This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS98.87 298.96 398.77 199.58 299.53 599.44 197.81 198.22 997.33 498.70 499.33 998.86 898.96 598.40 1399.63 399.57 8
DVP-MVS98.86 398.97 298.75 299.43 1399.63 199.25 1297.81 198.62 197.69 197.59 2099.90 198.93 598.99 398.42 1199.37 5299.62 3
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS98.90 199.07 198.69 399.38 1999.61 299.33 797.80 398.25 797.60 298.87 399.89 298.67 1899.02 298.26 1799.36 5499.61 5
DPE-MVScopyleft98.75 498.91 598.57 499.21 2499.54 499.42 297.78 597.49 3196.84 998.94 199.82 498.59 2198.90 998.22 1899.56 1099.48 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
zzz-MVS98.43 1198.31 2398.57 499.48 599.40 999.32 897.62 1397.70 2296.67 1196.59 3299.09 2198.86 898.65 1297.56 4399.45 3099.17 45
MSP-MVS98.73 598.93 498.50 699.44 1299.57 399.36 397.65 898.14 1196.51 1598.49 699.65 798.67 1898.60 1398.42 1199.40 4699.63 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS98.47 1098.46 1598.48 799.40 1599.05 3299.02 1997.54 1797.73 1896.65 1297.20 2999.13 1998.85 1098.91 898.10 2299.41 4399.08 54
APD-MVScopyleft98.36 1598.32 2298.41 899.47 699.26 2199.12 1597.77 696.73 4996.12 1797.27 2898.88 2498.46 2598.47 1798.39 1499.52 1499.22 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVScopyleft98.66 698.89 698.39 999.60 199.41 899.00 2097.63 1297.78 1795.83 1998.33 1099.83 398.85 1098.93 798.56 699.41 4399.40 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
xxxxxxxxxxxxxcwj97.07 3895.99 6098.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1181.99 14398.11 2998.15 3297.62 3999.45 3099.19 39
SF-MVS98.39 1398.45 1698.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1199.25 1498.11 2998.15 3297.62 3999.45 3099.19 39
HFP-MVS98.48 998.62 1098.32 1299.39 1899.33 1699.27 1097.42 1998.27 695.25 2498.34 998.83 2699.08 198.26 2798.08 2499.48 2299.26 29
CP-MVS98.32 1798.34 2198.29 1399.34 2199.30 1799.15 1497.35 2297.49 3195.58 2297.72 1898.62 3398.82 1298.29 2597.67 3899.51 1999.28 24
ACMMPR98.40 1298.49 1298.28 1499.41 1499.40 999.36 397.35 2298.30 595.02 2697.79 1798.39 3799.04 298.26 2798.10 2299.50 2199.22 35
AdaColmapbinary97.53 3096.93 4598.24 1599.21 2498.77 6298.47 3497.34 2496.68 5196.52 1495.11 4796.12 5898.72 1597.19 6396.24 7899.17 8798.39 112
SD-MVS98.52 798.77 898.23 1698.15 5099.26 2198.79 2697.59 1698.52 296.25 1697.99 1599.75 599.01 398.27 2697.97 2799.59 499.63 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft98.34 1698.47 1498.18 1799.46 899.15 2999.10 1697.69 797.67 2594.93 2797.62 1999.70 698.60 2098.45 1897.46 4699.31 6199.26 29
MSLP-MVS++98.04 2397.93 3298.18 1799.10 2899.09 3198.34 3696.99 3397.54 3096.60 1394.82 4998.45 3598.89 697.46 5598.77 499.17 8799.37 16
NCCC98.10 2198.05 3098.17 1999.38 1999.05 3299.00 2097.53 1898.04 1395.12 2594.80 5099.18 1798.58 2298.49 1697.78 3699.39 4898.98 72
TSAR-MVS + MP.98.49 898.78 798.15 2098.14 5199.17 2899.34 597.18 3098.44 495.72 2097.84 1699.28 1198.87 799.05 198.05 2599.66 199.60 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PLCcopyleft94.95 397.37 3396.77 4998.07 2198.97 3298.21 8497.94 4696.85 3697.66 2697.58 393.33 5896.84 4898.01 3497.13 6596.20 8099.09 9998.01 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CPTT-MVS97.78 2697.54 3398.05 2298.91 3599.05 3299.00 2096.96 3497.14 4095.92 1895.50 4298.78 2898.99 497.20 6196.07 8298.54 15299.04 64
MCST-MVS98.20 1898.36 1898.01 2399.40 1599.05 3299.00 2097.62 1397.59 2993.70 3497.42 2799.30 1098.77 1498.39 2397.48 4599.59 499.31 23
SteuartSystems-ACMMP98.38 1498.71 997.99 2499.34 2199.46 799.34 597.33 2597.31 3594.25 3098.06 1399.17 1898.13 2898.98 498.46 999.55 1199.54 9
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2599.16 2799.03 3999.05 1897.24 2798.22 994.17 3295.82 3898.07 3998.69 1798.83 1098.80 299.52 1499.10 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP98.20 1898.49 1297.85 2699.50 499.40 999.26 1197.64 1197.47 3392.62 4697.59 2099.09 2198.71 1698.82 1197.86 3399.40 4699.19 39
MP-MVScopyleft98.09 2298.30 2497.84 2799.34 2199.19 2799.23 1397.40 2097.09 4293.03 4097.58 2298.85 2598.57 2398.44 2097.69 3799.48 2299.23 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CSCG97.44 3297.18 4097.75 2899.47 699.52 698.55 3195.41 4197.69 2495.72 2094.29 5395.53 6298.10 3196.20 10197.38 5199.24 7299.62 3
CNLPA96.90 4296.28 5597.64 2998.56 4398.63 7496.85 6496.60 3797.73 1897.08 689.78 9896.28 5697.80 3796.73 7796.63 6998.94 11798.14 123
PGM-MVS97.81 2598.11 2897.46 3099.55 399.34 1599.32 894.51 4696.21 6093.07 3798.05 1497.95 4298.82 1298.22 3097.89 3299.48 2299.09 53
X-MVS97.84 2498.19 2797.42 3199.40 1599.35 1299.06 1797.25 2697.38 3490.85 5796.06 3698.72 2998.53 2498.41 2298.15 2199.46 2699.28 24
ACMMPcopyleft97.37 3397.48 3597.25 3298.88 3799.28 1998.47 3496.86 3597.04 4492.15 4797.57 2396.05 6097.67 3897.27 5995.99 8799.46 2699.14 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+93.91 797.23 3597.22 3797.24 3398.89 3698.85 5898.26 3993.25 5897.99 1495.56 2390.01 9698.03 4198.05 3297.91 4398.43 1099.44 3899.35 18
train_agg97.65 2998.06 2997.18 3498.94 3398.91 5398.98 2497.07 3296.71 5090.66 6297.43 2699.08 2398.20 2697.96 4297.14 5799.22 7899.19 39
OMC-MVS97.00 4096.92 4697.09 3598.69 3998.66 6997.85 4795.02 4398.09 1294.47 2893.15 5996.90 4697.38 4497.16 6496.82 6799.13 9497.65 137
DeepC-MVS94.87 496.76 4796.50 5297.05 3698.21 4999.28 1998.67 2797.38 2197.31 3590.36 6989.19 10093.58 6998.19 2798.31 2498.50 799.51 1999.36 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS97.78 2698.44 1797.02 3798.73 3899.25 2398.11 4195.54 4096.66 5292.79 4398.52 599.38 897.50 4297.84 4598.39 1499.45 3099.03 65
3Dnovator93.79 897.08 3797.20 3896.95 3899.09 2999.03 3998.20 4093.33 5497.99 1493.82 3390.61 9096.80 4997.82 3597.90 4498.78 399.47 2599.26 29
DPM-MVS96.86 4396.82 4896.91 3998.08 5298.20 8598.52 3397.20 2997.24 3891.42 5291.84 7598.45 3597.25 4797.07 6697.40 5098.95 11697.55 140
abl_696.82 4098.60 4298.74 6397.74 4993.73 5096.25 5894.37 2994.55 5298.60 3497.25 4799.27 6798.61 97
TSAR-MVS + ACMM97.71 2898.60 1196.66 4198.64 4199.05 3298.85 2597.23 2898.45 389.40 8497.51 2499.27 1396.88 5998.53 1497.81 3598.96 11599.59 7
CANet96.84 4497.20 3896.42 4297.92 5499.24 2598.60 2993.51 5397.11 4193.07 3791.16 8297.24 4596.21 7198.24 2998.05 2599.22 7899.35 18
TSAR-MVS + GP.97.45 3198.36 1896.39 4395.56 8398.93 5097.74 4993.31 5597.61 2894.24 3198.44 899.19 1698.03 3397.60 5197.41 4999.44 3899.33 20
QAPM96.78 4697.14 4296.36 4499.05 3099.14 3098.02 4393.26 5697.27 3790.84 6091.16 8297.31 4497.64 4097.70 4998.20 1999.33 5699.18 43
PCF-MVS93.95 695.65 5495.14 7396.25 4597.73 5898.73 6597.59 5297.13 3192.50 13289.09 9089.85 9796.65 5096.90 5894.97 13394.89 11799.08 10098.38 113
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS94.18 596.38 4896.49 5396.25 4598.26 4898.66 6998.00 4494.96 4497.17 3989.48 8192.91 6396.35 5397.53 4196.59 8295.90 9099.28 6597.82 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_111021_LR97.16 3698.01 3196.16 4798.47 4498.98 4496.94 6193.89 4997.64 2791.44 5198.89 296.41 5297.20 4998.02 4097.29 5699.04 11098.85 87
CDPH-MVS96.84 4497.49 3496.09 4898.92 3498.85 5898.61 2895.09 4296.00 6887.29 10195.45 4497.42 4397.16 5097.83 4697.94 2999.44 3898.92 78
MSDG94.82 6893.73 10096.09 4898.34 4797.43 10397.06 5896.05 3895.84 7590.56 6386.30 12489.10 9895.55 8396.13 10495.61 9899.00 11195.73 172
DELS-MVS96.06 5396.04 5996.07 5097.77 5699.25 2398.10 4293.26 5694.42 10392.79 4388.52 10793.48 7095.06 8998.51 1598.83 199.45 3099.28 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
LS3D95.46 5895.14 7395.84 5197.91 5598.90 5598.58 3097.79 497.07 4383.65 11688.71 10388.64 10197.82 3597.49 5497.42 4899.26 7197.72 136
OpenMVScopyleft92.33 1195.50 5595.22 7295.82 5298.98 3198.97 4697.67 5193.04 6494.64 9989.18 8884.44 13594.79 6496.79 6097.23 6097.61 4199.24 7298.88 83
MVS_111021_HR97.04 3998.20 2695.69 5398.44 4699.29 1896.59 7493.20 5997.70 2289.94 7698.46 796.89 4796.71 6398.11 3797.95 2899.27 6799.01 68
MVS_030496.31 4996.91 4795.62 5497.21 6499.20 2698.55 3193.10 6197.04 4489.73 7890.30 9296.35 5395.71 7798.14 3497.93 3199.38 4999.40 14
PVSNet_BlendedMVS95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9593.10 6196.16 6193.12 3591.99 7185.27 12094.66 9498.09 3897.34 5299.24 7299.08 54
PVSNet_Blended95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9593.10 6196.16 6193.12 3591.99 7185.27 12094.66 9498.09 3897.34 5299.24 7299.08 54
EPNet96.27 5196.97 4495.46 5798.47 4498.28 8197.41 5493.67 5195.86 7492.86 4297.51 2493.79 6891.76 13597.03 6897.03 5998.61 14899.28 24
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS95.28 297.00 4098.35 2095.42 5897.30 6298.94 4894.82 11396.03 3998.24 892.11 4895.80 3998.64 3295.51 8498.95 698.66 596.78 18599.20 38
MAR-MVS95.50 5595.60 6495.39 5998.67 4098.18 8795.89 9589.81 10494.55 10191.97 4992.99 6190.21 8897.30 4696.79 7497.49 4498.72 13898.99 70
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CLD-MVS94.79 7094.36 8695.30 6095.21 9397.46 10197.23 5692.24 7196.43 5491.77 5092.69 6584.31 12896.06 7295.52 11995.03 11399.31 6199.06 59
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS96.23 5297.15 4195.16 6195.01 9998.98 4497.13 5790.68 9296.00 6891.21 5494.03 5496.48 5197.35 4598.00 4197.43 4799.55 1199.15 47
TSAR-MVS + COLMAP94.79 7094.51 8295.11 6296.50 7097.54 9897.99 4594.54 4597.81 1685.88 10796.73 3181.28 14796.99 5696.29 9695.21 11098.76 13796.73 163
ACMM92.75 1094.41 8293.84 9895.09 6396.41 7396.80 11694.88 11293.54 5296.41 5590.16 7092.31 6983.11 13796.32 6996.22 9994.65 12399.22 7897.35 146
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchMatch-RL94.69 7494.41 8495.02 6497.63 5998.15 8894.50 12091.99 7395.32 8691.31 5395.47 4383.44 13596.02 7496.56 8395.23 10998.69 14196.67 164
OPM-MVS93.61 9692.43 12295.00 6596.94 6797.34 10497.78 4894.23 4789.64 16485.53 10888.70 10482.81 13996.28 7096.28 9795.00 11699.24 7297.22 149
canonicalmvs95.25 6495.45 6895.00 6595.27 9198.72 6696.89 6289.82 10396.51 5390.84 6093.72 5786.01 11597.66 3995.78 11397.94 2999.54 1399.50 10
ETV-MVS96.31 4997.47 3694.96 6794.79 10398.78 6196.08 8791.41 8496.16 6190.50 6495.76 4096.20 5797.39 4398.42 2197.82 3499.57 899.18 43
tfpn200view993.64 9492.57 11494.89 6895.33 8798.94 4896.82 6592.31 6792.63 12888.29 9287.21 11178.01 15797.12 5396.82 7195.85 9299.45 3098.56 99
thres20093.62 9592.54 11594.88 6995.36 8698.93 5096.75 6992.31 6792.84 12588.28 9486.99 11377.81 15997.13 5196.82 7195.92 8899.45 3098.49 105
thres40093.56 9792.43 12294.87 7095.40 8598.91 5396.70 7192.38 6692.93 12488.19 9686.69 11677.35 16097.13 5196.75 7695.85 9299.42 4298.56 99
Anonymous2023121193.49 9992.33 12694.84 7194.78 10598.00 9196.11 8691.85 7594.86 9690.91 5674.69 17289.18 9696.73 6294.82 13495.51 10198.67 14299.24 32
thres100view90093.55 9892.47 12194.81 7295.33 8798.74 6396.78 6892.30 7092.63 12888.29 9287.21 11178.01 15796.78 6196.38 9195.92 8899.38 4998.40 111
thres600view793.49 9992.37 12594.79 7395.42 8498.93 5096.58 7592.31 6793.04 12287.88 9786.62 11776.94 16397.09 5496.82 7195.63 9799.45 3098.63 96
baseline194.59 7694.47 8394.72 7495.16 9497.97 9396.07 8891.94 7494.86 9689.98 7491.60 7985.87 11795.64 7997.07 6696.90 6399.52 1497.06 156
EIA-MVS95.50 5596.19 5794.69 7594.83 10298.88 5795.93 9291.50 8394.47 10289.43 8293.14 6092.72 7497.05 5597.82 4897.13 5899.43 4199.15 47
MVSTER94.89 6695.07 7694.68 7694.71 10796.68 12297.00 5990.57 9495.18 9293.05 3995.21 4586.41 11293.72 11297.59 5295.88 9199.00 11198.50 104
casdiffmvs94.38 8394.15 9394.64 7794.70 10998.51 7796.03 9091.66 7995.70 7889.36 8586.48 11985.03 12596.60 6697.40 5697.30 5499.52 1498.67 94
ACMP92.88 994.43 8094.38 8594.50 7896.01 7897.69 9695.85 9892.09 7295.74 7789.12 8995.14 4682.62 14194.77 9095.73 11594.67 12299.14 9399.06 59
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DI_MVS_plusplus_trai94.01 8793.63 10294.44 7994.54 11198.26 8397.51 5390.63 9395.88 7389.34 8680.54 15489.36 9395.48 8596.33 9596.27 7799.17 8798.78 92
diffmvs94.31 8494.21 8894.42 8094.64 11098.28 8196.36 8191.56 8096.77 4888.89 9188.97 10184.23 12996.01 7596.05 10596.41 7399.05 10998.79 91
DCV-MVSNet94.76 7395.12 7594.35 8195.10 9795.81 15096.46 7989.49 10996.33 5690.16 7092.55 6790.26 8795.83 7695.52 11996.03 8599.06 10599.33 20
HQP-MVS94.43 8094.57 8194.27 8296.41 7397.23 10796.89 6293.98 4895.94 7183.68 11595.01 4884.46 12795.58 8295.47 12194.85 12199.07 10299.00 69
EPP-MVSNet95.27 6396.18 5894.20 8394.88 10198.64 7294.97 10990.70 9195.34 8589.67 8091.66 7893.84 6795.42 8697.32 5897.00 6099.58 699.47 12
RPSCF94.05 8694.00 9494.12 8496.20 7596.41 13096.61 7391.54 8195.83 7689.73 7896.94 3092.80 7395.35 8791.63 18490.44 18695.27 19893.94 189
IS_MVSNet95.28 6296.43 5493.94 8595.30 8999.01 4395.90 9391.12 8794.13 10887.50 10091.23 8194.45 6694.17 10398.45 1898.50 799.65 299.23 33
COLMAP_ROBcopyleft90.49 1493.27 10392.71 11293.93 8697.75 5797.44 10296.07 8893.17 6095.40 8483.86 11483.76 13988.72 10093.87 10894.25 14594.11 14098.87 12395.28 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PVSNet_Blended_VisFu94.77 7295.54 6693.87 8796.48 7198.97 4694.33 12291.84 7694.93 9590.37 6885.04 13094.99 6390.87 15098.12 3697.30 5499.30 6399.45 13
MVS_Test94.82 6895.66 6393.84 8894.79 10398.35 8096.49 7889.10 11496.12 6487.09 10392.58 6690.61 8596.48 6796.51 8996.89 6499.11 9798.54 101
FC-MVSNet-train93.85 9093.91 9593.78 8994.94 10096.79 11994.29 12391.13 8693.84 11388.26 9590.40 9185.23 12294.65 9696.54 8595.31 10699.38 4999.28 24
baseline94.83 6795.82 6293.68 9094.75 10697.80 9496.51 7788.53 11997.02 4689.34 8692.93 6292.18 7694.69 9395.78 11396.08 8198.27 16398.97 76
CHOSEN 280x42095.46 5897.01 4393.66 9197.28 6397.98 9296.40 8085.39 15596.10 6591.07 5596.53 3396.34 5595.61 8197.65 5096.95 6296.21 18697.49 141
LGP-MVS_train94.12 8594.62 8093.53 9296.44 7297.54 9897.40 5591.84 7694.66 9881.09 12995.70 4183.36 13695.10 8896.36 9495.71 9699.32 5899.03 65
PMMVS94.61 7595.56 6593.50 9394.30 11696.74 12094.91 11189.56 10895.58 8387.72 9896.15 3592.86 7296.06 7295.47 12195.02 11498.43 16097.09 152
thisisatest053094.54 7795.47 6793.46 9494.51 11298.65 7194.66 11690.72 8995.69 8086.90 10493.80 5589.44 9294.74 9196.98 7094.86 11899.19 8598.85 87
tttt051794.52 7895.44 6993.44 9594.51 11298.68 6894.61 11890.72 8995.61 8286.84 10593.78 5689.26 9594.74 9197.02 6994.86 11899.20 8498.87 85
GBi-Net93.81 9194.18 8993.38 9691.34 15195.86 14696.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 10096.52 8696.30 7499.21 8197.79 129
test193.81 9194.18 8993.38 9691.34 15195.86 14696.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 10096.52 8696.30 7499.21 8197.79 129
FMVSNet393.79 9394.17 9193.35 9891.21 15495.99 13996.62 7288.68 11695.23 8990.40 6586.39 12091.16 7994.11 10495.96 10696.67 6899.07 10297.79 129
test_part191.21 12489.47 15293.24 9994.26 11795.45 16295.26 10488.36 12188.49 17490.04 7272.61 18882.82 13893.69 11493.25 16094.62 12597.84 17399.06 59
FMVSNet293.30 10293.36 10893.22 10091.34 15195.86 14696.22 8288.24 12395.15 9389.92 7781.64 14789.36 9394.40 10096.77 7596.98 6199.21 8197.79 129
UGNet94.92 6596.63 5092.93 10196.03 7798.63 7494.53 11991.52 8296.23 5990.03 7392.87 6496.10 5986.28 18296.68 7996.60 7099.16 9099.32 22
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268892.66 10892.49 11892.85 10297.13 6598.89 5695.90 9388.50 12095.32 8683.31 11771.99 19188.96 9994.10 10596.69 7896.49 7198.15 16599.10 51
HyFIR lowres test92.03 11291.55 13692.58 10397.13 6598.72 6694.65 11786.54 14093.58 11782.56 12067.75 20290.47 8695.67 7895.87 10995.54 10098.91 12098.93 77
Vis-MVSNet (Re-imp)94.46 7996.24 5692.40 10495.23 9298.64 7295.56 10190.99 8894.42 10385.02 11090.88 8894.65 6588.01 17298.17 3198.37 1699.57 898.53 102
GeoE92.52 11092.64 11392.39 10593.96 12297.76 9596.01 9185.60 15293.23 12083.94 11381.56 14884.80 12695.63 8096.22 9995.83 9499.19 8599.07 58
FMVSNet191.54 12190.93 14292.26 10690.35 16195.27 16995.22 10687.16 13491.37 14987.62 9975.45 16783.84 13294.43 9896.52 8696.30 7498.82 12797.74 135
ET-MVSNet_ETH3D93.34 10194.33 8792.18 10783.26 20897.66 9796.72 7089.89 10295.62 8187.17 10296.00 3783.69 13496.99 5693.78 14995.34 10599.06 10598.18 122
Effi-MVS+92.93 10593.86 9791.86 10894.07 12198.09 9095.59 10085.98 14794.27 10679.54 13691.12 8581.81 14496.71 6396.67 8096.06 8399.27 6798.98 72
IterMVS-LS92.56 10993.18 10991.84 10993.90 12394.97 17694.99 10886.20 14494.18 10782.68 11985.81 12687.36 10894.43 9895.31 12596.02 8698.87 12398.60 98
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet92.77 10693.60 10391.80 11092.63 14196.80 11695.24 10589.14 11390.30 16184.58 11186.76 11490.65 8490.42 15895.89 10896.49 7198.79 13498.32 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH+90.88 1291.41 12391.13 13991.74 11195.11 9696.95 11193.13 13989.48 11092.42 13479.93 13385.13 12978.02 15693.82 11093.49 15693.88 14698.94 11797.99 125
UA-Net93.96 8895.95 6191.64 11296.06 7698.59 7695.29 10390.00 9991.06 15282.87 11890.64 8998.06 4086.06 18398.14 3498.20 1999.58 696.96 157
baseline293.01 10494.17 9191.64 11292.83 13997.49 10093.40 13487.53 12993.67 11586.07 10691.83 7686.58 10991.36 13996.38 9195.06 11298.67 14298.20 121
Fast-Effi-MVS+91.87 11492.08 12991.62 11492.91 13797.21 10894.93 11084.60 16693.61 11681.49 12783.50 14078.95 15296.62 6596.55 8496.22 7999.16 9098.51 103
ACMH90.77 1391.51 12291.63 13591.38 11595.62 8296.87 11491.76 16789.66 10691.58 14778.67 13886.73 11578.12 15593.77 11194.59 13694.54 13198.78 13598.98 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D88.47 16186.00 19191.35 11691.55 14896.29 13392.53 14888.81 11585.58 19582.33 12167.63 20366.87 20494.04 10691.49 18595.24 10898.84 12698.92 78
pmmvs490.55 13389.91 14991.30 11790.26 16394.95 17792.73 14587.94 12693.44 11985.35 10982.28 14676.09 16593.02 12493.56 15492.26 17898.51 15496.77 162
MS-PatchMatch91.82 11592.51 11691.02 11895.83 8096.88 11295.05 10784.55 16893.85 11282.01 12282.51 14591.71 7790.52 15795.07 13193.03 16298.13 16694.52 180
dps90.11 14289.37 15590.98 11993.89 12496.21 13593.49 13277.61 19291.95 14392.74 4588.85 10278.77 15492.37 12887.71 20087.71 19795.80 19194.38 183
CostFormer90.69 13090.48 14790.93 12094.18 11896.08 13894.03 12578.20 19093.47 11889.96 7590.97 8780.30 14893.72 11287.66 20188.75 19395.51 19596.12 168
USDC90.69 13090.52 14690.88 12194.17 11996.43 12995.82 9986.76 13793.92 11076.27 15386.49 11874.30 17393.67 11595.04 13293.36 15598.61 14894.13 185
CANet_DTU93.92 8996.57 5190.83 12295.63 8198.39 7996.99 6087.38 13196.26 5771.97 17596.31 3493.02 7194.53 9797.38 5796.83 6698.49 15597.79 129
UniMVSNet_NR-MVSNet90.35 13689.96 14890.80 12389.66 17095.83 14992.48 14990.53 9590.96 15479.57 13479.33 15877.14 16193.21 12292.91 16694.50 13499.37 5299.05 62
IB-MVS89.56 1591.71 11792.50 11790.79 12495.94 7998.44 7887.05 19491.38 8593.15 12192.98 4184.78 13185.14 12378.27 20192.47 17294.44 13599.10 9899.08 54
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Baseline_NR-MVSNet89.27 15188.01 16790.73 12589.26 18093.71 19692.71 14689.78 10590.73 15581.28 12873.53 18272.85 17992.30 12992.53 17093.84 14999.07 10298.88 83
DU-MVS89.67 14688.84 15790.63 12689.26 18095.61 15592.48 14989.91 10091.22 15079.57 13477.72 16271.18 18793.21 12292.53 17094.57 12899.35 5599.05 62
UniMVSNet (Re)90.03 14389.61 15190.51 12789.97 16796.12 13792.32 15389.26 11190.99 15380.95 13078.25 16175.08 17091.14 14293.78 14993.87 14799.41 4399.21 37
TinyColmap89.42 14788.58 15990.40 12893.80 12795.45 16293.96 12786.54 14092.24 14076.49 15080.83 15170.44 19093.37 11894.45 14093.30 15898.26 16493.37 196
tfpnnormal88.50 16087.01 18290.23 12991.36 15095.78 15292.74 14490.09 9883.65 20076.33 15271.46 19469.58 19591.84 13395.54 11894.02 14399.06 10599.03 65
tpm cat188.90 15787.78 17390.22 13093.88 12595.39 16593.79 12878.11 19192.55 13189.43 8281.31 14979.84 15091.40 13884.95 20486.34 20294.68 20594.09 186
Vis-MVSNetpermissive92.77 10695.00 7890.16 13194.10 12098.79 6094.76 11588.26 12292.37 13779.95 13288.19 10991.58 7884.38 19397.59 5297.58 4299.52 1498.91 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS90.54 13490.87 14490.16 13191.48 14996.61 12493.26 13786.08 14587.71 18181.66 12683.11 14384.04 13090.42 15894.54 13794.60 12698.04 17095.48 176
TDRefinement89.07 15588.15 16490.14 13395.16 9496.88 11295.55 10290.20 9789.68 16376.42 15176.67 16474.30 17384.85 19093.11 16291.91 18098.64 14794.47 181
NR-MVSNet89.34 14988.66 15890.13 13490.40 15995.61 15593.04 14189.91 10091.22 15078.96 13777.72 16268.90 19889.16 16894.24 14693.95 14499.32 5898.99 70
TranMVSNet+NR-MVSNet89.23 15288.48 16190.11 13589.07 18695.25 17092.91 14290.43 9690.31 16077.10 14676.62 16571.57 18591.83 13492.12 17694.59 12799.32 5898.92 78
test0.0.03 191.97 11393.91 9589.72 13693.31 13396.40 13191.34 17287.06 13593.86 11181.67 12591.15 8489.16 9786.02 18495.08 13095.09 11198.91 12096.64 166
FMVSNet590.36 13590.93 14289.70 13787.99 19692.25 20192.03 16283.51 17292.20 14184.13 11285.59 12786.48 11092.43 12794.61 13594.52 13298.13 16690.85 202
MDTV_nov1_ep1391.57 12093.18 10989.70 13793.39 13196.97 11093.53 13180.91 18595.70 7881.86 12392.40 6889.93 8993.25 12191.97 18190.80 18495.25 19994.46 182
Effi-MVS+-dtu91.78 11693.59 10489.68 13992.44 14397.11 10994.40 12184.94 16292.43 13375.48 15791.09 8683.75 13393.55 11696.61 8195.47 10297.24 18198.67 94
EPNet_dtu92.45 11195.02 7789.46 14098.02 5395.47 16194.79 11492.62 6594.97 9470.11 18694.76 5192.61 7584.07 19695.94 10795.56 9997.15 18295.82 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS90.88 12992.12 12889.44 14194.71 10797.24 10693.55 13076.81 19495.89 7281.77 12491.49 8086.47 11193.87 10890.21 19190.07 18895.92 18993.49 195
pm-mvs189.19 15389.02 15689.38 14290.40 15995.74 15392.05 16188.10 12586.13 19177.70 14173.72 18179.44 15188.97 16995.81 11294.51 13399.08 10097.78 134
test-LLR91.62 11993.56 10589.35 14393.31 13396.57 12592.02 16387.06 13592.34 13875.05 16490.20 9388.64 10190.93 14696.19 10294.07 14197.75 17696.90 160
FC-MVSNet-test91.63 11893.82 9989.08 14492.02 14696.40 13193.26 13787.26 13293.72 11477.26 14488.61 10689.86 9085.50 18695.72 11795.02 11499.16 9097.44 143
v2v48288.25 16487.71 17488.88 14589.23 18495.28 16792.10 15987.89 12788.69 17273.31 17175.32 16871.64 18491.89 13292.10 17892.92 16498.86 12597.99 125
TransMVSNet (Re)87.73 17386.79 18488.83 14690.76 15594.40 18991.33 17389.62 10784.73 19775.41 15972.73 18671.41 18686.80 17894.53 13893.93 14599.06 10595.83 170
V4288.31 16387.95 16988.73 14789.44 17595.34 16692.23 15787.21 13388.83 16974.49 16774.89 17173.43 17890.41 16092.08 17992.77 16998.60 15098.33 115
CP-MVSNet87.89 17187.27 17788.62 14889.30 17895.06 17390.60 18085.78 14987.43 18575.98 15474.60 17368.14 20190.76 15193.07 16493.60 15299.30 6398.98 72
v888.21 16587.94 17088.51 14989.62 17195.01 17592.31 15484.99 16188.94 16774.70 16675.03 16973.51 17790.67 15492.11 17792.74 17098.80 13298.24 119
SCA90.92 12893.04 11188.45 15093.72 12897.33 10592.77 14376.08 19996.02 6778.26 14091.96 7390.86 8293.99 10790.98 18890.04 18995.88 19094.06 188
v14887.51 17586.79 18488.36 15189.39 17795.21 17189.84 18588.20 12487.61 18377.56 14273.38 18470.32 19286.80 17890.70 18992.31 17698.37 16197.98 127
Fast-Effi-MVS+-dtu91.19 12593.64 10188.33 15292.19 14596.46 12893.99 12681.52 18392.59 13071.82 17692.17 7085.54 11891.68 13695.73 11594.64 12498.80 13298.34 114
PatchmatchNetpermissive90.56 13292.49 11888.31 15393.83 12696.86 11592.42 15176.50 19695.96 7078.31 13991.96 7389.66 9193.48 11790.04 19389.20 19295.32 19693.73 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TESTMET0.1,191.07 12693.56 10588.17 15490.43 15896.57 12592.02 16382.83 17792.34 13875.05 16490.20 9388.64 10190.93 14696.19 10294.07 14197.75 17696.90 160
PS-CasMVS87.33 17886.68 18788.10 15589.22 18594.93 17890.35 18385.70 15086.44 19074.01 16973.43 18366.59 20790.04 16292.92 16593.52 15399.28 6598.91 81
v114487.92 17087.79 17288.07 15689.27 17995.15 17292.17 15885.62 15188.52 17371.52 17773.80 18072.40 18291.06 14493.54 15592.80 16798.81 13098.33 115
PEN-MVS87.22 18086.50 18988.07 15688.88 18994.44 18890.99 17786.21 14286.53 18973.66 17074.97 17066.56 20889.42 16791.20 18793.48 15499.24 7298.31 118
CR-MVSNet90.16 14091.96 13288.06 15893.32 13295.95 14393.36 13575.99 20092.40 13575.19 16183.18 14185.37 11992.05 13095.21 12794.56 12998.47 15797.08 154
v1088.00 16687.96 16888.05 15989.44 17594.68 18392.36 15283.35 17389.37 16672.96 17273.98 17972.79 18091.35 14093.59 15192.88 16598.81 13098.42 109
RPMNet90.19 13992.03 13188.05 15993.46 12995.95 14393.41 13374.59 20592.40 13575.91 15584.22 13686.41 11292.49 12694.42 14193.85 14898.44 15896.96 157
WR-MVS_H87.93 16887.85 17188.03 16189.62 17195.58 15990.47 18185.55 15387.20 18676.83 14874.42 17672.67 18186.37 18193.22 16193.04 16199.33 5698.83 89
ADS-MVSNet89.80 14491.33 13888.00 16294.43 11496.71 12192.29 15574.95 20496.07 6677.39 14388.67 10586.09 11493.26 12088.44 19789.57 19195.68 19293.81 192
tpmrst88.86 15989.62 15087.97 16394.33 11595.98 14092.62 14776.36 19794.62 10076.94 14785.98 12582.80 14092.80 12586.90 20387.15 19994.77 20393.93 190
test-mter90.95 12793.54 10787.93 16490.28 16296.80 11691.44 16982.68 17892.15 14274.37 16889.57 9988.23 10690.88 14996.37 9394.31 13797.93 17297.37 145
thisisatest051590.12 14192.06 13087.85 16590.03 16596.17 13687.83 19187.45 13091.71 14677.15 14585.40 12884.01 13185.74 18595.41 12393.30 15898.88 12298.43 107
WR-MVS87.93 16888.09 16587.75 16689.26 18095.28 16790.81 17886.69 13888.90 16875.29 16074.31 17773.72 17685.19 18992.26 17393.32 15799.27 6798.81 90
v119287.51 17587.31 17687.74 16789.04 18794.87 18192.07 16085.03 16088.49 17470.32 18372.65 18770.35 19191.21 14193.59 15192.80 16798.78 13598.42 109
v14419287.40 17787.20 17987.64 16888.89 18894.88 18091.65 16884.70 16587.80 18071.17 18173.20 18570.91 18890.75 15292.69 16892.49 17398.71 13998.43 107
IterMVS-SCA-FT90.24 13792.48 12087.63 16992.85 13894.30 19293.79 12881.47 18492.66 12769.95 18784.66 13388.38 10489.99 16395.39 12494.34 13697.74 17897.63 138
IterMVS90.20 13892.43 12287.61 17092.82 14094.31 19194.11 12481.54 18292.97 12369.90 18884.71 13288.16 10789.96 16495.25 12694.17 13997.31 18097.46 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS89.28 15090.75 14587.57 17191.77 14796.48 12792.29 15587.58 12890.61 15865.77 19784.48 13476.84 16489.46 16695.84 11093.68 15198.52 15397.34 147
CVMVSNet89.77 14591.66 13487.56 17293.21 13595.45 16291.94 16689.22 11289.62 16569.34 19283.99 13885.90 11684.81 19194.30 14495.28 10796.85 18497.09 152
v192192087.31 17987.13 18087.52 17388.87 19094.72 18291.96 16584.59 16788.28 17669.86 18972.50 18970.03 19491.10 14393.33 15892.61 17298.71 13998.44 106
pmmvs587.83 17288.09 16587.51 17489.59 17395.48 16089.75 18684.73 16486.07 19371.44 17880.57 15370.09 19390.74 15394.47 13992.87 16698.82 12797.10 151
DTE-MVSNet86.67 18386.09 19087.35 17588.45 19594.08 19490.65 17986.05 14686.13 19172.19 17474.58 17566.77 20687.61 17590.31 19093.12 16099.13 9497.62 139
pmmvs685.98 18884.89 19687.25 17688.83 19194.35 19089.36 18785.30 15878.51 20975.44 15862.71 20875.41 16787.65 17493.58 15392.40 17596.89 18397.29 148
SixPastTwentyTwo88.37 16289.47 15287.08 17790.01 16695.93 14587.41 19285.32 15690.26 16270.26 18486.34 12371.95 18390.93 14692.89 16791.72 18198.55 15197.22 149
v124086.89 18186.75 18687.06 17888.75 19294.65 18591.30 17484.05 16987.49 18468.94 19371.96 19268.86 19990.65 15593.33 15892.72 17198.67 14298.24 119
testgi89.42 14791.50 13787.00 17992.40 14495.59 15789.15 18885.27 15992.78 12672.42 17391.75 7776.00 16684.09 19594.38 14293.82 15098.65 14696.15 167
LTVRE_ROB87.32 1687.55 17488.25 16386.73 18090.66 15695.80 15193.05 14084.77 16383.35 20160.32 20983.12 14267.39 20293.32 11994.36 14394.86 11898.28 16298.87 85
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CMPMVSbinary65.18 1784.76 19283.10 19886.69 18195.29 9095.05 17488.37 18985.51 15480.27 20771.31 17968.37 20073.85 17585.25 18787.72 19987.75 19694.38 20688.70 206
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet88.99 15691.07 14086.57 18286.78 20295.62 15491.20 17575.40 20290.65 15776.57 14984.05 13782.44 14291.01 14595.84 11095.38 10498.48 15693.50 194
anonymousdsp88.90 15791.00 14186.44 18388.74 19395.97 14190.40 18282.86 17688.77 17167.33 19581.18 15081.44 14690.22 16196.23 9894.27 13899.12 9699.16 46
v7n86.43 18486.52 18886.33 18487.91 19794.93 17890.15 18483.05 17486.57 18870.21 18571.48 19366.78 20587.72 17394.19 14892.96 16398.92 11998.76 93
tpm87.95 16789.44 15486.21 18592.53 14294.62 18691.40 17076.36 19791.46 14869.80 19087.43 11075.14 16891.55 13789.85 19590.60 18595.61 19396.96 157
PatchT89.13 15491.71 13386.11 18692.92 13695.59 15783.64 20275.09 20391.87 14475.19 16182.63 14485.06 12492.05 13095.21 12794.56 12997.76 17597.08 154
EG-PatchMatch MVS86.68 18287.24 17886.02 18790.58 15796.26 13491.08 17681.59 18184.96 19669.80 19071.35 19575.08 17084.23 19494.24 14693.35 15698.82 12795.46 177
pmmvs-eth3d84.33 19482.94 19985.96 18884.16 20590.94 20486.55 19583.79 17084.25 19875.85 15670.64 19656.43 21487.44 17792.20 17590.41 18797.97 17195.68 173
PM-MVS84.72 19384.47 19785.03 18984.67 20491.57 20386.27 19682.31 18087.65 18270.62 18276.54 16656.41 21588.75 17192.59 16989.85 19097.54 17996.66 165
pmnet_mix0286.12 18787.12 18184.96 19089.82 16894.12 19384.88 20086.63 13991.78 14565.60 19880.76 15276.98 16286.61 18087.29 20284.80 20596.21 18694.09 186
N_pmnet84.80 19185.10 19584.45 19189.25 18392.86 19984.04 20186.21 14288.78 17066.73 19672.41 19074.87 17285.21 18888.32 19886.45 20095.30 19792.04 199
MDTV_nov1_ep13_2view86.30 18588.27 16284.01 19287.71 19994.67 18488.08 19076.78 19590.59 15968.66 19480.46 15580.12 14987.58 17689.95 19488.20 19595.25 19993.90 191
MVS-HIRNet85.36 19086.89 18383.57 19390.13 16494.51 18783.57 20372.61 20788.27 17771.22 18068.97 19881.81 14488.91 17093.08 16391.94 17994.97 20289.64 205
gg-mvs-nofinetune86.17 18688.57 16083.36 19493.44 13098.15 8896.58 7572.05 20874.12 21249.23 21664.81 20690.85 8389.90 16597.83 4696.84 6598.97 11497.41 144
EU-MVSNet85.62 18987.65 17583.24 19588.54 19492.77 20087.12 19385.32 15686.71 18764.54 20078.52 16075.11 16978.35 20092.25 17492.28 17795.58 19495.93 169
Anonymous2023120683.84 19585.19 19482.26 19687.38 20092.87 19885.49 19883.65 17186.07 19363.44 20468.42 19969.01 19775.45 20493.34 15792.44 17498.12 16894.20 184
gm-plane-assit83.26 19685.29 19380.89 19789.52 17489.89 20770.26 21378.24 18977.11 21058.01 21374.16 17866.90 20390.63 15697.20 6196.05 8498.66 14595.68 173
new_pmnet81.53 19882.68 20080.20 19883.47 20789.47 20882.21 20678.36 18887.86 17960.14 21167.90 20169.43 19682.03 19889.22 19687.47 19894.99 20187.39 207
MDA-MVSNet-bldmvs80.11 19980.24 20279.94 19977.01 21193.21 19778.86 20985.94 14882.71 20460.86 20679.71 15751.77 21783.71 19775.60 20986.37 20193.28 20792.35 197
test20.0382.92 19785.52 19279.90 20087.75 19891.84 20282.80 20482.99 17582.65 20560.32 20978.90 15970.50 18967.10 20892.05 18090.89 18398.44 15891.80 200
MIMVSNet180.03 20080.93 20178.97 20172.46 21490.73 20580.81 20782.44 17980.39 20663.64 20257.57 20964.93 20976.37 20291.66 18391.55 18298.07 16989.70 204
new-patchmatchnet78.49 20278.19 20578.84 20284.13 20690.06 20677.11 21180.39 18679.57 20859.64 21266.01 20455.65 21675.62 20384.55 20580.70 20796.14 18890.77 203
pmmvs379.16 20180.12 20378.05 20379.36 20986.59 21078.13 21073.87 20676.42 21157.51 21470.59 19757.02 21384.66 19290.10 19288.32 19494.75 20491.77 201
FPMVS75.84 20374.59 20677.29 20486.92 20183.89 21285.01 19980.05 18782.91 20360.61 20865.25 20560.41 21163.86 20975.60 20973.60 21187.29 21380.47 210
Gipumacopyleft68.35 20566.71 20870.27 20574.16 21368.78 21563.93 21671.77 20983.34 20254.57 21534.37 21331.88 21968.69 20783.30 20685.53 20388.48 21179.78 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft63.12 1867.27 20666.39 20968.30 20677.98 21060.24 21759.53 21776.82 19366.65 21360.74 20754.39 21059.82 21251.24 21273.92 21270.52 21283.48 21479.17 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt66.88 20786.07 20373.86 21468.22 21433.38 21696.88 4780.67 13188.23 10878.82 15349.78 21382.68 20777.47 20983.19 215
test_method72.96 20478.68 20466.28 20850.17 21864.90 21675.45 21250.90 21587.89 17862.54 20562.98 20768.34 20070.45 20691.90 18282.41 20688.19 21292.35 197
PMMVS264.36 20865.94 21062.52 20967.37 21577.44 21364.39 21569.32 21361.47 21434.59 21746.09 21241.03 21848.02 21574.56 21178.23 20891.43 20982.76 209
E-PMN50.67 20947.85 21253.96 21064.13 21750.98 22038.06 21869.51 21151.40 21624.60 21929.46 21624.39 22156.07 21148.17 21459.70 21371.40 21670.84 214
EMVS49.98 21046.76 21353.74 21164.96 21651.29 21937.81 21969.35 21251.83 21522.69 22029.57 21525.06 22057.28 21044.81 21556.11 21470.32 21768.64 215
MVEpermissive50.86 1949.54 21151.43 21147.33 21244.14 21959.20 21836.45 22060.59 21441.47 21731.14 21829.58 21417.06 22348.52 21462.22 21374.63 21063.12 21875.87 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND66.17 20794.91 7932.63 2131.32 22196.64 12391.40 1700.85 21994.39 1052.20 22290.15 9595.70 612.27 21896.39 9095.44 10397.78 17495.68 173
testmvs12.09 21216.94 2146.42 2143.15 2206.08 2219.51 2223.84 21721.46 2185.31 22127.49 2176.76 22410.89 21617.06 21615.01 2155.84 21924.75 216
test1239.58 21313.53 2154.97 2151.31 2225.47 2228.32 2232.95 21818.14 2192.03 22320.82 2182.34 22510.60 21710.00 21714.16 2164.60 22023.77 217
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def63.50 203
9.1499.28 11
SR-MVS99.45 997.61 1599.20 15
Anonymous20240521192.18 12795.04 9898.20 8596.14 8591.79 7893.93 10974.60 17388.38 10496.48 6795.17 12995.82 9599.00 11199.15 47
our_test_389.78 16993.84 19585.59 197
ambc73.83 20776.23 21285.13 21182.27 20584.16 19965.58 19952.82 21123.31 22273.55 20591.41 18685.26 20492.97 20894.70 179
MTAPA96.83 1099.12 20
MTMP97.18 598.83 26
Patchmatch-RL test34.61 221
XVS96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
X-MVStestdata96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
mPP-MVS99.21 2498.29 38
NP-MVS95.32 86
Patchmtry95.96 14293.36 13575.99 20075.19 161
DeepMVS_CXcopyleft86.86 20979.50 20870.43 21090.73 15563.66 20180.36 15660.83 21079.68 19976.23 20889.46 21086.53 208