93 9891.50 8794.47 10889.43 8793.14 6392.72 7797.05 5897.82 5497.13 6499.43 4699.15 51
CDPH-MVS96.84 4597.49 3696.09 4998.92 3598.85 6298.61 2995.09 4396.00 7287.29 10795.45 4697.42 4497.16 5397.83 5297.94 3599.44 4398.92 81
3Dnovator+93.91 797.23 3697.22 4197.24 3498.89 3798.85 6298.26 4093.25 5997.99 1595.56 2490.01 10098.03 4298.05 3697.91 4998.43 1099.44 4399.35 22
Vis-MVSNetpermissive92.77 11295.00 8190.16 13794.10 12698.79 6494.76 12188.26 12892.37 14379.95 13888.19 11391.58 8184.38 19997.59 5897.58 4999.52 1998.91 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS96.31 5197.47 3894.96 7194.79 10698.78 6596.08 9391.41 8896.16 6590.50 6895.76 4296.20 5997.39 4798.42 2397.82 4099.57 1399.18 47
AdaColmapbinary97.53 3196.93 4898.24 1699.21 2598.77 6698.47 3597.34 2596.68 5496.52 1595.11 5096.12 6098.72 1597.19 6996.24 8499.17 9398.39 115
thres100view90093.55 10492.47 12794.81 7795.33 9198.74 6796.78 7392.30 7492.63 13488.29 9887.21 11578.01 16296.78 6496.38 9795.92 9499.38 5598.40 114
abl_696.82 4198.60 4398.74 6797.74 5093.73 5196.25 6294.37 3194.55 5598.60 3597.25 5099.27 7398.61 100
PCF-MVS93.95 695.65 5795.14 7696.25 4697.73 5998.73 6997.59 5397.13 3292.50 13889.09 9589.85 10196.65 5196.90 6194.97 13994.89 12399.08 10698.38 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
canonicalmvs95.25 6795.45 7195.00 6995.27 9598.72 7096.89 6689.82 10796.51 5690.84 6493.72 5986.01 11897.66 4395.78 11997.94 3599.54 1899.50 13
HyFIR lowres test92.03 11891.55 14292.58 10997.13 6698.72 7094.65 12386.54 14693.58 12382.56 12667.75 20890.47 8995.67 8195.87 11595.54 10698.91 12698.93 80
DROMVSNet96.49 4997.63 3495.16 6594.75 10998.69 7297.39 5788.97 11996.34 5992.02 5296.04 3896.46 5298.21 2898.41 2497.96 3399.61 599.55 10
tttt051794.52 8195.44 7293.44 10194.51 11898.68 7394.61 12490.72 9395.61 8586.84 11193.78 5889.26 9894.74 9797.02 7594.86 12499.20 9098.87 88
OMC-MVS97.00 4196.92 4997.09 3698.69 4098.66 7497.85 4895.02 4498.09 1394.47 2993.15 6296.90 4797.38 4897.16 7096.82 7399.13 10097.65 143
TAPA-MVS94.18 596.38 5096.49 5696.25 4698.26 4998.66 7498.00 4594.96 4597.17 4089.48 8692.91 6696.35 5497.53 4596.59 8895.90 9699.28 7197.82 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest053094.54 8095.47 7093.46 10094.51 11898.65 7694.66 12290.72 9395.69 8386.90 11093.80 5789.44 9594.74 9796.98 7694.86 12499.19 9198.85 90
Vis-MVSNet (Re-imp)94.46 8296.24 5992.40 11095.23 9698.64 7795.56 10790.99 9294.42 10985.02 11690.88 9294.65 6888.01 17898.17 3898.37 1699.57 1398.53 105
EPP-MVSNet95.27 6696.18 6194.20 8994.88 10498.64 7794.97 11590.70 9595.34 8889.67 8591.66 8193.84 7095.42 8997.32 6497.00 6699.58 1099.47 15
UGNet94.92 6896.63 5392.93 10796.03 8198.63 7994.53 12591.52 8696.23 6390.03 7892.87 6796.10 6186.28 18896.68 8596.60 7699.16 9699.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA96.90 4396.28 5897.64 3098.56 4498.63 7996.85 6896.60 3897.73 1997.08 689.78 10296.28 5797.80 4196.73 8396.63 7598.94 12398.14 126
UA-Net93.96 9395.95 6491.64 11896.06 8098.59 8195.29 10990.00 10391.06 15882.87 12490.64 9398.06 4186.06 18998.14 4198.20 1999.58 1096.96 163
casdiffmvs94.38 8694.15 9694.64 8394.70 11398.51 8296.03 9691.66 8395.70 8189.36 9086.48 12385.03 12896.60 6997.40 6297.30 6099.52 1998.67 97
IB-MVS89.56 1591.71 12392.50 12390.79 13095.94 8398.44 8387.05 20091.38 8993.15 12792.98 4384.78 13585.14 12678.27 20792.47 17894.44 14199.10 10499.08 57
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CANet_DTU93.92 9596.57 5490.83 12895.63 8598.39 8496.99 6287.38 13796.26 6171.97 18196.31 3593.02 7494.53 10397.38 6396.83 7298.49 16197.79 135
MVS_Test94.82 7195.66 6693.84 9494.79 10698.35 8596.49 8389.10 11896.12 6887.09 10992.58 6990.61 8896.48 7096.51 9596.89 7099.11 10398.54 104
diffmvs94.31 8894.21 9194.42 8694.64 11498.28 8696.36 8791.56 8496.77 5188.89 9688.97 10584.23 13296.01 7896.05 11196.41 7999.05 11598.79 94
EPNet96.27 5396.97 4795.46 6098.47 4598.28 8697.41 5593.67 5295.86 7792.86 4497.51 2593.79 7191.76 14197.03 7497.03 6598.61 15499.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DI_MVS_plusplus_trai94.01 9293.63 10594.44 8594.54 11698.26 8897.51 5490.63 9695.88 7689.34 9180.54 16089.36 9695.48 8896.33 10196.27 8399.17 9398.78 95
PLCcopyleft94.95 397.37 3496.77 5298.07 2298.97 3398.21 8997.94 4796.85 3797.66 2797.58 393.33 6196.84 4998.01 3897.13 7196.20 8699.09 10598.01 130
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS96.86 4496.82 5196.91 4098.08 5398.20 9098.52 3497.20 3097.24 3991.42 5691.84 7898.45 3697.25 5097.07 7297.40 5698.95 12297.55 146
Anonymous20240521192.18 13395.04 10298.20 9096.14 9191.79 8293.93 11574.60 17988.38 10796.48 7095.17 13595.82 10199.00 11799.15 51
CS-MVS-test96.19 5497.34 4094.85 7594.52 11798.20 9097.39 5788.97 11996.83 5090.45 6995.29 4795.41 6598.21 2898.41 2497.73 4399.56 1599.47 15
MAR-MVS95.50 5895.60 6795.39 6298.67 4198.18 9395.89 10189.81 10894.55 10791.97 5392.99 6490.21 9197.30 4996.79 8097.49 5198.72 14498.99 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
gg-mvs-nofinetune86.17 19288.57 16683.36 20093.44 13698.15 9496.58 8072.05 21474.12 21849.23 22264.81 21290.85 8689.90 17197.83 5296.84 7198.97 12097.41 150
PatchMatch-RL94.69 7794.41 8795.02 6897.63 6098.15 9494.50 12691.99 7795.32 8991.31 5895.47 4583.44 13896.02 7796.56 8995.23 11598.69 14796.67 170
Effi-MVS+92.93 11193.86 10091.86 11494.07 12798.09 9695.59 10685.98 15394.27 11279.54 14291.12 8981.81 14796.71 6696.67 8696.06 8999.27 7398.98 75
Anonymous2023121193.49 10592.33 13294.84 7694.78 10898.00 9796.11 9291.85 7994.86 10290.91 6074.69 17889.18 9996.73 6594.82 14095.51 10798.67 14899.24 36
CHOSEN 280x42095.46 6197.01 4693.66 9797.28 6497.98 9896.40 8685.39 16196.10 6991.07 5996.53 3496.34 5695.61 8497.65 5696.95 6896.21 19297.49 147
baseline194.59 7994.47 8694.72 7995.16 9897.97 9996.07 9491.94 7894.86 10289.98 7991.60 8285.87 12095.64 8297.07 7296.90 6999.52 1997.06 162
baseline94.83 7095.82 6593.68 9694.75 10997.80 10096.51 8288.53 12597.02 4789.34 9192.93 6592.18 7994.69 9995.78 11996.08 8798.27 16998.97 79
GeoE92.52 11692.64 11992.39 11193.96 12897.76 10196.01 9785.60 15893.23 12683.94 11981.56 15284.80 12995.63 8396.22 10595.83 10099.19 9199.07 61
ACMP92.88 994.43 8394.38 8894.50 8496.01 8297.69 10295.85 10492.09 7695.74 8089.12 9495.14 4982.62 14494.77 9695.73 12194.67 12899.14 9999.06 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ET-MVSNet_ETH3D93.34 10794.33 9092.18 11383.26 21497.66 10396.72 7589.89 10695.62 8487.17 10896.00 3983.69 13796.99 5993.78 15595.34 11199.06 11198.18 125
TSAR-MVS + COLMAP94.79 7394.51 8595.11 6696.50 7197.54 10497.99 4694.54 4697.81 1785.88 11396.73 3281.28 15096.99 5996.29 10295.21 11698.76 14396.73 169
LGP-MVS_train94.12 9094.62 8393.53 9896.44 7397.54 10497.40 5691.84 8094.66 10481.09 13595.70 4383.36 13995.10 9396.36 10095.71 10299.32 6499.03 68
baseline293.01 11094.17 9491.64 11892.83 14597.49 10693.40 14087.53 13593.67 12186.07 11291.83 7986.58 11291.36 14596.38 9795.06 11898.67 14898.20 124
CLD-MVS94.79 7394.36 8995.30 6395.21 9797.46 10797.23 5992.24 7596.43 5791.77 5492.69 6884.31 13196.06 7595.52 12595.03 11999.31 6799.06 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
COLMAP_ROBcopyleft90.49 1493.27 10992.71 11893.93 9297.75 5897.44 10896.07 9493.17 6195.40 8783.86 12083.76 14388.72 10393.87 11494.25 15194.11 14698.87 12995.28 184
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MSDG94.82 7193.73 10396.09 4998.34 4897.43 10997.06 6096.05 3995.84 7890.56 6786.30 12889.10 10195.55 8696.13 11095.61 10499.00 11795.73 178
OPM-MVS93.61 10292.43 12895.00 6996.94 6897.34 11097.78 4994.23 4889.64 17085.53 11488.70 10882.81 14296.28 7396.28 10395.00 12299.24 7897.22 155
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SCA90.92 13493.04 11488.45 15693.72 13497.33 11192.77 14976.08 20596.02 7178.26 14691.96 7690.86 8593.99 11390.98 19490.04 19595.88 19694.06 194
EPMVS90.88 13592.12 13489.44 14794.71 11197.24 11293.55 13676.81 20095.89 7581.77 13091.49 8486.47 11493.87 11490.21 19790.07 19495.92 19593.49 201
HQP-MVS94.43 8394.57 8494.27 8896.41 7497.23 11396.89 6693.98 4995.94 7483.68 12195.01 5184.46 13095.58 8595.47 12794.85 12799.07 10899.00 72
Fast-Effi-MVS+91.87 12092.08 13591.62 12092.91 14397.21 11494.93 11684.60 17293.61 12281.49 13383.50 14478.95 15796.62 6896.55 9096.22 8599.16 9698.51 106
Effi-MVS+-dtu91.78 12293.59 10789.68 14592.44 14997.11 11594.40 12784.94 16892.43 13975.48 16391.09 9083.75 13693.55 12296.61 8795.47 10897.24 18798.67 97
MDTV_nov1_ep1391.57 12693.18 11289.70 14393.39 13796.97 11693.53 13780.91 19195.70 8181.86 12992.40 7189.93 9293.25 12791.97 18790.80 19095.25 20594.46 188
ACMH+90.88 1291.41 12991.13 14591.74 11795.11 10096.95 11793.13 14589.48 11492.42 14079.93 13985.13 13378.02 16193.82 11693.49 16293.88 15298.94 12397.99 131
MS-PatchMatch91.82 12192.51 12291.02 12495.83 8496.88 11895.05 11384.55 17493.85 11882.01 12882.51 14991.71 8090.52 16395.07 13793.03 16898.13 17294.52 186
TDRefinement89.07 16188.15 17090.14 13995.16 9896.88 11895.55 10890.20 10189.68 16976.42 15776.67 17074.30 17884.85 19693.11 16891.91 18698.64 15394.47 187
ACMH90.77 1391.51 12891.63 14191.38 12195.62 8696.87 12091.76 17389.66 11091.58 15378.67 14486.73 11978.12 16093.77 11794.59 14294.54 13798.78 14198.98 75
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchmatchNetpermissive90.56 13892.49 12488.31 15993.83 13296.86 12192.42 15776.50 20295.96 7378.31 14591.96 7689.66 9493.48 12390.04 19989.20 19895.32 20293.73 199
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-mter90.95 13393.54 11087.93 17090.28 16896.80 12291.44 17582.68 18492.15 14874.37 17489.57 10388.23 10990.88 15596.37 9994.31 14397.93 17897.37 151
CDS-MVSNet92.77 11293.60 10691.80 11692.63 14796.80 12295.24 11189.14 11790.30 16784.58 11786.76 11890.65 8790.42 16495.89 11496.49 7798.79 14098.32 120
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMM92.75 1094.41 8593.84 10195.09 6796.41 7496.80 12294.88 11893.54 5396.41 5890.16 7592.31 7283.11 14096.32 7296.22 10594.65 12999.22 8497.35 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train93.85 9693.91 9893.78 9594.94 10396.79 12594.29 12991.13 9093.84 11988.26 10190.40 9585.23 12594.65 10296.54 9195.31 11299.38 5599.28 28
PMMVS94.61 7895.56 6893.50 9994.30 12296.74 12694.91 11789.56 11295.58 8687.72 10496.15 3692.86 7596.06 7595.47 12795.02 12098.43 16697.09 158
ADS-MVSNet89.80 15091.33 14488.00 16894.43 12096.71 12792.29 16174.95 21096.07 7077.39 14988.67 10986.09 11793.26 12688.44 20389.57 19795.68 19893.81 198
MVSTER94.89 6995.07 7994.68 8194.71 11196.68 12897.00 6190.57 9795.18 9793.05 4195.21 4886.41 11593.72 11897.59 5895.88 9799.00 11798.50 107
GG-mvs-BLEND66.17 21394.91 8232.63 2191.32 22796.64 12991.40 1760.85 22594.39 1112.20 22890.15 9995.70 632.27 22496.39 9695.44 10997.78 18095.68 179
TAMVS90.54 14090.87 15090.16 13791.48 15596.61 13093.26 14386.08 15187.71 18781.66 13283.11 14784.04 13390.42 16494.54 14394.60 13298.04 17695.48 182
test-LLR91.62 12593.56 10889.35 14993.31 13996.57 13192.02 16987.06 14192.34 14475.05 17090.20 9788.64 10490.93 15296.19 10894.07 14797.75 18296.90 166
TESTMET0.1,191.07 13293.56 10888.17 16090.43 16496.57 13192.02 16982.83 18392.34 14475.05 17090.20 9788.64 10490.93 15296.19 10894.07 14797.75 18296.90 166
GA-MVS89.28 15690.75 15187.57 17791.77 15396.48 13392.29 16187.58 13490.61 16465.77 20384.48 13876.84 16989.46 17295.84 11693.68 15798.52 15997.34 153
Fast-Effi-MVS+-dtu91.19 13193.64 10488.33 15892.19 15196.46 13493.99 13281.52 18992.59 13671.82 18292.17 7385.54 12191.68 14295.73 12194.64 13098.80 13898.34 117
USDC90.69 13690.52 15290.88 12794.17 12596.43 13595.82 10586.76 14393.92 11676.27 15986.49 12274.30 17893.67 12195.04 13893.36 16198.61 15494.13 191
RPSCF94.05 9194.00 9794.12 9096.20 7696.41 13696.61 7891.54 8595.83 7989.73 8396.94 3192.80 7695.35 9091.63 19090.44 19295.27 20493.94 195
FC-MVSNet-test91.63 12493.82 10289.08 15092.02 15296.40 13793.26 14387.26 13893.72 12077.26 15088.61 11089.86 9385.50 19295.72 12395.02 12099.16 9697.44 149
test0.0.03 191.97 11993.91 9889.72 14293.31 13996.40 13791.34 17887.06 14193.86 11781.67 13191.15 8889.16 10086.02 19095.08 13695.09 11798.91 12696.64 172
UniMVSNet_ETH3D88.47 16786.00 19791.35 12291.55 15496.29 13992.53 15488.81 12185.58 20182.33 12767.63 20966.87 21094.04 11291.49 19195.24 11498.84 13298.92 81
EG-PatchMatch MVS86.68 18887.24 18486.02 19390.58 16396.26 14091.08 18281.59 18784.96 20269.80 19671.35 20175.08 17584.23 20094.24 15293.35 16298.82 13395.46 183
dps90.11 14889.37 16190.98 12593.89 13096.21 14193.49 13877.61 19891.95 14992.74 4788.85 10678.77 15992.37 13487.71 20687.71 20395.80 19794.38 189
thisisatest051590.12 14792.06 13687.85 17190.03 17196.17 14287.83 19787.45 13691.71 15277.15 15185.40 13284.01 13485.74 19195.41 12993.30 16498.88 12898.43 110
UniMVSNet (Re)90.03 14989.61 15790.51 13389.97 17396.12 14392.32 15989.26 11590.99 15980.95 13678.25 16775.08 17591.14 14893.78 15593.87 15399.41 4999.21 41
CostFormer90.69 13690.48 15390.93 12694.18 12496.08 14494.03 13178.20 19693.47 12489.96 8090.97 9180.30 15293.72 11887.66 20788.75 19995.51 20196.12 174
FMVSNet393.79 9994.17 9493.35 10491.21 16095.99 14596.62 7788.68 12295.23 9290.40 7086.39 12491.16 8294.11 11095.96 11296.67 7499.07 10897.79 135
tpmrst88.86 16589.62 15687.97 16994.33 12195.98 14692.62 15376.36 20394.62 10676.94 15385.98 12982.80 14392.80 13186.90 20987.15 20594.77 20993.93 196
anonymousdsp88.90 16391.00 14786.44 18988.74 19995.97 14790.40 18882.86 18288.77 17767.33 20181.18 15581.44 14990.22 16796.23 10494.27 14499.12 10299.16 50
Patchmtry95.96 14893.36 14175.99 20675.19 167
CR-MVSNet90.16 14691.96 13888.06 16493.32 13895.95 14993.36 14175.99 20692.40 14175.19 16783.18 14585.37 12292.05 13695.21 13394.56 13598.47 16397.08 160
RPMNet90.19 14592.03 13788.05 16593.46 13595.95 14993.41 13974.59 21192.40 14175.91 16184.22 14086.41 11592.49 13294.42 14793.85 15498.44 16496.96 163
SixPastTwentyTwo88.37 16889.47 15887.08 18390.01 17295.93 15187.41 19885.32 16290.26 16870.26 19086.34 12771.95 18890.93 15292.89 17391.72 18798.55 15797.22 155
GBi-Net93.81 9794.18 9293.38 10291.34 15795.86 15296.22 8888.68 12295.23 9290.40 7086.39 12491.16 8294.40 10696.52 9296.30 8099.21 8797.79 135
test193.81 9794.18 9293.38 10291.34 15795.86 15296.22 8888.68 12295.23 9290.40 7086.39 12491.16 8294.40 10696.52 9296.30 8099.21 8797.79 135
FMVSNet293.30 10893.36 11193.22 10691.34 15795.86 15296.22 8888.24 12995.15 9889.92 8281.64 15189.36 9694.40 10696.77 8196.98 6799.21 8797.79 135
UniMVSNet_NR-MVSNet90.35 14289.96 15490.80 12989.66 17695.83 15592.48 15590.53 9890.96 16079.57 14079.33 16477.14 16693.21 12892.91 17294.50 14099.37 5899.05 65
DCV-MVSNet94.76 7695.12 7894.35 8795.10 10195.81 15696.46 8489.49 11396.33 6090.16 7592.55 7090.26 9095.83 7995.52 12596.03 9199.06 11199.33 24
LTVRE_ROB87.32 1687.55 18088.25 16986.73 18690.66 16295.80 15793.05 14684.77 16983.35 20760.32 21583.12 14667.39 20893.32 12594.36 14994.86 12498.28 16898.87 88
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tfpnnormal88.50 16687.01 18890.23 13591.36 15695.78 15892.74 15090.09 10283.65 20676.33 15871.46 20069.58 20191.84 13995.54 12494.02 14999.06 11199.03 68
pm-mvs189.19 15989.02 16289.38 14890.40 16595.74 15992.05 16788.10 13186.13 19777.70 14773.72 18779.44 15688.97 17595.81 11894.51 13999.08 10697.78 140
MIMVSNet88.99 16291.07 14686.57 18886.78 20895.62 16091.20 18175.40 20890.65 16376.57 15584.05 14182.44 14591.01 15195.84 11695.38 11098.48 16293.50 200
DU-MVS89.67 15288.84 16390.63 13289.26 18695.61 16192.48 15589.91 10491.22 15679.57 14077.72 16871.18 19293.21 12892.53 17694.57 13499.35 6199.05 65
NR-MVSNet89.34 15588.66 16490.13 14090.40 16595.61 16193.04 14789.91 10491.22 15678.96 14377.72 16868.90 20489.16 17494.24 15293.95 15099.32 6498.99 73
testgi89.42 15391.50 14387.00 18592.40 15095.59 16389.15 19485.27 16592.78 13272.42 17991.75 8076.00 17184.09 20194.38 14893.82 15698.65 15296.15 173
PatchT89.13 16091.71 13986.11 19292.92 14295.59 16383.64 20875.09 20991.87 15075.19 16782.63 14885.06 12792.05 13695.21 13394.56 13597.76 18197.08 160
WR-MVS_H87.93 17487.85 17788.03 16789.62 17795.58 16590.47 18785.55 15987.20 19276.83 15474.42 18272.67 18686.37 18793.22 16793.04 16799.33 6298.83 92
pmmvs587.83 17888.09 17187.51 18089.59 17995.48 16689.75 19284.73 17086.07 19971.44 18480.57 15970.09 19990.74 15994.47 14592.87 17298.82 13397.10 157
EPNet_dtu92.45 11795.02 8089.46 14698.02 5495.47 16794.79 12092.62 6994.97 10070.11 19294.76 5492.61 7884.07 20295.94 11395.56 10597.15 18895.82 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_part191.21 13089.47 15893.24 10594.26 12395.45 16895.26 11088.36 12788.49 18090.04 7772.61 19482.82 14193.69 12093.25 16694.62 13197.84 17999.06 62
CVMVSNet89.77 15191.66 14087.56 17893.21 14195.45 16891.94 17289.22 11689.62 17169.34 19883.99 14285.90 11984.81 19794.30 15095.28 11396.85 19097.09 158
TinyColmap89.42 15388.58 16590.40 13493.80 13395.45 16893.96 13386.54 14692.24 14676.49 15680.83 15670.44 19693.37 12494.45 14693.30 16498.26 17093.37 202
tpm cat188.90 16387.78 17990.22 13693.88 13195.39 17193.79 13478.11 19792.55 13789.43 8781.31 15479.84 15591.40 14484.95 21086.34 20894.68 21194.09 192
V4288.31 16987.95 17588.73 15389.44 18195.34 17292.23 16387.21 13988.83 17574.49 17374.89 17773.43 18390.41 16692.08 18592.77 17598.60 15698.33 118
v2v48288.25 17087.71 18088.88 15189.23 19095.28 17392.10 16587.89 13388.69 17873.31 17775.32 17471.64 18991.89 13892.10 18492.92 17098.86 13197.99 131
WR-MVS87.93 17488.09 17187.75 17289.26 18695.28 17390.81 18486.69 14488.90 17475.29 16674.31 18373.72 18185.19 19592.26 17993.32 16399.27 7398.81 93
FMVSNet191.54 12790.93 14892.26 11290.35 16795.27 17595.22 11287.16 14091.37 15587.62 10575.45 17383.84 13594.43 10496.52 9296.30 8098.82 13397.74 141
TranMVSNet+NR-MVSNet89.23 15888.48 16790.11 14189.07 19295.25 17692.91 14890.43 10090.31 16677.10 15276.62 17171.57 19091.83 14092.12 18294.59 13399.32 6498.92 81
v14887.51 18186.79 19088.36 15789.39 18395.21 17789.84 19188.20 13087.61 18977.56 14873.38 19070.32 19886.80 18490.70 19592.31 18298.37 16797.98 133
v114487.92 17687.79 17888.07 16289.27 18595.15 17892.17 16485.62 15788.52 17971.52 18373.80 18672.40 18791.06 15093.54 16192.80 17398.81 13698.33 118
CP-MVSNet87.89 17787.27 18388.62 15489.30 18495.06 17990.60 18685.78 15587.43 19175.98 16074.60 17968.14 20790.76 15793.07 17093.60 15899.30 6998.98 75
CMPMVSbinary65.18 1784.76 19883.10 20486.69 18795.29 9495.05 18088.37 19585.51 16080.27 21371.31 18568.37 20673.85 18085.25 19387.72 20587.75 20294.38 21288.70 212
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v888.21 17187.94 17688.51 15589.62 17795.01 18192.31 16084.99 16788.94 17374.70 17275.03 17573.51 18290.67 16092.11 18392.74 17698.80 13898.24 122
IterMVS-LS92.56 11593.18 11291.84 11593.90 12994.97 18294.99 11486.20 15094.18 11382.68 12585.81 13087.36 11194.43 10495.31 13196.02 9298.87 12998.60 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs490.55 13989.91 15591.30 12390.26 16994.95 18392.73 15187.94 13293.44 12585.35 11582.28 15076.09 17093.02 13093.56 16092.26 18498.51 16096.77 168
v7n86.43 19086.52 19486.33 19087.91 20394.93 18490.15 19083.05 18086.57 19470.21 19171.48 19966.78 21187.72 17994.19 15492.96 16998.92 12598.76 96
PS-CasMVS87.33 18486.68 19388.10 16189.22 19194.93 18490.35 18985.70 15686.44 19674.01 17573.43 18966.59 21390.04 16892.92 17193.52 15999.28 7198.91 84
v14419287.40 18387.20 18587.64 17488.89 19494.88 18691.65 17484.70 17187.80 18671.17 18773.20 19170.91 19390.75 15892.69 17492.49 17998.71 14598.43 110
v119287.51 18187.31 18287.74 17389.04 19394.87 18792.07 16685.03 16688.49 18070.32 18972.65 19370.35 19791.21 14793.59 15792.80 17398.78 14198.42 112
v192192087.31 18587.13 18687.52 17988.87 19694.72 18891.96 17184.59 17388.28 18269.86 19572.50 19570.03 20091.10 14993.33 16492.61 17898.71 14598.44 109
v1088.00 17287.96 17488.05 16589.44 18194.68 18992.36 15883.35 17989.37 17272.96 17873.98 18572.79 18591.35 14693.59 15792.88 17198.81 13698.42 112
MDTV_nov1_ep13_2view86.30 19188.27 16884.01 19887.71 20594.67 19088.08 19676.78 20190.59 16568.66 20080.46 16180.12 15387.58 18289.95 20088.20 20195.25 20593.90 197
v124086.89 18786.75 19287.06 18488.75 19894.65 19191.30 18084.05 17587.49 19068.94 19971.96 19868.86 20590.65 16193.33 16492.72 17798.67 14898.24 122
tpm87.95 17389.44 16086.21 19192.53 14894.62 19291.40 17676.36 20391.46 15469.80 19687.43 11475.14 17391.55 14389.85 20190.60 19195.61 19996.96 163
MVS-HIRNet85.36 19686.89 18983.57 19990.13 17094.51 19383.57 20972.61 21388.27 18371.22 18668.97 20481.81 14788.91 17693.08 16991.94 18594.97 20889.64 211
PEN-MVS87.22 18686.50 19588.07 16288.88 19594.44 19490.99 18386.21 14886.53 19573.66 17674.97 17666.56 21489.42 17391.20 19393.48 16099.24 7898.31 121
TransMVSNet (Re)87.73 17986.79 19088.83 15290.76 16194.40 19591.33 17989.62 11184.73 20375.41 16572.73 19271.41 19186.80 18494.53 14493.93 15199.06 11195.83 176
pmmvs685.98 19484.89 20287.25 18288.83 19794.35 19689.36 19385.30 16478.51 21575.44 16462.71 21475.41 17287.65 18093.58 15992.40 18196.89 18997.29 154
IterMVS90.20 14492.43 12887.61 17692.82 14694.31 19794.11 13081.54 18892.97 12969.90 19484.71 13688.16 11089.96 17095.25 13294.17 14597.31 18697.46 148
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.24 14392.48 12687.63 17592.85 14494.30 19893.79 13481.47 19092.66 13369.95 19384.66 13788.38 10789.99 16995.39 13094.34 14297.74 18497.63 144
pmnet_mix0286.12 19387.12 18784.96 19689.82 17494.12 19984.88 20686.63 14591.78 15165.60 20480.76 15776.98 16786.61 18687.29 20884.80 21196.21 19294.09 192
DTE-MVSNet86.67 18986.09 19687.35 18188.45 20194.08 20090.65 18586.05 15286.13 19772.19 18074.58 18166.77 21287.61 18190.31 19693.12 16699.13 10097.62 145
our_test_389.78 17593.84 20185.59 203
Baseline_NR-MVSNet89.27 15788.01 17390.73 13189.26 18693.71 20292.71 15289.78 10990.73 16181.28 13473.53 18872.85 18492.30 13592.53 17693.84 15599.07 10898.88 86
MDA-MVSNet-bldmvs80.11 20580.24 20879.94 20577.01 21793.21 20378.86 21585.94 15482.71 21060.86 21279.71 16351.77 22383.71 20375.60 21586.37 20793.28 21392.35 203
Anonymous2023120683.84 20185.19 20082.26 20287.38 20692.87 20485.49 20483.65 17786.07 19963.44 21068.42 20569.01 20375.45 21093.34 16392.44 18098.12 17494.20 190
N_pmnet84.80 19785.10 20184.45 19789.25 18992.86 20584.04 20786.21 14888.78 17666.73 20272.41 19674.87 17785.21 19488.32 20486.45 20695.30 20392.04 205
EU-MVSNet85.62 19587.65 18183.24 20188.54 20092.77 20687.12 19985.32 16286.71 19364.54 20678.52 16675.11 17478.35 20692.25 18092.28 18395.58 20095.93 175
FMVSNet590.36 14190.93 14889.70 14387.99 20292.25 20792.03 16883.51 17892.20 14784.13 11885.59 13186.48 11392.43 13394.61 14194.52 13898.13 17290.85 208
test20.0382.92 20385.52 19879.90 20687.75 20491.84 20882.80 21082.99 18182.65 21160.32 21578.90 16570.50 19467.10 21492.05 18690.89 18998.44 16491.80 206
PM-MVS84.72 19984.47 20385.03 19584.67 21091.57 20986.27 20282.31 18687.65 18870.62 18876.54 17256.41 22188.75 17792.59 17589.85 19697.54 18596.66 171
pmmvs-eth3d84.33 20082.94 20585.96 19484.16 21190.94 21086.55 20183.79 17684.25 20475.85 16270.64 20256.43 22087.44 18392.20 18190.41 19397.97 17795.68 179
MIMVSNet180.03 20680.93 20778.97 20772.46 22090.73 21180.81 21382.44 18580.39 21263.64 20857.57 21564.93 21576.37 20891.66 18991.55 18898.07 17589.70 210
new-patchmatchnet78.49 20878.19 21178.84 20884.13 21290.06 21277.11 21780.39 19279.57 21459.64 21866.01 21055.65 22275.62 20984.55 21180.70 21396.14 19490.77 209
gm-plane-assit83.26 20285.29 19980.89 20389.52 18089.89 21370.26 21978.24 19577.11 21658.01 21974.16 18466.90 20990.63 16297.20 6796.05 9098.66 15195.68 179
new_pmnet81.53 20482.68 20680.20 20483.47 21389.47 21482.21 21278.36 19487.86 18560.14 21767.90 20769.43 20282.03 20489.22 20287.47 20494.99 20787.39 213
DeepMVS_CXcopyleft86.86 21579.50 21470.43 21690.73 16163.66 20780.36 16260.83 21679.68 20576.23 21489.46 21686.53 214
pmmvs379.16 20780.12 20978.05 20979.36 21586.59 21678.13 21673.87 21276.42 21757.51 22070.59 20357.02 21984.66 19890.10 19888.32 20094.75 21091.77 207
ambc73.83 21376.23 21885.13 21782.27 21184.16 20565.58 20552.82 21723.31 22873.55 21191.41 19285.26 21092.97 21494.70 185
FPMVS75.84 20974.59 21277.29 21086.92 20783.89 21885.01 20580.05 19382.91 20960.61 21465.25 21160.41 21763.86 21575.60 21573.60 21787.29 21980.47 216
PMMVS264.36 21465.94 21662.52 21567.37 22177.44 21964.39 22169.32 21961.47 22034.59 22346.09 21841.03 22448.02 22174.56 21778.23 21491.43 21582.76 215
tmp_tt66.88 21386.07 20973.86 22068.22 22033.38 22296.88 4880.67 13788.23 11278.82 15849.78 21982.68 21377.47 21583.19 221
Gipumacopyleft68.35 21166.71 21470.27 21174.16 21968.78 22163.93 22271.77 21583.34 20854.57 22134.37 21931.88 22568.69 21383.30 21285.53 20988.48 21779.78 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method72.96 21078.68 21066.28 21450.17 22464.90 22275.45 21850.90 22187.89 18462.54 21162.98 21368.34 20670.45 21291.90 18882.41 21288.19 21892.35 203
PMVScopyleft63.12 1867.27 21266.39 21568.30 21277.98 21660.24 22359.53 22376.82 19966.65 21960.74 21354.39 21659.82 21851.24 21873.92 21870.52 21883.48 22079.17 218
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.86 1949.54 21751.43 21747.33 21844.14 22559.20 22436.45 22660.59 22041.47 22331.14 22429.58 22017.06 22948.52 22062.22 21974.63 21663.12 22475.87 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS49.98 21646.76 21953.74 21764.96 22251.29 22537.81 22569.35 21851.83 22122.69 22629.57 22125.06 22657.28 21644.81 22156.11 22070.32 22368.64 221
E-PMN50.67 21547.85 21853.96 21664.13 22350.98 22638.06 22469.51 21751.40 22224.60 22529.46 22224.39 22756.07 21748.17 22059.70 21971.40 22270.84 220
testmvs12.09 21816.94 2206.42 2203.15 2266.08 2279.51 2283.84 22321.46 2245.31 22727.49 2236.76 23010.89 22217.06 22215.01 2215.84 22524.75 222
test1239.58 21913.53 2214.97 2211.31 2285.47 2288.32 2292.95 22418.14 2252.03 22920.82 2242.34 23110.60 22310.00 22314.16 2224.60 22623.77 223
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def63.50 209
9.1499.28 12
SR-MVS99.45 1097.61 1699.20 16
MTAPA96.83 1199.12 21
MTMP97.18 598.83 27
Patchmatch-RL test34.61 227
mPP-MVS99.21 2598.29 39
NP-MVS95.32 89