This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 499.57 9
DPE-MVScopyleft98.75 598.91 698.57 599.21 2599.54 699.42 297.78 697.49 3396.84 1098.94 199.82 598.59 2298.90 1098.22 1899.56 1699.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++98.92 199.18 198.61 499.47 699.61 299.39 397.82 198.80 196.86 998.90 299.92 198.67 1899.02 298.20 1999.43 4699.82 1
MSP-MVS98.73 698.93 598.50 799.44 1399.57 499.36 497.65 998.14 1296.51 1698.49 799.65 898.67 1898.60 1598.42 1199.40 5299.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMPR98.40 1398.49 1398.28 1599.41 1599.40 1399.36 497.35 2398.30 695.02 2797.79 1898.39 3899.04 298.26 3498.10 2399.50 2699.22 39
TSAR-MVS + MP.98.49 998.78 898.15 2198.14 5299.17 3499.34 697.18 3198.44 595.72 2197.84 1799.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP98.38 1598.71 1097.99 2599.34 2299.46 1099.34 697.33 2697.31 3794.25 3298.06 1499.17 1998.13 3298.98 598.46 999.55 1799.54 11
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS98.90 299.07 298.69 399.38 2099.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1899.02 298.26 1799.36 6099.61 6
zzz-MVS98.43 1298.31 2498.57 599.48 599.40 1399.32 997.62 1497.70 2396.67 1296.59 3399.09 2298.86 898.65 1397.56 5099.45 3599.17 49
PGM-MVS97.81 2698.11 2997.46 3199.55 399.34 2199.32 994.51 4796.21 6493.07 3998.05 1597.95 4398.82 1298.22 3797.89 3799.48 2799.09 56
HFP-MVS98.48 1098.62 1198.32 1399.39 1999.33 2299.27 1197.42 2098.27 795.25 2598.34 1098.83 2799.08 198.26 3498.08 2599.48 2799.26 33
ACMMP_NAP98.20 1998.49 1397.85 2799.50 499.40 1399.26 1297.64 1297.47 3592.62 4997.59 2199.09 2298.71 1698.82 1297.86 3899.40 5299.19 43
DVP-MVScopyleft98.86 498.97 398.75 299.43 1499.63 199.25 1397.81 298.62 297.69 197.59 2199.90 298.93 598.99 498.42 1199.37 5899.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MP-MVScopyleft98.09 2398.30 2597.84 2899.34 2299.19 3399.23 1497.40 2197.09 4593.03 4297.58 2398.85 2698.57 2498.44 2397.69 4499.48 2799.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS98.32 1898.34 2298.29 1499.34 2299.30 2399.15 1597.35 2397.49 3395.58 2397.72 1998.62 3498.82 1298.29 2997.67 4599.51 2499.28 28
APD-MVScopyleft98.36 1698.32 2398.41 999.47 699.26 2799.12 1697.77 796.73 5296.12 1897.27 2998.88 2598.46 2698.47 1998.39 1499.52 1999.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.34 1798.47 1598.18 1899.46 999.15 3599.10 1797.69 897.67 2694.93 2897.62 2099.70 798.60 2198.45 2197.46 5399.31 6799.26 33
X-MVS97.84 2598.19 2897.42 3299.40 1699.35 1899.06 1897.25 2797.38 3690.85 6496.06 3898.72 3098.53 2598.41 2598.15 2299.46 3199.28 28
DeepC-MVS_fast96.13 198.13 2198.27 2697.97 2699.16 2899.03 4599.05 1997.24 2898.22 1094.17 3495.82 4198.07 4098.69 1798.83 1198.80 299.52 1999.10 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNVR-MVS98.47 1198.46 1698.48 899.40 1699.05 3899.02 2097.54 1897.73 1996.65 1397.20 3099.13 2098.85 1098.91 998.10 2399.41 4999.08 57
SMA-MVScopyleft98.66 798.89 798.39 1099.60 199.41 1299.00 2197.63 1397.78 1895.83 2098.33 1199.83 498.85 1098.93 898.56 699.41 4999.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS98.20 1998.36 1998.01 2499.40 1699.05 3899.00 2197.62 1497.59 3093.70 3697.42 2899.30 1198.77 1498.39 2797.48 5299.59 699.31 27
NCCC98.10 2298.05 3198.17 2099.38 2099.05 3899.00 2197.53 1998.04 1495.12 2694.80 5399.18 1898.58 2398.49 1897.78 4299.39 5498.98 75
CPTT-MVS97.78 2797.54 3698.05 2398.91 3699.05 3899.00 2196.96 3597.14 4395.92 1995.50 4598.78 2998.99 497.20 6896.07 8898.54 15999.04 67
train_agg97.65 3098.06 3097.18 3598.94 3498.91 5898.98 2597.07 3396.71 5390.66 6997.43 2799.08 2498.20 2897.96 4897.14 6399.22 8499.19 43
TSAR-MVS + ACMM97.71 2998.60 1296.66 4298.64 4299.05 3898.85 2697.23 2998.45 489.40 9197.51 2599.27 1496.88 6298.53 1697.81 4198.96 12299.59 8
SD-MVS98.52 898.77 998.23 1798.15 5199.26 2798.79 2797.59 1798.52 396.25 1797.99 1699.75 699.01 398.27 3397.97 3199.59 699.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS94.87 496.76 5096.50 5597.05 3798.21 5099.28 2598.67 2897.38 2297.31 3790.36 7689.19 10493.58 7398.19 2998.31 2898.50 799.51 2499.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS96.84 4797.49 3796.09 5098.92 3598.85 6398.61 2995.09 4396.00 7287.29 10895.45 4797.42 4497.16 5397.83 5297.94 3499.44 4398.92 81
CANet96.84 4797.20 4296.42 4397.92 5599.24 3198.60 3093.51 5497.11 4493.07 3991.16 8697.24 4696.21 7498.24 3698.05 2699.22 8499.35 22
LS3D95.46 6195.14 7795.84 5597.91 5698.90 6098.58 3197.79 597.07 4683.65 12388.71 10788.64 10597.82 3997.49 6197.42 5499.26 7797.72 143
MVS_030496.31 5396.91 5095.62 5897.21 6799.20 3298.55 3293.10 6297.04 4789.73 8590.30 9696.35 5495.71 8098.14 4197.93 3699.38 5599.40 18
CSCG97.44 3397.18 4497.75 2999.47 699.52 898.55 3295.41 4297.69 2595.72 2194.29 5795.53 6498.10 3596.20 10897.38 5799.24 7899.62 4
DPM-MVS96.86 4696.82 5196.91 4098.08 5398.20 9298.52 3497.20 3097.24 4091.42 5891.84 7898.45 3697.25 5097.07 7397.40 5698.95 12397.55 147
ACMMPcopyleft97.37 3497.48 3897.25 3398.88 3899.28 2598.47 3596.86 3697.04 4792.15 5297.57 2496.05 6197.67 4297.27 6695.99 9399.46 3199.14 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AdaColmapbinary97.53 3196.93 4898.24 1699.21 2598.77 6798.47 3597.34 2596.68 5496.52 1595.11 5096.12 5998.72 1597.19 7096.24 8499.17 9398.39 115
MSLP-MVS++98.04 2497.93 3398.18 1899.10 2999.09 3798.34 3796.99 3497.54 3196.60 1494.82 5298.45 3698.89 697.46 6298.77 499.17 9399.37 20
xxxxxxxxxxxxxcwj97.07 3995.99 6398.33 1199.45 1099.05 3898.27 3897.65 997.73 1997.02 798.18 1281.99 14798.11 3398.15 3997.62 4699.45 3599.19 43
SF-MVS98.39 1498.45 1798.33 1199.45 1099.05 3898.27 3897.65 997.73 1997.02 798.18 1299.25 1598.11 3398.15 3997.62 4699.45 3599.19 43
3Dnovator+93.91 797.23 3697.22 4197.24 3498.89 3798.85 6398.26 4093.25 5997.99 1595.56 2490.01 10098.03 4298.05 3697.91 4998.43 1099.44 4399.35 22
3Dnovator93.79 897.08 3897.20 4296.95 3999.09 3099.03 4598.20 4193.33 5597.99 1593.82 3590.61 9496.80 5097.82 3997.90 5098.78 399.47 3099.26 33
PHI-MVS97.78 2798.44 1897.02 3898.73 3999.25 2998.11 4295.54 4196.66 5592.79 4698.52 699.38 997.50 4697.84 5198.39 1499.45 3599.03 68
DELS-MVS96.06 5696.04 6296.07 5297.77 5799.25 2998.10 4393.26 5794.42 11092.79 4688.52 11193.48 7495.06 9598.51 1798.83 199.45 3599.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM96.78 4997.14 4596.36 4599.05 3199.14 3698.02 4493.26 5797.27 3990.84 6791.16 8697.31 4597.64 4497.70 5698.20 1999.33 6299.18 47
TAPA-MVS94.18 596.38 5296.49 5696.25 4698.26 4998.66 7598.00 4594.96 4597.17 4189.48 8892.91 6696.35 5497.53 4596.59 8995.90 9699.28 7197.82 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + COLMAP94.79 7394.51 8695.11 6896.50 7397.54 10597.99 4694.54 4697.81 1785.88 11496.73 3281.28 15196.99 5996.29 10395.21 11698.76 14496.73 170
PLCcopyleft94.95 397.37 3496.77 5298.07 2298.97 3398.21 9197.94 4796.85 3797.66 2797.58 393.33 6196.84 4998.01 3897.13 7296.20 8699.09 10598.01 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OMC-MVS97.00 4196.92 4997.09 3698.69 4098.66 7597.85 4895.02 4498.09 1394.47 2993.15 6296.90 4797.38 4897.16 7196.82 7399.13 10097.65 144
OPM-MVS93.61 10392.43 12995.00 7196.94 7097.34 11197.78 4994.23 4889.64 17185.53 11588.70 10882.81 14396.28 7396.28 10495.00 12399.24 7897.22 156
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TSAR-MVS + GP.97.45 3298.36 1996.39 4495.56 8998.93 5597.74 5093.31 5697.61 2994.24 3398.44 999.19 1798.03 3797.60 5897.41 5599.44 4399.33 24
abl_696.82 4198.60 4398.74 6897.74 5093.73 5196.25 6294.37 3194.55 5698.60 3597.25 5099.27 7398.61 100
OpenMVScopyleft92.33 1195.50 5895.22 7595.82 5698.98 3298.97 5197.67 5293.04 6594.64 10689.18 9584.44 14094.79 6696.79 6397.23 6797.61 4899.24 7898.88 86
PCF-MVS93.95 695.65 5795.14 7796.25 4697.73 6098.73 7097.59 5397.13 3292.50 13989.09 9789.85 10196.65 5196.90 6194.97 14094.89 12499.08 10698.38 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DI_MVS_plusplus_trai94.01 9293.63 10694.44 8594.54 11898.26 9097.51 5490.63 9895.88 7689.34 9380.54 16189.36 9795.48 8896.33 10296.27 8399.17 9398.78 95
EPNet96.27 5596.97 4795.46 6298.47 4598.28 8897.41 5593.67 5295.86 7792.86 4597.51 2593.79 7291.76 14297.03 7597.03 6598.61 15599.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LGP-MVS_train94.12 9094.62 8493.53 9896.44 7597.54 10597.40 5691.84 8194.66 10581.09 13695.70 4483.36 14095.10 9496.36 10195.71 10299.32 6499.03 68
DROMVSNet96.49 5197.63 3595.16 6794.75 11298.69 7397.39 5788.97 12096.34 5992.02 5496.04 3996.46 5298.21 2798.41 2597.96 3299.61 599.55 10
CS-MVS96.87 4597.41 4096.24 4897.42 6299.48 997.30 5891.83 8397.17 4193.02 4394.80 5394.45 6898.16 3198.61 1497.85 3999.69 199.50 12
CLD-MVS94.79 7394.36 9095.30 6595.21 9997.46 10897.23 5992.24 7596.43 5791.77 5692.69 6884.31 13296.06 7595.52 12695.03 12099.31 6799.06 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSDG94.82 7193.73 10496.09 5098.34 4897.43 11097.06 6096.05 3995.84 7890.56 7086.30 12989.10 10295.55 8696.13 11195.61 10499.00 11795.73 179
MVSTER94.89 6995.07 8094.68 8294.71 11496.68 12997.00 6190.57 9995.18 9893.05 4195.21 4886.41 11693.72 11997.59 5995.88 9799.00 11798.50 107
CANet_DTU93.92 9696.57 5490.83 12995.63 8798.39 8696.99 6287.38 13796.26 6171.97 18296.31 3593.02 7594.53 10497.38 6496.83 7298.49 16297.79 136
test250694.32 8793.00 11695.87 5496.16 7999.39 1696.96 6392.80 6795.22 9694.47 2991.55 8370.45 19695.25 9298.29 2997.98 2999.59 698.10 129
ECVR-MVScopyleft94.14 8992.96 11795.52 6196.16 7999.39 1696.96 6392.80 6795.22 9692.38 5081.48 15480.31 15295.25 9298.29 2997.98 2999.59 698.05 130
MVS_111021_LR97.16 3798.01 3296.16 4998.47 4598.98 5096.94 6593.89 5097.64 2891.44 5798.89 396.41 5397.20 5298.02 4797.29 6299.04 11698.85 90
canonicalmvs95.25 6795.45 7195.00 7195.27 9798.72 7196.89 6689.82 10896.51 5690.84 6793.72 6086.01 11997.66 4395.78 12097.94 3499.54 1899.50 12
HQP-MVS94.43 8394.57 8594.27 8896.41 7697.23 11496.89 6693.98 4995.94 7483.68 12295.01 5184.46 13195.58 8595.47 12894.85 12899.07 10899.00 72
CNLPA96.90 4496.28 5897.64 3098.56 4498.63 8096.85 6896.60 3897.73 1997.08 689.78 10296.28 5797.80 4196.73 8496.63 7598.94 12498.14 127
tfpn200view993.64 10192.57 12194.89 7495.33 9398.94 5396.82 6992.31 7192.63 13588.29 9987.21 11578.01 16397.12 5696.82 7895.85 9899.45 3598.56 102
XVS96.60 7199.35 1896.82 6990.85 6498.72 3099.46 31
X-MVStestdata96.60 7199.35 1896.82 6990.85 6498.72 3099.46 31
test111193.94 9492.78 11895.29 6696.14 8199.42 1196.79 7292.85 6695.08 10091.39 5980.69 15979.86 15595.00 9698.28 3298.00 2899.58 1098.11 128
thres100view90093.55 10592.47 12894.81 7895.33 9398.74 6896.78 7392.30 7492.63 13588.29 9987.21 11578.01 16396.78 6496.38 9895.92 9499.38 5598.40 114
thres20093.62 10292.54 12294.88 7595.36 9298.93 5596.75 7492.31 7192.84 13288.28 10186.99 11777.81 16597.13 5496.82 7895.92 9499.45 3598.49 108
ET-MVSNet_ETH3D93.34 10894.33 9192.18 11483.26 21597.66 10496.72 7589.89 10795.62 8487.17 10996.00 4083.69 13896.99 5993.78 15695.34 11199.06 11198.18 126
thres40093.56 10492.43 12994.87 7695.40 9198.91 5896.70 7692.38 7092.93 13188.19 10386.69 12077.35 16697.13 5496.75 8395.85 9899.42 4898.56 102
FMVSNet393.79 10094.17 9593.35 10491.21 16195.99 14696.62 7788.68 12295.23 9390.40 7286.39 12591.16 8394.11 11195.96 11396.67 7499.07 10897.79 136
RPSCF94.05 9194.00 9894.12 9096.20 7896.41 13796.61 7891.54 8795.83 7989.73 8596.94 3192.80 7795.35 9191.63 19190.44 19395.27 20593.94 196
MVS_111021_HR97.04 4098.20 2795.69 5798.44 4799.29 2496.59 7993.20 6097.70 2389.94 8398.46 896.89 4896.71 6698.11 4497.95 3399.27 7399.01 71
gg-mvs-nofinetune86.17 19388.57 16783.36 20193.44 13798.15 9596.58 8072.05 21574.12 21949.23 22364.81 21390.85 8789.90 17297.83 5296.84 7198.97 12097.41 151
thres600view793.49 10692.37 13294.79 7995.42 9098.93 5596.58 8092.31 7193.04 12987.88 10486.62 12176.94 16997.09 5796.82 7895.63 10399.45 3598.63 99
baseline94.83 7095.82 6593.68 9694.75 11297.80 10196.51 8288.53 12597.02 4989.34 9392.93 6592.18 8094.69 10095.78 12096.08 8798.27 17098.97 79
MVS_Test94.82 7195.66 6693.84 9494.79 10998.35 8796.49 8389.10 11996.12 6887.09 11092.58 6990.61 8996.48 7096.51 9696.89 7099.11 10398.54 104
DCV-MVSNet94.76 7695.12 7994.35 8795.10 10395.81 15796.46 8489.49 11496.33 6090.16 7792.55 7090.26 9195.83 7995.52 12696.03 9199.06 11199.33 24
CHOSEN 280x42095.46 6197.01 4693.66 9797.28 6697.98 9996.40 8585.39 16196.10 6991.07 6196.53 3496.34 5695.61 8497.65 5796.95 6896.21 19397.49 148
diffmvs94.31 8894.21 9294.42 8694.64 11798.28 8896.36 8691.56 8696.77 5188.89 9888.97 10584.23 13396.01 7896.05 11296.41 7999.05 11598.79 94
CS-MVS-test97.00 4197.85 3496.00 5397.77 5799.56 596.35 8791.95 7897.54 3192.20 5196.14 3796.00 6298.19 2998.46 2097.78 4299.57 1399.45 16
GBi-Net93.81 9894.18 9393.38 10291.34 15895.86 15396.22 8888.68 12295.23 9390.40 7286.39 12591.16 8394.40 10796.52 9396.30 8099.21 8797.79 136
test193.81 9894.18 9393.38 10291.34 15895.86 15396.22 8888.68 12295.23 9390.40 7286.39 12591.16 8394.40 10796.52 9396.30 8099.21 8797.79 136
FMVSNet293.30 10993.36 11293.22 10691.34 15895.86 15396.22 8888.24 12995.15 9989.92 8481.64 15289.36 9794.40 10796.77 8296.98 6799.21 8797.79 136
Anonymous20240521192.18 13495.04 10498.20 9296.14 9191.79 8493.93 11674.60 18088.38 10896.48 7095.17 13695.82 10199.00 11799.15 51
Anonymous2023121193.49 10692.33 13394.84 7794.78 11198.00 9896.11 9291.85 8094.86 10390.91 6374.69 17989.18 10096.73 6594.82 14195.51 10798.67 14999.24 36
ETV-MVS96.31 5397.47 3994.96 7394.79 10998.78 6696.08 9391.41 9096.16 6590.50 7195.76 4396.20 5897.39 4798.42 2497.82 4099.57 1399.18 47
baseline194.59 7994.47 8794.72 8095.16 10097.97 10096.07 9491.94 7994.86 10389.98 8191.60 8285.87 12195.64 8297.07 7396.90 6999.52 1997.06 163
COLMAP_ROBcopyleft90.49 1493.27 11092.71 11993.93 9297.75 5997.44 10996.07 9493.17 6195.40 8783.86 12183.76 14488.72 10493.87 11594.25 15294.11 14798.87 13095.28 185
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
casdiffmvs94.38 8694.15 9794.64 8394.70 11698.51 8496.03 9691.66 8595.70 8189.36 9286.48 12485.03 12996.60 6997.40 6397.30 6099.52 1998.67 97
GeoE92.52 11792.64 12092.39 11293.96 12997.76 10296.01 9785.60 15893.23 12783.94 12081.56 15384.80 13095.63 8396.22 10695.83 10099.19 9199.07 61
EIA-MVS95.50 5896.19 6094.69 8194.83 10898.88 6295.93 9891.50 8994.47 10989.43 8993.14 6392.72 7897.05 5897.82 5497.13 6499.43 4699.15 51
CHOSEN 1792x268892.66 11592.49 12592.85 10897.13 6898.89 6195.90 9988.50 12695.32 9083.31 12471.99 19888.96 10394.10 11296.69 8596.49 7798.15 17299.10 54
IS_MVSNet95.28 6596.43 5793.94 9195.30 9599.01 4995.90 9991.12 9394.13 11587.50 10791.23 8594.45 6894.17 11098.45 2198.50 799.65 399.23 37
PVSNet_BlendedMVS95.41 6395.28 7395.57 5997.42 6299.02 4795.89 10193.10 6296.16 6593.12 3791.99 7485.27 12494.66 10198.09 4597.34 5899.24 7899.08 57
PVSNet_Blended95.41 6395.28 7395.57 5997.42 6299.02 4795.89 10193.10 6296.16 6593.12 3791.99 7485.27 12494.66 10198.09 4597.34 5899.24 7899.08 57
MAR-MVS95.50 5895.60 6795.39 6498.67 4198.18 9495.89 10189.81 10994.55 10891.97 5592.99 6490.21 9297.30 4996.79 8197.49 5198.72 14598.99 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ACMP92.88 994.43 8394.38 8994.50 8496.01 8497.69 10395.85 10492.09 7695.74 8089.12 9695.14 4982.62 14594.77 9795.73 12294.67 12999.14 9999.06 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
USDC90.69 13790.52 15390.88 12894.17 12696.43 13695.82 10586.76 14393.92 11776.27 16086.49 12374.30 17993.67 12295.04 13993.36 16298.61 15594.13 192
Effi-MVS+92.93 11293.86 10191.86 11594.07 12898.09 9795.59 10685.98 15394.27 11379.54 14391.12 8981.81 14896.71 6696.67 8796.06 8999.27 7398.98 75
Vis-MVSNet (Re-imp)94.46 8296.24 5992.40 11195.23 9898.64 7895.56 10790.99 9494.42 11085.02 11790.88 9294.65 6788.01 17998.17 3898.37 1699.57 1398.53 105
TDRefinement89.07 16288.15 17190.14 14095.16 10096.88 11995.55 10890.20 10289.68 17076.42 15876.67 17174.30 17984.85 19793.11 16991.91 18798.64 15494.47 188
FA-MVS(training)93.94 9495.16 7692.53 11094.87 10798.57 8395.42 10979.49 19495.37 8890.98 6286.54 12294.26 7095.44 8997.80 5595.19 11798.97 12098.38 116
UA-Net93.96 9395.95 6491.64 11996.06 8298.59 8295.29 11090.00 10491.06 15982.87 12590.64 9398.06 4186.06 19098.14 4198.20 1999.58 1096.96 164
test_part191.21 13189.47 15993.24 10594.26 12495.45 16995.26 11188.36 12788.49 18190.04 7972.61 19582.82 14293.69 12193.25 16794.62 13297.84 18099.06 62
CDS-MVSNet92.77 11393.60 10791.80 11792.63 14896.80 12395.24 11289.14 11890.30 16884.58 11886.76 11890.65 8890.42 16595.89 11596.49 7798.79 14198.32 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FMVSNet191.54 12890.93 14992.26 11390.35 16895.27 17695.22 11387.16 14091.37 15687.62 10675.45 17483.84 13694.43 10596.52 9396.30 8098.82 13497.74 142
MS-PatchMatch91.82 12292.51 12391.02 12595.83 8696.88 11995.05 11484.55 17493.85 11982.01 12982.51 15091.71 8190.52 16495.07 13893.03 16998.13 17394.52 187
IterMVS-LS92.56 11693.18 11391.84 11693.90 13094.97 18394.99 11586.20 15094.18 11482.68 12685.81 13187.36 11294.43 10595.31 13296.02 9298.87 13098.60 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPP-MVSNet95.27 6696.18 6194.20 8994.88 10698.64 7894.97 11690.70 9795.34 8989.67 8791.66 8193.84 7195.42 9097.32 6597.00 6699.58 1099.47 15
Fast-Effi-MVS+91.87 12192.08 13691.62 12192.91 14497.21 11594.93 11784.60 17293.61 12381.49 13483.50 14578.95 15896.62 6896.55 9196.22 8599.16 9698.51 106
PMMVS94.61 7895.56 6893.50 9994.30 12396.74 12794.91 11889.56 11395.58 8687.72 10596.15 3692.86 7696.06 7595.47 12895.02 12198.43 16797.09 159
ACMM92.75 1094.41 8593.84 10295.09 6996.41 7696.80 12394.88 11993.54 5396.41 5890.16 7792.31 7283.11 14196.32 7296.22 10694.65 13099.22 8497.35 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DeepPCF-MVS95.28 297.00 4198.35 2195.42 6397.30 6598.94 5394.82 12096.03 4098.24 992.11 5395.80 4298.64 3395.51 8798.95 798.66 596.78 19299.20 42
EPNet_dtu92.45 11895.02 8189.46 14798.02 5495.47 16894.79 12192.62 6994.97 10170.11 19394.76 5592.61 7984.07 20395.94 11495.56 10597.15 18995.82 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive92.77 11395.00 8290.16 13894.10 12798.79 6594.76 12288.26 12892.37 14479.95 13988.19 11391.58 8284.38 20097.59 5997.58 4999.52 1998.91 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053094.54 8095.47 7093.46 10094.51 11998.65 7794.66 12390.72 9595.69 8386.90 11193.80 5889.44 9694.74 9896.98 7794.86 12599.19 9198.85 90
HyFIR lowres test92.03 11991.55 14392.58 10997.13 6898.72 7194.65 12486.54 14693.58 12482.56 12767.75 20990.47 9095.67 8195.87 11695.54 10698.91 12798.93 80
tttt051794.52 8195.44 7293.44 10194.51 11998.68 7494.61 12590.72 9595.61 8586.84 11293.78 5989.26 9994.74 9897.02 7694.86 12599.20 9098.87 88
UGNet94.92 6896.63 5392.93 10796.03 8398.63 8094.53 12691.52 8896.23 6390.03 8092.87 6796.10 6086.28 18996.68 8696.60 7699.16 9699.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchMatch-RL94.69 7794.41 8895.02 7097.63 6198.15 9594.50 12791.99 7795.32 9091.31 6095.47 4683.44 13996.02 7796.56 9095.23 11598.69 14896.67 171
Effi-MVS+-dtu91.78 12393.59 10889.68 14692.44 15097.11 11694.40 12884.94 16892.43 14075.48 16491.09 9083.75 13793.55 12396.61 8895.47 10897.24 18898.67 97
PVSNet_Blended_VisFu94.77 7595.54 6993.87 9396.48 7498.97 5194.33 12991.84 8194.93 10290.37 7585.04 13594.99 6590.87 15798.12 4397.30 6099.30 6999.45 16
FC-MVSNet-train93.85 9793.91 9993.78 9594.94 10596.79 12694.29 13091.13 9293.84 12088.26 10290.40 9585.23 12694.65 10396.54 9295.31 11299.38 5599.28 28
IterMVS90.20 14592.43 12987.61 17792.82 14794.31 19894.11 13181.54 18892.97 13069.90 19584.71 13788.16 11189.96 17195.25 13394.17 14697.31 18797.46 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CostFormer90.69 13790.48 15490.93 12794.18 12596.08 14594.03 13278.20 19793.47 12589.96 8290.97 9180.30 15393.72 11987.66 20888.75 20095.51 20296.12 175
Fast-Effi-MVS+-dtu91.19 13293.64 10588.33 15992.19 15296.46 13593.99 13381.52 18992.59 13771.82 18392.17 7385.54 12291.68 14395.73 12294.64 13198.80 13998.34 118
TinyColmap89.42 15488.58 16690.40 13593.80 13495.45 16993.96 13486.54 14692.24 14776.49 15780.83 15770.44 19793.37 12594.45 14793.30 16598.26 17193.37 203
IterMVS-SCA-FT90.24 14492.48 12787.63 17692.85 14594.30 19993.79 13581.47 19092.66 13469.95 19484.66 13888.38 10889.99 17095.39 13194.34 14397.74 18597.63 145
tpm cat188.90 16487.78 18090.22 13793.88 13295.39 17293.79 13578.11 19892.55 13889.43 8981.31 15579.84 15691.40 14584.95 21186.34 20994.68 21294.09 193
EPMVS90.88 13692.12 13589.44 14894.71 11497.24 11393.55 13776.81 20195.89 7581.77 13191.49 8486.47 11593.87 11590.21 19890.07 19595.92 19693.49 202
MDTV_nov1_ep1391.57 12793.18 11389.70 14493.39 13896.97 11793.53 13880.91 19195.70 8181.86 13092.40 7189.93 9393.25 12891.97 18890.80 19195.25 20694.46 189
dps90.11 14989.37 16290.98 12693.89 13196.21 14293.49 13977.61 19991.95 15092.74 4888.85 10678.77 16092.37 13587.71 20787.71 20495.80 19894.38 190
RPMNet90.19 14692.03 13888.05 16693.46 13695.95 15093.41 14074.59 21292.40 14275.91 16284.22 14186.41 11692.49 13394.42 14893.85 15598.44 16596.96 164
baseline293.01 11194.17 9591.64 11992.83 14697.49 10793.40 14187.53 13593.67 12286.07 11391.83 7986.58 11391.36 14696.38 9895.06 11998.67 14998.20 125
CR-MVSNet90.16 14791.96 13988.06 16593.32 13995.95 15093.36 14275.99 20792.40 14275.19 16883.18 14685.37 12392.05 13795.21 13494.56 13698.47 16497.08 161
Patchmtry95.96 14993.36 14275.99 20775.19 168
FC-MVSNet-test91.63 12593.82 10389.08 15192.02 15396.40 13893.26 14487.26 13893.72 12177.26 15188.61 11089.86 9485.50 19395.72 12495.02 12199.16 9697.44 150
TAMVS90.54 14190.87 15190.16 13891.48 15696.61 13193.26 14486.08 15187.71 18881.66 13383.11 14884.04 13490.42 16594.54 14494.60 13398.04 17795.48 183
ACMH+90.88 1291.41 13091.13 14691.74 11895.11 10296.95 11893.13 14689.48 11592.42 14179.93 14085.13 13478.02 16293.82 11793.49 16393.88 15398.94 12497.99 132
LTVRE_ROB87.32 1687.55 18188.25 17086.73 18790.66 16395.80 15893.05 14784.77 16983.35 20860.32 21683.12 14767.39 20993.32 12694.36 15094.86 12598.28 16998.87 88
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
NR-MVSNet89.34 15688.66 16590.13 14190.40 16695.61 16293.04 14889.91 10591.22 15778.96 14477.72 16968.90 20589.16 17594.24 15393.95 15199.32 6498.99 73
TranMVSNet+NR-MVSNet89.23 15988.48 16890.11 14289.07 19395.25 17792.91 14990.43 10190.31 16777.10 15376.62 17271.57 19191.83 14192.12 18394.59 13499.32 6498.92 81
SCA90.92 13593.04 11588.45 15793.72 13597.33 11292.77 15076.08 20696.02 7178.26 14791.96 7690.86 8693.99 11490.98 19590.04 19695.88 19794.06 195
tfpnnormal88.50 16787.01 18990.23 13691.36 15795.78 15992.74 15190.09 10383.65 20776.33 15971.46 20169.58 20291.84 14095.54 12594.02 15099.06 11199.03 68
pmmvs490.55 14089.91 15691.30 12490.26 17094.95 18492.73 15287.94 13293.44 12685.35 11682.28 15176.09 17193.02 13193.56 16192.26 18598.51 16196.77 169
Baseline_NR-MVSNet89.27 15888.01 17490.73 13289.26 18793.71 20392.71 15389.78 11090.73 16281.28 13573.53 18972.85 18592.30 13692.53 17793.84 15699.07 10898.88 86
tpmrst88.86 16689.62 15787.97 17094.33 12295.98 14792.62 15476.36 20494.62 10776.94 15485.98 13082.80 14492.80 13286.90 21087.15 20694.77 21093.93 197
UniMVSNet_ETH3D88.47 16886.00 19891.35 12391.55 15596.29 14092.53 15588.81 12185.58 20282.33 12867.63 21066.87 21194.04 11391.49 19295.24 11498.84 13398.92 81
UniMVSNet_NR-MVSNet90.35 14389.96 15590.80 13089.66 17795.83 15692.48 15690.53 10090.96 16179.57 14179.33 16577.14 16793.21 12992.91 17394.50 14199.37 5899.05 65
DU-MVS89.67 15388.84 16490.63 13389.26 18795.61 16292.48 15689.91 10591.22 15779.57 14177.72 16971.18 19393.21 12992.53 17794.57 13599.35 6199.05 65
PatchmatchNetpermissive90.56 13992.49 12588.31 16093.83 13396.86 12292.42 15876.50 20395.96 7378.31 14691.96 7689.66 9593.48 12490.04 20089.20 19995.32 20393.73 200
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v1088.00 17387.96 17588.05 16689.44 18294.68 19092.36 15983.35 17989.37 17372.96 17973.98 18672.79 18691.35 14793.59 15892.88 17298.81 13798.42 112
UniMVSNet (Re)90.03 15089.61 15890.51 13489.97 17496.12 14492.32 16089.26 11690.99 16080.95 13778.25 16875.08 17691.14 14993.78 15693.87 15499.41 4999.21 41
v888.21 17287.94 17788.51 15689.62 17895.01 18292.31 16184.99 16788.94 17474.70 17375.03 17673.51 18390.67 16192.11 18492.74 17798.80 13998.24 123
GA-MVS89.28 15790.75 15287.57 17891.77 15496.48 13492.29 16287.58 13490.61 16565.77 20484.48 13976.84 17089.46 17395.84 11793.68 15898.52 16097.34 154
ADS-MVSNet89.80 15191.33 14588.00 16994.43 12196.71 12892.29 16274.95 21196.07 7077.39 15088.67 10986.09 11893.26 12788.44 20489.57 19895.68 19993.81 199
V4288.31 17087.95 17688.73 15489.44 18295.34 17392.23 16487.21 13988.83 17674.49 17474.89 17873.43 18490.41 16792.08 18692.77 17698.60 15798.33 119
v114487.92 17787.79 17988.07 16389.27 18695.15 17992.17 16585.62 15788.52 18071.52 18473.80 18772.40 18891.06 15193.54 16292.80 17498.81 13798.33 119
v2v48288.25 17187.71 18188.88 15289.23 19195.28 17492.10 16687.89 13388.69 17973.31 17875.32 17571.64 19091.89 13992.10 18592.92 17198.86 13297.99 132
v119287.51 18287.31 18387.74 17489.04 19494.87 18892.07 16785.03 16688.49 18170.32 19072.65 19470.35 19891.21 14893.59 15892.80 17498.78 14298.42 112
pm-mvs189.19 16089.02 16389.38 14990.40 16695.74 16092.05 16888.10 13186.13 19877.70 14873.72 18879.44 15788.97 17695.81 11994.51 14099.08 10697.78 141
FMVSNet590.36 14290.93 14989.70 14487.99 20392.25 20892.03 16983.51 17892.20 14884.13 11985.59 13286.48 11492.43 13494.61 14294.52 13998.13 17390.85 209
test-LLR91.62 12693.56 10989.35 15093.31 14096.57 13292.02 17087.06 14192.34 14575.05 17190.20 9788.64 10590.93 15396.19 10994.07 14897.75 18396.90 167
TESTMET0.1,191.07 13393.56 10988.17 16190.43 16596.57 13292.02 17082.83 18392.34 14575.05 17190.20 9788.64 10590.93 15396.19 10994.07 14897.75 18396.90 167
v192192087.31 18687.13 18787.52 18088.87 19794.72 18991.96 17284.59 17388.28 18369.86 19672.50 19670.03 20191.10 15093.33 16592.61 17998.71 14698.44 109
CVMVSNet89.77 15291.66 14187.56 17993.21 14295.45 16991.94 17389.22 11789.62 17269.34 19983.99 14385.90 12084.81 19894.30 15195.28 11396.85 19197.09 159
ACMH90.77 1391.51 12991.63 14291.38 12295.62 8896.87 12191.76 17489.66 11191.58 15478.67 14586.73 11978.12 16193.77 11894.59 14394.54 13898.78 14298.98 75
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14419287.40 18487.20 18687.64 17588.89 19594.88 18791.65 17584.70 17187.80 18771.17 18873.20 19270.91 19490.75 15992.69 17592.49 18098.71 14698.43 110
test-mter90.95 13493.54 11187.93 17190.28 16996.80 12391.44 17682.68 18492.15 14974.37 17589.57 10388.23 11090.88 15696.37 10094.31 14497.93 17997.37 152
GG-mvs-BLEND66.17 21494.91 8332.63 2201.32 22896.64 13091.40 1770.85 22694.39 1122.20 22990.15 9995.70 632.27 22596.39 9795.44 10997.78 18195.68 180
tpm87.95 17489.44 16186.21 19292.53 14994.62 19391.40 17776.36 20491.46 15569.80 19787.43 11475.14 17491.55 14489.85 20290.60 19295.61 20096.96 164
test0.0.03 191.97 12093.91 9989.72 14393.31 14096.40 13891.34 17987.06 14193.86 11881.67 13291.15 8889.16 10186.02 19195.08 13795.09 11898.91 12796.64 173
TransMVSNet (Re)87.73 18086.79 19188.83 15390.76 16294.40 19691.33 18089.62 11284.73 20475.41 16672.73 19371.41 19286.80 18594.53 14593.93 15299.06 11195.83 177
v124086.89 18886.75 19387.06 18588.75 19994.65 19291.30 18184.05 17587.49 19168.94 20071.96 19968.86 20690.65 16293.33 16592.72 17898.67 14998.24 123
MIMVSNet88.99 16391.07 14786.57 18986.78 20995.62 16191.20 18275.40 20990.65 16476.57 15684.05 14282.44 14691.01 15295.84 11795.38 11098.48 16393.50 201
EG-PatchMatch MVS86.68 18987.24 18586.02 19490.58 16496.26 14191.08 18381.59 18784.96 20369.80 19771.35 20275.08 17684.23 20194.24 15393.35 16398.82 13495.46 184
PEN-MVS87.22 18786.50 19688.07 16388.88 19694.44 19590.99 18486.21 14886.53 19673.66 17774.97 17766.56 21589.42 17491.20 19493.48 16199.24 7898.31 122
WR-MVS87.93 17588.09 17287.75 17389.26 18795.28 17490.81 18586.69 14488.90 17575.29 16774.31 18473.72 18285.19 19692.26 18093.32 16499.27 7398.81 93
DTE-MVSNet86.67 19086.09 19787.35 18288.45 20294.08 20190.65 18686.05 15286.13 19872.19 18174.58 18266.77 21387.61 18290.31 19793.12 16799.13 10097.62 146
CP-MVSNet87.89 17887.27 18488.62 15589.30 18595.06 18090.60 18785.78 15587.43 19275.98 16174.60 18068.14 20890.76 15893.07 17193.60 15999.30 6998.98 75
WR-MVS_H87.93 17587.85 17888.03 16889.62 17895.58 16690.47 18885.55 15987.20 19376.83 15574.42 18372.67 18786.37 18893.22 16893.04 16899.33 6298.83 92
anonymousdsp88.90 16491.00 14886.44 19088.74 20095.97 14890.40 18982.86 18288.77 17867.33 20281.18 15681.44 15090.22 16896.23 10594.27 14599.12 10299.16 50
PS-CasMVS87.33 18586.68 19488.10 16289.22 19294.93 18590.35 19085.70 15686.44 19774.01 17673.43 19066.59 21490.04 16992.92 17293.52 16099.28 7198.91 84
v7n86.43 19186.52 19586.33 19187.91 20494.93 18590.15 19183.05 18086.57 19570.21 19271.48 20066.78 21287.72 18094.19 15592.96 17098.92 12698.76 96
v14887.51 18286.79 19188.36 15889.39 18495.21 17889.84 19288.20 13087.61 19077.56 14973.38 19170.32 19986.80 18590.70 19692.31 18398.37 16897.98 134
pmmvs587.83 17988.09 17287.51 18189.59 18095.48 16789.75 19384.73 17086.07 20071.44 18580.57 16070.09 20090.74 16094.47 14692.87 17398.82 13497.10 158
pmmvs685.98 19584.89 20387.25 18388.83 19894.35 19789.36 19485.30 16478.51 21675.44 16562.71 21575.41 17387.65 18193.58 16092.40 18296.89 19097.29 155
testgi89.42 15491.50 14487.00 18692.40 15195.59 16489.15 19585.27 16592.78 13372.42 18091.75 8076.00 17284.09 20294.38 14993.82 15798.65 15396.15 174
CMPMVSbinary65.18 1784.76 19983.10 20586.69 18895.29 9695.05 18188.37 19685.51 16080.27 21471.31 18668.37 20773.85 18185.25 19487.72 20687.75 20394.38 21388.70 213
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep13_2view86.30 19288.27 16984.01 19987.71 20694.67 19188.08 19776.78 20290.59 16668.66 20180.46 16280.12 15487.58 18389.95 20188.20 20295.25 20693.90 198
thisisatest051590.12 14892.06 13787.85 17290.03 17296.17 14387.83 19887.45 13691.71 15377.15 15285.40 13384.01 13585.74 19295.41 13093.30 16598.88 12998.43 110
SixPastTwentyTwo88.37 16989.47 15987.08 18490.01 17395.93 15287.41 19985.32 16290.26 16970.26 19186.34 12871.95 18990.93 15392.89 17491.72 18898.55 15897.22 156
EU-MVSNet85.62 19687.65 18283.24 20288.54 20192.77 20787.12 20085.32 16286.71 19464.54 20778.52 16775.11 17578.35 20792.25 18192.28 18495.58 20195.93 176
IB-MVS89.56 1591.71 12492.50 12490.79 13195.94 8598.44 8587.05 20191.38 9193.15 12892.98 4484.78 13685.14 12778.27 20892.47 17994.44 14299.10 10499.08 57
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs-eth3d84.33 20182.94 20685.96 19584.16 21290.94 21186.55 20283.79 17684.25 20575.85 16370.64 20356.43 22187.44 18492.20 18290.41 19497.97 17895.68 180
PM-MVS84.72 20084.47 20485.03 19684.67 21191.57 21086.27 20382.31 18687.65 18970.62 18976.54 17356.41 22288.75 17892.59 17689.85 19797.54 18696.66 172
our_test_389.78 17693.84 20285.59 204
Anonymous2023120683.84 20285.19 20182.26 20387.38 20792.87 20585.49 20583.65 17786.07 20063.44 21168.42 20669.01 20475.45 21193.34 16492.44 18198.12 17594.20 191
FPMVS75.84 21074.59 21377.29 21186.92 20883.89 21985.01 20680.05 19382.91 21060.61 21565.25 21260.41 21863.86 21675.60 21673.60 21887.29 22080.47 217
pmnet_mix0286.12 19487.12 18884.96 19789.82 17594.12 20084.88 20786.63 14591.78 15265.60 20580.76 15876.98 16886.61 18787.29 20984.80 21296.21 19394.09 193
N_pmnet84.80 19885.10 20284.45 19889.25 19092.86 20684.04 20886.21 14888.78 17766.73 20372.41 19774.87 17885.21 19588.32 20586.45 20795.30 20492.04 206
PatchT89.13 16191.71 14086.11 19392.92 14395.59 16483.64 20975.09 21091.87 15175.19 16882.63 14985.06 12892.05 13795.21 13494.56 13697.76 18297.08 161
MVS-HIRNet85.36 19786.89 19083.57 20090.13 17194.51 19483.57 21072.61 21488.27 18471.22 18768.97 20581.81 14888.91 17793.08 17091.94 18694.97 20989.64 212
test20.0382.92 20485.52 19979.90 20787.75 20591.84 20982.80 21182.99 18182.65 21260.32 21678.90 16670.50 19567.10 21592.05 18790.89 19098.44 16591.80 207
ambc73.83 21476.23 21985.13 21882.27 21284.16 20665.58 20652.82 21823.31 22973.55 21291.41 19385.26 21192.97 21594.70 186
new_pmnet81.53 20582.68 20780.20 20583.47 21489.47 21582.21 21378.36 19587.86 18660.14 21867.90 20869.43 20382.03 20589.22 20387.47 20594.99 20887.39 214
MIMVSNet180.03 20780.93 20878.97 20872.46 22190.73 21280.81 21482.44 18580.39 21363.64 20957.57 21664.93 21676.37 20991.66 19091.55 18998.07 17689.70 211
DeepMVS_CXcopyleft86.86 21679.50 21570.43 21790.73 16263.66 20880.36 16360.83 21779.68 20676.23 21589.46 21786.53 215
MDA-MVSNet-bldmvs80.11 20680.24 20979.94 20677.01 21893.21 20478.86 21685.94 15482.71 21160.86 21379.71 16451.77 22483.71 20475.60 21686.37 20893.28 21492.35 204
pmmvs379.16 20880.12 21078.05 21079.36 21686.59 21778.13 21773.87 21376.42 21857.51 22170.59 20457.02 22084.66 19990.10 19988.32 20194.75 21191.77 208
new-patchmatchnet78.49 20978.19 21278.84 20984.13 21390.06 21377.11 21880.39 19279.57 21559.64 21966.01 21155.65 22375.62 21084.55 21280.70 21496.14 19590.77 210
test_method72.96 21178.68 21166.28 21550.17 22564.90 22375.45 21950.90 22287.89 18562.54 21262.98 21468.34 20770.45 21391.90 18982.41 21388.19 21992.35 204
gm-plane-assit83.26 20385.29 20080.89 20489.52 18189.89 21470.26 22078.24 19677.11 21758.01 22074.16 18566.90 21090.63 16397.20 6896.05 9098.66 15295.68 180
tmp_tt66.88 21486.07 21073.86 22168.22 22133.38 22396.88 5080.67 13888.23 11278.82 15949.78 22082.68 21477.47 21683.19 222
PMMVS264.36 21565.94 21762.52 21667.37 22277.44 22064.39 22269.32 22061.47 22134.59 22446.09 21941.03 22548.02 22274.56 21878.23 21591.43 21682.76 216
Gipumacopyleft68.35 21266.71 21570.27 21274.16 22068.78 22263.93 22371.77 21683.34 20954.57 22234.37 22031.88 22668.69 21483.30 21385.53 21088.48 21879.78 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft63.12 1867.27 21366.39 21668.30 21377.98 21760.24 22459.53 22476.82 20066.65 22060.74 21454.39 21759.82 21951.24 21973.92 21970.52 21983.48 22179.17 219
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN50.67 21647.85 21953.96 21764.13 22450.98 22738.06 22569.51 21851.40 22324.60 22629.46 22324.39 22856.07 21848.17 22159.70 22071.40 22370.84 221
EMVS49.98 21746.76 22053.74 21864.96 22351.29 22637.81 22669.35 21951.83 22222.69 22729.57 22225.06 22757.28 21744.81 22256.11 22170.32 22468.64 222
MVEpermissive50.86 1949.54 21851.43 21847.33 21944.14 22659.20 22536.45 22760.59 22141.47 22431.14 22529.58 22117.06 23048.52 22162.22 22074.63 21763.12 22575.87 220
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Patchmatch-RL test34.61 228
testmvs12.09 21916.94 2216.42 2213.15 2276.08 2289.51 2293.84 22421.46 2255.31 22827.49 2246.76 23110.89 22317.06 22315.01 2225.84 22624.75 223
test1239.58 22013.53 2224.97 2221.31 2295.47 2298.32 2302.95 22518.14 2262.03 23020.82 2252.34 23210.60 22410.00 22414.16 2234.60 22723.77 224
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def63.50 210
9.1499.28 12
SR-MVS99.45 1097.61 1699.20 16
MTAPA96.83 1199.12 21
MTMP97.18 598.83 27
mPP-MVS99.21 2598.29 39
NP-MVS95.32 90