This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS98.87 298.96 398.77 199.58 299.53 599.44 197.81 198.22 997.33 498.70 499.33 998.86 898.96 598.40 1399.63 399.57 8
DPE-MVScopyleft98.75 498.91 598.57 499.21 2499.54 499.42 297.78 597.49 3196.84 998.94 199.82 498.59 2198.90 998.22 1899.56 1099.48 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS98.73 598.93 498.50 699.44 1299.57 399.36 397.65 898.14 1196.51 1598.49 699.65 798.67 1898.60 1398.42 1199.40 4699.63 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMPR98.40 1298.49 1298.28 1499.41 1499.40 999.36 397.35 2298.30 595.02 2697.79 1798.39 3799.04 298.26 2798.10 2299.50 2199.22 35
TSAR-MVS + MP.98.49 898.78 798.15 2098.14 5199.17 2899.34 597.18 3098.44 495.72 2097.84 1699.28 1198.87 799.05 198.05 2599.66 199.60 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP98.38 1498.71 997.99 2499.34 2199.46 799.34 597.33 2597.31 3594.25 3098.06 1399.17 1898.13 2898.98 498.46 999.55 1199.54 9
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS98.90 199.07 198.69 399.38 1999.61 299.33 797.80 398.25 797.60 298.87 399.89 298.67 1899.02 298.26 1799.36 5499.61 5
zzz-MVS98.43 1198.31 2398.57 499.48 599.40 999.32 897.62 1397.70 2296.67 1196.59 3299.09 2198.86 898.65 1297.56 4399.45 3099.17 45
PGM-MVS97.81 2598.11 2897.46 3099.55 399.34 1599.32 894.51 4696.21 6093.07 3798.05 1497.95 4298.82 1298.22 3097.89 3299.48 2299.09 53
HFP-MVS98.48 998.62 1098.32 1299.39 1899.33 1699.27 1097.42 1998.27 695.25 2498.34 998.83 2699.08 198.26 2798.08 2499.48 2299.26 29
ACMMP_NAP98.20 1898.49 1297.85 2699.50 499.40 999.26 1197.64 1197.47 3392.62 4697.59 2099.09 2198.71 1698.82 1197.86 3399.40 4699.19 39
DVP-MVS98.86 398.97 298.75 299.43 1399.63 199.25 1297.81 198.62 197.69 197.59 2099.90 198.93 598.99 398.42 1199.37 5299.62 3
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MP-MVScopyleft98.09 2298.30 2497.84 2799.34 2199.19 2799.23 1397.40 2097.09 4293.03 4097.58 2298.85 2598.57 2398.44 2097.69 3799.48 2299.23 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS98.32 1798.34 2198.29 1399.34 2199.30 1799.15 1497.35 2297.49 3195.58 2297.72 1898.62 3398.82 1298.29 2597.67 3899.51 1999.28 24
APD-MVScopyleft98.36 1598.32 2298.41 899.47 699.26 2199.12 1597.77 696.73 4996.12 1797.27 2898.88 2498.46 2598.47 1798.39 1499.52 1499.22 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.34 1698.47 1498.18 1799.46 899.15 2999.10 1697.69 797.67 2594.93 2797.62 1999.70 698.60 2098.45 1897.46 4699.31 6199.26 29
X-MVS97.84 2498.19 2797.42 3199.40 1599.35 1299.06 1797.25 2697.38 3490.85 5796.06 3698.72 2998.53 2498.41 2298.15 2199.46 2699.28 24
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2599.16 2799.03 3999.05 1897.24 2798.22 994.17 3295.82 3898.07 3998.69 1798.83 1098.80 299.52 1499.10 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNVR-MVS98.47 1098.46 1598.48 799.40 1599.05 3299.02 1997.54 1797.73 1896.65 1297.20 2999.13 1998.85 1098.91 898.10 2299.41 4399.08 54
SMA-MVScopyleft98.66 698.89 698.39 999.60 199.41 899.00 2097.63 1297.78 1795.83 1998.33 1099.83 398.85 1098.93 798.56 699.41 4399.40 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS98.20 1898.36 1898.01 2399.40 1599.05 3299.00 2097.62 1397.59 2993.70 3497.42 2799.30 1098.77 1498.39 2397.48 4599.59 499.31 23
NCCC98.10 2198.05 3098.17 1999.38 1999.05 3299.00 2097.53 1898.04 1395.12 2594.80 5099.18 1798.58 2298.49 1697.78 3699.39 4898.98 72
CPTT-MVS97.78 2697.54 3398.05 2298.91 3599.05 3299.00 2096.96 3497.14 4095.92 1895.50 4298.78 2898.99 497.20 6196.07 8298.54 15299.04 64
train_agg97.65 2998.06 2997.18 3498.94 3398.91 5398.98 2497.07 3296.71 5090.66 6297.43 2699.08 2398.20 2697.96 4297.14 5799.22 7899.19 39
TSAR-MVS + ACMM97.71 2898.60 1196.66 4198.64 4199.05 3298.85 2597.23 2898.45 389.40 8497.51 2499.27 1396.88 5998.53 1497.81 3598.96 11599.59 7
SD-MVS98.52 798.77 898.23 1698.15 5099.26 2198.79 2697.59 1698.52 296.25 1697.99 1599.75 599.01 398.27 2697.97 2799.59 499.63 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS94.87 496.76 4796.50 5297.05 3698.21 4999.28 1998.67 2797.38 2197.31 3590.36 6989.19 10093.58 6998.19 2798.31 2498.50 799.51 1999.36 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS96.84 4497.49 3496.09 4898.92 3498.85 5898.61 2895.09 4296.00 6887.29 10195.45 4497.42 4397.16 5097.83 4697.94 2999.44 3898.92 78
CANet96.84 4497.20 3896.42 4297.92 5499.24 2598.60 2993.51 5397.11 4193.07 3791.16 8297.24 4596.21 7198.24 2998.05 2599.22 7899.35 18
LS3D95.46 5895.14 7395.84 5197.91 5598.90 5598.58 3097.79 497.07 4383.65 11688.71 10388.64 10197.82 3597.49 5497.42 4899.26 7197.72 136
MVS_030496.31 4996.91 4795.62 5497.21 6499.20 2698.55 3193.10 6197.04 4489.73 7890.30 9296.35 5395.71 7798.14 3497.93 3199.38 4999.40 14
CSCG97.44 3297.18 4097.75 2899.47 699.52 698.55 3195.41 4197.69 2495.72 2094.29 5395.53 6298.10 3196.20 10197.38 5199.24 7299.62 3
DPM-MVS96.86 4396.82 4896.91 3998.08 5298.20 8598.52 3397.20 2997.24 3891.42 5291.84 7598.45 3597.25 4797.07 6697.40 5098.95 11697.55 140
ACMMPcopyleft97.37 3397.48 3597.25 3298.88 3799.28 1998.47 3496.86 3597.04 4492.15 4797.57 2396.05 6097.67 3897.27 5995.99 8799.46 2699.14 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AdaColmapbinary97.53 3096.93 4598.24 1599.21 2498.77 6298.47 3497.34 2496.68 5196.52 1495.11 4796.12 5898.72 1597.19 6396.24 7899.17 8798.39 112
MSLP-MVS++98.04 2397.93 3298.18 1799.10 2899.09 3198.34 3696.99 3397.54 3096.60 1394.82 4998.45 3598.89 697.46 5598.77 499.17 8799.37 16
xxxxxxxxxxxxxcwj97.07 3895.99 6098.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1181.99 14398.11 2998.15 3297.62 3999.45 3099.19 39
SF-MVS98.39 1398.45 1698.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1199.25 1498.11 2998.15 3297.62 3999.45 3099.19 39
3Dnovator+93.91 797.23 3597.22 3797.24 3398.89 3698.85 5898.26 3993.25 5897.99 1495.56 2390.01 9698.03 4198.05 3297.91 4398.43 1099.44 3899.35 18
3Dnovator93.79 897.08 3797.20 3896.95 3899.09 2999.03 3998.20 4093.33 5497.99 1493.82 3390.61 9096.80 4997.82 3597.90 4498.78 399.47 2599.26 29
PHI-MVS97.78 2698.44 1797.02 3798.73 3899.25 2398.11 4195.54 4096.66 5292.79 4398.52 599.38 897.50 4297.84 4598.39 1499.45 3099.03 65
DELS-MVS96.06 5396.04 5996.07 5097.77 5699.25 2398.10 4293.26 5694.42 10392.79 4388.52 10793.48 7095.06 8998.51 1598.83 199.45 3099.28 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM96.78 4697.14 4296.36 4499.05 3099.14 3098.02 4393.26 5697.27 3790.84 6091.16 8297.31 4497.64 4097.70 4998.20 1999.33 5699.18 43
TAPA-MVS94.18 596.38 4896.49 5396.25 4598.26 4898.66 6998.00 4494.96 4497.17 3989.48 8192.91 6396.35 5397.53 4196.59 8295.90 9099.28 6597.82 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + COLMAP94.79 7094.51 8295.11 6296.50 7097.54 9897.99 4594.54 4597.81 1685.88 10796.73 3181.28 14796.99 5696.29 9695.21 11098.76 13796.73 163
PLCcopyleft94.95 397.37 3396.77 4998.07 2198.97 3298.21 8497.94 4696.85 3697.66 2697.58 393.33 5896.84 4898.01 3497.13 6596.20 8099.09 9998.01 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OMC-MVS97.00 4096.92 4697.09 3598.69 3998.66 6997.85 4795.02 4398.09 1294.47 2893.15 5996.90 4697.38 4497.16 6496.82 6799.13 9497.65 137
OPM-MVS93.61 9692.43 12295.00 6596.94 6797.34 10497.78 4894.23 4789.64 16485.53 10888.70 10482.81 13996.28 7096.28 9795.00 11699.24 7297.22 149
TSAR-MVS + GP.97.45 3198.36 1896.39 4395.56 8398.93 5097.74 4993.31 5597.61 2894.24 3198.44 899.19 1698.03 3397.60 5197.41 4999.44 3899.33 20
abl_696.82 4098.60 4298.74 6397.74 4993.73 5096.25 5894.37 2994.55 5298.60 3497.25 4799.27 6798.61 97
OpenMVScopyleft92.33 1195.50 5595.22 7295.82 5298.98 3198.97 4697.67 5193.04 6494.64 9989.18 8884.44 13594.79 6496.79 6097.23 6097.61 4199.24 7298.88 83
PCF-MVS93.95 695.65 5495.14 7396.25 4597.73 5898.73 6597.59 5297.13 3192.50 13289.09 9089.85 9796.65 5096.90 5894.97 13394.89 11799.08 10098.38 113
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DI_MVS_plusplus_trai94.01 8793.63 10294.44 7994.54 11198.26 8397.51 5390.63 9395.88 7389.34 8680.54 15489.36 9395.48 8596.33 9596.27 7799.17 8798.78 92
EPNet96.27 5196.97 4495.46 5798.47 4498.28 8197.41 5493.67 5195.86 7492.86 4297.51 2493.79 6891.76 13597.03 6897.03 5998.61 14899.28 24
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LGP-MVS_train94.12 8594.62 8093.53 9296.44 7297.54 9897.40 5591.84 7694.66 9881.09 12995.70 4183.36 13695.10 8896.36 9495.71 9699.32 5899.03 65
CLD-MVS94.79 7094.36 8695.30 6095.21 9397.46 10197.23 5692.24 7196.43 5491.77 5092.69 6584.31 12896.06 7295.52 11995.03 11399.31 6199.06 59
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS96.23 5297.15 4195.16 6195.01 9998.98 4497.13 5790.68 9296.00 6891.21 5494.03 5496.48 5197.35 4598.00 4197.43 4799.55 1199.15 47
MSDG94.82 6893.73 10096.09 4898.34 4797.43 10397.06 5896.05 3895.84 7590.56 6386.30 12489.10 9895.55 8396.13 10495.61 9899.00 11195.73 172
MVSTER94.89 6695.07 7694.68 7694.71 10796.68 12297.00 5990.57 9495.18 9293.05 3995.21 4586.41 11293.72 11297.59 5295.88 9199.00 11198.50 104
CANet_DTU93.92 8996.57 5190.83 12295.63 8198.39 7996.99 6087.38 13196.26 5771.97 17596.31 3493.02 7194.53 9797.38 5796.83 6698.49 15597.79 129
MVS_111021_LR97.16 3698.01 3196.16 4798.47 4498.98 4496.94 6193.89 4997.64 2791.44 5198.89 296.41 5297.20 4998.02 4097.29 5699.04 11098.85 87
canonicalmvs95.25 6495.45 6895.00 6595.27 9198.72 6696.89 6289.82 10396.51 5390.84 6093.72 5786.01 11597.66 3995.78 11397.94 2999.54 1399.50 10
HQP-MVS94.43 8094.57 8194.27 8296.41 7397.23 10796.89 6293.98 4895.94 7183.68 11595.01 4884.46 12795.58 8295.47 12194.85 12199.07 10299.00 69
CNLPA96.90 4296.28 5597.64 2998.56 4398.63 7496.85 6496.60 3797.73 1897.08 689.78 9896.28 5697.80 3796.73 7796.63 6998.94 11798.14 123
tfpn200view993.64 9492.57 11494.89 6895.33 8798.94 4896.82 6592.31 6792.63 12888.29 9287.21 11178.01 15797.12 5396.82 7195.85 9299.45 3098.56 99
XVS96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
X-MVStestdata96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
thres100view90093.55 9892.47 12194.81 7295.33 8798.74 6396.78 6892.30 7092.63 12888.29 9287.21 11178.01 15796.78 6196.38 9195.92 8899.38 4998.40 111
thres20093.62 9592.54 11594.88 6995.36 8698.93 5096.75 6992.31 6792.84 12588.28 9486.99 11377.81 15997.13 5196.82 7195.92 8899.45 3098.49 105
ET-MVSNet_ETH3D93.34 10194.33 8792.18 10783.26 20897.66 9796.72 7089.89 10295.62 8187.17 10296.00 3783.69 13496.99 5693.78 14995.34 10599.06 10598.18 122
thres40093.56 9792.43 12294.87 7095.40 8598.91 5396.70 7192.38 6692.93 12488.19 9686.69 11677.35 16097.13 5196.75 7695.85 9299.42 4298.56 99
FMVSNet393.79 9394.17 9193.35 9891.21 15495.99 13996.62 7288.68 11695.23 8990.40 6586.39 12091.16 7994.11 10495.96 10696.67 6899.07 10297.79 129
RPSCF94.05 8694.00 9494.12 8496.20 7596.41 13096.61 7391.54 8195.83 7689.73 7896.94 3092.80 7395.35 8791.63 18490.44 18695.27 19893.94 189
MVS_111021_HR97.04 3998.20 2695.69 5398.44 4699.29 1896.59 7493.20 5997.70 2289.94 7698.46 796.89 4796.71 6398.11 3797.95 2899.27 6799.01 68
gg-mvs-nofinetune86.17 18688.57 16083.36 19493.44 13098.15 8896.58 7572.05 20874.12 21249.23 21664.81 20690.85 8389.90 16597.83 4696.84 6598.97 11497.41 144
thres600view793.49 9992.37 12594.79 7395.42 8498.93 5096.58 7592.31 6793.04 12287.88 9786.62 11776.94 16397.09 5496.82 7195.63 9799.45 3098.63 96
baseline94.83 6795.82 6293.68 9094.75 10697.80 9496.51 7788.53 11997.02 4689.34 8692.93 6292.18 7694.69 9395.78 11396.08 8198.27 16398.97 76
MVS_Test94.82 6895.66 6393.84 8894.79 10398.35 8096.49 7889.10 11496.12 6487.09 10392.58 6690.61 8596.48 6796.51 8996.89 6499.11 9798.54 101
DCV-MVSNet94.76 7395.12 7594.35 8195.10 9795.81 15096.46 7989.49 10996.33 5690.16 7092.55 6790.26 8795.83 7695.52 11996.03 8599.06 10599.33 20
CHOSEN 280x42095.46 5897.01 4393.66 9197.28 6397.98 9296.40 8085.39 15596.10 6591.07 5596.53 3396.34 5595.61 8197.65 5096.95 6296.21 18697.49 141
diffmvs94.31 8494.21 8894.42 8094.64 11098.28 8196.36 8191.56 8096.77 4888.89 9188.97 10184.23 12996.01 7596.05 10596.41 7399.05 10998.79 91
GBi-Net93.81 9194.18 8993.38 9691.34 15195.86 14696.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 10096.52 8696.30 7499.21 8197.79 129
test193.81 9194.18 8993.38 9691.34 15195.86 14696.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 10096.52 8696.30 7499.21 8197.79 129
FMVSNet293.30 10293.36 10893.22 10091.34 15195.86 14696.22 8288.24 12395.15 9389.92 7781.64 14789.36 9394.40 10096.77 7596.98 6199.21 8197.79 129
Anonymous20240521192.18 12795.04 9898.20 8596.14 8591.79 7893.93 10974.60 17388.38 10496.48 6795.17 12995.82 9599.00 11199.15 47
Anonymous2023121193.49 9992.33 12694.84 7194.78 10598.00 9196.11 8691.85 7594.86 9690.91 5674.69 17289.18 9696.73 6294.82 13495.51 10198.67 14299.24 32
ETV-MVS96.31 4997.47 3694.96 6794.79 10398.78 6196.08 8791.41 8496.16 6190.50 6495.76 4096.20 5797.39 4398.42 2197.82 3499.57 899.18 43
baseline194.59 7694.47 8394.72 7495.16 9497.97 9396.07 8891.94 7494.86 9689.98 7491.60 7985.87 11795.64 7997.07 6696.90 6399.52 1497.06 156
COLMAP_ROBcopyleft90.49 1493.27 10392.71 11293.93 8697.75 5797.44 10296.07 8893.17 6095.40 8483.86 11483.76 13988.72 10093.87 10894.25 14594.11 14098.87 12395.28 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
casdiffmvs94.38 8394.15 9394.64 7794.70 10998.51 7796.03 9091.66 7995.70 7889.36 8586.48 11985.03 12596.60 6697.40 5697.30 5499.52 1498.67 94
GeoE92.52 11092.64 11392.39 10593.96 12297.76 9596.01 9185.60 15293.23 12083.94 11381.56 14884.80 12695.63 8096.22 9995.83 9499.19 8599.07 58
EIA-MVS95.50 5596.19 5794.69 7594.83 10298.88 5795.93 9291.50 8394.47 10289.43 8293.14 6092.72 7497.05 5597.82 4897.13 5899.43 4199.15 47
CHOSEN 1792x268892.66 10892.49 11892.85 10297.13 6598.89 5695.90 9388.50 12095.32 8683.31 11771.99 19188.96 9994.10 10596.69 7896.49 7198.15 16599.10 51
IS_MVSNet95.28 6296.43 5493.94 8595.30 8999.01 4395.90 9391.12 8794.13 10887.50 10091.23 8194.45 6694.17 10398.45 1898.50 799.65 299.23 33
PVSNet_BlendedMVS95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9593.10 6196.16 6193.12 3591.99 7185.27 12094.66 9498.09 3897.34 5299.24 7299.08 54
PVSNet_Blended95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9593.10 6196.16 6193.12 3591.99 7185.27 12094.66 9498.09 3897.34 5299.24 7299.08 54
MAR-MVS95.50 5595.60 6495.39 5998.67 4098.18 8795.89 9589.81 10494.55 10191.97 4992.99 6190.21 8897.30 4696.79 7497.49 4498.72 13898.99 70
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ACMP92.88 994.43 8094.38 8594.50 7896.01 7897.69 9695.85 9892.09 7295.74 7789.12 8995.14 4682.62 14194.77 9095.73 11594.67 12299.14 9399.06 59
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
USDC90.69 13090.52 14690.88 12194.17 11996.43 12995.82 9986.76 13793.92 11076.27 15386.49 11874.30 17393.67 11595.04 13293.36 15598.61 14894.13 185
Effi-MVS+92.93 10593.86 9791.86 10894.07 12198.09 9095.59 10085.98 14794.27 10679.54 13691.12 8581.81 14496.71 6396.67 8096.06 8399.27 6798.98 72
Vis-MVSNet (Re-imp)94.46 7996.24 5692.40 10495.23 9298.64 7295.56 10190.99 8894.42 10385.02 11090.88 8894.65 6588.01 17298.17 3198.37 1699.57 898.53 102
TDRefinement89.07 15588.15 16490.14 13395.16 9496.88 11295.55 10290.20 9789.68 16376.42 15176.67 16474.30 17384.85 19093.11 16291.91 18098.64 14794.47 181
UA-Net93.96 8895.95 6191.64 11296.06 7698.59 7695.29 10390.00 9991.06 15282.87 11890.64 8998.06 4086.06 18398.14 3498.20 1999.58 696.96 157
test_part191.21 12489.47 15293.24 9994.26 11795.45 16295.26 10488.36 12188.49 17490.04 7272.61 18882.82 13893.69 11493.25 16094.62 12597.84 17399.06 59
CDS-MVSNet92.77 10693.60 10391.80 11092.63 14196.80 11695.24 10589.14 11390.30 16184.58 11186.76 11490.65 8490.42 15895.89 10896.49 7198.79 13498.32 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FMVSNet191.54 12190.93 14292.26 10690.35 16195.27 16995.22 10687.16 13491.37 14987.62 9975.45 16783.84 13294.43 9896.52 8696.30 7498.82 12797.74 135
MS-PatchMatch91.82 11592.51 11691.02 11895.83 8096.88 11295.05 10784.55 16893.85 11282.01 12282.51 14591.71 7790.52 15795.07 13193.03 16298.13 16694.52 180
IterMVS-LS92.56 10993.18 10991.84 10993.90 12394.97 17694.99 10886.20 14494.18 10782.68 11985.81 12687.36 10894.43 9895.31 12596.02 8698.87 12398.60 98
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPP-MVSNet95.27 6396.18 5894.20 8394.88 10198.64 7294.97 10990.70 9195.34 8589.67 8091.66 7893.84 6795.42 8697.32 5897.00 6099.58 699.47 12
Fast-Effi-MVS+91.87 11492.08 12991.62 11492.91 13797.21 10894.93 11084.60 16693.61 11681.49 12783.50 14078.95 15296.62 6596.55 8496.22 7999.16 9098.51 103
PMMVS94.61 7595.56 6593.50 9394.30 11696.74 12094.91 11189.56 10895.58 8387.72 9896.15 3592.86 7296.06 7295.47 12195.02 11498.43 16097.09 152
ACMM92.75 1094.41 8293.84 9895.09 6396.41 7396.80 11694.88 11293.54 5296.41 5590.16 7092.31 6983.11 13796.32 6996.22 9994.65 12399.22 7897.35 146
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DeepPCF-MVS95.28 297.00 4098.35 2095.42 5897.30 6298.94 4894.82 11396.03 3998.24 892.11 4895.80 3998.64 3295.51 8498.95 698.66 596.78 18599.20 38
EPNet_dtu92.45 11195.02 7789.46 14098.02 5395.47 16194.79 11492.62 6594.97 9470.11 18694.76 5192.61 7584.07 19695.94 10795.56 9997.15 18295.82 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive92.77 10695.00 7890.16 13194.10 12098.79 6094.76 11588.26 12292.37 13779.95 13288.19 10991.58 7884.38 19397.59 5297.58 4299.52 1498.91 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest053094.54 7795.47 6793.46 9494.51 11298.65 7194.66 11690.72 8995.69 8086.90 10493.80 5589.44 9294.74 9196.98 7094.86 11899.19 8598.85 87
HyFIR lowres test92.03 11291.55 13692.58 10397.13 6598.72 6694.65 11786.54 14093.58 11782.56 12067.75 20290.47 8695.67 7895.87 10995.54 10098.91 12098.93 77
tttt051794.52 7895.44 6993.44 9594.51 11298.68 6894.61 11890.72 8995.61 8286.84 10593.78 5689.26 9594.74 9197.02 6994.86 11899.20 8498.87 85
UGNet94.92 6596.63 5092.93 10196.03 7798.63 7494.53 11991.52 8296.23 5990.03 7392.87 6496.10 5986.28 18296.68 7996.60 7099.16 9099.32 22
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchMatch-RL94.69 7494.41 8495.02 6497.63 5998.15 8894.50 12091.99 7395.32 8691.31 5395.47 4383.44 13596.02 7496.56 8395.23 10998.69 14196.67 164
Effi-MVS+-dtu91.78 11693.59 10489.68 13992.44 14397.11 10994.40 12184.94 16292.43 13375.48 15791.09 8683.75 13393.55 11696.61 8195.47 10297.24 18198.67 94
PVSNet_Blended_VisFu94.77 7295.54 6693.87 8796.48 7198.97 4694.33 12291.84 7694.93 9590.37 6885.04 13094.99 6390.87 15098.12 3697.30 5499.30 6399.45 13
FC-MVSNet-train93.85 9093.91 9593.78 8994.94 10096.79 11994.29 12391.13 8693.84 11388.26 9590.40 9185.23 12294.65 9696.54 8595.31 10699.38 4999.28 24
IterMVS90.20 13892.43 12287.61 17092.82 14094.31 19194.11 12481.54 18292.97 12369.90 18884.71 13288.16 10789.96 16495.25 12694.17 13997.31 18097.46 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CostFormer90.69 13090.48 14790.93 12094.18 11896.08 13894.03 12578.20 19093.47 11889.96 7590.97 8780.30 14893.72 11287.66 20188.75 19395.51 19596.12 168
Fast-Effi-MVS+-dtu91.19 12593.64 10188.33 15292.19 14596.46 12893.99 12681.52 18392.59 13071.82 17692.17 7085.54 11891.68 13695.73 11594.64 12498.80 13298.34 114
TinyColmap89.42 14788.58 15990.40 12893.80 12795.45 16293.96 12786.54 14092.24 14076.49 15080.83 15170.44 19093.37 11894.45 14093.30 15898.26 16493.37 196
IterMVS-SCA-FT90.24 13792.48 12087.63 16992.85 13894.30 19293.79 12881.47 18492.66 12769.95 18784.66 13388.38 10489.99 16395.39 12494.34 13697.74 17897.63 138
tpm cat188.90 15787.78 17390.22 13093.88 12595.39 16593.79 12878.11 19192.55 13189.43 8281.31 14979.84 15091.40 13884.95 20486.34 20294.68 20594.09 186
EPMVS90.88 12992.12 12889.44 14194.71 10797.24 10693.55 13076.81 19495.89 7281.77 12491.49 8086.47 11193.87 10890.21 19190.07 18895.92 18993.49 195
MDTV_nov1_ep1391.57 12093.18 10989.70 13793.39 13196.97 11093.53 13180.91 18595.70 7881.86 12392.40 6889.93 8993.25 12191.97 18190.80 18495.25 19994.46 182
dps90.11 14289.37 15590.98 11993.89 12496.21 13593.49 13277.61 19291.95 14392.74 4588.85 10278.77 15492.37 12887.71 20087.71 19795.80 19194.38 183
RPMNet90.19 13992.03 13188.05 15993.46 12995.95 14393.41 13374.59 20592.40 13575.91 15584.22 13686.41 11292.49 12694.42 14193.85 14898.44 15896.96 157
baseline293.01 10494.17 9191.64 11292.83 13997.49 10093.40 13487.53 12993.67 11586.07 10691.83 7686.58 10991.36 13996.38 9195.06 11298.67 14298.20 121
CR-MVSNet90.16 14091.96 13288.06 15893.32 13295.95 14393.36 13575.99 20092.40 13575.19 16183.18 14185.37 11992.05 13095.21 12794.56 12998.47 15797.08 154
Patchmtry95.96 14293.36 13575.99 20075.19 161
FC-MVSNet-test91.63 11893.82 9989.08 14492.02 14696.40 13193.26 13787.26 13293.72 11477.26 14488.61 10689.86 9085.50 18695.72 11795.02 11499.16 9097.44 143
TAMVS90.54 13490.87 14490.16 13191.48 14996.61 12493.26 13786.08 14587.71 18181.66 12683.11 14384.04 13090.42 15894.54 13794.60 12698.04 17095.48 176
ACMH+90.88 1291.41 12391.13 13991.74 11195.11 9696.95 11193.13 13989.48 11092.42 13479.93 13385.13 12978.02 15693.82 11093.49 15693.88 14698.94 11797.99 125
LTVRE_ROB87.32 1687.55 17488.25 16386.73 18090.66 15695.80 15193.05 14084.77 16383.35 20160.32 20983.12 14267.39 20293.32 11994.36 14394.86 11898.28 16298.87 85
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
NR-MVSNet89.34 14988.66 15890.13 13490.40 15995.61 15593.04 14189.91 10091.22 15078.96 13777.72 16268.90 19889.16 16894.24 14693.95 14499.32 5898.99 70
TranMVSNet+NR-MVSNet89.23 15288.48 16190.11 13589.07 18695.25 17092.91 14290.43 9690.31 16077.10 14676.62 16571.57 18591.83 13492.12 17694.59 12799.32 5898.92 78
SCA90.92 12893.04 11188.45 15093.72 12897.33 10592.77 14376.08 19996.02 6778.26 14091.96 7390.86 8293.99 10790.98 18890.04 18995.88 19094.06 188
tfpnnormal88.50 16087.01 18290.23 12991.36 15095.78 15292.74 14490.09 9883.65 20076.33 15271.46 19469.58 19591.84 13395.54 11894.02 14399.06 10599.03 65
pmmvs490.55 13389.91 14991.30 11790.26 16394.95 17792.73 14587.94 12693.44 11985.35 10982.28 14676.09 16593.02 12493.56 15492.26 17898.51 15496.77 162
Baseline_NR-MVSNet89.27 15188.01 16790.73 12589.26 18093.71 19692.71 14689.78 10590.73 15581.28 12873.53 18272.85 17992.30 12992.53 17093.84 14999.07 10298.88 83
tpmrst88.86 15989.62 15087.97 16394.33 11595.98 14092.62 14776.36 19794.62 10076.94 14785.98 12582.80 14092.80 12586.90 20387.15 19994.77 20393.93 190
UniMVSNet_ETH3D88.47 16186.00 19191.35 11691.55 14896.29 13392.53 14888.81 11585.58 19582.33 12167.63 20366.87 20494.04 10691.49 18595.24 10898.84 12698.92 78
UniMVSNet_NR-MVSNet90.35 13689.96 14890.80 12389.66 17095.83 14992.48 14990.53 9590.96 15479.57 13479.33 15877.14 16193.21 12292.91 16694.50 13499.37 5299.05 62
DU-MVS89.67 14688.84 15790.63 12689.26 18095.61 15592.48 14989.91 10091.22 15079.57 13477.72 16271.18 18793.21 12292.53 17094.57 12899.35 5599.05 62
PatchmatchNetpermissive90.56 13292.49 11888.31 15393.83 12696.86 11592.42 15176.50 19695.96 7078.31 13991.96 7389.66 9193.48 11790.04 19389.20 19295.32 19693.73 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v1088.00 16687.96 16888.05 15989.44 17594.68 18392.36 15283.35 17389.37 16672.96 17273.98 17972.79 18091.35 14093.59 15192.88 16598.81 13098.42 109
UniMVSNet (Re)90.03 14389.61 15190.51 12789.97 16796.12 13792.32 15389.26 11190.99 15380.95 13078.25 16175.08 17091.14 14293.78 14993.87 14799.41 4399.21 37
v888.21 16587.94 17088.51 14989.62 17195.01 17592.31 15484.99 16188.94 16774.70 16675.03 16973.51 17790.67 15492.11 17792.74 17098.80 13298.24 119
GA-MVS89.28 15090.75 14587.57 17191.77 14796.48 12792.29 15587.58 12890.61 15865.77 19784.48 13476.84 16489.46 16695.84 11093.68 15198.52 15397.34 147
ADS-MVSNet89.80 14491.33 13888.00 16294.43 11496.71 12192.29 15574.95 20496.07 6677.39 14388.67 10586.09 11493.26 12088.44 19789.57 19195.68 19293.81 192
V4288.31 16387.95 16988.73 14789.44 17595.34 16692.23 15787.21 13388.83 16974.49 16774.89 17173.43 17890.41 16092.08 17992.77 16998.60 15098.33 115
v114487.92 17087.79 17288.07 15689.27 17995.15 17292.17 15885.62 15188.52 17371.52 17773.80 18072.40 18291.06 14493.54 15592.80 16798.81 13098.33 115
v2v48288.25 16487.71 17488.88 14589.23 18495.28 16792.10 15987.89 12788.69 17273.31 17175.32 16871.64 18491.89 13292.10 17892.92 16498.86 12597.99 125
v119287.51 17587.31 17687.74 16789.04 18794.87 18192.07 16085.03 16088.49 17470.32 18372.65 18770.35 19191.21 14193.59 15192.80 16798.78 13598.42 109
pm-mvs189.19 15389.02 15689.38 14290.40 15995.74 15392.05 16188.10 12586.13 19177.70 14173.72 18179.44 15188.97 16995.81 11294.51 13399.08 10097.78 134
FMVSNet590.36 13590.93 14289.70 13787.99 19692.25 20192.03 16283.51 17292.20 14184.13 11285.59 12786.48 11092.43 12794.61 13594.52 13298.13 16690.85 202
test-LLR91.62 11993.56 10589.35 14393.31 13396.57 12592.02 16387.06 13592.34 13875.05 16490.20 9388.64 10190.93 14696.19 10294.07 14197.75 17696.90 160
TESTMET0.1,191.07 12693.56 10588.17 15490.43 15896.57 12592.02 16382.83 17792.34 13875.05 16490.20 9388.64 10190.93 14696.19 10294.07 14197.75 17696.90 160
v192192087.31 17987.13 18087.52 17388.87 19094.72 18291.96 16584.59 16788.28 17669.86 18972.50 18970.03 19491.10 14393.33 15892.61 17298.71 13998.44 106
CVMVSNet89.77 14591.66 13487.56 17293.21 13595.45 16291.94 16689.22 11289.62 16569.34 19283.99 13885.90 11684.81 19194.30 14495.28 10796.85 18497.09 152
ACMH90.77 1391.51 12291.63 13591.38 11595.62 8296.87 11491.76 16789.66 10691.58 14778.67 13886.73 11578.12 15593.77 11194.59 13694.54 13198.78 13598.98 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14419287.40 17787.20 17987.64 16888.89 18894.88 18091.65 16884.70 16587.80 18071.17 18173.20 18570.91 18890.75 15292.69 16892.49 17398.71 13998.43 107
test-mter90.95 12793.54 10787.93 16490.28 16296.80 11691.44 16982.68 17892.15 14274.37 16889.57 9988.23 10690.88 14996.37 9394.31 13797.93 17297.37 145
GG-mvs-BLEND66.17 20794.91 7932.63 2131.32 22196.64 12391.40 1700.85 21994.39 1052.20 22290.15 9595.70 612.27 21896.39 9095.44 10397.78 17495.68 173
tpm87.95 16789.44 15486.21 18592.53 14294.62 18691.40 17076.36 19791.46 14869.80 19087.43 11075.14 16891.55 13789.85 19590.60 18595.61 19396.96 157
test0.0.03 191.97 11393.91 9589.72 13693.31 13396.40 13191.34 17287.06 13593.86 11181.67 12591.15 8489.16 9786.02 18495.08 13095.09 11198.91 12096.64 166
TransMVSNet (Re)87.73 17386.79 18488.83 14690.76 15594.40 18991.33 17389.62 10784.73 19775.41 15972.73 18671.41 18686.80 17894.53 13893.93 14599.06 10595.83 170
v124086.89 18186.75 18687.06 17888.75 19294.65 18591.30 17484.05 16987.49 18468.94 19371.96 19268.86 19990.65 15593.33 15892.72 17198.67 14298.24 119
MIMVSNet88.99 15691.07 14086.57 18286.78 20295.62 15491.20 17575.40 20290.65 15776.57 14984.05 13782.44 14291.01 14595.84 11095.38 10498.48 15693.50 194
EG-PatchMatch MVS86.68 18287.24 17886.02 18790.58 15796.26 13491.08 17681.59 18184.96 19669.80 19071.35 19575.08 17084.23 19494.24 14693.35 15698.82 12795.46 177
PEN-MVS87.22 18086.50 18988.07 15688.88 18994.44 18890.99 17786.21 14286.53 18973.66 17074.97 17066.56 20889.42 16791.20 18793.48 15499.24 7298.31 118
WR-MVS87.93 16888.09 16587.75 16689.26 18095.28 16790.81 17886.69 13888.90 16875.29 16074.31 17773.72 17685.19 18992.26 17393.32 15799.27 6798.81 90
DTE-MVSNet86.67 18386.09 19087.35 17588.45 19594.08 19490.65 17986.05 14686.13 19172.19 17474.58 17566.77 20687.61 17590.31 19093.12 16099.13 9497.62 139
CP-MVSNet87.89 17187.27 17788.62 14889.30 17895.06 17390.60 18085.78 14987.43 18575.98 15474.60 17368.14 20190.76 15193.07 16493.60 15299.30 6398.98 72
WR-MVS_H87.93 16887.85 17188.03 16189.62 17195.58 15990.47 18185.55 15387.20 18676.83 14874.42 17672.67 18186.37 18193.22 16193.04 16199.33 5698.83 89
anonymousdsp88.90 15791.00 14186.44 18388.74 19395.97 14190.40 18282.86 17688.77 17167.33 19581.18 15081.44 14690.22 16196.23 9894.27 13899.12 9699.16 46
PS-CasMVS87.33 17886.68 18788.10 15589.22 18594.93 17890.35 18385.70 15086.44 19074.01 16973.43 18366.59 20790.04 16292.92 16593.52 15399.28 6598.91 81
v7n86.43 18486.52 18886.33 18487.91 19794.93 17890.15 18483.05 17486.57 18870.21 18571.48 19366.78 20587.72 17394.19 14892.96 16398.92 11998.76 93
v14887.51 17586.79 18488.36 15189.39 17795.21 17189.84 18588.20 12487.61 18377.56 14273.38 18470.32 19286.80 17890.70 18992.31 17698.37 16197.98 127
pmmvs587.83 17288.09 16587.51 17489.59 17395.48 16089.75 18684.73 16486.07 19371.44 17880.57 15370.09 19390.74 15394.47 13992.87 16698.82 12797.10 151
pmmvs685.98 18884.89 19687.25 17688.83 19194.35 19089.36 18785.30 15878.51 20975.44 15862.71 20875.41 16787.65 17493.58 15392.40 17596.89 18397.29 148
testgi89.42 14791.50 13787.00 17992.40 14495.59 15789.15 18885.27 15992.78 12672.42 17391.75 7776.00 16684.09 19594.38 14293.82 15098.65 14696.15 167
CMPMVSbinary65.18 1784.76 19283.10 19886.69 18195.29 9095.05 17488.37 18985.51 15480.27 20771.31 17968.37 20073.85 17585.25 18787.72 19987.75 19694.38 20688.70 206
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep13_2view86.30 18588.27 16284.01 19287.71 19994.67 18488.08 19076.78 19590.59 15968.66 19480.46 15580.12 14987.58 17689.95 19488.20 19595.25 19993.90 191
thisisatest051590.12 14192.06 13087.85 16590.03 16596.17 13687.83 19187.45 13091.71 14677.15 14585.40 12884.01 13185.74 18595.41 12393.30 15898.88 12298.43 107
SixPastTwentyTwo88.37 16289.47 15287.08 17790.01 16695.93 14587.41 19285.32 15690.26 16270.26 18486.34 12371.95 18390.93 14692.89 16791.72 18198.55 15197.22 149
EU-MVSNet85.62 18987.65 17583.24 19588.54 19492.77 20087.12 19385.32 15686.71 18764.54 20078.52 16075.11 16978.35 20092.25 17492.28 17795.58 19495.93 169
IB-MVS89.56 1591.71 11792.50 11790.79 12495.94 7998.44 7887.05 19491.38 8593.15 12192.98 4184.78 13185.14 12378.27 20192.47 17294.44 13599.10 9899.08 54
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs-eth3d84.33 19482.94 19985.96 18884.16 20590.94 20486.55 19583.79 17084.25 19875.85 15670.64 19656.43 21487.44 17792.20 17590.41 18797.97 17195.68 173
PM-MVS84.72 19384.47 19785.03 18984.67 20491.57 20386.27 19682.31 18087.65 18270.62 18276.54 16656.41 21588.75 17192.59 16989.85 19097.54 17996.66 165
our_test_389.78 16993.84 19585.59 197
Anonymous2023120683.84 19585.19 19482.26 19687.38 20092.87 19885.49 19883.65 17186.07 19363.44 20468.42 19969.01 19775.45 20493.34 15792.44 17498.12 16894.20 184
FPMVS75.84 20374.59 20677.29 20486.92 20183.89 21285.01 19980.05 18782.91 20360.61 20865.25 20560.41 21163.86 20975.60 20973.60 21187.29 21380.47 210
pmnet_mix0286.12 18787.12 18184.96 19089.82 16894.12 19384.88 20086.63 13991.78 14565.60 19880.76 15276.98 16286.61 18087.29 20284.80 20596.21 18694.09 186
N_pmnet84.80 19185.10 19584.45 19189.25 18392.86 19984.04 20186.21 14288.78 17066.73 19672.41 19074.87 17285.21 18888.32 19886.45 20095.30 19792.04 199
PatchT89.13 15491.71 13386.11 18692.92 13695.59 15783.64 20275.09 20391.87 14475.19 16182.63 14485.06 12492.05 13095.21 12794.56 12997.76 17597.08 154
MVS-HIRNet85.36 19086.89 18383.57 19390.13 16494.51 18783.57 20372.61 20788.27 17771.22 18068.97 19881.81 14488.91 17093.08 16391.94 17994.97 20289.64 205
test20.0382.92 19785.52 19279.90 20087.75 19891.84 20282.80 20482.99 17582.65 20560.32 20978.90 15970.50 18967.10 20892.05 18090.89 18398.44 15891.80 200
ambc73.83 20776.23 21285.13 21182.27 20584.16 19965.58 19952.82 21123.31 22273.55 20591.41 18685.26 20492.97 20894.70 179
new_pmnet81.53 19882.68 20080.20 19883.47 20789.47 20882.21 20678.36 18887.86 17960.14 21167.90 20169.43 19682.03 19889.22 19687.47 19894.99 20187.39 207
MIMVSNet180.03 20080.93 20178.97 20172.46 21490.73 20580.81 20782.44 17980.39 20663.64 20257.57 20964.93 20976.37 20291.66 18391.55 18298.07 16989.70 204
DeepMVS_CXcopyleft86.86 20979.50 20870.43 21090.73 15563.66 20180.36 15660.83 21079.68 19976.23 20889.46 21086.53 208
MDA-MVSNet-bldmvs80.11 19980.24 20279.94 19977.01 21193.21 19778.86 20985.94 14882.71 20460.86 20679.71 15751.77 21783.71 19775.60 20986.37 20193.28 20792.35 197
pmmvs379.16 20180.12 20378.05 20379.36 20986.59 21078.13 21073.87 20676.42 21157.51 21470.59 19757.02 21384.66 19290.10 19288.32 19494.75 20491.77 201
new-patchmatchnet78.49 20278.19 20578.84 20284.13 20690.06 20677.11 21180.39 18679.57 20859.64 21266.01 20455.65 21675.62 20384.55 20580.70 20796.14 18890.77 203
test_method72.96 20478.68 20466.28 20850.17 21864.90 21675.45 21250.90 21587.89 17862.54 20562.98 20768.34 20070.45 20691.90 18282.41 20688.19 21292.35 197
gm-plane-assit83.26 19685.29 19380.89 19789.52 17489.89 20770.26 21378.24 18977.11 21058.01 21374.16 17866.90 20390.63 15697.20 6196.05 8498.66 14595.68 173
tmp_tt66.88 20786.07 20373.86 21468.22 21433.38 21696.88 4780.67 13188.23 10878.82 15349.78 21382.68 20777.47 20983.19 215
PMMVS264.36 20865.94 21062.52 20967.37 21577.44 21364.39 21569.32 21361.47 21434.59 21746.09 21241.03 21848.02 21574.56 21178.23 20891.43 20982.76 209
Gipumacopyleft68.35 20566.71 20870.27 20574.16 21368.78 21563.93 21671.77 20983.34 20254.57 21534.37 21331.88 21968.69 20783.30 20685.53 20388.48 21179.78 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft63.12 1867.27 20666.39 20968.30 20677.98 21060.24 21759.53 21776.82 19366.65 21360.74 20754.39 21059.82 21251.24 21273.92 21270.52 21283.48 21479.17 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN50.67 20947.85 21253.96 21064.13 21750.98 22038.06 21869.51 21151.40 21624.60 21929.46 21624.39 22156.07 21148.17 21459.70 21371.40 21670.84 214
EMVS49.98 21046.76 21353.74 21164.96 21651.29 21937.81 21969.35 21251.83 21522.69 22029.57 21525.06 22057.28 21044.81 21556.11 21470.32 21768.64 215
MVEpermissive50.86 1949.54 21151.43 21147.33 21244.14 21959.20 21836.45 22060.59 21441.47 21731.14 21829.58 21417.06 22348.52 21462.22 21374.63 21063.12 21875.87 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Patchmatch-RL test34.61 221
testmvs12.09 21216.94 2146.42 2143.15 2206.08 2219.51 2223.84 21721.46 2185.31 22127.49 2176.76 22410.89 21617.06 21615.01 2155.84 21924.75 216
test1239.58 21313.53 2154.97 2151.31 2225.47 2228.32 2232.95 21818.14 2192.03 22320.82 2182.34 22510.60 21710.00 21714.16 2164.60 22023.77 217
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def63.50 203
9.1499.28 11
SR-MVS99.45 997.61 1599.20 15
MTAPA96.83 1099.12 20
MTMP97.18 598.83 26
mPP-MVS99.21 2498.29 38
NP-MVS95.32 86