| FOURS1 | | | | | | 99.55 1 | 93.34 66 | 99.29 1 | 98.35 27 | 94.98 29 | 98.49 23 | | | | | | |
|
| region2R | | | 97.07 26 | 96.84 34 | 97.77 33 | 99.46 2 | 93.79 54 | 98.52 15 | 98.24 47 | 93.19 100 | 97.14 55 | 98.34 54 | 91.59 53 | 99.87 7 | 95.46 92 | 99.59 19 | 99.64 15 |
|
| DVP-MVS |  | | 97.91 3 | 97.81 4 | 98.22 13 | 99.45 3 | 95.36 13 | 98.21 42 | 97.85 116 | 94.92 32 | 98.73 18 | 98.87 15 | 95.08 8 | 99.84 23 | 97.52 25 | 99.67 6 | 99.48 44 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 98.51 4 | 99.45 3 | 95.93 5 | 98.21 42 | 98.28 36 | | | | | 99.86 9 | 97.52 25 | 99.67 6 | 99.75 6 |
|
| test0726 | | | | | | 99.45 3 | 95.36 13 | 98.31 27 | 98.29 34 | 94.92 32 | 98.99 7 | 98.92 10 | 95.08 8 | | | | |
|
| ACMMPR | | | 97.07 26 | 96.84 34 | 97.79 30 | 99.44 6 | 93.88 52 | 98.52 15 | 98.31 31 | 93.21 97 | 97.15 54 | 98.33 57 | 91.35 58 | 99.86 9 | 95.63 86 | 99.59 19 | 99.62 17 |
|
| SED-MVS | | | 98.05 2 | 97.99 1 | 98.24 10 | 99.42 7 | 95.30 17 | 98.25 35 | 98.27 39 | 95.13 23 | 99.19 4 | 98.89 13 | 95.54 5 | 99.85 18 | 97.52 25 | 99.66 10 | 99.56 28 |
|
| IU-MVS | | | | | | 99.42 7 | 95.39 11 | | 97.94 104 | 90.40 201 | 98.94 8 | | | | 97.41 32 | 99.66 10 | 99.74 8 |
|
| test_241102_ONE | | | | | | 99.42 7 | 95.30 17 | | 98.27 39 | 95.09 26 | 99.19 4 | 98.81 21 | 95.54 5 | 99.65 58 | | | |
|
| HFP-MVS | | | 97.14 23 | 96.92 30 | 97.83 26 | 99.42 7 | 94.12 46 | 98.52 15 | 98.32 30 | 93.21 97 | 97.18 52 | 98.29 63 | 92.08 43 | 99.83 26 | 95.63 86 | 99.59 19 | 99.54 33 |
|
| MSP-MVS | | | 97.59 10 | 97.54 10 | 97.73 37 | 99.40 11 | 93.77 56 | 98.53 14 | 98.29 34 | 95.55 13 | 98.56 22 | 97.81 99 | 93.90 15 | 99.65 58 | 96.62 45 | 99.21 71 | 99.77 2 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| mPP-MVS | | | 96.86 36 | 96.60 47 | 97.64 44 | 99.40 11 | 93.44 61 | 98.50 18 | 98.09 73 | 93.27 96 | 95.95 104 | 98.33 57 | 91.04 66 | 99.88 4 | 95.20 95 | 99.57 25 | 99.60 20 |
|
| MP-MVS |  | | 96.77 44 | 96.45 58 | 97.72 38 | 99.39 13 | 93.80 53 | 98.41 23 | 98.06 82 | 93.37 92 | 95.54 119 | 98.34 54 | 90.59 75 | 99.88 4 | 94.83 105 | 99.54 28 | 99.49 42 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| XVS | | | 97.18 21 | 96.96 28 | 97.81 28 | 99.38 14 | 94.03 50 | 98.59 12 | 98.20 52 | 94.85 34 | 96.59 77 | 98.29 63 | 91.70 49 | 99.80 30 | 95.66 81 | 99.40 52 | 99.62 17 |
|
| X-MVStestdata | | | 91.71 218 | 89.67 281 | 97.81 28 | 99.38 14 | 94.03 50 | 98.59 12 | 98.20 52 | 94.85 34 | 96.59 77 | 32.69 413 | 91.70 49 | 99.80 30 | 95.66 81 | 99.40 52 | 99.62 17 |
|
| ZNCC-MVS | | | 96.96 30 | 96.67 45 | 97.85 25 | 99.37 16 | 94.12 46 | 98.49 19 | 98.18 57 | 92.64 125 | 96.39 87 | 98.18 70 | 91.61 51 | 99.88 4 | 95.59 91 | 99.55 26 | 99.57 25 |
|
| MTAPA | | | 97.08 25 | 96.78 40 | 97.97 23 | 99.37 16 | 94.42 36 | 97.24 154 | 98.08 74 | 95.07 27 | 96.11 96 | 98.59 29 | 90.88 71 | 99.90 2 | 96.18 65 | 99.50 35 | 99.58 24 |
|
| GST-MVS | | | 96.85 38 | 96.52 51 | 97.82 27 | 99.36 18 | 94.14 45 | 98.29 29 | 98.13 65 | 92.72 122 | 96.70 69 | 98.06 77 | 91.35 58 | 99.86 9 | 94.83 105 | 99.28 63 | 99.47 46 |
|
| HPM-MVS |  | | 96.69 50 | 96.45 58 | 97.40 50 | 99.36 18 | 93.11 71 | 98.87 6 | 98.06 82 | 91.17 169 | 96.40 86 | 97.99 84 | 90.99 67 | 99.58 77 | 95.61 88 | 99.61 18 | 99.49 42 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| PGM-MVS | | | 96.81 42 | 96.53 50 | 97.65 42 | 99.35 20 | 93.53 60 | 97.65 106 | 98.98 2 | 92.22 131 | 97.14 55 | 98.44 43 | 91.17 64 | 99.85 18 | 94.35 117 | 99.46 41 | 99.57 25 |
|
| CP-MVS | | | 97.02 28 | 96.81 38 | 97.64 44 | 99.33 21 | 93.54 59 | 98.80 8 | 98.28 36 | 92.99 109 | 96.45 85 | 98.30 62 | 91.90 46 | 99.85 18 | 95.61 88 | 99.68 4 | 99.54 33 |
|
| test_one_0601 | | | | | | 99.32 22 | 95.20 20 | | 98.25 45 | 95.13 23 | 98.48 24 | 98.87 15 | 95.16 7 | | | | |
|
| HPM-MVS_fast | | | 96.51 56 | 96.27 63 | 97.22 61 | 99.32 22 | 92.74 79 | 98.74 9 | 98.06 82 | 90.57 195 | 96.77 66 | 98.35 51 | 90.21 78 | 99.53 91 | 94.80 108 | 99.63 16 | 99.38 58 |
|
| MCST-MVS | | | 97.18 21 | 96.84 34 | 98.20 14 | 99.30 24 | 95.35 15 | 97.12 167 | 98.07 79 | 93.54 85 | 96.08 98 | 97.69 106 | 93.86 16 | 99.71 46 | 96.50 49 | 99.39 54 | 99.55 31 |
|
| test_part2 | | | | | | 99.28 25 | 95.74 8 | | | | 98.10 30 | | | | | | |
|
| CPTT-MVS | | | 95.57 84 | 95.19 88 | 96.70 73 | 99.27 26 | 91.48 125 | 98.33 26 | 98.11 70 | 87.79 282 | 95.17 125 | 98.03 80 | 87.09 128 | 99.61 69 | 93.51 132 | 99.42 48 | 99.02 87 |
|
| TSAR-MVS + MP. | | | 97.42 13 | 97.33 15 | 97.69 41 | 99.25 27 | 94.24 41 | 98.07 54 | 97.85 116 | 93.72 77 | 98.57 21 | 98.35 51 | 93.69 18 | 99.40 110 | 97.06 35 | 99.46 41 | 99.44 49 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CSCG | | | 96.05 69 | 95.91 69 | 96.46 93 | 99.24 28 | 90.47 165 | 98.30 28 | 98.57 18 | 89.01 239 | 93.97 152 | 97.57 119 | 92.62 34 | 99.76 38 | 94.66 111 | 99.27 64 | 99.15 75 |
|
| ACMMP |  | | 96.27 65 | 95.93 68 | 97.28 57 | 99.24 28 | 92.62 82 | 98.25 35 | 98.81 5 | 92.99 109 | 94.56 137 | 98.39 47 | 88.96 91 | 99.85 18 | 94.57 116 | 97.63 136 | 99.36 60 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| MP-MVS-pluss | | | 96.70 48 | 96.27 63 | 97.98 22 | 99.23 30 | 94.71 29 | 96.96 180 | 98.06 82 | 90.67 186 | 95.55 117 | 98.78 24 | 91.07 65 | 99.86 9 | 96.58 47 | 99.55 26 | 99.38 58 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| DP-MVS Recon | | | 95.68 80 | 95.12 91 | 97.37 51 | 99.19 31 | 94.19 42 | 97.03 171 | 98.08 74 | 88.35 265 | 95.09 127 | 97.65 111 | 89.97 82 | 99.48 101 | 92.08 161 | 98.59 105 | 98.44 147 |
|
| DPE-MVS |  | | 97.86 4 | 97.65 8 | 98.47 5 | 99.17 32 | 95.78 7 | 97.21 160 | 98.35 27 | 95.16 22 | 98.71 20 | 98.80 22 | 95.05 10 | 99.89 3 | 96.70 44 | 99.73 1 | 99.73 10 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| APDe-MVS |  | | 97.82 5 | 97.73 7 | 98.08 18 | 99.15 33 | 94.82 28 | 98.81 7 | 98.30 32 | 94.76 43 | 98.30 26 | 98.90 12 | 93.77 17 | 99.68 54 | 97.93 16 | 99.69 3 | 99.75 6 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SR-MVS | | | 97.01 29 | 96.86 32 | 97.47 48 | 99.09 34 | 93.27 68 | 97.98 62 | 98.07 79 | 93.75 76 | 97.45 43 | 98.48 40 | 91.43 56 | 99.59 74 | 96.22 56 | 99.27 64 | 99.54 33 |
|
| ACMMP_NAP | | | 97.20 20 | 96.86 32 | 98.23 11 | 99.09 34 | 95.16 22 | 97.60 115 | 98.19 55 | 92.82 120 | 97.93 35 | 98.74 25 | 91.60 52 | 99.86 9 | 96.26 53 | 99.52 30 | 99.67 13 |
|
| HPM-MVS++ |  | | 97.34 17 | 96.97 27 | 98.47 5 | 99.08 36 | 96.16 4 | 97.55 123 | 97.97 101 | 95.59 11 | 96.61 75 | 97.89 90 | 92.57 35 | 99.84 23 | 95.95 72 | 99.51 33 | 99.40 54 |
|
| 114514_t | | | 93.95 133 | 93.06 146 | 96.63 77 | 99.07 37 | 91.61 118 | 97.46 134 | 97.96 102 | 77.99 387 | 93.00 173 | 97.57 119 | 86.14 142 | 99.33 115 | 89.22 222 | 99.15 78 | 98.94 98 |
|
| SMA-MVS |  | | 97.35 16 | 97.03 24 | 98.30 8 | 99.06 38 | 95.42 10 | 97.94 72 | 98.18 57 | 90.57 195 | 98.85 15 | 98.94 9 | 93.33 23 | 99.83 26 | 96.72 43 | 99.68 4 | 99.63 16 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| patch_mono-2 | | | 96.83 41 | 97.44 13 | 95.01 176 | 99.05 39 | 85.39 303 | 96.98 178 | 98.77 7 | 94.70 45 | 97.99 33 | 98.66 26 | 93.61 19 | 99.91 1 | 97.67 21 | 99.50 35 | 99.72 11 |
|
| ZD-MVS | | | | | | 99.05 39 | 94.59 32 | | 98.08 74 | 89.22 232 | 97.03 60 | 98.10 73 | 92.52 36 | 99.65 58 | 94.58 115 | 99.31 62 | |
|
| APD-MVS |  | | 96.95 31 | 96.60 47 | 98.01 20 | 99.03 41 | 94.93 27 | 97.72 99 | 98.10 72 | 91.50 153 | 98.01 32 | 98.32 59 | 92.33 39 | 99.58 77 | 94.85 103 | 99.51 33 | 99.53 36 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| SR-MVS-dyc-post | | | 96.88 35 | 96.80 39 | 97.11 67 | 99.02 42 | 92.34 91 | 97.98 62 | 98.03 91 | 93.52 87 | 97.43 46 | 98.51 35 | 91.40 57 | 99.56 85 | 96.05 67 | 99.26 66 | 99.43 51 |
|
| RE-MVS-def | | | | 96.72 43 | | 99.02 42 | 92.34 91 | 97.98 62 | 98.03 91 | 93.52 87 | 97.43 46 | 98.51 35 | 90.71 73 | | 96.05 67 | 99.26 66 | 99.43 51 |
|
| SF-MVS | | | 97.39 15 | 97.13 16 | 98.17 15 | 99.02 42 | 95.28 19 | 98.23 39 | 98.27 39 | 92.37 129 | 98.27 27 | 98.65 28 | 93.33 23 | 99.72 45 | 96.49 50 | 99.52 30 | 99.51 37 |
|
| APD-MVS_3200maxsize | | | 96.81 42 | 96.71 44 | 97.12 66 | 99.01 45 | 92.31 93 | 97.98 62 | 98.06 82 | 93.11 106 | 97.44 44 | 98.55 32 | 90.93 69 | 99.55 87 | 96.06 66 | 99.25 68 | 99.51 37 |
|
| dcpmvs_2 | | | 96.37 62 | 97.05 22 | 94.31 218 | 98.96 46 | 84.11 323 | 97.56 119 | 97.51 158 | 93.92 71 | 97.43 46 | 98.52 34 | 92.75 30 | 99.32 117 | 97.32 33 | 99.50 35 | 99.51 37 |
|
| 9.14 | | | | 96.75 42 | | 98.93 47 | | 97.73 96 | 98.23 50 | 91.28 164 | 97.88 36 | 98.44 43 | 93.00 26 | 99.65 58 | 95.76 79 | 99.47 40 | |
|
| CDPH-MVS | | | 95.97 73 | 95.38 83 | 97.77 33 | 98.93 47 | 94.44 35 | 96.35 234 | 97.88 109 | 86.98 301 | 96.65 73 | 97.89 90 | 91.99 45 | 99.47 102 | 92.26 152 | 99.46 41 | 99.39 56 |
|
| save fliter | | | | | | 98.91 49 | 94.28 38 | 97.02 173 | 98.02 94 | 95.35 16 | | | | | | | |
|
| CNVR-MVS | | | 97.68 6 | 97.44 13 | 98.37 7 | 98.90 50 | 95.86 6 | 97.27 152 | 98.08 74 | 95.81 9 | 97.87 37 | 98.31 60 | 94.26 13 | 99.68 54 | 97.02 36 | 99.49 38 | 99.57 25 |
|
| PAPM_NR | | | 95.01 97 | 94.59 101 | 96.26 110 | 98.89 51 | 90.68 160 | 97.24 154 | 97.73 129 | 91.80 145 | 92.93 178 | 96.62 177 | 89.13 89 | 99.14 140 | 89.21 223 | 97.78 133 | 98.97 94 |
|
| OPU-MVS | | | | | 98.55 3 | 98.82 52 | 96.86 3 | 98.25 35 | | | | 98.26 66 | 96.04 2 | 99.24 125 | 95.36 93 | 99.59 19 | 99.56 28 |
|
| NCCC | | | 97.30 18 | 97.03 24 | 98.11 17 | 98.77 53 | 95.06 25 | 97.34 145 | 98.04 89 | 95.96 6 | 97.09 58 | 97.88 92 | 93.18 25 | 99.71 46 | 95.84 77 | 99.17 75 | 99.56 28 |
|
| DP-MVS | | | 92.76 182 | 91.51 204 | 96.52 84 | 98.77 53 | 90.99 146 | 97.38 142 | 96.08 276 | 82.38 363 | 89.29 272 | 97.87 93 | 83.77 171 | 99.69 52 | 81.37 337 | 96.69 165 | 98.89 108 |
|
| MSLP-MVS++ | | | 96.94 32 | 97.06 19 | 96.59 80 | 98.72 55 | 91.86 109 | 97.67 103 | 98.49 19 | 94.66 48 | 97.24 51 | 98.41 46 | 92.31 41 | 98.94 165 | 96.61 46 | 99.46 41 | 98.96 95 |
|
| TEST9 | | | | | | 98.70 56 | 94.19 42 | 96.41 226 | 98.02 94 | 88.17 269 | 96.03 99 | 97.56 121 | 92.74 31 | 99.59 74 | | | |
|
| train_agg | | | 96.30 64 | 95.83 72 | 97.72 38 | 98.70 56 | 94.19 42 | 96.41 226 | 98.02 94 | 88.58 256 | 96.03 99 | 97.56 121 | 92.73 32 | 99.59 74 | 95.04 98 | 99.37 58 | 99.39 56 |
|
| DVP-MVS++ | | | 98.06 1 | 97.99 1 | 98.28 9 | 98.67 58 | 95.39 11 | 99.29 1 | 98.28 36 | 94.78 41 | 98.93 9 | 98.87 15 | 96.04 2 | 99.86 9 | 97.45 29 | 99.58 23 | 99.59 21 |
|
| MSC_two_6792asdad | | | | | 98.86 1 | 98.67 58 | 96.94 1 | | 97.93 105 | | | | | 99.86 9 | 97.68 19 | 99.67 6 | 99.77 2 |
|
| No_MVS | | | | | 98.86 1 | 98.67 58 | 96.94 1 | | 97.93 105 | | | | | 99.86 9 | 97.68 19 | 99.67 6 | 99.77 2 |
|
| test_8 | | | | | | 98.67 58 | 94.06 49 | 96.37 233 | 98.01 97 | 88.58 256 | 95.98 103 | 97.55 123 | 92.73 32 | 99.58 77 | | | |
|
| agg_prior | | | | | | 98.67 58 | 93.79 54 | | 98.00 98 | | 95.68 113 | | | 99.57 84 | | | |
|
| test_prior | | | | | 97.23 60 | 98.67 58 | 92.99 73 | | 98.00 98 | | | | | 99.41 109 | | | 99.29 63 |
|
| DeepC-MVS_fast | | 93.89 2 | 96.93 33 | 96.64 46 | 97.78 31 | 98.64 64 | 94.30 37 | 97.41 135 | 98.04 89 | 94.81 39 | 96.59 77 | 98.37 49 | 91.24 61 | 99.64 66 | 95.16 96 | 99.52 30 | 99.42 53 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 新几何1 | | | | | 97.32 53 | 98.60 65 | 93.59 58 | | 97.75 126 | 81.58 370 | 95.75 110 | 97.85 96 | 90.04 80 | 99.67 56 | 86.50 275 | 99.13 80 | 98.69 123 |
|
| 原ACMM1 | | | | | 96.38 100 | 98.59 66 | 91.09 145 | | 97.89 107 | 87.41 293 | 95.22 124 | 97.68 107 | 90.25 77 | 99.54 89 | 87.95 243 | 99.12 82 | 98.49 139 |
|
| AdaColmap |  | | 94.34 117 | 93.68 124 | 96.31 104 | 98.59 66 | 91.68 116 | 96.59 217 | 97.81 122 | 89.87 210 | 92.15 192 | 97.06 148 | 83.62 175 | 99.54 89 | 89.34 217 | 98.07 126 | 97.70 194 |
|
| PLC |  | 91.00 6 | 94.11 127 | 93.43 137 | 96.13 118 | 98.58 68 | 91.15 144 | 96.69 204 | 97.39 182 | 87.29 296 | 91.37 213 | 96.71 163 | 88.39 101 | 99.52 95 | 87.33 262 | 97.13 156 | 97.73 192 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| SD-MVS | | | 97.41 14 | 97.53 11 | 97.06 68 | 98.57 69 | 94.46 34 | 97.92 74 | 98.14 64 | 94.82 38 | 99.01 6 | 98.55 32 | 94.18 14 | 97.41 330 | 96.94 37 | 99.64 14 | 99.32 62 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| test12 | | | | | 97.65 42 | 98.46 70 | 94.26 39 | | 97.66 137 | | 95.52 120 | | 90.89 70 | 99.46 103 | | 99.25 68 | 99.22 70 |
|
| MVS_111021_HR | | | 96.68 52 | 96.58 49 | 96.99 70 | 98.46 70 | 92.31 93 | 96.20 247 | 98.90 3 | 94.30 63 | 95.86 106 | 97.74 104 | 92.33 39 | 99.38 113 | 96.04 69 | 99.42 48 | 99.28 65 |
|
| OMC-MVS | | | 95.09 96 | 94.70 99 | 96.25 113 | 98.46 70 | 91.28 132 | 96.43 224 | 97.57 150 | 92.04 140 | 94.77 133 | 97.96 87 | 87.01 129 | 99.09 147 | 91.31 178 | 96.77 161 | 98.36 154 |
|
| MG-MVS | | | 95.61 82 | 95.38 83 | 96.31 104 | 98.42 73 | 90.53 163 | 96.04 253 | 97.48 161 | 93.47 89 | 95.67 114 | 98.10 73 | 89.17 88 | 99.25 124 | 91.27 179 | 98.77 97 | 99.13 77 |
|
| test_fmvsm_n_1920 | | | 97.55 11 | 97.89 3 | 96.53 83 | 98.41 74 | 91.73 111 | 98.01 59 | 99.02 1 | 96.37 4 | 99.30 1 | 98.92 10 | 92.39 38 | 99.79 33 | 99.16 4 | 99.46 41 | 98.08 174 |
|
| PHI-MVS | | | 96.77 44 | 96.46 57 | 97.71 40 | 98.40 75 | 94.07 48 | 98.21 42 | 98.45 22 | 89.86 211 | 97.11 57 | 98.01 83 | 92.52 36 | 99.69 52 | 96.03 70 | 99.53 29 | 99.36 60 |
|
| F-COLMAP | | | 93.58 146 | 92.98 148 | 95.37 162 | 98.40 75 | 88.98 217 | 97.18 162 | 97.29 193 | 87.75 285 | 90.49 232 | 97.10 146 | 85.21 151 | 99.50 99 | 86.70 272 | 96.72 164 | 97.63 196 |
|
| SteuartSystems-ACMMP | | | 97.62 9 | 97.53 11 | 97.87 24 | 98.39 77 | 94.25 40 | 98.43 22 | 98.27 39 | 95.34 17 | 98.11 29 | 98.56 30 | 94.53 12 | 99.71 46 | 96.57 48 | 99.62 17 | 99.65 14 |
| Skip Steuart: Steuart Systems R&D Blog. |
| 旧先验1 | | | | | | 98.38 78 | 93.38 63 | | 97.75 126 | | | 98.09 75 | 92.30 42 | | | 99.01 89 | 99.16 73 |
|
| CNLPA | | | 94.28 118 | 93.53 130 | 96.52 84 | 98.38 78 | 92.55 85 | 96.59 217 | 96.88 231 | 90.13 206 | 91.91 199 | 97.24 138 | 85.21 151 | 99.09 147 | 87.64 255 | 97.83 131 | 97.92 181 |
|
| TAPA-MVS | | 90.10 7 | 92.30 197 | 91.22 215 | 95.56 150 | 98.33 80 | 89.60 189 | 96.79 193 | 97.65 139 | 81.83 367 | 91.52 209 | 97.23 139 | 87.94 108 | 98.91 169 | 71.31 389 | 98.37 114 | 98.17 166 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| TSAR-MVS + GP. | | | 96.69 50 | 96.49 52 | 97.27 58 | 98.31 81 | 93.39 62 | 96.79 193 | 96.72 240 | 94.17 64 | 97.44 44 | 97.66 110 | 92.76 29 | 99.33 115 | 96.86 40 | 97.76 135 | 99.08 84 |
|
| CS-MVS-test | | | 96.89 34 | 97.04 23 | 96.45 94 | 98.29 82 | 91.66 117 | 99.03 4 | 97.85 116 | 95.84 7 | 96.90 62 | 97.97 86 | 91.24 61 | 98.75 186 | 96.92 38 | 99.33 60 | 98.94 98 |
|
| CHOSEN 1792x2688 | | | 94.15 123 | 93.51 133 | 96.06 121 | 98.27 83 | 89.38 201 | 95.18 301 | 98.48 21 | 85.60 324 | 93.76 156 | 97.11 145 | 83.15 183 | 99.61 69 | 91.33 177 | 98.72 99 | 99.19 71 |
|
| PVSNet_BlendedMVS | | | 94.06 129 | 93.92 119 | 94.47 207 | 98.27 83 | 89.46 198 | 96.73 198 | 98.36 24 | 90.17 203 | 94.36 141 | 95.24 247 | 88.02 106 | 99.58 77 | 93.44 134 | 90.72 272 | 94.36 341 |
|
| PVSNet_Blended | | | 94.87 105 | 94.56 103 | 95.81 135 | 98.27 83 | 89.46 198 | 95.47 285 | 98.36 24 | 88.84 247 | 94.36 141 | 96.09 206 | 88.02 106 | 99.58 77 | 93.44 134 | 98.18 122 | 98.40 150 |
|
| fmvsm_l_conf0.5_n_a | | | 97.63 8 | 97.76 5 | 97.26 59 | 98.25 86 | 92.59 84 | 97.81 89 | 98.68 13 | 94.93 30 | 99.24 3 | 98.87 15 | 93.52 20 | 99.79 33 | 99.32 2 | 99.21 71 | 99.40 54 |
|
| Anonymous20231211 | | | 90.63 273 | 89.42 288 | 94.27 221 | 98.24 87 | 89.19 213 | 98.05 56 | 97.89 107 | 79.95 379 | 88.25 299 | 94.96 255 | 72.56 325 | 98.13 242 | 89.70 207 | 85.14 329 | 95.49 275 |
|
| EI-MVSNet-Vis-set | | | 96.51 56 | 96.47 54 | 96.63 77 | 98.24 87 | 91.20 138 | 96.89 184 | 97.73 129 | 94.74 44 | 96.49 81 | 98.49 37 | 90.88 71 | 99.58 77 | 96.44 51 | 98.32 116 | 99.13 77 |
|
| test222 | | | | | | 98.24 87 | 92.21 97 | 95.33 290 | 97.60 145 | 79.22 383 | 95.25 122 | 97.84 98 | 88.80 94 | | | 99.15 78 | 98.72 120 |
|
| HyFIR lowres test | | | 93.66 144 | 92.92 150 | 95.87 131 | 98.24 87 | 89.88 183 | 94.58 315 | 98.49 19 | 85.06 334 | 93.78 155 | 95.78 221 | 82.86 191 | 98.67 196 | 91.77 167 | 95.71 183 | 99.07 86 |
|
| MVS_111021_LR | | | 96.24 66 | 96.19 65 | 96.39 99 | 98.23 91 | 91.35 131 | 96.24 245 | 98.79 6 | 93.99 69 | 95.80 108 | 97.65 111 | 89.92 83 | 99.24 125 | 95.87 73 | 99.20 73 | 98.58 130 |
|
| fmvsm_l_conf0.5_n | | | 97.65 7 | 97.75 6 | 97.34 52 | 98.21 92 | 92.75 78 | 97.83 85 | 98.73 9 | 95.04 28 | 99.30 1 | 98.84 20 | 93.34 22 | 99.78 35 | 99.32 2 | 99.13 80 | 99.50 40 |
|
| EI-MVSNet-UG-set | | | 96.34 63 | 96.30 62 | 96.47 91 | 98.20 93 | 90.93 150 | 96.86 186 | 97.72 131 | 94.67 47 | 96.16 95 | 98.46 41 | 90.43 76 | 99.58 77 | 96.23 55 | 97.96 129 | 98.90 105 |
|
| PVSNet_Blended_VisFu | | | 95.27 90 | 94.91 94 | 96.38 100 | 98.20 93 | 90.86 152 | 97.27 152 | 98.25 45 | 90.21 202 | 94.18 146 | 97.27 136 | 87.48 121 | 99.73 42 | 93.53 131 | 97.77 134 | 98.55 131 |
|
| Anonymous202405211 | | | 92.07 207 | 90.83 229 | 95.76 136 | 98.19 95 | 88.75 221 | 97.58 116 | 95.00 325 | 86.00 319 | 93.64 157 | 97.45 125 | 66.24 370 | 99.53 91 | 90.68 190 | 92.71 238 | 99.01 90 |
|
| PatchMatch-RL | | | 92.90 175 | 92.02 184 | 95.56 150 | 98.19 95 | 90.80 154 | 95.27 295 | 97.18 197 | 87.96 274 | 91.86 202 | 95.68 227 | 80.44 236 | 98.99 162 | 84.01 310 | 97.54 138 | 96.89 228 |
|
| testdata | | | | | 95.46 160 | 98.18 97 | 88.90 219 | | 97.66 137 | 82.73 361 | 97.03 60 | 98.07 76 | 90.06 79 | 98.85 174 | 89.67 208 | 98.98 90 | 98.64 126 |
|
| CS-MVS | | | 96.86 36 | 97.06 19 | 96.26 110 | 98.16 98 | 91.16 143 | 99.09 3 | 97.87 111 | 95.30 18 | 97.06 59 | 98.03 80 | 91.72 47 | 98.71 193 | 97.10 34 | 99.17 75 | 98.90 105 |
|
| Anonymous20240529 | | | 91.98 210 | 90.73 235 | 95.73 141 | 98.14 99 | 89.40 200 | 97.99 61 | 97.72 131 | 79.63 381 | 93.54 160 | 97.41 129 | 69.94 344 | 99.56 85 | 91.04 184 | 91.11 265 | 98.22 160 |
|
| LFMVS | | | 93.60 145 | 92.63 163 | 96.52 84 | 98.13 100 | 91.27 133 | 97.94 72 | 93.39 367 | 90.57 195 | 96.29 89 | 98.31 60 | 69.00 348 | 99.16 137 | 94.18 119 | 95.87 178 | 99.12 80 |
|
| SDMVSNet | | | 94.17 121 | 93.61 126 | 95.86 133 | 98.09 101 | 91.37 130 | 97.35 144 | 98.20 52 | 93.18 102 | 91.79 203 | 97.28 134 | 79.13 259 | 98.93 166 | 94.61 114 | 92.84 235 | 97.28 216 |
|
| sd_testset | | | 93.10 164 | 92.45 173 | 95.05 173 | 98.09 101 | 89.21 210 | 96.89 184 | 97.64 141 | 93.18 102 | 91.79 203 | 97.28 134 | 75.35 306 | 98.65 198 | 88.99 228 | 92.84 235 | 97.28 216 |
|
| DeepPCF-MVS | | 93.97 1 | 96.61 53 | 97.09 18 | 95.15 168 | 98.09 101 | 86.63 279 | 96.00 256 | 98.15 62 | 95.43 14 | 97.95 34 | 98.56 30 | 93.40 21 | 99.36 114 | 96.77 41 | 99.48 39 | 99.45 47 |
|
| DPM-MVS | | | 95.69 79 | 94.92 93 | 98.01 20 | 98.08 104 | 95.71 9 | 95.27 295 | 97.62 144 | 90.43 199 | 95.55 117 | 97.07 147 | 91.72 47 | 99.50 99 | 89.62 210 | 98.94 92 | 98.82 115 |
|
| MVSMamba_PlusPlus | | | 96.51 56 | 96.48 53 | 96.59 80 | 98.07 105 | 91.97 106 | 98.14 49 | 97.79 123 | 90.43 199 | 97.34 49 | 97.52 124 | 91.29 60 | 99.19 130 | 98.12 15 | 99.64 14 | 98.60 128 |
|
| fmvsm_s_conf0.5_n | | | 96.85 38 | 97.13 16 | 96.04 123 | 98.07 105 | 90.28 170 | 97.97 68 | 98.76 8 | 94.93 30 | 98.84 16 | 99.06 4 | 88.80 94 | 99.65 58 | 99.06 6 | 98.63 102 | 98.18 163 |
|
| VNet | | | 95.89 76 | 95.45 78 | 97.21 62 | 98.07 105 | 92.94 75 | 97.50 126 | 98.15 62 | 93.87 73 | 97.52 41 | 97.61 117 | 85.29 150 | 99.53 91 | 95.81 78 | 95.27 191 | 99.16 73 |
|
| MM | | | 97.29 19 | 96.98 26 | 98.23 11 | 98.01 108 | 95.03 26 | 98.07 54 | 95.76 288 | 97.78 1 | 97.52 41 | 98.80 22 | 88.09 104 | 99.86 9 | 99.44 1 | 99.37 58 | 99.80 1 |
|
| mamv4 | | | 94.66 111 | 96.10 66 | 90.37 345 | 98.01 108 | 73.41 393 | 96.82 191 | 97.78 124 | 89.95 209 | 94.52 138 | 97.43 128 | 92.91 27 | 99.09 147 | 98.28 14 | 99.16 77 | 98.60 128 |
|
| MAR-MVS | | | 94.22 119 | 93.46 135 | 96.51 87 | 98.00 110 | 92.19 100 | 97.67 103 | 97.47 164 | 88.13 272 | 93.00 173 | 95.84 214 | 84.86 156 | 99.51 96 | 87.99 242 | 98.17 123 | 97.83 188 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DeepC-MVS | | 93.07 3 | 96.06 68 | 95.66 73 | 97.29 55 | 97.96 111 | 93.17 70 | 97.30 150 | 98.06 82 | 93.92 71 | 93.38 165 | 98.66 26 | 86.83 130 | 99.73 42 | 95.60 90 | 99.22 70 | 98.96 95 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| COLMAP_ROB |  | 87.81 15 | 90.40 279 | 89.28 291 | 93.79 247 | 97.95 112 | 87.13 267 | 96.92 182 | 95.89 283 | 82.83 360 | 86.88 331 | 97.18 141 | 73.77 319 | 99.29 122 | 78.44 357 | 93.62 228 | 94.95 308 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| AllTest | | | 90.23 284 | 88.98 296 | 93.98 233 | 97.94 113 | 86.64 276 | 96.51 221 | 95.54 302 | 85.38 327 | 85.49 341 | 96.77 161 | 70.28 339 | 99.15 138 | 80.02 347 | 92.87 233 | 96.15 248 |
|
| TestCases | | | | | 93.98 233 | 97.94 113 | 86.64 276 | | 95.54 302 | 85.38 327 | 85.49 341 | 96.77 161 | 70.28 339 | 99.15 138 | 80.02 347 | 92.87 233 | 96.15 248 |
|
| thres100view900 | | | 92.43 189 | 91.58 199 | 94.98 179 | 97.92 115 | 89.37 202 | 97.71 101 | 94.66 338 | 92.20 133 | 93.31 167 | 94.90 259 | 78.06 282 | 99.08 150 | 81.40 334 | 94.08 217 | 96.48 238 |
|
| thres600view7 | | | 92.49 188 | 91.60 198 | 95.18 167 | 97.91 116 | 89.47 196 | 97.65 106 | 94.66 338 | 92.18 137 | 93.33 166 | 94.91 258 | 78.06 282 | 99.10 144 | 81.61 331 | 94.06 221 | 96.98 223 |
|
| API-MVS | | | 94.84 106 | 94.49 108 | 95.90 130 | 97.90 117 | 92.00 105 | 97.80 90 | 97.48 161 | 89.19 233 | 94.81 131 | 96.71 163 | 88.84 93 | 99.17 135 | 88.91 230 | 98.76 98 | 96.53 235 |
|
| VDD-MVS | | | 93.82 139 | 93.08 145 | 96.02 125 | 97.88 118 | 89.96 181 | 97.72 99 | 95.85 284 | 92.43 127 | 95.86 106 | 98.44 43 | 68.42 355 | 99.39 111 | 96.31 52 | 94.85 198 | 98.71 122 |
|
| tfpn200view9 | | | 92.38 192 | 91.52 202 | 94.95 183 | 97.85 119 | 89.29 206 | 97.41 135 | 94.88 332 | 92.19 135 | 93.27 169 | 94.46 284 | 78.17 278 | 99.08 150 | 81.40 334 | 94.08 217 | 96.48 238 |
|
| thres400 | | | 92.42 190 | 91.52 202 | 95.12 171 | 97.85 119 | 89.29 206 | 97.41 135 | 94.88 332 | 92.19 135 | 93.27 169 | 94.46 284 | 78.17 278 | 99.08 150 | 81.40 334 | 94.08 217 | 96.98 223 |
|
| h-mvs33 | | | 94.15 123 | 93.52 132 | 96.04 123 | 97.81 121 | 90.22 172 | 97.62 114 | 97.58 149 | 95.19 20 | 96.74 67 | 97.45 125 | 83.67 173 | 99.61 69 | 95.85 75 | 79.73 370 | 98.29 157 |
|
| DELS-MVS | | | 96.61 53 | 96.38 60 | 97.30 54 | 97.79 122 | 93.19 69 | 95.96 258 | 98.18 57 | 95.23 19 | 95.87 105 | 97.65 111 | 91.45 54 | 99.70 51 | 95.87 73 | 99.44 47 | 99.00 93 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| PVSNet | | 86.66 18 | 92.24 201 | 91.74 195 | 93.73 249 | 97.77 123 | 83.69 330 | 92.88 367 | 96.72 240 | 87.91 276 | 93.00 173 | 94.86 261 | 78.51 273 | 99.05 157 | 86.53 273 | 97.45 143 | 98.47 142 |
|
| test_yl | | | 94.78 108 | 94.23 114 | 96.43 95 | 97.74 124 | 91.22 134 | 96.85 187 | 97.10 204 | 91.23 166 | 95.71 111 | 96.93 152 | 84.30 163 | 99.31 119 | 93.10 140 | 95.12 194 | 98.75 117 |
|
| DCV-MVSNet | | | 94.78 108 | 94.23 114 | 96.43 95 | 97.74 124 | 91.22 134 | 96.85 187 | 97.10 204 | 91.23 166 | 95.71 111 | 96.93 152 | 84.30 163 | 99.31 119 | 93.10 140 | 95.12 194 | 98.75 117 |
|
| WTY-MVS | | | 94.71 110 | 94.02 117 | 96.79 72 | 97.71 126 | 92.05 103 | 96.59 217 | 97.35 188 | 90.61 192 | 94.64 135 | 96.93 152 | 86.41 136 | 99.39 111 | 91.20 181 | 94.71 206 | 98.94 98 |
|
| UA-Net | | | 95.95 74 | 95.53 75 | 97.20 63 | 97.67 127 | 92.98 74 | 97.65 106 | 98.13 65 | 94.81 39 | 96.61 75 | 98.35 51 | 88.87 92 | 99.51 96 | 90.36 194 | 97.35 146 | 99.11 81 |
|
| IS-MVSNet | | | 94.90 103 | 94.52 107 | 96.05 122 | 97.67 127 | 90.56 162 | 98.44 21 | 96.22 270 | 93.21 97 | 93.99 150 | 97.74 104 | 85.55 148 | 98.45 215 | 89.98 199 | 97.86 130 | 99.14 76 |
|
| test2506 | | | 91.60 224 | 90.78 230 | 94.04 230 | 97.66 129 | 83.81 326 | 98.27 32 | 75.53 414 | 93.43 90 | 95.23 123 | 98.21 67 | 67.21 361 | 99.07 154 | 93.01 147 | 98.49 108 | 99.25 68 |
|
| ECVR-MVS |  | | 93.19 160 | 92.73 160 | 94.57 204 | 97.66 129 | 85.41 301 | 98.21 42 | 88.23 399 | 93.43 90 | 94.70 134 | 98.21 67 | 72.57 324 | 99.07 154 | 93.05 144 | 98.49 108 | 99.25 68 |
|
| fmvsm_s_conf0.5_n_a | | | 96.75 46 | 96.93 29 | 96.20 115 | 97.64 131 | 90.72 158 | 98.00 60 | 98.73 9 | 94.55 50 | 98.91 13 | 99.08 3 | 88.22 103 | 99.63 67 | 98.91 9 | 98.37 114 | 98.25 158 |
|
| PAPR | | | 94.18 120 | 93.42 139 | 96.48 90 | 97.64 131 | 91.42 129 | 95.55 280 | 97.71 135 | 88.99 240 | 92.34 188 | 95.82 216 | 89.19 87 | 99.11 143 | 86.14 281 | 97.38 144 | 98.90 105 |
|
| balanced_conf03 | | | 96.84 40 | 96.89 31 | 96.68 74 | 97.63 133 | 92.22 96 | 98.17 48 | 97.82 121 | 94.44 56 | 98.23 28 | 97.36 131 | 90.97 68 | 99.22 127 | 97.74 18 | 99.66 10 | 98.61 127 |
|
| CANet | | | 96.39 61 | 96.02 67 | 97.50 47 | 97.62 134 | 93.38 63 | 97.02 173 | 97.96 102 | 95.42 15 | 94.86 130 | 97.81 99 | 87.38 124 | 99.82 28 | 96.88 39 | 99.20 73 | 99.29 63 |
|
| thres200 | | | 92.23 202 | 91.39 205 | 94.75 196 | 97.61 135 | 89.03 216 | 96.60 216 | 95.09 322 | 92.08 139 | 93.28 168 | 94.00 310 | 78.39 276 | 99.04 160 | 81.26 340 | 94.18 213 | 96.19 245 |
|
| Vis-MVSNet (Re-imp) | | | 94.15 123 | 93.88 120 | 94.95 183 | 97.61 135 | 87.92 247 | 98.10 51 | 95.80 287 | 92.22 131 | 93.02 172 | 97.45 125 | 84.53 160 | 97.91 285 | 88.24 238 | 97.97 128 | 99.02 87 |
|
| MGCFI-Net | | | 95.94 75 | 95.40 82 | 97.56 46 | 97.59 137 | 94.62 31 | 98.21 42 | 97.57 150 | 94.41 58 | 96.17 94 | 96.16 199 | 87.54 117 | 99.17 135 | 96.19 63 | 94.73 205 | 98.91 102 |
|
| sasdasda | | | 96.02 70 | 95.45 78 | 97.75 35 | 97.59 137 | 95.15 23 | 98.28 30 | 97.60 145 | 94.52 52 | 96.27 90 | 96.12 201 | 87.65 113 | 99.18 133 | 96.20 61 | 94.82 200 | 98.91 102 |
|
| canonicalmvs | | | 96.02 70 | 95.45 78 | 97.75 35 | 97.59 137 | 95.15 23 | 98.28 30 | 97.60 145 | 94.52 52 | 96.27 90 | 96.12 201 | 87.65 113 | 99.18 133 | 96.20 61 | 94.82 200 | 98.91 102 |
|
| LS3D | | | 93.57 147 | 92.61 165 | 96.47 91 | 97.59 137 | 91.61 118 | 97.67 103 | 97.72 131 | 85.17 332 | 90.29 236 | 98.34 54 | 84.60 158 | 99.73 42 | 83.85 315 | 98.27 118 | 98.06 175 |
|
| test1111 | | | 93.19 160 | 92.82 154 | 94.30 219 | 97.58 141 | 84.56 318 | 98.21 42 | 89.02 397 | 93.53 86 | 94.58 136 | 98.21 67 | 72.69 323 | 99.05 157 | 93.06 143 | 98.48 110 | 99.28 65 |
|
| alignmvs | | | 95.87 77 | 95.23 87 | 97.78 31 | 97.56 142 | 95.19 21 | 97.86 79 | 97.17 199 | 94.39 60 | 96.47 83 | 96.40 187 | 85.89 143 | 99.20 129 | 96.21 60 | 95.11 196 | 98.95 97 |
|
| EPP-MVSNet | | | 95.22 93 | 95.04 92 | 95.76 136 | 97.49 143 | 89.56 191 | 98.67 10 | 97.00 218 | 90.69 184 | 94.24 144 | 97.62 116 | 89.79 84 | 98.81 178 | 93.39 137 | 96.49 169 | 98.92 101 |
|
| test_fmvsmconf_n | | | 97.49 12 | 97.56 9 | 97.29 55 | 97.44 144 | 92.37 90 | 97.91 75 | 98.88 4 | 95.83 8 | 98.92 12 | 99.05 5 | 91.45 54 | 99.80 30 | 99.12 5 | 99.46 41 | 99.69 12 |
|
| test_vis1_n_1920 | | | 94.17 121 | 94.58 102 | 92.91 282 | 97.42 145 | 82.02 347 | 97.83 85 | 97.85 116 | 94.68 46 | 98.10 30 | 98.49 37 | 70.15 342 | 99.32 117 | 97.91 17 | 98.82 95 | 97.40 210 |
|
| PS-MVSNAJ | | | 95.37 87 | 95.33 85 | 95.49 156 | 97.35 146 | 90.66 161 | 95.31 292 | 97.48 161 | 93.85 74 | 96.51 80 | 95.70 226 | 88.65 97 | 99.65 58 | 94.80 108 | 98.27 118 | 96.17 246 |
|
| ab-mvs | | | 93.57 147 | 92.55 167 | 96.64 75 | 97.28 147 | 91.96 108 | 95.40 287 | 97.45 171 | 89.81 215 | 93.22 171 | 96.28 192 | 79.62 253 | 99.46 103 | 90.74 188 | 93.11 232 | 98.50 137 |
|
| xiu_mvs_v2_base | | | 95.32 89 | 95.29 86 | 95.40 161 | 97.22 148 | 90.50 164 | 95.44 286 | 97.44 175 | 93.70 79 | 96.46 84 | 96.18 196 | 88.59 100 | 99.53 91 | 94.79 110 | 97.81 132 | 96.17 246 |
|
| BH-untuned | | | 92.94 173 | 92.62 164 | 93.92 242 | 97.22 148 | 86.16 292 | 96.40 230 | 96.25 269 | 90.06 207 | 89.79 255 | 96.17 198 | 83.19 181 | 98.35 225 | 87.19 265 | 97.27 151 | 97.24 218 |
|
| baseline1 | | | 92.82 180 | 91.90 188 | 95.55 152 | 97.20 150 | 90.77 156 | 97.19 161 | 94.58 341 | 92.20 133 | 92.36 185 | 96.34 190 | 84.16 167 | 98.21 235 | 89.20 224 | 83.90 350 | 97.68 195 |
|
| Vis-MVSNet |  | | 95.23 92 | 94.81 95 | 96.51 87 | 97.18 151 | 91.58 121 | 98.26 34 | 98.12 67 | 94.38 61 | 94.90 129 | 98.15 72 | 82.28 205 | 98.92 167 | 91.45 176 | 98.58 106 | 99.01 90 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| ETV-MVS | | | 96.02 70 | 95.89 70 | 96.40 97 | 97.16 152 | 92.44 88 | 97.47 132 | 97.77 125 | 94.55 50 | 96.48 82 | 94.51 279 | 91.23 63 | 98.92 167 | 95.65 84 | 98.19 121 | 97.82 189 |
|
| BH-RMVSNet | | | 92.72 184 | 91.97 186 | 94.97 181 | 97.16 152 | 87.99 245 | 96.15 249 | 95.60 298 | 90.62 191 | 91.87 201 | 97.15 144 | 78.41 275 | 98.57 207 | 83.16 317 | 97.60 137 | 98.36 154 |
|
| MSDG | | | 91.42 236 | 90.24 255 | 94.96 182 | 97.15 154 | 88.91 218 | 93.69 350 | 96.32 264 | 85.72 323 | 86.93 329 | 96.47 183 | 80.24 240 | 98.98 163 | 80.57 343 | 95.05 197 | 96.98 223 |
|
| tttt0517 | | | 92.96 171 | 92.33 176 | 94.87 186 | 97.11 155 | 87.16 266 | 97.97 68 | 92.09 381 | 90.63 190 | 93.88 154 | 97.01 151 | 76.50 294 | 99.06 156 | 90.29 196 | 95.45 188 | 98.38 152 |
|
| HY-MVS | | 89.66 9 | 93.87 137 | 92.95 149 | 96.63 77 | 97.10 156 | 92.49 87 | 95.64 278 | 96.64 248 | 89.05 238 | 93.00 173 | 95.79 220 | 85.77 146 | 99.45 105 | 89.16 226 | 94.35 208 | 97.96 179 |
|
| thisisatest0530 | | | 93.03 168 | 92.21 179 | 95.49 156 | 97.07 157 | 89.11 215 | 97.49 131 | 92.19 380 | 90.16 204 | 94.09 148 | 96.41 186 | 76.43 297 | 99.05 157 | 90.38 193 | 95.68 184 | 98.31 156 |
|
| XVG-OURS | | | 93.72 143 | 93.35 140 | 94.80 192 | 97.07 157 | 88.61 224 | 94.79 310 | 97.46 166 | 91.97 143 | 93.99 150 | 97.86 95 | 81.74 216 | 98.88 171 | 92.64 151 | 92.67 240 | 96.92 227 |
|
| sss | | | 94.51 113 | 93.80 121 | 96.64 75 | 97.07 157 | 91.97 106 | 96.32 237 | 98.06 82 | 88.94 243 | 94.50 139 | 96.78 160 | 84.60 158 | 99.27 123 | 91.90 162 | 96.02 174 | 98.68 124 |
|
| EIA-MVS | | | 95.53 85 | 95.47 77 | 95.71 143 | 97.06 160 | 89.63 187 | 97.82 87 | 97.87 111 | 93.57 81 | 93.92 153 | 95.04 253 | 90.61 74 | 98.95 164 | 94.62 113 | 98.68 100 | 98.54 132 |
|
| XVG-OURS-SEG-HR | | | 93.86 138 | 93.55 128 | 94.81 189 | 97.06 160 | 88.53 229 | 95.28 293 | 97.45 171 | 91.68 149 | 94.08 149 | 97.68 107 | 82.41 203 | 98.90 170 | 93.84 128 | 92.47 241 | 96.98 223 |
|
| 1112_ss | | | 93.37 153 | 92.42 174 | 96.21 114 | 97.05 162 | 90.99 146 | 96.31 238 | 96.72 240 | 86.87 304 | 89.83 254 | 96.69 167 | 86.51 134 | 99.14 140 | 88.12 239 | 93.67 226 | 98.50 137 |
|
| Test_1112_low_res | | | 92.84 179 | 91.84 190 | 95.85 134 | 97.04 163 | 89.97 180 | 95.53 282 | 96.64 248 | 85.38 327 | 89.65 260 | 95.18 248 | 85.86 144 | 99.10 144 | 87.70 250 | 93.58 231 | 98.49 139 |
|
| mvsmamba | | | 94.57 112 | 94.14 116 | 95.87 131 | 97.03 164 | 89.93 182 | 97.84 83 | 95.85 284 | 91.34 160 | 94.79 132 | 96.80 159 | 80.67 231 | 98.81 178 | 94.85 103 | 98.12 125 | 98.85 111 |
|
| hse-mvs2 | | | 93.45 151 | 92.99 147 | 94.81 189 | 97.02 165 | 88.59 225 | 96.69 204 | 96.47 258 | 95.19 20 | 96.74 67 | 96.16 199 | 83.67 173 | 98.48 214 | 95.85 75 | 79.13 374 | 97.35 213 |
|
| EC-MVSNet | | | 96.42 59 | 96.47 54 | 96.26 110 | 97.01 166 | 91.52 123 | 98.89 5 | 97.75 126 | 94.42 57 | 96.64 74 | 97.68 107 | 89.32 86 | 98.60 203 | 97.45 29 | 99.11 83 | 98.67 125 |
|
| AUN-MVS | | | 91.76 217 | 90.75 233 | 94.81 189 | 97.00 167 | 88.57 226 | 96.65 208 | 96.49 257 | 89.63 218 | 92.15 192 | 96.12 201 | 78.66 271 | 98.50 211 | 90.83 185 | 79.18 373 | 97.36 211 |
|
| BH-w/o | | | 92.14 206 | 91.75 193 | 93.31 268 | 96.99 168 | 85.73 296 | 95.67 273 | 95.69 293 | 88.73 254 | 89.26 274 | 94.82 264 | 82.97 189 | 98.07 255 | 85.26 296 | 96.32 172 | 96.13 250 |
|
| GeoE | | | 93.89 136 | 93.28 142 | 95.72 142 | 96.96 169 | 89.75 186 | 98.24 38 | 96.92 227 | 89.47 224 | 92.12 194 | 97.21 140 | 84.42 161 | 98.39 222 | 87.71 249 | 96.50 168 | 99.01 90 |
|
| 3Dnovator+ | | 91.43 4 | 95.40 86 | 94.48 109 | 98.16 16 | 96.90 170 | 95.34 16 | 98.48 20 | 97.87 111 | 94.65 49 | 88.53 291 | 98.02 82 | 83.69 172 | 99.71 46 | 93.18 139 | 98.96 91 | 99.44 49 |
|
| MVS_0304 | | | 96.74 47 | 96.31 61 | 98.02 19 | 96.87 171 | 94.65 30 | 97.58 116 | 94.39 347 | 96.47 3 | 97.16 53 | 98.39 47 | 87.53 118 | 99.87 7 | 98.97 8 | 99.41 50 | 99.55 31 |
|
| casdiffmvs_mvg |  | | 95.81 78 | 95.57 74 | 96.51 87 | 96.87 171 | 91.49 124 | 97.50 126 | 97.56 154 | 93.99 69 | 95.13 126 | 97.92 89 | 87.89 109 | 98.78 181 | 95.97 71 | 97.33 147 | 99.26 67 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UGNet | | | 94.04 131 | 93.28 142 | 96.31 104 | 96.85 173 | 91.19 139 | 97.88 78 | 97.68 136 | 94.40 59 | 93.00 173 | 96.18 196 | 73.39 322 | 99.61 69 | 91.72 168 | 98.46 111 | 98.13 168 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| VDDNet | | | 93.05 167 | 92.07 181 | 96.02 125 | 96.84 174 | 90.39 169 | 98.08 53 | 95.85 284 | 86.22 316 | 95.79 109 | 98.46 41 | 67.59 358 | 99.19 130 | 94.92 102 | 94.85 198 | 98.47 142 |
|
| RPSCF | | | 90.75 267 | 90.86 225 | 90.42 344 | 96.84 174 | 76.29 387 | 95.61 279 | 96.34 263 | 83.89 348 | 91.38 212 | 97.87 93 | 76.45 295 | 98.78 181 | 87.16 267 | 92.23 244 | 96.20 244 |
|
| FE-MVS | | | 92.05 208 | 91.05 219 | 95.08 172 | 96.83 176 | 87.93 246 | 93.91 343 | 95.70 291 | 86.30 313 | 94.15 147 | 94.97 254 | 76.59 293 | 99.21 128 | 84.10 308 | 96.86 158 | 98.09 173 |
|
| MVS_Test | | | 94.89 104 | 94.62 100 | 95.68 144 | 96.83 176 | 89.55 192 | 96.70 202 | 97.17 199 | 91.17 169 | 95.60 116 | 96.11 205 | 87.87 110 | 98.76 185 | 93.01 147 | 97.17 155 | 98.72 120 |
|
| LCM-MVSNet-Re | | | 92.50 186 | 92.52 170 | 92.44 295 | 96.82 178 | 81.89 348 | 96.92 182 | 93.71 364 | 92.41 128 | 84.30 351 | 94.60 274 | 85.08 153 | 97.03 343 | 91.51 173 | 97.36 145 | 98.40 150 |
|
| ETVMVS | | | 90.52 276 | 89.14 295 | 94.67 198 | 96.81 179 | 87.85 251 | 95.91 261 | 93.97 358 | 89.71 217 | 92.34 188 | 92.48 349 | 65.41 375 | 97.96 274 | 81.37 337 | 94.27 211 | 98.21 161 |
|
| test_cas_vis1_n_1920 | | | 94.48 115 | 94.55 106 | 94.28 220 | 96.78 180 | 86.45 284 | 97.63 112 | 97.64 141 | 93.32 95 | 97.68 39 | 98.36 50 | 73.75 320 | 99.08 150 | 96.73 42 | 99.05 86 | 97.31 215 |
|
| baseline | | | 95.58 83 | 95.42 81 | 96.08 119 | 96.78 180 | 90.41 168 | 97.16 164 | 97.45 171 | 93.69 80 | 95.65 115 | 97.85 96 | 87.29 125 | 98.68 195 | 95.66 81 | 97.25 152 | 99.13 77 |
|
| FA-MVS(test-final) | | | 93.52 149 | 92.92 150 | 95.31 163 | 96.77 182 | 88.54 228 | 94.82 309 | 96.21 272 | 89.61 219 | 94.20 145 | 95.25 246 | 83.24 180 | 99.14 140 | 90.01 198 | 96.16 173 | 98.25 158 |
|
| Fast-Effi-MVS+ | | | 93.46 150 | 92.75 158 | 95.59 149 | 96.77 182 | 90.03 174 | 96.81 192 | 97.13 201 | 88.19 268 | 91.30 217 | 94.27 296 | 86.21 139 | 98.63 200 | 87.66 254 | 96.46 171 | 98.12 169 |
|
| QAPM | | | 93.45 151 | 92.27 177 | 96.98 71 | 96.77 182 | 92.62 82 | 98.39 24 | 98.12 67 | 84.50 342 | 88.27 298 | 97.77 102 | 82.39 204 | 99.81 29 | 85.40 294 | 98.81 96 | 98.51 136 |
|
| casdiffmvs |  | | 95.64 81 | 95.49 76 | 96.08 119 | 96.76 185 | 90.45 166 | 97.29 151 | 97.44 175 | 94.00 68 | 95.46 121 | 97.98 85 | 87.52 120 | 98.73 189 | 95.64 85 | 97.33 147 | 99.08 84 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CHOSEN 280x420 | | | 93.12 163 | 92.72 161 | 94.34 215 | 96.71 186 | 87.27 260 | 90.29 387 | 97.72 131 | 86.61 308 | 91.34 214 | 95.29 242 | 84.29 165 | 98.41 217 | 93.25 138 | 98.94 92 | 97.35 213 |
|
| fmvsm_s_conf0.1_n | | | 96.58 55 | 96.77 41 | 96.01 127 | 96.67 187 | 90.25 171 | 97.91 75 | 98.38 23 | 94.48 54 | 98.84 16 | 99.14 1 | 88.06 105 | 99.62 68 | 98.82 11 | 98.60 104 | 98.15 167 |
|
| test_fmvsmvis_n_1920 | | | 96.70 48 | 96.84 34 | 96.31 104 | 96.62 188 | 91.73 111 | 97.98 62 | 98.30 32 | 96.19 5 | 96.10 97 | 98.95 8 | 89.42 85 | 99.76 38 | 98.90 10 | 99.08 84 | 97.43 208 |
|
| Effi-MVS+ | | | 94.93 102 | 94.45 110 | 96.36 102 | 96.61 189 | 91.47 126 | 96.41 226 | 97.41 180 | 91.02 175 | 94.50 139 | 95.92 210 | 87.53 118 | 98.78 181 | 93.89 126 | 96.81 160 | 98.84 114 |
|
| thisisatest0515 | | | 92.29 198 | 91.30 210 | 95.25 165 | 96.60 190 | 88.90 219 | 94.36 325 | 92.32 379 | 87.92 275 | 93.43 164 | 94.57 275 | 77.28 289 | 99.00 161 | 89.42 215 | 95.86 179 | 97.86 185 |
|
| PCF-MVS | | 89.48 11 | 91.56 228 | 89.95 269 | 96.36 102 | 96.60 190 | 92.52 86 | 92.51 372 | 97.26 194 | 79.41 382 | 88.90 280 | 96.56 179 | 84.04 169 | 99.55 87 | 77.01 366 | 97.30 150 | 97.01 222 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| xiu_mvs_v1_base_debu | | | 95.01 97 | 94.76 96 | 95.75 138 | 96.58 192 | 91.71 113 | 96.25 242 | 97.35 188 | 92.99 109 | 96.70 69 | 96.63 174 | 82.67 195 | 99.44 106 | 96.22 56 | 97.46 139 | 96.11 251 |
|
| xiu_mvs_v1_base | | | 95.01 97 | 94.76 96 | 95.75 138 | 96.58 192 | 91.71 113 | 96.25 242 | 97.35 188 | 92.99 109 | 96.70 69 | 96.63 174 | 82.67 195 | 99.44 106 | 96.22 56 | 97.46 139 | 96.11 251 |
|
| xiu_mvs_v1_base_debi | | | 95.01 97 | 94.76 96 | 95.75 138 | 96.58 192 | 91.71 113 | 96.25 242 | 97.35 188 | 92.99 109 | 96.70 69 | 96.63 174 | 82.67 195 | 99.44 106 | 96.22 56 | 97.46 139 | 96.11 251 |
|
| MVSTER | | | 93.20 159 | 92.81 155 | 94.37 212 | 96.56 195 | 89.59 190 | 97.06 170 | 97.12 202 | 91.24 165 | 91.30 217 | 95.96 208 | 82.02 210 | 98.05 258 | 93.48 133 | 90.55 274 | 95.47 278 |
|
| 3Dnovator | | 91.36 5 | 95.19 95 | 94.44 111 | 97.44 49 | 96.56 195 | 93.36 65 | 98.65 11 | 98.36 24 | 94.12 65 | 89.25 275 | 98.06 77 | 82.20 207 | 99.77 37 | 93.41 136 | 99.32 61 | 99.18 72 |
|
| test_fmvs1 | | | 93.21 158 | 93.53 130 | 92.25 303 | 96.55 197 | 81.20 354 | 97.40 139 | 96.96 220 | 90.68 185 | 96.80 64 | 98.04 79 | 69.25 347 | 98.40 218 | 97.58 24 | 98.50 107 | 97.16 220 |
|
| testing91 | | | 91.90 213 | 91.02 220 | 94.53 206 | 96.54 198 | 86.55 282 | 95.86 263 | 95.64 297 | 91.77 146 | 91.89 200 | 93.47 332 | 69.94 344 | 98.86 172 | 90.23 197 | 93.86 224 | 98.18 163 |
|
| testing222 | | | 90.31 280 | 88.96 297 | 94.35 213 | 96.54 198 | 87.29 258 | 95.50 283 | 93.84 362 | 90.97 176 | 91.75 205 | 92.96 340 | 62.18 385 | 98.00 265 | 82.86 320 | 94.08 217 | 97.76 191 |
|
| testing11 | | | 91.68 221 | 90.75 233 | 94.47 207 | 96.53 200 | 86.56 281 | 95.76 270 | 94.51 344 | 91.10 173 | 91.24 222 | 93.59 327 | 68.59 352 | 98.86 172 | 91.10 182 | 94.29 210 | 98.00 178 |
|
| FMVSNet3 | | | 91.78 216 | 90.69 238 | 95.03 175 | 96.53 200 | 92.27 95 | 97.02 173 | 96.93 223 | 89.79 216 | 89.35 269 | 94.65 272 | 77.01 290 | 97.47 324 | 86.12 282 | 88.82 289 | 95.35 288 |
|
| UBG | | | 91.55 229 | 90.76 231 | 93.94 239 | 96.52 202 | 85.06 310 | 95.22 298 | 94.54 342 | 90.47 198 | 91.98 198 | 92.71 343 | 72.02 327 | 98.74 188 | 88.10 240 | 95.26 192 | 98.01 177 |
|
| GBi-Net | | | 91.35 241 | 90.27 253 | 94.59 199 | 96.51 203 | 91.18 140 | 97.50 126 | 96.93 223 | 88.82 249 | 89.35 269 | 94.51 279 | 73.87 316 | 97.29 336 | 86.12 282 | 88.82 289 | 95.31 291 |
|
| test1 | | | 91.35 241 | 90.27 253 | 94.59 199 | 96.51 203 | 91.18 140 | 97.50 126 | 96.93 223 | 88.82 249 | 89.35 269 | 94.51 279 | 73.87 316 | 97.29 336 | 86.12 282 | 88.82 289 | 95.31 291 |
|
| FMVSNet2 | | | 91.31 244 | 90.08 262 | 94.99 177 | 96.51 203 | 92.21 97 | 97.41 135 | 96.95 221 | 88.82 249 | 88.62 288 | 94.75 267 | 73.87 316 | 97.42 329 | 85.20 297 | 88.55 294 | 95.35 288 |
|
| WBMVS | | | 90.69 272 | 89.99 268 | 92.81 287 | 96.48 206 | 85.00 311 | 95.21 300 | 96.30 265 | 89.46 225 | 89.04 279 | 94.05 308 | 72.45 326 | 97.82 292 | 89.46 213 | 87.41 306 | 95.61 273 |
|
| testing99 | | | 91.62 223 | 90.72 236 | 94.32 216 | 96.48 206 | 86.11 293 | 95.81 266 | 94.76 336 | 91.55 151 | 91.75 205 | 93.44 333 | 68.55 353 | 98.82 176 | 90.43 191 | 93.69 225 | 98.04 176 |
|
| ACMH+ | | 87.92 14 | 90.20 286 | 89.18 293 | 93.25 270 | 96.48 206 | 86.45 284 | 96.99 177 | 96.68 245 | 88.83 248 | 84.79 348 | 96.22 195 | 70.16 341 | 98.53 209 | 84.42 306 | 88.04 297 | 94.77 329 |
|
| CANet_DTU | | | 94.37 116 | 93.65 125 | 96.55 82 | 96.46 209 | 92.13 101 | 96.21 246 | 96.67 247 | 94.38 61 | 93.53 161 | 97.03 150 | 79.34 256 | 99.71 46 | 90.76 187 | 98.45 112 | 97.82 189 |
|
| mvs_anonymous | | | 93.82 139 | 93.74 122 | 94.06 228 | 96.44 210 | 85.41 301 | 95.81 266 | 97.05 212 | 89.85 213 | 90.09 247 | 96.36 189 | 87.44 122 | 97.75 300 | 93.97 122 | 96.69 165 | 99.02 87 |
|
| diffmvs |  | | 95.25 91 | 95.13 90 | 95.63 146 | 96.43 211 | 89.34 203 | 95.99 257 | 97.35 188 | 92.83 119 | 96.31 88 | 97.37 130 | 86.44 135 | 98.67 196 | 96.26 53 | 97.19 154 | 98.87 110 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ET-MVSNet_ETH3D | | | 91.49 233 | 90.11 261 | 95.63 146 | 96.40 212 | 91.57 122 | 95.34 289 | 93.48 366 | 90.60 194 | 75.58 389 | 95.49 237 | 80.08 243 | 96.79 352 | 94.25 118 | 89.76 282 | 98.52 134 |
|
| RRT-MVS | | | 94.51 113 | 94.35 113 | 94.98 179 | 96.40 212 | 86.55 282 | 97.56 119 | 97.41 180 | 93.19 100 | 94.93 128 | 97.04 149 | 79.12 260 | 99.30 121 | 96.19 63 | 97.32 149 | 99.09 83 |
|
| TR-MVS | | | 91.48 234 | 90.59 241 | 94.16 224 | 96.40 212 | 87.33 257 | 95.67 273 | 95.34 311 | 87.68 287 | 91.46 211 | 95.52 236 | 76.77 292 | 98.35 225 | 82.85 322 | 93.61 229 | 96.79 231 |
|
| ACMP | | 89.59 10 | 92.62 185 | 92.14 180 | 94.05 229 | 96.40 212 | 88.20 239 | 97.36 143 | 97.25 196 | 91.52 152 | 88.30 296 | 96.64 170 | 78.46 274 | 98.72 192 | 91.86 165 | 91.48 258 | 95.23 298 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| MVSFormer | | | 95.37 87 | 95.16 89 | 95.99 128 | 96.34 216 | 91.21 136 | 98.22 40 | 97.57 150 | 91.42 157 | 96.22 92 | 97.32 132 | 86.20 140 | 97.92 282 | 94.07 120 | 99.05 86 | 98.85 111 |
|
| lupinMVS | | | 94.99 101 | 94.56 103 | 96.29 108 | 96.34 216 | 91.21 136 | 95.83 265 | 96.27 267 | 88.93 244 | 96.22 92 | 96.88 157 | 86.20 140 | 98.85 174 | 95.27 94 | 99.05 86 | 98.82 115 |
|
| ACMM | | 89.79 8 | 92.96 171 | 92.50 171 | 94.35 213 | 96.30 218 | 88.71 222 | 97.58 116 | 97.36 187 | 91.40 159 | 90.53 231 | 96.65 169 | 79.77 249 | 98.75 186 | 91.24 180 | 91.64 254 | 95.59 274 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| IterMVS-LS | | | 92.29 198 | 91.94 187 | 93.34 267 | 96.25 219 | 86.97 270 | 96.57 220 | 97.05 212 | 90.67 186 | 89.50 266 | 94.80 265 | 86.59 131 | 97.64 308 | 89.91 201 | 86.11 317 | 95.40 284 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| HQP_MVS | | | 93.78 141 | 93.43 137 | 94.82 187 | 96.21 220 | 89.99 177 | 97.74 94 | 97.51 158 | 94.85 34 | 91.34 214 | 96.64 170 | 81.32 221 | 98.60 203 | 93.02 145 | 92.23 244 | 95.86 256 |
|
| plane_prior7 | | | | | | 96.21 220 | 89.98 179 | | | | | | | | | | |
|
| ACMH | | 87.59 16 | 90.53 275 | 89.42 288 | 93.87 243 | 96.21 220 | 87.92 247 | 97.24 154 | 96.94 222 | 88.45 262 | 83.91 359 | 96.27 193 | 71.92 328 | 98.62 202 | 84.43 305 | 89.43 285 | 95.05 306 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CDS-MVSNet | | | 94.14 126 | 93.54 129 | 95.93 129 | 96.18 223 | 91.46 127 | 96.33 236 | 97.04 214 | 88.97 242 | 93.56 158 | 96.51 181 | 87.55 116 | 97.89 286 | 89.80 204 | 95.95 176 | 98.44 147 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| LTVRE_ROB | | 88.41 13 | 90.99 258 | 89.92 271 | 94.19 222 | 96.18 223 | 89.55 192 | 96.31 238 | 97.09 206 | 87.88 277 | 85.67 339 | 95.91 211 | 78.79 270 | 98.57 207 | 81.50 332 | 89.98 279 | 94.44 339 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| LPG-MVS_test | | | 92.94 173 | 92.56 166 | 94.10 226 | 96.16 225 | 88.26 236 | 97.65 106 | 97.46 166 | 91.29 161 | 90.12 244 | 97.16 142 | 79.05 262 | 98.73 189 | 92.25 154 | 91.89 252 | 95.31 291 |
|
| LGP-MVS_train | | | | | 94.10 226 | 96.16 225 | 88.26 236 | | 97.46 166 | 91.29 161 | 90.12 244 | 97.16 142 | 79.05 262 | 98.73 189 | 92.25 154 | 91.89 252 | 95.31 291 |
|
| TAMVS | | | 94.01 132 | 93.46 135 | 95.64 145 | 96.16 225 | 90.45 166 | 96.71 201 | 96.89 230 | 89.27 231 | 93.46 163 | 96.92 155 | 87.29 125 | 97.94 279 | 88.70 234 | 95.74 181 | 98.53 133 |
|
| testing3 | | | 87.67 320 | 86.88 321 | 90.05 349 | 96.14 228 | 80.71 357 | 97.10 168 | 92.85 373 | 90.15 205 | 87.54 312 | 94.55 276 | 55.70 394 | 94.10 385 | 73.77 381 | 94.10 216 | 95.35 288 |
|
| plane_prior1 | | | | | | 96.14 228 | | | | | | | | | | | |
|
| CLD-MVS | | | 92.98 170 | 92.53 169 | 94.32 216 | 96.12 230 | 89.20 211 | 95.28 293 | 97.47 164 | 92.66 123 | 89.90 251 | 95.62 230 | 80.58 233 | 98.40 218 | 92.73 150 | 92.40 242 | 95.38 286 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| plane_prior6 | | | | | | 96.10 231 | 90.00 175 | | | | | | 81.32 221 | | | | |
|
| cl22 | | | 91.21 248 | 90.56 243 | 93.14 275 | 96.09 232 | 86.80 272 | 94.41 323 | 96.58 254 | 87.80 281 | 88.58 290 | 93.99 311 | 80.85 230 | 97.62 311 | 89.87 203 | 86.93 309 | 94.99 307 |
|
| test_fmvs1_n | | | 92.73 183 | 92.88 152 | 92.29 301 | 96.08 233 | 81.05 355 | 97.98 62 | 97.08 207 | 90.72 183 | 96.79 65 | 98.18 70 | 63.07 380 | 98.45 215 | 97.62 23 | 98.42 113 | 97.36 211 |
|
| Effi-MVS+-dtu | | | 93.08 165 | 93.21 144 | 92.68 293 | 96.02 234 | 83.25 333 | 97.14 166 | 96.72 240 | 93.85 74 | 91.20 224 | 93.44 333 | 83.08 185 | 98.30 229 | 91.69 171 | 95.73 182 | 96.50 237 |
|
| NP-MVS | | | | | | 95.99 235 | 89.81 185 | | | | | 95.87 212 | | | | | |
|
| UWE-MVS | | | 89.91 291 | 89.48 287 | 91.21 328 | 95.88 236 | 78.23 383 | 94.91 308 | 90.26 393 | 89.11 235 | 92.35 187 | 94.52 278 | 68.76 350 | 97.96 274 | 83.95 312 | 95.59 186 | 97.42 209 |
|
| ADS-MVSNet2 | | | 89.45 300 | 88.59 302 | 92.03 307 | 95.86 237 | 82.26 345 | 90.93 383 | 94.32 352 | 83.23 358 | 91.28 220 | 91.81 363 | 79.01 266 | 95.99 361 | 79.52 349 | 91.39 260 | 97.84 186 |
|
| ADS-MVSNet | | | 89.89 293 | 88.68 301 | 93.53 260 | 95.86 237 | 84.89 315 | 90.93 383 | 95.07 323 | 83.23 358 | 91.28 220 | 91.81 363 | 79.01 266 | 97.85 288 | 79.52 349 | 91.39 260 | 97.84 186 |
|
| HQP-NCC | | | | | | 95.86 237 | | 96.65 208 | | 93.55 82 | 90.14 238 | | | | | | |
|
| ACMP_Plane | | | | | | 95.86 237 | | 96.65 208 | | 93.55 82 | 90.14 238 | | | | | | |
|
| HQP-MVS | | | 93.19 160 | 92.74 159 | 94.54 205 | 95.86 237 | 89.33 204 | 96.65 208 | 97.39 182 | 93.55 82 | 90.14 238 | 95.87 212 | 80.95 225 | 98.50 211 | 92.13 158 | 92.10 249 | 95.78 264 |
|
| EI-MVSNet | | | 93.03 168 | 92.88 152 | 93.48 262 | 95.77 242 | 86.98 269 | 96.44 222 | 97.12 202 | 90.66 188 | 91.30 217 | 97.64 114 | 86.56 132 | 98.05 258 | 89.91 201 | 90.55 274 | 95.41 281 |
|
| CVMVSNet | | | 91.23 247 | 91.75 193 | 89.67 353 | 95.77 242 | 74.69 389 | 96.44 222 | 94.88 332 | 85.81 321 | 92.18 191 | 97.64 114 | 79.07 261 | 95.58 372 | 88.06 241 | 95.86 179 | 98.74 119 |
|
| FIs | | | 94.09 128 | 93.70 123 | 95.27 164 | 95.70 244 | 92.03 104 | 98.10 51 | 98.68 13 | 93.36 94 | 90.39 234 | 96.70 165 | 87.63 115 | 97.94 279 | 92.25 154 | 90.50 276 | 95.84 259 |
|
| VPA-MVSNet | | | 93.24 157 | 92.48 172 | 95.51 154 | 95.70 244 | 92.39 89 | 97.86 79 | 98.66 16 | 92.30 130 | 92.09 196 | 95.37 240 | 80.49 235 | 98.40 218 | 93.95 123 | 85.86 318 | 95.75 268 |
|
| test_fmvsmconf0.1_n | | | 97.09 24 | 97.06 19 | 97.19 64 | 95.67 246 | 92.21 97 | 97.95 71 | 98.27 39 | 95.78 10 | 98.40 25 | 99.00 6 | 89.99 81 | 99.78 35 | 99.06 6 | 99.41 50 | 99.59 21 |
|
| tt0805 | | | 91.09 253 | 90.07 265 | 94.16 224 | 95.61 247 | 88.31 233 | 97.56 119 | 96.51 256 | 89.56 220 | 89.17 276 | 95.64 229 | 67.08 365 | 98.38 223 | 91.07 183 | 88.44 295 | 95.80 262 |
|
| SCA | | | 91.84 215 | 91.18 217 | 93.83 244 | 95.59 248 | 84.95 314 | 94.72 311 | 95.58 300 | 90.82 178 | 92.25 190 | 93.69 321 | 75.80 301 | 98.10 247 | 86.20 279 | 95.98 175 | 98.45 144 |
|
| c3_l | | | 91.38 238 | 90.89 223 | 92.88 284 | 95.58 249 | 86.30 287 | 94.68 312 | 96.84 235 | 88.17 269 | 88.83 285 | 94.23 299 | 85.65 147 | 97.47 324 | 89.36 216 | 84.63 337 | 94.89 316 |
|
| VPNet | | | 92.23 202 | 91.31 209 | 94.99 177 | 95.56 250 | 90.96 148 | 97.22 159 | 97.86 115 | 92.96 115 | 90.96 225 | 96.62 177 | 75.06 307 | 98.20 236 | 91.90 162 | 83.65 352 | 95.80 262 |
|
| miper_ehance_all_eth | | | 91.59 225 | 91.13 218 | 92.97 280 | 95.55 251 | 86.57 280 | 94.47 319 | 96.88 231 | 87.77 283 | 88.88 282 | 94.01 309 | 86.22 138 | 97.54 317 | 89.49 212 | 86.93 309 | 94.79 326 |
|
| IterMVS-SCA-FT | | | 90.31 280 | 89.81 275 | 91.82 313 | 95.52 252 | 84.20 322 | 94.30 329 | 96.15 274 | 90.61 192 | 87.39 316 | 94.27 296 | 75.80 301 | 96.44 356 | 87.34 261 | 86.88 313 | 94.82 321 |
|
| jason | | | 94.84 106 | 94.39 112 | 96.18 116 | 95.52 252 | 90.93 150 | 96.09 251 | 96.52 255 | 89.28 230 | 96.01 102 | 97.32 132 | 84.70 157 | 98.77 184 | 95.15 97 | 98.91 94 | 98.85 111 |
| jason: jason. |
| fmvsm_s_conf0.1_n_a | | | 96.40 60 | 96.47 54 | 96.16 117 | 95.48 254 | 90.69 159 | 97.91 75 | 98.33 29 | 94.07 66 | 98.93 9 | 99.14 1 | 87.44 122 | 99.61 69 | 98.63 13 | 98.32 116 | 98.18 163 |
|
| FC-MVSNet-test | | | 93.94 134 | 93.57 127 | 95.04 174 | 95.48 254 | 91.45 128 | 98.12 50 | 98.71 11 | 93.37 92 | 90.23 237 | 96.70 165 | 87.66 112 | 97.85 288 | 91.49 174 | 90.39 277 | 95.83 260 |
|
| IterMVS | | | 90.15 288 | 89.67 281 | 91.61 320 | 95.48 254 | 83.72 328 | 94.33 327 | 96.12 275 | 89.99 208 | 87.31 319 | 94.15 304 | 75.78 303 | 96.27 359 | 86.97 270 | 86.89 312 | 94.83 319 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| dmvs_re | | | 90.21 285 | 89.50 286 | 92.35 298 | 95.47 257 | 85.15 307 | 95.70 272 | 94.37 349 | 90.94 177 | 88.42 292 | 93.57 328 | 74.63 311 | 95.67 369 | 82.80 323 | 89.57 284 | 96.22 243 |
|
| FMVSNet1 | | | 89.88 294 | 88.31 305 | 94.59 199 | 95.41 258 | 91.18 140 | 97.50 126 | 96.93 223 | 86.62 307 | 87.41 315 | 94.51 279 | 65.94 373 | 97.29 336 | 83.04 319 | 87.43 304 | 95.31 291 |
|
| UniMVSNet (Re) | | | 93.31 155 | 92.55 167 | 95.61 148 | 95.39 259 | 93.34 66 | 97.39 140 | 98.71 11 | 93.14 105 | 90.10 246 | 94.83 263 | 87.71 111 | 98.03 262 | 91.67 172 | 83.99 346 | 95.46 279 |
|
| MVS-HIRNet | | | 82.47 355 | 81.21 358 | 86.26 372 | 95.38 260 | 69.21 399 | 88.96 396 | 89.49 395 | 66.28 401 | 80.79 373 | 74.08 406 | 68.48 354 | 97.39 331 | 71.93 387 | 95.47 187 | 92.18 377 |
|
| PatchmatchNet |  | | 91.91 212 | 91.35 206 | 93.59 257 | 95.38 260 | 84.11 323 | 93.15 362 | 95.39 305 | 89.54 221 | 92.10 195 | 93.68 323 | 82.82 193 | 98.13 242 | 84.81 300 | 95.32 190 | 98.52 134 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| cl____ | | | 90.96 261 | 90.32 249 | 92.89 283 | 95.37 262 | 86.21 290 | 94.46 321 | 96.64 248 | 87.82 279 | 88.15 302 | 94.18 302 | 82.98 188 | 97.54 317 | 87.70 250 | 85.59 320 | 94.92 314 |
|
| DIV-MVS_self_test | | | 90.97 260 | 90.33 248 | 92.88 284 | 95.36 263 | 86.19 291 | 94.46 321 | 96.63 251 | 87.82 279 | 88.18 301 | 94.23 299 | 82.99 187 | 97.53 319 | 87.72 247 | 85.57 321 | 94.93 312 |
|
| miper_enhance_ethall | | | 91.54 231 | 91.01 221 | 93.15 274 | 95.35 264 | 87.07 268 | 93.97 338 | 96.90 228 | 86.79 305 | 89.17 276 | 93.43 336 | 86.55 133 | 97.64 308 | 89.97 200 | 86.93 309 | 94.74 330 |
|
| UniMVSNet_NR-MVSNet | | | 93.37 153 | 92.67 162 | 95.47 159 | 95.34 265 | 92.83 76 | 97.17 163 | 98.58 17 | 92.98 114 | 90.13 242 | 95.80 217 | 88.37 102 | 97.85 288 | 91.71 169 | 83.93 347 | 95.73 270 |
|
| ITE_SJBPF | | | | | 92.43 296 | 95.34 265 | 85.37 304 | | 95.92 279 | 91.47 154 | 87.75 309 | 96.39 188 | 71.00 335 | 97.96 274 | 82.36 328 | 89.86 281 | 93.97 350 |
|
| OpenMVS |  | 89.19 12 | 92.86 177 | 91.68 196 | 96.40 97 | 95.34 265 | 92.73 80 | 98.27 32 | 98.12 67 | 84.86 337 | 85.78 338 | 97.75 103 | 78.89 269 | 99.74 41 | 87.50 259 | 98.65 101 | 96.73 232 |
|
| eth_miper_zixun_eth | | | 91.02 257 | 90.59 241 | 92.34 300 | 95.33 268 | 84.35 319 | 94.10 335 | 96.90 228 | 88.56 258 | 88.84 284 | 94.33 291 | 84.08 168 | 97.60 313 | 88.77 233 | 84.37 343 | 95.06 305 |
|
| miper_lstm_enhance | | | 90.50 278 | 90.06 266 | 91.83 312 | 95.33 268 | 83.74 327 | 93.86 344 | 96.70 244 | 87.56 290 | 87.79 307 | 93.81 317 | 83.45 178 | 96.92 348 | 87.39 260 | 84.62 338 | 94.82 321 |
|
| 1314 | | | 92.81 181 | 92.03 183 | 95.14 169 | 95.33 268 | 89.52 195 | 96.04 253 | 97.44 175 | 87.72 286 | 86.25 335 | 95.33 241 | 83.84 170 | 98.79 180 | 89.26 220 | 97.05 157 | 97.11 221 |
|
| PAPM | | | 91.52 232 | 90.30 251 | 95.20 166 | 95.30 271 | 89.83 184 | 93.38 358 | 96.85 234 | 86.26 315 | 88.59 289 | 95.80 217 | 84.88 155 | 98.15 241 | 75.67 371 | 95.93 177 | 97.63 196 |
|
| Fast-Effi-MVS+-dtu | | | 92.29 198 | 91.99 185 | 93.21 273 | 95.27 272 | 85.52 299 | 97.03 171 | 96.63 251 | 92.09 138 | 89.11 278 | 95.14 250 | 80.33 239 | 98.08 251 | 87.54 258 | 94.74 204 | 96.03 254 |
|
| Patchmatch-test | | | 89.42 301 | 87.99 308 | 93.70 252 | 95.27 272 | 85.11 308 | 88.98 395 | 94.37 349 | 81.11 371 | 87.10 323 | 93.69 321 | 82.28 205 | 97.50 322 | 74.37 377 | 94.76 202 | 98.48 141 |
|
| PVSNet_0 | | 82.17 19 | 85.46 344 | 83.64 347 | 90.92 333 | 95.27 272 | 79.49 375 | 90.55 386 | 95.60 298 | 83.76 352 | 83.00 366 | 89.95 376 | 71.09 334 | 97.97 270 | 82.75 325 | 60.79 406 | 95.31 291 |
|
| IB-MVS | | 87.33 17 | 89.91 291 | 88.28 306 | 94.79 193 | 95.26 275 | 87.70 254 | 95.12 303 | 93.95 359 | 89.35 229 | 87.03 324 | 92.49 348 | 70.74 337 | 99.19 130 | 89.18 225 | 81.37 364 | 97.49 205 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| nrg030 | | | 94.05 130 | 93.31 141 | 96.27 109 | 95.22 276 | 94.59 32 | 98.34 25 | 97.46 166 | 92.93 116 | 91.21 223 | 96.64 170 | 87.23 127 | 98.22 234 | 94.99 101 | 85.80 319 | 95.98 255 |
|
| MDTV_nov1_ep13 | | | | 90.76 231 | | 95.22 276 | 80.33 364 | 93.03 365 | 95.28 312 | 88.14 271 | 92.84 179 | 93.83 314 | 81.34 220 | 98.08 251 | 82.86 320 | 94.34 209 | |
|
| MVS | | | 91.71 218 | 90.44 245 | 95.51 154 | 95.20 278 | 91.59 120 | 96.04 253 | 97.45 171 | 73.44 397 | 87.36 317 | 95.60 231 | 85.42 149 | 99.10 144 | 85.97 286 | 97.46 139 | 95.83 260 |
|
| Syy-MVS | | | 87.13 325 | 87.02 320 | 87.47 366 | 95.16 279 | 73.21 394 | 95.00 305 | 93.93 360 | 88.55 259 | 86.96 326 | 91.99 359 | 75.90 299 | 94.00 386 | 61.59 400 | 94.11 214 | 95.20 299 |
|
| myMVS_eth3d | | | 87.18 324 | 86.38 324 | 89.58 354 | 95.16 279 | 79.53 373 | 95.00 305 | 93.93 360 | 88.55 259 | 86.96 326 | 91.99 359 | 56.23 393 | 94.00 386 | 75.47 373 | 94.11 214 | 95.20 299 |
|
| tfpnnormal | | | 89.70 299 | 88.40 304 | 93.60 256 | 95.15 281 | 90.10 173 | 97.56 119 | 98.16 61 | 87.28 297 | 86.16 336 | 94.63 273 | 77.57 287 | 98.05 258 | 74.48 375 | 84.59 339 | 92.65 367 |
|
| tpmrst | | | 91.44 235 | 91.32 208 | 91.79 315 | 95.15 281 | 79.20 378 | 93.42 357 | 95.37 307 | 88.55 259 | 93.49 162 | 93.67 324 | 82.49 201 | 98.27 231 | 90.41 192 | 89.34 286 | 97.90 182 |
|
| WR-MVS | | | 92.34 194 | 91.53 201 | 94.77 194 | 95.13 283 | 90.83 153 | 96.40 230 | 97.98 100 | 91.88 144 | 89.29 272 | 95.54 235 | 82.50 200 | 97.80 294 | 89.79 205 | 85.27 327 | 95.69 271 |
|
| tpm cat1 | | | 88.36 313 | 87.21 316 | 91.81 314 | 95.13 283 | 80.55 361 | 92.58 371 | 95.70 291 | 74.97 393 | 87.45 313 | 91.96 361 | 78.01 284 | 98.17 240 | 80.39 345 | 88.74 292 | 96.72 233 |
|
| WR-MVS_H | | | 92.00 209 | 91.35 206 | 93.95 237 | 95.09 285 | 89.47 196 | 98.04 57 | 98.68 13 | 91.46 155 | 88.34 294 | 94.68 270 | 85.86 144 | 97.56 315 | 85.77 289 | 84.24 344 | 94.82 321 |
|
| CP-MVSNet | | | 91.89 214 | 91.24 213 | 93.82 245 | 95.05 286 | 88.57 226 | 97.82 87 | 98.19 55 | 91.70 148 | 88.21 300 | 95.76 222 | 81.96 211 | 97.52 321 | 87.86 244 | 84.65 336 | 95.37 287 |
|
| test_0402 | | | 86.46 331 | 84.79 340 | 91.45 323 | 95.02 287 | 85.55 298 | 96.29 240 | 94.89 331 | 80.90 372 | 82.21 368 | 93.97 312 | 68.21 356 | 97.29 336 | 62.98 398 | 88.68 293 | 91.51 383 |
|
| cascas | | | 91.20 249 | 90.08 262 | 94.58 203 | 94.97 288 | 89.16 214 | 93.65 352 | 97.59 148 | 79.90 380 | 89.40 267 | 92.92 341 | 75.36 305 | 98.36 224 | 92.14 157 | 94.75 203 | 96.23 242 |
|
| PS-CasMVS | | | 91.55 229 | 90.84 228 | 93.69 253 | 94.96 289 | 88.28 235 | 97.84 83 | 98.24 47 | 91.46 155 | 88.04 304 | 95.80 217 | 79.67 251 | 97.48 323 | 87.02 269 | 84.54 341 | 95.31 291 |
|
| DU-MVS | | | 92.90 175 | 92.04 182 | 95.49 156 | 94.95 290 | 92.83 76 | 97.16 164 | 98.24 47 | 93.02 108 | 90.13 242 | 95.71 224 | 83.47 176 | 97.85 288 | 91.71 169 | 83.93 347 | 95.78 264 |
|
| NR-MVSNet | | | 92.34 194 | 91.27 212 | 95.53 153 | 94.95 290 | 93.05 72 | 97.39 140 | 98.07 79 | 92.65 124 | 84.46 349 | 95.71 224 | 85.00 154 | 97.77 298 | 89.71 206 | 83.52 353 | 95.78 264 |
|
| mvsany_test1 | | | 93.93 135 | 93.98 118 | 93.78 248 | 94.94 292 | 86.80 272 | 94.62 313 | 92.55 378 | 88.77 253 | 96.85 63 | 98.49 37 | 88.98 90 | 98.08 251 | 95.03 99 | 95.62 185 | 96.46 240 |
|
| tpmvs | | | 89.83 297 | 89.15 294 | 91.89 310 | 94.92 293 | 80.30 365 | 93.11 363 | 95.46 304 | 86.28 314 | 88.08 303 | 92.65 344 | 80.44 236 | 98.52 210 | 81.47 333 | 89.92 280 | 96.84 229 |
|
| PMMVS | | | 92.86 177 | 92.34 175 | 94.42 211 | 94.92 293 | 86.73 275 | 94.53 317 | 96.38 262 | 84.78 339 | 94.27 143 | 95.12 252 | 83.13 184 | 98.40 218 | 91.47 175 | 96.49 169 | 98.12 169 |
|
| tpm2 | | | 89.96 290 | 89.21 292 | 92.23 304 | 94.91 295 | 81.25 352 | 93.78 346 | 94.42 346 | 80.62 377 | 91.56 208 | 93.44 333 | 76.44 296 | 97.94 279 | 85.60 291 | 92.08 251 | 97.49 205 |
|
| TinyColmap | | | 86.82 328 | 85.35 334 | 91.21 328 | 94.91 295 | 82.99 336 | 93.94 340 | 94.02 357 | 83.58 354 | 81.56 370 | 94.68 270 | 62.34 384 | 98.13 242 | 75.78 369 | 87.35 308 | 92.52 371 |
|
| UniMVSNet_ETH3D | | | 91.34 243 | 90.22 258 | 94.68 197 | 94.86 297 | 87.86 250 | 97.23 158 | 97.46 166 | 87.99 273 | 89.90 251 | 96.92 155 | 66.35 368 | 98.23 233 | 90.30 195 | 90.99 268 | 97.96 179 |
|
| CostFormer | | | 91.18 252 | 90.70 237 | 92.62 294 | 94.84 298 | 81.76 349 | 94.09 336 | 94.43 345 | 84.15 345 | 92.72 180 | 93.77 318 | 79.43 255 | 98.20 236 | 90.70 189 | 92.18 247 | 97.90 182 |
|
| MIMVSNet | | | 88.50 312 | 86.76 322 | 93.72 251 | 94.84 298 | 87.77 253 | 91.39 378 | 94.05 355 | 86.41 311 | 87.99 305 | 92.59 347 | 63.27 379 | 95.82 366 | 77.44 360 | 92.84 235 | 97.57 203 |
|
| FMVSNet5 | | | 87.29 323 | 85.79 329 | 91.78 316 | 94.80 300 | 87.28 259 | 95.49 284 | 95.28 312 | 84.09 346 | 83.85 360 | 91.82 362 | 62.95 381 | 94.17 384 | 78.48 356 | 85.34 326 | 93.91 351 |
|
| TranMVSNet+NR-MVSNet | | | 92.50 186 | 91.63 197 | 95.14 169 | 94.76 301 | 92.07 102 | 97.53 124 | 98.11 70 | 92.90 118 | 89.56 263 | 96.12 201 | 83.16 182 | 97.60 313 | 89.30 218 | 83.20 356 | 95.75 268 |
|
| test_vis1_n | | | 92.37 193 | 92.26 178 | 92.72 290 | 94.75 302 | 82.64 338 | 98.02 58 | 96.80 237 | 91.18 168 | 97.77 38 | 97.93 88 | 58.02 389 | 98.29 230 | 97.63 22 | 98.21 120 | 97.23 219 |
|
| XXY-MVS | | | 92.16 204 | 91.23 214 | 94.95 183 | 94.75 302 | 90.94 149 | 97.47 132 | 97.43 178 | 89.14 234 | 88.90 280 | 96.43 185 | 79.71 250 | 98.24 232 | 89.56 211 | 87.68 301 | 95.67 272 |
|
| EPMVS | | | 90.70 270 | 89.81 275 | 93.37 266 | 94.73 304 | 84.21 321 | 93.67 351 | 88.02 400 | 89.50 223 | 92.38 184 | 93.49 330 | 77.82 286 | 97.78 296 | 86.03 285 | 92.68 239 | 98.11 172 |
|
| D2MVS | | | 91.30 245 | 90.95 222 | 92.35 298 | 94.71 305 | 85.52 299 | 96.18 248 | 98.21 51 | 88.89 245 | 86.60 332 | 93.82 316 | 79.92 247 | 97.95 278 | 89.29 219 | 90.95 269 | 93.56 354 |
|
| USDC | | | 88.94 305 | 87.83 310 | 92.27 302 | 94.66 306 | 84.96 313 | 93.86 344 | 95.90 281 | 87.34 295 | 83.40 361 | 95.56 233 | 67.43 359 | 98.19 238 | 82.64 327 | 89.67 283 | 93.66 353 |
|
| GA-MVS | | | 91.38 238 | 90.31 250 | 94.59 199 | 94.65 307 | 87.62 255 | 94.34 326 | 96.19 273 | 90.73 182 | 90.35 235 | 93.83 314 | 71.84 329 | 97.96 274 | 87.22 264 | 93.61 229 | 98.21 161 |
|
| OPM-MVS | | | 93.28 156 | 92.76 156 | 94.82 187 | 94.63 308 | 90.77 156 | 96.65 208 | 97.18 197 | 93.72 77 | 91.68 207 | 97.26 137 | 79.33 257 | 98.63 200 | 92.13 158 | 92.28 243 | 95.07 304 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| test-LLR | | | 91.42 236 | 91.19 216 | 92.12 305 | 94.59 309 | 80.66 358 | 94.29 330 | 92.98 371 | 91.11 171 | 90.76 229 | 92.37 351 | 79.02 264 | 98.07 255 | 88.81 231 | 96.74 162 | 97.63 196 |
|
| test-mter | | | 90.19 287 | 89.54 285 | 92.12 305 | 94.59 309 | 80.66 358 | 94.29 330 | 92.98 371 | 87.68 287 | 90.76 229 | 92.37 351 | 67.67 357 | 98.07 255 | 88.81 231 | 96.74 162 | 97.63 196 |
|
| dp | | | 88.90 307 | 88.26 307 | 90.81 337 | 94.58 311 | 76.62 385 | 92.85 368 | 94.93 329 | 85.12 333 | 90.07 249 | 93.07 338 | 75.81 300 | 98.12 245 | 80.53 344 | 87.42 305 | 97.71 193 |
|
| WB-MVSnew | | | 89.88 294 | 89.56 284 | 90.82 336 | 94.57 312 | 83.06 335 | 95.65 277 | 92.85 373 | 87.86 278 | 90.83 228 | 94.10 305 | 79.66 252 | 96.88 349 | 76.34 367 | 94.19 212 | 92.54 370 |
|
| PEN-MVS | | | 91.20 249 | 90.44 245 | 93.48 262 | 94.49 313 | 87.91 249 | 97.76 92 | 98.18 57 | 91.29 161 | 87.78 308 | 95.74 223 | 80.35 238 | 97.33 334 | 85.46 293 | 82.96 357 | 95.19 302 |
|
| gg-mvs-nofinetune | | | 87.82 318 | 85.61 330 | 94.44 209 | 94.46 314 | 89.27 209 | 91.21 382 | 84.61 408 | 80.88 373 | 89.89 253 | 74.98 404 | 71.50 331 | 97.53 319 | 85.75 290 | 97.21 153 | 96.51 236 |
|
| CR-MVSNet | | | 90.82 265 | 89.77 277 | 93.95 237 | 94.45 315 | 87.19 264 | 90.23 388 | 95.68 295 | 86.89 303 | 92.40 182 | 92.36 354 | 80.91 227 | 97.05 342 | 81.09 341 | 93.95 222 | 97.60 201 |
|
| RPMNet | | | 88.98 304 | 87.05 318 | 94.77 194 | 94.45 315 | 87.19 264 | 90.23 388 | 98.03 91 | 77.87 389 | 92.40 182 | 87.55 393 | 80.17 242 | 99.51 96 | 68.84 394 | 93.95 222 | 97.60 201 |
|
| TESTMET0.1,1 | | | 90.06 289 | 89.42 288 | 91.97 308 | 94.41 317 | 80.62 360 | 94.29 330 | 91.97 383 | 87.28 297 | 90.44 233 | 92.47 350 | 68.79 349 | 97.67 305 | 88.50 237 | 96.60 167 | 97.61 200 |
|
| TransMVSNet (Re) | | | 88.94 305 | 87.56 311 | 93.08 277 | 94.35 318 | 88.45 232 | 97.73 96 | 95.23 316 | 87.47 291 | 84.26 352 | 95.29 242 | 79.86 248 | 97.33 334 | 79.44 353 | 74.44 387 | 93.45 357 |
|
| MS-PatchMatch | | | 90.27 282 | 89.77 277 | 91.78 316 | 94.33 319 | 84.72 317 | 95.55 280 | 96.73 239 | 86.17 317 | 86.36 334 | 95.28 244 | 71.28 333 | 97.80 294 | 84.09 309 | 98.14 124 | 92.81 364 |
|
| baseline2 | | | 91.63 222 | 90.86 225 | 93.94 239 | 94.33 319 | 86.32 286 | 95.92 260 | 91.64 385 | 89.37 228 | 86.94 328 | 94.69 269 | 81.62 218 | 98.69 194 | 88.64 235 | 94.57 207 | 96.81 230 |
|
| XVG-ACMP-BASELINE | | | 90.93 262 | 90.21 259 | 93.09 276 | 94.31 321 | 85.89 294 | 95.33 290 | 97.26 194 | 91.06 174 | 89.38 268 | 95.44 239 | 68.61 351 | 98.60 203 | 89.46 213 | 91.05 266 | 94.79 326 |
|
| pm-mvs1 | | | 90.72 269 | 89.65 283 | 93.96 236 | 94.29 322 | 89.63 187 | 97.79 91 | 96.82 236 | 89.07 236 | 86.12 337 | 95.48 238 | 78.61 272 | 97.78 296 | 86.97 270 | 81.67 362 | 94.46 337 |
|
| v8 | | | 91.29 246 | 90.53 244 | 93.57 259 | 94.15 323 | 88.12 243 | 97.34 145 | 97.06 211 | 88.99 240 | 88.32 295 | 94.26 298 | 83.08 185 | 98.01 264 | 87.62 256 | 83.92 349 | 94.57 335 |
|
| v10 | | | 91.04 256 | 90.23 256 | 93.49 261 | 94.12 324 | 88.16 242 | 97.32 148 | 97.08 207 | 88.26 267 | 88.29 297 | 94.22 301 | 82.17 208 | 97.97 270 | 86.45 276 | 84.12 345 | 94.33 342 |
|
| Patchmtry | | | 88.64 311 | 87.25 314 | 92.78 289 | 94.09 325 | 86.64 276 | 89.82 392 | 95.68 295 | 80.81 375 | 87.63 311 | 92.36 354 | 80.91 227 | 97.03 343 | 78.86 355 | 85.12 330 | 94.67 332 |
|
| PatchT | | | 88.87 308 | 87.42 312 | 93.22 272 | 94.08 326 | 85.10 309 | 89.51 393 | 94.64 340 | 81.92 366 | 92.36 185 | 88.15 389 | 80.05 244 | 97.01 345 | 72.43 385 | 93.65 227 | 97.54 204 |
|
| V42 | | | 91.58 227 | 90.87 224 | 93.73 249 | 94.05 327 | 88.50 230 | 97.32 148 | 96.97 219 | 88.80 252 | 89.71 256 | 94.33 291 | 82.54 199 | 98.05 258 | 89.01 227 | 85.07 331 | 94.64 334 |
|
| DTE-MVSNet | | | 90.56 274 | 89.75 279 | 93.01 278 | 93.95 328 | 87.25 261 | 97.64 110 | 97.65 139 | 90.74 181 | 87.12 320 | 95.68 227 | 79.97 246 | 97.00 346 | 83.33 316 | 81.66 363 | 94.78 328 |
|
| tpm | | | 90.25 283 | 89.74 280 | 91.76 318 | 93.92 329 | 79.73 372 | 93.98 337 | 93.54 365 | 88.28 266 | 91.99 197 | 93.25 337 | 77.51 288 | 97.44 327 | 87.30 263 | 87.94 298 | 98.12 169 |
|
| PS-MVSNAJss | | | 93.74 142 | 93.51 133 | 94.44 209 | 93.91 330 | 89.28 208 | 97.75 93 | 97.56 154 | 92.50 126 | 89.94 250 | 96.54 180 | 88.65 97 | 98.18 239 | 93.83 129 | 90.90 270 | 95.86 256 |
|
| v1144 | | | 91.37 240 | 90.60 240 | 93.68 254 | 93.89 331 | 88.23 238 | 96.84 189 | 97.03 216 | 88.37 264 | 89.69 258 | 94.39 286 | 82.04 209 | 97.98 267 | 87.80 246 | 85.37 324 | 94.84 318 |
|
| v2v482 | | | 91.59 225 | 90.85 227 | 93.80 246 | 93.87 332 | 88.17 241 | 96.94 181 | 96.88 231 | 89.54 221 | 89.53 264 | 94.90 259 | 81.70 217 | 98.02 263 | 89.25 221 | 85.04 333 | 95.20 299 |
|
| v148 | | | 90.99 258 | 90.38 247 | 92.81 287 | 93.83 333 | 85.80 295 | 96.78 195 | 96.68 245 | 89.45 226 | 88.75 287 | 93.93 313 | 82.96 190 | 97.82 292 | 87.83 245 | 83.25 354 | 94.80 324 |
|
| Baseline_NR-MVSNet | | | 91.20 249 | 90.62 239 | 92.95 281 | 93.83 333 | 88.03 244 | 97.01 176 | 95.12 321 | 88.42 263 | 89.70 257 | 95.13 251 | 83.47 176 | 97.44 327 | 89.66 209 | 83.24 355 | 93.37 358 |
|
| EPNet_dtu | | | 91.71 218 | 91.28 211 | 92.99 279 | 93.76 335 | 83.71 329 | 96.69 204 | 95.28 312 | 93.15 104 | 87.02 325 | 95.95 209 | 83.37 179 | 97.38 332 | 79.46 352 | 96.84 159 | 97.88 184 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| v1192 | | | 91.07 254 | 90.23 256 | 93.58 258 | 93.70 336 | 87.82 252 | 96.73 198 | 97.07 209 | 87.77 283 | 89.58 261 | 94.32 293 | 80.90 229 | 97.97 270 | 86.52 274 | 85.48 322 | 94.95 308 |
|
| GG-mvs-BLEND | | | | | 93.62 255 | 93.69 337 | 89.20 211 | 92.39 374 | 83.33 410 | | 87.98 306 | 89.84 378 | 71.00 335 | 96.87 350 | 82.08 330 | 95.40 189 | 94.80 324 |
|
| test_fmvs2 | | | 89.77 298 | 89.93 270 | 89.31 359 | 93.68 338 | 76.37 386 | 97.64 110 | 95.90 281 | 89.84 214 | 91.49 210 | 96.26 194 | 58.77 388 | 97.10 340 | 94.65 112 | 91.13 264 | 94.46 337 |
|
| v144192 | | | 91.06 255 | 90.28 252 | 93.39 265 | 93.66 339 | 87.23 263 | 96.83 190 | 97.07 209 | 87.43 292 | 89.69 258 | 94.28 295 | 81.48 219 | 98.00 265 | 87.18 266 | 84.92 335 | 94.93 312 |
|
| v1921920 | | | 90.85 264 | 90.03 267 | 93.29 269 | 93.55 340 | 86.96 271 | 96.74 197 | 97.04 214 | 87.36 294 | 89.52 265 | 94.34 290 | 80.23 241 | 97.97 270 | 86.27 277 | 85.21 328 | 94.94 310 |
|
| v7n | | | 90.76 266 | 89.86 272 | 93.45 264 | 93.54 341 | 87.60 256 | 97.70 102 | 97.37 185 | 88.85 246 | 87.65 310 | 94.08 307 | 81.08 224 | 98.10 247 | 84.68 302 | 83.79 351 | 94.66 333 |
|
| JIA-IIPM | | | 88.26 315 | 87.04 319 | 91.91 309 | 93.52 342 | 81.42 351 | 89.38 394 | 94.38 348 | 80.84 374 | 90.93 226 | 80.74 401 | 79.22 258 | 97.92 282 | 82.76 324 | 91.62 255 | 96.38 241 |
|
| v1240 | | | 90.70 270 | 89.85 273 | 93.23 271 | 93.51 343 | 86.80 272 | 96.61 214 | 97.02 217 | 87.16 299 | 89.58 261 | 94.31 294 | 79.55 254 | 97.98 267 | 85.52 292 | 85.44 323 | 94.90 315 |
|
| test_djsdf | | | 93.07 166 | 92.76 156 | 94.00 232 | 93.49 344 | 88.70 223 | 98.22 40 | 97.57 150 | 91.42 157 | 90.08 248 | 95.55 234 | 82.85 192 | 97.92 282 | 94.07 120 | 91.58 256 | 95.40 284 |
|
| SixPastTwentyTwo | | | 89.15 303 | 88.54 303 | 90.98 332 | 93.49 344 | 80.28 366 | 96.70 202 | 94.70 337 | 90.78 179 | 84.15 354 | 95.57 232 | 71.78 330 | 97.71 303 | 84.63 303 | 85.07 331 | 94.94 310 |
|
| test_vis1_rt | | | 86.16 336 | 85.06 337 | 89.46 355 | 93.47 346 | 80.46 362 | 96.41 226 | 86.61 405 | 85.22 330 | 79.15 382 | 88.64 384 | 52.41 397 | 97.06 341 | 93.08 142 | 90.57 273 | 90.87 388 |
|
| mvs_tets | | | 92.31 196 | 91.76 192 | 93.94 239 | 93.41 347 | 88.29 234 | 97.63 112 | 97.53 156 | 92.04 140 | 88.76 286 | 96.45 184 | 74.62 312 | 98.09 250 | 93.91 125 | 91.48 258 | 95.45 280 |
|
| OurMVSNet-221017-0 | | | 90.51 277 | 90.19 260 | 91.44 324 | 93.41 347 | 81.25 352 | 96.98 178 | 96.28 266 | 91.68 149 | 86.55 333 | 96.30 191 | 74.20 315 | 97.98 267 | 88.96 229 | 87.40 307 | 95.09 303 |
|
| pmmvs4 | | | 90.93 262 | 89.85 273 | 94.17 223 | 93.34 349 | 90.79 155 | 94.60 314 | 96.02 277 | 84.62 340 | 87.45 313 | 95.15 249 | 81.88 214 | 97.45 326 | 87.70 250 | 87.87 299 | 94.27 346 |
|
| jajsoiax | | | 92.42 190 | 91.89 189 | 94.03 231 | 93.33 350 | 88.50 230 | 97.73 96 | 97.53 156 | 92.00 142 | 88.85 283 | 96.50 182 | 75.62 304 | 98.11 246 | 93.88 127 | 91.56 257 | 95.48 276 |
|
| gm-plane-assit | | | | | | 93.22 351 | 78.89 381 | | | 84.82 338 | | 93.52 329 | | 98.64 199 | 87.72 247 | | |
|
| MVP-Stereo | | | 90.74 268 | 90.08 262 | 92.71 291 | 93.19 352 | 88.20 239 | 95.86 263 | 96.27 267 | 86.07 318 | 84.86 347 | 94.76 266 | 77.84 285 | 97.75 300 | 83.88 314 | 98.01 127 | 92.17 378 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| EU-MVSNet | | | 88.72 310 | 88.90 298 | 88.20 363 | 93.15 353 | 74.21 390 | 96.63 213 | 94.22 354 | 85.18 331 | 87.32 318 | 95.97 207 | 76.16 298 | 94.98 378 | 85.27 295 | 86.17 315 | 95.41 281 |
|
| MDA-MVSNet-bldmvs | | | 85.00 345 | 82.95 350 | 91.17 331 | 93.13 354 | 83.33 332 | 94.56 316 | 95.00 325 | 84.57 341 | 65.13 403 | 92.65 344 | 70.45 338 | 95.85 364 | 73.57 382 | 77.49 377 | 94.33 342 |
|
| K. test v3 | | | 87.64 321 | 86.75 323 | 90.32 346 | 93.02 355 | 79.48 376 | 96.61 214 | 92.08 382 | 90.66 188 | 80.25 378 | 94.09 306 | 67.21 361 | 96.65 354 | 85.96 287 | 80.83 366 | 94.83 319 |
|
| MonoMVSNet | | | 91.92 211 | 91.77 191 | 92.37 297 | 92.94 356 | 83.11 334 | 97.09 169 | 95.55 301 | 92.91 117 | 90.85 227 | 94.55 276 | 81.27 223 | 96.52 355 | 93.01 147 | 87.76 300 | 97.47 207 |
|
| pmmvs5 | | | 89.86 296 | 88.87 299 | 92.82 286 | 92.86 357 | 86.23 289 | 96.26 241 | 95.39 305 | 84.24 344 | 87.12 320 | 94.51 279 | 74.27 314 | 97.36 333 | 87.61 257 | 87.57 302 | 94.86 317 |
|
| testgi | | | 87.97 316 | 87.21 316 | 90.24 347 | 92.86 357 | 80.76 356 | 96.67 207 | 94.97 327 | 91.74 147 | 85.52 340 | 95.83 215 | 62.66 383 | 94.47 382 | 76.25 368 | 88.36 296 | 95.48 276 |
|
| EPNet | | | 95.20 94 | 94.56 103 | 97.14 65 | 92.80 359 | 92.68 81 | 97.85 82 | 94.87 335 | 96.64 2 | 92.46 181 | 97.80 101 | 86.23 137 | 99.65 58 | 93.72 130 | 98.62 103 | 99.10 82 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| N_pmnet | | | 78.73 362 | 78.71 363 | 78.79 380 | 92.80 359 | 46.50 419 | 94.14 334 | 43.71 421 | 78.61 385 | 80.83 372 | 91.66 365 | 74.94 309 | 96.36 357 | 67.24 395 | 84.45 342 | 93.50 355 |
|
| EG-PatchMatch MVS | | | 87.02 327 | 85.44 331 | 91.76 318 | 92.67 361 | 85.00 311 | 96.08 252 | 96.45 259 | 83.41 357 | 79.52 380 | 93.49 330 | 57.10 391 | 97.72 302 | 79.34 354 | 90.87 271 | 92.56 369 |
|
| test_fmvsmconf0.01_n | | | 96.15 67 | 95.85 71 | 97.03 69 | 92.66 362 | 91.83 110 | 97.97 68 | 97.84 120 | 95.57 12 | 97.53 40 | 99.00 6 | 84.20 166 | 99.76 38 | 98.82 11 | 99.08 84 | 99.48 44 |
|
| Gipuma |  | | 67.86 373 | 65.41 375 | 75.18 388 | 92.66 362 | 73.45 392 | 66.50 409 | 94.52 343 | 53.33 408 | 57.80 409 | 66.07 409 | 30.81 409 | 89.20 401 | 48.15 407 | 78.88 376 | 62.90 409 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| anonymousdsp | | | 92.16 204 | 91.55 200 | 93.97 235 | 92.58 364 | 89.55 192 | 97.51 125 | 97.42 179 | 89.42 227 | 88.40 293 | 94.84 262 | 80.66 232 | 97.88 287 | 91.87 164 | 91.28 262 | 94.48 336 |
|
| EGC-MVSNET | | | 68.77 372 | 63.01 378 | 86.07 373 | 92.49 365 | 82.24 346 | 93.96 339 | 90.96 390 | 0.71 418 | 2.62 419 | 90.89 369 | 53.66 395 | 93.46 390 | 57.25 403 | 84.55 340 | 82.51 399 |
|
| test0.0.03 1 | | | 89.37 302 | 88.70 300 | 91.41 325 | 92.47 366 | 85.63 297 | 95.22 298 | 92.70 376 | 91.11 171 | 86.91 330 | 93.65 325 | 79.02 264 | 93.19 394 | 78.00 359 | 89.18 287 | 95.41 281 |
|
| our_test_3 | | | 88.78 309 | 87.98 309 | 91.20 330 | 92.45 367 | 82.53 340 | 93.61 354 | 95.69 293 | 85.77 322 | 84.88 346 | 93.71 319 | 79.99 245 | 96.78 353 | 79.47 351 | 86.24 314 | 94.28 345 |
|
| ppachtmachnet_test | | | 88.35 314 | 87.29 313 | 91.53 321 | 92.45 367 | 83.57 331 | 93.75 347 | 95.97 278 | 84.28 343 | 85.32 344 | 94.18 302 | 79.00 268 | 96.93 347 | 75.71 370 | 84.99 334 | 94.10 347 |
|
| YYNet1 | | | 85.87 341 | 84.23 345 | 90.78 340 | 92.38 369 | 82.46 343 | 93.17 360 | 95.14 320 | 82.12 365 | 67.69 397 | 92.36 354 | 78.16 280 | 95.50 374 | 77.31 362 | 79.73 370 | 94.39 340 |
|
| MDA-MVSNet_test_wron | | | 85.87 341 | 84.23 345 | 90.80 339 | 92.38 369 | 82.57 339 | 93.17 360 | 95.15 319 | 82.15 364 | 67.65 399 | 92.33 357 | 78.20 277 | 95.51 373 | 77.33 361 | 79.74 369 | 94.31 344 |
|
| LF4IMVS | | | 87.94 317 | 87.25 314 | 89.98 350 | 92.38 369 | 80.05 370 | 94.38 324 | 95.25 315 | 87.59 289 | 84.34 350 | 94.74 268 | 64.31 377 | 97.66 307 | 84.83 299 | 87.45 303 | 92.23 375 |
|
| lessismore_v0 | | | | | 90.45 343 | 91.96 372 | 79.09 380 | | 87.19 403 | | 80.32 377 | 94.39 286 | 66.31 369 | 97.55 316 | 84.00 311 | 76.84 379 | 94.70 331 |
|
| dmvs_testset | | | 81.38 358 | 82.60 353 | 77.73 381 | 91.74 373 | 51.49 416 | 93.03 365 | 84.21 409 | 89.07 236 | 78.28 385 | 91.25 368 | 76.97 291 | 88.53 404 | 56.57 404 | 82.24 361 | 93.16 359 |
|
| pmmvs6 | | | 87.81 319 | 86.19 326 | 92.69 292 | 91.32 374 | 86.30 287 | 97.34 145 | 96.41 261 | 80.59 378 | 84.05 358 | 94.37 288 | 67.37 360 | 97.67 305 | 84.75 301 | 79.51 372 | 94.09 349 |
|
| Anonymous20231206 | | | 87.09 326 | 86.14 327 | 89.93 351 | 91.22 375 | 80.35 363 | 96.11 250 | 95.35 308 | 83.57 355 | 84.16 353 | 93.02 339 | 73.54 321 | 95.61 370 | 72.16 386 | 86.14 316 | 93.84 352 |
|
| KD-MVS_2432*1600 | | | 84.81 347 | 82.64 351 | 91.31 326 | 91.07 376 | 85.34 305 | 91.22 380 | 95.75 289 | 85.56 325 | 83.09 364 | 90.21 374 | 67.21 361 | 95.89 362 | 77.18 364 | 62.48 404 | 92.69 365 |
|
| miper_refine_blended | | | 84.81 347 | 82.64 351 | 91.31 326 | 91.07 376 | 85.34 305 | 91.22 380 | 95.75 289 | 85.56 325 | 83.09 364 | 90.21 374 | 67.21 361 | 95.89 362 | 77.18 364 | 62.48 404 | 92.69 365 |
|
| DeepMVS_CX |  | | | | 74.68 389 | 90.84 378 | 64.34 407 | | 81.61 412 | 65.34 402 | 67.47 400 | 88.01 391 | 48.60 401 | 80.13 411 | 62.33 399 | 73.68 389 | 79.58 401 |
|
| Anonymous20240521 | | | 86.42 332 | 85.44 331 | 89.34 358 | 90.33 379 | 79.79 371 | 96.73 198 | 95.92 279 | 83.71 353 | 83.25 363 | 91.36 367 | 63.92 378 | 96.01 360 | 78.39 358 | 85.36 325 | 92.22 376 |
|
| test20.03 | | | 86.14 337 | 85.40 333 | 88.35 361 | 90.12 380 | 80.06 369 | 95.90 262 | 95.20 317 | 88.59 255 | 81.29 371 | 93.62 326 | 71.43 332 | 92.65 395 | 71.26 390 | 81.17 365 | 92.34 373 |
|
| OpenMVS_ROB |  | 81.14 20 | 84.42 349 | 82.28 355 | 90.83 335 | 90.06 381 | 84.05 325 | 95.73 271 | 94.04 356 | 73.89 396 | 80.17 379 | 91.53 366 | 59.15 387 | 97.64 308 | 66.92 396 | 89.05 288 | 90.80 389 |
|
| UnsupCasMVSNet_eth | | | 85.99 338 | 84.45 343 | 90.62 341 | 89.97 382 | 82.40 344 | 93.62 353 | 97.37 185 | 89.86 211 | 78.59 384 | 92.37 351 | 65.25 376 | 95.35 376 | 82.27 329 | 70.75 393 | 94.10 347 |
|
| DSMNet-mixed | | | 86.34 333 | 86.12 328 | 87.00 370 | 89.88 383 | 70.43 396 | 94.93 307 | 90.08 394 | 77.97 388 | 85.42 343 | 92.78 342 | 74.44 313 | 93.96 388 | 74.43 376 | 95.14 193 | 96.62 234 |
|
| new_pmnet | | | 82.89 354 | 81.12 359 | 88.18 364 | 89.63 384 | 80.18 368 | 91.77 377 | 92.57 377 | 76.79 391 | 75.56 390 | 88.23 388 | 61.22 386 | 94.48 381 | 71.43 388 | 82.92 358 | 89.87 392 |
|
| MIMVSNet1 | | | 84.93 346 | 83.05 348 | 90.56 342 | 89.56 385 | 84.84 316 | 95.40 287 | 95.35 308 | 83.91 347 | 80.38 376 | 92.21 358 | 57.23 390 | 93.34 392 | 70.69 392 | 82.75 360 | 93.50 355 |
|
| KD-MVS_self_test | | | 85.95 339 | 84.95 338 | 88.96 360 | 89.55 386 | 79.11 379 | 95.13 302 | 96.42 260 | 85.91 320 | 84.07 357 | 90.48 371 | 70.03 343 | 94.82 379 | 80.04 346 | 72.94 390 | 92.94 362 |
|
| m2depth | | | 85.91 340 | 84.76 341 | 89.36 357 | 89.14 387 | 80.25 367 | 95.66 276 | 93.16 370 | 83.77 351 | 83.39 362 | 95.26 245 | 66.24 370 | 95.26 377 | 80.65 342 | 75.57 384 | 92.57 368 |
|
| CMPMVS |  | 62.92 21 | 85.62 343 | 84.92 339 | 87.74 365 | 89.14 387 | 73.12 395 | 94.17 333 | 96.80 237 | 73.98 394 | 73.65 393 | 94.93 257 | 66.36 367 | 97.61 312 | 83.95 312 | 91.28 262 | 92.48 372 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| APD_test1 | | | 79.31 361 | 77.70 364 | 84.14 374 | 89.11 389 | 69.07 400 | 92.36 375 | 91.50 386 | 69.07 399 | 73.87 392 | 92.63 346 | 39.93 405 | 94.32 383 | 70.54 393 | 80.25 368 | 89.02 394 |
|
| CL-MVSNet_self_test | | | 86.31 334 | 85.15 335 | 89.80 352 | 88.83 390 | 81.74 350 | 93.93 341 | 96.22 270 | 86.67 306 | 85.03 345 | 90.80 370 | 78.09 281 | 94.50 380 | 74.92 374 | 71.86 392 | 93.15 360 |
|
| dongtai | | | 69.99 369 | 69.33 371 | 71.98 390 | 88.78 391 | 61.64 410 | 89.86 391 | 59.93 420 | 75.67 392 | 74.96 391 | 85.45 396 | 50.19 399 | 81.66 409 | 43.86 408 | 55.27 407 | 72.63 405 |
|
| mvs5depth | | | 86.53 329 | 85.08 336 | 90.87 334 | 88.74 392 | 82.52 341 | 91.91 376 | 94.23 353 | 86.35 312 | 87.11 322 | 93.70 320 | 66.52 366 | 97.76 299 | 81.37 337 | 75.80 383 | 92.31 374 |
|
| Patchmatch-RL test | | | 87.38 322 | 86.24 325 | 90.81 337 | 88.74 392 | 78.40 382 | 88.12 400 | 93.17 369 | 87.11 300 | 82.17 369 | 89.29 381 | 81.95 212 | 95.60 371 | 88.64 235 | 77.02 378 | 98.41 149 |
|
| pmmvs-eth3d | | | 86.22 335 | 84.45 343 | 91.53 321 | 88.34 394 | 87.25 261 | 94.47 319 | 95.01 324 | 83.47 356 | 79.51 381 | 89.61 379 | 69.75 346 | 95.71 367 | 83.13 318 | 76.73 381 | 91.64 380 |
|
| UnsupCasMVSNet_bld | | | 82.13 357 | 79.46 362 | 90.14 348 | 88.00 395 | 82.47 342 | 90.89 385 | 96.62 253 | 78.94 384 | 75.61 388 | 84.40 399 | 56.63 392 | 96.31 358 | 77.30 363 | 66.77 400 | 91.63 381 |
|
| PM-MVS | | | 83.48 351 | 81.86 357 | 88.31 362 | 87.83 396 | 77.59 384 | 93.43 356 | 91.75 384 | 86.91 302 | 80.63 374 | 89.91 377 | 44.42 403 | 95.84 365 | 85.17 298 | 76.73 381 | 91.50 384 |
|
| MVStest1 | | | 82.38 356 | 80.04 360 | 89.37 356 | 87.63 397 | 82.83 337 | 95.03 304 | 93.37 368 | 73.90 395 | 73.50 394 | 94.35 289 | 62.89 382 | 93.25 393 | 73.80 380 | 65.92 401 | 92.04 379 |
|
| new-patchmatchnet | | | 83.18 353 | 81.87 356 | 87.11 368 | 86.88 398 | 75.99 388 | 93.70 348 | 95.18 318 | 85.02 335 | 77.30 387 | 88.40 386 | 65.99 372 | 93.88 389 | 74.19 379 | 70.18 394 | 91.47 385 |
|
| test_fmvs3 | | | 83.21 352 | 83.02 349 | 83.78 375 | 86.77 399 | 68.34 401 | 96.76 196 | 94.91 330 | 86.49 309 | 84.14 355 | 89.48 380 | 36.04 407 | 91.73 397 | 91.86 165 | 80.77 367 | 91.26 387 |
|
| WB-MVS | | | 76.77 363 | 76.63 366 | 77.18 382 | 85.32 400 | 56.82 414 | 94.53 317 | 89.39 396 | 82.66 362 | 71.35 395 | 89.18 382 | 75.03 308 | 88.88 402 | 35.42 411 | 66.79 399 | 85.84 396 |
|
| SSC-MVS | | | 76.05 364 | 75.83 367 | 76.72 386 | 84.77 401 | 56.22 415 | 94.32 328 | 88.96 398 | 81.82 368 | 70.52 396 | 88.91 383 | 74.79 310 | 88.71 403 | 33.69 412 | 64.71 402 | 85.23 397 |
|
| kuosan | | | 65.27 375 | 64.66 377 | 67.11 393 | 83.80 402 | 61.32 411 | 88.53 397 | 60.77 419 | 68.22 400 | 67.67 398 | 80.52 402 | 49.12 400 | 70.76 415 | 29.67 414 | 53.64 409 | 69.26 407 |
|
| mvsany_test3 | | | 83.59 350 | 82.44 354 | 87.03 369 | 83.80 402 | 73.82 391 | 93.70 348 | 90.92 391 | 86.42 310 | 82.51 367 | 90.26 373 | 46.76 402 | 95.71 367 | 90.82 186 | 76.76 380 | 91.57 382 |
|
| ambc | | | | | 86.56 371 | 83.60 404 | 70.00 398 | 85.69 402 | 94.97 327 | | 80.60 375 | 88.45 385 | 37.42 406 | 96.84 351 | 82.69 326 | 75.44 385 | 92.86 363 |
|
| test_f | | | 80.57 359 | 79.62 361 | 83.41 376 | 83.38 405 | 67.80 403 | 93.57 355 | 93.72 363 | 80.80 376 | 77.91 386 | 87.63 392 | 33.40 408 | 92.08 396 | 87.14 268 | 79.04 375 | 90.34 391 |
|
| pmmvs3 | | | 79.97 360 | 77.50 365 | 87.39 367 | 82.80 406 | 79.38 377 | 92.70 370 | 90.75 392 | 70.69 398 | 78.66 383 | 87.47 394 | 51.34 398 | 93.40 391 | 73.39 383 | 69.65 395 | 89.38 393 |
|
| TDRefinement | | | 86.53 329 | 84.76 341 | 91.85 311 | 82.23 407 | 84.25 320 | 96.38 232 | 95.35 308 | 84.97 336 | 84.09 356 | 94.94 256 | 65.76 374 | 98.34 228 | 84.60 304 | 74.52 386 | 92.97 361 |
|
| test_vis3_rt | | | 72.73 365 | 70.55 368 | 79.27 379 | 80.02 408 | 68.13 402 | 93.92 342 | 74.30 416 | 76.90 390 | 58.99 407 | 73.58 407 | 20.29 416 | 95.37 375 | 84.16 307 | 72.80 391 | 74.31 404 |
|
| testf1 | | | 69.31 370 | 66.76 373 | 76.94 384 | 78.61 409 | 61.93 408 | 88.27 398 | 86.11 406 | 55.62 405 | 59.69 405 | 85.31 397 | 20.19 417 | 89.32 399 | 57.62 401 | 69.44 396 | 79.58 401 |
|
| APD_test2 | | | 69.31 370 | 66.76 373 | 76.94 384 | 78.61 409 | 61.93 408 | 88.27 398 | 86.11 406 | 55.62 405 | 59.69 405 | 85.31 397 | 20.19 417 | 89.32 399 | 57.62 401 | 69.44 396 | 79.58 401 |
|
| PMMVS2 | | | 70.19 368 | 66.92 372 | 80.01 378 | 76.35 411 | 65.67 405 | 86.22 401 | 87.58 402 | 64.83 403 | 62.38 404 | 80.29 403 | 26.78 413 | 88.49 405 | 63.79 397 | 54.07 408 | 85.88 395 |
|
| FPMVS | | | 71.27 367 | 69.85 369 | 75.50 387 | 74.64 412 | 59.03 412 | 91.30 379 | 91.50 386 | 58.80 404 | 57.92 408 | 88.28 387 | 29.98 411 | 85.53 407 | 53.43 405 | 82.84 359 | 81.95 400 |
|
| E-PMN | | | 53.28 378 | 52.56 382 | 55.43 395 | 74.43 413 | 47.13 418 | 83.63 405 | 76.30 413 | 42.23 410 | 42.59 412 | 62.22 411 | 28.57 412 | 74.40 412 | 31.53 413 | 31.51 411 | 44.78 410 |
|
| wuyk23d | | | 25.11 382 | 24.57 386 | 26.74 398 | 73.98 414 | 39.89 422 | 57.88 411 | 9.80 422 | 12.27 415 | 10.39 416 | 6.97 418 | 7.03 420 | 36.44 417 | 25.43 416 | 17.39 415 | 3.89 415 |
|
| test_method | | | 66.11 374 | 64.89 376 | 69.79 391 | 72.62 415 | 35.23 423 | 65.19 410 | 92.83 375 | 20.35 413 | 65.20 402 | 88.08 390 | 43.14 404 | 82.70 408 | 73.12 384 | 63.46 403 | 91.45 386 |
|
| EMVS | | | 52.08 380 | 51.31 383 | 54.39 396 | 72.62 415 | 45.39 420 | 83.84 404 | 75.51 415 | 41.13 411 | 40.77 413 | 59.65 412 | 30.08 410 | 73.60 413 | 28.31 415 | 29.90 413 | 44.18 411 |
|
| LCM-MVSNet | | | 72.55 366 | 69.39 370 | 82.03 377 | 70.81 417 | 65.42 406 | 90.12 390 | 94.36 351 | 55.02 407 | 65.88 401 | 81.72 400 | 24.16 415 | 89.96 398 | 74.32 378 | 68.10 398 | 90.71 390 |
|
| MVE |  | 50.73 23 | 53.25 379 | 48.81 384 | 66.58 394 | 65.34 418 | 57.50 413 | 72.49 408 | 70.94 417 | 40.15 412 | 39.28 414 | 63.51 410 | 6.89 421 | 73.48 414 | 38.29 410 | 42.38 410 | 68.76 408 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 63.94 376 | 59.58 379 | 77.02 383 | 61.24 419 | 66.06 404 | 85.66 403 | 87.93 401 | 78.53 386 | 42.94 411 | 71.04 408 | 25.42 414 | 80.71 410 | 52.60 406 | 30.83 412 | 84.28 398 |
|
| PMVS |  | 53.92 22 | 58.58 377 | 55.40 380 | 68.12 392 | 51.00 420 | 48.64 417 | 78.86 406 | 87.10 404 | 46.77 409 | 35.84 415 | 74.28 405 | 8.76 419 | 86.34 406 | 42.07 409 | 73.91 388 | 69.38 406 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| tmp_tt | | | 51.94 381 | 53.82 381 | 46.29 397 | 33.73 421 | 45.30 421 | 78.32 407 | 67.24 418 | 18.02 414 | 50.93 410 | 87.05 395 | 52.99 396 | 53.11 416 | 70.76 391 | 25.29 414 | 40.46 412 |
|
| testmvs | | | 13.36 384 | 16.33 387 | 4.48 400 | 5.04 422 | 2.26 425 | 93.18 359 | 3.28 423 | 2.70 416 | 8.24 417 | 21.66 414 | 2.29 423 | 2.19 418 | 7.58 417 | 2.96 416 | 9.00 414 |
|
| test123 | | | 13.04 385 | 15.66 388 | 5.18 399 | 4.51 423 | 3.45 424 | 92.50 373 | 1.81 424 | 2.50 417 | 7.58 418 | 20.15 415 | 3.67 422 | 2.18 419 | 7.13 418 | 1.07 417 | 9.90 413 |
|
| test_blank | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| eth-test2 | | | | | | 0.00 424 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 424 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| DCPMVS | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| cdsmvs_eth3d_5k | | | 23.24 383 | 30.99 385 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 97.63 143 | 0.00 419 | 0.00 420 | 96.88 157 | 84.38 162 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| pcd_1.5k_mvsjas | | | 7.39 387 | 9.85 390 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 88.65 97 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| sosnet-low-res | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| sosnet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| uncertanet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| Regformer | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| ab-mvs-re | | | 8.06 386 | 10.74 389 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 96.69 167 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| uanet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| WAC-MVS | | | | | | | 79.53 373 | | | | | | | | 75.56 372 | | |
|
| PC_three_1452 | | | | | | | | | | 90.77 180 | 98.89 14 | 98.28 65 | 96.24 1 | 98.35 225 | 95.76 79 | 99.58 23 | 99.59 21 |
|
| test_241102_TWO | | | | | | | | | 98.27 39 | 95.13 23 | 98.93 9 | 98.89 13 | 94.99 11 | 99.85 18 | 97.52 25 | 99.65 13 | 99.74 8 |
|
| test_0728_THIRD | | | | | | | | | | 94.78 41 | 98.73 18 | 98.87 15 | 95.87 4 | 99.84 23 | 97.45 29 | 99.72 2 | 99.77 2 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.45 144 |
|
| sam_mvs1 | | | | | | | | | | | | | 82.76 194 | | | | 98.45 144 |
|
| sam_mvs | | | | | | | | | | | | | 81.94 213 | | | | |
|
| MTGPA |  | | | | | | | | 98.08 74 | | | | | | | | |
|
| test_post1 | | | | | | | | 92.81 369 | | | | 16.58 417 | 80.53 234 | 97.68 304 | 86.20 279 | | |
|
| test_post | | | | | | | | | | | | 17.58 416 | 81.76 215 | 98.08 251 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 90.45 372 | 82.65 198 | 98.10 247 | | | |
|
| MTMP | | | | | | | | 97.86 79 | 82.03 411 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 94.81 107 | 99.38 55 | 99.45 47 |
|
| agg_prior2 | | | | | | | | | | | | | | | 93.94 124 | 99.38 55 | 99.50 40 |
|
| test_prior4 | | | | | | | 93.66 57 | 96.42 225 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 96.35 234 | | 92.80 121 | 96.03 99 | 97.59 118 | 92.01 44 | | 95.01 100 | 99.38 55 | |
|
| 旧先验2 | | | | | | | | 95.94 259 | | 81.66 369 | 97.34 49 | | | 98.82 176 | 92.26 152 | | |
|
| 新几何2 | | | | | | | | 95.79 268 | | | | | | | | | |
|
| 无先验 | | | | | | | | 95.79 268 | 97.87 111 | 83.87 350 | | | | 99.65 58 | 87.68 253 | | 98.89 108 |
|
| 原ACMM2 | | | | | | | | 95.67 273 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.67 56 | 85.96 287 | | |
|
| segment_acmp | | | | | | | | | | | | | 92.89 28 | | | | |
|
| testdata1 | | | | | | | | 95.26 297 | | 93.10 107 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 97.51 158 | | | | | 98.60 203 | 93.02 145 | 92.23 244 | 95.86 256 |
|
| plane_prior4 | | | | | | | | | | | | 96.64 170 | | | | | |
|
| plane_prior3 | | | | | | | 90.00 175 | | | 94.46 55 | 91.34 214 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.74 94 | | 94.85 34 | | | | | | | |
|
| plane_prior | | | | | | | 89.99 177 | 97.24 154 | | 94.06 67 | | | | | | 92.16 248 | |
|
| n2 | | | | | | | | | 0.00 425 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 425 | | | | | | | | |
|
| door-mid | | | | | | | | | 91.06 389 | | | | | | | | |
|
| test11 | | | | | | | | | 97.88 109 | | | | | | | | |
|
| door | | | | | | | | | 91.13 388 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 89.33 204 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 92.13 158 | | |
|
| HQP4-MVS | | | | | | | | | | | 90.14 238 | | | 98.50 211 | | | 95.78 264 |
|
| HQP3-MVS | | | | | | | | | 97.39 182 | | | | | | | 92.10 249 | |
|
| HQP2-MVS | | | | | | | | | | | | | 80.95 225 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 70.35 397 | 93.10 364 | | 83.88 349 | 93.55 159 | | 82.47 202 | | 86.25 278 | | 98.38 152 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 278 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 91.02 267 | |
|
| Test By Simon | | | | | | | | | | | | | 88.73 96 | | | | |
|