This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DVP-MVS++98.92 199.18 198.61 499.47 599.61 299.39 397.82 198.80 196.86 898.90 299.92 198.67 1799.02 298.20 1999.43 4599.82 1
DVP-MVScopyleft98.86 498.97 398.75 299.43 1299.63 199.25 1297.81 298.62 297.69 197.59 2099.90 298.93 598.99 498.42 1199.37 5799.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS98.90 299.07 298.69 399.38 1899.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1799.02 298.26 1799.36 5999.61 6
SMA-MVScopyleft98.66 798.89 798.39 999.60 199.41 1299.00 2097.63 1297.78 1895.83 1898.33 1199.83 498.85 998.93 898.56 699.41 4899.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft98.75 598.91 698.57 599.21 2399.54 699.42 297.78 697.49 3196.84 998.94 199.82 598.59 2198.90 1098.22 1899.56 1799.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SD-MVS98.52 898.77 998.23 1598.15 4999.26 2698.79 2697.59 1598.52 396.25 1597.99 1599.75 699.01 398.27 3297.97 3199.59 799.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft98.34 1698.47 1598.18 1699.46 899.15 3499.10 1697.69 897.67 2494.93 2697.62 1999.70 798.60 2098.45 2097.46 5199.31 6699.26 33
MSP-MVS98.73 698.93 598.50 699.44 1199.57 499.36 497.65 998.14 1296.51 1498.49 799.65 898.67 1798.60 1498.42 1199.40 5199.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PHI-MVS97.78 2698.44 1897.02 3698.73 3899.25 2898.11 4095.54 3996.66 5392.79 4398.52 699.38 997.50 4497.84 4998.39 1499.45 3699.03 65
APDe-MVS98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 599.57 9
MCST-MVS98.20 1898.36 1998.01 2299.40 1499.05 3799.00 2097.62 1397.59 2893.70 3397.42 2799.30 1198.77 1398.39 2697.48 5099.59 799.31 27
9.1499.28 12
TSAR-MVS + MP.98.49 998.78 898.15 1998.14 5099.17 3399.34 697.18 2998.44 595.72 1997.84 1699.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + ACMM97.71 2898.60 1296.66 3998.64 4199.05 3798.85 2597.23 2798.45 489.40 8897.51 2499.27 1496.88 5998.53 1597.81 4198.96 12199.59 8
SF-MVS98.39 1398.45 1798.33 1099.45 999.05 3798.27 3797.65 997.73 1997.02 798.18 1299.25 1598.11 3298.15 3897.62 4699.45 3699.19 43
SR-MVS99.45 997.61 1499.20 16
TSAR-MVS + GP.97.45 3198.36 1996.39 4195.56 8798.93 5397.74 4993.31 5397.61 2794.24 3098.44 999.19 1798.03 3597.60 5697.41 5399.44 4299.33 24
NCCC98.10 2198.05 3098.17 1899.38 1899.05 3799.00 2097.53 1798.04 1495.12 2494.80 5299.18 1898.58 2298.49 1797.78 4299.39 5398.98 72
SteuartSystems-ACMMP98.38 1498.71 1097.99 2399.34 2099.46 1099.34 697.33 2497.31 3594.25 2998.06 1399.17 1998.13 3198.98 598.46 999.55 1899.54 11
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS98.47 1198.46 1698.48 799.40 1499.05 3799.02 1997.54 1697.73 1996.65 1197.20 2999.13 2098.85 998.91 998.10 2399.41 4899.08 55
MTAPA96.83 1099.12 21
ACMMP_NAP98.20 1898.49 1397.85 2599.50 499.40 1399.26 1197.64 1197.47 3392.62 4697.59 2099.09 2298.71 1598.82 1297.86 3899.40 5199.19 43
train_agg97.65 2998.06 2997.18 3398.94 3298.91 5698.98 2497.07 3196.71 5190.66 6797.43 2699.08 2398.20 2797.96 4697.14 6299.22 8299.19 43
APD-MVScopyleft98.36 1598.32 2398.41 899.47 599.26 2699.12 1597.77 796.73 5096.12 1697.27 2898.88 2498.46 2598.47 1898.39 1499.52 2099.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MP-MVScopyleft98.09 2298.30 2497.84 2699.34 2099.19 3299.23 1397.40 1997.09 4393.03 3997.58 2298.85 2598.57 2398.44 2297.69 4499.48 2899.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTMP97.18 598.83 26
HFP-MVS98.48 1098.62 1198.32 1199.39 1799.33 2199.27 1097.42 1898.27 795.25 2398.34 1098.83 2699.08 198.26 3398.08 2599.48 2899.26 33
CPTT-MVS97.78 2697.54 3598.05 2198.91 3599.05 3799.00 2096.96 3397.14 4195.92 1795.50 4498.78 2898.99 497.20 6796.07 8798.54 15999.04 64
TPM-MVS98.94 3298.47 8398.04 4292.62 4696.51 3398.76 2995.94 7798.92 12597.55 145
XVS96.60 6999.35 1796.82 6890.85 6298.72 3099.46 32
X-MVStestdata96.60 6999.35 1796.82 6890.85 6298.72 3099.46 32
X-MVS97.84 2498.19 2797.42 3099.40 1499.35 1799.06 1797.25 2597.38 3490.85 6296.06 3798.72 3098.53 2498.41 2498.15 2299.46 3299.28 28
DeepPCF-MVS95.28 297.00 3998.35 2195.42 6097.30 6398.94 5194.82 11996.03 3898.24 992.11 5195.80 4198.64 3395.51 8698.95 798.66 596.78 19199.20 42
CP-MVS98.32 1798.34 2298.29 1299.34 2099.30 2299.15 1497.35 2197.49 3195.58 2197.72 1898.62 3498.82 1198.29 2897.67 4599.51 2599.28 28
DPM-MVS96.86 4496.82 5096.91 3898.08 5198.20 9198.52 3397.20 2897.24 3891.42 5691.84 7698.45 3597.25 4897.07 7297.40 5498.95 12297.55 145
MSLP-MVS++98.04 2397.93 3298.18 1699.10 2799.09 3698.34 3696.99 3297.54 2996.60 1294.82 5198.45 3598.89 697.46 6198.77 499.17 9299.37 20
ACMMPR98.40 1298.49 1398.28 1399.41 1399.40 1399.36 497.35 2198.30 695.02 2597.79 1798.39 3799.04 298.26 3398.10 2399.50 2799.22 39
mPP-MVS99.21 2398.29 38
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2499.16 2699.03 4399.05 1897.24 2698.22 1094.17 3195.82 4098.07 3998.69 1698.83 1198.80 299.52 2099.10 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net93.96 9295.95 6291.64 11796.06 8098.59 7995.29 10990.00 10391.06 15782.87 12390.64 9198.06 4086.06 18998.14 3998.20 1999.58 1196.96 163
3Dnovator+93.91 797.23 3597.22 4097.24 3298.89 3698.85 6198.26 3893.25 5697.99 1595.56 2290.01 9898.03 4198.05 3497.91 4798.43 1099.44 4299.35 22
PGM-MVS97.81 2598.11 2897.46 2999.55 399.34 2099.32 994.51 4596.21 6193.07 3698.05 1497.95 4298.82 1198.22 3697.89 3799.48 2899.09 54
CDPH-MVS96.84 4597.49 3696.09 4798.92 3498.85 6198.61 2895.09 4196.00 6987.29 10695.45 4697.42 4397.16 5097.83 5097.94 3499.44 4298.92 78
QAPM96.78 4797.14 4496.36 4299.05 2999.14 3598.02 4393.26 5497.27 3790.84 6591.16 8497.31 4497.64 4297.70 5498.20 1999.33 6199.18 46
CANet96.84 4597.20 4196.42 4097.92 5399.24 3098.60 2993.51 5197.11 4293.07 3691.16 8497.24 4596.21 7298.24 3598.05 2699.22 8299.35 22
OMC-MVS97.00 3996.92 4897.09 3498.69 3998.66 7297.85 4795.02 4298.09 1394.47 2793.15 6096.90 4697.38 4697.16 7096.82 7299.13 9997.65 142
MVS_111021_HR97.04 3898.20 2695.69 5498.44 4599.29 2396.59 7893.20 5797.70 2289.94 8098.46 896.89 4796.71 6398.11 4297.95 3399.27 7299.01 68
PLCcopyleft94.95 397.37 3396.77 5198.07 2098.97 3198.21 9097.94 4696.85 3597.66 2597.58 393.33 5996.84 4898.01 3697.13 7196.20 8599.09 10498.01 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator93.79 897.08 3797.20 4196.95 3799.09 2899.03 4398.20 3993.33 5297.99 1593.82 3290.61 9296.80 4997.82 3797.90 4898.78 399.47 3199.26 33
PCF-MVS93.95 695.65 5595.14 7596.25 4397.73 5898.73 6797.59 5197.13 3092.50 13789.09 9589.85 9996.65 5096.90 5894.97 13994.89 12499.08 10598.38 114
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EC-MVSNet96.49 4997.63 3495.16 6494.75 11198.69 7097.39 5588.97 11996.34 5792.02 5296.04 3896.46 5198.21 2698.41 2497.96 3299.61 699.55 10
MVS_111021_LR97.16 3698.01 3196.16 4698.47 4398.98 4896.94 6493.89 4897.64 2691.44 5598.89 396.41 5297.20 4998.02 4597.29 6099.04 11598.85 87
MVS_030496.31 5196.91 4995.62 5597.21 6599.20 3198.55 3193.10 5997.04 4589.73 8290.30 9496.35 5395.71 7998.14 3997.93 3699.38 5499.40 18
TAPA-MVS94.18 596.38 5096.49 5596.25 4398.26 4798.66 7298.00 4494.96 4397.17 3989.48 8592.91 6496.35 5397.53 4396.59 8895.90 9599.28 7097.82 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CHOSEN 280x42095.46 5997.01 4593.66 9597.28 6497.98 9896.40 8485.39 15996.10 6691.07 5996.53 3296.34 5595.61 8397.65 5596.95 6796.21 19297.49 147
CNLPA96.90 4296.28 5797.64 2898.56 4298.63 7796.85 6796.60 3697.73 1997.08 689.78 10096.28 5697.80 3996.73 8396.63 7498.94 12398.14 125
ETV-MVS96.31 5197.47 3894.96 7094.79 10898.78 6496.08 9291.41 8996.16 6290.50 6995.76 4296.20 5797.39 4598.42 2397.82 4099.57 1499.18 46
AdaColmapbinary97.53 3096.93 4798.24 1499.21 2398.77 6598.47 3497.34 2396.68 5296.52 1395.11 4996.12 5898.72 1497.19 6996.24 8399.17 9298.39 113
UGNet94.92 6696.63 5292.93 10496.03 8198.63 7794.53 12591.52 8796.23 6090.03 7792.87 6596.10 5986.28 18896.68 8596.60 7599.16 9599.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMMPcopyleft97.37 3397.48 3797.25 3198.88 3799.28 2498.47 3496.86 3497.04 4592.15 5097.57 2396.05 6097.67 4097.27 6595.99 9299.46 3299.14 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS-test97.00 3997.85 3396.00 5097.77 5599.56 596.35 8691.95 7697.54 2992.20 4996.14 3696.00 6198.19 2898.46 1997.78 4299.57 1499.45 16
GG-mvs-BLEND66.17 21394.91 8132.63 2181.32 22796.64 13091.40 1760.85 22494.39 1092.20 22890.15 9795.70 622.27 22496.39 9695.44 10897.78 18095.68 179
CSCG97.44 3297.18 4397.75 2799.47 599.52 898.55 3195.41 4097.69 2395.72 1994.29 5595.53 6398.10 3396.20 10797.38 5599.24 7699.62 4
PVSNet_Blended_VisFu94.77 7395.54 6793.87 9196.48 7298.97 4994.33 12891.84 7994.93 9990.37 7385.04 13594.99 6490.87 15698.12 4197.30 5899.30 6899.45 16
OpenMVScopyleft92.33 1195.50 5695.22 7395.82 5398.98 3098.97 4997.67 5093.04 6294.64 10389.18 9384.44 14094.79 6596.79 6097.23 6697.61 4799.24 7698.88 83
Vis-MVSNet (Re-imp)94.46 8196.24 5892.40 10895.23 9698.64 7595.56 10690.99 9394.42 10785.02 11590.88 9094.65 6688.01 17898.17 3798.37 1699.57 1498.53 103
CS-MVS96.87 4397.41 3996.24 4597.42 6099.48 997.30 5691.83 8197.17 3993.02 4094.80 5294.45 6798.16 3098.61 1397.85 3999.69 199.50 12
IS_MVSNet95.28 6396.43 5693.94 8995.30 9399.01 4795.90 9891.12 9294.13 11387.50 10591.23 8394.45 6794.17 10998.45 2098.50 799.65 399.23 37
FA-MVS(training)93.94 9395.16 7492.53 10794.87 10698.57 8095.42 10879.49 19295.37 8590.98 6086.54 12294.26 6995.44 8897.80 5395.19 11698.97 11998.38 114
EPP-MVSNet95.27 6496.18 6094.20 8794.88 10598.64 7594.97 11590.70 9695.34 8689.67 8491.66 7993.84 7095.42 8997.32 6497.00 6599.58 1199.47 15
EPNet96.27 5396.97 4695.46 5998.47 4398.28 8797.41 5393.67 4995.86 7492.86 4297.51 2493.79 7191.76 14197.03 7497.03 6498.61 15599.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS94.87 496.76 4896.50 5497.05 3598.21 4899.28 2498.67 2797.38 2097.31 3590.36 7489.19 10293.58 7298.19 2898.31 2798.50 799.51 2599.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS96.06 5496.04 6196.07 4997.77 5599.25 2898.10 4193.26 5494.42 10792.79 4388.52 10993.48 7395.06 9498.51 1698.83 199.45 3699.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet_DTU93.92 9596.57 5390.83 12795.63 8598.39 8596.99 6187.38 13596.26 5971.97 18196.31 3493.02 7494.53 10397.38 6396.83 7198.49 16297.79 134
PMMVS94.61 7695.56 6693.50 9794.30 12296.74 12794.91 11789.56 11295.58 8387.72 10396.15 3592.86 7596.06 7395.47 12795.02 12198.43 16797.09 158
RPSCF94.05 9094.00 9794.12 8896.20 7696.41 13796.61 7791.54 8695.83 7689.73 8296.94 3092.80 7695.35 9091.63 19090.44 19295.27 20493.94 195
EIA-MVS95.50 5696.19 5994.69 7994.83 10798.88 6095.93 9791.50 8894.47 10689.43 8693.14 6192.72 7797.05 5597.82 5297.13 6399.43 4599.15 49
EPNet_dtu92.45 11795.02 7989.46 14598.02 5295.47 16894.79 12092.62 6694.97 9870.11 19294.76 5492.61 7884.07 20295.94 11395.56 10497.15 18895.82 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline94.83 6895.82 6393.68 9494.75 11197.80 10096.51 8188.53 12497.02 4789.34 9092.93 6392.18 7994.69 9995.78 11996.08 8698.27 17098.97 76
MS-PatchMatch91.82 12292.51 12291.02 12395.83 8496.88 11995.05 11384.55 17293.85 11782.01 12782.51 15091.71 8090.52 16395.07 13793.03 16898.13 17394.52 186
Vis-MVSNetpermissive92.77 11295.00 8090.16 13694.10 12598.79 6394.76 12188.26 12692.37 14279.95 13888.19 11191.58 8184.38 19997.59 5797.58 4899.52 2098.91 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GBi-Net93.81 9794.18 9293.38 10091.34 15795.86 15396.22 8788.68 12195.23 9090.40 7086.39 12591.16 8294.40 10696.52 9296.30 7999.21 8697.79 134
test193.81 9794.18 9293.38 10091.34 15795.86 15396.22 8788.68 12195.23 9090.40 7086.39 12591.16 8294.40 10696.52 9296.30 7999.21 8697.79 134
FMVSNet393.79 9994.17 9493.35 10291.21 16095.99 14696.62 7688.68 12195.23 9090.40 7086.39 12591.16 8294.11 11095.96 11296.67 7399.07 10797.79 134
SCA90.92 13493.04 11488.45 15593.72 13397.33 11192.77 14976.08 20496.02 6878.26 14691.96 7490.86 8593.99 11390.98 19490.04 19595.88 19694.06 194
gg-mvs-nofinetune86.17 19288.57 16683.36 19993.44 13598.15 9496.58 7972.05 21374.12 21749.23 22264.81 21290.85 8689.90 17197.83 5096.84 7098.97 11997.41 150
CDS-MVSNet92.77 11293.60 10691.80 11592.63 14696.80 12395.24 11089.14 11790.30 16784.58 11686.76 11690.65 8790.42 16495.89 11496.49 7698.79 14198.32 119
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_Test94.82 6995.66 6493.84 9294.79 10898.35 8696.49 8289.10 11896.12 6587.09 10892.58 6790.61 8896.48 6896.51 9596.89 6999.11 10298.54 102
HyFIR lowres test92.03 11891.55 14392.58 10697.13 6698.72 6894.65 12386.54 14493.58 12282.56 12567.75 20890.47 8995.67 8095.87 11595.54 10598.91 12798.93 77
DCV-MVSNet94.76 7495.12 7794.35 8595.10 10195.81 15796.46 8389.49 11396.33 5890.16 7592.55 6890.26 9095.83 7895.52 12596.03 9099.06 11099.33 24
MAR-MVS95.50 5695.60 6595.39 6198.67 4098.18 9395.89 10089.81 10894.55 10591.97 5392.99 6290.21 9197.30 4796.79 8097.49 4998.72 14598.99 70
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MDTV_nov1_ep1391.57 12793.18 11289.70 14293.39 13696.97 11793.53 13780.91 18995.70 7881.86 12892.40 6989.93 9293.25 12791.97 18790.80 19095.25 20594.46 188
FC-MVSNet-test91.63 12593.82 10289.08 14992.02 15196.40 13893.26 14387.26 13693.72 11977.26 15088.61 10889.86 9385.50 19295.72 12395.02 12199.16 9597.44 149
PatchmatchNetpermissive90.56 13892.49 12488.31 15893.83 13196.86 12292.42 15776.50 20195.96 7078.31 14591.96 7489.66 9493.48 12390.04 19989.20 19895.32 20293.73 199
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053094.54 7995.47 6893.46 9894.51 11898.65 7494.66 12290.72 9495.69 8086.90 10993.80 5689.44 9594.74 9796.98 7694.86 12599.19 9098.85 87
DI_MVS_plusplus_trai94.01 9193.63 10594.44 8394.54 11798.26 8997.51 5290.63 9795.88 7389.34 9080.54 16189.36 9695.48 8796.33 10196.27 8299.17 9298.78 93
FMVSNet293.30 10893.36 11193.22 10391.34 15795.86 15396.22 8788.24 12795.15 9689.92 8181.64 15289.36 9694.40 10696.77 8196.98 6699.21 8697.79 134
tttt051794.52 8095.44 7093.44 9994.51 11898.68 7194.61 12490.72 9495.61 8286.84 11093.78 5789.26 9894.74 9797.02 7594.86 12599.20 8998.87 85
Anonymous2023121193.49 10592.33 13294.84 7594.78 11098.00 9796.11 9191.85 7894.86 10090.91 6174.69 17989.18 9996.73 6294.82 14095.51 10698.67 14999.24 36
test0.0.03 191.97 11993.91 9889.72 14193.31 13896.40 13891.34 17887.06 13993.86 11681.67 13091.15 8689.16 10086.02 19095.08 13695.09 11798.91 12796.64 172
MSDG94.82 6993.73 10396.09 4798.34 4697.43 10997.06 5996.05 3795.84 7590.56 6886.30 12989.10 10195.55 8596.13 11095.61 10399.00 11695.73 178
CHOSEN 1792x268892.66 11492.49 12492.85 10597.13 6698.89 5995.90 9888.50 12595.32 8783.31 12271.99 19788.96 10294.10 11196.69 8496.49 7698.15 17299.10 52
COLMAP_ROBcopyleft90.49 1493.27 10992.71 11893.93 9097.75 5797.44 10896.07 9393.17 5895.40 8483.86 11983.76 14488.72 10393.87 11494.25 15294.11 14698.87 13095.28 184
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-LLR91.62 12693.56 10889.35 14893.31 13896.57 13292.02 16987.06 13992.34 14375.05 17090.20 9588.64 10490.93 15296.19 10894.07 14797.75 18296.90 166
TESTMET0.1,191.07 13293.56 10888.17 15990.43 16496.57 13292.02 16982.83 18192.34 14375.05 17090.20 9588.64 10490.93 15296.19 10894.07 14797.75 18296.90 166
LS3D95.46 5995.14 7595.84 5297.91 5498.90 5898.58 3097.79 597.07 4483.65 12188.71 10588.64 10497.82 3797.49 5997.42 5299.26 7597.72 141
Anonymous20240521192.18 13395.04 10298.20 9196.14 9091.79 8393.93 11474.60 18088.38 10796.48 6895.17 13595.82 10099.00 11699.15 49
IterMVS-SCA-FT90.24 14392.48 12687.63 17492.85 14394.30 19893.79 13481.47 18892.66 13269.95 19384.66 13888.38 10789.99 16995.39 13094.34 14297.74 18497.63 143
test-mter90.95 13393.54 11087.93 16990.28 16896.80 12391.44 17582.68 18292.15 14774.37 17489.57 10188.23 10990.88 15596.37 9994.31 14397.93 17997.37 151
IterMVS90.20 14492.43 12887.61 17592.82 14594.31 19794.11 13081.54 18692.97 12869.90 19484.71 13788.16 11089.96 17095.25 13294.17 14597.31 18697.46 148
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-LS92.56 11593.18 11291.84 11493.90 12894.97 18294.99 11486.20 14894.18 11282.68 12485.81 13187.36 11194.43 10495.31 13196.02 9198.87 13098.60 99
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
casdiffmvs_mvgpermissive94.55 7894.26 9094.88 7294.96 10398.51 8197.11 5891.82 8294.28 11089.20 9286.60 12086.85 11296.56 6797.47 6097.25 6199.64 498.83 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline293.01 11094.17 9491.64 11792.83 14497.49 10693.40 14087.53 13393.67 12086.07 11191.83 7786.58 11391.36 14596.38 9795.06 11998.67 14998.20 123
FMVSNet590.36 14190.93 14989.70 14287.99 20292.25 20792.03 16883.51 17692.20 14684.13 11785.59 13286.48 11492.43 13394.61 14294.52 13898.13 17390.85 208
EPMVS90.88 13592.12 13489.44 14694.71 11397.24 11393.55 13676.81 19995.89 7281.77 12991.49 8286.47 11593.87 11490.21 19790.07 19495.92 19593.49 201
RPMNet90.19 14592.03 13788.05 16493.46 13495.95 15093.41 13974.59 21092.40 14075.91 16184.22 14186.41 11692.49 13294.42 14893.85 15498.44 16596.96 163
MVSTER94.89 6795.07 7894.68 8094.71 11396.68 12997.00 6090.57 9895.18 9593.05 3895.21 4786.41 11693.72 11997.59 5795.88 9699.00 11698.50 105
ADS-MVSNet89.80 15091.33 14588.00 16794.43 12096.71 12892.29 16174.95 20996.07 6777.39 14988.67 10786.09 11893.26 12688.44 20389.57 19795.68 19893.81 198
canonicalmvs95.25 6595.45 6995.00 6895.27 9598.72 6896.89 6589.82 10796.51 5490.84 6593.72 5886.01 11997.66 4195.78 11997.94 3499.54 1999.50 12
CVMVSNet89.77 15191.66 14087.56 17793.21 14095.45 16991.94 17289.22 11689.62 17169.34 19883.99 14385.90 12084.81 19794.30 15195.28 11296.85 19097.09 158
baseline194.59 7794.47 8594.72 7895.16 9897.97 9996.07 9391.94 7794.86 10089.98 7891.60 8085.87 12195.64 8197.07 7296.90 6899.52 2097.06 162
Fast-Effi-MVS+-dtu91.19 13193.64 10488.33 15792.19 15096.46 13593.99 13281.52 18792.59 13571.82 18292.17 7185.54 12291.68 14295.73 12194.64 13198.80 13998.34 116
CR-MVSNet90.16 14691.96 13888.06 16393.32 13795.95 15093.36 14175.99 20592.40 14075.19 16783.18 14685.37 12392.05 13695.21 13394.56 13598.47 16497.08 160
PVSNet_BlendedMVS95.41 6195.28 7195.57 5697.42 6099.02 4595.89 10093.10 5996.16 6293.12 3491.99 7285.27 12494.66 10098.09 4397.34 5699.24 7699.08 55
PVSNet_Blended95.41 6195.28 7195.57 5697.42 6099.02 4595.89 10093.10 5996.16 6293.12 3491.99 7285.27 12494.66 10098.09 4397.34 5699.24 7699.08 55
FC-MVSNet-train93.85 9693.91 9893.78 9394.94 10496.79 12694.29 12991.13 9193.84 11888.26 10090.40 9385.23 12694.65 10296.54 9195.31 11199.38 5499.28 28
IB-MVS89.56 1591.71 12492.50 12390.79 12995.94 8398.44 8487.05 20091.38 9093.15 12692.98 4184.78 13685.14 12778.27 20792.47 17894.44 14199.10 10399.08 55
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchT89.13 16091.71 13986.11 19192.92 14195.59 16483.64 20875.09 20891.87 14975.19 16782.63 14985.06 12892.05 13695.21 13394.56 13597.76 18197.08 160
casdiffmvspermissive94.38 8594.15 9694.64 8194.70 11598.51 8196.03 9591.66 8495.70 7889.36 8986.48 12485.03 12996.60 6697.40 6297.30 5899.52 2098.67 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE92.52 11692.64 11992.39 10993.96 12797.76 10196.01 9685.60 15693.23 12583.94 11881.56 15384.80 13095.63 8296.22 10595.83 9999.19 9099.07 59
HQP-MVS94.43 8294.57 8394.27 8696.41 7497.23 11496.89 6593.98 4795.94 7183.68 12095.01 5084.46 13195.58 8495.47 12794.85 12899.07 10799.00 69
CLD-MVS94.79 7194.36 8895.30 6295.21 9797.46 10797.23 5792.24 7296.43 5591.77 5492.69 6684.31 13296.06 7395.52 12595.03 12099.31 6699.06 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
diffmvspermissive94.31 8794.21 9194.42 8494.64 11698.28 8796.36 8591.56 8596.77 4988.89 9688.97 10384.23 13396.01 7696.05 11196.41 7899.05 11498.79 92
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAMVS90.54 14090.87 15190.16 13691.48 15596.61 13193.26 14386.08 14987.71 18681.66 13183.11 14884.04 13490.42 16494.54 14494.60 13298.04 17795.48 182
thisisatest051590.12 14792.06 13687.85 17090.03 17196.17 14387.83 19787.45 13491.71 15177.15 15185.40 13384.01 13585.74 19195.41 12993.30 16498.88 12998.43 108
FMVSNet191.54 12890.93 14992.26 11090.35 16795.27 17595.22 11187.16 13891.37 15487.62 10475.45 17483.84 13694.43 10496.52 9296.30 7998.82 13497.74 140
Effi-MVS+-dtu91.78 12393.59 10789.68 14492.44 14897.11 11694.40 12784.94 16692.43 13875.48 16391.09 8883.75 13793.55 12296.61 8795.47 10797.24 18798.67 95
ET-MVSNet_ETH3D93.34 10794.33 8992.18 11183.26 21497.66 10396.72 7489.89 10695.62 8187.17 10796.00 3983.69 13896.99 5693.78 15695.34 11099.06 11098.18 124
PatchMatch-RL94.69 7594.41 8695.02 6797.63 5998.15 9494.50 12691.99 7495.32 8791.31 5895.47 4583.44 13996.02 7596.56 8995.23 11498.69 14896.67 170
LGP-MVS_train94.12 8994.62 8293.53 9696.44 7397.54 10497.40 5491.84 7994.66 10281.09 13495.70 4383.36 14095.10 9396.36 10095.71 10199.32 6399.03 65
ACMM92.75 1094.41 8493.84 10195.09 6696.41 7496.80 12394.88 11893.54 5096.41 5690.16 7592.31 7083.11 14196.32 7096.22 10594.65 13099.22 8297.35 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS93.61 10292.43 12895.00 6896.94 6897.34 11097.78 4894.23 4689.64 17085.53 11388.70 10682.81 14296.28 7196.28 10395.00 12399.24 7697.22 155
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpmrst88.86 16589.62 15787.97 16894.33 12195.98 14792.62 15376.36 20294.62 10476.94 15385.98 13082.80 14392.80 13186.90 20987.15 20594.77 20993.93 196
ACMP92.88 994.43 8294.38 8794.50 8296.01 8297.69 10295.85 10392.09 7395.74 7789.12 9495.14 4882.62 14494.77 9695.73 12194.67 12999.14 9899.06 60
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MIMVSNet88.99 16291.07 14786.57 18786.78 20895.62 16191.20 18175.40 20790.65 16376.57 15584.05 14282.44 14591.01 15195.84 11695.38 10998.48 16393.50 200
Effi-MVS+92.93 11193.86 10091.86 11394.07 12698.09 9695.59 10585.98 15194.27 11179.54 14291.12 8781.81 14696.71 6396.67 8696.06 8899.27 7298.98 72
MVS-HIRNet85.36 19686.89 18983.57 19890.13 17094.51 19383.57 20972.61 21288.27 18271.22 18668.97 20481.81 14688.91 17693.08 16991.94 18594.97 20889.64 211
anonymousdsp88.90 16391.00 14886.44 18888.74 19995.97 14890.40 18882.86 18088.77 17767.33 20181.18 15681.44 14890.22 16796.23 10494.27 14499.12 10199.16 48
TSAR-MVS + COLMAP94.79 7194.51 8495.11 6596.50 7197.54 10497.99 4594.54 4497.81 1785.88 11296.73 3181.28 14996.99 5696.29 10295.21 11598.76 14496.73 169
ECVR-MVScopyleft94.14 8892.96 11695.52 5896.16 7799.39 1596.96 6292.80 6495.22 9392.38 4881.48 15480.31 15095.25 9198.29 2897.98 2999.59 798.05 128
CostFormer90.69 13690.48 15490.93 12594.18 12396.08 14594.03 13178.20 19593.47 12389.96 7990.97 8980.30 15193.72 11987.66 20788.75 19995.51 20196.12 174
MDTV_nov1_ep13_2view86.30 19188.27 16884.01 19787.71 20594.67 19088.08 19676.78 20090.59 16568.66 20080.46 16280.12 15287.58 18289.95 20088.20 20195.25 20593.90 197
test111193.94 9392.78 11795.29 6396.14 7999.42 1196.79 7192.85 6395.08 9791.39 5780.69 15979.86 15395.00 9598.28 3198.00 2899.58 1198.11 126
tpm cat188.90 16387.78 17990.22 13593.88 13095.39 17193.79 13478.11 19692.55 13689.43 8681.31 15579.84 15491.40 14484.95 21086.34 20894.68 21194.09 192
pm-mvs189.19 15989.02 16289.38 14790.40 16595.74 16092.05 16788.10 12986.13 19677.70 14773.72 18879.44 15588.97 17595.81 11894.51 13999.08 10597.78 139
Fast-Effi-MVS+91.87 12092.08 13591.62 11992.91 14297.21 11594.93 11684.60 17093.61 12181.49 13283.50 14578.95 15696.62 6596.55 9096.22 8499.16 9598.51 104
tmp_tt66.88 21286.07 20973.86 22068.22 22033.38 22196.88 4880.67 13788.23 11078.82 15749.78 21982.68 21377.47 21583.19 221
dps90.11 14889.37 16190.98 12493.89 12996.21 14293.49 13877.61 19791.95 14892.74 4588.85 10478.77 15892.37 13487.71 20687.71 20395.80 19794.38 189
ACMH90.77 1391.51 12991.63 14191.38 12095.62 8696.87 12191.76 17389.66 11091.58 15278.67 14486.73 11778.12 15993.77 11894.59 14394.54 13798.78 14298.98 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+90.88 1291.41 13091.13 14691.74 11695.11 10096.95 11893.13 14589.48 11492.42 13979.93 13985.13 13478.02 16093.82 11793.49 16393.88 15298.94 12397.99 130
thres100view90093.55 10492.47 12794.81 7695.33 9198.74 6696.78 7292.30 7192.63 13388.29 9787.21 11378.01 16196.78 6196.38 9795.92 9399.38 5498.40 112
tfpn200view993.64 10092.57 12094.89 7195.33 9198.94 5196.82 6892.31 6892.63 13388.29 9787.21 11378.01 16197.12 5396.82 7795.85 9799.45 3698.56 100
dmvs_re91.84 12191.60 14292.12 11291.60 15397.26 11295.14 11291.96 7591.02 15880.98 13586.56 12177.96 16393.84 11694.71 14195.08 11899.22 8298.62 98
thres20093.62 10192.54 12194.88 7295.36 9098.93 5396.75 7392.31 6892.84 13088.28 9986.99 11577.81 16497.13 5196.82 7795.92 9399.45 3698.49 106
thres40093.56 10392.43 12894.87 7495.40 8998.91 5696.70 7592.38 6792.93 12988.19 10186.69 11877.35 16597.13 5196.75 8295.85 9799.42 4798.56 100
UniMVSNet_NR-MVSNet90.35 14289.96 15590.80 12889.66 17695.83 15692.48 15590.53 9990.96 16079.57 14079.33 16577.14 16693.21 12892.91 17294.50 14099.37 5799.05 62
pmnet_mix0286.12 19387.12 18784.96 19589.82 17494.12 19984.88 20686.63 14391.78 15065.60 20480.76 15876.98 16786.61 18687.29 20884.80 21196.21 19294.09 192
thres600view793.49 10592.37 13194.79 7795.42 8898.93 5396.58 7992.31 6893.04 12787.88 10286.62 11976.94 16897.09 5496.82 7795.63 10299.45 3698.63 97
GA-MVS89.28 15690.75 15287.57 17691.77 15296.48 13492.29 16187.58 13290.61 16465.77 20384.48 13976.84 16989.46 17295.84 11693.68 15798.52 16097.34 153
pmmvs490.55 13989.91 15691.30 12290.26 16994.95 18392.73 15187.94 13093.44 12485.35 11482.28 15176.09 17093.02 13093.56 16192.26 18498.51 16196.77 168
testgi89.42 15391.50 14487.00 18492.40 14995.59 16489.15 19485.27 16392.78 13172.42 17991.75 7876.00 17184.09 20194.38 14993.82 15698.65 15396.15 173
pmmvs685.98 19484.89 20287.25 18188.83 19794.35 19689.36 19385.30 16278.51 21475.44 16462.71 21475.41 17287.65 18093.58 16092.40 18196.89 18997.29 154
tpm87.95 17389.44 16086.21 19092.53 14794.62 19291.40 17676.36 20291.46 15369.80 19687.43 11275.14 17391.55 14389.85 20190.60 19195.61 19996.96 163
EU-MVSNet85.62 19587.65 18183.24 20088.54 20092.77 20687.12 19985.32 16086.71 19264.54 20678.52 16775.11 17478.35 20692.25 18092.28 18395.58 20095.93 175
UniMVSNet (Re)90.03 14989.61 15890.51 13289.97 17396.12 14492.32 15989.26 11590.99 15980.95 13678.25 16875.08 17591.14 14893.78 15693.87 15399.41 4899.21 41
EG-PatchMatch MVS86.68 18887.24 18486.02 19290.58 16396.26 14191.08 18281.59 18584.96 20169.80 19671.35 20175.08 17584.23 20094.24 15393.35 16298.82 13495.46 183
N_pmnet84.80 19785.10 20184.45 19689.25 18992.86 20584.04 20786.21 14688.78 17666.73 20272.41 19674.87 17785.21 19488.32 20486.45 20695.30 20392.04 205
TDRefinement89.07 16188.15 17090.14 13895.16 9896.88 11995.55 10790.20 10189.68 16976.42 15776.67 17174.30 17884.85 19693.11 16891.91 18698.64 15494.47 187
USDC90.69 13690.52 15390.88 12694.17 12496.43 13695.82 10486.76 14193.92 11576.27 15986.49 12374.30 17893.67 12195.04 13893.36 16198.61 15594.13 191
CMPMVSbinary65.18 1784.76 19883.10 20486.69 18695.29 9495.05 18088.37 19585.51 15880.27 21271.31 18568.37 20673.85 18085.25 19387.72 20587.75 20294.38 21288.70 212
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WR-MVS87.93 17488.09 17187.75 17189.26 18695.28 17390.81 18486.69 14288.90 17475.29 16674.31 18473.72 18185.19 19592.26 17993.32 16399.27 7298.81 91
v888.21 17187.94 17688.51 15489.62 17795.01 18192.31 16084.99 16588.94 17374.70 17275.03 17673.51 18290.67 16092.11 18392.74 17698.80 13998.24 121
V4288.31 16987.95 17588.73 15289.44 18195.34 17292.23 16387.21 13788.83 17574.49 17374.89 17873.43 18390.41 16692.08 18592.77 17598.60 15798.33 117
Baseline_NR-MVSNet89.27 15788.01 17390.73 13089.26 18693.71 20292.71 15289.78 10990.73 16181.28 13373.53 18972.85 18492.30 13592.53 17693.84 15599.07 10798.88 83
v1088.00 17287.96 17488.05 16489.44 18194.68 18992.36 15883.35 17789.37 17272.96 17873.98 18672.79 18591.35 14693.59 15892.88 17198.81 13798.42 110
WR-MVS_H87.93 17487.85 17788.03 16689.62 17795.58 16690.47 18785.55 15787.20 19176.83 15474.42 18372.67 18686.37 18793.22 16793.04 16799.33 6198.83 89
v114487.92 17687.79 17888.07 16189.27 18595.15 17892.17 16485.62 15588.52 17971.52 18373.80 18772.40 18791.06 15093.54 16292.80 17398.81 13798.33 117
SixPastTwentyTwo88.37 16889.47 15987.08 18290.01 17295.93 15287.41 19885.32 16090.26 16870.26 19086.34 12871.95 18890.93 15292.89 17391.72 18798.55 15897.22 155
v2v48288.25 17087.71 18088.88 15089.23 19095.28 17392.10 16587.89 13188.69 17873.31 17775.32 17571.64 18991.89 13892.10 18492.92 17098.86 13297.99 130
TranMVSNet+NR-MVSNet89.23 15888.48 16790.11 14089.07 19295.25 17692.91 14890.43 10090.31 16677.10 15276.62 17271.57 19091.83 14092.12 18294.59 13399.32 6398.92 78
TransMVSNet (Re)87.73 17986.79 19088.83 15190.76 16194.40 19591.33 17989.62 11184.73 20275.41 16572.73 19371.41 19186.80 18494.53 14593.93 15199.06 11095.83 176
DU-MVS89.67 15288.84 16390.63 13189.26 18695.61 16292.48 15589.91 10491.22 15579.57 14077.72 16971.18 19293.21 12892.53 17694.57 13499.35 6099.05 62
v14419287.40 18387.20 18587.64 17388.89 19494.88 18691.65 17484.70 16987.80 18571.17 18773.20 19270.91 19390.75 15892.69 17492.49 17998.71 14698.43 108
test20.0382.92 20385.52 19879.90 20587.75 20491.84 20882.80 21082.99 17982.65 21060.32 21578.90 16670.50 19467.10 21492.05 18690.89 18998.44 16591.80 206
test250694.32 8693.00 11595.87 5196.16 7799.39 1596.96 6292.80 6495.22 9394.47 2791.55 8170.45 19595.25 9198.29 2897.98 2999.59 798.10 127
TinyColmap89.42 15388.58 16590.40 13393.80 13295.45 16993.96 13386.54 14492.24 14576.49 15680.83 15770.44 19693.37 12494.45 14793.30 16498.26 17193.37 202
v119287.51 18187.31 18287.74 17289.04 19394.87 18792.07 16685.03 16488.49 18070.32 18972.65 19470.35 19791.21 14793.59 15892.80 17398.78 14298.42 110
v14887.51 18186.79 19088.36 15689.39 18395.21 17789.84 19188.20 12887.61 18877.56 14873.38 19170.32 19886.80 18490.70 19592.31 18298.37 16897.98 132
pmmvs587.83 17888.09 17187.51 17989.59 17995.48 16789.75 19284.73 16886.07 19871.44 18480.57 16070.09 19990.74 15994.47 14692.87 17298.82 13497.10 157
v192192087.31 18587.13 18687.52 17888.87 19694.72 18891.96 17184.59 17188.28 18169.86 19572.50 19570.03 20091.10 14993.33 16592.61 17898.71 14698.44 107
tfpnnormal88.50 16687.01 18890.23 13491.36 15695.78 15992.74 15090.09 10283.65 20576.33 15871.46 20069.58 20191.84 13995.54 12494.02 14999.06 11099.03 65
new_pmnet81.53 20482.68 20680.20 20383.47 21389.47 21482.21 21278.36 19387.86 18460.14 21767.90 20769.43 20282.03 20489.22 20287.47 20494.99 20787.39 213
Anonymous2023120683.84 20185.19 20082.26 20187.38 20692.87 20485.49 20483.65 17586.07 19863.44 21068.42 20569.01 20375.45 21093.34 16492.44 18098.12 17594.20 190
NR-MVSNet89.34 15588.66 16490.13 13990.40 16595.61 16293.04 14789.91 10491.22 15578.96 14377.72 16968.90 20489.16 17494.24 15393.95 15099.32 6398.99 70
v124086.89 18786.75 19287.06 18388.75 19894.65 19191.30 18084.05 17387.49 18968.94 19971.96 19868.86 20590.65 16193.33 16592.72 17798.67 14998.24 121
test_method72.96 21078.68 21066.28 21350.17 22464.90 22275.45 21850.90 22087.89 18362.54 21162.98 21368.34 20670.45 21291.90 18882.41 21288.19 21892.35 203
CP-MVSNet87.89 17787.27 18388.62 15389.30 18495.06 17990.60 18685.78 15387.43 19075.98 16074.60 18068.14 20790.76 15793.07 17093.60 15899.30 6898.98 72
LTVRE_ROB87.32 1687.55 18088.25 16986.73 18590.66 16295.80 15893.05 14684.77 16783.35 20660.32 21583.12 14767.39 20893.32 12594.36 15094.86 12598.28 16998.87 85
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
gm-plane-assit83.26 20285.29 19980.89 20289.52 18089.89 21370.26 21978.24 19477.11 21558.01 21974.16 18566.90 20990.63 16297.20 6796.05 8998.66 15295.68 179
UniMVSNet_ETH3D88.47 16786.00 19791.35 12191.55 15496.29 14092.53 15488.81 12085.58 20082.33 12667.63 20966.87 21094.04 11291.49 19195.24 11398.84 13398.92 78
v7n86.43 19086.52 19486.33 18987.91 20394.93 18490.15 19083.05 17886.57 19370.21 19171.48 19966.78 21187.72 17994.19 15592.96 16998.92 12598.76 94
DTE-MVSNet86.67 18986.09 19687.35 18088.45 20194.08 20090.65 18586.05 15086.13 19672.19 18074.58 18266.77 21287.61 18190.31 19693.12 16699.13 9997.62 144
PS-CasMVS87.33 18486.68 19388.10 16089.22 19194.93 18490.35 18985.70 15486.44 19574.01 17573.43 19066.59 21390.04 16892.92 17193.52 15999.28 7098.91 81
PEN-MVS87.22 18686.50 19588.07 16188.88 19594.44 19490.99 18386.21 14686.53 19473.66 17674.97 17766.56 21489.42 17391.20 19393.48 16099.24 7698.31 120
MIMVSNet180.03 20680.93 20778.97 20672.46 22090.73 21180.81 21382.44 18380.39 21163.64 20857.57 21564.93 21576.37 20891.66 18991.55 18898.07 17689.70 210
DeepMVS_CXcopyleft86.86 21579.50 21470.43 21590.73 16163.66 20780.36 16360.83 21679.68 20576.23 21489.46 21686.53 214
FPMVS75.84 20974.59 21277.29 20986.92 20783.89 21885.01 20580.05 19182.91 20860.61 21465.25 21160.41 21763.86 21575.60 21573.60 21787.29 21980.47 216
PMVScopyleft63.12 1867.27 21266.39 21568.30 21177.98 21660.24 22359.53 22376.82 19866.65 21860.74 21354.39 21659.82 21851.24 21873.92 21870.52 21883.48 22079.17 218
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs379.16 20780.12 20978.05 20879.36 21586.59 21678.13 21673.87 21176.42 21657.51 22070.59 20357.02 21984.66 19890.10 19888.32 20094.75 21091.77 207
pmmvs-eth3d84.33 20082.94 20585.96 19384.16 21190.94 21086.55 20183.79 17484.25 20375.85 16270.64 20256.43 22087.44 18392.20 18190.41 19397.97 17895.68 179
PM-MVS84.72 19984.47 20385.03 19484.67 21091.57 20986.27 20282.31 18487.65 18770.62 18876.54 17356.41 22188.75 17792.59 17589.85 19697.54 18596.66 171
new-patchmatchnet78.49 20878.19 21178.84 20784.13 21290.06 21277.11 21780.39 19079.57 21359.64 21866.01 21055.65 22275.62 20984.55 21180.70 21396.14 19490.77 209
MDA-MVSNet-bldmvs80.11 20580.24 20879.94 20477.01 21793.21 20378.86 21585.94 15282.71 20960.86 21279.71 16451.77 22383.71 20375.60 21586.37 20793.28 21392.35 203
PMMVS264.36 21465.94 21662.52 21467.37 22177.44 21964.39 22169.32 21861.47 21934.59 22346.09 21841.03 22448.02 22174.56 21778.23 21491.43 21582.76 215
Gipumacopyleft68.35 21166.71 21470.27 21074.16 21968.78 22163.93 22271.77 21483.34 20754.57 22134.37 21931.88 22568.69 21383.30 21285.53 20988.48 21779.78 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS49.98 21646.76 21953.74 21664.96 22251.29 22537.81 22569.35 21751.83 22022.69 22629.57 22125.06 22657.28 21644.81 22156.11 22070.32 22368.64 221
E-PMN50.67 21547.85 21853.96 21564.13 22350.98 22638.06 22469.51 21651.40 22124.60 22529.46 22224.39 22756.07 21748.17 22059.70 21971.40 22270.84 220
ambc73.83 21376.23 21885.13 21782.27 21184.16 20465.58 20552.82 21723.31 22873.55 21191.41 19285.26 21092.97 21494.70 185
MVEpermissive50.86 1949.54 21751.43 21747.33 21744.14 22559.20 22436.45 22660.59 21941.47 22231.14 22429.58 22017.06 22948.52 22062.22 21974.63 21663.12 22475.87 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs12.09 21816.94 2206.42 2193.15 2266.08 2279.51 2283.84 22221.46 2235.31 22727.49 2236.76 23010.89 22217.06 22215.01 2215.84 22524.75 222
test1239.58 21913.53 2214.97 2201.31 2285.47 2288.32 2292.95 22318.14 2242.03 22920.82 2242.34 23110.60 22310.00 22314.16 2224.60 22623.77 223
uanet_test0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def63.50 209
our_test_389.78 17593.84 20185.59 203
Patchmatch-RL test34.61 227
NP-MVS95.32 87
Patchmtry95.96 14993.36 14175.99 20575.19 167