This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
region2R97.07 2696.84 3497.77 3399.46 293.79 5498.52 1598.24 4793.19 10097.14 5598.34 5491.59 5399.87 795.46 9299.59 1999.64 15
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4297.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2599.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4298.28 3699.86 997.52 2599.67 699.75 6
test072699.45 395.36 1398.31 2798.29 3494.92 3298.99 798.92 1095.08 8
ACMMPR97.07 2696.84 3497.79 3099.44 693.88 5298.52 1598.31 3193.21 9797.15 5498.33 5791.35 5899.86 995.63 8699.59 1999.62 17
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3598.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2599.66 1099.56 28
IU-MVS99.42 795.39 1197.94 10490.40 20198.94 897.41 3299.66 1099.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1598.32 3093.21 9797.18 5298.29 6392.08 4399.83 2695.63 8699.59 1999.54 33
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1498.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4599.21 7199.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS96.86 3696.60 4797.64 4499.40 1193.44 6198.50 1898.09 7393.27 9695.95 10498.33 5791.04 6699.88 495.20 9599.57 2599.60 20
MP-MVScopyleft96.77 4496.45 5897.72 3899.39 1393.80 5398.41 2398.06 8293.37 9295.54 11998.34 5490.59 7599.88 494.83 10599.54 2899.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7798.29 6391.70 4999.80 3095.66 8199.40 5299.62 17
X-MVStestdata91.71 21889.67 28197.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7732.69 41391.70 4999.80 3095.66 8199.40 5299.62 17
ZNCC-MVS96.96 3096.67 4597.85 2599.37 1694.12 4698.49 1998.18 5792.64 12596.39 8798.18 7091.61 5199.88 495.59 9199.55 2699.57 25
MTAPA97.08 2596.78 4097.97 2399.37 1694.42 3697.24 15498.08 7495.07 2796.11 9698.59 2990.88 7199.90 296.18 6599.50 3599.58 24
GST-MVS96.85 3896.52 5197.82 2799.36 1894.14 4598.29 2998.13 6592.72 12296.70 6998.06 7791.35 5899.86 994.83 10599.28 6399.47 46
HPM-MVScopyleft96.69 5096.45 5897.40 5099.36 1893.11 7198.87 698.06 8291.17 16996.40 8697.99 8490.99 6799.58 7795.61 8899.61 1899.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10698.98 292.22 13197.14 5598.44 4391.17 6499.85 1894.35 11799.46 4199.57 25
CP-MVS97.02 2896.81 3897.64 4499.33 2193.54 5998.80 898.28 3692.99 10996.45 8598.30 6291.90 4699.85 1895.61 8899.68 499.54 33
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
HPM-MVS_fast96.51 5696.27 6397.22 6199.32 2292.74 7998.74 998.06 8290.57 19596.77 6698.35 5190.21 7899.53 9194.80 10899.63 1699.38 58
MCST-MVS97.18 2196.84 3498.20 1499.30 2495.35 1597.12 16798.07 7993.54 8596.08 9897.69 10693.86 1699.71 4696.50 4999.39 5499.55 31
test_part299.28 2595.74 898.10 30
CPTT-MVS95.57 8495.19 8896.70 7399.27 2691.48 12598.33 2698.11 7087.79 28295.17 12598.03 8087.09 12899.61 6993.51 13299.42 4899.02 87
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3599.46 4199.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG96.05 6995.91 6996.46 9399.24 2890.47 16598.30 2898.57 1889.01 23993.97 15297.57 11992.62 3499.76 3894.66 11199.27 6499.15 75
ACMMPcopyleft96.27 6595.93 6897.28 5799.24 2892.62 8298.25 3598.81 592.99 10994.56 13798.39 4788.96 9199.85 1894.57 11697.63 13699.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss96.70 4896.27 6397.98 2299.23 3094.71 2996.96 18098.06 8290.67 18695.55 11798.78 2491.07 6599.86 996.58 4799.55 2699.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DP-MVS Recon95.68 8095.12 9197.37 5199.19 3194.19 4297.03 17198.08 7488.35 26595.09 12797.65 11189.97 8299.48 10192.08 16198.59 10598.44 147
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16098.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4499.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1699.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SR-MVS97.01 2996.86 3297.47 4899.09 3493.27 6897.98 6298.07 7993.75 7697.45 4398.48 4091.43 5699.59 7496.22 5699.27 6499.54 33
ACMMP_NAP97.20 2096.86 3298.23 1199.09 3495.16 2297.60 11598.19 5592.82 12097.93 3598.74 2591.60 5299.86 996.26 5399.52 3099.67 13
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12397.97 10195.59 1196.61 7597.89 9092.57 3599.84 2395.95 7299.51 3399.40 54
114514_t93.95 13393.06 14696.63 7799.07 3791.61 11897.46 13497.96 10277.99 38793.00 17397.57 11986.14 14299.33 11589.22 22299.15 7898.94 98
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7298.18 5790.57 19598.85 1598.94 993.33 2399.83 2696.72 4399.68 499.63 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
patch_mono-296.83 4197.44 1395.01 17699.05 3985.39 30396.98 17898.77 794.70 4597.99 3398.66 2693.61 1999.91 197.67 2199.50 3599.72 11
ZD-MVS99.05 3994.59 3298.08 7489.22 23297.03 6098.10 7392.52 3699.65 5894.58 11599.31 62
APD-MVScopyleft96.95 3196.60 4798.01 2099.03 4194.93 2797.72 9998.10 7291.50 15398.01 3298.32 5992.33 3999.58 7794.85 10399.51 3399.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS-dyc-post96.88 3596.80 3997.11 6799.02 4292.34 9197.98 6298.03 9193.52 8797.43 4698.51 3591.40 5799.56 8596.05 6799.26 6699.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6298.03 9193.52 8797.43 4698.51 3590.71 7396.05 6799.26 6699.43 51
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 3998.27 3992.37 12998.27 2798.65 2893.33 2399.72 4596.49 5099.52 3099.51 37
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6298.06 8293.11 10697.44 4498.55 3290.93 6999.55 8796.06 6699.25 6899.51 37
dcpmvs_296.37 6297.05 2294.31 21898.96 4684.11 32397.56 11997.51 15893.92 7197.43 4698.52 3492.75 3099.32 11797.32 3399.50 3599.51 37
9.1496.75 4298.93 4797.73 9698.23 5091.28 16497.88 3698.44 4393.00 2699.65 5895.76 7999.47 40
CDPH-MVS95.97 7395.38 8397.77 3398.93 4794.44 3596.35 23497.88 10986.98 30196.65 7397.89 9091.99 4599.47 10292.26 15299.46 4199.39 56
save fliter98.91 4994.28 3897.02 17398.02 9495.35 16
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15298.08 7495.81 997.87 3798.31 6094.26 1399.68 5497.02 3699.49 3899.57 25
PAPM_NR95.01 9794.59 10196.26 11098.89 5190.68 16097.24 15497.73 12991.80 14592.93 17896.62 17789.13 8999.14 14089.21 22397.78 13398.97 94
OPU-MVS98.55 398.82 5296.86 398.25 3598.26 6696.04 299.24 12595.36 9399.59 1999.56 28
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14598.04 8995.96 697.09 5897.88 9293.18 2599.71 4695.84 7799.17 7599.56 28
DP-MVS92.76 18291.51 20496.52 8498.77 5390.99 14697.38 14296.08 27682.38 36389.29 27297.87 9383.77 17199.69 5281.37 33796.69 16598.89 108
MSLP-MVS++96.94 3297.06 1996.59 8098.72 5591.86 10997.67 10398.49 1994.66 4897.24 5198.41 4692.31 4198.94 16596.61 4699.46 4198.96 95
TEST998.70 5694.19 4296.41 22698.02 9488.17 26996.03 9997.56 12192.74 3199.59 74
train_agg96.30 6495.83 7297.72 3898.70 5694.19 4296.41 22698.02 9488.58 25696.03 9997.56 12192.73 3299.59 7495.04 9899.37 5899.39 56
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 997.45 2999.58 2399.59 21
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 997.68 1999.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 997.68 1999.67 699.77 2
test_898.67 5894.06 4996.37 23398.01 9788.58 25695.98 10397.55 12392.73 3299.58 77
agg_prior98.67 5893.79 5498.00 9895.68 11399.57 84
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
DeepC-MVS_fast93.89 296.93 3396.64 4697.78 3198.64 6494.30 3797.41 13598.04 8994.81 3996.59 7798.37 4991.24 6199.64 6695.16 9699.52 3099.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何197.32 5398.60 6593.59 5897.75 12681.58 37095.75 11097.85 9690.04 8099.67 5686.50 27599.13 8098.69 123
原ACMM196.38 10098.59 6691.09 14597.89 10787.41 29395.22 12497.68 10790.25 7799.54 8987.95 24399.12 8298.49 139
AdaColmapbinary94.34 11793.68 12496.31 10498.59 6691.68 11696.59 21797.81 12289.87 21092.15 19297.06 14883.62 17599.54 8989.34 21798.07 12697.70 194
PLCcopyleft91.00 694.11 12793.43 13796.13 11898.58 6891.15 14496.69 20497.39 18287.29 29691.37 21396.71 16388.39 10199.52 9587.33 26297.13 15697.73 192
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3497.92 7498.14 6494.82 3899.01 698.55 3294.18 1497.41 33096.94 3799.64 1499.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1297.65 4298.46 7094.26 3997.66 13795.52 12090.89 7099.46 10399.25 6899.22 70
MVS_111021_HR96.68 5296.58 4996.99 7098.46 7092.31 9396.20 24798.90 394.30 6395.86 10697.74 10492.33 3999.38 11396.04 6999.42 4899.28 65
OMC-MVS95.09 9694.70 9996.25 11398.46 7091.28 13296.43 22497.57 15092.04 14094.77 13397.96 8787.01 12999.09 14791.31 17896.77 16198.36 154
MG-MVS95.61 8295.38 8396.31 10498.42 7390.53 16396.04 25397.48 16193.47 8995.67 11498.10 7389.17 8899.25 12491.27 17998.77 9799.13 77
test_fmvsm_n_192097.55 1197.89 396.53 8398.41 7491.73 11198.01 5999.02 196.37 499.30 198.92 1092.39 3899.79 3399.16 499.46 4198.08 174
PHI-MVS96.77 4496.46 5797.71 4098.40 7594.07 4898.21 4298.45 2289.86 21197.11 5798.01 8392.52 3699.69 5296.03 7099.53 2999.36 60
F-COLMAP93.58 14692.98 14895.37 16298.40 7588.98 21797.18 16297.29 19387.75 28590.49 23297.10 14685.21 15199.50 9986.70 27296.72 16497.63 196
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2298.27 3995.34 1798.11 2998.56 3094.53 1299.71 4696.57 4899.62 1799.65 14
Skip Steuart: Steuart Systems R&D Blog.
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4299.01 8999.16 73
CNLPA94.28 11893.53 13096.52 8498.38 7892.55 8596.59 21796.88 23190.13 20691.91 19997.24 13885.21 15199.09 14787.64 25597.83 13197.92 181
TAPA-MVS90.10 792.30 19791.22 21595.56 15098.33 8089.60 18996.79 19397.65 13981.83 36791.52 20997.23 13987.94 10898.91 16971.31 38998.37 11498.17 166
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + GP.96.69 5096.49 5297.27 5898.31 8193.39 6296.79 19396.72 24094.17 6497.44 4497.66 11092.76 2999.33 11596.86 4097.76 13599.08 84
CS-MVS-test96.89 3497.04 2396.45 9498.29 8291.66 11799.03 497.85 11695.84 796.90 6297.97 8691.24 6198.75 18696.92 3899.33 6098.94 98
CHOSEN 1792x268894.15 12393.51 13396.06 12198.27 8389.38 20195.18 30198.48 2185.60 32493.76 15697.11 14583.15 18399.61 6991.33 17798.72 9999.19 71
PVSNet_BlendedMVS94.06 12993.92 11994.47 20798.27 8389.46 19896.73 19898.36 2490.17 20394.36 14195.24 24788.02 10699.58 7793.44 13490.72 27294.36 341
PVSNet_Blended94.87 10594.56 10395.81 13598.27 8389.46 19895.47 28598.36 2488.84 24794.36 14196.09 20688.02 10699.58 7793.44 13498.18 12298.40 150
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 8998.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 299.21 7199.40 54
Anonymous2023121190.63 27389.42 28894.27 22198.24 8789.19 21398.05 5697.89 10779.95 37988.25 29994.96 25572.56 32598.13 24289.70 20785.14 32995.49 275
EI-MVSNet-Vis-set96.51 5696.47 5496.63 7798.24 8791.20 13896.89 18497.73 12994.74 4496.49 8198.49 3790.88 7199.58 7796.44 5198.32 11699.13 77
test22298.24 8792.21 9795.33 29097.60 14579.22 38395.25 12297.84 9888.80 9499.15 7898.72 120
HyFIR lowres test93.66 14492.92 15095.87 13198.24 8789.88 18394.58 31598.49 1985.06 33493.78 15595.78 22182.86 19198.67 19691.77 16795.71 18399.07 86
MVS_111021_LR96.24 6696.19 6596.39 9998.23 9191.35 13196.24 24598.79 693.99 6995.80 10897.65 11189.92 8399.24 12595.87 7399.20 7398.58 130
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8598.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 299.13 8099.50 40
EI-MVSNet-UG-set96.34 6396.30 6296.47 9198.20 9390.93 15096.86 18697.72 13194.67 4796.16 9598.46 4190.43 7699.58 7796.23 5597.96 12998.90 105
PVSNet_Blended_VisFu95.27 9094.91 9496.38 10098.20 9390.86 15297.27 15298.25 4590.21 20294.18 14697.27 13687.48 12199.73 4293.53 13197.77 13498.55 131
Anonymous20240521192.07 20790.83 22995.76 13698.19 9588.75 22197.58 11695.00 32586.00 31993.64 15797.45 12566.24 37099.53 9190.68 19092.71 23899.01 90
PatchMatch-RL92.90 17592.02 18495.56 15098.19 9590.80 15495.27 29597.18 19787.96 27491.86 20295.68 22780.44 23698.99 16284.01 31097.54 13896.89 228
testdata95.46 16098.18 9788.90 21997.66 13782.73 36197.03 6098.07 7690.06 7998.85 17489.67 20898.98 9098.64 126
CS-MVS96.86 3697.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5998.03 8091.72 4798.71 19397.10 3499.17 7598.90 105
Anonymous2024052991.98 21090.73 23595.73 14198.14 9989.40 20097.99 6197.72 13179.63 38193.54 16097.41 12969.94 34499.56 8591.04 18491.11 26598.22 160
LFMVS93.60 14592.63 16396.52 8498.13 10091.27 13397.94 7293.39 36790.57 19596.29 8998.31 6069.00 34899.16 13794.18 11995.87 17899.12 80
SDMVSNet94.17 12193.61 12695.86 13398.09 10191.37 13097.35 14498.20 5293.18 10291.79 20397.28 13479.13 25998.93 16694.61 11492.84 23597.28 216
sd_testset93.10 16492.45 17395.05 17398.09 10189.21 21096.89 18497.64 14193.18 10291.79 20397.28 13475.35 30698.65 19888.99 22892.84 23597.28 216
DeepPCF-MVS93.97 196.61 5397.09 1895.15 16898.09 10186.63 27996.00 25698.15 6295.43 1497.95 3498.56 3093.40 2199.36 11496.77 4199.48 3999.45 47
DPM-MVS95.69 7994.92 9398.01 2098.08 10495.71 995.27 29597.62 14490.43 19995.55 11797.07 14791.72 4799.50 9989.62 21098.94 9298.82 115
MVSMamba_PlusPlus96.51 5696.48 5396.59 8098.07 10591.97 10698.14 4997.79 12390.43 19997.34 4997.52 12491.29 6099.19 13098.12 1599.64 1498.60 128
fmvsm_s_conf0.5_n96.85 3897.13 1696.04 12398.07 10590.28 17097.97 6898.76 894.93 3098.84 1699.06 488.80 9499.65 5899.06 698.63 10298.18 163
VNet95.89 7695.45 7897.21 6298.07 10592.94 7597.50 12698.15 6293.87 7397.52 4197.61 11785.29 15099.53 9195.81 7895.27 19199.16 73
MM97.29 1996.98 2698.23 1198.01 10895.03 2698.07 5495.76 28897.78 197.52 4198.80 2288.09 10499.86 999.44 199.37 5899.80 1
mamv494.66 11196.10 6690.37 34598.01 10873.41 39396.82 19197.78 12489.95 20994.52 13897.43 12892.91 2799.09 14798.28 1499.16 7798.60 128
MAR-MVS94.22 11993.46 13596.51 8798.00 11092.19 10097.67 10397.47 16488.13 27293.00 17395.84 21484.86 15699.51 9687.99 24298.17 12397.83 188
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS93.07 396.06 6895.66 7397.29 5597.96 11193.17 7097.30 15098.06 8293.92 7193.38 16598.66 2686.83 13099.73 4295.60 9099.22 7098.96 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
COLMAP_ROBcopyleft87.81 1590.40 27989.28 29193.79 24797.95 11287.13 26796.92 18295.89 28382.83 36086.88 33197.18 14173.77 31999.29 12278.44 35793.62 22894.95 308
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest90.23 28488.98 29693.98 23397.94 11386.64 27696.51 22195.54 30285.38 32785.49 34196.77 16170.28 33999.15 13880.02 34792.87 23396.15 248
TestCases93.98 23397.94 11386.64 27695.54 30285.38 32785.49 34196.77 16170.28 33999.15 13880.02 34792.87 23396.15 248
thres100view90092.43 18991.58 19994.98 17997.92 11589.37 20297.71 10194.66 33892.20 13393.31 16794.90 25978.06 28299.08 15081.40 33494.08 21796.48 238
thres600view792.49 18891.60 19895.18 16797.91 11689.47 19697.65 10694.66 33892.18 13793.33 16694.91 25878.06 28299.10 14481.61 33194.06 22196.98 223
API-MVS94.84 10694.49 10895.90 13097.90 11792.00 10597.80 9097.48 16189.19 23394.81 13196.71 16388.84 9399.17 13588.91 23098.76 9896.53 235
VDD-MVS93.82 13993.08 14596.02 12597.88 11889.96 18197.72 9995.85 28492.43 12795.86 10698.44 4368.42 35599.39 11196.31 5294.85 19898.71 122
tfpn200view992.38 19291.52 20294.95 18397.85 11989.29 20697.41 13594.88 33292.19 13593.27 16994.46 28478.17 27899.08 15081.40 33494.08 21796.48 238
thres40092.42 19091.52 20295.12 17197.85 11989.29 20697.41 13594.88 33292.19 13593.27 16994.46 28478.17 27899.08 15081.40 33494.08 21796.98 223
h-mvs3394.15 12393.52 13296.04 12397.81 12190.22 17297.62 11497.58 14995.19 2096.74 6797.45 12583.67 17399.61 6995.85 7579.73 37098.29 157
DELS-MVS96.61 5396.38 6097.30 5497.79 12293.19 6995.96 25898.18 5795.23 1995.87 10597.65 11191.45 5499.70 5195.87 7399.44 4799.00 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet86.66 1892.24 20191.74 19593.73 24997.77 12383.69 33092.88 36796.72 24087.91 27693.00 17394.86 26178.51 27399.05 15786.53 27397.45 14398.47 142
test_yl94.78 10894.23 11496.43 9597.74 12491.22 13496.85 18797.10 20491.23 16695.71 11196.93 15284.30 16399.31 11993.10 14095.12 19498.75 117
DCV-MVSNet94.78 10894.23 11496.43 9597.74 12491.22 13496.85 18797.10 20491.23 16695.71 11196.93 15284.30 16399.31 11993.10 14095.12 19498.75 117
WTY-MVS94.71 11094.02 11796.79 7297.71 12692.05 10396.59 21797.35 18890.61 19294.64 13596.93 15286.41 13699.39 11191.20 18194.71 20698.94 98
UA-Net95.95 7495.53 7597.20 6397.67 12792.98 7497.65 10698.13 6594.81 3996.61 7598.35 5188.87 9299.51 9690.36 19497.35 14699.11 81
IS-MVSNet94.90 10394.52 10796.05 12297.67 12790.56 16298.44 2196.22 27093.21 9793.99 15097.74 10485.55 14898.45 21589.98 19997.86 13099.14 76
test250691.60 22490.78 23094.04 23097.66 12983.81 32698.27 3275.53 41493.43 9095.23 12398.21 6767.21 36199.07 15493.01 14798.49 10899.25 68
ECVR-MVScopyleft93.19 16092.73 16094.57 20497.66 12985.41 30198.21 4288.23 39993.43 9094.70 13498.21 6772.57 32499.07 15493.05 14498.49 10899.25 68
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11597.64 13190.72 15898.00 6098.73 994.55 5098.91 1399.08 388.22 10399.63 6798.91 998.37 11498.25 158
PAPR94.18 12093.42 13996.48 9097.64 13191.42 12995.55 28097.71 13588.99 24092.34 18895.82 21689.19 8799.11 14386.14 28197.38 14498.90 105
balanced_conf0396.84 4096.89 3196.68 7497.63 13392.22 9698.17 4897.82 12194.44 5698.23 2897.36 13190.97 6899.22 12797.74 1899.66 1098.61 127
CANet96.39 6196.02 6797.50 4797.62 13493.38 6397.02 17397.96 10295.42 1594.86 13097.81 9987.38 12499.82 2896.88 3999.20 7399.29 63
thres20092.23 20291.39 20594.75 19697.61 13589.03 21696.60 21695.09 32292.08 13993.28 16894.00 31078.39 27699.04 16081.26 34094.18 21396.19 245
Vis-MVSNet (Re-imp)94.15 12393.88 12094.95 18397.61 13587.92 24798.10 5195.80 28792.22 13193.02 17297.45 12584.53 16097.91 28588.24 23897.97 12899.02 87
MGCFI-Net95.94 7595.40 8297.56 4697.59 13794.62 3198.21 4297.57 15094.41 5896.17 9496.16 19987.54 11799.17 13596.19 6394.73 20598.91 102
sasdasda96.02 7095.45 7897.75 3597.59 13795.15 2398.28 3097.60 14594.52 5296.27 9096.12 20187.65 11399.18 13396.20 6194.82 20098.91 102
canonicalmvs96.02 7095.45 7897.75 3597.59 13795.15 2398.28 3097.60 14594.52 5296.27 9096.12 20187.65 11399.18 13396.20 6194.82 20098.91 102
LS3D93.57 14792.61 16596.47 9197.59 13791.61 11897.67 10397.72 13185.17 33290.29 23698.34 5484.60 15899.73 4283.85 31598.27 11898.06 175
test111193.19 16092.82 15494.30 21997.58 14184.56 31898.21 4289.02 39793.53 8694.58 13698.21 6772.69 32399.05 15793.06 14398.48 11099.28 65
alignmvs95.87 7795.23 8797.78 3197.56 14295.19 2197.86 7997.17 19994.39 6096.47 8396.40 18785.89 14399.20 12996.21 6095.11 19698.95 97
EPP-MVSNet95.22 9395.04 9295.76 13697.49 14389.56 19198.67 1097.00 21890.69 18494.24 14497.62 11689.79 8498.81 17893.39 13796.49 16998.92 101
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14492.37 9097.91 7598.88 495.83 898.92 1299.05 591.45 5499.80 3099.12 599.46 4199.69 12
test_vis1_n_192094.17 12194.58 10292.91 28297.42 14582.02 34797.83 8597.85 11694.68 4698.10 3098.49 3770.15 34299.32 11797.91 1798.82 9597.40 210
PS-MVSNAJ95.37 8795.33 8595.49 15697.35 14690.66 16195.31 29297.48 16193.85 7496.51 8095.70 22688.65 9799.65 5894.80 10898.27 11896.17 246
ab-mvs93.57 14792.55 16796.64 7597.28 14791.96 10895.40 28797.45 17189.81 21593.22 17196.28 19279.62 25399.46 10390.74 18893.11 23298.50 137
xiu_mvs_v2_base95.32 8995.29 8695.40 16197.22 14890.50 16495.44 28697.44 17593.70 7996.46 8496.18 19688.59 10099.53 9194.79 11097.81 13296.17 246
BH-untuned92.94 17392.62 16493.92 24297.22 14886.16 29296.40 23096.25 26990.06 20789.79 25596.17 19883.19 18198.35 22587.19 26597.27 15197.24 218
baseline192.82 18091.90 18895.55 15297.20 15090.77 15697.19 16194.58 34192.20 13392.36 18596.34 19084.16 16798.21 23589.20 22483.90 35097.68 195
Vis-MVSNetpermissive95.23 9294.81 9596.51 8797.18 15191.58 12198.26 3498.12 6794.38 6194.90 12998.15 7282.28 20598.92 16791.45 17698.58 10699.01 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS96.02 7095.89 7096.40 9797.16 15292.44 8897.47 13297.77 12594.55 5096.48 8294.51 27991.23 6398.92 16795.65 8498.19 12197.82 189
BH-RMVSNet92.72 18491.97 18694.97 18197.16 15287.99 24596.15 24995.60 29890.62 19191.87 20197.15 14478.41 27598.57 20783.16 31797.60 13798.36 154
MSDG91.42 23690.24 25594.96 18297.15 15488.91 21893.69 35096.32 26485.72 32386.93 32996.47 18380.24 24098.98 16380.57 34395.05 19796.98 223
tttt051792.96 17192.33 17694.87 18697.11 15587.16 26697.97 6892.09 38190.63 19093.88 15497.01 15176.50 29499.06 15690.29 19695.45 18898.38 152
HY-MVS89.66 993.87 13792.95 14996.63 7797.10 15692.49 8795.64 27896.64 24889.05 23893.00 17395.79 22085.77 14699.45 10589.16 22694.35 20897.96 179
thisisatest053093.03 16892.21 17995.49 15697.07 15789.11 21597.49 13192.19 38090.16 20494.09 14896.41 18676.43 29799.05 15790.38 19395.68 18498.31 156
XVG-OURS93.72 14393.35 14094.80 19297.07 15788.61 22494.79 31097.46 16691.97 14393.99 15097.86 9581.74 21698.88 17192.64 15192.67 24096.92 227
sss94.51 11393.80 12196.64 7597.07 15791.97 10696.32 23798.06 8288.94 24394.50 13996.78 16084.60 15899.27 12391.90 16296.02 17498.68 124
EIA-MVS95.53 8595.47 7795.71 14397.06 16089.63 18797.82 8797.87 11193.57 8193.92 15395.04 25390.61 7498.95 16494.62 11398.68 10098.54 132
XVG-OURS-SEG-HR93.86 13893.55 12894.81 18997.06 16088.53 22995.28 29397.45 17191.68 14994.08 14997.68 10782.41 20398.90 17093.84 12892.47 24196.98 223
1112_ss93.37 15392.42 17496.21 11497.05 16290.99 14696.31 23896.72 24086.87 30489.83 25496.69 16786.51 13499.14 14088.12 23993.67 22698.50 137
Test_1112_low_res92.84 17991.84 19095.85 13497.04 16389.97 18095.53 28296.64 24885.38 32789.65 26095.18 24885.86 14499.10 14487.70 25093.58 23198.49 139
mvsmamba94.57 11294.14 11695.87 13197.03 16489.93 18297.84 8395.85 28491.34 16094.79 13296.80 15980.67 23198.81 17894.85 10398.12 12598.85 111
hse-mvs293.45 15192.99 14794.81 18997.02 16588.59 22596.69 20496.47 25895.19 2096.74 6796.16 19983.67 17398.48 21495.85 7579.13 37497.35 213
EC-MVSNet96.42 5996.47 5496.26 11097.01 16691.52 12398.89 597.75 12694.42 5796.64 7497.68 10789.32 8698.60 20397.45 2999.11 8398.67 125
AUN-MVS91.76 21790.75 23394.81 18997.00 16788.57 22696.65 20896.49 25789.63 21892.15 19296.12 20178.66 27198.50 21190.83 18579.18 37397.36 211
BH-w/o92.14 20691.75 19393.31 26896.99 16885.73 29695.67 27395.69 29388.73 25489.26 27494.82 26482.97 18998.07 25585.26 29696.32 17296.13 250
GeoE93.89 13693.28 14295.72 14296.96 16989.75 18698.24 3896.92 22789.47 22492.12 19497.21 14084.42 16198.39 22287.71 24996.50 16899.01 90
3Dnovator+91.43 495.40 8694.48 10998.16 1696.90 17095.34 1698.48 2097.87 11194.65 4988.53 29198.02 8283.69 17299.71 4693.18 13998.96 9199.44 49
MVS_030496.74 4796.31 6198.02 1996.87 17194.65 3097.58 11694.39 34796.47 397.16 5398.39 4787.53 11899.87 798.97 899.41 5099.55 31
casdiffmvs_mvgpermissive95.81 7895.57 7496.51 8796.87 17191.49 12497.50 12697.56 15493.99 6995.13 12697.92 8987.89 10998.78 18195.97 7197.33 14799.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UGNet94.04 13193.28 14296.31 10496.85 17391.19 13997.88 7897.68 13694.40 5993.00 17396.18 19673.39 32299.61 6991.72 16898.46 11198.13 168
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet93.05 16792.07 18196.02 12596.84 17490.39 16998.08 5395.85 28486.22 31695.79 10998.46 4167.59 35899.19 13094.92 10294.85 19898.47 142
RPSCF90.75 26790.86 22590.42 34496.84 17476.29 38795.61 27996.34 26383.89 34891.38 21297.87 9376.45 29598.78 18187.16 26792.23 24496.20 244
FE-MVS92.05 20891.05 21995.08 17296.83 17687.93 24693.91 34395.70 29186.30 31394.15 14794.97 25476.59 29399.21 12884.10 30896.86 15898.09 173
MVS_Test94.89 10494.62 10095.68 14496.83 17689.55 19296.70 20297.17 19991.17 16995.60 11696.11 20587.87 11098.76 18593.01 14797.17 15598.72 120
LCM-MVSNet-Re92.50 18692.52 17092.44 29596.82 17881.89 34896.92 18293.71 36492.41 12884.30 35194.60 27485.08 15397.03 34391.51 17397.36 14598.40 150
ETVMVS90.52 27689.14 29594.67 19896.81 17987.85 25195.91 26193.97 35889.71 21792.34 18892.48 34965.41 37597.96 27481.37 33794.27 21198.21 161
test_cas_vis1_n_192094.48 11594.55 10694.28 22096.78 18086.45 28497.63 11297.64 14193.32 9597.68 3998.36 5073.75 32099.08 15096.73 4299.05 8697.31 215
baseline95.58 8395.42 8196.08 11996.78 18090.41 16897.16 16497.45 17193.69 8095.65 11597.85 9687.29 12598.68 19595.66 8197.25 15299.13 77
FA-MVS(test-final)93.52 14992.92 15095.31 16396.77 18288.54 22894.82 30996.21 27289.61 21994.20 14595.25 24683.24 18099.14 14090.01 19896.16 17398.25 158
Fast-Effi-MVS+93.46 15092.75 15895.59 14996.77 18290.03 17496.81 19297.13 20188.19 26891.30 21794.27 29686.21 13998.63 20087.66 25496.46 17198.12 169
QAPM93.45 15192.27 17796.98 7196.77 18292.62 8298.39 2498.12 6784.50 34288.27 29897.77 10282.39 20499.81 2985.40 29498.81 9698.51 136
casdiffmvspermissive95.64 8195.49 7696.08 11996.76 18590.45 16697.29 15197.44 17594.00 6895.46 12197.98 8587.52 12098.73 18995.64 8597.33 14799.08 84
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 280x42093.12 16392.72 16194.34 21596.71 18687.27 26090.29 38797.72 13186.61 30891.34 21495.29 24284.29 16598.41 21793.25 13898.94 9297.35 213
fmvsm_s_conf0.1_n96.58 5596.77 4196.01 12796.67 18790.25 17197.91 7598.38 2394.48 5498.84 1699.14 188.06 10599.62 6898.82 1198.60 10498.15 167
test_fmvsmvis_n_192096.70 4896.84 3496.31 10496.62 18891.73 11197.98 6298.30 3296.19 596.10 9798.95 889.42 8599.76 3898.90 1099.08 8497.43 208
Effi-MVS+94.93 10294.45 11096.36 10296.61 18991.47 12696.41 22697.41 18091.02 17594.50 13995.92 21087.53 11898.78 18193.89 12696.81 16098.84 114
thisisatest051592.29 19891.30 21095.25 16596.60 19088.90 21994.36 32592.32 37987.92 27593.43 16494.57 27577.28 28999.00 16189.42 21595.86 17997.86 185
PCF-MVS89.48 1191.56 22889.95 26996.36 10296.60 19092.52 8692.51 37297.26 19479.41 38288.90 28096.56 17984.04 16999.55 8777.01 36697.30 15097.01 222
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v1_base_debu95.01 9794.76 9695.75 13896.58 19291.71 11396.25 24297.35 18892.99 10996.70 6996.63 17482.67 19599.44 10696.22 5697.46 13996.11 251
xiu_mvs_v1_base95.01 9794.76 9695.75 13896.58 19291.71 11396.25 24297.35 18892.99 10996.70 6996.63 17482.67 19599.44 10696.22 5697.46 13996.11 251
xiu_mvs_v1_base_debi95.01 9794.76 9695.75 13896.58 19291.71 11396.25 24297.35 18892.99 10996.70 6996.63 17482.67 19599.44 10696.22 5697.46 13996.11 251
MVSTER93.20 15992.81 15594.37 21296.56 19589.59 19097.06 17097.12 20291.24 16591.30 21795.96 20882.02 21098.05 25893.48 13390.55 27495.47 278
3Dnovator91.36 595.19 9594.44 11197.44 4996.56 19593.36 6598.65 1198.36 2494.12 6589.25 27598.06 7782.20 20799.77 3793.41 13699.32 6199.18 72
test_fmvs193.21 15893.53 13092.25 30396.55 19781.20 35497.40 13996.96 22090.68 18596.80 6498.04 7969.25 34798.40 21897.58 2498.50 10797.16 220
testing9191.90 21391.02 22094.53 20696.54 19886.55 28295.86 26395.64 29791.77 14691.89 20093.47 33269.94 34498.86 17290.23 19793.86 22498.18 163
testing22290.31 28088.96 29794.35 21396.54 19887.29 25895.50 28393.84 36290.97 17691.75 20592.96 34062.18 38598.00 26582.86 32094.08 21797.76 191
testing1191.68 22190.75 23394.47 20796.53 20086.56 28195.76 27094.51 34491.10 17391.24 22293.59 32768.59 35298.86 17291.10 18294.29 21098.00 178
FMVSNet391.78 21690.69 23895.03 17596.53 20092.27 9597.02 17396.93 22389.79 21689.35 26994.65 27277.01 29097.47 32486.12 28288.82 28995.35 288
UBG91.55 22990.76 23193.94 23996.52 20285.06 31095.22 29894.54 34290.47 19891.98 19892.71 34372.02 32798.74 18888.10 24095.26 19298.01 177
GBi-Net91.35 24190.27 25394.59 19996.51 20391.18 14097.50 12696.93 22388.82 24989.35 26994.51 27973.87 31697.29 33686.12 28288.82 28995.31 291
test191.35 24190.27 25394.59 19996.51 20391.18 14097.50 12696.93 22388.82 24989.35 26994.51 27973.87 31697.29 33686.12 28288.82 28995.31 291
FMVSNet291.31 24490.08 26294.99 17796.51 20392.21 9797.41 13596.95 22188.82 24988.62 28894.75 26773.87 31697.42 32985.20 29788.55 29495.35 288
WBMVS90.69 27289.99 26892.81 28796.48 20685.00 31195.21 30096.30 26589.46 22589.04 27994.05 30872.45 32697.82 29289.46 21387.41 30695.61 273
testing9991.62 22390.72 23694.32 21696.48 20686.11 29395.81 26694.76 33691.55 15191.75 20593.44 33368.55 35398.82 17690.43 19193.69 22598.04 176
ACMH+87.92 1490.20 28689.18 29393.25 27096.48 20686.45 28496.99 17796.68 24588.83 24884.79 34896.22 19570.16 34198.53 20984.42 30688.04 29794.77 329
CANet_DTU94.37 11693.65 12596.55 8296.46 20992.13 10196.21 24696.67 24794.38 6193.53 16197.03 15079.34 25699.71 4690.76 18798.45 11297.82 189
mvs_anonymous93.82 13993.74 12294.06 22896.44 21085.41 30195.81 26697.05 21289.85 21390.09 24796.36 18987.44 12297.75 30093.97 12296.69 16599.02 87
diffmvspermissive95.25 9195.13 9095.63 14696.43 21189.34 20395.99 25797.35 18892.83 11996.31 8897.37 13086.44 13598.67 19696.26 5397.19 15498.87 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ET-MVSNet_ETH3D91.49 23390.11 26195.63 14696.40 21291.57 12295.34 28993.48 36690.60 19475.58 38995.49 23780.08 24396.79 35294.25 11889.76 28298.52 134
RRT-MVS94.51 11394.35 11394.98 17996.40 21286.55 28297.56 11997.41 18093.19 10094.93 12897.04 14979.12 26099.30 12196.19 6397.32 14999.09 83
TR-MVS91.48 23490.59 24194.16 22496.40 21287.33 25795.67 27395.34 31187.68 28791.46 21195.52 23676.77 29298.35 22582.85 32293.61 22996.79 231
ACMP89.59 1092.62 18592.14 18094.05 22996.40 21288.20 23997.36 14397.25 19691.52 15288.30 29696.64 17078.46 27498.72 19291.86 16591.48 25895.23 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer95.37 8795.16 8995.99 12896.34 21691.21 13698.22 4097.57 15091.42 15796.22 9297.32 13286.20 14097.92 28294.07 12099.05 8698.85 111
lupinMVS94.99 10194.56 10396.29 10896.34 21691.21 13695.83 26596.27 26788.93 24496.22 9296.88 15786.20 14098.85 17495.27 9499.05 8698.82 115
ACMM89.79 892.96 17192.50 17194.35 21396.30 21888.71 22297.58 11697.36 18791.40 15990.53 23196.65 16979.77 24998.75 18691.24 18091.64 25495.59 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS92.29 19891.94 18793.34 26796.25 21986.97 27096.57 22097.05 21290.67 18689.50 26694.80 26586.59 13197.64 30889.91 20186.11 31795.40 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HQP_MVS93.78 14193.43 13794.82 18796.21 22089.99 17797.74 9497.51 15894.85 3491.34 21496.64 17081.32 22198.60 20393.02 14592.23 24495.86 256
plane_prior796.21 22089.98 179
ACMH87.59 1690.53 27589.42 28893.87 24396.21 22087.92 24797.24 15496.94 22288.45 26283.91 35996.27 19371.92 32898.62 20284.43 30589.43 28595.05 306
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDS-MVSNet94.14 12693.54 12995.93 12996.18 22391.46 12796.33 23697.04 21488.97 24293.56 15896.51 18187.55 11697.89 28689.80 20495.95 17698.44 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LTVRE_ROB88.41 1390.99 25889.92 27194.19 22296.18 22389.55 19296.31 23897.09 20687.88 27785.67 33995.91 21178.79 27098.57 20781.50 33289.98 27994.44 339
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test92.94 17392.56 16694.10 22696.16 22588.26 23697.65 10697.46 16691.29 16190.12 24497.16 14279.05 26298.73 18992.25 15491.89 25295.31 291
LGP-MVS_train94.10 22696.16 22588.26 23697.46 16691.29 16190.12 24497.16 14279.05 26298.73 18992.25 15491.89 25295.31 291
TAMVS94.01 13293.46 13595.64 14596.16 22590.45 16696.71 20196.89 23089.27 23193.46 16396.92 15587.29 12597.94 27988.70 23495.74 18198.53 133
testing387.67 32086.88 32190.05 34996.14 22880.71 35797.10 16892.85 37390.15 20587.54 31294.55 27655.70 39494.10 38573.77 38194.10 21695.35 288
plane_prior196.14 228
CLD-MVS92.98 17092.53 16994.32 21696.12 23089.20 21195.28 29397.47 16492.66 12389.90 25195.62 23080.58 23398.40 21892.73 15092.40 24295.38 286
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior696.10 23190.00 17581.32 221
cl2291.21 24890.56 24393.14 27596.09 23286.80 27294.41 32396.58 25487.80 28188.58 29093.99 31180.85 23097.62 31189.87 20386.93 30994.99 307
test_fmvs1_n92.73 18392.88 15292.29 30196.08 23381.05 35597.98 6297.08 20790.72 18396.79 6598.18 7063.07 38098.45 21597.62 2398.42 11397.36 211
Effi-MVS+-dtu93.08 16593.21 14492.68 29396.02 23483.25 33397.14 16696.72 24093.85 7491.20 22493.44 33383.08 18598.30 22991.69 17195.73 18296.50 237
NP-MVS95.99 23589.81 18595.87 212
UWE-MVS89.91 29189.48 28791.21 32895.88 23678.23 38394.91 30890.26 39389.11 23592.35 18794.52 27868.76 35097.96 27483.95 31295.59 18697.42 209
ADS-MVSNet289.45 30088.59 30292.03 30795.86 23782.26 34590.93 38394.32 35283.23 35891.28 22091.81 36379.01 26695.99 36179.52 34991.39 26097.84 186
ADS-MVSNet89.89 29388.68 30193.53 26095.86 23784.89 31590.93 38395.07 32383.23 35891.28 22091.81 36379.01 26697.85 28879.52 34991.39 26097.84 186
HQP-NCC95.86 23796.65 20893.55 8290.14 238
ACMP_Plane95.86 23796.65 20893.55 8290.14 238
HQP-MVS93.19 16092.74 15994.54 20595.86 23789.33 20496.65 20897.39 18293.55 8290.14 23895.87 21280.95 22598.50 21192.13 15892.10 24995.78 264
EI-MVSNet93.03 16892.88 15293.48 26295.77 24286.98 26996.44 22297.12 20290.66 18891.30 21797.64 11486.56 13298.05 25889.91 20190.55 27495.41 281
CVMVSNet91.23 24791.75 19389.67 35395.77 24274.69 38996.44 22294.88 33285.81 32192.18 19197.64 11479.07 26195.58 37288.06 24195.86 17998.74 119
FIs94.09 12893.70 12395.27 16495.70 24492.03 10498.10 5198.68 1393.36 9490.39 23496.70 16587.63 11597.94 27992.25 15490.50 27695.84 259
VPA-MVSNet93.24 15792.48 17295.51 15495.70 24492.39 8997.86 7998.66 1692.30 13092.09 19695.37 24080.49 23598.40 21893.95 12385.86 31895.75 268
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24692.21 9797.95 7198.27 3995.78 1098.40 2599.00 689.99 8199.78 3599.06 699.41 5099.59 21
tt080591.09 25390.07 26594.16 22495.61 24788.31 23397.56 11996.51 25689.56 22089.17 27695.64 22967.08 36598.38 22391.07 18388.44 29595.80 262
SCA91.84 21591.18 21793.83 24495.59 24884.95 31494.72 31195.58 30090.82 17892.25 19093.69 32175.80 30198.10 24786.20 27995.98 17598.45 144
c3_l91.38 23890.89 22392.88 28495.58 24986.30 28794.68 31296.84 23588.17 26988.83 28594.23 29985.65 14797.47 32489.36 21684.63 33794.89 316
VPNet92.23 20291.31 20994.99 17795.56 25090.96 14897.22 15997.86 11592.96 11590.96 22596.62 17775.06 30798.20 23691.90 16283.65 35295.80 262
miper_ehance_all_eth91.59 22591.13 21892.97 28095.55 25186.57 28094.47 31996.88 23187.77 28388.88 28294.01 30986.22 13897.54 31789.49 21286.93 30994.79 326
IterMVS-SCA-FT90.31 28089.81 27591.82 31395.52 25284.20 32294.30 32996.15 27490.61 19287.39 31694.27 29675.80 30196.44 35687.34 26186.88 31394.82 321
jason94.84 10694.39 11296.18 11695.52 25290.93 15096.09 25196.52 25589.28 23096.01 10297.32 13284.70 15798.77 18495.15 9798.91 9498.85 111
jason: jason.
fmvsm_s_conf0.1_n_a96.40 6096.47 5496.16 11795.48 25490.69 15997.91 7598.33 2994.07 6698.93 999.14 187.44 12299.61 6998.63 1398.32 11698.18 163
FC-MVSNet-test93.94 13493.57 12795.04 17495.48 25491.45 12898.12 5098.71 1193.37 9290.23 23796.70 16587.66 11297.85 28891.49 17490.39 27795.83 260
IterMVS90.15 28889.67 28191.61 32095.48 25483.72 32894.33 32796.12 27589.99 20887.31 31994.15 30475.78 30396.27 35986.97 27086.89 31294.83 319
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re90.21 28589.50 28692.35 29895.47 25785.15 30795.70 27294.37 34990.94 17788.42 29293.57 32874.63 31195.67 36982.80 32389.57 28496.22 243
FMVSNet189.88 29488.31 30594.59 19995.41 25891.18 14097.50 12696.93 22386.62 30787.41 31594.51 27965.94 37397.29 33683.04 31987.43 30495.31 291
UniMVSNet (Re)93.31 15592.55 16795.61 14895.39 25993.34 6697.39 14098.71 1193.14 10590.10 24694.83 26387.71 11198.03 26291.67 17283.99 34695.46 279
MVS-HIRNet82.47 35581.21 35886.26 37295.38 26069.21 39988.96 39689.49 39566.28 40180.79 37374.08 40668.48 35497.39 33171.93 38795.47 18792.18 377
PatchmatchNetpermissive91.91 21291.35 20693.59 25795.38 26084.11 32393.15 36295.39 30589.54 22192.10 19593.68 32382.82 19398.13 24284.81 30095.32 19098.52 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cl____90.96 26190.32 24992.89 28395.37 26286.21 29094.46 32196.64 24887.82 27988.15 30294.18 30282.98 18897.54 31787.70 25085.59 32094.92 314
DIV-MVS_self_test90.97 26090.33 24892.88 28495.36 26386.19 29194.46 32196.63 25187.82 27988.18 30194.23 29982.99 18797.53 31987.72 24785.57 32194.93 312
miper_enhance_ethall91.54 23191.01 22193.15 27495.35 26487.07 26893.97 33896.90 22886.79 30589.17 27693.43 33686.55 13397.64 30889.97 20086.93 30994.74 330
UniMVSNet_NR-MVSNet93.37 15392.67 16295.47 15995.34 26592.83 7697.17 16398.58 1792.98 11490.13 24295.80 21788.37 10297.85 28891.71 16983.93 34795.73 270
ITE_SJBPF92.43 29695.34 26585.37 30495.92 27991.47 15487.75 30996.39 18871.00 33597.96 27482.36 32889.86 28193.97 350
OpenMVScopyleft89.19 1292.86 17791.68 19696.40 9795.34 26592.73 8098.27 3298.12 6784.86 33785.78 33897.75 10378.89 26999.74 4187.50 25998.65 10196.73 232
eth_miper_zixun_eth91.02 25790.59 24192.34 30095.33 26884.35 31994.10 33596.90 22888.56 25888.84 28494.33 29184.08 16897.60 31388.77 23384.37 34395.06 305
miper_lstm_enhance90.50 27890.06 26691.83 31295.33 26883.74 32793.86 34496.70 24487.56 29087.79 30793.81 31783.45 17896.92 34887.39 26084.62 33894.82 321
131492.81 18192.03 18395.14 16995.33 26889.52 19596.04 25397.44 17587.72 28686.25 33595.33 24183.84 17098.79 18089.26 22097.05 15797.11 221
PAPM91.52 23290.30 25195.20 16695.30 27189.83 18493.38 35896.85 23486.26 31588.59 28995.80 21784.88 15598.15 24175.67 37195.93 17797.63 196
Fast-Effi-MVS+-dtu92.29 19891.99 18593.21 27395.27 27285.52 29997.03 17196.63 25192.09 13889.11 27895.14 25080.33 23998.08 25187.54 25894.74 20496.03 254
Patchmatch-test89.42 30187.99 30893.70 25295.27 27285.11 30888.98 39594.37 34981.11 37187.10 32393.69 32182.28 20597.50 32274.37 37794.76 20298.48 141
PVSNet_082.17 1985.46 34483.64 34790.92 33395.27 27279.49 37590.55 38695.60 29883.76 35283.00 36689.95 37671.09 33497.97 27082.75 32560.79 40695.31 291
IB-MVS87.33 1789.91 29188.28 30694.79 19395.26 27587.70 25495.12 30393.95 35989.35 22987.03 32492.49 34870.74 33799.19 13089.18 22581.37 36497.49 205
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
nrg03094.05 13093.31 14196.27 10995.22 27694.59 3298.34 2597.46 16692.93 11691.21 22396.64 17087.23 12798.22 23494.99 10185.80 31995.98 255
MDTV_nov1_ep1390.76 23195.22 27680.33 36493.03 36595.28 31288.14 27192.84 17993.83 31481.34 22098.08 25182.86 32094.34 209
MVS91.71 21890.44 24595.51 15495.20 27891.59 12096.04 25397.45 17173.44 39787.36 31795.60 23185.42 14999.10 14485.97 28697.46 13995.83 260
Syy-MVS87.13 32587.02 32087.47 36695.16 27973.21 39495.00 30593.93 36088.55 25986.96 32691.99 35975.90 29994.00 38661.59 40094.11 21495.20 299
myMVS_eth3d87.18 32486.38 32489.58 35495.16 27979.53 37395.00 30593.93 36088.55 25986.96 32691.99 35956.23 39394.00 38675.47 37394.11 21495.20 299
tfpnnormal89.70 29988.40 30493.60 25695.15 28190.10 17397.56 11998.16 6187.28 29786.16 33694.63 27377.57 28798.05 25874.48 37584.59 33992.65 367
tpmrst91.44 23591.32 20891.79 31595.15 28179.20 37893.42 35795.37 30788.55 25993.49 16293.67 32482.49 20198.27 23190.41 19289.34 28697.90 182
WR-MVS92.34 19491.53 20194.77 19495.13 28390.83 15396.40 23097.98 10091.88 14489.29 27295.54 23582.50 20097.80 29489.79 20585.27 32795.69 271
tpm cat188.36 31387.21 31691.81 31495.13 28380.55 36192.58 37195.70 29174.97 39387.45 31391.96 36178.01 28498.17 24080.39 34588.74 29296.72 233
WR-MVS_H92.00 20991.35 20693.95 23795.09 28589.47 19698.04 5798.68 1391.46 15588.34 29494.68 27085.86 14497.56 31585.77 28984.24 34494.82 321
CP-MVSNet91.89 21491.24 21393.82 24595.05 28688.57 22697.82 8798.19 5591.70 14888.21 30095.76 22281.96 21197.52 32187.86 24484.65 33695.37 287
test_040286.46 33184.79 34091.45 32395.02 28785.55 29896.29 24094.89 33180.90 37282.21 36893.97 31268.21 35697.29 33662.98 39888.68 29391.51 383
cascas91.20 24990.08 26294.58 20394.97 28889.16 21493.65 35297.59 14879.90 38089.40 26792.92 34175.36 30598.36 22492.14 15794.75 20396.23 242
PS-CasMVS91.55 22990.84 22893.69 25394.96 28988.28 23597.84 8398.24 4791.46 15588.04 30495.80 21779.67 25197.48 32387.02 26984.54 34195.31 291
DU-MVS92.90 17592.04 18295.49 15694.95 29092.83 7697.16 16498.24 4793.02 10890.13 24295.71 22483.47 17697.85 28891.71 16983.93 34795.78 264
NR-MVSNet92.34 19491.27 21295.53 15394.95 29093.05 7297.39 14098.07 7992.65 12484.46 34995.71 22485.00 15497.77 29889.71 20683.52 35395.78 264
mvsany_test193.93 13593.98 11893.78 24894.94 29286.80 27294.62 31392.55 37888.77 25396.85 6398.49 3788.98 9098.08 25195.03 9995.62 18596.46 240
tpmvs89.83 29789.15 29491.89 31094.92 29380.30 36593.11 36395.46 30486.28 31488.08 30392.65 34480.44 23698.52 21081.47 33389.92 28096.84 229
PMMVS92.86 17792.34 17594.42 21194.92 29386.73 27594.53 31796.38 26284.78 33994.27 14395.12 25283.13 18498.40 21891.47 17596.49 16998.12 169
tpm289.96 29089.21 29292.23 30494.91 29581.25 35293.78 34694.42 34680.62 37791.56 20893.44 33376.44 29697.94 27985.60 29192.08 25197.49 205
TinyColmap86.82 32885.35 33491.21 32894.91 29582.99 33693.94 34094.02 35783.58 35481.56 37094.68 27062.34 38498.13 24275.78 36987.35 30892.52 371
UniMVSNet_ETH3D91.34 24390.22 25894.68 19794.86 29787.86 25097.23 15897.46 16687.99 27389.90 25196.92 15566.35 36898.23 23390.30 19590.99 26897.96 179
CostFormer91.18 25290.70 23792.62 29494.84 29881.76 34994.09 33694.43 34584.15 34592.72 18093.77 31879.43 25598.20 23690.70 18992.18 24797.90 182
MIMVSNet88.50 31286.76 32293.72 25194.84 29887.77 25391.39 37894.05 35586.41 31187.99 30592.59 34763.27 37995.82 36677.44 36092.84 23597.57 203
FMVSNet587.29 32385.79 32991.78 31694.80 30087.28 25995.49 28495.28 31284.09 34683.85 36091.82 36262.95 38194.17 38478.48 35685.34 32693.91 351
TranMVSNet+NR-MVSNet92.50 18691.63 19795.14 16994.76 30192.07 10297.53 12498.11 7092.90 11889.56 26396.12 20183.16 18297.60 31389.30 21883.20 35695.75 268
test_vis1_n92.37 19392.26 17892.72 29094.75 30282.64 33898.02 5896.80 23791.18 16897.77 3897.93 8858.02 38998.29 23097.63 2298.21 12097.23 219
XXY-MVS92.16 20491.23 21494.95 18394.75 30290.94 14997.47 13297.43 17889.14 23488.90 28096.43 18579.71 25098.24 23289.56 21187.68 30195.67 272
EPMVS90.70 27089.81 27593.37 26694.73 30484.21 32193.67 35188.02 40089.50 22392.38 18493.49 33077.82 28697.78 29686.03 28592.68 23998.11 172
D2MVS91.30 24590.95 22292.35 29894.71 30585.52 29996.18 24898.21 5188.89 24586.60 33293.82 31679.92 24797.95 27889.29 21990.95 26993.56 354
USDC88.94 30587.83 31092.27 30294.66 30684.96 31393.86 34495.90 28187.34 29583.40 36195.56 23367.43 35998.19 23882.64 32789.67 28393.66 353
GA-MVS91.38 23890.31 25094.59 19994.65 30787.62 25594.34 32696.19 27390.73 18290.35 23593.83 31471.84 32997.96 27487.22 26493.61 22998.21 161
OPM-MVS93.28 15692.76 15694.82 18794.63 30890.77 15696.65 20897.18 19793.72 7791.68 20797.26 13779.33 25798.63 20092.13 15892.28 24395.07 304
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test-LLR91.42 23691.19 21692.12 30594.59 30980.66 35894.29 33092.98 37191.11 17190.76 22992.37 35179.02 26498.07 25588.81 23196.74 16297.63 196
test-mter90.19 28789.54 28592.12 30594.59 30980.66 35894.29 33092.98 37187.68 28790.76 22992.37 35167.67 35798.07 25588.81 23196.74 16297.63 196
dp88.90 30788.26 30790.81 33794.58 31176.62 38592.85 36894.93 32985.12 33390.07 24993.07 33875.81 30098.12 24580.53 34487.42 30597.71 193
WB-MVSnew89.88 29489.56 28490.82 33694.57 31283.06 33595.65 27792.85 37387.86 27890.83 22894.10 30579.66 25296.88 34976.34 36794.19 21292.54 370
PEN-MVS91.20 24990.44 24593.48 26294.49 31387.91 24997.76 9298.18 5791.29 16187.78 30895.74 22380.35 23897.33 33485.46 29382.96 35795.19 302
gg-mvs-nofinetune87.82 31885.61 33094.44 20994.46 31489.27 20991.21 38284.61 40880.88 37389.89 25374.98 40471.50 33197.53 31985.75 29097.21 15396.51 236
CR-MVSNet90.82 26589.77 27793.95 23794.45 31587.19 26490.23 38895.68 29586.89 30392.40 18292.36 35480.91 22797.05 34281.09 34193.95 22297.60 201
RPMNet88.98 30487.05 31894.77 19494.45 31587.19 26490.23 38898.03 9177.87 38992.40 18287.55 39380.17 24299.51 9668.84 39493.95 22297.60 201
TESTMET0.1,190.06 28989.42 28891.97 30894.41 31780.62 36094.29 33091.97 38387.28 29790.44 23392.47 35068.79 34997.67 30588.50 23796.60 16797.61 200
TransMVSNet (Re)88.94 30587.56 31193.08 27794.35 31888.45 23297.73 9695.23 31687.47 29184.26 35295.29 24279.86 24897.33 33479.44 35374.44 38793.45 357
MS-PatchMatch90.27 28289.77 27791.78 31694.33 31984.72 31795.55 28096.73 23986.17 31786.36 33495.28 24471.28 33397.80 29484.09 30998.14 12492.81 364
baseline291.63 22290.86 22593.94 23994.33 31986.32 28695.92 26091.64 38589.37 22886.94 32894.69 26981.62 21898.69 19488.64 23594.57 20796.81 230
XVG-ACMP-BASELINE90.93 26290.21 25993.09 27694.31 32185.89 29495.33 29097.26 19491.06 17489.38 26895.44 23968.61 35198.60 20389.46 21391.05 26694.79 326
pm-mvs190.72 26989.65 28393.96 23694.29 32289.63 18797.79 9196.82 23689.07 23686.12 33795.48 23878.61 27297.78 29686.97 27081.67 36294.46 337
v891.29 24690.53 24493.57 25994.15 32388.12 24397.34 14597.06 21188.99 24088.32 29594.26 29883.08 18598.01 26487.62 25683.92 34994.57 335
v1091.04 25690.23 25693.49 26194.12 32488.16 24297.32 14897.08 20788.26 26788.29 29794.22 30182.17 20897.97 27086.45 27684.12 34594.33 342
Patchmtry88.64 31187.25 31492.78 28994.09 32586.64 27689.82 39295.68 29580.81 37587.63 31192.36 35480.91 22797.03 34378.86 35585.12 33094.67 332
PatchT88.87 30887.42 31293.22 27294.08 32685.10 30989.51 39394.64 34081.92 36692.36 18588.15 38980.05 24497.01 34572.43 38593.65 22797.54 204
V4291.58 22790.87 22493.73 24994.05 32788.50 23097.32 14896.97 21988.80 25289.71 25694.33 29182.54 19998.05 25889.01 22785.07 33194.64 334
DTE-MVSNet90.56 27489.75 27993.01 27893.95 32887.25 26197.64 11097.65 13990.74 18187.12 32095.68 22779.97 24697.00 34683.33 31681.66 36394.78 328
tpm90.25 28389.74 28091.76 31893.92 32979.73 37293.98 33793.54 36588.28 26691.99 19793.25 33777.51 28897.44 32787.30 26387.94 29898.12 169
PS-MVSNAJss93.74 14293.51 13394.44 20993.91 33089.28 20897.75 9397.56 15492.50 12689.94 25096.54 18088.65 9798.18 23993.83 12990.90 27095.86 256
v114491.37 24090.60 24093.68 25493.89 33188.23 23896.84 18997.03 21688.37 26489.69 25894.39 28682.04 20997.98 26787.80 24685.37 32494.84 318
v2v48291.59 22590.85 22793.80 24693.87 33288.17 24196.94 18196.88 23189.54 22189.53 26494.90 25981.70 21798.02 26389.25 22185.04 33395.20 299
v14890.99 25890.38 24792.81 28793.83 33385.80 29596.78 19596.68 24589.45 22688.75 28793.93 31382.96 19097.82 29287.83 24583.25 35494.80 324
Baseline_NR-MVSNet91.20 24990.62 23992.95 28193.83 33388.03 24497.01 17695.12 32188.42 26389.70 25795.13 25183.47 17697.44 32789.66 20983.24 35593.37 358
EPNet_dtu91.71 21891.28 21192.99 27993.76 33583.71 32996.69 20495.28 31293.15 10487.02 32595.95 20983.37 17997.38 33279.46 35296.84 15997.88 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v119291.07 25490.23 25693.58 25893.70 33687.82 25296.73 19897.07 20987.77 28389.58 26194.32 29380.90 22997.97 27086.52 27485.48 32294.95 308
GG-mvs-BLEND93.62 25593.69 33789.20 21192.39 37483.33 41087.98 30689.84 37871.00 33596.87 35082.08 33095.40 18994.80 324
test_fmvs289.77 29889.93 27089.31 35993.68 33876.37 38697.64 11095.90 28189.84 21491.49 21096.26 19458.77 38897.10 34094.65 11291.13 26494.46 337
v14419291.06 25590.28 25293.39 26593.66 33987.23 26396.83 19097.07 20987.43 29289.69 25894.28 29581.48 21998.00 26587.18 26684.92 33594.93 312
v192192090.85 26490.03 26793.29 26993.55 34086.96 27196.74 19797.04 21487.36 29489.52 26594.34 29080.23 24197.97 27086.27 27785.21 32894.94 310
v7n90.76 26689.86 27293.45 26493.54 34187.60 25697.70 10297.37 18588.85 24687.65 31094.08 30781.08 22498.10 24784.68 30283.79 35194.66 333
JIA-IIPM88.26 31587.04 31991.91 30993.52 34281.42 35189.38 39494.38 34880.84 37490.93 22680.74 40179.22 25897.92 28282.76 32491.62 25596.38 241
v124090.70 27089.85 27393.23 27193.51 34386.80 27296.61 21497.02 21787.16 29989.58 26194.31 29479.55 25497.98 26785.52 29285.44 32394.90 315
test_djsdf93.07 16692.76 15694.00 23293.49 34488.70 22398.22 4097.57 15091.42 15790.08 24895.55 23482.85 19297.92 28294.07 12091.58 25695.40 284
SixPastTwentyTwo89.15 30388.54 30390.98 33293.49 34480.28 36696.70 20294.70 33790.78 17984.15 35495.57 23271.78 33097.71 30384.63 30385.07 33194.94 310
test_vis1_rt86.16 33685.06 33789.46 35593.47 34680.46 36296.41 22686.61 40585.22 33079.15 38288.64 38452.41 39797.06 34193.08 14290.57 27390.87 388
mvs_tets92.31 19691.76 19293.94 23993.41 34788.29 23497.63 11297.53 15692.04 14088.76 28696.45 18474.62 31298.09 25093.91 12591.48 25895.45 280
OurMVSNet-221017-090.51 27790.19 26091.44 32493.41 34781.25 35296.98 17896.28 26691.68 14986.55 33396.30 19174.20 31597.98 26788.96 22987.40 30795.09 303
pmmvs490.93 26289.85 27394.17 22393.34 34990.79 15594.60 31496.02 27784.62 34087.45 31395.15 24981.88 21497.45 32687.70 25087.87 29994.27 346
jajsoiax92.42 19091.89 18994.03 23193.33 35088.50 23097.73 9697.53 15692.00 14288.85 28396.50 18275.62 30498.11 24693.88 12791.56 25795.48 276
gm-plane-assit93.22 35178.89 38184.82 33893.52 32998.64 19987.72 247
MVP-Stereo90.74 26890.08 26292.71 29193.19 35288.20 23995.86 26396.27 26786.07 31884.86 34794.76 26677.84 28597.75 30083.88 31498.01 12792.17 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet88.72 31088.90 29888.20 36393.15 35374.21 39096.63 21394.22 35485.18 33187.32 31895.97 20776.16 29894.98 37885.27 29586.17 31595.41 281
MDA-MVSNet-bldmvs85.00 34582.95 35091.17 33193.13 35483.33 33294.56 31695.00 32584.57 34165.13 40392.65 34470.45 33895.85 36473.57 38277.49 37794.33 342
K. test v387.64 32186.75 32390.32 34693.02 35579.48 37696.61 21492.08 38290.66 18880.25 37894.09 30667.21 36196.65 35485.96 28780.83 36694.83 319
MonoMVSNet91.92 21191.77 19192.37 29792.94 35683.11 33497.09 16995.55 30192.91 11790.85 22794.55 27681.27 22396.52 35593.01 14787.76 30097.47 207
pmmvs589.86 29688.87 29992.82 28692.86 35786.23 28996.26 24195.39 30584.24 34487.12 32094.51 27974.27 31497.36 33387.61 25787.57 30294.86 317
testgi87.97 31687.21 31690.24 34792.86 35780.76 35696.67 20794.97 32791.74 14785.52 34095.83 21562.66 38394.47 38276.25 36888.36 29695.48 276
EPNet95.20 9494.56 10397.14 6592.80 35992.68 8197.85 8294.87 33596.64 292.46 18197.80 10186.23 13799.65 5893.72 13098.62 10399.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
N_pmnet78.73 36278.71 36378.79 38092.80 35946.50 41994.14 33443.71 42178.61 38580.83 37291.66 36574.94 30996.36 35767.24 39584.45 34293.50 355
EG-PatchMatch MVS87.02 32785.44 33191.76 31892.67 36185.00 31196.08 25296.45 25983.41 35779.52 38093.49 33057.10 39197.72 30279.34 35490.87 27192.56 369
test_fmvsmconf0.01_n96.15 6795.85 7197.03 6992.66 36291.83 11097.97 6897.84 12095.57 1297.53 4099.00 684.20 16699.76 3898.82 1199.08 8499.48 44
Gipumacopyleft67.86 37365.41 37575.18 38892.66 36273.45 39266.50 40994.52 34353.33 40857.80 40966.07 40930.81 40989.20 40148.15 40778.88 37662.90 409
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp92.16 20491.55 20093.97 23592.58 36489.55 19297.51 12597.42 17989.42 22788.40 29394.84 26280.66 23297.88 28791.87 16491.28 26294.48 336
EGC-MVSNET68.77 37263.01 37886.07 37392.49 36582.24 34693.96 33990.96 3900.71 4182.62 41990.89 36953.66 39593.46 39057.25 40384.55 34082.51 399
test0.0.03 189.37 30288.70 30091.41 32592.47 36685.63 29795.22 29892.70 37691.11 17186.91 33093.65 32579.02 26493.19 39478.00 35989.18 28795.41 281
our_test_388.78 30987.98 30991.20 33092.45 36782.53 34093.61 35495.69 29385.77 32284.88 34693.71 31979.99 24596.78 35379.47 35186.24 31494.28 345
ppachtmachnet_test88.35 31487.29 31391.53 32192.45 36783.57 33193.75 34795.97 27884.28 34385.32 34494.18 30279.00 26896.93 34775.71 37084.99 33494.10 347
YYNet185.87 34184.23 34590.78 34092.38 36982.46 34393.17 36095.14 32082.12 36567.69 39792.36 35478.16 28095.50 37477.31 36279.73 37094.39 340
MDA-MVSNet_test_wron85.87 34184.23 34590.80 33992.38 36982.57 33993.17 36095.15 31982.15 36467.65 39992.33 35778.20 27795.51 37377.33 36179.74 36994.31 344
LF4IMVS87.94 31787.25 31489.98 35092.38 36980.05 37094.38 32495.25 31587.59 28984.34 35094.74 26864.31 37797.66 30784.83 29987.45 30392.23 375
lessismore_v090.45 34391.96 37279.09 38087.19 40380.32 37794.39 28666.31 36997.55 31684.00 31176.84 37994.70 331
dmvs_testset81.38 35882.60 35377.73 38191.74 37351.49 41693.03 36584.21 40989.07 23678.28 38591.25 36876.97 29188.53 40456.57 40482.24 36193.16 359
pmmvs687.81 31986.19 32692.69 29291.32 37486.30 28797.34 14596.41 26180.59 37884.05 35894.37 28867.37 36097.67 30584.75 30179.51 37294.09 349
Anonymous2023120687.09 32686.14 32789.93 35191.22 37580.35 36396.11 25095.35 30883.57 35584.16 35393.02 33973.54 32195.61 37072.16 38686.14 31693.84 352
KD-MVS_2432*160084.81 34782.64 35191.31 32691.07 37685.34 30591.22 38095.75 28985.56 32583.09 36490.21 37467.21 36195.89 36277.18 36462.48 40492.69 365
miper_refine_blended84.81 34782.64 35191.31 32691.07 37685.34 30591.22 38095.75 28985.56 32583.09 36490.21 37467.21 36195.89 36277.18 36462.48 40492.69 365
DeepMVS_CXcopyleft74.68 38990.84 37864.34 40781.61 41265.34 40267.47 40088.01 39148.60 40180.13 41162.33 39973.68 38979.58 401
Anonymous2024052186.42 33285.44 33189.34 35890.33 37979.79 37196.73 19895.92 27983.71 35383.25 36391.36 36763.92 37896.01 36078.39 35885.36 32592.22 376
test20.0386.14 33785.40 33388.35 36190.12 38080.06 36995.90 26295.20 31788.59 25581.29 37193.62 32671.43 33292.65 39571.26 39081.17 36592.34 373
OpenMVS_ROBcopyleft81.14 2084.42 34982.28 35590.83 33590.06 38184.05 32595.73 27194.04 35673.89 39680.17 37991.53 36659.15 38797.64 30866.92 39689.05 28890.80 389
UnsupCasMVSNet_eth85.99 33884.45 34390.62 34189.97 38282.40 34493.62 35397.37 18589.86 21178.59 38492.37 35165.25 37695.35 37682.27 32970.75 39394.10 347
DSMNet-mixed86.34 33386.12 32887.00 37089.88 38370.43 39694.93 30790.08 39477.97 38885.42 34392.78 34274.44 31393.96 38874.43 37695.14 19396.62 234
new_pmnet82.89 35481.12 35988.18 36489.63 38480.18 36891.77 37792.57 37776.79 39175.56 39088.23 38861.22 38694.48 38171.43 38882.92 35889.87 392
MIMVSNet184.93 34683.05 34890.56 34289.56 38584.84 31695.40 28795.35 30883.91 34780.38 37692.21 35857.23 39093.34 39270.69 39282.75 36093.50 355
KD-MVS_self_test85.95 33984.95 33888.96 36089.55 38679.11 37995.13 30296.42 26085.91 32084.07 35790.48 37170.03 34394.82 37980.04 34672.94 39092.94 362
m2depth85.91 34084.76 34189.36 35789.14 38780.25 36795.66 27693.16 37083.77 35183.39 36295.26 24566.24 37095.26 37780.65 34275.57 38492.57 368
CMPMVSbinary62.92 2185.62 34384.92 33987.74 36589.14 38773.12 39594.17 33396.80 23773.98 39473.65 39394.93 25766.36 36797.61 31283.95 31291.28 26292.48 372
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
APD_test179.31 36177.70 36484.14 37489.11 38969.07 40092.36 37591.50 38669.07 39973.87 39292.63 34639.93 40594.32 38370.54 39380.25 36889.02 394
CL-MVSNet_self_test86.31 33485.15 33589.80 35288.83 39081.74 35093.93 34196.22 27086.67 30685.03 34590.80 37078.09 28194.50 38074.92 37471.86 39293.15 360
dongtai69.99 36969.33 37171.98 39088.78 39161.64 41089.86 39159.93 42075.67 39274.96 39185.45 39650.19 39981.66 40943.86 40855.27 40772.63 405
mvs5depth86.53 32985.08 33690.87 33488.74 39282.52 34191.91 37694.23 35386.35 31287.11 32293.70 32066.52 36697.76 29981.37 33775.80 38392.31 374
Patchmatch-RL test87.38 32286.24 32590.81 33788.74 39278.40 38288.12 40093.17 36987.11 30082.17 36989.29 38181.95 21295.60 37188.64 23577.02 37898.41 149
pmmvs-eth3d86.22 33584.45 34391.53 32188.34 39487.25 26194.47 31995.01 32483.47 35679.51 38189.61 37969.75 34695.71 36783.13 31876.73 38191.64 380
UnsupCasMVSNet_bld82.13 35779.46 36290.14 34888.00 39582.47 34290.89 38596.62 25378.94 38475.61 38884.40 39956.63 39296.31 35877.30 36366.77 40091.63 381
PM-MVS83.48 35181.86 35788.31 36287.83 39677.59 38493.43 35691.75 38486.91 30280.63 37489.91 37744.42 40395.84 36585.17 29876.73 38191.50 384
MVStest182.38 35680.04 36089.37 35687.63 39782.83 33795.03 30493.37 36873.90 39573.50 39494.35 28962.89 38293.25 39373.80 38065.92 40192.04 379
new-patchmatchnet83.18 35381.87 35687.11 36886.88 39875.99 38893.70 34895.18 31885.02 33577.30 38788.40 38665.99 37293.88 38974.19 37970.18 39491.47 385
test_fmvs383.21 35283.02 34983.78 37586.77 39968.34 40196.76 19694.91 33086.49 30984.14 35589.48 38036.04 40791.73 39791.86 16580.77 36791.26 387
WB-MVS76.77 36376.63 36677.18 38285.32 40056.82 41494.53 31789.39 39682.66 36271.35 39589.18 38275.03 30888.88 40235.42 41166.79 39985.84 396
SSC-MVS76.05 36475.83 36776.72 38684.77 40156.22 41594.32 32888.96 39881.82 36870.52 39688.91 38374.79 31088.71 40333.69 41264.71 40285.23 397
kuosan65.27 37564.66 37767.11 39383.80 40261.32 41188.53 39760.77 41968.22 40067.67 39880.52 40249.12 40070.76 41529.67 41453.64 40969.26 407
mvsany_test383.59 35082.44 35487.03 36983.80 40273.82 39193.70 34890.92 39186.42 31082.51 36790.26 37346.76 40295.71 36790.82 18676.76 38091.57 382
ambc86.56 37183.60 40470.00 39885.69 40294.97 32780.60 37588.45 38537.42 40696.84 35182.69 32675.44 38592.86 363
test_f80.57 35979.62 36183.41 37683.38 40567.80 40393.57 35593.72 36380.80 37677.91 38687.63 39233.40 40892.08 39687.14 26879.04 37590.34 391
pmmvs379.97 36077.50 36587.39 36782.80 40679.38 37792.70 37090.75 39270.69 39878.66 38387.47 39451.34 39893.40 39173.39 38369.65 39589.38 393
TDRefinement86.53 32984.76 34191.85 31182.23 40784.25 32096.38 23295.35 30884.97 33684.09 35694.94 25665.76 37498.34 22884.60 30474.52 38692.97 361
test_vis3_rt72.73 36570.55 36879.27 37980.02 40868.13 40293.92 34274.30 41676.90 39058.99 40773.58 40720.29 41695.37 37584.16 30772.80 39174.31 404
testf169.31 37066.76 37376.94 38478.61 40961.93 40888.27 39886.11 40655.62 40559.69 40585.31 39720.19 41789.32 39957.62 40169.44 39679.58 401
APD_test269.31 37066.76 37376.94 38478.61 40961.93 40888.27 39886.11 40655.62 40559.69 40585.31 39720.19 41789.32 39957.62 40169.44 39679.58 401
PMMVS270.19 36866.92 37280.01 37876.35 41165.67 40586.22 40187.58 40264.83 40362.38 40480.29 40326.78 41388.49 40563.79 39754.07 40885.88 395
FPMVS71.27 36769.85 36975.50 38774.64 41259.03 41291.30 37991.50 38658.80 40457.92 40888.28 38729.98 41185.53 40753.43 40582.84 35981.95 400
E-PMN53.28 37852.56 38255.43 39574.43 41347.13 41883.63 40576.30 41342.23 41042.59 41262.22 41128.57 41274.40 41231.53 41331.51 41144.78 410
wuyk23d25.11 38224.57 38626.74 39873.98 41439.89 42257.88 4119.80 42212.27 41510.39 4166.97 4187.03 42036.44 41725.43 41617.39 4153.89 415
test_method66.11 37464.89 37669.79 39172.62 41535.23 42365.19 41092.83 37520.35 41365.20 40288.08 39043.14 40482.70 40873.12 38463.46 40391.45 386
EMVS52.08 38051.31 38354.39 39672.62 41545.39 42083.84 40475.51 41541.13 41140.77 41359.65 41230.08 41073.60 41328.31 41529.90 41344.18 411
LCM-MVSNet72.55 36669.39 37082.03 37770.81 41765.42 40690.12 39094.36 35155.02 40765.88 40181.72 40024.16 41589.96 39874.32 37868.10 39890.71 390
MVEpermissive50.73 2353.25 37948.81 38466.58 39465.34 41857.50 41372.49 40870.94 41740.15 41239.28 41463.51 4106.89 42173.48 41438.29 41042.38 41068.76 408
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high63.94 37659.58 37977.02 38361.24 41966.06 40485.66 40387.93 40178.53 38642.94 41171.04 40825.42 41480.71 41052.60 40630.83 41284.28 398
PMVScopyleft53.92 2258.58 37755.40 38068.12 39251.00 42048.64 41778.86 40687.10 40446.77 40935.84 41574.28 4058.76 41986.34 40642.07 40973.91 38869.38 406
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 38153.82 38146.29 39733.73 42145.30 42178.32 40767.24 41818.02 41450.93 41087.05 39552.99 39653.11 41670.76 39125.29 41440.46 412
testmvs13.36 38416.33 3874.48 4005.04 4222.26 42593.18 3593.28 4232.70 4168.24 41721.66 4142.29 4232.19 4187.58 4172.96 4169.00 414
test12313.04 38515.66 3885.18 3994.51 4233.45 42492.50 3731.81 4242.50 4177.58 41820.15 4153.67 4222.18 4197.13 4181.07 4179.90 413
test_blank0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
eth-test20.00 424
eth-test0.00 424
uanet_test0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
DCPMVS0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
cdsmvs_eth3d_5k23.24 38330.99 3850.00 4010.00 4240.00 4260.00 41297.63 1430.00 4190.00 42096.88 15784.38 1620.00 4200.00 4190.00 4180.00 416
pcd_1.5k_mvsjas7.39 3879.85 3900.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 41988.65 970.00 4200.00 4190.00 4180.00 416
sosnet-low-res0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
sosnet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
uncertanet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
Regformer0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
ab-mvs-re8.06 38610.74 3890.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 42096.69 1670.00 4240.00 4200.00 4190.00 4180.00 416
uanet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
WAC-MVS79.53 37375.56 372
PC_three_145290.77 18098.89 1498.28 6596.24 198.35 22595.76 7999.58 2399.59 21
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2599.65 1399.74 8
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2999.72 299.77 2
GSMVS98.45 144
sam_mvs182.76 19498.45 144
sam_mvs81.94 213
MTGPAbinary98.08 74
test_post192.81 36916.58 41780.53 23497.68 30486.20 279
test_post17.58 41681.76 21598.08 251
patchmatchnet-post90.45 37282.65 19898.10 247
MTMP97.86 7982.03 411
test9_res94.81 10799.38 5599.45 47
agg_prior293.94 12499.38 5599.50 40
test_prior493.66 5796.42 225
test_prior296.35 23492.80 12196.03 9997.59 11892.01 4495.01 10099.38 55
旧先验295.94 25981.66 36997.34 4998.82 17692.26 152
新几何295.79 268
无先验95.79 26897.87 11183.87 35099.65 5887.68 25398.89 108
原ACMM295.67 273
testdata299.67 5685.96 287
segment_acmp92.89 28
testdata195.26 29793.10 107
plane_prior597.51 15898.60 20393.02 14592.23 24495.86 256
plane_prior496.64 170
plane_prior390.00 17594.46 5591.34 214
plane_prior297.74 9494.85 34
plane_prior89.99 17797.24 15494.06 6792.16 248
n20.00 425
nn0.00 425
door-mid91.06 389
test1197.88 109
door91.13 388
HQP5-MVS89.33 204
BP-MVS92.13 158
HQP4-MVS90.14 23898.50 21195.78 264
HQP3-MVS97.39 18292.10 249
HQP2-MVS80.95 225
MDTV_nov1_ep13_2view70.35 39793.10 36483.88 34993.55 15982.47 20286.25 27898.38 152
ACMMP++_ref90.30 278
ACMMP++91.02 267
Test By Simon88.73 96