| HPM-MVS++ |  | | 94.60 9 | 94.91 11 | 94.24 8 | 97.86 1 | 96.53 32 | 96.14 9 | 92.51 8 | 93.87 14 | 90.76 11 | 93.45 18 | 93.84 5 | 92.62 9 | 95.11 12 | 94.08 19 | 95.58 54 | 97.48 14 |
|
| DVP-MVS++ | | | 95.79 1 | 96.42 1 | 95.06 1 | 97.84 2 | 98.17 2 | 97.03 4 | 92.84 3 | 96.68 1 | 92.83 3 | 95.90 5 | 94.38 4 | 92.90 5 | 95.98 2 | 94.85 5 | 96.93 3 | 98.99 1 |
|
| SMA-MVS |  | | 94.70 7 | 95.35 7 | 93.93 11 | 97.57 3 | 97.57 8 | 95.98 12 | 91.91 13 | 94.50 7 | 90.35 13 | 93.46 17 | 92.72 11 | 91.89 17 | 95.89 4 | 95.22 1 | 95.88 31 | 98.10 6 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MP-MVS |  | | 93.35 20 | 93.59 24 | 93.08 22 | 97.39 4 | 96.82 22 | 95.38 24 | 90.71 23 | 90.82 35 | 88.07 26 | 92.83 21 | 90.29 29 | 91.32 27 | 94.03 30 | 93.19 40 | 95.61 52 | 97.16 20 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| NCCC | | | 93.69 19 | 93.66 23 | 93.72 15 | 97.37 5 | 96.66 29 | 95.93 17 | 92.50 9 | 93.40 18 | 88.35 24 | 87.36 34 | 92.33 14 | 92.18 13 | 94.89 15 | 94.09 18 | 96.00 27 | 96.91 27 |
|
| CNVR-MVS | | | 94.37 12 | 94.65 12 | 94.04 10 | 97.29 6 | 97.11 11 | 96.00 11 | 92.43 10 | 93.45 15 | 89.85 18 | 90.92 25 | 93.04 9 | 92.59 10 | 95.77 5 | 94.82 6 | 96.11 25 | 97.42 16 |
|
| HFP-MVS | | | 94.02 15 | 94.22 18 | 93.78 13 | 97.25 7 | 96.85 20 | 95.81 19 | 90.94 22 | 94.12 11 | 90.29 15 | 94.09 14 | 89.98 31 | 92.52 11 | 93.94 33 | 93.49 33 | 95.87 33 | 97.10 23 |
|
| APD-MVS |  | | 94.37 12 | 94.47 16 | 94.26 7 | 97.18 8 | 96.99 16 | 96.53 8 | 92.68 6 | 92.45 23 | 89.96 16 | 94.53 11 | 91.63 21 | 92.89 6 | 94.58 22 | 93.82 23 | 96.31 18 | 97.26 18 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 88.76 1 | 93.10 22 | 93.02 29 | 93.19 21 | 97.13 9 | 96.51 33 | 95.35 25 | 91.19 19 | 93.14 20 | 88.14 25 | 85.26 40 | 89.49 35 | 91.45 22 | 95.17 10 | 95.07 2 | 95.85 36 | 96.48 35 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| APDe-MVS |  | | 95.23 5 | 95.69 6 | 94.70 5 | 97.12 10 | 97.81 6 | 97.19 2 | 92.83 4 | 95.06 6 | 90.98 9 | 96.47 2 | 92.77 10 | 93.38 2 | 95.34 9 | 94.21 16 | 96.68 9 | 98.17 5 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ACMMPR | | | 93.72 18 | 93.94 20 | 93.48 17 | 97.07 11 | 96.93 17 | 95.78 20 | 90.66 25 | 93.88 13 | 89.24 20 | 93.53 16 | 89.08 38 | 92.24 12 | 93.89 35 | 93.50 31 | 95.88 31 | 96.73 31 |
|
| mPP-MVS | | | | | | 97.06 12 | | | | | | | 88.08 45 | | | | | |
|
| ACMMP_NAP | | | 93.94 16 | 94.49 15 | 93.30 19 | 97.03 13 | 97.31 10 | 95.96 13 | 91.30 18 | 93.41 17 | 88.55 23 | 93.00 19 | 90.33 28 | 91.43 25 | 95.53 7 | 94.41 14 | 95.53 58 | 97.47 15 |
|
| PGM-MVS | | | 92.76 25 | 93.03 28 | 92.45 27 | 97.03 13 | 96.67 28 | 95.73 22 | 87.92 41 | 90.15 42 | 86.53 35 | 92.97 20 | 88.33 44 | 91.69 20 | 93.62 41 | 93.03 41 | 95.83 37 | 96.41 38 |
|
| SteuartSystems-ACMMP | | | 94.06 14 | 94.65 12 | 93.38 18 | 96.97 15 | 97.36 9 | 96.12 10 | 91.78 14 | 92.05 27 | 87.34 29 | 94.42 12 | 90.87 25 | 91.87 18 | 95.47 8 | 94.59 11 | 96.21 23 | 97.77 11 |
| Skip Steuart: Steuart Systems R&D Blog. |
| DVP-MVS |  | | 95.56 3 | 96.26 3 | 94.73 3 | 96.93 16 | 98.19 1 | 96.62 7 | 92.81 5 | 96.15 2 | 91.73 5 | 95.01 7 | 95.31 2 | 93.41 1 | 95.95 3 | 94.77 8 | 96.90 4 | 98.46 2 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| X-MVS | | | 92.36 29 | 92.75 30 | 91.90 32 | 96.89 17 | 96.70 25 | 95.25 26 | 90.48 28 | 91.50 32 | 83.95 49 | 88.20 31 | 88.82 40 | 89.11 38 | 93.75 38 | 93.43 34 | 95.75 43 | 96.83 29 |
|
| train_agg | | | 92.87 24 | 93.53 25 | 92.09 29 | 96.88 18 | 95.38 51 | 95.94 15 | 90.59 27 | 90.65 37 | 83.65 52 | 94.31 13 | 91.87 20 | 90.30 32 | 93.38 43 | 92.42 51 | 95.17 76 | 96.73 31 |
|
| SED-MVS | | | 95.61 2 | 96.36 2 | 94.73 3 | 96.84 19 | 98.15 3 | 97.08 3 | 92.92 2 | 95.64 3 | 91.84 4 | 95.98 4 | 95.33 1 | 92.83 7 | 96.00 1 | 94.94 3 | 96.90 4 | 98.45 3 |
|
| CP-MVS | | | 93.25 21 | 93.26 26 | 93.24 20 | 96.84 19 | 96.51 33 | 95.52 23 | 90.61 26 | 92.37 24 | 88.88 21 | 90.91 26 | 89.52 34 | 91.91 16 | 93.64 40 | 92.78 46 | 95.69 45 | 97.09 24 |
|
| MSP-MVS | | | 95.12 6 | 95.83 5 | 94.30 6 | 96.82 21 | 97.94 5 | 96.98 5 | 92.37 11 | 95.40 4 | 90.59 12 | 96.16 3 | 93.71 6 | 92.70 8 | 94.80 17 | 94.77 8 | 96.37 14 | 97.99 8 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 95.53 4 | 96.13 4 | 94.82 2 | 96.81 22 | 98.05 4 | 97.42 1 | 93.09 1 | 94.31 9 | 91.49 6 | 97.12 1 | 95.03 3 | 93.27 3 | 95.55 6 | 94.58 12 | 96.86 6 | 98.25 4 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MCST-MVS | | | 93.81 17 | 94.06 19 | 93.53 16 | 96.79 23 | 96.85 20 | 95.95 14 | 91.69 16 | 92.20 25 | 87.17 31 | 90.83 27 | 93.41 7 | 91.96 14 | 94.49 25 | 93.50 31 | 97.61 1 | 97.12 22 |
|
| SF-MVS | | | 94.61 8 | 94.96 10 | 94.20 9 | 96.75 24 | 97.07 12 | 95.82 18 | 92.60 7 | 93.98 12 | 91.09 8 | 95.89 6 | 92.54 12 | 91.93 15 | 94.40 27 | 93.56 30 | 97.04 2 | 97.27 17 |
|
| SR-MVS | | | | | | 96.58 25 | | | 90.99 21 | | | | 92.40 13 | | | | | |
|
| EPNet | | | 89.60 49 | 89.91 48 | 89.24 54 | 96.45 26 | 93.61 81 | 92.95 47 | 88.03 39 | 85.74 60 | 83.36 53 | 87.29 35 | 83.05 64 | 80.98 100 | 92.22 60 | 91.85 56 | 93.69 142 | 95.58 54 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| TPM-MVS | | | | | | 96.31 27 | 96.02 38 | 94.89 30 | | | 86.52 36 | 87.18 36 | 92.17 16 | 86.76 65 | | | 95.56 55 | 93.85 83 |
| Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025 |
| CSCG | | | 92.76 25 | 93.16 27 | 92.29 28 | 96.30 28 | 97.74 7 | 94.67 33 | 88.98 35 | 92.46 22 | 89.73 19 | 86.67 37 | 92.15 18 | 88.69 43 | 92.26 59 | 92.92 44 | 95.40 63 | 97.89 10 |
|
| CDPH-MVS | | | 91.14 38 | 92.01 32 | 90.11 41 | 96.18 29 | 96.18 37 | 94.89 30 | 88.80 37 | 88.76 47 | 77.88 87 | 89.18 30 | 87.71 47 | 87.29 61 | 93.13 46 | 93.31 38 | 95.62 50 | 95.84 47 |
|
| DeepC-MVS | | 87.86 3 | 92.26 30 | 91.86 33 | 92.73 24 | 96.18 29 | 96.87 19 | 95.19 27 | 91.76 15 | 92.17 26 | 86.58 34 | 81.79 53 | 85.85 51 | 90.88 30 | 94.57 23 | 94.61 10 | 95.80 39 | 97.18 19 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| AdaColmap |  | | 90.29 43 | 88.38 59 | 92.53 25 | 96.10 31 | 95.19 56 | 92.98 46 | 91.40 17 | 89.08 46 | 88.65 22 | 78.35 73 | 81.44 71 | 91.30 28 | 90.81 89 | 90.21 82 | 94.72 97 | 93.59 90 |
|
| MSLP-MVS++ | | | 92.02 33 | 91.40 36 | 92.75 23 | 96.01 32 | 95.88 44 | 93.73 40 | 89.00 33 | 89.89 43 | 90.31 14 | 81.28 59 | 88.85 39 | 91.45 22 | 92.88 51 | 94.24 15 | 96.00 27 | 96.76 30 |
|
| 3Dnovator+ | | 86.06 4 | 91.60 35 | 90.86 42 | 92.47 26 | 96.00 33 | 96.50 35 | 94.70 32 | 87.83 42 | 90.49 38 | 89.92 17 | 74.68 93 | 89.35 36 | 90.66 31 | 94.02 31 | 94.14 17 | 95.67 47 | 96.85 28 |
|
| TSAR-MVS + ACMM | | | 92.97 23 | 94.51 14 | 91.16 36 | 95.88 34 | 96.59 30 | 95.09 28 | 90.45 29 | 93.42 16 | 83.01 55 | 94.68 10 | 90.74 26 | 88.74 42 | 94.75 19 | 93.78 24 | 93.82 137 | 97.63 12 |
|
| ACMMP |  | | 92.03 32 | 92.16 31 | 91.87 33 | 95.88 34 | 96.55 31 | 94.47 35 | 89.49 32 | 91.71 30 | 85.26 42 | 91.52 24 | 84.48 57 | 90.21 34 | 92.82 52 | 91.63 58 | 95.92 30 | 96.42 37 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SD-MVS | | | 94.53 10 | 95.22 8 | 93.73 14 | 95.69 36 | 97.03 14 | 95.77 21 | 91.95 12 | 94.41 8 | 91.35 7 | 94.97 8 | 93.34 8 | 91.80 19 | 94.72 20 | 93.99 20 | 95.82 38 | 98.07 7 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| DPM-MVS | | | 91.72 34 | 91.48 34 | 92.00 30 | 95.53 37 | 95.75 47 | 95.94 15 | 91.07 20 | 91.20 33 | 85.58 40 | 81.63 57 | 90.74 26 | 88.40 46 | 93.40 42 | 93.75 25 | 95.45 62 | 93.85 83 |
|
| TSAR-MVS + MP. | | | 94.48 11 | 94.97 9 | 93.90 12 | 95.53 37 | 97.01 15 | 96.69 6 | 90.71 23 | 94.24 10 | 90.92 10 | 94.97 8 | 92.19 15 | 93.03 4 | 94.83 16 | 93.60 27 | 96.51 13 | 97.97 9 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CPTT-MVS | | | 91.39 36 | 90.95 40 | 91.91 31 | 95.06 39 | 95.24 55 | 95.02 29 | 88.98 35 | 91.02 34 | 86.71 33 | 84.89 42 | 88.58 43 | 91.60 21 | 90.82 88 | 89.67 98 | 94.08 124 | 96.45 36 |
|
| CANet | | | 91.33 37 | 91.46 35 | 91.18 35 | 95.01 40 | 96.71 24 | 93.77 38 | 87.39 45 | 87.72 51 | 87.26 30 | 81.77 54 | 89.73 32 | 87.32 60 | 94.43 26 | 93.86 22 | 96.31 18 | 96.02 45 |
|
| PHI-MVS | | | 92.05 31 | 93.74 22 | 90.08 42 | 94.96 41 | 97.06 13 | 93.11 45 | 87.71 43 | 90.71 36 | 80.78 71 | 92.40 22 | 91.03 23 | 87.68 54 | 94.32 28 | 94.48 13 | 96.21 23 | 96.16 42 |
|
| MAR-MVS | | | 88.39 61 | 88.44 58 | 88.33 67 | 94.90 42 | 95.06 60 | 90.51 67 | 83.59 79 | 85.27 62 | 79.07 79 | 77.13 78 | 82.89 65 | 87.70 52 | 92.19 62 | 92.32 52 | 94.23 121 | 94.20 79 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| 3Dnovator | | 85.17 5 | 90.48 41 | 89.90 49 | 91.16 36 | 94.88 43 | 95.74 48 | 93.82 37 | 85.36 55 | 89.28 44 | 87.81 27 | 74.34 96 | 87.40 48 | 88.56 44 | 93.07 47 | 93.74 26 | 96.53 12 | 95.71 49 |
|
| DeepPCF-MVS | | 88.51 2 | 92.64 28 | 94.42 17 | 90.56 39 | 94.84 44 | 96.92 18 | 91.31 63 | 89.61 31 | 95.16 5 | 84.55 47 | 89.91 29 | 91.45 22 | 90.15 35 | 95.12 11 | 94.81 7 | 92.90 156 | 97.58 13 |
|
| QAPM | | | 89.49 50 | 89.58 52 | 89.38 52 | 94.73 45 | 95.94 41 | 92.35 49 | 85.00 58 | 85.69 61 | 80.03 75 | 76.97 80 | 87.81 46 | 87.87 51 | 92.18 63 | 92.10 54 | 96.33 16 | 96.40 40 |
|
| MVS_111021_HR | | | 90.56 40 | 91.29 38 | 89.70 48 | 94.71 46 | 95.63 49 | 91.81 57 | 86.38 49 | 87.53 52 | 81.29 66 | 87.96 32 | 85.43 53 | 87.69 53 | 93.90 34 | 92.93 43 | 96.33 16 | 95.69 50 |
|
| OpenMVS |  | 82.53 11 | 87.71 68 | 86.84 75 | 88.73 58 | 94.42 47 | 95.06 60 | 91.02 65 | 83.49 82 | 82.50 80 | 82.24 62 | 67.62 134 | 85.48 52 | 85.56 72 | 91.19 74 | 91.30 61 | 95.67 47 | 94.75 65 |
|
| PLC |  | 83.76 9 | 88.61 58 | 86.83 76 | 90.70 38 | 94.22 48 | 92.63 99 | 91.50 60 | 87.19 46 | 89.16 45 | 86.87 32 | 75.51 88 | 80.87 73 | 89.98 36 | 90.01 99 | 89.20 110 | 94.41 116 | 90.45 149 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| LS3D | | | 85.96 80 | 84.37 97 | 87.81 69 | 94.13 49 | 93.27 87 | 90.26 71 | 89.00 33 | 84.91 67 | 72.84 111 | 71.74 109 | 72.47 124 | 87.45 58 | 89.53 107 | 89.09 112 | 93.20 152 | 89.60 152 |
|
| EPNet_dtu | | | 81.98 117 | 83.82 102 | 79.83 150 | 94.10 50 | 85.97 176 | 87.29 118 | 84.08 70 | 80.61 101 | 59.96 183 | 81.62 58 | 77.19 100 | 62.91 199 | 87.21 130 | 86.38 149 | 90.66 181 | 87.77 169 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MVS_0304 | | | 90.88 39 | 91.35 37 | 90.34 40 | 93.91 51 | 96.79 23 | 94.49 34 | 86.54 48 | 86.57 56 | 82.85 56 | 81.68 56 | 89.70 33 | 87.57 56 | 94.64 21 | 93.93 21 | 96.67 11 | 96.15 43 |
|
| OPM-MVS | | | 87.56 70 | 85.80 86 | 89.62 49 | 93.90 52 | 94.09 75 | 94.12 36 | 88.18 38 | 75.40 133 | 77.30 90 | 76.41 82 | 77.93 96 | 88.79 41 | 92.20 61 | 90.82 69 | 95.40 63 | 93.72 88 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| DELS-MVS | | | 89.71 48 | 89.68 51 | 89.74 46 | 93.75 53 | 96.22 36 | 93.76 39 | 85.84 51 | 82.53 78 | 85.05 44 | 78.96 70 | 84.24 58 | 84.25 78 | 94.91 14 | 94.91 4 | 95.78 42 | 96.02 45 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CNLPA | | | 88.40 59 | 87.00 74 | 90.03 44 | 93.73 54 | 94.28 71 | 89.56 80 | 85.81 52 | 91.87 28 | 87.55 28 | 69.53 123 | 81.49 70 | 89.23 37 | 89.45 108 | 88.59 120 | 94.31 120 | 93.82 85 |
|
| HQP-MVS | | | 89.13 54 | 89.58 52 | 88.60 62 | 93.53 55 | 93.67 79 | 93.29 43 | 87.58 44 | 88.53 48 | 75.50 92 | 87.60 33 | 80.32 76 | 87.07 62 | 90.66 94 | 89.95 90 | 94.62 103 | 96.35 41 |
|
| OMC-MVS | | | 90.23 45 | 90.40 45 | 90.03 44 | 93.45 56 | 95.29 52 | 91.89 55 | 86.34 50 | 93.25 19 | 84.94 45 | 81.72 55 | 86.65 50 | 88.90 39 | 91.69 67 | 90.27 81 | 94.65 101 | 93.95 81 |
|
| ACMM | | 83.27 10 | 87.68 69 | 86.09 82 | 89.54 50 | 93.26 57 | 92.19 105 | 91.43 61 | 86.74 47 | 86.02 58 | 82.85 56 | 75.63 87 | 75.14 106 | 88.41 45 | 90.68 93 | 89.99 87 | 94.59 104 | 92.97 98 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MVS_111021_LR | | | 90.14 46 | 90.89 41 | 89.26 53 | 93.23 58 | 94.05 76 | 90.43 68 | 84.65 61 | 90.16 41 | 84.52 48 | 90.14 28 | 83.80 60 | 87.99 50 | 92.50 56 | 90.92 67 | 94.74 95 | 94.70 67 |
|
| CS-MVS-test | | | 90.29 43 | 90.96 39 | 89.51 51 | 93.18 59 | 95.87 45 | 89.18 85 | 83.72 75 | 88.32 49 | 84.82 46 | 84.89 42 | 85.23 54 | 90.25 33 | 94.04 29 | 92.66 50 | 95.94 29 | 95.69 50 |
|
| CS-MVS | | | 90.34 42 | 90.58 44 | 90.07 43 | 93.11 60 | 95.82 46 | 90.57 66 | 83.62 76 | 87.07 54 | 85.35 41 | 82.98 46 | 83.47 61 | 91.37 26 | 94.94 13 | 93.37 37 | 96.37 14 | 96.41 38 |
|
| XVS | | | | | | 93.11 60 | 96.70 25 | 91.91 53 | | | 83.95 49 | | 88.82 40 | | | | 95.79 40 | |
|
| X-MVStestdata | | | | | | 93.11 60 | 96.70 25 | 91.91 53 | | | 83.95 49 | | 88.82 40 | | | | 95.79 40 | |
|
| PCF-MVS | | 84.60 6 | 88.66 56 | 87.75 69 | 89.73 47 | 93.06 63 | 96.02 38 | 93.22 44 | 90.00 30 | 82.44 81 | 80.02 76 | 77.96 76 | 85.16 55 | 87.36 59 | 88.54 118 | 88.54 121 | 94.72 97 | 95.61 53 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| TAPA-MVS | | 84.37 7 | 88.91 55 | 88.93 55 | 88.89 56 | 93.00 64 | 94.85 64 | 92.00 52 | 84.84 59 | 91.68 31 | 80.05 74 | 79.77 65 | 84.56 56 | 88.17 49 | 90.11 98 | 89.00 116 | 95.30 70 | 92.57 113 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| PVSNet_Blended_VisFu | | | 87.40 72 | 87.80 66 | 86.92 75 | 92.86 65 | 95.40 50 | 88.56 103 | 83.45 86 | 79.55 109 | 82.26 60 | 74.49 95 | 84.03 59 | 79.24 130 | 92.97 50 | 91.53 60 | 95.15 78 | 96.65 34 |
|
| UA-Net | | | 86.07 78 | 87.78 67 | 84.06 103 | 92.85 66 | 95.11 59 | 87.73 111 | 84.38 65 | 73.22 153 | 73.18 107 | 79.99 64 | 89.22 37 | 71.47 175 | 93.22 45 | 93.03 41 | 94.76 94 | 90.69 144 |
|
| LGP-MVS_train | | | 88.25 63 | 88.55 56 | 87.89 68 | 92.84 67 | 93.66 80 | 93.35 42 | 85.22 57 | 85.77 59 | 74.03 102 | 86.60 38 | 76.29 103 | 86.62 67 | 91.20 73 | 90.58 77 | 95.29 71 | 95.75 48 |
|
| TSAR-MVS + COLMAP | | | 88.40 59 | 89.09 54 | 87.60 72 | 92.72 68 | 93.92 78 | 92.21 50 | 85.57 54 | 91.73 29 | 73.72 103 | 91.75 23 | 73.22 122 | 87.64 55 | 91.49 69 | 89.71 97 | 93.73 140 | 91.82 127 |
|
| PVSNet_BlendedMVS | | | 88.19 64 | 88.00 64 | 88.42 64 | 92.71 69 | 94.82 65 | 89.08 90 | 83.81 72 | 84.91 67 | 86.38 37 | 79.14 67 | 78.11 94 | 82.66 86 | 93.05 48 | 91.10 62 | 95.86 34 | 94.86 63 |
|
| PVSNet_Blended | | | 88.19 64 | 88.00 64 | 88.42 64 | 92.71 69 | 94.82 65 | 89.08 90 | 83.81 72 | 84.91 67 | 86.38 37 | 79.14 67 | 78.11 94 | 82.66 86 | 93.05 48 | 91.10 62 | 95.86 34 | 94.86 63 |
|
| ACMP | | 83.90 8 | 88.32 62 | 88.06 62 | 88.62 61 | 92.18 71 | 93.98 77 | 91.28 64 | 85.24 56 | 86.69 55 | 81.23 67 | 85.62 39 | 75.13 107 | 87.01 64 | 89.83 101 | 89.77 95 | 94.79 91 | 95.43 56 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| MSDG | | | 83.87 101 | 81.02 123 | 87.19 74 | 92.17 72 | 89.80 134 | 89.15 88 | 85.72 53 | 80.61 101 | 79.24 78 | 66.66 137 | 68.75 140 | 82.69 85 | 87.95 125 | 87.44 130 | 94.19 122 | 85.92 181 |
|
| TSAR-MVS + GP. | | | 92.71 27 | 93.91 21 | 91.30 34 | 91.96 73 | 96.00 40 | 93.43 41 | 87.94 40 | 92.53 21 | 86.27 39 | 93.57 15 | 91.94 19 | 91.44 24 | 93.29 44 | 92.89 45 | 96.78 7 | 97.15 21 |
|
| test2506 | | | 85.20 87 | 84.11 99 | 86.47 77 | 91.84 74 | 95.28 53 | 89.18 85 | 84.49 63 | 82.59 76 | 75.34 96 | 74.66 94 | 58.07 189 | 81.68 93 | 93.76 36 | 92.71 47 | 96.28 21 | 91.71 129 |
|
| ECVR-MVS |  | | 85.25 86 | 84.47 95 | 86.16 79 | 91.84 74 | 95.28 53 | 89.18 85 | 84.49 63 | 82.59 76 | 73.49 105 | 66.12 139 | 69.28 137 | 81.68 93 | 93.76 36 | 92.71 47 | 96.28 21 | 91.58 136 |
|
| test1111 | | | 84.86 92 | 84.21 98 | 85.61 84 | 91.75 76 | 95.14 58 | 88.63 100 | 84.57 62 | 81.88 86 | 71.21 114 | 65.66 146 | 68.51 141 | 81.19 97 | 93.74 39 | 92.68 49 | 96.31 18 | 91.86 126 |
|
| ETV-MVS | | | 89.22 53 | 89.76 50 | 88.60 62 | 91.60 77 | 94.61 68 | 89.48 82 | 83.46 85 | 85.20 64 | 81.58 64 | 82.75 48 | 82.59 66 | 88.80 40 | 94.57 23 | 93.28 39 | 96.68 9 | 95.31 57 |
|
| EIA-MVS | | | 87.94 67 | 88.05 63 | 87.81 69 | 91.46 78 | 95.00 62 | 88.67 97 | 82.81 91 | 82.53 78 | 80.81 70 | 80.04 63 | 80.20 77 | 87.48 57 | 92.58 55 | 91.61 59 | 95.63 49 | 94.36 73 |
|
| sasdasda | | | 89.36 51 | 89.92 46 | 88.70 59 | 91.38 79 | 95.92 42 | 91.81 57 | 82.61 99 | 90.37 39 | 82.73 58 | 82.09 50 | 79.28 86 | 88.30 47 | 91.17 75 | 93.59 28 | 95.36 65 | 97.04 25 |
|
| canonicalmvs | | | 89.36 51 | 89.92 46 | 88.70 59 | 91.38 79 | 95.92 42 | 91.81 57 | 82.61 99 | 90.37 39 | 82.73 58 | 82.09 50 | 79.28 86 | 88.30 47 | 91.17 75 | 93.59 28 | 95.36 65 | 97.04 25 |
|
| CLD-MVS | | | 88.66 56 | 88.52 57 | 88.82 57 | 91.37 81 | 94.22 72 | 92.82 48 | 82.08 103 | 88.27 50 | 85.14 43 | 81.86 52 | 78.53 92 | 85.93 71 | 91.17 75 | 90.61 75 | 95.55 56 | 95.00 59 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| CHOSEN 1792x2688 | | | 82.16 115 | 80.91 126 | 83.61 108 | 91.14 82 | 92.01 106 | 89.55 81 | 79.15 136 | 79.87 105 | 70.29 118 | 52.51 202 | 72.56 123 | 81.39 95 | 88.87 116 | 88.17 124 | 90.15 185 | 92.37 120 |
|
| IB-MVS | | 79.09 12 | 82.60 112 | 82.19 111 | 83.07 114 | 91.08 83 | 93.55 82 | 80.90 181 | 81.35 109 | 76.56 125 | 80.87 69 | 64.81 154 | 69.97 133 | 68.87 182 | 85.64 156 | 90.06 86 | 95.36 65 | 94.74 66 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| IS_MVSNet | | | 86.18 77 | 88.18 61 | 83.85 106 | 91.02 84 | 94.72 67 | 87.48 114 | 82.46 101 | 81.05 96 | 70.28 119 | 76.98 79 | 82.20 69 | 76.65 147 | 93.97 32 | 93.38 35 | 95.18 75 | 94.97 60 |
|
| HyFIR lowres test | | | 81.62 125 | 79.45 146 | 84.14 102 | 91.00 85 | 93.38 86 | 88.27 105 | 78.19 145 | 76.28 127 | 70.18 120 | 48.78 206 | 73.69 117 | 83.52 80 | 87.05 133 | 87.83 128 | 93.68 143 | 89.15 155 |
|
| COLMAP_ROB |  | 76.78 15 | 80.50 132 | 78.49 151 | 82.85 115 | 90.96 86 | 89.65 140 | 86.20 135 | 83.40 87 | 77.15 123 | 66.54 137 | 62.27 162 | 65.62 150 | 77.89 138 | 85.23 163 | 84.70 170 | 92.11 163 | 84.83 185 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CANet_DTU | | | 85.43 84 | 87.72 70 | 82.76 117 | 90.95 87 | 93.01 92 | 89.99 72 | 75.46 169 | 82.67 75 | 64.91 150 | 83.14 45 | 80.09 78 | 80.68 104 | 92.03 65 | 91.03 64 | 94.57 106 | 92.08 121 |
|
| FC-MVSNet-train | | | 85.18 88 | 85.31 90 | 85.03 89 | 90.67 88 | 91.62 109 | 87.66 112 | 83.61 77 | 79.75 107 | 74.37 100 | 78.69 71 | 71.21 128 | 78.91 131 | 91.23 71 | 89.96 89 | 94.96 84 | 94.69 69 |
|
| baseline1 | | | 84.54 95 | 84.43 96 | 84.67 91 | 90.62 89 | 91.16 112 | 88.63 100 | 83.75 74 | 79.78 106 | 71.16 115 | 75.14 90 | 74.10 112 | 77.84 139 | 91.56 68 | 90.67 74 | 96.04 26 | 88.58 158 |
|
| thres600view7 | | | 82.53 114 | 81.02 123 | 84.28 98 | 90.61 90 | 93.05 90 | 88.57 102 | 82.67 95 | 74.12 144 | 68.56 130 | 65.09 151 | 62.13 169 | 80.40 110 | 91.15 78 | 89.02 115 | 94.88 87 | 92.59 111 |
|
| casdiffmvs_mvg |  | | 87.97 66 | 87.63 71 | 88.37 66 | 90.55 91 | 94.42 69 | 91.82 56 | 84.69 60 | 84.05 70 | 82.08 63 | 76.57 81 | 79.00 88 | 85.49 73 | 92.35 57 | 92.29 53 | 95.55 56 | 94.70 67 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| EC-MVSNet | | | 89.96 47 | 90.77 43 | 89.01 55 | 90.54 92 | 95.15 57 | 91.34 62 | 81.43 108 | 85.27 62 | 83.08 54 | 82.83 47 | 87.22 49 | 90.97 29 | 94.79 18 | 93.38 35 | 96.73 8 | 96.71 33 |
|
| thres400 | | | 82.68 111 | 81.15 121 | 84.47 94 | 90.52 93 | 92.89 94 | 88.95 95 | 82.71 93 | 74.33 141 | 69.22 127 | 65.31 148 | 62.61 164 | 80.63 106 | 90.96 86 | 89.50 102 | 94.79 91 | 92.45 119 |
|
| EPP-MVSNet | | | 86.55 74 | 87.76 68 | 85.15 88 | 90.52 93 | 94.41 70 | 87.24 120 | 82.32 102 | 81.79 88 | 73.60 104 | 78.57 72 | 82.41 67 | 82.07 91 | 91.23 71 | 90.39 79 | 95.14 79 | 95.48 55 |
|
| ACMH | | 78.52 14 | 81.86 119 | 80.45 130 | 83.51 112 | 90.51 95 | 91.22 111 | 85.62 142 | 84.23 67 | 70.29 170 | 62.21 166 | 69.04 127 | 64.05 155 | 84.48 77 | 87.57 128 | 88.45 123 | 94.01 128 | 92.54 115 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Vis-MVSNet (Re-imp) | | | 83.65 104 | 86.81 77 | 79.96 148 | 90.46 96 | 92.71 96 | 84.84 150 | 82.00 104 | 80.93 98 | 62.44 165 | 76.29 83 | 82.32 68 | 65.54 195 | 92.29 58 | 91.66 57 | 94.49 111 | 91.47 138 |
|
| FA-MVS(training) | | | 85.65 83 | 85.79 87 | 85.48 86 | 90.44 97 | 93.47 83 | 88.66 99 | 73.11 177 | 83.34 73 | 82.26 60 | 71.79 108 | 78.39 93 | 83.14 83 | 91.00 83 | 89.47 104 | 95.28 73 | 93.06 96 |
|
| thres200 | | | 82.77 110 | 81.25 120 | 84.54 92 | 90.38 98 | 93.05 90 | 89.13 89 | 82.67 95 | 74.40 140 | 69.53 124 | 65.69 145 | 63.03 161 | 80.63 106 | 91.15 78 | 89.42 105 | 94.88 87 | 92.04 123 |
|
| MS-PatchMatch | | | 81.79 121 | 81.44 117 | 82.19 125 | 90.35 99 | 89.29 146 | 88.08 108 | 75.36 170 | 77.60 121 | 69.00 128 | 64.37 157 | 78.87 91 | 77.14 145 | 88.03 124 | 85.70 160 | 93.19 153 | 86.24 178 |
|
| PatchMatch-RL | | | 83.34 106 | 81.36 118 | 85.65 82 | 90.33 100 | 89.52 142 | 84.36 154 | 81.82 105 | 80.87 100 | 79.29 77 | 74.04 97 | 62.85 163 | 86.05 70 | 88.40 121 | 87.04 137 | 92.04 164 | 86.77 174 |
|
| thres100view900 | | | 82.55 113 | 81.01 125 | 84.34 95 | 90.30 101 | 92.27 103 | 89.04 93 | 82.77 92 | 75.14 134 | 69.56 122 | 65.72 143 | 63.13 158 | 79.62 125 | 89.97 100 | 89.26 108 | 94.73 96 | 91.61 135 |
|
| tfpn200view9 | | | 82.86 108 | 81.46 116 | 84.48 93 | 90.30 101 | 93.09 89 | 89.05 92 | 82.71 93 | 75.14 134 | 69.56 122 | 65.72 143 | 63.13 158 | 80.38 111 | 91.15 78 | 89.51 101 | 94.91 86 | 92.50 117 |
|
| casdiffmvs |  | | 87.45 71 | 87.15 73 | 87.79 71 | 90.15 103 | 94.22 72 | 89.96 73 | 83.93 71 | 85.08 65 | 80.91 68 | 75.81 86 | 77.88 97 | 86.08 69 | 91.86 66 | 90.86 68 | 95.74 44 | 94.37 72 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_Test | | | 86.93 73 | 87.24 72 | 86.56 76 | 90.10 104 | 93.47 83 | 90.31 69 | 80.12 122 | 83.55 72 | 78.12 83 | 79.58 66 | 79.80 81 | 85.45 74 | 90.17 97 | 90.59 76 | 95.29 71 | 93.53 91 |
|
| ACMH+ | | 79.08 13 | 81.84 120 | 80.06 135 | 83.91 105 | 89.92 105 | 90.62 116 | 86.21 134 | 83.48 84 | 73.88 146 | 65.75 142 | 66.38 138 | 65.30 151 | 84.63 76 | 85.90 153 | 87.25 133 | 93.45 148 | 91.13 142 |
|
| Effi-MVS+ | | | 85.33 85 | 85.08 91 | 85.63 83 | 89.69 106 | 93.42 85 | 89.90 74 | 80.31 120 | 79.32 110 | 72.48 113 | 73.52 102 | 74.03 113 | 86.55 68 | 90.99 84 | 89.98 88 | 94.83 89 | 94.27 78 |
|
| Anonymous202405211 | | | | 82.75 109 | | 89.58 107 | 92.97 93 | 89.04 93 | 84.13 69 | 78.72 115 | | 57.18 189 | 76.64 102 | 83.13 84 | 89.55 106 | 89.92 91 | 93.38 150 | 94.28 77 |
|
| GeoE | | | 84.62 94 | 83.98 101 | 85.35 87 | 89.34 108 | 92.83 95 | 88.34 104 | 78.95 137 | 79.29 111 | 77.16 91 | 68.10 131 | 74.56 109 | 83.40 81 | 89.31 110 | 89.23 109 | 94.92 85 | 94.57 71 |
|
| tttt0517 | | | 85.11 90 | 85.81 85 | 84.30 97 | 89.24 109 | 92.68 98 | 87.12 125 | 80.11 123 | 81.98 85 | 74.31 101 | 78.08 75 | 73.57 118 | 79.90 118 | 91.01 82 | 89.58 99 | 95.11 82 | 93.77 86 |
|
| DI_MVS_plusplus_trai | | | 86.41 76 | 85.54 89 | 87.42 73 | 89.24 109 | 93.13 88 | 92.16 51 | 82.65 97 | 82.30 82 | 80.75 72 | 68.30 130 | 80.41 75 | 85.01 75 | 90.56 95 | 90.07 85 | 94.70 99 | 94.01 80 |
|
| thisisatest0530 | | | 85.15 89 | 85.86 84 | 84.33 96 | 89.19 111 | 92.57 102 | 87.22 121 | 80.11 123 | 82.15 84 | 74.41 99 | 78.15 74 | 73.80 116 | 79.90 118 | 90.99 84 | 89.58 99 | 95.13 80 | 93.75 87 |
|
| DCV-MVSNet | | | 85.88 82 | 86.17 80 | 85.54 85 | 89.10 112 | 89.85 132 | 89.34 83 | 80.70 113 | 83.04 74 | 78.08 85 | 76.19 84 | 79.00 88 | 82.42 89 | 89.67 104 | 90.30 80 | 93.63 145 | 95.12 58 |
|
| UGNet | | | 85.90 81 | 88.23 60 | 83.18 113 | 88.96 113 | 94.10 74 | 87.52 113 | 83.60 78 | 81.66 89 | 77.90 86 | 80.76 61 | 83.19 63 | 66.70 192 | 91.13 81 | 90.71 73 | 94.39 117 | 96.06 44 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| Anonymous20231211 | | | 84.42 99 | 83.02 105 | 86.05 80 | 88.85 114 | 92.70 97 | 88.92 96 | 83.40 87 | 79.99 104 | 78.31 82 | 55.83 193 | 78.92 90 | 83.33 82 | 89.06 112 | 89.76 96 | 93.50 147 | 94.90 61 |
|
| MVSTER | | | 86.03 79 | 86.12 81 | 85.93 81 | 88.62 115 | 89.93 130 | 89.33 84 | 79.91 127 | 81.87 87 | 81.35 65 | 81.07 60 | 74.91 108 | 80.66 105 | 92.13 64 | 90.10 84 | 95.68 46 | 92.80 103 |
|
| TDRefinement | | | 79.05 150 | 77.05 169 | 81.39 132 | 88.45 116 | 89.00 153 | 86.92 126 | 82.65 97 | 74.21 143 | 64.41 151 | 59.17 181 | 59.16 185 | 74.52 161 | 85.23 163 | 85.09 165 | 91.37 173 | 87.51 170 |
|
| IterMVS-LS | | | 83.28 107 | 82.95 107 | 83.65 107 | 88.39 117 | 88.63 157 | 86.80 129 | 78.64 142 | 76.56 125 | 73.43 106 | 72.52 107 | 75.35 105 | 80.81 102 | 86.43 148 | 88.51 122 | 93.84 136 | 92.66 108 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| diffmvs |  | | 86.52 75 | 86.76 78 | 86.23 78 | 88.31 118 | 92.63 99 | 89.58 79 | 81.61 107 | 86.14 57 | 80.26 73 | 79.00 69 | 77.27 99 | 83.58 79 | 88.94 113 | 89.06 113 | 94.05 126 | 94.29 74 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Fast-Effi-MVS+ | | | 83.77 103 | 82.98 106 | 84.69 90 | 87.98 119 | 91.87 107 | 88.10 107 | 77.70 151 | 78.10 119 | 73.04 109 | 69.13 125 | 68.51 141 | 86.66 66 | 90.49 96 | 89.85 93 | 94.67 100 | 92.88 100 |
|
| gg-mvs-nofinetune | | | 75.64 187 | 77.26 166 | 73.76 191 | 87.92 120 | 92.20 104 | 87.32 117 | 64.67 210 | 51.92 215 | 35.35 220 | 46.44 209 | 77.05 101 | 71.97 172 | 92.64 54 | 91.02 65 | 95.34 68 | 89.53 153 |
|
| RPSCF | | | 83.46 105 | 83.36 104 | 83.59 109 | 87.75 121 | 87.35 167 | 84.82 151 | 79.46 132 | 83.84 71 | 78.12 83 | 82.69 49 | 79.87 79 | 82.60 88 | 82.47 187 | 81.13 190 | 88.78 192 | 86.13 179 |
|
| Effi-MVS+-dtu | | | 82.05 116 | 81.76 113 | 82.38 122 | 87.72 122 | 90.56 117 | 86.90 128 | 78.05 147 | 73.85 147 | 66.85 136 | 71.29 111 | 71.90 126 | 82.00 92 | 86.64 143 | 85.48 162 | 92.76 158 | 92.58 112 |
|
| CostFormer | | | 80.94 129 | 80.21 132 | 81.79 127 | 87.69 123 | 88.58 158 | 87.47 115 | 70.66 186 | 80.02 103 | 77.88 87 | 73.03 103 | 71.40 127 | 78.24 135 | 79.96 196 | 79.63 192 | 88.82 191 | 88.84 156 |
|
| baseline2 | | | 82.80 109 | 82.86 108 | 82.73 118 | 87.68 124 | 90.50 118 | 84.92 149 | 78.93 138 | 78.07 120 | 73.06 108 | 75.08 91 | 69.77 134 | 77.31 142 | 88.90 115 | 86.94 138 | 94.50 109 | 90.74 143 |
|
| Vis-MVSNet |  | | 84.38 100 | 86.68 79 | 81.70 128 | 87.65 125 | 94.89 63 | 88.14 106 | 80.90 112 | 74.48 139 | 68.23 131 | 77.53 77 | 80.72 74 | 69.98 179 | 92.68 53 | 91.90 55 | 95.33 69 | 94.58 70 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test-LLR | | | 79.47 145 | 79.84 140 | 79.03 154 | 87.47 126 | 82.40 201 | 81.24 178 | 78.05 147 | 73.72 148 | 62.69 162 | 73.76 99 | 74.42 110 | 73.49 166 | 84.61 172 | 82.99 182 | 91.25 175 | 87.01 172 |
|
| test0.0.03 1 | | | 76.03 181 | 78.51 150 | 73.12 195 | 87.47 126 | 85.13 187 | 76.32 199 | 78.05 147 | 73.19 155 | 50.98 205 | 70.64 113 | 69.28 137 | 55.53 203 | 85.33 161 | 84.38 174 | 90.39 183 | 81.63 197 |
|
| tpmrst | | | 76.55 174 | 75.99 181 | 77.20 168 | 87.32 128 | 83.05 194 | 82.86 164 | 65.62 205 | 78.61 117 | 67.22 135 | 69.19 124 | 65.71 149 | 75.87 151 | 76.75 206 | 75.33 205 | 84.31 210 | 83.28 191 |
|
| baseline | | | 84.89 91 | 86.06 83 | 83.52 111 | 87.25 129 | 89.67 139 | 87.76 110 | 75.68 168 | 84.92 66 | 78.40 81 | 80.10 62 | 80.98 72 | 80.20 114 | 86.69 142 | 87.05 136 | 91.86 167 | 92.99 97 |
|
| CDS-MVSNet | | | 81.63 124 | 82.09 112 | 81.09 137 | 87.21 130 | 90.28 121 | 87.46 116 | 80.33 119 | 69.06 174 | 70.66 116 | 71.30 110 | 73.87 114 | 67.99 185 | 89.58 105 | 89.87 92 | 92.87 157 | 90.69 144 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| tpm cat1 | | | 77.78 163 | 75.28 189 | 80.70 140 | 87.14 131 | 85.84 178 | 85.81 138 | 70.40 187 | 77.44 122 | 78.80 80 | 63.72 158 | 64.01 156 | 76.55 148 | 75.60 208 | 75.21 206 | 85.51 208 | 85.12 183 |
|
| tpm | | | 76.30 180 | 76.05 180 | 76.59 174 | 86.97 132 | 83.01 195 | 83.83 158 | 67.06 201 | 71.83 159 | 63.87 156 | 69.56 122 | 62.88 162 | 73.41 168 | 79.79 197 | 78.59 196 | 84.41 209 | 86.68 175 |
|
| EPMVS | | | 77.53 165 | 78.07 158 | 76.90 172 | 86.89 133 | 84.91 188 | 82.18 173 | 66.64 203 | 81.00 97 | 64.11 154 | 72.75 106 | 69.68 135 | 74.42 163 | 79.36 199 | 78.13 198 | 87.14 200 | 80.68 202 |
|
| PatchmatchNet |  | | 78.67 155 | 78.85 149 | 78.46 162 | 86.85 134 | 86.03 175 | 83.77 159 | 68.11 198 | 80.88 99 | 66.19 139 | 72.90 105 | 73.40 120 | 78.06 136 | 79.25 200 | 77.71 200 | 87.75 197 | 81.75 196 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| dmvs_re | | | 81.08 128 | 79.92 138 | 82.44 121 | 86.66 135 | 87.70 163 | 87.91 109 | 83.30 89 | 72.86 156 | 65.29 148 | 65.76 142 | 63.43 157 | 76.69 146 | 88.93 114 | 89.50 102 | 94.80 90 | 91.23 141 |
|
| SCA | | | 79.51 144 | 80.15 134 | 78.75 157 | 86.58 136 | 87.70 163 | 83.07 163 | 68.53 195 | 81.31 91 | 66.40 138 | 73.83 98 | 75.38 104 | 79.30 129 | 80.49 194 | 79.39 195 | 88.63 194 | 82.96 193 |
|
| USDC | | | 80.69 130 | 79.89 139 | 81.62 130 | 86.48 137 | 89.11 151 | 86.53 131 | 78.86 139 | 81.15 95 | 63.48 158 | 72.98 104 | 59.12 187 | 81.16 98 | 87.10 131 | 85.01 166 | 93.23 151 | 84.77 186 |
|
| Fast-Effi-MVS+-dtu | | | 79.95 136 | 80.69 127 | 79.08 153 | 86.36 138 | 89.14 150 | 85.85 137 | 72.28 180 | 72.85 157 | 59.32 186 | 70.43 117 | 68.42 143 | 77.57 140 | 86.14 150 | 86.44 148 | 93.11 154 | 91.39 139 |
|
| tfpnnormal | | | 77.46 166 | 74.86 191 | 80.49 144 | 86.34 139 | 88.92 154 | 84.33 155 | 81.26 110 | 61.39 202 | 61.70 173 | 51.99 203 | 53.66 208 | 74.84 158 | 88.63 117 | 87.38 132 | 94.50 109 | 92.08 121 |
|
| dps | | | 78.02 160 | 75.94 182 | 80.44 145 | 86.06 140 | 86.62 173 | 82.58 165 | 69.98 190 | 75.14 134 | 77.76 89 | 69.08 126 | 59.93 178 | 78.47 133 | 79.47 198 | 77.96 199 | 87.78 196 | 83.40 190 |
|
| IterMVS-SCA-FT | | | 79.41 146 | 80.20 133 | 78.49 161 | 85.88 141 | 86.26 174 | 83.95 157 | 71.94 181 | 73.55 151 | 61.94 169 | 70.48 116 | 70.50 130 | 75.23 153 | 85.81 155 | 84.61 172 | 91.99 166 | 90.18 150 |
|
| LTVRE_ROB | | 74.41 16 | 75.78 186 | 74.72 192 | 77.02 171 | 85.88 141 | 89.22 147 | 82.44 168 | 77.17 154 | 50.57 216 | 45.45 211 | 65.44 147 | 52.29 210 | 81.25 96 | 85.50 159 | 87.42 131 | 89.94 187 | 92.62 109 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| EG-PatchMatch MVS | | | 76.40 178 | 75.47 187 | 77.48 167 | 85.86 143 | 90.22 123 | 82.45 167 | 73.96 175 | 59.64 207 | 59.60 185 | 52.75 201 | 62.20 168 | 68.44 184 | 88.23 122 | 87.50 129 | 94.55 107 | 87.78 168 |
|
| CR-MVSNet | | | 78.71 154 | 78.86 148 | 78.55 160 | 85.85 144 | 85.15 185 | 82.30 170 | 68.23 196 | 74.71 137 | 65.37 145 | 64.39 156 | 69.59 136 | 77.18 143 | 85.10 168 | 84.87 167 | 92.34 162 | 88.21 162 |
|
| GA-MVS | | | 79.52 143 | 79.71 143 | 79.30 152 | 85.68 145 | 90.36 120 | 84.55 152 | 78.44 143 | 70.47 169 | 57.87 191 | 68.52 129 | 61.38 170 | 76.21 149 | 89.40 109 | 87.89 125 | 93.04 155 | 89.96 151 |
|
| UniMVSNet_ETH3D | | | 79.24 148 | 76.47 174 | 82.48 120 | 85.66 146 | 90.97 113 | 86.08 136 | 81.63 106 | 64.48 194 | 68.94 129 | 54.47 195 | 57.65 191 | 78.83 132 | 85.20 166 | 88.91 117 | 93.72 141 | 93.60 89 |
|
| TransMVSNet (Re) | | | 76.57 173 | 75.16 190 | 78.22 164 | 85.60 147 | 87.24 168 | 82.46 166 | 81.23 111 | 59.80 206 | 59.05 189 | 57.07 190 | 59.14 186 | 66.60 193 | 88.09 123 | 86.82 139 | 94.37 118 | 87.95 167 |
|
| RPMNet | | | 77.07 168 | 77.63 164 | 76.42 175 | 85.56 148 | 85.15 185 | 81.37 175 | 65.27 207 | 74.71 137 | 60.29 182 | 63.71 159 | 66.59 147 | 73.64 165 | 82.71 185 | 82.12 187 | 92.38 161 | 88.39 160 |
|
| MDTV_nov1_ep13 | | | 79.14 149 | 79.49 145 | 78.74 158 | 85.40 149 | 86.89 171 | 84.32 156 | 70.29 188 | 78.85 114 | 69.42 125 | 75.37 89 | 73.29 121 | 75.64 152 | 80.61 193 | 79.48 194 | 87.36 198 | 81.91 195 |
|
| UniMVSNet (Re) | | | 81.22 126 | 81.08 122 | 81.39 132 | 85.35 150 | 91.76 108 | 84.93 148 | 82.88 90 | 76.13 128 | 65.02 149 | 64.94 152 | 63.09 160 | 75.17 155 | 87.71 127 | 89.04 114 | 94.97 83 | 94.88 62 |
|
| UniMVSNet_NR-MVSNet | | | 81.87 118 | 81.33 119 | 82.50 119 | 85.31 151 | 91.30 110 | 85.70 139 | 84.25 66 | 75.89 129 | 64.21 152 | 66.95 136 | 64.65 153 | 80.22 112 | 87.07 132 | 89.18 111 | 95.27 74 | 94.29 74 |
|
| IterMVS | | | 78.79 153 | 79.71 143 | 77.71 165 | 85.26 152 | 85.91 177 | 84.54 153 | 69.84 192 | 73.38 152 | 61.25 177 | 70.53 115 | 70.35 131 | 74.43 162 | 85.21 165 | 83.80 177 | 90.95 179 | 88.77 157 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| NR-MVSNet | | | 80.25 134 | 79.98 137 | 80.56 143 | 85.20 153 | 90.94 114 | 85.65 141 | 83.58 80 | 75.74 130 | 61.36 176 | 65.30 149 | 56.75 196 | 72.38 171 | 88.46 120 | 88.80 118 | 95.16 77 | 93.87 82 |
|
| CMPMVS |  | 56.49 17 | 73.84 195 | 71.73 201 | 76.31 178 | 85.20 153 | 85.67 180 | 75.80 200 | 73.23 176 | 62.26 199 | 65.40 144 | 53.40 200 | 59.70 180 | 71.77 174 | 80.25 195 | 79.56 193 | 86.45 204 | 81.28 198 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| TinyColmap | | | 76.73 170 | 73.95 194 | 79.96 148 | 85.16 155 | 85.64 181 | 82.34 169 | 78.19 145 | 70.63 167 | 62.06 168 | 60.69 173 | 49.61 213 | 80.81 102 | 85.12 167 | 83.69 178 | 91.22 177 | 82.27 194 |
|
| gm-plane-assit | | | 70.29 200 | 70.65 202 | 69.88 200 | 85.03 156 | 78.50 211 | 58.41 218 | 65.47 206 | 50.39 217 | 40.88 216 | 49.60 205 | 50.11 212 | 75.14 156 | 91.43 70 | 89.78 94 | 94.32 119 | 84.73 187 |
|
| FC-MVSNet-test | | | 76.53 175 | 81.62 115 | 70.58 199 | 84.99 157 | 85.73 179 | 74.81 202 | 78.85 140 | 77.00 124 | 39.13 218 | 75.90 85 | 73.50 119 | 54.08 207 | 86.54 145 | 85.99 157 | 91.65 169 | 86.68 175 |
|
| DU-MVS | | | 81.20 127 | 80.30 131 | 82.25 123 | 84.98 158 | 90.94 114 | 85.70 139 | 83.58 80 | 75.74 130 | 64.21 152 | 65.30 149 | 59.60 182 | 80.22 112 | 86.89 135 | 89.31 106 | 94.77 93 | 94.29 74 |
|
| Baseline_NR-MVSNet | | | 79.84 138 | 78.37 155 | 81.55 131 | 84.98 158 | 86.66 172 | 85.06 146 | 83.49 82 | 75.57 132 | 63.31 159 | 58.22 188 | 60.97 172 | 78.00 137 | 86.89 135 | 87.13 134 | 94.47 112 | 93.15 94 |
|
| TranMVSNet+NR-MVSNet | | | 80.52 131 | 79.84 140 | 81.33 134 | 84.92 160 | 90.39 119 | 85.53 144 | 84.22 68 | 74.27 142 | 60.68 181 | 64.93 153 | 59.96 177 | 77.48 141 | 86.75 140 | 89.28 107 | 95.12 81 | 93.29 92 |
|
| pm-mvs1 | | | 78.51 158 | 77.75 163 | 79.40 151 | 84.83 161 | 89.30 145 | 83.55 161 | 79.38 133 | 62.64 198 | 63.68 157 | 58.73 186 | 64.68 152 | 70.78 178 | 89.79 102 | 87.84 126 | 94.17 123 | 91.28 140 |
|
| testgi | | | 71.92 198 | 74.20 193 | 69.27 201 | 84.58 162 | 83.06 193 | 73.40 205 | 74.39 172 | 64.04 196 | 46.17 210 | 68.90 128 | 57.15 194 | 48.89 211 | 84.07 177 | 83.08 181 | 88.18 195 | 79.09 206 |
|
| thisisatest0515 | | | 79.76 140 | 80.59 129 | 78.80 156 | 84.40 163 | 88.91 155 | 79.48 187 | 76.94 157 | 72.29 158 | 67.33 134 | 67.82 133 | 65.99 148 | 70.80 177 | 88.50 119 | 87.84 126 | 93.86 135 | 92.75 106 |
|
| FMVSNet3 | | | 84.44 98 | 84.64 94 | 84.21 99 | 84.32 164 | 90.13 125 | 89.85 75 | 80.37 116 | 81.17 92 | 75.50 92 | 69.63 119 | 79.69 83 | 79.62 125 | 89.72 103 | 90.52 78 | 95.59 53 | 91.58 136 |
|
| GBi-Net | | | 84.51 96 | 84.80 92 | 84.17 100 | 84.20 165 | 89.95 127 | 89.70 76 | 80.37 116 | 81.17 92 | 75.50 92 | 69.63 119 | 79.69 83 | 79.75 122 | 90.73 90 | 90.72 70 | 95.52 59 | 91.71 129 |
|
| test1 | | | 84.51 96 | 84.80 92 | 84.17 100 | 84.20 165 | 89.95 127 | 89.70 76 | 80.37 116 | 81.17 92 | 75.50 92 | 69.63 119 | 79.69 83 | 79.75 122 | 90.73 90 | 90.72 70 | 95.52 59 | 91.71 129 |
|
| FMVSNet2 | | | 83.87 101 | 83.73 103 | 84.05 104 | 84.20 165 | 89.95 127 | 89.70 76 | 80.21 121 | 79.17 113 | 74.89 97 | 65.91 140 | 77.49 98 | 79.75 122 | 90.87 87 | 91.00 66 | 95.52 59 | 91.71 129 |
|
| WR-MVS | | | 76.63 172 | 78.02 160 | 75.02 185 | 84.14 168 | 89.76 136 | 78.34 194 | 80.64 114 | 69.56 171 | 52.32 200 | 61.26 166 | 61.24 171 | 60.66 200 | 84.45 174 | 87.07 135 | 93.99 129 | 92.77 104 |
|
| v8 | | | 79.90 137 | 78.39 154 | 81.66 129 | 83.97 169 | 89.81 133 | 87.16 123 | 77.40 153 | 71.49 160 | 67.71 132 | 61.24 167 | 62.49 165 | 79.83 121 | 85.48 160 | 86.17 152 | 93.89 133 | 92.02 125 |
|
| v2v482 | | | 79.84 138 | 78.07 158 | 81.90 126 | 83.75 170 | 90.21 124 | 87.17 122 | 79.85 128 | 70.65 166 | 65.93 141 | 61.93 164 | 60.07 176 | 80.82 101 | 85.25 162 | 86.71 141 | 93.88 134 | 91.70 133 |
|
| v10 | | | 79.62 141 | 78.19 156 | 81.28 135 | 83.73 171 | 89.69 138 | 87.27 119 | 76.86 158 | 70.50 168 | 65.46 143 | 60.58 174 | 60.47 174 | 80.44 109 | 86.91 134 | 86.63 144 | 93.93 130 | 92.55 114 |
|
| v1144 | | | 79.38 147 | 77.83 161 | 81.18 136 | 83.62 172 | 90.23 122 | 87.15 124 | 78.35 144 | 69.13 173 | 64.02 155 | 60.20 176 | 59.41 183 | 80.14 116 | 86.78 138 | 86.57 145 | 93.81 138 | 92.53 116 |
|
| v148 | | | 78.59 156 | 76.84 172 | 80.62 142 | 83.61 173 | 89.16 149 | 83.65 160 | 79.24 135 | 69.38 172 | 69.34 126 | 59.88 178 | 60.41 175 | 75.19 154 | 83.81 178 | 84.63 171 | 92.70 159 | 90.63 146 |
|
| SixPastTwentyTwo | | | 76.02 182 | 75.72 184 | 76.36 176 | 83.38 174 | 87.54 165 | 75.50 201 | 76.22 162 | 65.50 191 | 57.05 192 | 70.64 113 | 53.97 207 | 74.54 160 | 80.96 192 | 82.12 187 | 91.44 171 | 89.35 154 |
|
| CVMVSNet | | | 76.70 171 | 78.46 152 | 74.64 189 | 83.34 175 | 84.48 189 | 81.83 174 | 74.58 171 | 68.88 175 | 51.23 204 | 69.77 118 | 70.05 132 | 67.49 188 | 84.27 175 | 83.81 176 | 89.38 189 | 87.96 166 |
|
| v1192 | | | 78.94 151 | 77.33 165 | 80.82 139 | 83.25 176 | 89.90 131 | 86.91 127 | 77.72 150 | 68.63 177 | 62.61 164 | 59.17 181 | 57.53 192 | 80.62 108 | 86.89 135 | 86.47 147 | 93.79 139 | 92.75 106 |
|
| DTE-MVSNet | | | 75.14 189 | 75.44 188 | 74.80 187 | 83.18 177 | 87.19 169 | 78.25 196 | 80.11 123 | 66.05 186 | 48.31 207 | 60.88 171 | 54.67 203 | 64.54 196 | 82.57 186 | 86.17 152 | 94.43 115 | 90.53 148 |
|
| PEN-MVS | | | 76.02 182 | 76.07 178 | 75.95 180 | 83.17 178 | 87.97 161 | 79.65 185 | 80.07 126 | 66.57 184 | 51.45 202 | 60.94 170 | 55.47 201 | 66.81 191 | 82.72 184 | 86.80 140 | 94.59 104 | 92.03 124 |
|
| TAMVS | | | 76.42 176 | 77.16 168 | 75.56 181 | 83.05 179 | 85.55 182 | 80.58 183 | 71.43 183 | 65.40 193 | 61.04 180 | 67.27 135 | 69.22 139 | 67.99 185 | 84.88 170 | 84.78 169 | 89.28 190 | 83.01 192 |
|
| pmmvs4 | | | 79.99 135 | 78.08 157 | 82.22 124 | 83.04 180 | 87.16 170 | 84.95 147 | 78.80 141 | 78.64 116 | 74.53 98 | 64.61 155 | 59.41 183 | 79.45 127 | 84.13 176 | 84.54 173 | 92.53 160 | 88.08 164 |
|
| v144192 | | | 78.81 152 | 77.22 167 | 80.67 141 | 82.95 181 | 89.79 135 | 86.40 132 | 77.42 152 | 68.26 179 | 63.13 160 | 59.50 179 | 58.13 188 | 80.08 117 | 85.93 152 | 86.08 154 | 94.06 125 | 92.83 102 |
|
| v1921920 | | | 78.57 157 | 76.99 170 | 80.41 146 | 82.93 182 | 89.63 141 | 86.38 133 | 77.14 155 | 68.31 178 | 61.80 172 | 58.89 185 | 56.79 195 | 80.19 115 | 86.50 147 | 86.05 156 | 94.02 127 | 92.76 105 |
|
| CHOSEN 280x420 | | | 80.28 133 | 81.66 114 | 78.67 159 | 82.92 183 | 79.24 210 | 85.36 145 | 66.79 202 | 78.11 118 | 70.32 117 | 75.03 92 | 79.87 79 | 81.09 99 | 89.07 111 | 83.16 180 | 85.54 207 | 87.17 171 |
|
| WR-MVS_H | | | 75.84 185 | 76.93 171 | 74.57 190 | 82.86 184 | 89.50 143 | 78.34 194 | 79.36 134 | 66.90 182 | 52.51 199 | 60.20 176 | 59.71 179 | 59.73 201 | 83.61 179 | 85.77 159 | 94.65 101 | 92.84 101 |
|
| v1240 | | | 78.15 159 | 76.53 173 | 80.04 147 | 82.85 185 | 89.48 144 | 85.61 143 | 76.77 159 | 67.05 181 | 61.18 179 | 58.37 187 | 56.16 199 | 79.89 120 | 86.11 151 | 86.08 154 | 93.92 131 | 92.47 118 |
|
| V42 | | | 79.59 142 | 78.43 153 | 80.94 138 | 82.79 186 | 89.71 137 | 86.66 130 | 76.73 160 | 71.38 161 | 67.42 133 | 61.01 169 | 62.30 167 | 78.39 134 | 85.56 158 | 86.48 146 | 93.65 144 | 92.60 110 |
|
| CP-MVSNet | | | 76.36 179 | 76.41 175 | 76.32 177 | 82.73 187 | 88.64 156 | 79.39 188 | 79.62 129 | 67.21 180 | 53.70 196 | 60.72 172 | 55.22 202 | 67.91 187 | 83.52 180 | 86.34 150 | 94.55 107 | 93.19 93 |
|
| PS-CasMVS | | | 75.90 184 | 75.86 183 | 75.96 179 | 82.59 188 | 88.46 159 | 79.23 191 | 79.56 131 | 66.00 187 | 52.77 198 | 59.48 180 | 54.35 206 | 67.14 190 | 83.37 181 | 86.23 151 | 94.47 112 | 93.10 95 |
|
| test20.03 | | | 68.31 203 | 70.05 204 | 66.28 206 | 82.41 189 | 80.84 205 | 67.35 212 | 76.11 164 | 58.44 209 | 40.80 217 | 53.77 199 | 54.54 204 | 42.28 214 | 83.07 182 | 81.96 189 | 88.73 193 | 77.76 208 |
|
| FMVSNet1 | | | 81.64 123 | 80.61 128 | 82.84 116 | 82.36 190 | 89.20 148 | 88.67 97 | 79.58 130 | 70.79 165 | 72.63 112 | 58.95 184 | 72.26 125 | 79.34 128 | 90.73 90 | 90.72 70 | 94.47 112 | 91.62 134 |
|
| pmmvs6 | | | 74.83 190 | 72.89 197 | 77.09 169 | 82.11 191 | 87.50 166 | 80.88 182 | 76.97 156 | 52.79 214 | 61.91 171 | 46.66 208 | 60.49 173 | 69.28 181 | 86.74 141 | 85.46 163 | 91.39 172 | 90.56 147 |
|
| pmmvs5 | | | 76.93 169 | 76.33 176 | 77.62 166 | 81.97 192 | 88.40 160 | 81.32 177 | 74.35 173 | 65.42 192 | 61.42 175 | 63.07 160 | 57.95 190 | 73.23 169 | 85.60 157 | 85.35 164 | 93.41 149 | 88.55 159 |
|
| v7n | | | 77.22 167 | 76.23 177 | 78.38 163 | 81.89 193 | 89.10 152 | 82.24 172 | 76.36 161 | 65.96 188 | 61.21 178 | 56.56 191 | 55.79 200 | 75.07 157 | 86.55 144 | 86.68 142 | 93.52 146 | 92.95 99 |
|
| our_test_3 | | | | | | 81.81 194 | 83.96 192 | 76.61 198 | | | | | | | | | | |
|
| Anonymous20231206 | | | 70.80 199 | 70.59 203 | 71.04 198 | 81.60 195 | 82.49 200 | 74.64 203 | 75.87 166 | 64.17 195 | 49.27 206 | 44.85 212 | 53.59 209 | 54.68 206 | 83.07 182 | 82.34 186 | 90.17 184 | 83.65 189 |
|
| ADS-MVSNet | | | 74.53 192 | 75.69 185 | 73.17 194 | 81.57 196 | 80.71 206 | 79.27 190 | 63.03 212 | 79.27 112 | 59.94 184 | 67.86 132 | 68.32 145 | 71.08 176 | 77.33 204 | 76.83 202 | 84.12 212 | 79.53 203 |
|
| pmnet_mix02 | | | 71.95 197 | 71.83 200 | 72.10 196 | 81.40 197 | 80.63 207 | 73.78 204 | 72.85 179 | 70.90 164 | 54.89 194 | 62.17 163 | 57.42 193 | 62.92 198 | 76.80 205 | 73.98 209 | 86.74 203 | 80.87 201 |
|
| test-mter | | | 77.79 162 | 80.02 136 | 75.18 184 | 81.18 198 | 82.85 196 | 80.52 184 | 62.03 214 | 73.62 150 | 62.16 167 | 73.55 101 | 73.83 115 | 73.81 164 | 84.67 171 | 83.34 179 | 91.37 173 | 88.31 161 |
|
| TESTMET0.1,1 | | | 77.78 163 | 79.84 140 | 75.38 183 | 80.86 199 | 82.40 201 | 81.24 178 | 62.72 213 | 73.72 148 | 62.69 162 | 73.76 99 | 74.42 110 | 73.49 166 | 84.61 172 | 82.99 182 | 91.25 175 | 87.01 172 |
|
| MDTV_nov1_ep13_2view | | | 73.21 196 | 72.91 196 | 73.56 193 | 80.01 200 | 84.28 191 | 78.62 192 | 66.43 204 | 68.64 176 | 59.12 187 | 60.39 175 | 59.69 181 | 69.81 180 | 78.82 202 | 77.43 201 | 87.36 198 | 81.11 200 |
|
| FPMVS | | | 63.63 208 | 60.08 213 | 67.78 203 | 80.01 200 | 71.50 216 | 72.88 207 | 69.41 194 | 61.82 201 | 53.11 197 | 45.12 211 | 42.11 220 | 50.86 209 | 66.69 214 | 63.84 215 | 80.41 214 | 69.46 214 |
|
| anonymousdsp | | | 77.94 161 | 79.00 147 | 76.71 173 | 79.03 202 | 87.83 162 | 79.58 186 | 72.87 178 | 65.80 189 | 58.86 190 | 65.82 141 | 62.48 166 | 75.99 150 | 86.77 139 | 88.66 119 | 93.92 131 | 95.68 52 |
|
| N_pmnet | | | 66.85 204 | 66.63 205 | 67.11 205 | 78.73 203 | 74.66 214 | 70.53 209 | 71.07 184 | 66.46 185 | 46.54 209 | 51.68 204 | 51.91 211 | 55.48 204 | 74.68 209 | 72.38 210 | 80.29 215 | 74.65 211 |
|
| PMMVS | | | 81.65 122 | 84.05 100 | 78.86 155 | 78.56 204 | 82.63 198 | 83.10 162 | 67.22 200 | 81.39 90 | 70.11 121 | 84.91 41 | 79.74 82 | 82.12 90 | 87.31 129 | 85.70 160 | 92.03 165 | 86.67 177 |
|
| PatchT | | | 76.42 176 | 77.81 162 | 74.80 187 | 78.46 205 | 84.30 190 | 71.82 208 | 65.03 209 | 73.89 145 | 65.37 145 | 61.58 165 | 66.70 146 | 77.18 143 | 85.10 168 | 84.87 167 | 90.94 180 | 88.21 162 |
|
| MVS-HIRNet | | | 68.83 202 | 66.39 206 | 71.68 197 | 77.58 206 | 75.52 213 | 66.45 213 | 65.05 208 | 62.16 200 | 62.84 161 | 44.76 213 | 56.60 198 | 71.96 173 | 78.04 203 | 75.06 207 | 86.18 206 | 72.56 212 |
|
| pmmvs-eth3d | | | 74.32 193 | 71.96 199 | 77.08 170 | 77.33 207 | 82.71 197 | 78.41 193 | 76.02 165 | 66.65 183 | 65.98 140 | 54.23 197 | 49.02 215 | 73.14 170 | 82.37 188 | 82.69 184 | 91.61 170 | 86.05 180 |
|
| new-patchmatchnet | | | 63.80 207 | 63.31 209 | 64.37 207 | 76.49 208 | 75.99 212 | 63.73 215 | 70.99 185 | 57.27 210 | 43.08 213 | 45.86 210 | 43.80 217 | 45.13 213 | 73.20 210 | 70.68 213 | 86.80 202 | 76.34 210 |
|
| FMVSNet5 | | | 75.50 188 | 76.07 178 | 74.83 186 | 76.16 209 | 81.19 204 | 81.34 176 | 70.21 189 | 73.20 154 | 61.59 174 | 58.97 183 | 68.33 144 | 68.50 183 | 85.87 154 | 85.85 158 | 91.18 178 | 79.11 205 |
|
| PM-MVS | | | 74.17 194 | 73.10 195 | 75.41 182 | 76.07 210 | 82.53 199 | 77.56 197 | 71.69 182 | 71.04 162 | 61.92 170 | 61.23 168 | 47.30 216 | 74.82 159 | 81.78 190 | 79.80 191 | 90.42 182 | 88.05 165 |
|
| MIMVSNet | | | 74.69 191 | 75.60 186 | 73.62 192 | 76.02 211 | 85.31 184 | 81.21 180 | 67.43 199 | 71.02 163 | 59.07 188 | 54.48 194 | 64.07 154 | 66.14 194 | 86.52 146 | 86.64 143 | 91.83 168 | 81.17 199 |
|
| EU-MVSNet | | | 69.98 201 | 72.30 198 | 67.28 204 | 75.67 212 | 79.39 209 | 73.12 206 | 69.94 191 | 63.59 197 | 42.80 214 | 62.93 161 | 56.71 197 | 55.07 205 | 79.13 201 | 78.55 197 | 87.06 201 | 85.82 182 |
|
| WB-MVS | | | 52.27 213 | 57.26 214 | 46.45 213 | 75.64 213 | 65.62 219 | 40.45 224 | 75.80 167 | 47.10 219 | 9.11 227 | 53.83 198 | 38.98 223 | 14.47 222 | 69.44 212 | 68.29 214 | 63.24 220 | 57.56 219 |
|
| ET-MVSNet_ETH3D | | | 84.65 93 | 85.58 88 | 83.56 110 | 74.99 214 | 92.62 101 | 90.29 70 | 80.38 115 | 82.16 83 | 73.01 110 | 83.41 44 | 71.10 129 | 87.05 63 | 87.77 126 | 90.17 83 | 95.62 50 | 91.82 127 |
|
| PMVS |  | 50.48 18 | 55.81 212 | 51.93 215 | 60.33 210 | 72.90 215 | 49.34 221 | 48.78 219 | 69.51 193 | 43.49 220 | 54.25 195 | 36.26 218 | 41.04 222 | 39.71 216 | 65.07 215 | 60.70 216 | 76.85 217 | 67.58 215 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| ambc | | | | 61.92 210 | | 70.98 216 | 73.54 215 | 63.64 216 | | 60.06 204 | 52.23 201 | 38.44 216 | 19.17 227 | 57.12 202 | 82.33 189 | 75.03 208 | 83.21 213 | 84.89 184 |
|
| pmmvs3 | | | 61.89 209 | 61.74 211 | 62.06 209 | 64.30 217 | 70.83 217 | 64.22 214 | 52.14 218 | 48.78 218 | 44.47 212 | 41.67 215 | 41.70 221 | 63.03 197 | 76.06 207 | 76.02 203 | 84.18 211 | 77.14 209 |
|
| MDA-MVSNet-bldmvs | | | 66.22 205 | 64.49 208 | 68.24 202 | 61.67 218 | 82.11 203 | 70.07 210 | 76.16 163 | 59.14 208 | 47.94 208 | 54.35 196 | 35.82 224 | 67.33 189 | 64.94 216 | 75.68 204 | 86.30 205 | 79.36 204 |
|
| new_pmnet | | | 59.28 210 | 61.47 212 | 56.73 211 | 61.66 219 | 68.29 218 | 59.57 217 | 54.91 215 | 60.83 203 | 34.38 221 | 44.66 214 | 43.65 218 | 49.90 210 | 71.66 211 | 71.56 212 | 79.94 216 | 69.67 213 |
|
| Gipuma |  | | 49.17 214 | 47.05 217 | 51.65 212 | 59.67 220 | 48.39 222 | 41.98 222 | 63.47 211 | 55.64 213 | 33.33 222 | 14.90 221 | 13.78 228 | 41.34 215 | 69.31 213 | 72.30 211 | 70.11 218 | 55.00 220 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MIMVSNet1 | | | 65.00 206 | 66.24 207 | 63.55 208 | 58.41 221 | 80.01 208 | 69.00 211 | 74.03 174 | 55.81 212 | 41.88 215 | 36.81 217 | 49.48 214 | 47.89 212 | 81.32 191 | 82.40 185 | 90.08 186 | 77.88 207 |
|
| EMVS | | | 30.49 219 | 25.44 221 | 36.39 216 | 51.47 222 | 29.89 226 | 20.17 227 | 54.00 217 | 26.49 222 | 12.02 226 | 13.94 224 | 8.84 229 | 34.37 218 | 25.04 223 | 34.37 222 | 46.29 225 | 39.53 223 |
|
| E-PMN | | | 31.40 217 | 26.80 220 | 36.78 215 | 51.39 223 | 29.96 225 | 20.20 226 | 54.17 216 | 25.93 223 | 12.75 225 | 14.73 222 | 8.58 230 | 34.10 219 | 27.36 222 | 37.83 221 | 48.07 224 | 43.18 222 |
|
| PMMVS2 | | | 41.68 216 | 44.74 218 | 38.10 214 | 46.97 224 | 52.32 220 | 40.63 223 | 48.08 219 | 35.51 221 | 7.36 228 | 26.86 220 | 24.64 226 | 16.72 221 | 55.24 219 | 59.03 217 | 68.85 219 | 59.59 218 |
|
| tmp_tt | | | | | 32.73 218 | 43.96 225 | 21.15 227 | 26.71 225 | 8.99 223 | 65.67 190 | 51.39 203 | 56.01 192 | 42.64 219 | 11.76 223 | 56.60 218 | 50.81 219 | 53.55 223 | |
|
| MVE |  | 30.17 19 | 30.88 218 | 33.52 219 | 27.80 220 | 23.78 226 | 39.16 224 | 18.69 228 | 46.90 220 | 21.88 224 | 15.39 224 | 14.37 223 | 7.31 231 | 24.41 220 | 41.63 221 | 56.22 218 | 37.64 226 | 54.07 221 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 41.78 215 | 48.10 216 | 34.42 217 | 10.74 227 | 19.78 228 | 44.64 221 | 17.73 222 | 59.83 205 | 38.67 219 | 35.82 219 | 54.41 205 | 34.94 217 | 62.87 217 | 43.13 220 | 59.81 221 | 60.82 217 |
|
| GG-mvs-BLEND | | | 57.56 211 | 82.61 110 | 28.34 219 | 0.22 228 | 90.10 126 | 79.37 189 | 0.14 225 | 79.56 108 | 0.40 229 | 71.25 112 | 83.40 62 | 0.30 226 | 86.27 149 | 83.87 175 | 89.59 188 | 83.83 188 |
|
| testmvs | | | 1.03 220 | 1.63 222 | 0.34 221 | 0.09 229 | 0.35 229 | 0.61 230 | 0.16 224 | 1.49 225 | 0.10 230 | 3.15 225 | 0.15 232 | 0.86 225 | 1.32 224 | 1.18 223 | 0.20 227 | 3.76 225 |
|
| test123 | | | 0.87 221 | 1.40 223 | 0.25 222 | 0.03 230 | 0.25 230 | 0.35 231 | 0.08 226 | 1.21 226 | 0.05 231 | 2.84 226 | 0.03 233 | 0.89 224 | 0.43 225 | 1.16 224 | 0.13 228 | 3.87 224 |
|
| uanet_test | | | 0.00 222 | 0.00 224 | 0.00 223 | 0.00 231 | 0.00 231 | 0.00 232 | 0.00 227 | 0.00 227 | 0.00 232 | 0.00 227 | 0.00 234 | 0.00 227 | 0.00 226 | 0.00 225 | 0.00 229 | 0.00 226 |
|
| sosnet-low-res | | | 0.00 222 | 0.00 224 | 0.00 223 | 0.00 231 | 0.00 231 | 0.00 232 | 0.00 227 | 0.00 227 | 0.00 232 | 0.00 227 | 0.00 234 | 0.00 227 | 0.00 226 | 0.00 225 | 0.00 229 | 0.00 226 |
|
| sosnet | | | 0.00 222 | 0.00 224 | 0.00 223 | 0.00 231 | 0.00 231 | 0.00 232 | 0.00 227 | 0.00 227 | 0.00 232 | 0.00 227 | 0.00 234 | 0.00 227 | 0.00 226 | 0.00 225 | 0.00 229 | 0.00 226 |
|
| RE-MVS-def | | | | | | | | | | | 56.08 193 | | | | | | | |
|
| 9.14 | | | | | | | | | | | | | 92.16 17 | | | | | |
|
| MTAPA | | | | | | | | | | | 92.97 2 | | 91.03 23 | | | | | |
|
| MTMP | | | | | | | | | | | 93.14 1 | | 90.21 30 | | | | | |
|
| Patchmatch-RL test | | | | | | | | 8.55 229 | | | | | | | | | | |
|
| NP-MVS | | | | | | | | | | 87.47 53 | | | | | | | | |
|
| Patchmtry | | | | | | | 85.54 183 | 82.30 170 | 68.23 196 | | 65.37 145 | | | | | | | |
|
| DeepMVS_CX |  | | | | | | 48.31 223 | 48.03 220 | 26.08 221 | 56.42 211 | 25.77 223 | 47.51 207 | 31.31 225 | 51.30 208 | 48.49 220 | | 53.61 222 | 61.52 216 |
|