DVP-MVS | | | 98.86 3 | 98.97 2 | 98.75 2 | 99.43 13 | 99.63 1 | 99.25 12 | 97.81 1 | 98.62 1 | 97.69 1 | 97.59 20 | 99.90 1 | 98.93 5 | 98.99 3 | 98.42 11 | 99.37 52 | 99.62 3 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SED-MVS | | | 98.90 1 | 99.07 1 | 98.69 3 | 99.38 19 | 99.61 2 | 99.33 7 | 97.80 3 | 98.25 7 | 97.60 2 | 98.87 3 | 99.89 2 | 98.67 18 | 99.02 2 | 98.26 17 | 99.36 54 | 99.61 5 |
|
SMA-MVS |  | | 98.66 6 | 98.89 6 | 98.39 9 | 99.60 1 | 99.41 8 | 99.00 20 | 97.63 12 | 97.78 17 | 95.83 19 | 98.33 10 | 99.83 3 | 98.85 10 | 98.93 7 | 98.56 6 | 99.41 43 | 99.40 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DPE-MVS |  | | 98.75 4 | 98.91 5 | 98.57 4 | 99.21 24 | 99.54 4 | 99.42 2 | 97.78 5 | 97.49 31 | 96.84 9 | 98.94 1 | 99.82 4 | 98.59 21 | 98.90 9 | 98.22 18 | 99.56 10 | 99.48 11 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SD-MVS | | | 98.52 7 | 98.77 8 | 98.23 16 | 98.15 50 | 99.26 21 | 98.79 26 | 97.59 16 | 98.52 2 | 96.25 16 | 97.99 15 | 99.75 5 | 99.01 3 | 98.27 26 | 97.97 27 | 99.59 4 | 99.63 1 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
HPM-MVS++ |  | | 98.34 16 | 98.47 14 | 98.18 17 | 99.46 8 | 99.15 29 | 99.10 16 | 97.69 7 | 97.67 25 | 94.93 27 | 97.62 19 | 99.70 6 | 98.60 20 | 98.45 18 | 97.46 46 | 99.31 61 | 99.26 29 |
|
MSP-MVS | | | 98.73 5 | 98.93 4 | 98.50 6 | 99.44 12 | 99.57 3 | 99.36 3 | 97.65 8 | 98.14 11 | 96.51 15 | 98.49 6 | 99.65 7 | 98.67 18 | 98.60 13 | 98.42 11 | 99.40 46 | 99.63 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PHI-MVS | | | 97.78 26 | 98.44 17 | 97.02 37 | 98.73 38 | 99.25 23 | 98.11 41 | 95.54 40 | 96.66 52 | 92.79 43 | 98.52 5 | 99.38 8 | 97.50 42 | 97.84 45 | 98.39 14 | 99.45 30 | 99.03 65 |
|
APDe-MVS | | | 98.87 2 | 98.96 3 | 98.77 1 | 99.58 2 | 99.53 5 | 99.44 1 | 97.81 1 | 98.22 9 | 97.33 4 | 98.70 4 | 99.33 9 | 98.86 8 | 98.96 5 | 98.40 13 | 99.63 3 | 99.57 8 |
|
MCST-MVS | | | 98.20 18 | 98.36 18 | 98.01 23 | 99.40 15 | 99.05 32 | 99.00 20 | 97.62 13 | 97.59 29 | 93.70 34 | 97.42 27 | 99.30 10 | 98.77 14 | 98.39 23 | 97.48 45 | 99.59 4 | 99.31 23 |
|
9.14 | | | | | | | | | | | | | 99.28 11 | | | | | |
|
TSAR-MVS + MP. | | | 98.49 8 | 98.78 7 | 98.15 20 | 98.14 51 | 99.17 28 | 99.34 5 | 97.18 30 | 98.44 4 | 95.72 20 | 97.84 16 | 99.28 11 | 98.87 7 | 99.05 1 | 98.05 25 | 99.66 1 | 99.60 6 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TSAR-MVS + ACMM | | | 97.71 28 | 98.60 11 | 96.66 41 | 98.64 41 | 99.05 32 | 98.85 25 | 97.23 28 | 98.45 3 | 89.40 84 | 97.51 24 | 99.27 13 | 96.88 59 | 98.53 14 | 97.81 35 | 98.96 115 | 99.59 7 |
|
SF-MVS | | | 98.39 13 | 98.45 16 | 98.33 10 | 99.45 9 | 99.05 32 | 98.27 37 | 97.65 8 | 97.73 18 | 97.02 7 | 98.18 11 | 99.25 14 | 98.11 29 | 98.15 32 | 97.62 39 | 99.45 30 | 99.19 39 |
|
SR-MVS | | | | | | 99.45 9 | | | 97.61 15 | | | | 99.20 15 | | | | | |
|
TSAR-MVS + GP. | | | 97.45 31 | 98.36 18 | 96.39 43 | 95.56 83 | 98.93 50 | 97.74 49 | 93.31 55 | 97.61 28 | 94.24 31 | 98.44 8 | 99.19 16 | 98.03 33 | 97.60 51 | 97.41 49 | 99.44 38 | 99.33 20 |
|
NCCC | | | 98.10 21 | 98.05 30 | 98.17 19 | 99.38 19 | 99.05 32 | 99.00 20 | 97.53 18 | 98.04 13 | 95.12 25 | 94.80 50 | 99.18 17 | 98.58 22 | 98.49 16 | 97.78 36 | 99.39 48 | 98.98 72 |
|
SteuartSystems-ACMMP | | | 98.38 14 | 98.71 9 | 97.99 24 | 99.34 21 | 99.46 7 | 99.34 5 | 97.33 25 | 97.31 35 | 94.25 30 | 98.06 13 | 99.17 18 | 98.13 28 | 98.98 4 | 98.46 9 | 99.55 11 | 99.54 9 |
Skip Steuart: Steuart Systems R&D Blog. |
CNVR-MVS | | | 98.47 10 | 98.46 15 | 98.48 7 | 99.40 15 | 99.05 32 | 99.02 19 | 97.54 17 | 97.73 18 | 96.65 12 | 97.20 29 | 99.13 19 | 98.85 10 | 98.91 8 | 98.10 22 | 99.41 43 | 99.08 54 |
|
MTAPA | | | | | | | | | | | 96.83 10 | | 99.12 20 | | | | | |
|
ACMMP_NAP | | | 98.20 18 | 98.49 12 | 97.85 26 | 99.50 4 | 99.40 9 | 99.26 11 | 97.64 11 | 97.47 33 | 92.62 46 | 97.59 20 | 99.09 21 | 98.71 16 | 98.82 11 | 97.86 33 | 99.40 46 | 99.19 39 |
|
zzz-MVS | | | 98.43 11 | 98.31 23 | 98.57 4 | 99.48 5 | 99.40 9 | 99.32 8 | 97.62 13 | 97.70 22 | 96.67 11 | 96.59 32 | 99.09 21 | 98.86 8 | 98.65 12 | 97.56 43 | 99.45 30 | 99.17 45 |
|
train_agg | | | 97.65 29 | 98.06 29 | 97.18 34 | 98.94 33 | 98.91 53 | 98.98 24 | 97.07 32 | 96.71 50 | 90.66 62 | 97.43 26 | 99.08 23 | 98.20 26 | 97.96 42 | 97.14 57 | 99.22 78 | 99.19 39 |
|
APD-MVS |  | | 98.36 15 | 98.32 22 | 98.41 8 | 99.47 6 | 99.26 21 | 99.12 15 | 97.77 6 | 96.73 49 | 96.12 17 | 97.27 28 | 98.88 24 | 98.46 25 | 98.47 17 | 98.39 14 | 99.52 14 | 99.22 35 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MP-MVS |  | | 98.09 22 | 98.30 24 | 97.84 27 | 99.34 21 | 99.19 27 | 99.23 13 | 97.40 20 | 97.09 42 | 93.03 40 | 97.58 22 | 98.85 25 | 98.57 23 | 98.44 20 | 97.69 37 | 99.48 22 | 99.23 33 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MTMP | | | | | | | | | | | 97.18 5 | | 98.83 26 | | | | | |
|
HFP-MVS | | | 98.48 9 | 98.62 10 | 98.32 12 | 99.39 18 | 99.33 16 | 99.27 10 | 97.42 19 | 98.27 6 | 95.25 24 | 98.34 9 | 98.83 26 | 99.08 1 | 98.26 27 | 98.08 24 | 99.48 22 | 99.26 29 |
|
CPTT-MVS | | | 97.78 26 | 97.54 33 | 98.05 22 | 98.91 35 | 99.05 32 | 99.00 20 | 96.96 34 | 97.14 40 | 95.92 18 | 95.50 42 | 98.78 28 | 98.99 4 | 97.20 61 | 96.07 82 | 98.54 152 | 99.04 64 |
|
XVS | | | | | | 96.60 68 | 99.35 12 | 96.82 65 | | | 90.85 57 | | 98.72 29 | | | | 99.46 26 | |
|
X-MVStestdata | | | | | | 96.60 68 | 99.35 12 | 96.82 65 | | | 90.85 57 | | 98.72 29 | | | | 99.46 26 | |
|
X-MVS | | | 97.84 24 | 98.19 27 | 97.42 31 | 99.40 15 | 99.35 12 | 99.06 17 | 97.25 26 | 97.38 34 | 90.85 57 | 96.06 36 | 98.72 29 | 98.53 24 | 98.41 22 | 98.15 21 | 99.46 26 | 99.28 24 |
|
DeepPCF-MVS | | 95.28 2 | 97.00 40 | 98.35 20 | 95.42 58 | 97.30 62 | 98.94 48 | 94.82 113 | 96.03 39 | 98.24 8 | 92.11 48 | 95.80 39 | 98.64 32 | 95.51 84 | 98.95 6 | 98.66 5 | 96.78 185 | 99.20 38 |
|
CP-MVS | | | 98.32 17 | 98.34 21 | 98.29 13 | 99.34 21 | 99.30 17 | 99.15 14 | 97.35 22 | 97.49 31 | 95.58 22 | 97.72 18 | 98.62 33 | 98.82 12 | 98.29 25 | 97.67 38 | 99.51 19 | 99.28 24 |
|
abl_6 | | | | | 96.82 40 | 98.60 42 | 98.74 63 | 97.74 49 | 93.73 50 | 96.25 58 | 94.37 29 | 94.55 52 | 98.60 34 | 97.25 47 | | | 99.27 67 | 98.61 97 |
|
DPM-MVS | | | 96.86 43 | 96.82 48 | 96.91 39 | 98.08 52 | 98.20 85 | 98.52 33 | 97.20 29 | 97.24 38 | 91.42 52 | 91.84 75 | 98.45 35 | 97.25 47 | 97.07 66 | 97.40 50 | 98.95 116 | 97.55 140 |
|
MSLP-MVS++ | | | 98.04 23 | 97.93 32 | 98.18 17 | 99.10 28 | 99.09 31 | 98.34 36 | 96.99 33 | 97.54 30 | 96.60 13 | 94.82 49 | 98.45 35 | 98.89 6 | 97.46 55 | 98.77 4 | 99.17 87 | 99.37 16 |
|
ACMMPR | | | 98.40 12 | 98.49 12 | 98.28 14 | 99.41 14 | 99.40 9 | 99.36 3 | 97.35 22 | 98.30 5 | 95.02 26 | 97.79 17 | 98.39 37 | 99.04 2 | 98.26 27 | 98.10 22 | 99.50 21 | 99.22 35 |
|
mPP-MVS | | | | | | 99.21 24 | | | | | | | 98.29 38 | | | | | |
|
DeepC-MVS_fast | | 96.13 1 | 98.13 20 | 98.27 25 | 97.97 25 | 99.16 27 | 99.03 39 | 99.05 18 | 97.24 27 | 98.22 9 | 94.17 32 | 95.82 38 | 98.07 39 | 98.69 17 | 98.83 10 | 98.80 2 | 99.52 14 | 99.10 51 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
UA-Net | | | 93.96 88 | 95.95 61 | 91.64 112 | 96.06 76 | 98.59 76 | 95.29 103 | 90.00 99 | 91.06 152 | 82.87 118 | 90.64 89 | 98.06 40 | 86.06 183 | 98.14 34 | 98.20 19 | 99.58 6 | 96.96 157 |
|
3Dnovator+ | | 93.91 7 | 97.23 35 | 97.22 37 | 97.24 33 | 98.89 36 | 98.85 58 | 98.26 39 | 93.25 58 | 97.99 14 | 95.56 23 | 90.01 96 | 98.03 41 | 98.05 32 | 97.91 43 | 98.43 10 | 99.44 38 | 99.35 18 |
|
PGM-MVS | | | 97.81 25 | 98.11 28 | 97.46 30 | 99.55 3 | 99.34 15 | 99.32 8 | 94.51 46 | 96.21 60 | 93.07 37 | 98.05 14 | 97.95 42 | 98.82 12 | 98.22 30 | 97.89 32 | 99.48 22 | 99.09 53 |
|
CDPH-MVS | | | 96.84 44 | 97.49 34 | 96.09 48 | 98.92 34 | 98.85 58 | 98.61 28 | 95.09 42 | 96.00 68 | 87.29 101 | 95.45 44 | 97.42 43 | 97.16 50 | 97.83 46 | 97.94 29 | 99.44 38 | 98.92 78 |
|
QAPM | | | 96.78 46 | 97.14 42 | 96.36 44 | 99.05 30 | 99.14 30 | 98.02 43 | 93.26 56 | 97.27 37 | 90.84 60 | 91.16 82 | 97.31 44 | 97.64 40 | 97.70 49 | 98.20 19 | 99.33 56 | 99.18 43 |
|
CANet | | | 96.84 44 | 97.20 38 | 96.42 42 | 97.92 54 | 99.24 25 | 98.60 29 | 93.51 53 | 97.11 41 | 93.07 37 | 91.16 82 | 97.24 45 | 96.21 71 | 98.24 29 | 98.05 25 | 99.22 78 | 99.35 18 |
|
OMC-MVS | | | 97.00 40 | 96.92 46 | 97.09 35 | 98.69 39 | 98.66 69 | 97.85 47 | 95.02 43 | 98.09 12 | 94.47 28 | 93.15 59 | 96.90 46 | 97.38 44 | 97.16 64 | 96.82 67 | 99.13 94 | 97.65 137 |
|
MVS_111021_HR | | | 97.04 39 | 98.20 26 | 95.69 53 | 98.44 46 | 99.29 18 | 96.59 74 | 93.20 59 | 97.70 22 | 89.94 76 | 98.46 7 | 96.89 47 | 96.71 63 | 98.11 37 | 97.95 28 | 99.27 67 | 99.01 68 |
|
PLC |  | 94.95 3 | 97.37 33 | 96.77 49 | 98.07 21 | 98.97 32 | 98.21 84 | 97.94 46 | 96.85 36 | 97.66 26 | 97.58 3 | 93.33 58 | 96.84 48 | 98.01 34 | 97.13 65 | 96.20 80 | 99.09 99 | 98.01 124 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
3Dnovator | | 93.79 8 | 97.08 37 | 97.20 38 | 96.95 38 | 99.09 29 | 99.03 39 | 98.20 40 | 93.33 54 | 97.99 14 | 93.82 33 | 90.61 90 | 96.80 49 | 97.82 35 | 97.90 44 | 98.78 3 | 99.47 25 | 99.26 29 |
|
PCF-MVS | | 93.95 6 | 95.65 54 | 95.14 73 | 96.25 45 | 97.73 58 | 98.73 65 | 97.59 52 | 97.13 31 | 92.50 132 | 89.09 90 | 89.85 97 | 96.65 50 | 96.90 58 | 94.97 133 | 94.89 117 | 99.08 100 | 98.38 113 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CS-MVS | | | 96.23 52 | 97.15 41 | 95.16 61 | 95.01 99 | 98.98 44 | 97.13 57 | 90.68 92 | 96.00 68 | 91.21 54 | 94.03 54 | 96.48 51 | 97.35 45 | 98.00 41 | 97.43 47 | 99.55 11 | 99.15 47 |
|
MVS_111021_LR | | | 97.16 36 | 98.01 31 | 96.16 47 | 98.47 44 | 98.98 44 | 96.94 61 | 93.89 49 | 97.64 27 | 91.44 51 | 98.89 2 | 96.41 52 | 97.20 49 | 98.02 40 | 97.29 56 | 99.04 110 | 98.85 87 |
|
MVS_0304 | | | 96.31 49 | 96.91 47 | 95.62 54 | 97.21 64 | 99.20 26 | 98.55 31 | 93.10 61 | 97.04 44 | 89.73 78 | 90.30 92 | 96.35 53 | 95.71 77 | 98.14 34 | 97.93 31 | 99.38 49 | 99.40 14 |
|
TAPA-MVS | | 94.18 5 | 96.38 48 | 96.49 53 | 96.25 45 | 98.26 48 | 98.66 69 | 98.00 44 | 94.96 44 | 97.17 39 | 89.48 81 | 92.91 63 | 96.35 53 | 97.53 41 | 96.59 82 | 95.90 90 | 99.28 65 | 97.82 128 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CHOSEN 280x420 | | | 95.46 58 | 97.01 43 | 93.66 91 | 97.28 63 | 97.98 92 | 96.40 80 | 85.39 155 | 96.10 65 | 91.07 55 | 96.53 33 | 96.34 55 | 95.61 81 | 97.65 50 | 96.95 62 | 96.21 186 | 97.49 141 |
|
CNLPA | | | 96.90 42 | 96.28 55 | 97.64 29 | 98.56 43 | 98.63 74 | 96.85 64 | 96.60 37 | 97.73 18 | 97.08 6 | 89.78 98 | 96.28 56 | 97.80 37 | 96.73 77 | 96.63 69 | 98.94 117 | 98.14 123 |
|
ETV-MVS | | | 96.31 49 | 97.47 36 | 94.96 67 | 94.79 103 | 98.78 61 | 96.08 87 | 91.41 84 | 96.16 61 | 90.50 64 | 95.76 40 | 96.20 57 | 97.39 43 | 98.42 21 | 97.82 34 | 99.57 8 | 99.18 43 |
|
AdaColmap |  | | 97.53 30 | 96.93 45 | 98.24 15 | 99.21 24 | 98.77 62 | 98.47 34 | 97.34 24 | 96.68 51 | 96.52 14 | 95.11 47 | 96.12 58 | 98.72 15 | 97.19 63 | 96.24 78 | 99.17 87 | 98.39 112 |
|
UGNet | | | 94.92 65 | 96.63 50 | 92.93 101 | 96.03 77 | 98.63 74 | 94.53 119 | 91.52 82 | 96.23 59 | 90.03 73 | 92.87 64 | 96.10 59 | 86.28 182 | 96.68 79 | 96.60 70 | 99.16 90 | 99.32 22 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
ACMMP |  | | 97.37 33 | 97.48 35 | 97.25 32 | 98.88 37 | 99.28 19 | 98.47 34 | 96.86 35 | 97.04 44 | 92.15 47 | 97.57 23 | 96.05 60 | 97.67 38 | 97.27 59 | 95.99 87 | 99.46 26 | 99.14 50 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
GG-mvs-BLEND | | | 66.17 207 | 94.91 79 | 32.63 213 | 1.32 221 | 96.64 123 | 91.40 170 | 0.85 219 | 94.39 105 | 2.20 222 | 90.15 95 | 95.70 61 | 2.27 218 | 96.39 90 | 95.44 103 | 97.78 174 | 95.68 173 |
|
CSCG | | | 97.44 32 | 97.18 40 | 97.75 28 | 99.47 6 | 99.52 6 | 98.55 31 | 95.41 41 | 97.69 24 | 95.72 20 | 94.29 53 | 95.53 62 | 98.10 31 | 96.20 101 | 97.38 51 | 99.24 72 | 99.62 3 |
|
PVSNet_Blended_VisFu | | | 94.77 72 | 95.54 66 | 93.87 87 | 96.48 71 | 98.97 46 | 94.33 122 | 91.84 76 | 94.93 95 | 90.37 68 | 85.04 130 | 94.99 63 | 90.87 150 | 98.12 36 | 97.30 54 | 99.30 63 | 99.45 13 |
|
OpenMVS |  | 92.33 11 | 95.50 55 | 95.22 72 | 95.82 52 | 98.98 31 | 98.97 46 | 97.67 51 | 93.04 64 | 94.64 99 | 89.18 88 | 84.44 135 | 94.79 64 | 96.79 60 | 97.23 60 | 97.61 41 | 99.24 72 | 98.88 83 |
|
Vis-MVSNet (Re-imp) | | | 94.46 79 | 96.24 56 | 92.40 104 | 95.23 92 | 98.64 72 | 95.56 101 | 90.99 88 | 94.42 103 | 85.02 110 | 90.88 88 | 94.65 65 | 88.01 172 | 98.17 31 | 98.37 16 | 99.57 8 | 98.53 102 |
|
IS_MVSNet | | | 95.28 62 | 96.43 54 | 93.94 85 | 95.30 89 | 99.01 43 | 95.90 93 | 91.12 87 | 94.13 108 | 87.50 100 | 91.23 81 | 94.45 66 | 94.17 103 | 98.45 18 | 98.50 7 | 99.65 2 | 99.23 33 |
|
EPP-MVSNet | | | 95.27 63 | 96.18 58 | 94.20 83 | 94.88 101 | 98.64 72 | 94.97 109 | 90.70 91 | 95.34 85 | 89.67 80 | 91.66 78 | 93.84 67 | 95.42 86 | 97.32 58 | 97.00 60 | 99.58 6 | 99.47 12 |
|
EPNet | | | 96.27 51 | 96.97 44 | 95.46 57 | 98.47 44 | 98.28 81 | 97.41 54 | 93.67 51 | 95.86 74 | 92.86 42 | 97.51 24 | 93.79 68 | 91.76 135 | 97.03 68 | 97.03 59 | 98.61 148 | 99.28 24 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepC-MVS | | 94.87 4 | 96.76 47 | 96.50 52 | 97.05 36 | 98.21 49 | 99.28 19 | 98.67 27 | 97.38 21 | 97.31 35 | 90.36 69 | 89.19 100 | 93.58 69 | 98.19 27 | 98.31 24 | 98.50 7 | 99.51 19 | 99.36 17 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DELS-MVS | | | 96.06 53 | 96.04 59 | 96.07 50 | 97.77 56 | 99.25 23 | 98.10 42 | 93.26 56 | 94.42 103 | 92.79 43 | 88.52 107 | 93.48 70 | 95.06 89 | 98.51 15 | 98.83 1 | 99.45 30 | 99.28 24 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CANet_DTU | | | 93.92 89 | 96.57 51 | 90.83 122 | 95.63 81 | 98.39 79 | 96.99 60 | 87.38 131 | 96.26 57 | 71.97 175 | 96.31 34 | 93.02 71 | 94.53 97 | 97.38 57 | 96.83 66 | 98.49 155 | 97.79 129 |
|
PMMVS | | | 94.61 75 | 95.56 65 | 93.50 93 | 94.30 116 | 96.74 120 | 94.91 111 | 89.56 108 | 95.58 83 | 87.72 98 | 96.15 35 | 92.86 72 | 96.06 72 | 95.47 121 | 95.02 114 | 98.43 160 | 97.09 152 |
|
RPSCF | | | 94.05 86 | 94.00 94 | 94.12 84 | 96.20 75 | 96.41 130 | 96.61 73 | 91.54 81 | 95.83 76 | 89.73 78 | 96.94 30 | 92.80 73 | 95.35 87 | 91.63 184 | 90.44 186 | 95.27 198 | 93.94 189 |
|
EIA-MVS | | | 95.50 55 | 96.19 57 | 94.69 75 | 94.83 102 | 98.88 57 | 95.93 92 | 91.50 83 | 94.47 102 | 89.43 82 | 93.14 60 | 92.72 74 | 97.05 55 | 97.82 48 | 97.13 58 | 99.43 41 | 99.15 47 |
|
EPNet_dtu | | | 92.45 111 | 95.02 77 | 89.46 140 | 98.02 53 | 95.47 161 | 94.79 114 | 92.62 65 | 94.97 94 | 70.11 186 | 94.76 51 | 92.61 75 | 84.07 196 | 95.94 107 | 95.56 99 | 97.15 182 | 95.82 171 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline | | | 94.83 67 | 95.82 62 | 93.68 90 | 94.75 106 | 97.80 94 | 96.51 77 | 88.53 119 | 97.02 46 | 89.34 86 | 92.93 62 | 92.18 76 | 94.69 93 | 95.78 113 | 96.08 81 | 98.27 163 | 98.97 76 |
|
MS-PatchMatch | | | 91.82 115 | 92.51 116 | 91.02 118 | 95.83 80 | 96.88 112 | 95.05 107 | 84.55 168 | 93.85 112 | 82.01 122 | 82.51 145 | 91.71 77 | 90.52 157 | 95.07 131 | 93.03 162 | 98.13 166 | 94.52 180 |
|
Vis-MVSNet |  | | 92.77 106 | 95.00 78 | 90.16 131 | 94.10 120 | 98.79 60 | 94.76 115 | 88.26 122 | 92.37 137 | 79.95 132 | 88.19 109 | 91.58 78 | 84.38 193 | 97.59 52 | 97.58 42 | 99.52 14 | 98.91 81 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
GBi-Net | | | 93.81 91 | 94.18 89 | 93.38 96 | 91.34 151 | 95.86 146 | 96.22 82 | 88.68 116 | 95.23 89 | 90.40 65 | 86.39 120 | 91.16 79 | 94.40 100 | 96.52 86 | 96.30 74 | 99.21 81 | 97.79 129 |
|
test1 | | | 93.81 91 | 94.18 89 | 93.38 96 | 91.34 151 | 95.86 146 | 96.22 82 | 88.68 116 | 95.23 89 | 90.40 65 | 86.39 120 | 91.16 79 | 94.40 100 | 96.52 86 | 96.30 74 | 99.21 81 | 97.79 129 |
|
FMVSNet3 | | | 93.79 93 | 94.17 91 | 93.35 98 | 91.21 154 | 95.99 139 | 96.62 72 | 88.68 116 | 95.23 89 | 90.40 65 | 86.39 120 | 91.16 79 | 94.11 104 | 95.96 106 | 96.67 68 | 99.07 102 | 97.79 129 |
|
SCA | | | 90.92 128 | 93.04 111 | 88.45 150 | 93.72 128 | 97.33 105 | 92.77 143 | 76.08 199 | 96.02 67 | 78.26 140 | 91.96 73 | 90.86 82 | 93.99 107 | 90.98 188 | 90.04 189 | 95.88 190 | 94.06 188 |
|
gg-mvs-nofinetune | | | 86.17 186 | 88.57 160 | 83.36 194 | 93.44 130 | 98.15 88 | 96.58 75 | 72.05 208 | 74.12 212 | 49.23 216 | 64.81 206 | 90.85 83 | 89.90 165 | 97.83 46 | 96.84 65 | 98.97 114 | 97.41 144 |
|
CDS-MVSNet | | | 92.77 106 | 93.60 103 | 91.80 110 | 92.63 141 | 96.80 116 | 95.24 105 | 89.14 113 | 90.30 161 | 84.58 111 | 86.76 114 | 90.65 84 | 90.42 158 | 95.89 108 | 96.49 71 | 98.79 134 | 98.32 117 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVS_Test | | | 94.82 68 | 95.66 63 | 93.84 88 | 94.79 103 | 98.35 80 | 96.49 78 | 89.10 114 | 96.12 64 | 87.09 103 | 92.58 66 | 90.61 85 | 96.48 67 | 96.51 89 | 96.89 64 | 99.11 97 | 98.54 101 |
|
HyFIR lowres test | | | 92.03 112 | 91.55 136 | 92.58 103 | 97.13 65 | 98.72 66 | 94.65 117 | 86.54 140 | 93.58 117 | 82.56 120 | 67.75 202 | 90.47 86 | 95.67 78 | 95.87 109 | 95.54 100 | 98.91 120 | 98.93 77 |
|
DCV-MVSNet | | | 94.76 73 | 95.12 75 | 94.35 81 | 95.10 97 | 95.81 150 | 96.46 79 | 89.49 109 | 96.33 56 | 90.16 70 | 92.55 67 | 90.26 87 | 95.83 76 | 95.52 119 | 96.03 85 | 99.06 105 | 99.33 20 |
|
MAR-MVS | | | 95.50 55 | 95.60 64 | 95.39 59 | 98.67 40 | 98.18 87 | 95.89 95 | 89.81 104 | 94.55 101 | 91.97 49 | 92.99 61 | 90.21 88 | 97.30 46 | 96.79 74 | 97.49 44 | 98.72 138 | 98.99 70 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MDTV_nov1_ep13 | | | 91.57 120 | 93.18 109 | 89.70 137 | 93.39 131 | 96.97 110 | 93.53 131 | 80.91 185 | 95.70 78 | 81.86 123 | 92.40 68 | 89.93 89 | 93.25 121 | 91.97 181 | 90.80 184 | 95.25 199 | 94.46 182 |
|
FC-MVSNet-test | | | 91.63 118 | 93.82 99 | 89.08 144 | 92.02 146 | 96.40 131 | 93.26 137 | 87.26 132 | 93.72 114 | 77.26 144 | 88.61 106 | 89.86 90 | 85.50 186 | 95.72 117 | 95.02 114 | 99.16 90 | 97.44 143 |
|
PatchmatchNet |  | | 90.56 132 | 92.49 118 | 88.31 153 | 93.83 126 | 96.86 115 | 92.42 151 | 76.50 196 | 95.96 70 | 78.31 139 | 91.96 73 | 89.66 91 | 93.48 117 | 90.04 193 | 89.20 192 | 95.32 196 | 93.73 193 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
thisisatest0530 | | | 94.54 77 | 95.47 67 | 93.46 94 | 94.51 112 | 98.65 71 | 94.66 116 | 90.72 89 | 95.69 80 | 86.90 104 | 93.80 55 | 89.44 92 | 94.74 91 | 96.98 70 | 94.86 118 | 99.19 85 | 98.85 87 |
|
DI_MVS_plusplus_trai | | | 94.01 87 | 93.63 102 | 94.44 79 | 94.54 111 | 98.26 83 | 97.51 53 | 90.63 93 | 95.88 73 | 89.34 86 | 80.54 154 | 89.36 93 | 95.48 85 | 96.33 95 | 96.27 77 | 99.17 87 | 98.78 92 |
|
FMVSNet2 | | | 93.30 102 | 93.36 108 | 93.22 100 | 91.34 151 | 95.86 146 | 96.22 82 | 88.24 123 | 95.15 93 | 89.92 77 | 81.64 147 | 89.36 93 | 94.40 100 | 96.77 75 | 96.98 61 | 99.21 81 | 97.79 129 |
|
tttt0517 | | | 94.52 78 | 95.44 69 | 93.44 95 | 94.51 112 | 98.68 68 | 94.61 118 | 90.72 89 | 95.61 82 | 86.84 105 | 93.78 56 | 89.26 95 | 94.74 91 | 97.02 69 | 94.86 118 | 99.20 84 | 98.87 85 |
|
Anonymous20231211 | | | 93.49 99 | 92.33 126 | 94.84 71 | 94.78 105 | 98.00 91 | 96.11 86 | 91.85 75 | 94.86 96 | 90.91 56 | 74.69 172 | 89.18 96 | 96.73 62 | 94.82 134 | 95.51 101 | 98.67 142 | 99.24 32 |
|
test0.0.03 1 | | | 91.97 113 | 93.91 95 | 89.72 136 | 93.31 133 | 96.40 131 | 91.34 172 | 87.06 135 | 93.86 111 | 81.67 125 | 91.15 84 | 89.16 97 | 86.02 184 | 95.08 130 | 95.09 111 | 98.91 120 | 96.64 166 |
|
MSDG | | | 94.82 68 | 93.73 100 | 96.09 48 | 98.34 47 | 97.43 103 | 97.06 58 | 96.05 38 | 95.84 75 | 90.56 63 | 86.30 124 | 89.10 98 | 95.55 83 | 96.13 104 | 95.61 98 | 99.00 111 | 95.73 172 |
|
CHOSEN 1792x2688 | | | 92.66 108 | 92.49 118 | 92.85 102 | 97.13 65 | 98.89 56 | 95.90 93 | 88.50 120 | 95.32 86 | 83.31 117 | 71.99 191 | 88.96 99 | 94.10 105 | 96.69 78 | 96.49 71 | 98.15 165 | 99.10 51 |
|
COLMAP_ROB |  | 90.49 14 | 93.27 103 | 92.71 112 | 93.93 86 | 97.75 57 | 97.44 102 | 96.07 88 | 93.17 60 | 95.40 84 | 83.86 114 | 83.76 139 | 88.72 100 | 93.87 108 | 94.25 145 | 94.11 140 | 98.87 123 | 95.28 178 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
test-LLR | | | 91.62 119 | 93.56 105 | 89.35 143 | 93.31 133 | 96.57 125 | 92.02 163 | 87.06 135 | 92.34 138 | 75.05 164 | 90.20 93 | 88.64 101 | 90.93 146 | 96.19 102 | 94.07 141 | 97.75 176 | 96.90 160 |
|
TESTMET0.1,1 | | | 91.07 126 | 93.56 105 | 88.17 154 | 90.43 158 | 96.57 125 | 92.02 163 | 82.83 177 | 92.34 138 | 75.05 164 | 90.20 93 | 88.64 101 | 90.93 146 | 96.19 102 | 94.07 141 | 97.75 176 | 96.90 160 |
|
LS3D | | | 95.46 58 | 95.14 73 | 95.84 51 | 97.91 55 | 98.90 55 | 98.58 30 | 97.79 4 | 97.07 43 | 83.65 116 | 88.71 103 | 88.64 101 | 97.82 35 | 97.49 54 | 97.42 48 | 99.26 71 | 97.72 136 |
|
Anonymous202405211 | | | | 92.18 127 | | 95.04 98 | 98.20 85 | 96.14 85 | 91.79 78 | 93.93 109 | | 74.60 173 | 88.38 104 | 96.48 67 | 95.17 129 | 95.82 95 | 99.00 111 | 99.15 47 |
|
IterMVS-SCA-FT | | | 90.24 137 | 92.48 120 | 87.63 169 | 92.85 138 | 94.30 192 | 93.79 128 | 81.47 184 | 92.66 127 | 69.95 187 | 84.66 133 | 88.38 104 | 89.99 163 | 95.39 124 | 94.34 136 | 97.74 178 | 97.63 138 |
|
test-mter | | | 90.95 127 | 93.54 107 | 87.93 164 | 90.28 162 | 96.80 116 | 91.44 169 | 82.68 178 | 92.15 142 | 74.37 168 | 89.57 99 | 88.23 106 | 90.88 149 | 96.37 93 | 94.31 137 | 97.93 172 | 97.37 145 |
|
IterMVS | | | 90.20 138 | 92.43 122 | 87.61 170 | 92.82 140 | 94.31 191 | 94.11 124 | 81.54 182 | 92.97 123 | 69.90 188 | 84.71 132 | 88.16 107 | 89.96 164 | 95.25 126 | 94.17 139 | 97.31 180 | 97.46 142 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-LS | | | 92.56 109 | 93.18 109 | 91.84 109 | 93.90 123 | 94.97 176 | 94.99 108 | 86.20 144 | 94.18 107 | 82.68 119 | 85.81 126 | 87.36 108 | 94.43 98 | 95.31 125 | 96.02 86 | 98.87 123 | 98.60 98 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
baseline2 | | | 93.01 104 | 94.17 91 | 91.64 112 | 92.83 139 | 97.49 100 | 93.40 134 | 87.53 129 | 93.67 115 | 86.07 106 | 91.83 76 | 86.58 109 | 91.36 139 | 96.38 91 | 95.06 112 | 98.67 142 | 98.20 121 |
|
FMVSNet5 | | | 90.36 135 | 90.93 142 | 89.70 137 | 87.99 196 | 92.25 201 | 92.03 162 | 83.51 172 | 92.20 141 | 84.13 112 | 85.59 127 | 86.48 110 | 92.43 127 | 94.61 135 | 94.52 132 | 98.13 166 | 90.85 202 |
|
EPMVS | | | 90.88 129 | 92.12 128 | 89.44 141 | 94.71 107 | 97.24 106 | 93.55 130 | 76.81 194 | 95.89 72 | 81.77 124 | 91.49 80 | 86.47 111 | 93.87 108 | 90.21 191 | 90.07 188 | 95.92 189 | 93.49 195 |
|
RPMNet | | | 90.19 139 | 92.03 131 | 88.05 159 | 93.46 129 | 95.95 143 | 93.41 133 | 74.59 205 | 92.40 135 | 75.91 155 | 84.22 136 | 86.41 112 | 92.49 126 | 94.42 141 | 93.85 148 | 98.44 158 | 96.96 157 |
|
MVSTER | | | 94.89 66 | 95.07 76 | 94.68 76 | 94.71 107 | 96.68 122 | 97.00 59 | 90.57 94 | 95.18 92 | 93.05 39 | 95.21 45 | 86.41 112 | 93.72 112 | 97.59 52 | 95.88 91 | 99.00 111 | 98.50 104 |
|
ADS-MVSNet | | | 89.80 144 | 91.33 138 | 88.00 162 | 94.43 114 | 96.71 121 | 92.29 155 | 74.95 204 | 96.07 66 | 77.39 143 | 88.67 105 | 86.09 114 | 93.26 120 | 88.44 197 | 89.57 191 | 95.68 192 | 93.81 192 |
|
canonicalmvs | | | 95.25 64 | 95.45 68 | 95.00 65 | 95.27 91 | 98.72 66 | 96.89 62 | 89.82 103 | 96.51 53 | 90.84 60 | 93.72 57 | 86.01 115 | 97.66 39 | 95.78 113 | 97.94 29 | 99.54 13 | 99.50 10 |
|
CVMVSNet | | | 89.77 145 | 91.66 134 | 87.56 172 | 93.21 135 | 95.45 162 | 91.94 166 | 89.22 112 | 89.62 165 | 69.34 192 | 83.99 138 | 85.90 116 | 84.81 191 | 94.30 144 | 95.28 107 | 96.85 184 | 97.09 152 |
|
baseline1 | | | 94.59 76 | 94.47 83 | 94.72 74 | 95.16 94 | 97.97 93 | 96.07 88 | 91.94 74 | 94.86 96 | 89.98 74 | 91.60 79 | 85.87 117 | 95.64 79 | 97.07 66 | 96.90 63 | 99.52 14 | 97.06 156 |
|
Fast-Effi-MVS+-dtu | | | 91.19 125 | 93.64 101 | 88.33 152 | 92.19 145 | 96.46 128 | 93.99 126 | 81.52 183 | 92.59 130 | 71.82 176 | 92.17 70 | 85.54 118 | 91.68 136 | 95.73 115 | 94.64 124 | 98.80 132 | 98.34 114 |
|
CR-MVSNet | | | 90.16 140 | 91.96 132 | 88.06 158 | 93.32 132 | 95.95 143 | 93.36 135 | 75.99 200 | 92.40 135 | 75.19 161 | 83.18 141 | 85.37 119 | 92.05 130 | 95.21 127 | 94.56 129 | 98.47 157 | 97.08 154 |
|
PVSNet_BlendedMVS | | | 95.41 60 | 95.28 70 | 95.57 55 | 97.42 60 | 99.02 41 | 95.89 95 | 93.10 61 | 96.16 61 | 93.12 35 | 91.99 71 | 85.27 120 | 94.66 94 | 98.09 38 | 97.34 52 | 99.24 72 | 99.08 54 |
|
PVSNet_Blended | | | 95.41 60 | 95.28 70 | 95.57 55 | 97.42 60 | 99.02 41 | 95.89 95 | 93.10 61 | 96.16 61 | 93.12 35 | 91.99 71 | 85.27 120 | 94.66 94 | 98.09 38 | 97.34 52 | 99.24 72 | 99.08 54 |
|
FC-MVSNet-train | | | 93.85 90 | 93.91 95 | 93.78 89 | 94.94 100 | 96.79 119 | 94.29 123 | 91.13 86 | 93.84 113 | 88.26 95 | 90.40 91 | 85.23 122 | 94.65 96 | 96.54 85 | 95.31 106 | 99.38 49 | 99.28 24 |
|
IB-MVS | | 89.56 15 | 91.71 117 | 92.50 117 | 90.79 124 | 95.94 79 | 98.44 78 | 87.05 194 | 91.38 85 | 93.15 121 | 92.98 41 | 84.78 131 | 85.14 123 | 78.27 201 | 92.47 172 | 94.44 135 | 99.10 98 | 99.08 54 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PatchT | | | 89.13 154 | 91.71 133 | 86.11 186 | 92.92 136 | 95.59 157 | 83.64 202 | 75.09 203 | 91.87 144 | 75.19 161 | 82.63 144 | 85.06 124 | 92.05 130 | 95.21 127 | 94.56 129 | 97.76 175 | 97.08 154 |
|
casdiffmvs | | | 94.38 83 | 94.15 93 | 94.64 77 | 94.70 109 | 98.51 77 | 96.03 90 | 91.66 79 | 95.70 78 | 89.36 85 | 86.48 119 | 85.03 125 | 96.60 66 | 97.40 56 | 97.30 54 | 99.52 14 | 98.67 94 |
|
GeoE | | | 92.52 110 | 92.64 113 | 92.39 105 | 93.96 122 | 97.76 95 | 96.01 91 | 85.60 152 | 93.23 120 | 83.94 113 | 81.56 148 | 84.80 126 | 95.63 80 | 96.22 99 | 95.83 94 | 99.19 85 | 99.07 58 |
|
HQP-MVS | | | 94.43 80 | 94.57 81 | 94.27 82 | 96.41 73 | 97.23 107 | 96.89 62 | 93.98 48 | 95.94 71 | 83.68 115 | 95.01 48 | 84.46 127 | 95.58 82 | 95.47 121 | 94.85 121 | 99.07 102 | 99.00 69 |
|
CLD-MVS | | | 94.79 70 | 94.36 86 | 95.30 60 | 95.21 93 | 97.46 101 | 97.23 56 | 92.24 71 | 96.43 54 | 91.77 50 | 92.69 65 | 84.31 128 | 96.06 72 | 95.52 119 | 95.03 113 | 99.31 61 | 99.06 59 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
diffmvs | | | 94.31 84 | 94.21 88 | 94.42 80 | 94.64 110 | 98.28 81 | 96.36 81 | 91.56 80 | 96.77 48 | 88.89 91 | 88.97 101 | 84.23 129 | 96.01 75 | 96.05 105 | 96.41 73 | 99.05 109 | 98.79 91 |
|
TAMVS | | | 90.54 134 | 90.87 144 | 90.16 131 | 91.48 149 | 96.61 124 | 93.26 137 | 86.08 145 | 87.71 181 | 81.66 126 | 83.11 143 | 84.04 130 | 90.42 158 | 94.54 137 | 94.60 126 | 98.04 170 | 95.48 176 |
|
thisisatest0515 | | | 90.12 141 | 92.06 130 | 87.85 165 | 90.03 165 | 96.17 136 | 87.83 191 | 87.45 130 | 91.71 146 | 77.15 145 | 85.40 128 | 84.01 131 | 85.74 185 | 95.41 123 | 93.30 158 | 98.88 122 | 98.43 107 |
|
FMVSNet1 | | | 91.54 121 | 90.93 142 | 92.26 106 | 90.35 161 | 95.27 169 | 95.22 106 | 87.16 134 | 91.37 149 | 87.62 99 | 75.45 167 | 83.84 132 | 94.43 98 | 96.52 86 | 96.30 74 | 98.82 127 | 97.74 135 |
|
Effi-MVS+-dtu | | | 91.78 116 | 93.59 104 | 89.68 139 | 92.44 143 | 97.11 109 | 94.40 121 | 84.94 162 | 92.43 133 | 75.48 157 | 91.09 86 | 83.75 133 | 93.55 116 | 96.61 81 | 95.47 102 | 97.24 181 | 98.67 94 |
|
ET-MVSNet_ETH3D | | | 93.34 101 | 94.33 87 | 92.18 107 | 83.26 208 | 97.66 97 | 96.72 70 | 89.89 102 | 95.62 81 | 87.17 102 | 96.00 37 | 83.69 134 | 96.99 56 | 93.78 149 | 95.34 105 | 99.06 105 | 98.18 122 |
|
PatchMatch-RL | | | 94.69 74 | 94.41 84 | 95.02 64 | 97.63 59 | 98.15 88 | 94.50 120 | 91.99 73 | 95.32 86 | 91.31 53 | 95.47 43 | 83.44 135 | 96.02 74 | 96.56 83 | 95.23 109 | 98.69 141 | 96.67 164 |
|
LGP-MVS_train | | | 94.12 85 | 94.62 80 | 93.53 92 | 96.44 72 | 97.54 98 | 97.40 55 | 91.84 76 | 94.66 98 | 81.09 129 | 95.70 41 | 83.36 136 | 95.10 88 | 96.36 94 | 95.71 96 | 99.32 58 | 99.03 65 |
|
ACMM | | 92.75 10 | 94.41 82 | 93.84 98 | 95.09 63 | 96.41 73 | 96.80 116 | 94.88 112 | 93.54 52 | 96.41 55 | 90.16 70 | 92.31 69 | 83.11 137 | 96.32 69 | 96.22 99 | 94.65 123 | 99.22 78 | 97.35 146 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test_part1 | | | 91.21 124 | 89.47 152 | 93.24 99 | 94.26 117 | 95.45 162 | 95.26 104 | 88.36 121 | 88.49 174 | 90.04 72 | 72.61 188 | 82.82 138 | 93.69 114 | 93.25 160 | 94.62 125 | 97.84 173 | 99.06 59 |
|
OPM-MVS | | | 93.61 96 | 92.43 122 | 95.00 65 | 96.94 67 | 97.34 104 | 97.78 48 | 94.23 47 | 89.64 164 | 85.53 108 | 88.70 104 | 82.81 139 | 96.28 70 | 96.28 97 | 95.00 116 | 99.24 72 | 97.22 149 |
|
tpmrst | | | 88.86 159 | 89.62 150 | 87.97 163 | 94.33 115 | 95.98 140 | 92.62 147 | 76.36 197 | 94.62 100 | 76.94 147 | 85.98 125 | 82.80 140 | 92.80 125 | 86.90 203 | 87.15 199 | 94.77 203 | 93.93 190 |
|
ACMP | | 92.88 9 | 94.43 80 | 94.38 85 | 94.50 78 | 96.01 78 | 97.69 96 | 95.85 98 | 92.09 72 | 95.74 77 | 89.12 89 | 95.14 46 | 82.62 141 | 94.77 90 | 95.73 115 | 94.67 122 | 99.14 93 | 99.06 59 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MIMVSNet | | | 88.99 156 | 91.07 140 | 86.57 182 | 86.78 202 | 95.62 154 | 91.20 175 | 75.40 202 | 90.65 157 | 76.57 149 | 84.05 137 | 82.44 142 | 91.01 145 | 95.84 110 | 95.38 104 | 98.48 156 | 93.50 194 |
|
xxxxxxxxxxxxxcwj | | | 97.07 38 | 95.99 60 | 98.33 10 | 99.45 9 | 99.05 32 | 98.27 37 | 97.65 8 | 97.73 18 | 97.02 7 | 98.18 11 | 81.99 143 | 98.11 29 | 98.15 32 | 97.62 39 | 99.45 30 | 99.19 39 |
|
Effi-MVS+ | | | 92.93 105 | 93.86 97 | 91.86 108 | 94.07 121 | 98.09 90 | 95.59 100 | 85.98 147 | 94.27 106 | 79.54 136 | 91.12 85 | 81.81 144 | 96.71 63 | 96.67 80 | 96.06 83 | 99.27 67 | 98.98 72 |
|
MVS-HIRNet | | | 85.36 190 | 86.89 183 | 83.57 193 | 90.13 164 | 94.51 187 | 83.57 203 | 72.61 207 | 88.27 177 | 71.22 180 | 68.97 198 | 81.81 144 | 88.91 170 | 93.08 163 | 91.94 179 | 94.97 202 | 89.64 205 |
|
anonymousdsp | | | 88.90 157 | 91.00 141 | 86.44 183 | 88.74 193 | 95.97 141 | 90.40 182 | 82.86 176 | 88.77 171 | 67.33 195 | 81.18 150 | 81.44 146 | 90.22 161 | 96.23 98 | 94.27 138 | 99.12 96 | 99.16 46 |
|
TSAR-MVS + COLMAP | | | 94.79 70 | 94.51 82 | 95.11 62 | 96.50 70 | 97.54 98 | 97.99 45 | 94.54 45 | 97.81 16 | 85.88 107 | 96.73 31 | 81.28 147 | 96.99 56 | 96.29 96 | 95.21 110 | 98.76 137 | 96.73 163 |
|
CostFormer | | | 90.69 130 | 90.48 147 | 90.93 120 | 94.18 118 | 96.08 138 | 94.03 125 | 78.20 190 | 93.47 118 | 89.96 75 | 90.97 87 | 80.30 148 | 93.72 112 | 87.66 201 | 88.75 193 | 95.51 195 | 96.12 168 |
|
MDTV_nov1_ep13_2view | | | 86.30 185 | 88.27 162 | 84.01 192 | 87.71 199 | 94.67 184 | 88.08 190 | 76.78 195 | 90.59 159 | 68.66 194 | 80.46 155 | 80.12 149 | 87.58 176 | 89.95 194 | 88.20 195 | 95.25 199 | 93.90 191 |
|
tpm cat1 | | | 88.90 157 | 87.78 173 | 90.22 130 | 93.88 125 | 95.39 165 | 93.79 128 | 78.11 191 | 92.55 131 | 89.43 82 | 81.31 149 | 79.84 150 | 91.40 138 | 84.95 204 | 86.34 202 | 94.68 205 | 94.09 186 |
|
pm-mvs1 | | | 89.19 153 | 89.02 156 | 89.38 142 | 90.40 159 | 95.74 153 | 92.05 161 | 88.10 125 | 86.13 191 | 77.70 141 | 73.72 181 | 79.44 151 | 88.97 169 | 95.81 112 | 94.51 133 | 99.08 100 | 97.78 134 |
|
Fast-Effi-MVS+ | | | 91.87 114 | 92.08 129 | 91.62 114 | 92.91 137 | 97.21 108 | 94.93 110 | 84.60 166 | 93.61 116 | 81.49 127 | 83.50 140 | 78.95 152 | 96.62 65 | 96.55 84 | 96.22 79 | 99.16 90 | 98.51 103 |
|
tmp_tt | | | | | 66.88 207 | 86.07 203 | 73.86 214 | 68.22 214 | 33.38 216 | 96.88 47 | 80.67 131 | 88.23 108 | 78.82 153 | 49.78 213 | 82.68 207 | 77.47 209 | 83.19 215 | |
|
dps | | | 90.11 142 | 89.37 155 | 90.98 119 | 93.89 124 | 96.21 135 | 93.49 132 | 77.61 192 | 91.95 143 | 92.74 45 | 88.85 102 | 78.77 154 | 92.37 128 | 87.71 200 | 87.71 197 | 95.80 191 | 94.38 183 |
|
ACMH | | 90.77 13 | 91.51 122 | 91.63 135 | 91.38 115 | 95.62 82 | 96.87 114 | 91.76 167 | 89.66 106 | 91.58 147 | 78.67 138 | 86.73 115 | 78.12 155 | 93.77 111 | 94.59 136 | 94.54 131 | 98.78 135 | 98.98 72 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 90.88 12 | 91.41 123 | 91.13 139 | 91.74 111 | 95.11 96 | 96.95 111 | 93.13 139 | 89.48 110 | 92.42 134 | 79.93 133 | 85.13 129 | 78.02 156 | 93.82 110 | 93.49 156 | 93.88 146 | 98.94 117 | 97.99 125 |
|
thres100view900 | | | 93.55 98 | 92.47 121 | 94.81 72 | 95.33 87 | 98.74 63 | 96.78 68 | 92.30 70 | 92.63 128 | 88.29 92 | 87.21 111 | 78.01 157 | 96.78 61 | 96.38 91 | 95.92 88 | 99.38 49 | 98.40 111 |
|
tfpn200view9 | | | 93.64 94 | 92.57 114 | 94.89 68 | 95.33 87 | 98.94 48 | 96.82 65 | 92.31 67 | 92.63 128 | 88.29 92 | 87.21 111 | 78.01 157 | 97.12 53 | 96.82 71 | 95.85 92 | 99.45 30 | 98.56 99 |
|
thres200 | | | 93.62 95 | 92.54 115 | 94.88 69 | 95.36 86 | 98.93 50 | 96.75 69 | 92.31 67 | 92.84 125 | 88.28 94 | 86.99 113 | 77.81 159 | 97.13 51 | 96.82 71 | 95.92 88 | 99.45 30 | 98.49 105 |
|
thres400 | | | 93.56 97 | 92.43 122 | 94.87 70 | 95.40 85 | 98.91 53 | 96.70 71 | 92.38 66 | 92.93 124 | 88.19 96 | 86.69 116 | 77.35 160 | 97.13 51 | 96.75 76 | 95.85 92 | 99.42 42 | 98.56 99 |
|
UniMVSNet_NR-MVSNet | | | 90.35 136 | 89.96 148 | 90.80 123 | 89.66 170 | 95.83 149 | 92.48 149 | 90.53 95 | 90.96 154 | 79.57 134 | 79.33 158 | 77.14 161 | 93.21 122 | 92.91 166 | 94.50 134 | 99.37 52 | 99.05 62 |
|
pmnet_mix02 | | | 86.12 187 | 87.12 181 | 84.96 190 | 89.82 168 | 94.12 193 | 84.88 200 | 86.63 139 | 91.78 145 | 65.60 198 | 80.76 152 | 76.98 162 | 86.61 180 | 87.29 202 | 84.80 205 | 96.21 186 | 94.09 186 |
|
thres600view7 | | | 93.49 99 | 92.37 125 | 94.79 73 | 95.42 84 | 98.93 50 | 96.58 75 | 92.31 67 | 93.04 122 | 87.88 97 | 86.62 117 | 76.94 163 | 97.09 54 | 96.82 71 | 95.63 97 | 99.45 30 | 98.63 96 |
|
GA-MVS | | | 89.28 150 | 90.75 145 | 87.57 171 | 91.77 147 | 96.48 127 | 92.29 155 | 87.58 128 | 90.61 158 | 65.77 197 | 84.48 134 | 76.84 164 | 89.46 166 | 95.84 110 | 93.68 151 | 98.52 153 | 97.34 147 |
|
pmmvs4 | | | 90.55 133 | 89.91 149 | 91.30 117 | 90.26 163 | 94.95 177 | 92.73 145 | 87.94 126 | 93.44 119 | 85.35 109 | 82.28 146 | 76.09 165 | 93.02 124 | 93.56 154 | 92.26 178 | 98.51 154 | 96.77 162 |
|
testgi | | | 89.42 147 | 91.50 137 | 87.00 179 | 92.40 144 | 95.59 157 | 89.15 188 | 85.27 159 | 92.78 126 | 72.42 173 | 91.75 77 | 76.00 166 | 84.09 195 | 94.38 142 | 93.82 150 | 98.65 146 | 96.15 167 |
|
pmmvs6 | | | 85.98 188 | 84.89 196 | 87.25 176 | 88.83 191 | 94.35 190 | 89.36 187 | 85.30 158 | 78.51 209 | 75.44 158 | 62.71 208 | 75.41 167 | 87.65 174 | 93.58 153 | 92.40 175 | 96.89 183 | 97.29 148 |
|
tpm | | | 87.95 167 | 89.44 154 | 86.21 185 | 92.53 142 | 94.62 186 | 91.40 170 | 76.36 197 | 91.46 148 | 69.80 190 | 87.43 110 | 75.14 168 | 91.55 137 | 89.85 195 | 90.60 185 | 95.61 193 | 96.96 157 |
|
EU-MVSNet | | | 85.62 189 | 87.65 175 | 83.24 195 | 88.54 194 | 92.77 200 | 87.12 193 | 85.32 156 | 86.71 187 | 64.54 200 | 78.52 160 | 75.11 169 | 78.35 200 | 92.25 174 | 92.28 177 | 95.58 194 | 95.93 169 |
|
UniMVSNet (Re) | | | 90.03 143 | 89.61 151 | 90.51 127 | 89.97 167 | 96.12 137 | 92.32 153 | 89.26 111 | 90.99 153 | 80.95 130 | 78.25 161 | 75.08 170 | 91.14 142 | 93.78 149 | 93.87 147 | 99.41 43 | 99.21 37 |
|
EG-PatchMatch MVS | | | 86.68 182 | 87.24 178 | 86.02 187 | 90.58 157 | 96.26 134 | 91.08 176 | 81.59 181 | 84.96 196 | 69.80 190 | 71.35 195 | 75.08 170 | 84.23 194 | 94.24 146 | 93.35 156 | 98.82 127 | 95.46 177 |
|
N_pmnet | | | 84.80 191 | 85.10 195 | 84.45 191 | 89.25 183 | 92.86 199 | 84.04 201 | 86.21 142 | 88.78 170 | 66.73 196 | 72.41 190 | 74.87 172 | 85.21 188 | 88.32 198 | 86.45 200 | 95.30 197 | 92.04 199 |
|
TDRefinement | | | 89.07 155 | 88.15 164 | 90.14 133 | 95.16 94 | 96.88 112 | 95.55 102 | 90.20 97 | 89.68 163 | 76.42 151 | 76.67 164 | 74.30 173 | 84.85 190 | 93.11 162 | 91.91 180 | 98.64 147 | 94.47 181 |
|
USDC | | | 90.69 130 | 90.52 146 | 90.88 121 | 94.17 119 | 96.43 129 | 95.82 99 | 86.76 137 | 93.92 110 | 76.27 153 | 86.49 118 | 74.30 173 | 93.67 115 | 95.04 132 | 93.36 155 | 98.61 148 | 94.13 185 |
|
CMPMVS |  | 65.18 17 | 84.76 192 | 83.10 198 | 86.69 181 | 95.29 90 | 95.05 174 | 88.37 189 | 85.51 154 | 80.27 207 | 71.31 179 | 68.37 200 | 73.85 175 | 85.25 187 | 87.72 199 | 87.75 196 | 94.38 206 | 88.70 206 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
WR-MVS | | | 87.93 168 | 88.09 165 | 87.75 166 | 89.26 180 | 95.28 167 | 90.81 178 | 86.69 138 | 88.90 168 | 75.29 160 | 74.31 177 | 73.72 176 | 85.19 189 | 92.26 173 | 93.32 157 | 99.27 67 | 98.81 90 |
|
v8 | | | 88.21 165 | 87.94 170 | 88.51 149 | 89.62 171 | 95.01 175 | 92.31 154 | 84.99 161 | 88.94 167 | 74.70 166 | 75.03 169 | 73.51 177 | 90.67 154 | 92.11 177 | 92.74 170 | 98.80 132 | 98.24 119 |
|
V42 | | | 88.31 163 | 87.95 169 | 88.73 147 | 89.44 175 | 95.34 166 | 92.23 157 | 87.21 133 | 88.83 169 | 74.49 167 | 74.89 171 | 73.43 178 | 90.41 160 | 92.08 179 | 92.77 169 | 98.60 150 | 98.33 115 |
|
Baseline_NR-MVSNet | | | 89.27 151 | 88.01 167 | 90.73 125 | 89.26 180 | 93.71 196 | 92.71 146 | 89.78 105 | 90.73 155 | 81.28 128 | 73.53 182 | 72.85 179 | 92.30 129 | 92.53 170 | 93.84 149 | 99.07 102 | 98.88 83 |
|
v10 | | | 88.00 166 | 87.96 168 | 88.05 159 | 89.44 175 | 94.68 183 | 92.36 152 | 83.35 173 | 89.37 166 | 72.96 172 | 73.98 179 | 72.79 180 | 91.35 140 | 93.59 151 | 92.88 165 | 98.81 130 | 98.42 109 |
|
WR-MVS_H | | | 87.93 168 | 87.85 171 | 88.03 161 | 89.62 171 | 95.58 159 | 90.47 181 | 85.55 153 | 87.20 186 | 76.83 148 | 74.42 176 | 72.67 181 | 86.37 181 | 93.22 161 | 93.04 161 | 99.33 56 | 98.83 89 |
|
v1144 | | | 87.92 170 | 87.79 172 | 88.07 156 | 89.27 179 | 95.15 172 | 92.17 158 | 85.62 151 | 88.52 173 | 71.52 177 | 73.80 180 | 72.40 182 | 91.06 144 | 93.54 155 | 92.80 167 | 98.81 130 | 98.33 115 |
|
SixPastTwentyTwo | | | 88.37 162 | 89.47 152 | 87.08 177 | 90.01 166 | 95.93 145 | 87.41 192 | 85.32 156 | 90.26 162 | 70.26 184 | 86.34 123 | 71.95 183 | 90.93 146 | 92.89 167 | 91.72 181 | 98.55 151 | 97.22 149 |
|
v2v482 | | | 88.25 164 | 87.71 174 | 88.88 145 | 89.23 184 | 95.28 167 | 92.10 159 | 87.89 127 | 88.69 172 | 73.31 171 | 75.32 168 | 71.64 184 | 91.89 132 | 92.10 178 | 92.92 164 | 98.86 125 | 97.99 125 |
|
TranMVSNet+NR-MVSNet | | | 89.23 152 | 88.48 161 | 90.11 135 | 89.07 186 | 95.25 170 | 92.91 142 | 90.43 96 | 90.31 160 | 77.10 146 | 76.62 165 | 71.57 185 | 91.83 134 | 92.12 176 | 94.59 127 | 99.32 58 | 98.92 78 |
|
TransMVSNet (Re) | | | 87.73 173 | 86.79 184 | 88.83 146 | 90.76 155 | 94.40 189 | 91.33 173 | 89.62 107 | 84.73 197 | 75.41 159 | 72.73 186 | 71.41 186 | 86.80 178 | 94.53 138 | 93.93 145 | 99.06 105 | 95.83 170 |
|
DU-MVS | | | 89.67 146 | 88.84 157 | 90.63 126 | 89.26 180 | 95.61 155 | 92.48 149 | 89.91 100 | 91.22 150 | 79.57 134 | 77.72 162 | 71.18 187 | 93.21 122 | 92.53 170 | 94.57 128 | 99.35 55 | 99.05 62 |
|
v144192 | | | 87.40 177 | 87.20 179 | 87.64 168 | 88.89 188 | 94.88 180 | 91.65 168 | 84.70 165 | 87.80 180 | 71.17 181 | 73.20 185 | 70.91 188 | 90.75 152 | 92.69 168 | 92.49 173 | 98.71 139 | 98.43 107 |
|
test20.03 | | | 82.92 197 | 85.52 192 | 79.90 200 | 87.75 198 | 91.84 202 | 82.80 204 | 82.99 175 | 82.65 205 | 60.32 209 | 78.90 159 | 70.50 189 | 67.10 208 | 92.05 180 | 90.89 183 | 98.44 158 | 91.80 200 |
|
TinyColmap | | | 89.42 147 | 88.58 159 | 90.40 128 | 93.80 127 | 95.45 162 | 93.96 127 | 86.54 140 | 92.24 140 | 76.49 150 | 80.83 151 | 70.44 190 | 93.37 118 | 94.45 140 | 93.30 158 | 98.26 164 | 93.37 196 |
|
v1192 | | | 87.51 175 | 87.31 176 | 87.74 167 | 89.04 187 | 94.87 181 | 92.07 160 | 85.03 160 | 88.49 174 | 70.32 183 | 72.65 187 | 70.35 191 | 91.21 141 | 93.59 151 | 92.80 167 | 98.78 135 | 98.42 109 |
|
v148 | | | 87.51 175 | 86.79 184 | 88.36 151 | 89.39 177 | 95.21 171 | 89.84 185 | 88.20 124 | 87.61 183 | 77.56 142 | 73.38 184 | 70.32 192 | 86.80 178 | 90.70 189 | 92.31 176 | 98.37 161 | 97.98 127 |
|
pmmvs5 | | | 87.83 172 | 88.09 165 | 87.51 174 | 89.59 173 | 95.48 160 | 89.75 186 | 84.73 164 | 86.07 193 | 71.44 178 | 80.57 153 | 70.09 193 | 90.74 153 | 94.47 139 | 92.87 166 | 98.82 127 | 97.10 151 |
|
v1921920 | | | 87.31 179 | 87.13 180 | 87.52 173 | 88.87 190 | 94.72 182 | 91.96 165 | 84.59 167 | 88.28 176 | 69.86 189 | 72.50 189 | 70.03 194 | 91.10 143 | 93.33 158 | 92.61 172 | 98.71 139 | 98.44 106 |
|
tfpnnormal | | | 88.50 160 | 87.01 182 | 90.23 129 | 91.36 150 | 95.78 152 | 92.74 144 | 90.09 98 | 83.65 200 | 76.33 152 | 71.46 194 | 69.58 195 | 91.84 133 | 95.54 118 | 94.02 143 | 99.06 105 | 99.03 65 |
|
new_pmnet | | | 81.53 198 | 82.68 200 | 80.20 198 | 83.47 207 | 89.47 208 | 82.21 206 | 78.36 188 | 87.86 179 | 60.14 211 | 67.90 201 | 69.43 196 | 82.03 198 | 89.22 196 | 87.47 198 | 94.99 201 | 87.39 207 |
|
Anonymous20231206 | | | 83.84 195 | 85.19 194 | 82.26 196 | 87.38 200 | 92.87 198 | 85.49 198 | 83.65 171 | 86.07 193 | 63.44 204 | 68.42 199 | 69.01 197 | 75.45 204 | 93.34 157 | 92.44 174 | 98.12 168 | 94.20 184 |
|
NR-MVSNet | | | 89.34 149 | 88.66 158 | 90.13 134 | 90.40 159 | 95.61 155 | 93.04 141 | 89.91 100 | 91.22 150 | 78.96 137 | 77.72 162 | 68.90 198 | 89.16 168 | 94.24 146 | 93.95 144 | 99.32 58 | 98.99 70 |
|
v1240 | | | 86.89 181 | 86.75 186 | 87.06 178 | 88.75 192 | 94.65 185 | 91.30 174 | 84.05 169 | 87.49 184 | 68.94 193 | 71.96 192 | 68.86 199 | 90.65 155 | 93.33 158 | 92.72 171 | 98.67 142 | 98.24 119 |
|
test_method | | | 72.96 204 | 78.68 204 | 66.28 208 | 50.17 218 | 64.90 216 | 75.45 212 | 50.90 215 | 87.89 178 | 62.54 205 | 62.98 207 | 68.34 200 | 70.45 206 | 91.90 182 | 82.41 206 | 88.19 212 | 92.35 197 |
|
CP-MVSNet | | | 87.89 171 | 87.27 177 | 88.62 148 | 89.30 178 | 95.06 173 | 90.60 180 | 85.78 149 | 87.43 185 | 75.98 154 | 74.60 173 | 68.14 201 | 90.76 151 | 93.07 164 | 93.60 152 | 99.30 63 | 98.98 72 |
|
LTVRE_ROB | | 87.32 16 | 87.55 174 | 88.25 163 | 86.73 180 | 90.66 156 | 95.80 151 | 93.05 140 | 84.77 163 | 83.35 201 | 60.32 209 | 83.12 142 | 67.39 202 | 93.32 119 | 94.36 143 | 94.86 118 | 98.28 162 | 98.87 85 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
gm-plane-assit | | | 83.26 196 | 85.29 193 | 80.89 197 | 89.52 174 | 89.89 207 | 70.26 213 | 78.24 189 | 77.11 210 | 58.01 213 | 74.16 178 | 66.90 203 | 90.63 156 | 97.20 61 | 96.05 84 | 98.66 145 | 95.68 173 |
|
UniMVSNet_ETH3D | | | 88.47 161 | 86.00 191 | 91.35 116 | 91.55 148 | 96.29 133 | 92.53 148 | 88.81 115 | 85.58 195 | 82.33 121 | 67.63 203 | 66.87 204 | 94.04 106 | 91.49 185 | 95.24 108 | 98.84 126 | 98.92 78 |
|
v7n | | | 86.43 184 | 86.52 188 | 86.33 184 | 87.91 197 | 94.93 178 | 90.15 184 | 83.05 174 | 86.57 188 | 70.21 185 | 71.48 193 | 66.78 205 | 87.72 173 | 94.19 148 | 92.96 163 | 98.92 119 | 98.76 93 |
|
DTE-MVSNet | | | 86.67 183 | 86.09 190 | 87.35 175 | 88.45 195 | 94.08 194 | 90.65 179 | 86.05 146 | 86.13 191 | 72.19 174 | 74.58 175 | 66.77 206 | 87.61 175 | 90.31 190 | 93.12 160 | 99.13 94 | 97.62 139 |
|
PS-CasMVS | | | 87.33 178 | 86.68 187 | 88.10 155 | 89.22 185 | 94.93 178 | 90.35 183 | 85.70 150 | 86.44 190 | 74.01 169 | 73.43 183 | 66.59 207 | 90.04 162 | 92.92 165 | 93.52 153 | 99.28 65 | 98.91 81 |
|
PEN-MVS | | | 87.22 180 | 86.50 189 | 88.07 156 | 88.88 189 | 94.44 188 | 90.99 177 | 86.21 142 | 86.53 189 | 73.66 170 | 74.97 170 | 66.56 208 | 89.42 167 | 91.20 187 | 93.48 154 | 99.24 72 | 98.31 118 |
|
MIMVSNet1 | | | 80.03 200 | 80.93 201 | 78.97 201 | 72.46 214 | 90.73 205 | 80.81 207 | 82.44 179 | 80.39 206 | 63.64 202 | 57.57 209 | 64.93 209 | 76.37 202 | 91.66 183 | 91.55 182 | 98.07 169 | 89.70 204 |
|
DeepMVS_CX |  | | | | | | 86.86 209 | 79.50 208 | 70.43 210 | 90.73 155 | 63.66 201 | 80.36 156 | 60.83 210 | 79.68 199 | 76.23 208 | | 89.46 210 | 86.53 208 |
|
FPMVS | | | 75.84 203 | 74.59 206 | 77.29 204 | 86.92 201 | 83.89 212 | 85.01 199 | 80.05 187 | 82.91 203 | 60.61 208 | 65.25 205 | 60.41 211 | 63.86 209 | 75.60 209 | 73.60 211 | 87.29 213 | 80.47 210 |
|
PMVS |  | 63.12 18 | 67.27 206 | 66.39 209 | 68.30 206 | 77.98 210 | 60.24 217 | 59.53 217 | 76.82 193 | 66.65 213 | 60.74 207 | 54.39 210 | 59.82 212 | 51.24 212 | 73.92 212 | 70.52 212 | 83.48 214 | 79.17 212 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
pmmvs3 | | | 79.16 201 | 80.12 203 | 78.05 203 | 79.36 209 | 86.59 210 | 78.13 210 | 73.87 206 | 76.42 211 | 57.51 214 | 70.59 197 | 57.02 213 | 84.66 192 | 90.10 192 | 88.32 194 | 94.75 204 | 91.77 201 |
|
pmmvs-eth3d | | | 84.33 194 | 82.94 199 | 85.96 188 | 84.16 205 | 90.94 204 | 86.55 195 | 83.79 170 | 84.25 198 | 75.85 156 | 70.64 196 | 56.43 214 | 87.44 177 | 92.20 175 | 90.41 187 | 97.97 171 | 95.68 173 |
|
PM-MVS | | | 84.72 193 | 84.47 197 | 85.03 189 | 84.67 204 | 91.57 203 | 86.27 196 | 82.31 180 | 87.65 182 | 70.62 182 | 76.54 166 | 56.41 215 | 88.75 171 | 92.59 169 | 89.85 190 | 97.54 179 | 96.66 165 |
|
new-patchmatchnet | | | 78.49 202 | 78.19 205 | 78.84 202 | 84.13 206 | 90.06 206 | 77.11 211 | 80.39 186 | 79.57 208 | 59.64 212 | 66.01 204 | 55.65 216 | 75.62 203 | 84.55 205 | 80.70 207 | 96.14 188 | 90.77 203 |
|
MDA-MVSNet-bldmvs | | | 80.11 199 | 80.24 202 | 79.94 199 | 77.01 211 | 93.21 197 | 78.86 209 | 85.94 148 | 82.71 204 | 60.86 206 | 79.71 157 | 51.77 217 | 83.71 197 | 75.60 209 | 86.37 201 | 93.28 207 | 92.35 197 |
|
PMMVS2 | | | 64.36 208 | 65.94 210 | 62.52 209 | 67.37 215 | 77.44 213 | 64.39 215 | 69.32 213 | 61.47 214 | 34.59 217 | 46.09 212 | 41.03 218 | 48.02 215 | 74.56 211 | 78.23 208 | 91.43 209 | 82.76 209 |
|
Gipuma |  | | 68.35 205 | 66.71 208 | 70.27 205 | 74.16 213 | 68.78 215 | 63.93 216 | 71.77 209 | 83.34 202 | 54.57 215 | 34.37 213 | 31.88 219 | 68.69 207 | 83.30 206 | 85.53 203 | 88.48 211 | 79.78 211 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
EMVS | | | 49.98 210 | 46.76 213 | 53.74 211 | 64.96 216 | 51.29 219 | 37.81 219 | 69.35 212 | 51.83 215 | 22.69 220 | 29.57 215 | 25.06 220 | 57.28 210 | 44.81 215 | 56.11 214 | 70.32 217 | 68.64 215 |
|
E-PMN | | | 50.67 209 | 47.85 212 | 53.96 210 | 64.13 217 | 50.98 220 | 38.06 218 | 69.51 211 | 51.40 216 | 24.60 219 | 29.46 216 | 24.39 221 | 56.07 211 | 48.17 214 | 59.70 213 | 71.40 216 | 70.84 214 |
|
ambc | | | | 73.83 207 | | 76.23 212 | 85.13 211 | 82.27 205 | | 84.16 199 | 65.58 199 | 52.82 211 | 23.31 222 | 73.55 205 | 91.41 186 | 85.26 204 | 92.97 208 | 94.70 179 |
|
MVE |  | 50.86 19 | 49.54 211 | 51.43 211 | 47.33 212 | 44.14 219 | 59.20 218 | 36.45 220 | 60.59 214 | 41.47 217 | 31.14 218 | 29.58 214 | 17.06 223 | 48.52 214 | 62.22 213 | 74.63 210 | 63.12 218 | 75.87 213 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 12.09 212 | 16.94 214 | 6.42 214 | 3.15 220 | 6.08 221 | 9.51 222 | 3.84 217 | 21.46 218 | 5.31 221 | 27.49 217 | 6.76 224 | 10.89 216 | 17.06 216 | 15.01 215 | 5.84 219 | 24.75 216 |
|
test123 | | | 9.58 213 | 13.53 215 | 4.97 215 | 1.31 222 | 5.47 222 | 8.32 223 | 2.95 218 | 18.14 219 | 2.03 223 | 20.82 218 | 2.34 225 | 10.60 217 | 10.00 217 | 14.16 216 | 4.60 220 | 23.77 217 |
|
uanet_test | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet-low-res | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
RE-MVS-def | | | | | | | | | | | 63.50 203 | | | | | | | |
|
our_test_3 | | | | | | 89.78 169 | 93.84 195 | 85.59 197 | | | | | | | | | | |
|
Patchmatch-RL test | | | | | | | | 34.61 221 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 95.32 86 | | | | | | | | |
|
Patchmtry | | | | | | | 95.96 142 | 93.36 135 | 75.99 200 | | 75.19 161 | | | | | | | |
|