This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 4090.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
APDe-MVScopyleft88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 3087.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5589.81 1673.55 2583.95 3173.30 3889.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2979.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3374.24 1784.88 2576.23 2875.26 3981.05 4377.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3277.74 1987.42 1987.20 1590.77 1392.63 25
TPM-MVS90.07 2188.36 3588.45 2977.10 2575.60 3783.98 2971.33 6389.75 4389.62 52
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
PGM-MVS84.42 2786.29 2782.23 2590.04 2288.82 2689.23 2271.74 3582.82 3774.61 3384.41 2382.09 3577.03 2787.13 2486.73 2490.73 1592.06 31
MSP-MVS88.09 590.84 584.88 790.00 2391.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4594.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CSCG85.28 2187.68 1982.49 2489.95 2491.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
mPP-MVS89.90 2581.29 42
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2688.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
X-MVS83.23 3285.20 3280.92 3389.71 2788.68 2788.21 3273.60 2382.57 3871.81 4577.07 3281.92 3771.72 5886.98 2886.86 2090.47 2392.36 28
DPM-MVS83.30 3184.33 3482.11 2689.56 2888.49 3390.33 1273.24 2783.85 3276.46 2772.43 5182.65 3373.02 4886.37 3586.91 1990.03 3689.62 52
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2988.53 3288.59 2772.55 3087.39 1571.90 4290.95 987.55 1374.57 3687.08 2686.54 2687.47 9293.67 17
CP-MVS84.74 2686.43 2682.77 2389.48 3088.13 3988.64 2573.93 2184.92 2476.77 2681.94 2683.50 3077.29 2586.92 3086.49 2790.49 2293.14 23
CDPH-MVS82.64 3385.03 3379.86 3889.41 3188.31 3688.32 3071.84 3480.11 4467.47 6482.09 2581.44 4171.85 5685.89 4186.15 3290.24 3291.25 37
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3290.38 1188.61 2676.50 186.25 2277.22 2375.12 4080.28 4577.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary79.74 4678.62 6381.05 3289.23 3386.06 5284.95 4971.96 3379.39 4775.51 3163.16 9268.84 9676.51 2983.55 6182.85 5988.13 7586.46 77
SR-MVS88.99 3473.57 2487.54 14
EPNet79.08 5680.62 5277.28 5188.90 3583.17 8183.65 5472.41 3174.41 5767.15 6776.78 3374.37 6564.43 9983.70 6083.69 5387.15 9688.19 61
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3690.48 1085.46 4673.08 2890.97 673.77 3784.81 2285.95 2077.43 2288.22 1187.73 1187.85 8594.34 9
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3788.49 3388.31 3172.09 3283.42 3472.77 4082.65 2478.22 5075.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3889.67 1786.60 3771.48 3681.28 4278.18 2064.78 8677.96 5277.13 2687.32 2286.83 2190.41 2891.48 35
OPM-MVS79.68 4779.28 6180.15 3787.99 3986.77 4688.52 2872.72 2964.55 9967.65 6367.87 7574.33 6674.31 3986.37 3585.25 4089.73 4489.81 50
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MAR-MVS79.21 5280.32 5677.92 4987.46 4088.15 3883.95 5367.48 6374.28 5868.25 5964.70 8777.04 5372.17 5285.42 4385.00 4288.22 7187.62 66
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HQP-MVS81.19 4083.27 3778.76 4487.40 4185.45 5686.95 3570.47 4081.31 4166.91 6879.24 3076.63 5471.67 5984.43 5483.78 5289.19 5692.05 33
CANet81.62 3983.41 3679.53 4087.06 4288.59 3185.47 4567.96 5776.59 5274.05 3474.69 4181.98 3672.98 4986.14 3985.47 3789.68 4690.42 46
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4387.22 4385.82 4270.04 4280.30 4378.66 1968.67 7181.04 4477.81 1885.19 4684.88 4389.19 5691.31 36
ACMM72.26 878.86 5778.13 6579.71 3986.89 4483.40 7686.02 4070.50 3975.28 5471.49 4963.01 9369.26 9073.57 4384.11 5683.98 4889.76 4287.84 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVS86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
X-MVStestdata86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
PHI-MVS82.36 3585.89 2978.24 4786.40 4789.52 1885.52 4469.52 4882.38 4065.67 7181.35 2782.36 3473.07 4787.31 2386.76 2389.24 5291.56 34
LGP-MVS_train79.83 4381.22 4878.22 4886.28 4885.36 5886.76 3669.59 4677.34 4965.14 7475.68 3670.79 8071.37 6284.60 5084.01 4790.18 3390.74 42
MVS_030481.73 3883.86 3579.26 4186.22 4989.18 2486.41 3867.15 6475.28 5470.75 5274.59 4283.49 3174.42 3887.05 2786.34 2990.58 2091.08 39
CPTT-MVS81.77 3783.10 3880.21 3685.93 5086.45 4987.72 3470.98 3882.54 3971.53 4874.23 4581.49 4076.31 3182.85 7081.87 6688.79 6492.26 29
MVS_111021_HR80.13 4281.46 4578.58 4585.77 5185.17 5983.45 5569.28 4974.08 6170.31 5474.31 4475.26 6273.13 4686.46 3485.15 4189.53 4789.81 50
ACMP73.23 779.79 4480.53 5378.94 4285.61 5285.68 5385.61 4369.59 4677.33 5071.00 5174.45 4369.16 9171.88 5483.15 6783.37 5589.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
UA-Net74.47 7777.80 6770.59 9285.33 5385.40 5773.54 14465.98 7360.65 13056.00 11072.11 5279.15 4654.63 16983.13 6882.25 6388.04 7981.92 126
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5486.96 4484.91 5070.25 4184.71 2873.91 3685.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
LS3D74.08 7973.39 9474.88 6885.05 5582.62 8579.71 7568.66 5272.82 6658.80 9357.61 12461.31 12171.07 6580.32 10278.87 11586.00 13480.18 143
QAPM78.47 5980.22 5776.43 5885.03 5686.75 4780.62 6666.00 7273.77 6365.35 7365.54 8278.02 5172.69 5083.71 5983.36 5688.87 6290.41 47
OpenMVScopyleft70.44 1076.15 7076.82 7875.37 6585.01 5784.79 6178.99 8462.07 12171.27 6967.88 6257.91 12372.36 7370.15 6782.23 7581.41 7188.12 7687.78 65
CLD-MVS79.35 5081.23 4777.16 5385.01 5786.92 4585.87 4160.89 13280.07 4675.35 3272.96 4873.21 7068.43 7985.41 4484.63 4487.41 9385.44 88
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator73.76 579.75 4580.52 5478.84 4384.94 5987.35 4184.43 5265.54 7578.29 4873.97 3563.00 9475.62 6174.07 4085.00 4785.34 3990.11 3589.04 55
PCF-MVS73.28 679.42 4980.41 5578.26 4684.88 6088.17 3786.08 3969.85 4375.23 5668.43 5868.03 7478.38 4871.76 5781.26 8880.65 8888.56 6791.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DELS-MVS79.15 5581.07 5076.91 5583.54 6187.31 4284.45 5164.92 8069.98 7069.34 5671.62 5576.26 5569.84 6886.57 3285.90 3489.39 4989.88 49
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OMC-MVS80.26 4182.59 4177.54 5083.04 6285.54 5483.25 5665.05 7987.32 1872.42 4172.04 5378.97 4773.30 4583.86 5781.60 7088.15 7488.83 57
EC-MVSNet79.44 4881.35 4677.22 5282.95 6384.67 6381.31 6063.65 9272.47 6868.75 5773.15 4778.33 4975.99 3286.06 4083.96 4990.67 1790.79 41
PLCcopyleft68.99 1175.68 7175.31 8376.12 6082.94 6481.26 9579.94 7166.10 7077.15 5166.86 6959.13 11368.53 9873.73 4280.38 10179.04 11187.13 10081.68 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA77.20 6577.54 6976.80 5682.63 6584.31 6579.77 7364.64 8185.17 2373.18 3956.37 13069.81 8774.53 3781.12 9178.69 11686.04 13287.29 69
ACMH+66.54 1371.36 10070.09 11872.85 7982.59 6681.13 9778.56 8768.04 5561.55 12352.52 13251.50 17254.14 15768.56 7878.85 12479.50 10686.82 10883.94 108
ACMH65.37 1470.71 10470.00 11971.54 8482.51 6782.47 8677.78 9568.13 5456.19 15846.06 16854.30 14251.20 18468.68 7780.66 9780.72 8186.07 12884.45 105
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS75.64 7276.60 7974.53 7282.43 6883.84 7078.32 9162.28 12065.96 8963.28 8368.95 6767.54 10171.61 6082.55 7281.63 6989.24 5285.72 82
sasdasda79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3567.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
canonicalmvs79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3567.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
ETV-MVS77.32 6478.81 6275.58 6282.24 7183.64 7479.98 6964.02 8869.64 7563.90 7970.89 5969.94 8673.41 4485.39 4583.91 5189.92 3788.31 60
MSDG71.52 9769.87 12073.44 7782.21 7279.35 11579.52 7764.59 8266.15 8761.87 8453.21 15756.09 14765.85 9778.94 12378.50 11886.60 11776.85 166
casdiffmvs_mvgpermissive77.79 6279.55 6075.73 6181.56 7384.70 6282.12 5764.26 8774.27 5967.93 6170.83 6074.66 6469.19 7483.33 6681.94 6589.29 5187.14 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test250671.72 9472.95 9870.29 9581.49 7483.27 7775.74 10967.59 6168.19 7849.81 14561.15 9849.73 19258.82 13584.76 4882.94 5788.27 6980.63 137
ECVR-MVScopyleft72.20 9073.91 9070.20 9781.49 7483.27 7775.74 10967.59 6168.19 7849.31 14955.77 13262.00 11958.82 13584.76 4882.94 5788.27 6980.41 141
CS-MVS79.22 5181.11 4977.01 5481.36 7684.03 6680.35 6763.25 9673.43 6570.37 5374.10 4676.03 5976.40 3086.32 3783.95 5090.34 3189.93 48
IS_MVSNet73.33 8377.34 7468.65 11581.29 7783.47 7574.45 12663.58 9465.75 9148.49 15167.11 7970.61 8154.63 16984.51 5283.58 5489.48 4886.34 78
test111171.56 9673.44 9369.38 10881.16 7882.95 8274.99 12067.68 5966.89 8346.33 16555.19 13860.91 12257.99 14384.59 5182.70 6188.12 7680.85 134
Effi-MVS+75.28 7476.20 8074.20 7481.15 7983.24 7981.11 6163.13 10166.37 8560.27 8964.30 9068.88 9570.93 6681.56 7981.69 6888.61 6587.35 67
MVS_111021_LR78.13 6179.85 5976.13 5981.12 8081.50 9180.28 6865.25 7776.09 5371.32 5076.49 3572.87 7272.21 5182.79 7181.29 7286.59 11887.91 63
CS-MVS-test78.79 5880.72 5176.53 5781.11 8183.88 6979.69 7663.72 9173.80 6269.95 5575.40 3876.17 5674.85 3584.50 5382.78 6089.87 3988.54 59
FC-MVSNet-train72.60 8875.07 8469.71 10381.10 8278.79 12273.74 14365.23 7866.10 8853.34 12570.36 6263.40 11556.92 15381.44 8180.96 7787.93 8184.46 104
MS-PatchMatch70.17 11170.49 11569.79 10280.98 8377.97 13477.51 9758.95 15562.33 11755.22 11453.14 15865.90 10762.03 11579.08 12177.11 14184.08 15877.91 158
Anonymous20240521172.16 10680.85 8481.85 8876.88 10565.40 7662.89 11446.35 18967.99 10062.05 11481.15 9080.38 9285.97 13584.50 103
TAPA-MVS71.42 977.69 6380.05 5874.94 6780.68 8584.52 6481.36 5963.14 10084.77 2664.82 7668.72 6975.91 6071.86 5581.62 7779.55 10587.80 8785.24 91
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet_Blended_VisFu76.57 6777.90 6675.02 6680.56 8686.58 4879.24 8066.18 6964.81 9668.18 6065.61 8071.45 7567.05 8384.16 5581.80 6788.90 6090.92 40
EPP-MVSNet74.00 8077.41 7270.02 10080.53 8783.91 6874.99 12062.68 11365.06 9449.77 14668.68 7072.09 7463.06 10782.49 7480.73 8089.12 5888.91 56
COLMAP_ROBcopyleft62.73 1567.66 14066.76 15768.70 11480.49 8877.98 13275.29 11362.95 10363.62 10849.96 14347.32 18850.72 18758.57 13776.87 14575.50 15784.94 15275.33 177
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE74.23 7874.84 8673.52 7680.42 8981.46 9279.77 7361.06 13067.23 8263.67 8059.56 11068.74 9767.90 8080.25 10679.37 10988.31 6887.26 70
casdiffmvspermissive76.76 6678.46 6474.77 6980.32 9083.73 7380.65 6563.24 9773.58 6466.11 7069.39 6674.09 6769.49 7282.52 7379.35 11088.84 6386.52 76
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DCV-MVSNet73.65 8275.78 8271.16 8680.19 9179.27 11677.45 10061.68 12766.73 8458.72 9465.31 8369.96 8562.19 11281.29 8780.97 7686.74 11186.91 72
Anonymous2023121171.90 9272.48 10371.21 8580.14 9281.53 9076.92 10362.89 10464.46 10158.94 9143.80 19370.98 7962.22 11180.70 9680.19 9586.18 12585.73 81
TSAR-MVS + COLMAP78.34 6081.64 4474.48 7380.13 9385.01 6081.73 5865.93 7484.75 2761.68 8585.79 1966.27 10671.39 6182.91 6980.78 7986.01 13385.98 79
baseline170.10 11272.17 10567.69 12479.74 9476.80 14473.91 13764.38 8462.74 11548.30 15364.94 8464.08 11254.17 17181.46 8078.92 11385.66 14076.22 168
EPNet_dtu68.08 13271.00 11164.67 15479.64 9568.62 18675.05 11963.30 9566.36 8645.27 17267.40 7766.84 10543.64 19175.37 15474.98 16081.15 17077.44 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS76.21 6877.52 7074.69 7079.46 9683.79 7177.50 9864.34 8569.88 7171.88 4368.54 7270.42 8267.05 8383.48 6279.63 10187.89 8386.87 73
PVSNet_Blended76.21 6877.52 7074.69 7079.46 9683.79 7177.50 9864.34 8569.88 7171.88 4368.54 7270.42 8267.05 8383.48 6279.63 10187.89 8386.87 73
IB-MVS66.94 1271.21 10171.66 10970.68 8979.18 9882.83 8472.61 15061.77 12559.66 13563.44 8253.26 15559.65 12959.16 13476.78 14782.11 6487.90 8287.33 68
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_Test75.37 7377.13 7673.31 7879.07 9981.32 9479.98 6960.12 14369.72 7364.11 7870.53 6173.22 6968.90 7580.14 10879.48 10787.67 8985.50 86
Effi-MVS+-dtu71.82 9371.86 10871.78 8378.77 10080.47 10478.55 8861.67 12860.68 12955.49 11158.48 11765.48 10868.85 7676.92 14475.55 15687.35 9485.46 87
EG-PatchMatch MVS67.24 14766.94 15567.60 12678.73 10181.35 9373.28 14859.49 14846.89 20051.42 13743.65 19453.49 16555.50 16581.38 8380.66 8787.15 9681.17 132
gg-mvs-nofinetune62.55 17165.05 16959.62 17978.72 10277.61 13870.83 15853.63 17339.71 21222.04 21436.36 20764.32 11147.53 18481.16 8979.03 11285.00 15177.17 163
FA-MVS(training)73.66 8174.95 8572.15 8178.63 10380.46 10578.92 8554.79 17269.71 7465.37 7262.04 9566.89 10467.10 8280.72 9579.87 9888.10 7884.97 96
Vis-MVSNet (Re-imp)67.83 13773.52 9261.19 17078.37 10476.72 14666.80 17662.96 10265.50 9234.17 19767.19 7869.68 8839.20 20079.39 11879.44 10885.68 13976.73 167
DI_MVS_plusplus_trai75.13 7576.12 8173.96 7578.18 10581.55 8980.97 6262.54 11568.59 7665.13 7561.43 9774.81 6369.32 7381.01 9379.59 10387.64 9085.89 80
thres600view767.68 13968.43 14166.80 14177.90 10678.86 12073.84 13962.75 10656.07 15944.70 17652.85 16352.81 17455.58 16380.41 9877.77 12786.05 13080.28 142
thres40067.95 13468.62 13967.17 13477.90 10678.59 12574.27 13262.72 10856.34 15745.77 17053.00 16053.35 17056.46 15580.21 10778.43 11985.91 13780.43 140
thres20067.98 13368.55 14067.30 13277.89 10878.86 12074.18 13562.75 10656.35 15646.48 16452.98 16153.54 16356.46 15580.41 9877.97 12586.05 13079.78 147
thres100view90067.60 14368.02 14467.12 13677.83 10977.75 13673.90 13862.52 11656.64 15346.82 16152.65 16553.47 16755.92 15978.77 12577.62 13085.72 13879.23 151
tfpn200view968.11 13168.72 13767.40 12977.83 10978.93 11874.28 13162.81 10556.64 15346.82 16152.65 16553.47 16756.59 15480.41 9878.43 11986.11 12680.52 139
Fast-Effi-MVS+73.11 8573.66 9172.48 8077.72 11180.88 10178.55 8858.83 15865.19 9360.36 8859.98 10762.42 11871.22 6481.66 7680.61 9088.20 7284.88 99
UniMVSNet_NR-MVSNet70.59 10572.19 10468.72 11377.72 11180.72 10273.81 14169.65 4561.99 11943.23 17860.54 10357.50 13858.57 13779.56 11481.07 7589.34 5083.97 106
IterMVS-LS71.69 9572.82 10170.37 9477.54 11376.34 14975.13 11860.46 13861.53 12457.57 10164.89 8567.33 10266.04 9677.09 14377.37 13785.48 14385.18 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NR-MVSNet68.79 12670.56 11466.71 14477.48 11479.54 11273.52 14569.20 5061.20 12739.76 18558.52 11550.11 19051.37 17880.26 10580.71 8588.97 5983.59 112
TransMVSNet (Re)64.74 16065.66 16363.66 16177.40 11575.33 15869.86 15962.67 11447.63 19841.21 18450.01 17852.33 17745.31 18879.57 11377.69 12985.49 14277.07 165
TranMVSNet+NR-MVSNet69.25 12170.81 11367.43 12877.23 11679.46 11473.48 14669.66 4460.43 13239.56 18658.82 11453.48 16655.74 16279.59 11281.21 7388.89 6182.70 116
CANet_DTU73.29 8476.96 7769.00 11277.04 11782.06 8779.49 7856.30 16967.85 8053.29 12671.12 5870.37 8461.81 12181.59 7880.96 7786.09 12784.73 100
CHOSEN 1792x268869.20 12269.26 12969.13 10976.86 11878.93 11877.27 10160.12 14361.86 12154.42 11542.54 19761.61 12066.91 8878.55 12878.14 12379.23 17883.23 115
HyFIR lowres test69.47 11968.94 13370.09 9976.77 11982.93 8376.63 10760.17 14159.00 13854.03 11940.54 20365.23 10967.89 8176.54 15078.30 12185.03 15080.07 144
UniMVSNet (Re)69.53 11771.90 10766.76 14276.42 12080.93 9872.59 15168.03 5661.75 12241.68 18358.34 12157.23 14053.27 17479.53 11580.62 8988.57 6684.90 98
gm-plane-assit57.00 19557.62 20256.28 19176.10 12162.43 20847.62 21646.57 20733.84 21623.24 21037.52 20440.19 21359.61 13379.81 11077.55 13284.55 15572.03 187
DU-MVS69.63 11670.91 11268.13 11975.99 12279.54 11273.81 14169.20 5061.20 12743.23 17858.52 11553.50 16458.57 13779.22 11980.45 9187.97 8083.97 106
Baseline_NR-MVSNet67.53 14468.77 13666.09 14775.99 12274.75 16372.43 15268.41 5361.33 12638.33 19051.31 17354.13 15956.03 15879.22 11978.19 12285.37 14582.45 118
CostFormer68.92 12469.58 12568.15 11875.98 12476.17 15178.22 9351.86 18665.80 9061.56 8663.57 9162.83 11661.85 11970.40 19068.67 18779.42 17679.62 149
dmvs_re67.22 14867.92 14666.40 14575.94 12570.55 17974.97 12263.87 8957.07 15044.75 17454.29 14356.72 14454.65 16879.53 11577.51 13384.20 15779.78 147
tfpnnormal64.27 16363.64 17965.02 15175.84 12675.61 15571.24 15762.52 11647.79 19742.97 18042.65 19644.49 20652.66 17678.77 12576.86 14384.88 15379.29 150
baseline269.69 11570.27 11769.01 11175.72 12777.13 14273.82 14058.94 15661.35 12557.09 10461.68 9657.17 14161.99 11678.10 13276.58 14886.48 12179.85 145
diffmvspermissive74.86 7677.37 7371.93 8275.62 12880.35 10779.42 7960.15 14272.81 6764.63 7771.51 5673.11 7166.53 9379.02 12277.98 12485.25 14786.83 75
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpm cat165.41 15563.81 17867.28 13375.61 12972.88 16975.32 11252.85 18062.97 11263.66 8153.24 15653.29 17261.83 12065.54 20164.14 20374.43 19874.60 179
CDS-MVSNet67.65 14169.83 12265.09 15075.39 13076.55 14774.42 12963.75 9053.55 17649.37 14859.41 11162.45 11744.44 18979.71 11179.82 9983.17 16477.36 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+-dtu68.34 12969.47 12667.01 13875.15 13177.97 13477.12 10255.40 17157.87 14146.68 16356.17 13160.39 12362.36 11076.32 15176.25 15285.35 14681.34 130
WR-MVS63.03 16767.40 15257.92 18575.14 13277.60 13960.56 19966.10 7054.11 17523.88 20853.94 14953.58 16234.50 20473.93 16377.71 12887.35 9480.94 133
test-LLR64.42 16164.36 17464.49 15575.02 13363.93 19966.61 17861.96 12254.41 17147.77 15657.46 12560.25 12455.20 16670.80 18469.33 18280.40 17474.38 181
test0.0.03 158.80 19161.58 19255.56 19375.02 13368.45 18759.58 20361.96 12252.74 17929.57 20149.75 18154.56 15531.46 20771.19 17969.77 18075.75 19164.57 202
v114469.93 11469.36 12870.61 9174.89 13580.93 9879.11 8260.64 13455.97 16055.31 11353.85 15054.14 15766.54 9278.10 13277.44 13587.14 9985.09 93
v1070.22 11069.76 12370.74 8774.79 13680.30 10979.22 8159.81 14657.71 14656.58 10854.22 14855.31 15066.95 8678.28 13077.47 13487.12 10285.07 94
v870.23 10969.86 12170.67 9074.69 13779.82 11178.79 8659.18 15158.80 13958.20 9955.00 13957.33 13966.31 9577.51 13776.71 14686.82 10883.88 109
v2v48270.05 11369.46 12770.74 8774.62 13880.32 10879.00 8360.62 13557.41 14856.89 10555.43 13755.14 15266.39 9477.25 14077.14 14086.90 10583.57 113
v119269.50 11868.83 13470.29 9574.49 13980.92 10078.55 8860.54 13655.04 16654.21 11652.79 16452.33 17766.92 8777.88 13477.35 13887.04 10385.51 85
UniMVSNet_ETH3D67.18 14967.03 15467.36 13074.44 14078.12 12774.07 13666.38 6752.22 18346.87 16048.64 18351.84 18156.96 15177.29 13978.53 11785.42 14482.59 117
DTE-MVSNet61.85 18064.96 17158.22 18474.32 14174.39 16561.01 19867.85 5851.76 18821.91 21553.28 15448.17 19537.74 20172.22 17276.44 14986.52 12078.49 155
Vis-MVSNetpermissive72.77 8777.20 7567.59 12774.19 14284.01 6776.61 10861.69 12660.62 13150.61 14170.25 6371.31 7855.57 16483.85 5882.28 6286.90 10588.08 62
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v14419269.34 12068.68 13870.12 9874.06 14380.54 10378.08 9460.54 13654.99 16854.13 11852.92 16252.80 17566.73 9077.13 14276.72 14587.15 9685.63 83
v192192069.03 12368.32 14269.86 10174.03 14480.37 10677.55 9660.25 14054.62 17053.59 12452.36 16851.50 18366.75 8977.17 14176.69 14786.96 10485.56 84
PEN-MVS62.96 16865.77 16259.70 17873.98 14575.45 15663.39 19267.61 6052.49 18125.49 20753.39 15249.12 19440.85 19771.94 17577.26 13986.86 10780.72 136
v124068.64 12867.89 14869.51 10673.89 14680.26 11076.73 10659.97 14553.43 17853.08 12751.82 17150.84 18666.62 9176.79 14676.77 14486.78 11085.34 89
thisisatest053071.48 9873.01 9769.70 10473.83 14778.62 12474.53 12559.12 15264.13 10258.63 9564.60 8858.63 13364.27 10080.28 10480.17 9687.82 8684.64 102
GA-MVS68.14 13069.17 13166.93 14073.77 14878.50 12674.45 12658.28 16055.11 16548.44 15260.08 10553.99 16061.50 12378.43 12977.57 13185.13 14880.54 138
tttt051771.41 9972.95 9869.60 10573.70 14978.70 12374.42 12959.12 15263.89 10658.35 9864.56 8958.39 13564.27 10080.29 10380.17 9687.74 8884.69 101
pm-mvs165.62 15467.42 15163.53 16273.66 15076.39 14869.66 16060.87 13349.73 19343.97 17751.24 17457.00 14348.16 18379.89 10977.84 12684.85 15479.82 146
dps64.00 16562.99 18165.18 14973.29 15172.07 17268.98 16553.07 17957.74 14558.41 9755.55 13547.74 19860.89 12969.53 19367.14 19676.44 19071.19 189
v14867.85 13667.53 14968.23 11773.25 15277.57 14074.26 13357.36 16655.70 16157.45 10353.53 15155.42 14961.96 11775.23 15573.92 16485.08 14981.32 131
PatchMatch-RL67.78 13866.65 15869.10 11073.01 15372.69 17068.49 16661.85 12462.93 11360.20 9056.83 12950.42 18869.52 7175.62 15374.46 16381.51 16873.62 185
GBi-Net70.78 10273.37 9567.76 12072.95 15478.00 12975.15 11562.72 10864.13 10251.44 13458.37 11869.02 9257.59 14581.33 8480.72 8186.70 11282.02 120
test170.78 10273.37 9567.76 12072.95 15478.00 12975.15 11562.72 10864.13 10251.44 13458.37 11869.02 9257.59 14581.33 8480.72 8186.70 11282.02 120
FMVSNet270.39 10872.67 10267.72 12372.95 15478.00 12975.15 11562.69 11263.29 11051.25 13855.64 13368.49 9957.59 14580.91 9480.35 9386.70 11282.02 120
FMVSNet370.49 10672.90 10067.67 12572.88 15777.98 13274.96 12362.72 10864.13 10251.44 13458.37 11869.02 9257.43 14879.43 11779.57 10486.59 11881.81 127
LTVRE_ROB59.44 1661.82 18362.64 18560.87 17272.83 15877.19 14164.37 18858.97 15433.56 21728.00 20452.59 16742.21 20963.93 10374.52 15976.28 15077.15 18582.13 119
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n67.05 15066.94 15567.17 13472.35 15978.97 11773.26 14958.88 15751.16 18950.90 13948.21 18550.11 19060.96 12677.70 13577.38 13686.68 11585.05 95
tpm62.41 17463.15 18061.55 16972.24 16063.79 20171.31 15646.12 20957.82 14255.33 11259.90 10854.74 15453.63 17267.24 20064.29 20270.65 20874.25 183
test20.0353.93 20356.28 20451.19 20272.19 16165.83 19453.20 21061.08 12942.74 20622.08 21337.07 20645.76 20424.29 21570.44 18869.04 18474.31 19963.05 206
CP-MVSNet62.68 17065.49 16559.40 18171.84 16275.34 15762.87 19467.04 6552.64 18027.19 20553.38 15348.15 19641.40 19571.26 17875.68 15486.07 12882.00 123
PS-CasMVS62.38 17665.06 16859.25 18271.73 16375.21 16162.77 19566.99 6651.94 18726.96 20652.00 17047.52 19941.06 19671.16 18175.60 15585.97 13581.97 125
WR-MVS_H61.83 18265.87 16157.12 18871.72 16476.87 14361.45 19766.19 6851.97 18622.92 21253.13 15952.30 17933.80 20571.03 18275.00 15986.65 11680.78 135
USDC67.36 14667.90 14766.74 14371.72 16475.23 16071.58 15460.28 13967.45 8150.54 14260.93 9945.20 20562.08 11376.56 14974.50 16284.25 15675.38 176
UGNet72.78 8677.67 6867.07 13771.65 16683.24 7975.20 11463.62 9364.93 9556.72 10671.82 5473.30 6849.02 18281.02 9280.70 8686.22 12488.67 58
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpmrst62.00 17862.35 18961.58 16871.62 16764.14 19869.07 16448.22 20562.21 11853.93 12058.26 12255.30 15155.81 16163.22 20662.62 20570.85 20770.70 190
pmmvs467.89 13567.39 15368.48 11671.60 16873.57 16774.45 12660.98 13164.65 9757.97 10054.95 14051.73 18261.88 11873.78 16475.11 15883.99 16077.91 158
testgi54.39 20257.86 20050.35 20371.59 16967.24 19054.95 20853.25 17743.36 20523.78 20944.64 19247.87 19724.96 21270.45 18768.66 18873.60 20162.78 207
pmmvs662.41 17462.88 18261.87 16771.38 17075.18 16267.76 16959.45 15041.64 20842.52 18237.33 20552.91 17346.87 18577.67 13676.26 15183.23 16379.18 152
FMVSNet168.84 12570.47 11666.94 13971.35 17177.68 13774.71 12462.35 11956.93 15149.94 14450.01 17864.59 11057.07 15081.33 8480.72 8186.25 12382.00 123
IterMVS-SCA-FT66.89 15169.22 13064.17 15671.30 17275.64 15471.33 15553.17 17857.63 14749.08 15060.72 10160.05 12763.09 10674.99 15773.92 16477.07 18681.57 129
PatchmatchNetpermissive64.21 16464.65 17263.69 16071.29 17368.66 18569.63 16151.70 18863.04 11153.77 12259.83 10958.34 13660.23 13268.54 19766.06 19975.56 19368.08 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline70.45 10774.09 8966.20 14670.95 17475.67 15374.26 13353.57 17468.33 7758.42 9669.87 6471.45 7561.55 12274.84 15874.76 16178.42 18083.72 111
SCA65.40 15666.58 15964.02 15870.65 17573.37 16867.35 17053.46 17663.66 10754.14 11760.84 10060.20 12661.50 12369.96 19168.14 19277.01 18769.91 191
CR-MVSNet64.83 15965.54 16464.01 15970.64 17669.41 18165.97 18152.74 18157.81 14352.65 12954.27 14456.31 14660.92 12772.20 17373.09 16981.12 17175.69 173
MVSTER72.06 9174.24 8769.51 10670.39 17775.97 15276.91 10457.36 16664.64 9861.39 8768.86 6863.76 11363.46 10481.44 8179.70 10087.56 9185.31 90
Anonymous2023120656.36 19757.80 20154.67 19670.08 17866.39 19360.46 20057.54 16349.50 19529.30 20233.86 21046.64 20035.18 20370.44 18868.88 18675.47 19468.88 196
thisisatest051567.40 14568.78 13565.80 14870.02 17975.24 15969.36 16357.37 16554.94 16953.67 12355.53 13654.85 15358.00 14278.19 13178.91 11486.39 12283.78 110
CMPMVSbinary47.78 1762.49 17362.52 18662.46 16570.01 18070.66 17862.97 19351.84 18751.98 18556.71 10742.87 19553.62 16157.80 14472.23 17170.37 17975.45 19575.91 170
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TDRefinement66.09 15365.03 17067.31 13169.73 18176.75 14575.33 11164.55 8360.28 13349.72 14745.63 19142.83 20860.46 13175.75 15275.95 15384.08 15878.04 157
TinyColmap62.84 16961.03 19464.96 15269.61 18271.69 17368.48 16759.76 14755.41 16247.69 15847.33 18734.20 21762.76 10974.52 15972.59 17281.44 16971.47 188
RPMNet61.71 18462.88 18260.34 17469.51 18369.41 18163.48 19149.23 19757.81 14345.64 17150.51 17650.12 18953.13 17568.17 19968.49 19081.07 17275.62 175
IterMVS66.36 15268.30 14364.10 15769.48 18474.61 16473.41 14750.79 19257.30 14948.28 15460.64 10259.92 12860.85 13074.14 16272.66 17181.80 16778.82 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo61.84 18162.45 18761.12 17169.20 18572.20 17162.03 19657.40 16446.54 20138.03 19257.14 12841.72 21058.12 14169.67 19271.58 17581.94 16678.30 156
MDTV_nov1_ep1364.37 16265.24 16663.37 16468.94 18670.81 17672.40 15350.29 19560.10 13453.91 12160.07 10659.15 13157.21 14969.43 19467.30 19477.47 18369.78 193
EPMVS60.00 18961.97 19057.71 18668.46 18763.17 20564.54 18748.23 20463.30 10944.72 17560.19 10456.05 14850.85 17965.27 20462.02 20669.44 21063.81 204
our_test_367.93 18870.99 17566.89 174
FC-MVSNet-test56.90 19665.20 16747.21 20666.98 18963.20 20449.11 21558.60 15959.38 13711.50 22265.60 8156.68 14524.66 21471.17 18071.36 17772.38 20469.02 195
CVMVSNet62.55 17165.89 16058.64 18366.95 19069.15 18366.49 18056.29 17052.46 18232.70 19859.27 11258.21 13750.09 18071.77 17671.39 17679.31 17778.99 153
FPMVS51.87 20550.00 21054.07 19766.83 19157.25 21260.25 20150.91 19050.25 19134.36 19636.04 20832.02 21941.49 19458.98 21256.07 21270.56 20959.36 212
pmmvs-eth3d63.52 16662.44 18864.77 15366.82 19270.12 18069.41 16259.48 14954.34 17452.71 12846.24 19044.35 20756.93 15272.37 16873.77 16683.30 16275.91 170
TAMVS59.58 19062.81 18455.81 19266.03 19365.64 19663.86 19048.74 20049.95 19237.07 19454.77 14158.54 13444.44 18972.29 17071.79 17374.70 19766.66 199
MDTV_nov1_ep13_2view60.16 18860.51 19659.75 17765.39 19469.05 18468.00 16848.29 20351.99 18445.95 16948.01 18649.64 19353.39 17368.83 19666.52 19877.47 18369.55 194
pmmvs562.37 17764.04 17660.42 17365.03 19571.67 17467.17 17252.70 18350.30 19044.80 17354.23 14751.19 18549.37 18172.88 16773.48 16883.45 16174.55 180
ambc53.42 20564.99 19663.36 20349.96 21347.07 19937.12 19328.97 21416.36 22641.82 19375.10 15667.34 19371.55 20675.72 172
V4268.76 12769.63 12467.74 12264.93 19778.01 12878.30 9256.48 16858.65 14056.30 10954.26 14657.03 14264.85 9877.47 13877.01 14285.60 14184.96 97
pmnet_mix0255.30 19957.01 20353.30 20164.14 19859.09 21058.39 20550.24 19653.47 17738.68 18949.75 18145.86 20340.14 19965.38 20360.22 20868.19 21265.33 201
PMVScopyleft39.38 1846.06 21143.30 21449.28 20562.93 19938.75 22041.88 21853.50 17533.33 21835.46 19528.90 21531.01 22033.04 20658.61 21454.63 21568.86 21157.88 213
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new-patchmatchnet46.97 20949.47 21144.05 21062.82 20056.55 21345.35 21752.01 18542.47 20717.04 22035.73 20935.21 21621.84 21861.27 20954.83 21465.26 21460.26 209
ET-MVSNet_ETH3D72.46 8974.19 8870.44 9362.50 20181.17 9679.90 7262.46 11864.52 10057.52 10271.49 5759.15 13172.08 5378.61 12781.11 7488.16 7383.29 114
ADS-MVSNet55.94 19858.01 19953.54 20062.48 20258.48 21159.12 20446.20 20859.65 13642.88 18152.34 16953.31 17146.31 18662.00 20860.02 20964.23 21560.24 211
RPSCF67.64 14271.25 11063.43 16361.86 20370.73 17767.26 17150.86 19174.20 6058.91 9267.49 7669.33 8964.10 10271.41 17768.45 19177.61 18277.17 163
MIMVSNet58.52 19361.34 19355.22 19460.76 20467.01 19166.81 17549.02 19956.43 15538.90 18840.59 20254.54 15640.57 19873.16 16671.65 17475.30 19666.00 200
PatchT61.97 17964.04 17659.55 18060.49 20567.40 18956.54 20648.65 20156.69 15252.65 12951.10 17552.14 18060.92 12772.20 17373.09 16978.03 18175.69 173
N_pmnet47.35 20850.13 20944.11 20959.98 20651.64 21751.86 21144.80 21049.58 19420.76 21640.65 20140.05 21429.64 20859.84 21055.15 21357.63 21654.00 214
MVS-HIRNet54.41 20152.10 20857.11 18958.99 20756.10 21449.68 21449.10 19846.18 20252.15 13333.18 21146.11 20256.10 15763.19 20759.70 21076.64 18960.25 210
PM-MVS60.48 18760.94 19559.94 17658.85 20866.83 19264.27 18951.39 18955.03 16748.03 15550.00 18040.79 21258.26 14069.20 19567.13 19778.84 17977.60 160
WB-MVS40.01 21245.06 21334.13 21258.84 20953.28 21628.60 22158.10 16132.93 2194.65 22740.92 19928.33 2227.26 22158.86 21356.09 21147.36 21944.98 216
anonymousdsp65.28 15767.98 14562.13 16658.73 21073.98 16667.10 17350.69 19348.41 19647.66 15954.27 14452.75 17661.45 12576.71 14880.20 9487.13 10089.53 54
TESTMET0.1,161.10 18564.36 17457.29 18757.53 21163.93 19966.61 17836.22 21554.41 17147.77 15657.46 12560.25 12455.20 16670.80 18469.33 18280.40 17474.38 181
EU-MVSNet54.63 20058.69 19849.90 20456.99 21262.70 20756.41 20750.64 19445.95 20323.14 21150.42 17746.51 20136.63 20265.51 20264.85 20175.57 19274.91 178
FMVSNet557.24 19460.02 19753.99 19856.45 21362.74 20665.27 18447.03 20655.14 16439.55 18740.88 20053.42 16941.83 19272.35 16971.10 17873.79 20064.50 203
test-mter60.84 18664.62 17356.42 19055.99 21464.18 19765.39 18334.23 21654.39 17346.21 16757.40 12759.49 13055.86 16071.02 18369.65 18180.87 17376.20 169
CHOSEN 280x42058.70 19261.88 19154.98 19555.45 21550.55 21864.92 18540.36 21255.21 16338.13 19148.31 18463.76 11363.03 10873.73 16568.58 18968.00 21373.04 186
PMMVS65.06 15869.17 13160.26 17555.25 21663.43 20266.71 17743.01 21162.41 11650.64 14069.44 6567.04 10363.29 10574.36 16173.54 16782.68 16573.99 184
Gipumacopyleft36.38 21435.80 21637.07 21145.76 21733.90 22129.81 22048.47 20239.91 21118.02 2198.00 2248.14 22825.14 21159.29 21161.02 20755.19 21840.31 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs347.65 20749.08 21245.99 20744.61 21854.79 21550.04 21231.95 21933.91 21529.90 20030.37 21233.53 21846.31 18663.50 20563.67 20473.14 20363.77 205
MIMVSNet149.27 20653.25 20644.62 20844.61 21861.52 20953.61 20952.18 18441.62 20918.68 21828.14 21641.58 21125.50 21068.46 19869.04 18473.15 20262.37 208
MDA-MVSNet-bldmvs53.37 20453.01 20753.79 19943.67 22067.95 18859.69 20257.92 16243.69 20432.41 19941.47 19827.89 22352.38 17756.97 21565.99 20076.68 18867.13 198
E-PMN21.77 21718.24 22025.89 21440.22 22119.58 22412.46 22639.87 21318.68 2236.71 2249.57 2214.31 23122.36 21719.89 22227.28 22033.73 22228.34 221
EMVS20.98 21817.15 22125.44 21539.51 22219.37 22512.66 22539.59 21419.10 2226.62 2259.27 2224.40 23022.43 21617.99 22324.40 22131.81 22325.53 222
new_pmnet38.40 21342.64 21533.44 21337.54 22345.00 21936.60 21932.72 21840.27 21012.72 22129.89 21328.90 22124.78 21353.17 21652.90 21656.31 21748.34 215
PMMVS225.60 21529.75 21720.76 21728.00 22430.93 22223.10 22329.18 22023.14 2211.46 22818.23 22016.54 2255.08 22240.22 21741.40 21837.76 22037.79 219
tmp_tt14.50 22014.68 2257.17 22710.46 2282.21 22337.73 21328.71 20325.26 21716.98 2244.37 22331.49 21929.77 21926.56 224
MVEpermissive19.12 1920.47 21923.27 21917.20 21912.66 22625.41 22310.52 22734.14 21714.79 2246.53 2268.79 2234.68 22916.64 22029.49 22041.63 21722.73 22538.11 218
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method22.26 21625.94 21817.95 2183.24 2277.17 22723.83 2227.27 22237.35 21420.44 21721.87 21939.16 21518.67 21934.56 21820.84 22234.28 22120.64 223
GG-mvs-BLEND46.86 21067.51 15022.75 2160.05 22876.21 15064.69 1860.04 22461.90 1200.09 22955.57 13471.32 770.08 22470.54 18667.19 19571.58 20569.86 192
testmvs0.09 2200.15 2220.02 2210.01 2290.02 2290.05 2300.01 2250.11 2250.01 2300.26 2260.01 2320.06 2260.10 2240.10 2230.01 2270.43 225
uanet_test0.00 2220.00 2240.00 2230.00 2300.00 2310.00 2320.00 2270.00 2270.00 2310.00 2270.00 2330.00 2270.00 2260.00 2250.00 2290.00 226
sosnet-low-res0.00 2220.00 2240.00 2230.00 2300.00 2310.00 2320.00 2270.00 2270.00 2310.00 2270.00 2330.00 2270.00 2260.00 2250.00 2290.00 226
sosnet0.00 2220.00 2240.00 2230.00 2300.00 2310.00 2320.00 2270.00 2270.00 2310.00 2270.00 2330.00 2270.00 2260.00 2250.00 2290.00 226
test1230.09 2200.14 2230.02 2210.00 2300.02 2290.02 2310.01 2250.09 2260.00 2310.30 2250.00 2330.08 2240.03 2250.09 2240.01 2270.45 224
RE-MVS-def46.24 166
9.1486.88 16
MTAPA83.48 186.45 19
MTMP82.66 584.91 26
Patchmatch-RL test2.85 229
NP-MVS80.10 45
Patchmtry65.80 19565.97 18152.74 18152.65 129
DeepMVS_CXcopyleft18.74 22618.55 2248.02 22126.96 2207.33 22323.81 21813.05 22725.99 20925.17 22122.45 22636.25 220