This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS98.86 398.97 298.75 299.43 1399.63 199.25 1297.81 198.62 197.69 197.59 2099.90 198.93 598.99 398.42 1199.37 5299.62 3
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS98.90 199.07 198.69 399.38 1999.61 299.33 797.80 398.25 797.60 298.87 399.89 298.67 1899.02 298.26 1799.36 5499.61 5
MSP-MVS98.73 598.93 498.50 699.44 1299.57 399.36 397.65 898.14 1196.51 1598.49 699.65 798.67 1898.60 1398.42 1199.40 4699.63 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft98.75 498.91 598.57 499.21 2499.54 499.42 297.78 597.49 3196.84 998.94 199.82 498.59 2198.90 998.22 1899.56 1099.48 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS98.87 298.96 398.77 199.58 299.53 599.44 197.81 198.22 997.33 498.70 499.33 998.86 898.96 598.40 1399.63 399.57 8
CSCG97.44 3297.18 4097.75 2899.47 699.52 698.55 3195.41 4197.69 2495.72 2094.29 5395.53 6298.10 3196.20 10197.38 5199.24 7299.62 3
SteuartSystems-ACMMP98.38 1498.71 997.99 2499.34 2199.46 799.34 597.33 2597.31 3594.25 3098.06 1399.17 1898.13 2898.98 498.46 999.55 1199.54 9
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft98.66 698.89 698.39 999.60 199.41 899.00 2097.63 1297.78 1795.83 1998.33 1099.83 398.85 1098.93 798.56 699.41 4399.40 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.20 1898.49 1297.85 2699.50 499.40 999.26 1197.64 1197.47 3392.62 4697.59 2099.09 2198.71 1698.82 1197.86 3399.40 4699.19 39
zzz-MVS98.43 1198.31 2398.57 499.48 599.40 999.32 897.62 1397.70 2296.67 1196.59 3299.09 2198.86 898.65 1297.56 4399.45 3099.17 45
ACMMPR98.40 1298.49 1298.28 1499.41 1499.40 999.36 397.35 2298.30 595.02 2697.79 1798.39 3799.04 298.26 2798.10 2299.50 2199.22 35
XVS96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
X-MVStestdata96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
X-MVS97.84 2498.19 2797.42 3199.40 1599.35 1299.06 1797.25 2697.38 3490.85 5796.06 3698.72 2998.53 2498.41 2298.15 2199.46 2699.28 24
PGM-MVS97.81 2598.11 2897.46 3099.55 399.34 1599.32 894.51 4696.21 6093.07 3798.05 1497.95 4298.82 1298.22 3097.89 3299.48 2299.09 53
HFP-MVS98.48 998.62 1098.32 1299.39 1899.33 1699.27 1097.42 1998.27 695.25 2498.34 998.83 2699.08 198.26 2798.08 2499.48 2299.26 29
CP-MVS98.32 1798.34 2198.29 1399.34 2199.30 1799.15 1497.35 2297.49 3195.58 2297.72 1898.62 3398.82 1298.29 2597.67 3899.51 1999.28 24
MVS_111021_HR97.04 3998.20 2695.69 5398.44 4699.29 1896.59 7493.20 5997.70 2289.94 7698.46 796.89 4796.71 6398.11 3797.95 2899.27 6799.01 68
ACMMPcopyleft97.37 3397.48 3597.25 3298.88 3799.28 1998.47 3496.86 3597.04 4492.15 4797.57 2396.05 6097.67 3897.27 5995.99 8799.46 2699.14 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS94.87 496.76 4796.50 5297.05 3698.21 4999.28 1998.67 2797.38 2197.31 3590.36 6989.19 10093.58 6998.19 2798.31 2498.50 799.51 1999.36 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS98.52 798.77 898.23 1698.15 5099.26 2198.79 2697.59 1698.52 296.25 1697.99 1599.75 599.01 398.27 2697.97 2799.59 499.63 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft98.36 1598.32 2298.41 899.47 699.26 2199.12 1597.77 696.73 4996.12 1797.27 2898.88 2498.46 2598.47 1798.39 1499.52 1499.22 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS96.06 5396.04 5996.07 5097.77 5699.25 2398.10 4293.26 5694.42 10392.79 4388.52 10793.48 7095.06 8998.51 1598.83 199.45 3099.28 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS97.78 2698.44 1797.02 3798.73 3899.25 2398.11 4195.54 4096.66 5292.79 4398.52 599.38 897.50 4297.84 4598.39 1499.45 3099.03 65
CANet96.84 4497.20 3896.42 4297.92 5499.24 2598.60 2993.51 5397.11 4193.07 3791.16 8297.24 4596.21 7198.24 2998.05 2599.22 7899.35 18
MVS_030496.31 4996.91 4795.62 5497.21 6499.20 2698.55 3193.10 6197.04 4489.73 7890.30 9296.35 5395.71 7798.14 3497.93 3199.38 4999.40 14
MP-MVScopyleft98.09 2298.30 2497.84 2799.34 2199.19 2799.23 1397.40 2097.09 4293.03 4097.58 2298.85 2598.57 2398.44 2097.69 3799.48 2299.23 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + MP.98.49 898.78 798.15 2098.14 5199.17 2899.34 597.18 3098.44 495.72 2097.84 1699.28 1198.87 799.05 198.05 2599.66 199.60 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft98.34 1698.47 1498.18 1799.46 899.15 2999.10 1697.69 797.67 2594.93 2797.62 1999.70 698.60 2098.45 1897.46 4699.31 6199.26 29
QAPM96.78 4697.14 4296.36 4499.05 3099.14 3098.02 4393.26 5697.27 3790.84 6091.16 8297.31 4497.64 4097.70 4998.20 1999.33 5699.18 43
MSLP-MVS++98.04 2397.93 3298.18 1799.10 2899.09 3198.34 3696.99 3397.54 3096.60 1394.82 4998.45 3598.89 697.46 5598.77 499.17 8799.37 16
xxxxxxxxxxxxxcwj97.07 3895.99 6098.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1181.99 14398.11 2998.15 3297.62 3999.45 3099.19 39
SF-MVS98.39 1398.45 1698.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1199.25 1498.11 2998.15 3297.62 3999.45 3099.19 39
TSAR-MVS + ACMM97.71 2898.60 1196.66 4198.64 4199.05 3298.85 2597.23 2898.45 389.40 8497.51 2499.27 1396.88 5998.53 1497.81 3598.96 11599.59 7
MCST-MVS98.20 1898.36 1898.01 2399.40 1599.05 3299.00 2097.62 1397.59 2993.70 3497.42 2799.30 1098.77 1498.39 2397.48 4599.59 499.31 23
CNVR-MVS98.47 1098.46 1598.48 799.40 1599.05 3299.02 1997.54 1797.73 1896.65 1297.20 2999.13 1998.85 1098.91 898.10 2299.41 4399.08 54
NCCC98.10 2198.05 3098.17 1999.38 1999.05 3299.00 2097.53 1898.04 1395.12 2594.80 5099.18 1798.58 2298.49 1697.78 3699.39 4898.98 72
CPTT-MVS97.78 2697.54 3398.05 2298.91 3599.05 3299.00 2096.96 3497.14 4095.92 1895.50 4298.78 2898.99 497.20 6196.07 8298.54 15299.04 64
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2599.16 2799.03 3999.05 1897.24 2798.22 994.17 3295.82 3898.07 3998.69 1798.83 1098.80 299.52 1499.10 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator93.79 897.08 3797.20 3896.95 3899.09 2999.03 3998.20 4093.33 5497.99 1493.82 3390.61 9096.80 4997.82 3597.90 4498.78 399.47 2599.26 29
PVSNet_BlendedMVS95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9593.10 6196.16 6193.12 3591.99 7185.27 12094.66 9498.09 3897.34 5299.24 7299.08 54
PVSNet_Blended95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9593.10 6196.16 6193.12 3591.99 7185.27 12094.66 9498.09 3897.34 5299.24 7299.08 54
IS_MVSNet95.28 6296.43 5493.94 8595.30 8999.01 4395.90 9391.12 8794.13 10887.50 10091.23 8194.45 6694.17 10398.45 1898.50 799.65 299.23 33
CS-MVS96.23 5297.15 4195.16 6195.01 9998.98 4497.13 5790.68 9296.00 6891.21 5494.03 5496.48 5197.35 4598.00 4197.43 4799.55 1199.15 47
MVS_111021_LR97.16 3698.01 3196.16 4798.47 4498.98 4496.94 6193.89 4997.64 2791.44 5198.89 296.41 5297.20 4998.02 4097.29 5699.04 11098.85 87
PVSNet_Blended_VisFu94.77 7295.54 6693.87 8796.48 7198.97 4694.33 12291.84 7694.93 9590.37 6885.04 13094.99 6390.87 15098.12 3697.30 5499.30 6399.45 13
OpenMVScopyleft92.33 1195.50 5595.22 7295.82 5298.98 3198.97 4697.67 5193.04 6494.64 9989.18 8884.44 13594.79 6496.79 6097.23 6097.61 4199.24 7298.88 83
tfpn200view993.64 9492.57 11494.89 6895.33 8798.94 4896.82 6592.31 6792.63 12888.29 9287.21 11178.01 15797.12 5396.82 7195.85 9299.45 3098.56 99
DeepPCF-MVS95.28 297.00 4098.35 2095.42 5897.30 6298.94 4894.82 11396.03 3998.24 892.11 4895.80 3998.64 3295.51 8498.95 698.66 596.78 18599.20 38
thres600view793.49 9992.37 12594.79 7395.42 8498.93 5096.58 7592.31 6793.04 12287.88 9786.62 11776.94 16397.09 5496.82 7195.63 9799.45 3098.63 96
thres20093.62 9592.54 11594.88 6995.36 8698.93 5096.75 6992.31 6792.84 12588.28 9486.99 11377.81 15997.13 5196.82 7195.92 8899.45 3098.49 105
TSAR-MVS + GP.97.45 3198.36 1896.39 4395.56 8398.93 5097.74 4993.31 5597.61 2894.24 3198.44 899.19 1698.03 3397.60 5197.41 4999.44 3899.33 20
train_agg97.65 2998.06 2997.18 3498.94 3398.91 5398.98 2497.07 3296.71 5090.66 6297.43 2699.08 2398.20 2697.96 4297.14 5799.22 7899.19 39
thres40093.56 9792.43 12294.87 7095.40 8598.91 5396.70 7192.38 6692.93 12488.19 9686.69 11677.35 16097.13 5196.75 7695.85 9299.42 4298.56 99
LS3D95.46 5895.14 7395.84 5197.91 5598.90 5598.58 3097.79 497.07 4383.65 11688.71 10388.64 10197.82 3597.49 5497.42 4899.26 7197.72 136
CHOSEN 1792x268892.66 10892.49 11892.85 10297.13 6598.89 5695.90 9388.50 12095.32 8683.31 11771.99 19188.96 9994.10 10596.69 7896.49 7198.15 16599.10 51
EIA-MVS95.50 5596.19 5794.69 7594.83 10298.88 5795.93 9291.50 8394.47 10289.43 8293.14 6092.72 7497.05 5597.82 4897.13 5899.43 4199.15 47
CDPH-MVS96.84 4497.49 3496.09 4898.92 3498.85 5898.61 2895.09 4296.00 6887.29 10195.45 4497.42 4397.16 5097.83 4697.94 2999.44 3898.92 78
3Dnovator+93.91 797.23 3597.22 3797.24 3398.89 3698.85 5898.26 3993.25 5897.99 1495.56 2390.01 9698.03 4198.05 3297.91 4398.43 1099.44 3899.35 18
Vis-MVSNetpermissive92.77 10695.00 7890.16 13194.10 12098.79 6094.76 11588.26 12292.37 13779.95 13288.19 10991.58 7884.38 19397.59 5297.58 4299.52 1498.91 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS96.31 4997.47 3694.96 6794.79 10398.78 6196.08 8791.41 8496.16 6190.50 6495.76 4096.20 5797.39 4398.42 2197.82 3499.57 899.18 43
AdaColmapbinary97.53 3096.93 4598.24 1599.21 2498.77 6298.47 3497.34 2496.68 5196.52 1495.11 4796.12 5898.72 1597.19 6396.24 7899.17 8798.39 112
thres100view90093.55 9892.47 12194.81 7295.33 8798.74 6396.78 6892.30 7092.63 12888.29 9287.21 11178.01 15796.78 6196.38 9195.92 8899.38 4998.40 111
abl_696.82 4098.60 4298.74 6397.74 4993.73 5096.25 5894.37 2994.55 5298.60 3497.25 4799.27 6798.61 97
PCF-MVS93.95 695.65 5495.14 7396.25 4597.73 5898.73 6597.59 5297.13 3192.50 13289.09 9089.85 9796.65 5096.90 5894.97 13394.89 11799.08 10098.38 113
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
canonicalmvs95.25 6495.45 6895.00 6595.27 9198.72 6696.89 6289.82 10396.51 5390.84 6093.72 5786.01 11597.66 3995.78 11397.94 2999.54 1399.50 10
HyFIR lowres test92.03 11291.55 13692.58 10397.13 6598.72 6694.65 11786.54 14093.58 11782.56 12067.75 20290.47 8695.67 7895.87 10995.54 10098.91 12098.93 77
tttt051794.52 7895.44 6993.44 9594.51 11298.68 6894.61 11890.72 8995.61 8286.84 10593.78 5689.26 9594.74 9197.02 6994.86 11899.20 8498.87 85
OMC-MVS97.00 4096.92 4697.09 3598.69 3998.66 6997.85 4795.02 4398.09 1294.47 2893.15 5996.90 4697.38 4497.16 6496.82 6799.13 9497.65 137
TAPA-MVS94.18 596.38 4896.49 5396.25 4598.26 4898.66 6998.00 4494.96 4497.17 3989.48 8192.91 6396.35 5397.53 4196.59 8295.90 9099.28 6597.82 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest053094.54 7795.47 6793.46 9494.51 11298.65 7194.66 11690.72 8995.69 8086.90 10493.80 5589.44 9294.74 9196.98 7094.86 11899.19 8598.85 87
Vis-MVSNet (Re-imp)94.46 7996.24 5692.40 10495.23 9298.64 7295.56 10190.99 8894.42 10385.02 11090.88 8894.65 6588.01 17298.17 3198.37 1699.57 898.53 102
EPP-MVSNet95.27 6396.18 5894.20 8394.88 10198.64 7294.97 10990.70 9195.34 8589.67 8091.66 7893.84 6795.42 8697.32 5897.00 6099.58 699.47 12
UGNet94.92 6596.63 5092.93 10196.03 7798.63 7494.53 11991.52 8296.23 5990.03 7392.87 6496.10 5986.28 18296.68 7996.60 7099.16 9099.32 22
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA96.90 4296.28 5597.64 2998.56 4398.63 7496.85 6496.60 3797.73 1897.08 689.78 9896.28 5697.80 3796.73 7796.63 6998.94 11798.14 123
UA-Net93.96 8895.95 6191.64 11296.06 7698.59 7695.29 10390.00 9991.06 15282.87 11890.64 8998.06 4086.06 18398.14 3498.20 1999.58 696.96 157
casdiffmvs94.38 8394.15 9394.64 7794.70 10998.51 7796.03 9091.66 7995.70 7889.36 8586.48 11985.03 12596.60 6697.40 5697.30 5499.52 1498.67 94
IB-MVS89.56 1591.71 11792.50 11790.79 12495.94 7998.44 7887.05 19491.38 8593.15 12192.98 4184.78 13185.14 12378.27 20192.47 17294.44 13599.10 9899.08 54
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CANet_DTU93.92 8996.57 5190.83 12295.63 8198.39 7996.99 6087.38 13196.26 5771.97 17596.31 3493.02 7194.53 9797.38 5796.83 6698.49 15597.79 129
MVS_Test94.82 6895.66 6393.84 8894.79 10398.35 8096.49 7889.10 11496.12 6487.09 10392.58 6690.61 8596.48 6796.51 8996.89 6499.11 9798.54 101
diffmvs94.31 8494.21 8894.42 8094.64 11098.28 8196.36 8191.56 8096.77 4888.89 9188.97 10184.23 12996.01 7596.05 10596.41 7399.05 10998.79 91
EPNet96.27 5196.97 4495.46 5798.47 4498.28 8197.41 5493.67 5195.86 7492.86 4297.51 2493.79 6891.76 13597.03 6897.03 5998.61 14899.28 24
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DI_MVS_plusplus_trai94.01 8793.63 10294.44 7994.54 11198.26 8397.51 5390.63 9395.88 7389.34 8680.54 15489.36 9395.48 8596.33 9596.27 7799.17 8798.78 92
PLCcopyleft94.95 397.37 3396.77 4998.07 2198.97 3298.21 8497.94 4696.85 3697.66 2697.58 393.33 5896.84 4898.01 3497.13 6596.20 8099.09 9998.01 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS96.86 4396.82 4896.91 3998.08 5298.20 8598.52 3397.20 2997.24 3891.42 5291.84 7598.45 3597.25 4797.07 6697.40 5098.95 11697.55 140
Anonymous20240521192.18 12795.04 9898.20 8596.14 8591.79 7893.93 10974.60 17388.38 10496.48 6795.17 12995.82 9599.00 11199.15 47
MAR-MVS95.50 5595.60 6495.39 5998.67 4098.18 8795.89 9589.81 10494.55 10191.97 4992.99 6190.21 8897.30 4696.79 7497.49 4498.72 13898.99 70
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
gg-mvs-nofinetune86.17 18688.57 16083.36 19493.44 13098.15 8896.58 7572.05 20874.12 21249.23 21664.81 20690.85 8389.90 16597.83 4696.84 6598.97 11497.41 144
PatchMatch-RL94.69 7494.41 8495.02 6497.63 5998.15 8894.50 12091.99 7395.32 8691.31 5395.47 4383.44 13596.02 7496.56 8395.23 10998.69 14196.67 164
Effi-MVS+92.93 10593.86 9791.86 10894.07 12198.09 9095.59 10085.98 14794.27 10679.54 13691.12 8581.81 14496.71 6396.67 8096.06 8399.27 6798.98 72
Anonymous2023121193.49 9992.33 12694.84 7194.78 10598.00 9196.11 8691.85 7594.86 9690.91 5674.69 17289.18 9696.73 6294.82 13495.51 10198.67 14299.24 32
CHOSEN 280x42095.46 5897.01 4393.66 9197.28 6397.98 9296.40 8085.39 15596.10 6591.07 5596.53 3396.34 5595.61 8197.65 5096.95 6296.21 18697.49 141
baseline194.59 7694.47 8394.72 7495.16 9497.97 9396.07 8891.94 7494.86 9689.98 7491.60 7985.87 11795.64 7997.07 6696.90 6399.52 1497.06 156
baseline94.83 6795.82 6293.68 9094.75 10697.80 9496.51 7788.53 11997.02 4689.34 8692.93 6292.18 7694.69 9395.78 11396.08 8198.27 16398.97 76
GeoE92.52 11092.64 11392.39 10593.96 12297.76 9596.01 9185.60 15293.23 12083.94 11381.56 14884.80 12695.63 8096.22 9995.83 9499.19 8599.07 58
ACMP92.88 994.43 8094.38 8594.50 7896.01 7897.69 9695.85 9892.09 7295.74 7789.12 8995.14 4682.62 14194.77 9095.73 11594.67 12299.14 9399.06 59
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ET-MVSNet_ETH3D93.34 10194.33 8792.18 10783.26 20897.66 9796.72 7089.89 10295.62 8187.17 10296.00 3783.69 13496.99 5693.78 14995.34 10599.06 10598.18 122
TSAR-MVS + COLMAP94.79 7094.51 8295.11 6296.50 7097.54 9897.99 4594.54 4597.81 1685.88 10796.73 3181.28 14796.99 5696.29 9695.21 11098.76 13796.73 163
LGP-MVS_train94.12 8594.62 8093.53 9296.44 7297.54 9897.40 5591.84 7694.66 9881.09 12995.70 4183.36 13695.10 8896.36 9495.71 9699.32 5899.03 65
baseline293.01 10494.17 9191.64 11292.83 13997.49 10093.40 13487.53 12993.67 11586.07 10691.83 7686.58 10991.36 13996.38 9195.06 11298.67 14298.20 121
CLD-MVS94.79 7094.36 8695.30 6095.21 9397.46 10197.23 5692.24 7196.43 5491.77 5092.69 6584.31 12896.06 7295.52 11995.03 11399.31 6199.06 59
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
COLMAP_ROBcopyleft90.49 1493.27 10392.71 11293.93 8697.75 5797.44 10296.07 8893.17 6095.40 8483.86 11483.76 13988.72 10093.87 10894.25 14594.11 14098.87 12395.28 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MSDG94.82 6893.73 10096.09 4898.34 4797.43 10397.06 5896.05 3895.84 7590.56 6386.30 12489.10 9895.55 8396.13 10495.61 9899.00 11195.73 172
OPM-MVS93.61 9692.43 12295.00 6596.94 6797.34 10497.78 4894.23 4789.64 16485.53 10888.70 10482.81 13996.28 7096.28 9795.00 11699.24 7297.22 149
SCA90.92 12893.04 11188.45 15093.72 12897.33 10592.77 14376.08 19996.02 6778.26 14091.96 7390.86 8293.99 10790.98 18890.04 18995.88 19094.06 188
EPMVS90.88 12992.12 12889.44 14194.71 10797.24 10693.55 13076.81 19495.89 7281.77 12491.49 8086.47 11193.87 10890.21 19190.07 18895.92 18993.49 195
HQP-MVS94.43 8094.57 8194.27 8296.41 7397.23 10796.89 6293.98 4895.94 7183.68 11595.01 4884.46 12795.58 8295.47 12194.85 12199.07 10299.00 69
Fast-Effi-MVS+91.87 11492.08 12991.62 11492.91 13797.21 10894.93 11084.60 16693.61 11681.49 12783.50 14078.95 15296.62 6596.55 8496.22 7999.16 9098.51 103
Effi-MVS+-dtu91.78 11693.59 10489.68 13992.44 14397.11 10994.40 12184.94 16292.43 13375.48 15791.09 8683.75 13393.55 11696.61 8195.47 10297.24 18198.67 94
MDTV_nov1_ep1391.57 12093.18 10989.70 13793.39 13196.97 11093.53 13180.91 18595.70 7881.86 12392.40 6889.93 8993.25 12191.97 18190.80 18495.25 19994.46 182
ACMH+90.88 1291.41 12391.13 13991.74 11195.11 9696.95 11193.13 13989.48 11092.42 13479.93 13385.13 12978.02 15693.82 11093.49 15693.88 14698.94 11797.99 125
MS-PatchMatch91.82 11592.51 11691.02 11895.83 8096.88 11295.05 10784.55 16893.85 11282.01 12282.51 14591.71 7790.52 15795.07 13193.03 16298.13 16694.52 180
TDRefinement89.07 15588.15 16490.14 13395.16 9496.88 11295.55 10290.20 9789.68 16376.42 15176.67 16474.30 17384.85 19093.11 16291.91 18098.64 14794.47 181
ACMH90.77 1391.51 12291.63 13591.38 11595.62 8296.87 11491.76 16789.66 10691.58 14778.67 13886.73 11578.12 15593.77 11194.59 13694.54 13198.78 13598.98 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchmatchNetpermissive90.56 13292.49 11888.31 15393.83 12696.86 11592.42 15176.50 19695.96 7078.31 13991.96 7389.66 9193.48 11790.04 19389.20 19295.32 19693.73 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-mter90.95 12793.54 10787.93 16490.28 16296.80 11691.44 16982.68 17892.15 14274.37 16889.57 9988.23 10690.88 14996.37 9394.31 13797.93 17297.37 145
CDS-MVSNet92.77 10693.60 10391.80 11092.63 14196.80 11695.24 10589.14 11390.30 16184.58 11186.76 11490.65 8490.42 15895.89 10896.49 7198.79 13498.32 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMM92.75 1094.41 8293.84 9895.09 6396.41 7396.80 11694.88 11293.54 5296.41 5590.16 7092.31 6983.11 13796.32 6996.22 9994.65 12399.22 7897.35 146
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train93.85 9093.91 9593.78 8994.94 10096.79 11994.29 12391.13 8693.84 11388.26 9590.40 9185.23 12294.65 9696.54 8595.31 10699.38 4999.28 24
PMMVS94.61 7595.56 6593.50 9394.30 11696.74 12094.91 11189.56 10895.58 8387.72 9896.15 3592.86 7296.06 7295.47 12195.02 11498.43 16097.09 152
ADS-MVSNet89.80 14491.33 13888.00 16294.43 11496.71 12192.29 15574.95 20496.07 6677.39 14388.67 10586.09 11493.26 12088.44 19789.57 19195.68 19293.81 192
MVSTER94.89 6695.07 7694.68 7694.71 10796.68 12297.00 5990.57 9495.18 9293.05 3995.21 4586.41 11293.72 11297.59 5295.88 9199.00 11198.50 104
GG-mvs-BLEND66.17 20794.91 7932.63 2131.32 22196.64 12391.40 1700.85 21994.39 1052.20 22290.15 9595.70 612.27 21896.39 9095.44 10397.78 17495.68 173
TAMVS90.54 13490.87 14490.16 13191.48 14996.61 12493.26 13786.08 14587.71 18181.66 12683.11 14384.04 13090.42 15894.54 13794.60 12698.04 17095.48 176
test-LLR91.62 11993.56 10589.35 14393.31 13396.57 12592.02 16387.06 13592.34 13875.05 16490.20 9388.64 10190.93 14696.19 10294.07 14197.75 17696.90 160
TESTMET0.1,191.07 12693.56 10588.17 15490.43 15896.57 12592.02 16382.83 17792.34 13875.05 16490.20 9388.64 10190.93 14696.19 10294.07 14197.75 17696.90 160
GA-MVS89.28 15090.75 14587.57 17191.77 14796.48 12792.29 15587.58 12890.61 15865.77 19784.48 13476.84 16489.46 16695.84 11093.68 15198.52 15397.34 147
Fast-Effi-MVS+-dtu91.19 12593.64 10188.33 15292.19 14596.46 12893.99 12681.52 18392.59 13071.82 17692.17 7085.54 11891.68 13695.73 11594.64 12498.80 13298.34 114
USDC90.69 13090.52 14690.88 12194.17 11996.43 12995.82 9986.76 13793.92 11076.27 15386.49 11874.30 17393.67 11595.04 13293.36 15598.61 14894.13 185
RPSCF94.05 8694.00 9494.12 8496.20 7596.41 13096.61 7391.54 8195.83 7689.73 7896.94 3092.80 7395.35 8791.63 18490.44 18695.27 19893.94 189
FC-MVSNet-test91.63 11893.82 9989.08 14492.02 14696.40 13193.26 13787.26 13293.72 11477.26 14488.61 10689.86 9085.50 18695.72 11795.02 11499.16 9097.44 143
test0.0.03 191.97 11393.91 9589.72 13693.31 13396.40 13191.34 17287.06 13593.86 11181.67 12591.15 8489.16 9786.02 18495.08 13095.09 11198.91 12096.64 166
UniMVSNet_ETH3D88.47 16186.00 19191.35 11691.55 14896.29 13392.53 14888.81 11585.58 19582.33 12167.63 20366.87 20494.04 10691.49 18595.24 10898.84 12698.92 78
EG-PatchMatch MVS86.68 18287.24 17886.02 18790.58 15796.26 13491.08 17681.59 18184.96 19669.80 19071.35 19575.08 17084.23 19494.24 14693.35 15698.82 12795.46 177
dps90.11 14289.37 15590.98 11993.89 12496.21 13593.49 13277.61 19291.95 14392.74 4588.85 10278.77 15492.37 12887.71 20087.71 19795.80 19194.38 183
thisisatest051590.12 14192.06 13087.85 16590.03 16596.17 13687.83 19187.45 13091.71 14677.15 14585.40 12884.01 13185.74 18595.41 12393.30 15898.88 12298.43 107
UniMVSNet (Re)90.03 14389.61 15190.51 12789.97 16796.12 13792.32 15389.26 11190.99 15380.95 13078.25 16175.08 17091.14 14293.78 14993.87 14799.41 4399.21 37
CostFormer90.69 13090.48 14790.93 12094.18 11896.08 13894.03 12578.20 19093.47 11889.96 7590.97 8780.30 14893.72 11287.66 20188.75 19395.51 19596.12 168
FMVSNet393.79 9394.17 9193.35 9891.21 15495.99 13996.62 7288.68 11695.23 8990.40 6586.39 12091.16 7994.11 10495.96 10696.67 6899.07 10297.79 129
tpmrst88.86 15989.62 15087.97 16394.33 11595.98 14092.62 14776.36 19794.62 10076.94 14785.98 12582.80 14092.80 12586.90 20387.15 19994.77 20393.93 190
anonymousdsp88.90 15791.00 14186.44 18388.74 19395.97 14190.40 18282.86 17688.77 17167.33 19581.18 15081.44 14690.22 16196.23 9894.27 13899.12 9699.16 46
Patchmtry95.96 14293.36 13575.99 20075.19 161
CR-MVSNet90.16 14091.96 13288.06 15893.32 13295.95 14393.36 13575.99 20092.40 13575.19 16183.18 14185.37 11992.05 13095.21 12794.56 12998.47 15797.08 154
RPMNet90.19 13992.03 13188.05 15993.46 12995.95 14393.41 13374.59 20592.40 13575.91 15584.22 13686.41 11292.49 12694.42 14193.85 14898.44 15896.96 157
SixPastTwentyTwo88.37 16289.47 15287.08 17790.01 16695.93 14587.41 19285.32 15690.26 16270.26 18486.34 12371.95 18390.93 14692.89 16791.72 18198.55 15197.22 149
GBi-Net93.81 9194.18 8993.38 9691.34 15195.86 14696.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 10096.52 8696.30 7499.21 8197.79 129
test193.81 9194.18 8993.38 9691.34 15195.86 14696.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 10096.52 8696.30 7499.21 8197.79 129
FMVSNet293.30 10293.36 10893.22 10091.34 15195.86 14696.22 8288.24 12395.15 9389.92 7781.64 14789.36 9394.40 10096.77 7596.98 6199.21 8197.79 129
UniMVSNet_NR-MVSNet90.35 13689.96 14890.80 12389.66 17095.83 14992.48 14990.53 9590.96 15479.57 13479.33 15877.14 16193.21 12292.91 16694.50 13499.37 5299.05 62
DCV-MVSNet94.76 7395.12 7594.35 8195.10 9795.81 15096.46 7989.49 10996.33 5690.16 7092.55 6790.26 8795.83 7695.52 11996.03 8599.06 10599.33 20
LTVRE_ROB87.32 1687.55 17488.25 16386.73 18090.66 15695.80 15193.05 14084.77 16383.35 20160.32 20983.12 14267.39 20293.32 11994.36 14394.86 11898.28 16298.87 85
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tfpnnormal88.50 16087.01 18290.23 12991.36 15095.78 15292.74 14490.09 9883.65 20076.33 15271.46 19469.58 19591.84 13395.54 11894.02 14399.06 10599.03 65
pm-mvs189.19 15389.02 15689.38 14290.40 15995.74 15392.05 16188.10 12586.13 19177.70 14173.72 18179.44 15188.97 16995.81 11294.51 13399.08 10097.78 134
MIMVSNet88.99 15691.07 14086.57 18286.78 20295.62 15491.20 17575.40 20290.65 15776.57 14984.05 13782.44 14291.01 14595.84 11095.38 10498.48 15693.50 194
DU-MVS89.67 14688.84 15790.63 12689.26 18095.61 15592.48 14989.91 10091.22 15079.57 13477.72 16271.18 18793.21 12292.53 17094.57 12899.35 5599.05 62
NR-MVSNet89.34 14988.66 15890.13 13490.40 15995.61 15593.04 14189.91 10091.22 15078.96 13777.72 16268.90 19889.16 16894.24 14693.95 14499.32 5898.99 70
testgi89.42 14791.50 13787.00 17992.40 14495.59 15789.15 18885.27 15992.78 12672.42 17391.75 7776.00 16684.09 19594.38 14293.82 15098.65 14696.15 167
PatchT89.13 15491.71 13386.11 18692.92 13695.59 15783.64 20275.09 20391.87 14475.19 16182.63 14485.06 12492.05 13095.21 12794.56 12997.76 17597.08 154
WR-MVS_H87.93 16887.85 17188.03 16189.62 17195.58 15990.47 18185.55 15387.20 18676.83 14874.42 17672.67 18186.37 18193.22 16193.04 16199.33 5698.83 89
pmmvs587.83 17288.09 16587.51 17489.59 17395.48 16089.75 18684.73 16486.07 19371.44 17880.57 15370.09 19390.74 15394.47 13992.87 16698.82 12797.10 151
EPNet_dtu92.45 11195.02 7789.46 14098.02 5395.47 16194.79 11492.62 6594.97 9470.11 18694.76 5192.61 7584.07 19695.94 10795.56 9997.15 18295.82 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_part191.21 12489.47 15293.24 9994.26 11795.45 16295.26 10488.36 12188.49 17490.04 7272.61 18882.82 13893.69 11493.25 16094.62 12597.84 17399.06 59
CVMVSNet89.77 14591.66 13487.56 17293.21 13595.45 16291.94 16689.22 11289.62 16569.34 19283.99 13885.90 11684.81 19194.30 14495.28 10796.85 18497.09 152
TinyColmap89.42 14788.58 15990.40 12893.80 12795.45 16293.96 12786.54 14092.24 14076.49 15080.83 15170.44 19093.37 11894.45 14093.30 15898.26 16493.37 196
tpm cat188.90 15787.78 17390.22 13093.88 12595.39 16593.79 12878.11 19192.55 13189.43 8281.31 14979.84 15091.40 13884.95 20486.34 20294.68 20594.09 186
V4288.31 16387.95 16988.73 14789.44 17595.34 16692.23 15787.21 13388.83 16974.49 16774.89 17173.43 17890.41 16092.08 17992.77 16998.60 15098.33 115
v2v48288.25 16487.71 17488.88 14589.23 18495.28 16792.10 15987.89 12788.69 17273.31 17175.32 16871.64 18491.89 13292.10 17892.92 16498.86 12597.99 125
WR-MVS87.93 16888.09 16587.75 16689.26 18095.28 16790.81 17886.69 13888.90 16875.29 16074.31 17773.72 17685.19 18992.26 17393.32 15799.27 6798.81 90
FMVSNet191.54 12190.93 14292.26 10690.35 16195.27 16995.22 10687.16 13491.37 14987.62 9975.45 16783.84 13294.43 9896.52 8696.30 7498.82 12797.74 135
TranMVSNet+NR-MVSNet89.23 15288.48 16190.11 13589.07 18695.25 17092.91 14290.43 9690.31 16077.10 14676.62 16571.57 18591.83 13492.12 17694.59 12799.32 5898.92 78
v14887.51 17586.79 18488.36 15189.39 17795.21 17189.84 18588.20 12487.61 18377.56 14273.38 18470.32 19286.80 17890.70 18992.31 17698.37 16197.98 127
v114487.92 17087.79 17288.07 15689.27 17995.15 17292.17 15885.62 15188.52 17371.52 17773.80 18072.40 18291.06 14493.54 15592.80 16798.81 13098.33 115
CP-MVSNet87.89 17187.27 17788.62 14889.30 17895.06 17390.60 18085.78 14987.43 18575.98 15474.60 17368.14 20190.76 15193.07 16493.60 15299.30 6398.98 72
CMPMVSbinary65.18 1784.76 19283.10 19886.69 18195.29 9095.05 17488.37 18985.51 15480.27 20771.31 17968.37 20073.85 17585.25 18787.72 19987.75 19694.38 20688.70 206
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v888.21 16587.94 17088.51 14989.62 17195.01 17592.31 15484.99 16188.94 16774.70 16675.03 16973.51 17790.67 15492.11 17792.74 17098.80 13298.24 119
IterMVS-LS92.56 10993.18 10991.84 10993.90 12394.97 17694.99 10886.20 14494.18 10782.68 11985.81 12687.36 10894.43 9895.31 12596.02 8698.87 12398.60 98
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs490.55 13389.91 14991.30 11790.26 16394.95 17792.73 14587.94 12693.44 11985.35 10982.28 14676.09 16593.02 12493.56 15492.26 17898.51 15496.77 162
v7n86.43 18486.52 18886.33 18487.91 19794.93 17890.15 18483.05 17486.57 18870.21 18571.48 19366.78 20587.72 17394.19 14892.96 16398.92 11998.76 93
PS-CasMVS87.33 17886.68 18788.10 15589.22 18594.93 17890.35 18385.70 15086.44 19074.01 16973.43 18366.59 20790.04 16292.92 16593.52 15399.28 6598.91 81
v14419287.40 17787.20 17987.64 16888.89 18894.88 18091.65 16884.70 16587.80 18071.17 18173.20 18570.91 18890.75 15292.69 16892.49 17398.71 13998.43 107
v119287.51 17587.31 17687.74 16789.04 18794.87 18192.07 16085.03 16088.49 17470.32 18372.65 18770.35 19191.21 14193.59 15192.80 16798.78 13598.42 109
v192192087.31 17987.13 18087.52 17388.87 19094.72 18291.96 16584.59 16788.28 17669.86 18972.50 18970.03 19491.10 14393.33 15892.61 17298.71 13998.44 106
v1088.00 16687.96 16888.05 15989.44 17594.68 18392.36 15283.35 17389.37 16672.96 17273.98 17972.79 18091.35 14093.59 15192.88 16598.81 13098.42 109
MDTV_nov1_ep13_2view86.30 18588.27 16284.01 19287.71 19994.67 18488.08 19076.78 19590.59 15968.66 19480.46 15580.12 14987.58 17689.95 19488.20 19595.25 19993.90 191
v124086.89 18186.75 18687.06 17888.75 19294.65 18591.30 17484.05 16987.49 18468.94 19371.96 19268.86 19990.65 15593.33 15892.72 17198.67 14298.24 119
tpm87.95 16789.44 15486.21 18592.53 14294.62 18691.40 17076.36 19791.46 14869.80 19087.43 11075.14 16891.55 13789.85 19590.60 18595.61 19396.96 157
MVS-HIRNet85.36 19086.89 18383.57 19390.13 16494.51 18783.57 20372.61 20788.27 17771.22 18068.97 19881.81 14488.91 17093.08 16391.94 17994.97 20289.64 205
PEN-MVS87.22 18086.50 18988.07 15688.88 18994.44 18890.99 17786.21 14286.53 18973.66 17074.97 17066.56 20889.42 16791.20 18793.48 15499.24 7298.31 118
TransMVSNet (Re)87.73 17386.79 18488.83 14690.76 15594.40 18991.33 17389.62 10784.73 19775.41 15972.73 18671.41 18686.80 17894.53 13893.93 14599.06 10595.83 170
pmmvs685.98 18884.89 19687.25 17688.83 19194.35 19089.36 18785.30 15878.51 20975.44 15862.71 20875.41 16787.65 17493.58 15392.40 17596.89 18397.29 148
IterMVS90.20 13892.43 12287.61 17092.82 14094.31 19194.11 12481.54 18292.97 12369.90 18884.71 13288.16 10789.96 16495.25 12694.17 13997.31 18097.46 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.24 13792.48 12087.63 16992.85 13894.30 19293.79 12881.47 18492.66 12769.95 18784.66 13388.38 10489.99 16395.39 12494.34 13697.74 17897.63 138
pmnet_mix0286.12 18787.12 18184.96 19089.82 16894.12 19384.88 20086.63 13991.78 14565.60 19880.76 15276.98 16286.61 18087.29 20284.80 20596.21 18694.09 186
DTE-MVSNet86.67 18386.09 19087.35 17588.45 19594.08 19490.65 17986.05 14686.13 19172.19 17474.58 17566.77 20687.61 17590.31 19093.12 16099.13 9497.62 139
our_test_389.78 16993.84 19585.59 197
Baseline_NR-MVSNet89.27 15188.01 16790.73 12589.26 18093.71 19692.71 14689.78 10590.73 15581.28 12873.53 18272.85 17992.30 12992.53 17093.84 14999.07 10298.88 83
MDA-MVSNet-bldmvs80.11 19980.24 20279.94 19977.01 21193.21 19778.86 20985.94 14882.71 20460.86 20679.71 15751.77 21783.71 19775.60 20986.37 20193.28 20792.35 197
Anonymous2023120683.84 19585.19 19482.26 19687.38 20092.87 19885.49 19883.65 17186.07 19363.44 20468.42 19969.01 19775.45 20493.34 15792.44 17498.12 16894.20 184
N_pmnet84.80 19185.10 19584.45 19189.25 18392.86 19984.04 20186.21 14288.78 17066.73 19672.41 19074.87 17285.21 18888.32 19886.45 20095.30 19792.04 199
EU-MVSNet85.62 18987.65 17583.24 19588.54 19492.77 20087.12 19385.32 15686.71 18764.54 20078.52 16075.11 16978.35 20092.25 17492.28 17795.58 19495.93 169
FMVSNet590.36 13590.93 14289.70 13787.99 19692.25 20192.03 16283.51 17292.20 14184.13 11285.59 12786.48 11092.43 12794.61 13594.52 13298.13 16690.85 202
test20.0382.92 19785.52 19279.90 20087.75 19891.84 20282.80 20482.99 17582.65 20560.32 20978.90 15970.50 18967.10 20892.05 18090.89 18398.44 15891.80 200
PM-MVS84.72 19384.47 19785.03 18984.67 20491.57 20386.27 19682.31 18087.65 18270.62 18276.54 16656.41 21588.75 17192.59 16989.85 19097.54 17996.66 165
pmmvs-eth3d84.33 19482.94 19985.96 18884.16 20590.94 20486.55 19583.79 17084.25 19875.85 15670.64 19656.43 21487.44 17792.20 17590.41 18797.97 17195.68 173
MIMVSNet180.03 20080.93 20178.97 20172.46 21490.73 20580.81 20782.44 17980.39 20663.64 20257.57 20964.93 20976.37 20291.66 18391.55 18298.07 16989.70 204
new-patchmatchnet78.49 20278.19 20578.84 20284.13 20690.06 20677.11 21180.39 18679.57 20859.64 21266.01 20455.65 21675.62 20384.55 20580.70 20796.14 18890.77 203
gm-plane-assit83.26 19685.29 19380.89 19789.52 17489.89 20770.26 21378.24 18977.11 21058.01 21374.16 17866.90 20390.63 15697.20 6196.05 8498.66 14595.68 173
new_pmnet81.53 19882.68 20080.20 19883.47 20789.47 20882.21 20678.36 18887.86 17960.14 21167.90 20169.43 19682.03 19889.22 19687.47 19894.99 20187.39 207
DeepMVS_CXcopyleft86.86 20979.50 20870.43 21090.73 15563.66 20180.36 15660.83 21079.68 19976.23 20889.46 21086.53 208
pmmvs379.16 20180.12 20378.05 20379.36 20986.59 21078.13 21073.87 20676.42 21157.51 21470.59 19757.02 21384.66 19290.10 19288.32 19494.75 20491.77 201
ambc73.83 20776.23 21285.13 21182.27 20584.16 19965.58 19952.82 21123.31 22273.55 20591.41 18685.26 20492.97 20894.70 179
FPMVS75.84 20374.59 20677.29 20486.92 20183.89 21285.01 19980.05 18782.91 20360.61 20865.25 20560.41 21163.86 20975.60 20973.60 21187.29 21380.47 210
PMMVS264.36 20865.94 21062.52 20967.37 21577.44 21364.39 21569.32 21361.47 21434.59 21746.09 21241.03 21848.02 21574.56 21178.23 20891.43 20982.76 209
tmp_tt66.88 20786.07 20373.86 21468.22 21433.38 21696.88 4780.67 13188.23 10878.82 15349.78 21382.68 20777.47 20983.19 215
Gipumacopyleft68.35 20566.71 20870.27 20574.16 21368.78 21563.93 21671.77 20983.34 20254.57 21534.37 21331.88 21968.69 20783.30 20685.53 20388.48 21179.78 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method72.96 20478.68 20466.28 20850.17 21864.90 21675.45 21250.90 21587.89 17862.54 20562.98 20768.34 20070.45 20691.90 18282.41 20688.19 21292.35 197
PMVScopyleft63.12 1867.27 20666.39 20968.30 20677.98 21060.24 21759.53 21776.82 19366.65 21360.74 20754.39 21059.82 21251.24 21273.92 21270.52 21283.48 21479.17 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.86 1949.54 21151.43 21147.33 21244.14 21959.20 21836.45 22060.59 21441.47 21731.14 21829.58 21417.06 22348.52 21462.22 21374.63 21063.12 21875.87 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS49.98 21046.76 21353.74 21164.96 21651.29 21937.81 21969.35 21251.83 21522.69 22029.57 21525.06 22057.28 21044.81 21556.11 21470.32 21768.64 215
E-PMN50.67 20947.85 21253.96 21064.13 21750.98 22038.06 21869.51 21151.40 21624.60 21929.46 21624.39 22156.07 21148.17 21459.70 21371.40 21670.84 214
testmvs12.09 21216.94 2146.42 2143.15 2206.08 2219.51 2223.84 21721.46 2185.31 22127.49 2176.76 22410.89 21617.06 21615.01 2155.84 21924.75 216
test1239.58 21313.53 2154.97 2151.31 2225.47 2228.32 2232.95 21818.14 2192.03 22320.82 2182.34 22510.60 21710.00 21714.16 2164.60 22023.77 217
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def63.50 203
9.1499.28 11
SR-MVS99.45 997.61 1599.20 15
MTAPA96.83 1099.12 20
MTMP97.18 598.83 26
Patchmatch-RL test34.61 221
mPP-MVS99.21 2498.29 38
NP-MVS95.32 86