| FOURS1 | | | | | | 99.82 1 | 98.66 24 | 99.69 1 | 98.95 46 | 97.46 34 | 99.39 30 | | | | | | |
|
| MTAPA | | | 98.58 23 | 98.29 43 | 99.46 14 | 99.76 2 | 98.64 25 | 98.90 102 | 98.74 108 | 97.27 49 | 98.02 115 | 99.39 31 | 94.81 80 | 99.96 4 | 97.91 71 | 99.79 27 | 99.77 26 |
|
| MSP-MVS | | | 98.74 13 | 98.55 17 | 99.29 29 | 99.75 3 | 98.23 47 | 99.26 27 | 98.88 62 | 97.52 29 | 99.41 28 | 98.78 132 | 96.00 36 | 99.79 98 | 97.79 79 | 99.59 79 | 99.85 9 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MP-MVS |  | | 98.33 55 | 98.01 63 | 99.28 32 | 99.75 3 | 98.18 51 | 99.22 36 | 98.79 98 | 96.13 104 | 97.92 126 | 99.23 62 | 94.54 83 | 99.94 9 | 96.74 139 | 99.78 31 | 99.73 41 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| mPP-MVS | | | 98.51 33 | 98.26 44 | 99.25 35 | 99.75 3 | 98.04 59 | 99.28 24 | 98.81 86 | 96.24 99 | 98.35 98 | 99.23 62 | 95.46 52 | 99.94 9 | 97.42 106 | 99.81 14 | 99.77 26 |
|
| HPM-MVS_fast | | | 98.38 47 | 98.13 55 | 99.12 50 | 99.75 3 | 97.86 65 | 99.44 9 | 98.82 81 | 94.46 192 | 98.94 55 | 99.20 67 | 95.16 70 | 99.74 111 | 97.58 95 | 99.85 6 | 99.77 26 |
|
| region2R | | | 98.61 18 | 98.38 28 | 99.29 29 | 99.74 7 | 98.16 53 | 99.23 32 | 98.93 50 | 96.15 103 | 98.94 55 | 99.17 74 | 95.91 40 | 99.94 9 | 97.55 99 | 99.79 27 | 99.78 20 |
|
| ACMMPR | | | 98.59 21 | 98.36 30 | 99.29 29 | 99.74 7 | 98.15 54 | 99.23 32 | 98.95 46 | 96.10 106 | 98.93 59 | 99.19 72 | 95.70 46 | 99.94 9 | 97.62 92 | 99.79 27 | 99.78 20 |
|
| HPM-MVS |  | | 98.36 50 | 98.10 59 | 99.13 48 | 99.74 7 | 97.82 69 | 99.53 6 | 98.80 93 | 94.63 182 | 98.61 83 | 98.97 105 | 95.13 72 | 99.77 106 | 97.65 90 | 99.83 13 | 99.79 18 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| ACMMP |  | | 98.23 58 | 97.95 65 | 99.09 52 | 99.74 7 | 97.62 73 | 99.03 73 | 99.41 6 | 95.98 108 | 97.60 149 | 99.36 41 | 94.45 88 | 99.93 25 | 97.14 113 | 98.85 139 | 99.70 53 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| ZNCC-MVS | | | 98.49 35 | 98.20 52 | 99.35 22 | 99.73 11 | 98.39 34 | 99.19 43 | 98.86 75 | 95.77 119 | 98.31 101 | 99.10 86 | 95.46 52 | 99.93 25 | 97.57 98 | 99.81 14 | 99.74 36 |
|
| DVP-MVS |  | | 99.03 5 | 98.83 9 | 99.63 4 | 99.72 12 | 99.25 2 | 98.97 86 | 98.58 151 | 97.62 24 | 99.45 25 | 99.46 24 | 97.42 9 | 99.94 9 | 98.47 41 | 99.81 14 | 99.69 56 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 86 | 98.88 62 | | | | | 99.94 9 | 98.47 41 | 99.81 14 | 99.84 11 |
|
| test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 65 | 98.88 62 | 97.62 24 | 99.56 20 | 99.50 15 | 97.42 9 | | | | |
|
| GST-MVS | | | 98.43 43 | 98.12 56 | 99.34 23 | 99.72 12 | 98.38 35 | 99.09 62 | 98.82 81 | 95.71 123 | 98.73 74 | 99.06 96 | 95.27 63 | 99.93 25 | 97.07 116 | 99.63 72 | 99.72 45 |
|
| MP-MVS-pluss | | | 98.31 56 | 97.92 66 | 99.49 12 | 99.72 12 | 98.88 18 | 98.43 205 | 98.78 100 | 94.10 201 | 97.69 140 | 99.42 28 | 95.25 65 | 99.92 31 | 98.09 61 | 99.80 21 | 99.67 65 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HFP-MVS | | | 98.63 17 | 98.40 26 | 99.32 28 | 99.72 12 | 98.29 45 | 99.23 32 | 98.96 45 | 96.10 106 | 98.94 55 | 99.17 74 | 96.06 33 | 99.92 31 | 97.62 92 | 99.78 31 | 99.75 34 |
|
| PGM-MVS | | | 98.49 35 | 98.23 49 | 99.27 34 | 99.72 12 | 98.08 58 | 98.99 83 | 99.49 5 | 95.43 135 | 99.03 48 | 99.32 48 | 95.56 49 | 99.94 9 | 96.80 136 | 99.77 33 | 99.78 20 |
|
| SED-MVS | | | 99.09 1 | 98.91 4 | 99.63 4 | 99.71 19 | 99.24 5 | 99.02 76 | 98.87 69 | 97.65 22 | 99.73 10 | 99.48 18 | 97.53 7 | 99.94 9 | 98.43 45 | 99.81 14 | 99.70 53 |
|
| IU-MVS | | | | | | 99.71 19 | 99.23 7 | | 98.64 137 | 95.28 145 | 99.63 18 | | | | 98.35 50 | 99.81 14 | 99.83 12 |
|
| test_241102_ONE | | | | | | 99.71 19 | 99.24 5 | | 98.87 69 | 97.62 24 | 99.73 10 | 99.39 31 | 97.53 7 | 99.74 111 | | | |
|
| XVS | | | 98.70 14 | 98.49 21 | 99.34 23 | 99.70 22 | 98.35 42 | 99.29 22 | 98.88 62 | 97.40 36 | 98.46 88 | 99.20 67 | 95.90 42 | 99.89 47 | 97.85 75 | 99.74 48 | 99.78 20 |
|
| X-MVStestdata | | | 94.06 294 | 92.30 317 | 99.34 23 | 99.70 22 | 98.35 42 | 99.29 22 | 98.88 62 | 97.40 36 | 98.46 88 | 43.50 413 | 95.90 42 | 99.89 47 | 97.85 75 | 99.74 48 | 99.78 20 |
|
| TSAR-MVS + MP. | | | 98.78 11 | 98.62 13 | 99.24 36 | 99.69 24 | 98.28 46 | 99.14 52 | 98.66 132 | 96.84 71 | 99.56 20 | 99.31 50 | 96.34 25 | 99.70 119 | 98.32 51 | 99.73 51 | 99.73 41 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| CSCG | | | 97.85 73 | 97.74 71 | 98.20 120 | 99.67 25 | 95.16 193 | 99.22 36 | 99.32 11 | 93.04 264 | 97.02 167 | 98.92 116 | 95.36 58 | 99.91 39 | 97.43 105 | 99.64 71 | 99.52 86 |
|
| test_one_0601 | | | | | | 99.66 26 | 99.25 2 | | 98.86 75 | 97.55 28 | 99.20 39 | 99.47 20 | 97.57 6 | | | | |
|
| CP-MVS | | | 98.57 27 | 98.36 30 | 99.19 40 | 99.66 26 | 97.86 65 | 99.34 16 | 98.87 69 | 95.96 109 | 98.60 84 | 99.13 82 | 96.05 34 | 99.94 9 | 97.77 80 | 99.86 2 | 99.77 26 |
|
| CPTT-MVS | | | 97.72 78 | 97.32 94 | 98.92 64 | 99.64 28 | 97.10 98 | 99.12 56 | 98.81 86 | 92.34 290 | 98.09 107 | 99.08 94 | 93.01 107 | 99.92 31 | 96.06 158 | 99.77 33 | 99.75 34 |
|
| test_part2 | | | | | | 99.63 29 | 99.18 10 | | | | 99.27 36 | | | | | | |
|
| ACMMP_NAP | | | 98.61 18 | 98.30 42 | 99.55 9 | 99.62 30 | 98.95 17 | 98.82 127 | 98.81 86 | 95.80 117 | 99.16 45 | 99.47 20 | 95.37 57 | 99.92 31 | 97.89 73 | 99.75 44 | 99.79 18 |
|
| MCST-MVS | | | 98.65 15 | 98.37 29 | 99.48 13 | 99.60 31 | 98.87 19 | 98.41 208 | 98.68 124 | 97.04 63 | 98.52 87 | 98.80 130 | 96.78 16 | 99.83 69 | 97.93 69 | 99.61 75 | 99.74 36 |
|
| DPE-MVS |  | | 98.92 7 | 98.67 12 | 99.65 2 | 99.58 32 | 99.20 9 | 98.42 207 | 98.91 56 | 97.58 27 | 99.54 22 | 99.46 24 | 97.10 12 | 99.94 9 | 97.64 91 | 99.84 11 | 99.83 12 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| dcpmvs_2 | | | 98.08 62 | 98.59 14 | 96.56 244 | 99.57 33 | 90.34 336 | 99.15 50 | 98.38 197 | 96.82 73 | 99.29 35 | 99.49 17 | 95.78 44 | 99.57 144 | 98.94 22 | 99.86 2 | 99.77 26 |
|
| APDe-MVS |  | | 99.02 6 | 98.84 8 | 99.55 9 | 99.57 33 | 98.96 16 | 99.39 10 | 98.93 50 | 97.38 39 | 99.41 28 | 99.54 8 | 96.66 18 | 99.84 67 | 98.86 24 | 99.85 6 | 99.87 6 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SF-MVS | | | 98.59 21 | 98.32 41 | 99.41 17 | 99.54 35 | 98.71 22 | 99.04 70 | 98.81 86 | 95.12 153 | 99.32 34 | 99.39 31 | 96.22 27 | 99.84 67 | 97.72 83 | 99.73 51 | 99.67 65 |
|
| patch_mono-2 | | | 98.36 50 | 98.87 6 | 96.82 220 | 99.53 36 | 90.68 327 | 98.64 171 | 99.29 14 | 97.88 15 | 99.19 41 | 99.52 11 | 96.80 15 | 99.97 1 | 99.11 18 | 99.86 2 | 99.82 15 |
|
| SR-MVS | | | 98.57 27 | 98.35 32 | 99.24 36 | 99.53 36 | 98.18 51 | 99.09 62 | 98.82 81 | 96.58 86 | 99.10 47 | 99.32 48 | 95.39 55 | 99.82 76 | 97.70 87 | 99.63 72 | 99.72 45 |
|
| DP-MVS Recon | | | 97.86 71 | 97.46 86 | 99.06 54 | 99.53 36 | 98.35 42 | 98.33 212 | 98.89 59 | 92.62 279 | 98.05 110 | 98.94 113 | 95.34 59 | 99.65 129 | 96.04 159 | 99.42 108 | 99.19 146 |
|
| SMA-MVS |  | | 98.58 23 | 98.25 45 | 99.56 8 | 99.51 39 | 99.04 15 | 98.95 92 | 98.80 93 | 93.67 235 | 99.37 31 | 99.52 11 | 96.52 22 | 99.89 47 | 98.06 62 | 99.81 14 | 99.76 33 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| APD-MVS |  | | 98.35 52 | 98.00 64 | 99.42 16 | 99.51 39 | 98.72 21 | 98.80 136 | 98.82 81 | 94.52 189 | 99.23 38 | 99.25 61 | 95.54 51 | 99.80 88 | 96.52 143 | 99.77 33 | 99.74 36 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| HPM-MVS++ |  | | 98.58 23 | 98.25 45 | 99.55 9 | 99.50 41 | 99.08 11 | 98.72 155 | 98.66 132 | 97.51 30 | 98.15 102 | 98.83 127 | 95.70 46 | 99.92 31 | 97.53 101 | 99.67 61 | 99.66 68 |
|
| APD-MVS_3200maxsize | | | 98.53 32 | 98.33 40 | 99.15 46 | 99.50 41 | 97.92 64 | 99.15 50 | 98.81 86 | 96.24 99 | 99.20 39 | 99.37 37 | 95.30 61 | 99.80 88 | 97.73 82 | 99.67 61 | 99.72 45 |
|
| 114514_t | | | 96.93 127 | 96.27 142 | 98.92 64 | 99.50 41 | 97.63 72 | 98.85 119 | 98.90 57 | 84.80 387 | 97.77 131 | 99.11 84 | 92.84 109 | 99.66 128 | 94.85 198 | 99.77 33 | 99.47 100 |
|
| PAPM_NR | | | 97.46 96 | 97.11 103 | 98.50 91 | 99.50 41 | 96.41 131 | 98.63 174 | 98.60 142 | 95.18 150 | 97.06 165 | 98.06 205 | 94.26 93 | 99.57 144 | 93.80 237 | 98.87 138 | 99.52 86 |
|
| SR-MVS-dyc-post | | | 98.54 31 | 98.35 32 | 99.13 48 | 99.49 45 | 97.86 65 | 99.11 58 | 98.80 93 | 96.49 89 | 99.17 42 | 99.35 43 | 95.34 59 | 99.82 76 | 97.72 83 | 99.65 67 | 99.71 49 |
|
| RE-MVS-def | | | | 98.34 36 | | 99.49 45 | 97.86 65 | 99.11 58 | 98.80 93 | 96.49 89 | 99.17 42 | 99.35 43 | 95.29 62 | | 97.72 83 | 99.65 67 | 99.71 49 |
|
| 9.14 | | | | 98.06 60 | | 99.47 47 | | 98.71 156 | 98.82 81 | 94.36 195 | 99.16 45 | 99.29 52 | 96.05 34 | 99.81 81 | 97.00 117 | 99.71 56 | |
|
| CDPH-MVS | | | 97.94 68 | 97.49 83 | 99.28 32 | 99.47 47 | 98.44 31 | 97.91 268 | 98.67 129 | 92.57 282 | 98.77 70 | 98.85 124 | 95.93 39 | 99.72 113 | 95.56 177 | 99.69 58 | 99.68 61 |
|
| ZD-MVS | | | | | | 99.46 49 | 98.70 23 | | 98.79 98 | 93.21 255 | 98.67 76 | 98.97 105 | 95.70 46 | 99.83 69 | 96.07 155 | 99.58 82 | |
|
| save fliter | | | | | | 99.46 49 | 98.38 35 | 98.21 229 | 98.71 116 | 97.95 13 | | | | | | | |
|
| EI-MVSNet-Vis-set | | | 98.47 38 | 98.39 27 | 98.69 75 | 99.46 49 | 96.49 126 | 98.30 219 | 98.69 121 | 97.21 52 | 98.84 65 | 99.36 41 | 95.41 54 | 99.78 101 | 98.62 29 | 99.65 67 | 99.80 17 |
|
| EI-MVSNet-UG-set | | | 98.41 45 | 98.34 36 | 98.61 81 | 99.45 52 | 96.32 136 | 98.28 222 | 98.68 124 | 97.17 55 | 98.74 72 | 99.37 37 | 95.25 65 | 99.79 98 | 98.57 30 | 99.54 92 | 99.73 41 |
|
| F-COLMAP | | | 97.09 122 | 96.80 117 | 97.97 139 | 99.45 52 | 94.95 206 | 98.55 188 | 98.62 141 | 93.02 265 | 96.17 205 | 98.58 155 | 94.01 97 | 99.81 81 | 93.95 231 | 98.90 134 | 99.14 155 |
|
| fmvsm_l_conf0.5_n_a | | | 99.09 1 | 99.08 1 | 99.11 51 | 99.43 54 | 97.48 79 | 98.88 111 | 99.30 13 | 98.47 9 | 99.85 4 | 99.43 27 | 96.71 17 | 99.96 4 | 99.86 1 | 99.80 21 | 99.89 4 |
|
| test_fmvsm_n_1920 | | | 98.87 10 | 99.01 3 | 98.45 97 | 99.42 55 | 96.43 129 | 98.96 91 | 99.36 9 | 98.63 4 | 99.86 2 | 99.51 13 | 95.91 40 | 99.97 1 | 99.72 4 | 99.75 44 | 98.94 181 |
|
| fmvsm_l_conf0.5_n | | | 99.07 4 | 99.05 2 | 99.14 47 | 99.41 56 | 97.54 77 | 98.89 106 | 99.31 12 | 98.49 8 | 99.86 2 | 99.42 28 | 96.45 24 | 99.96 4 | 99.86 1 | 99.74 48 | 99.90 3 |
|
| 新几何1 | | | | | 99.16 45 | 99.34 57 | 98.01 61 | | 98.69 121 | 90.06 348 | 98.13 104 | 98.95 112 | 94.60 82 | 99.89 47 | 91.97 290 | 99.47 102 | 99.59 79 |
|
| DP-MVS | | | 96.59 140 | 95.93 155 | 98.57 83 | 99.34 57 | 96.19 142 | 98.70 160 | 98.39 193 | 89.45 359 | 94.52 241 | 99.35 43 | 91.85 135 | 99.85 63 | 92.89 265 | 98.88 136 | 99.68 61 |
|
| SD-MVS | | | 98.64 16 | 98.68 11 | 98.53 89 | 99.33 59 | 98.36 41 | 98.90 102 | 98.85 78 | 97.28 45 | 99.72 12 | 99.39 31 | 96.63 20 | 97.60 357 | 98.17 57 | 99.85 6 | 99.64 71 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| HyFIR lowres test | | | 96.90 129 | 96.49 135 | 98.14 123 | 99.33 59 | 95.56 171 | 97.38 314 | 99.65 2 | 92.34 290 | 97.61 148 | 98.20 196 | 89.29 191 | 99.10 214 | 96.97 119 | 97.60 192 | 99.77 26 |
|
| OMC-MVS | | | 97.55 94 | 97.34 93 | 98.20 120 | 99.33 59 | 95.92 159 | 98.28 222 | 98.59 146 | 95.52 131 | 97.97 120 | 99.10 86 | 93.28 105 | 99.49 163 | 95.09 192 | 98.88 136 | 99.19 146 |
|
| 原ACMM1 | | | | | 98.65 79 | 99.32 62 | 96.62 116 | | 98.67 129 | 93.27 254 | 97.81 130 | 98.97 105 | 95.18 69 | 99.83 69 | 93.84 235 | 99.46 105 | 99.50 91 |
|
| CNVR-MVS | | | 98.78 11 | 98.56 16 | 99.45 15 | 99.32 62 | 98.87 19 | 98.47 199 | 98.81 86 | 97.72 17 | 98.76 71 | 99.16 77 | 97.05 13 | 99.78 101 | 98.06 62 | 99.66 64 | 99.69 56 |
|
| TEST9 | | | | | | 99.31 64 | 98.50 29 | 97.92 266 | 98.73 111 | 92.63 278 | 97.74 135 | 98.68 145 | 96.20 29 | 99.80 88 | | | |
|
| train_agg | | | 97.97 65 | 97.52 82 | 99.33 26 | 99.31 64 | 98.50 29 | 97.92 266 | 98.73 111 | 92.98 266 | 97.74 135 | 98.68 145 | 96.20 29 | 99.80 88 | 96.59 140 | 99.57 83 | 99.68 61 |
|
| test_prior | | | | | 99.19 40 | 99.31 64 | 98.22 48 | | 98.84 79 | | | | | 99.70 119 | | | 99.65 69 |
|
| PatchMatch-RL | | | 96.59 140 | 96.03 151 | 98.27 111 | 99.31 64 | 96.51 125 | 97.91 268 | 99.06 34 | 93.72 227 | 96.92 172 | 98.06 205 | 88.50 216 | 99.65 129 | 91.77 294 | 99.00 131 | 98.66 207 |
|
| fmvsm_s_conf0.5_n | | | 98.42 44 | 98.51 18 | 98.13 126 | 99.30 68 | 95.25 189 | 98.85 119 | 99.39 7 | 97.94 14 | 99.74 9 | 99.62 3 | 92.59 113 | 99.91 39 | 99.65 6 | 99.52 95 | 99.25 135 |
|
| SDMVSNet | | | 96.85 131 | 96.42 136 | 98.14 123 | 99.30 68 | 96.38 132 | 99.21 39 | 99.23 20 | 95.92 110 | 95.96 212 | 98.76 139 | 85.88 268 | 99.44 173 | 97.93 69 | 95.59 247 | 98.60 211 |
|
| sd_testset | | | 96.17 158 | 95.76 160 | 97.42 180 | 99.30 68 | 94.34 236 | 98.82 127 | 99.08 32 | 95.92 110 | 95.96 212 | 98.76 139 | 82.83 318 | 99.32 184 | 95.56 177 | 95.59 247 | 98.60 211 |
|
| agg_prior | | | | | | 99.30 68 | 98.38 35 | | 98.72 113 | | 97.57 151 | | | 99.81 81 | | | |
|
| CHOSEN 1792x2688 | | | 97.12 120 | 96.80 117 | 98.08 132 | 99.30 68 | 94.56 227 | 98.05 253 | 99.71 1 | 93.57 240 | 97.09 161 | 98.91 117 | 88.17 221 | 99.89 47 | 96.87 131 | 99.56 89 | 99.81 16 |
|
| test_8 | | | | | | 99.29 73 | 98.44 31 | 97.89 274 | 98.72 113 | 92.98 266 | 97.70 139 | 98.66 148 | 96.20 29 | 99.80 88 | | | |
|
| 旧先验1 | | | | | | 99.29 73 | 97.48 79 | | 98.70 120 | | | 99.09 92 | 95.56 49 | | | 99.47 102 | 99.61 75 |
|
| PLC |  | 95.07 4 | 97.20 115 | 96.78 120 | 98.44 99 | 99.29 73 | 96.31 138 | 98.14 241 | 98.76 104 | 92.41 288 | 96.39 199 | 98.31 185 | 94.92 79 | 99.78 101 | 94.06 229 | 98.77 143 | 99.23 137 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| COLMAP_ROB |  | 93.27 12 | 95.33 206 | 94.87 207 | 96.71 225 | 99.29 73 | 93.24 280 | 98.58 180 | 98.11 249 | 89.92 350 | 93.57 288 | 99.10 86 | 86.37 260 | 99.79 98 | 90.78 313 | 98.10 174 | 97.09 264 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| NCCC | | | 98.61 18 | 98.35 32 | 99.38 18 | 99.28 77 | 98.61 26 | 98.45 200 | 98.76 104 | 97.82 16 | 98.45 91 | 98.93 114 | 96.65 19 | 99.83 69 | 97.38 108 | 99.41 109 | 99.71 49 |
|
| PVSNet_Blended_VisFu | | | 97.70 80 | 97.46 86 | 98.44 99 | 99.27 78 | 95.91 160 | 98.63 174 | 99.16 27 | 94.48 191 | 97.67 141 | 98.88 121 | 92.80 110 | 99.91 39 | 97.11 114 | 99.12 124 | 99.50 91 |
|
| MVS_111021_LR | | | 98.34 53 | 98.23 49 | 98.67 77 | 99.27 78 | 96.90 105 | 97.95 263 | 99.58 3 | 97.14 58 | 98.44 93 | 99.01 102 | 95.03 76 | 99.62 138 | 97.91 71 | 99.75 44 | 99.50 91 |
|
| MSLP-MVS++ | | | 98.56 29 | 98.57 15 | 98.55 85 | 99.26 80 | 96.80 109 | 98.71 156 | 99.05 36 | 97.28 45 | 98.84 65 | 99.28 53 | 96.47 23 | 99.40 175 | 98.52 39 | 99.70 57 | 99.47 100 |
|
| AllTest | | | 95.24 211 | 94.65 216 | 96.99 206 | 99.25 81 | 93.21 281 | 98.59 178 | 98.18 233 | 91.36 318 | 93.52 290 | 98.77 134 | 84.67 293 | 99.72 113 | 89.70 331 | 97.87 181 | 98.02 238 |
|
| TestCases | | | | | 96.99 206 | 99.25 81 | 93.21 281 | | 98.18 233 | 91.36 318 | 93.52 290 | 98.77 134 | 84.67 293 | 99.72 113 | 89.70 331 | 97.87 181 | 98.02 238 |
|
| PVSNet_BlendedMVS | | | 96.73 135 | 96.60 130 | 97.12 199 | 99.25 81 | 95.35 184 | 98.26 225 | 99.26 15 | 94.28 196 | 97.94 123 | 97.46 259 | 92.74 111 | 99.81 81 | 96.88 128 | 93.32 283 | 96.20 348 |
|
| PVSNet_Blended | | | 97.38 105 | 97.12 102 | 98.14 123 | 99.25 81 | 95.35 184 | 97.28 325 | 99.26 15 | 93.13 260 | 97.94 123 | 98.21 195 | 92.74 111 | 99.81 81 | 96.88 128 | 99.40 112 | 99.27 130 |
|
| DeepC-MVS | | 95.98 3 | 97.88 70 | 97.58 76 | 98.77 71 | 99.25 81 | 96.93 103 | 98.83 125 | 98.75 106 | 96.96 67 | 96.89 174 | 99.50 15 | 90.46 168 | 99.87 58 | 97.84 77 | 99.76 39 | 99.52 86 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepC-MVS_fast | | 96.70 1 | 98.55 30 | 98.34 36 | 99.18 42 | 99.25 81 | 98.04 59 | 98.50 196 | 98.78 100 | 97.72 17 | 98.92 61 | 99.28 53 | 95.27 63 | 99.82 76 | 97.55 99 | 99.77 33 | 99.69 56 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OPU-MVS | | | | | 99.37 20 | 99.24 87 | 99.05 14 | 99.02 76 | | | | 99.16 77 | 97.81 3 | 99.37 179 | 97.24 111 | 99.73 51 | 99.70 53 |
|
| test222 | | | | | | 99.23 88 | 97.17 96 | 97.40 312 | 98.66 132 | 88.68 367 | 98.05 110 | 98.96 110 | 94.14 95 | | | 99.53 94 | 99.61 75 |
|
| TSAR-MVS + GP. | | | 98.38 47 | 98.24 47 | 98.81 70 | 99.22 89 | 97.25 92 | 98.11 246 | 98.29 217 | 97.19 54 | 98.99 53 | 99.02 98 | 96.22 27 | 99.67 126 | 98.52 39 | 98.56 153 | 99.51 89 |
|
| SteuartSystems-ACMMP | | | 98.90 9 | 98.75 10 | 99.36 21 | 99.22 89 | 98.43 33 | 99.10 61 | 98.87 69 | 97.38 39 | 99.35 32 | 99.40 30 | 97.78 5 | 99.87 58 | 97.77 80 | 99.85 6 | 99.78 20 |
| Skip Steuart: Steuart Systems R&D Blog. |
| MVS_111021_HR | | | 98.47 38 | 98.34 36 | 98.88 68 | 99.22 89 | 97.32 85 | 97.91 268 | 99.58 3 | 97.20 53 | 98.33 99 | 99.00 103 | 95.99 37 | 99.64 131 | 98.05 64 | 99.76 39 | 99.69 56 |
|
| CS-MVS-test | | | 98.49 35 | 98.50 20 | 98.46 96 | 99.20 92 | 97.05 99 | 99.64 4 | 98.50 172 | 97.45 35 | 98.88 62 | 99.14 81 | 95.25 65 | 99.15 203 | 98.83 25 | 99.56 89 | 99.20 142 |
|
| testdata | | | | | 98.26 114 | 99.20 92 | 95.36 182 | | 98.68 124 | 91.89 304 | 98.60 84 | 99.10 86 | 94.44 89 | 99.82 76 | 94.27 221 | 99.44 106 | 99.58 83 |
|
| DVP-MVS++ | | | 99.08 3 | 98.89 5 | 99.64 3 | 99.17 94 | 99.23 7 | 99.69 1 | 98.88 62 | 97.32 42 | 99.53 23 | 99.47 20 | 97.81 3 | 99.94 9 | 98.47 41 | 99.72 54 | 99.74 36 |
|
| MSC_two_6792asdad | | | | | 99.62 6 | 99.17 94 | 99.08 11 | | 98.63 139 | | | | | 99.94 9 | 98.53 33 | 99.80 21 | 99.86 7 |
|
| No_MVS | | | | | 99.62 6 | 99.17 94 | 99.08 11 | | 98.63 139 | | | | | 99.94 9 | 98.53 33 | 99.80 21 | 99.86 7 |
|
| PVSNet | | 91.96 18 | 96.35 151 | 96.15 146 | 96.96 210 | 99.17 94 | 92.05 300 | 96.08 373 | 98.68 124 | 93.69 231 | 97.75 134 | 97.80 233 | 88.86 206 | 99.69 124 | 94.26 222 | 99.01 129 | 99.15 153 |
|
| test12 | | | | | 99.18 42 | 99.16 98 | 98.19 50 | | 98.53 162 | | 98.07 108 | | 95.13 72 | 99.72 113 | | 99.56 89 | 99.63 73 |
|
| AdaColmap |  | | 97.15 118 | 96.70 125 | 98.48 94 | 99.16 98 | 96.69 115 | 98.01 257 | 98.89 59 | 94.44 193 | 96.83 175 | 98.68 145 | 90.69 165 | 99.76 107 | 94.36 216 | 99.29 119 | 98.98 176 |
|
| PHI-MVS | | | 98.34 53 | 98.06 60 | 99.18 42 | 99.15 100 | 98.12 57 | 99.04 70 | 99.09 31 | 93.32 250 | 98.83 67 | 99.10 86 | 96.54 21 | 99.83 69 | 97.70 87 | 99.76 39 | 99.59 79 |
|
| TAPA-MVS | | 93.98 7 | 95.35 204 | 94.56 220 | 97.74 157 | 99.13 101 | 94.83 212 | 98.33 212 | 98.64 137 | 86.62 375 | 96.29 201 | 98.61 150 | 94.00 98 | 99.29 187 | 80.00 390 | 99.41 109 | 99.09 161 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| MM | | | 98.51 33 | 98.24 47 | 99.33 26 | 99.12 102 | 98.14 56 | 98.93 97 | 97.02 343 | 98.96 1 | 99.17 42 | 99.47 20 | 91.97 134 | 99.94 9 | 99.85 3 | 99.69 58 | 99.91 2 |
|
| MG-MVS | | | 97.81 74 | 97.60 75 | 98.44 99 | 99.12 102 | 95.97 152 | 97.75 289 | 98.78 100 | 96.89 70 | 98.46 88 | 99.22 64 | 93.90 99 | 99.68 125 | 94.81 201 | 99.52 95 | 99.67 65 |
|
| test_vis1_n_1920 | | | 96.71 136 | 96.84 116 | 96.31 268 | 99.11 104 | 89.74 344 | 99.05 67 | 98.58 151 | 98.08 12 | 99.87 1 | 99.37 37 | 78.48 349 | 99.93 25 | 99.29 14 | 99.69 58 | 99.27 130 |
|
| Anonymous20231211 | | | 94.10 290 | 93.26 299 | 96.61 237 | 99.11 104 | 94.28 238 | 99.01 78 | 98.88 62 | 86.43 377 | 92.81 314 | 97.57 253 | 81.66 323 | 98.68 268 | 94.83 199 | 89.02 341 | 96.88 282 |
|
| fmvsm_s_conf0.5_n_a | | | 98.38 47 | 98.42 25 | 98.27 111 | 99.09 106 | 95.41 179 | 98.86 117 | 99.37 8 | 97.69 21 | 99.78 6 | 99.61 4 | 92.38 116 | 99.91 39 | 99.58 10 | 99.43 107 | 99.49 96 |
|
| CS-MVS | | | 98.44 41 | 98.49 21 | 98.31 109 | 99.08 107 | 96.73 113 | 99.67 3 | 98.47 178 | 97.17 55 | 98.94 55 | 99.10 86 | 95.73 45 | 99.13 206 | 98.71 27 | 99.49 99 | 99.09 161 |
|
| CNLPA | | | 97.45 99 | 97.03 107 | 98.73 73 | 99.05 108 | 97.44 83 | 98.07 251 | 98.53 162 | 95.32 143 | 96.80 179 | 98.53 160 | 93.32 103 | 99.72 113 | 94.31 220 | 99.31 118 | 99.02 172 |
|
| DPM-MVS | | | 97.55 94 | 96.99 109 | 99.23 38 | 99.04 109 | 98.55 27 | 97.17 335 | 98.35 202 | 94.85 173 | 97.93 125 | 98.58 155 | 95.07 74 | 99.71 118 | 92.60 269 | 99.34 116 | 99.43 109 |
|
| h-mvs33 | | | 96.17 158 | 95.62 171 | 97.81 149 | 99.03 110 | 94.45 229 | 98.64 171 | 98.75 106 | 97.48 32 | 98.67 76 | 98.72 142 | 89.76 178 | 99.86 62 | 97.95 67 | 81.59 385 | 99.11 159 |
|
| test2506 | | | 94.44 266 | 93.91 263 | 96.04 278 | 99.02 111 | 88.99 359 | 99.06 65 | 79.47 418 | 96.96 67 | 98.36 96 | 99.26 56 | 77.21 361 | 99.52 160 | 96.78 137 | 99.04 126 | 99.59 79 |
|
| ECVR-MVS |  | | 95.95 166 | 95.71 165 | 96.65 230 | 99.02 111 | 90.86 322 | 99.03 73 | 91.80 405 | 96.96 67 | 98.10 106 | 99.26 56 | 81.31 325 | 99.51 161 | 96.90 125 | 99.04 126 | 99.59 79 |
|
| Anonymous20240529 | | | 95.10 219 | 94.22 238 | 97.75 156 | 99.01 113 | 94.26 240 | 98.87 114 | 98.83 80 | 85.79 383 | 96.64 183 | 98.97 105 | 78.73 346 | 99.85 63 | 96.27 150 | 94.89 252 | 99.12 157 |
|
| Anonymous202405211 | | | 95.28 209 | 94.49 223 | 97.67 165 | 99.00 114 | 93.75 255 | 98.70 160 | 97.04 340 | 90.66 336 | 96.49 194 | 98.80 130 | 78.13 353 | 99.83 69 | 96.21 154 | 95.36 251 | 99.44 107 |
|
| DELS-MVS | | | 98.40 46 | 98.20 52 | 98.99 57 | 99.00 114 | 97.66 70 | 97.75 289 | 98.89 59 | 97.71 19 | 98.33 99 | 98.97 105 | 94.97 77 | 99.88 56 | 98.42 47 | 99.76 39 | 99.42 111 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| DeepPCF-MVS | | 96.37 2 | 97.93 69 | 98.48 23 | 96.30 269 | 99.00 114 | 89.54 349 | 97.43 311 | 98.87 69 | 98.16 11 | 99.26 37 | 99.38 36 | 96.12 32 | 99.64 131 | 98.30 52 | 99.77 33 | 99.72 45 |
|
| test1111 | | | 95.94 168 | 95.78 159 | 96.41 261 | 98.99 117 | 90.12 338 | 99.04 70 | 92.45 404 | 96.99 66 | 98.03 113 | 99.27 55 | 81.40 324 | 99.48 168 | 96.87 131 | 99.04 126 | 99.63 73 |
|
| thres100view900 | | | 95.38 200 | 94.70 214 | 97.41 181 | 98.98 118 | 94.92 207 | 98.87 114 | 96.90 350 | 95.38 138 | 96.61 186 | 96.88 316 | 84.29 299 | 99.56 147 | 88.11 349 | 96.29 229 | 97.76 243 |
|
| thres600view7 | | | 95.49 191 | 94.77 209 | 97.67 165 | 98.98 118 | 95.02 199 | 98.85 119 | 96.90 350 | 95.38 138 | 96.63 184 | 96.90 315 | 84.29 299 | 99.59 141 | 88.65 346 | 96.33 225 | 98.40 223 |
|
| mamv4 | | | 97.13 119 | 98.11 57 | 94.17 346 | 98.97 120 | 83.70 388 | 98.66 168 | 98.71 116 | 94.63 182 | 97.83 129 | 98.90 118 | 96.25 26 | 99.55 154 | 99.27 15 | 99.76 39 | 99.27 130 |
|
| MVSMamba_PlusPlus | | | 98.31 56 | 98.19 54 | 98.67 77 | 98.96 121 | 97.36 84 | 99.24 30 | 98.57 153 | 94.81 174 | 98.99 53 | 98.90 118 | 95.22 68 | 99.59 141 | 99.15 17 | 99.84 11 | 99.07 169 |
|
| test_cas_vis1_n_1920 | | | 97.38 105 | 97.36 92 | 97.45 177 | 98.95 122 | 93.25 279 | 99.00 80 | 98.53 162 | 97.70 20 | 99.77 7 | 99.35 43 | 84.71 292 | 99.85 63 | 98.57 30 | 99.66 64 | 99.26 133 |
|
| tfpn200view9 | | | 95.32 207 | 94.62 217 | 97.43 179 | 98.94 123 | 94.98 203 | 98.68 163 | 96.93 348 | 95.33 141 | 96.55 190 | 96.53 334 | 84.23 303 | 99.56 147 | 88.11 349 | 96.29 229 | 97.76 243 |
|
| thres400 | | | 95.38 200 | 94.62 217 | 97.65 169 | 98.94 123 | 94.98 203 | 98.68 163 | 96.93 348 | 95.33 141 | 96.55 190 | 96.53 334 | 84.23 303 | 99.56 147 | 88.11 349 | 96.29 229 | 98.40 223 |
|
| MSDG | | | 95.93 169 | 95.30 186 | 97.83 146 | 98.90 125 | 95.36 182 | 96.83 360 | 98.37 199 | 91.32 322 | 94.43 248 | 98.73 141 | 90.27 172 | 99.60 140 | 90.05 324 | 98.82 141 | 98.52 217 |
|
| RPSCF | | | 94.87 235 | 95.40 175 | 93.26 357 | 98.89 126 | 82.06 395 | 98.33 212 | 98.06 264 | 90.30 345 | 96.56 188 | 99.26 56 | 87.09 245 | 99.49 163 | 93.82 236 | 96.32 226 | 98.24 230 |
|
| test_fmvsmconf_n | | | 98.92 7 | 98.87 6 | 99.04 55 | 98.88 127 | 97.25 92 | 98.82 127 | 99.34 10 | 98.75 2 | 99.80 5 | 99.61 4 | 95.16 70 | 99.95 7 | 99.70 5 | 99.80 21 | 99.93 1 |
|
| VNet | | | 97.79 75 | 97.40 90 | 98.96 62 | 98.88 127 | 97.55 75 | 98.63 174 | 98.93 50 | 96.74 78 | 99.02 49 | 98.84 125 | 90.33 171 | 99.83 69 | 98.53 33 | 96.66 214 | 99.50 91 |
|
| LFMVS | | | 95.86 173 | 94.98 201 | 98.47 95 | 98.87 129 | 96.32 136 | 98.84 123 | 96.02 372 | 93.40 247 | 98.62 82 | 99.20 67 | 74.99 376 | 99.63 134 | 97.72 83 | 97.20 199 | 99.46 104 |
|
| UA-Net | | | 97.96 66 | 97.62 74 | 98.98 59 | 98.86 130 | 97.47 81 | 98.89 106 | 99.08 32 | 96.67 83 | 98.72 75 | 99.54 8 | 93.15 106 | 99.81 81 | 94.87 197 | 98.83 140 | 99.65 69 |
|
| WTY-MVS | | | 97.37 107 | 96.92 113 | 98.72 74 | 98.86 130 | 96.89 107 | 98.31 217 | 98.71 116 | 95.26 146 | 97.67 141 | 98.56 159 | 92.21 124 | 99.78 101 | 95.89 163 | 96.85 209 | 99.48 98 |
|
| IS-MVSNet | | | 97.22 112 | 96.88 114 | 98.25 115 | 98.85 132 | 96.36 134 | 99.19 43 | 97.97 269 | 95.39 137 | 97.23 157 | 98.99 104 | 91.11 157 | 98.93 239 | 94.60 208 | 98.59 151 | 99.47 100 |
|
| VDD-MVS | | | 95.82 176 | 95.23 188 | 97.61 171 | 98.84 133 | 93.98 247 | 98.68 163 | 97.40 316 | 95.02 161 | 97.95 121 | 99.34 47 | 74.37 381 | 99.78 101 | 98.64 28 | 96.80 210 | 99.08 165 |
|
| test_fmvs1 | | | 96.42 147 | 96.67 128 | 95.66 296 | 98.82 134 | 88.53 367 | 98.80 136 | 98.20 228 | 96.39 95 | 99.64 17 | 99.20 67 | 80.35 337 | 99.67 126 | 99.04 19 | 99.57 83 | 98.78 194 |
|
| CHOSEN 280x420 | | | 97.18 116 | 97.18 101 | 97.20 190 | 98.81 135 | 93.27 276 | 95.78 380 | 99.15 28 | 95.25 147 | 96.79 180 | 98.11 202 | 92.29 119 | 99.07 217 | 98.56 32 | 99.85 6 | 99.25 135 |
|
| thres200 | | | 95.25 210 | 94.57 219 | 97.28 187 | 98.81 135 | 94.92 207 | 98.20 231 | 97.11 333 | 95.24 149 | 96.54 192 | 96.22 345 | 84.58 296 | 99.53 157 | 87.93 354 | 96.50 221 | 97.39 257 |
|
| XVG-OURS-SEG-HR | | | 96.51 144 | 96.34 139 | 97.02 205 | 98.77 137 | 93.76 253 | 97.79 287 | 98.50 172 | 95.45 134 | 96.94 169 | 99.09 92 | 87.87 232 | 99.55 154 | 96.76 138 | 95.83 246 | 97.74 245 |
|
| XVG-OURS | | | 96.55 143 | 96.41 137 | 96.99 206 | 98.75 138 | 93.76 253 | 97.50 308 | 98.52 165 | 95.67 125 | 96.83 175 | 99.30 51 | 88.95 205 | 99.53 157 | 95.88 164 | 96.26 234 | 97.69 248 |
|
| test_yl | | | 97.22 112 | 96.78 120 | 98.54 87 | 98.73 139 | 96.60 119 | 98.45 200 | 98.31 209 | 94.70 176 | 98.02 115 | 98.42 170 | 90.80 162 | 99.70 119 | 96.81 134 | 96.79 211 | 99.34 117 |
|
| DCV-MVSNet | | | 97.22 112 | 96.78 120 | 98.54 87 | 98.73 139 | 96.60 119 | 98.45 200 | 98.31 209 | 94.70 176 | 98.02 115 | 98.42 170 | 90.80 162 | 99.70 119 | 96.81 134 | 96.79 211 | 99.34 117 |
|
| CANet | | | 98.05 64 | 97.76 70 | 98.90 67 | 98.73 139 | 97.27 87 | 98.35 210 | 98.78 100 | 97.37 41 | 97.72 138 | 98.96 110 | 91.53 146 | 99.92 31 | 98.79 26 | 99.65 67 | 99.51 89 |
|
| Vis-MVSNet (Re-imp) | | | 96.87 130 | 96.55 132 | 97.83 146 | 98.73 139 | 95.46 177 | 99.20 41 | 98.30 215 | 94.96 165 | 96.60 187 | 98.87 122 | 90.05 174 | 98.59 276 | 93.67 241 | 98.60 150 | 99.46 104 |
|
| PAPR | | | 96.84 132 | 96.24 144 | 98.65 79 | 98.72 143 | 96.92 104 | 97.36 318 | 98.57 153 | 93.33 249 | 96.67 182 | 97.57 253 | 94.30 91 | 99.56 147 | 91.05 310 | 98.59 151 | 99.47 100 |
|
| sasdasda | | | 97.67 82 | 97.23 97 | 98.98 59 | 98.70 144 | 98.38 35 | 99.34 16 | 98.39 193 | 96.76 76 | 97.67 141 | 97.40 266 | 92.26 120 | 99.49 163 | 98.28 53 | 96.28 232 | 99.08 165 |
|
| canonicalmvs | | | 97.67 82 | 97.23 97 | 98.98 59 | 98.70 144 | 98.38 35 | 99.34 16 | 98.39 193 | 96.76 76 | 97.67 141 | 97.40 266 | 92.26 120 | 99.49 163 | 98.28 53 | 96.28 232 | 99.08 165 |
|
| API-MVS | | | 97.41 103 | 97.25 96 | 97.91 142 | 98.70 144 | 96.80 109 | 98.82 127 | 98.69 121 | 94.53 187 | 98.11 105 | 98.28 187 | 94.50 87 | 99.57 144 | 94.12 226 | 99.49 99 | 97.37 259 |
|
| MAR-MVS | | | 96.91 128 | 96.40 138 | 98.45 97 | 98.69 147 | 96.90 105 | 98.66 168 | 98.68 124 | 92.40 289 | 97.07 164 | 97.96 215 | 91.54 145 | 99.75 109 | 93.68 239 | 98.92 133 | 98.69 202 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PS-MVSNAJ | | | 97.73 77 | 97.77 69 | 97.62 170 | 98.68 148 | 95.58 170 | 97.34 320 | 98.51 167 | 97.29 44 | 98.66 80 | 97.88 223 | 94.51 84 | 99.90 45 | 97.87 74 | 99.17 123 | 97.39 257 |
|
| test_fmvs1_n | | | 95.90 171 | 95.99 153 | 95.63 297 | 98.67 149 | 88.32 371 | 99.26 27 | 98.22 225 | 96.40 94 | 99.67 14 | 99.26 56 | 73.91 382 | 99.70 119 | 99.02 20 | 99.50 97 | 98.87 185 |
|
| MGCFI-Net | | | 97.62 87 | 97.19 100 | 98.92 64 | 98.66 150 | 98.20 49 | 99.32 21 | 98.38 197 | 96.69 82 | 97.58 150 | 97.42 265 | 92.10 128 | 99.50 162 | 98.28 53 | 96.25 235 | 99.08 165 |
|
| alignmvs | | | 97.56 93 | 97.07 106 | 99.01 56 | 98.66 150 | 98.37 40 | 98.83 125 | 98.06 264 | 96.74 78 | 98.00 119 | 97.65 245 | 90.80 162 | 99.48 168 | 98.37 49 | 96.56 218 | 99.19 146 |
|
| Vis-MVSNet |  | | 97.42 102 | 97.11 103 | 98.34 107 | 98.66 150 | 96.23 139 | 99.22 36 | 99.00 39 | 96.63 85 | 98.04 112 | 99.21 65 | 88.05 227 | 99.35 180 | 96.01 161 | 99.21 120 | 99.45 106 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| balanced_conf03 | | | 98.45 40 | 98.35 32 | 98.74 72 | 98.65 153 | 97.55 75 | 99.19 43 | 98.60 142 | 96.72 81 | 99.35 32 | 98.77 134 | 95.06 75 | 99.55 154 | 98.95 21 | 99.87 1 | 99.12 157 |
|
| EPP-MVSNet | | | 97.46 96 | 97.28 95 | 97.99 138 | 98.64 154 | 95.38 181 | 99.33 20 | 98.31 209 | 93.61 239 | 97.19 158 | 99.07 95 | 94.05 96 | 99.23 193 | 96.89 126 | 98.43 162 | 99.37 114 |
|
| ab-mvs | | | 96.42 147 | 95.71 165 | 98.55 85 | 98.63 155 | 96.75 112 | 97.88 275 | 98.74 108 | 93.84 217 | 96.54 192 | 98.18 198 | 85.34 278 | 99.75 109 | 95.93 162 | 96.35 224 | 99.15 153 |
|
| PCF-MVS | | 93.45 11 | 94.68 243 | 93.43 294 | 98.42 103 | 98.62 156 | 96.77 111 | 95.48 384 | 98.20 228 | 84.63 388 | 93.34 299 | 98.32 184 | 88.55 214 | 99.81 81 | 84.80 376 | 98.96 132 | 98.68 203 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| xiu_mvs_v2_base | | | 97.66 84 | 97.70 72 | 97.56 174 | 98.61 157 | 95.46 177 | 97.44 309 | 98.46 179 | 97.15 57 | 98.65 81 | 98.15 199 | 94.33 90 | 99.80 88 | 97.84 77 | 98.66 148 | 97.41 255 |
|
| sss | | | 97.39 104 | 96.98 111 | 98.61 81 | 98.60 158 | 96.61 118 | 98.22 228 | 98.93 50 | 93.97 210 | 98.01 118 | 98.48 165 | 91.98 132 | 99.85 63 | 96.45 145 | 98.15 172 | 99.39 112 |
|
| Test_1112_low_res | | | 96.34 152 | 95.66 170 | 98.36 106 | 98.56 159 | 95.94 155 | 97.71 292 | 98.07 259 | 92.10 299 | 94.79 236 | 97.29 274 | 91.75 137 | 99.56 147 | 94.17 224 | 96.50 221 | 99.58 83 |
|
| 1112_ss | | | 96.63 138 | 96.00 152 | 98.50 91 | 98.56 159 | 96.37 133 | 98.18 239 | 98.10 252 | 92.92 269 | 94.84 232 | 98.43 168 | 92.14 126 | 99.58 143 | 94.35 217 | 96.51 220 | 99.56 85 |
|
| BH-untuned | | | 95.95 166 | 95.72 162 | 96.65 230 | 98.55 161 | 92.26 295 | 98.23 227 | 97.79 280 | 93.73 225 | 94.62 238 | 98.01 210 | 88.97 204 | 99.00 228 | 93.04 258 | 98.51 156 | 98.68 203 |
|
| fmvsm_s_conf0.1_n | | | 98.18 61 | 98.21 51 | 98.11 130 | 98.54 162 | 95.24 190 | 98.87 114 | 99.24 17 | 97.50 31 | 99.70 13 | 99.67 1 | 91.33 150 | 99.89 47 | 99.47 12 | 99.54 92 | 99.21 141 |
|
| LS3D | | | 97.16 117 | 96.66 129 | 98.68 76 | 98.53 163 | 97.19 95 | 98.93 97 | 98.90 57 | 92.83 273 | 95.99 210 | 99.37 37 | 92.12 127 | 99.87 58 | 93.67 241 | 99.57 83 | 98.97 177 |
|
| hse-mvs2 | | | 95.71 180 | 95.30 186 | 96.93 212 | 98.50 164 | 93.53 264 | 98.36 209 | 98.10 252 | 97.48 32 | 98.67 76 | 97.99 212 | 89.76 178 | 99.02 225 | 97.95 67 | 80.91 390 | 98.22 232 |
|
| AUN-MVS | | | 94.53 257 | 93.73 279 | 96.92 215 | 98.50 164 | 93.52 265 | 98.34 211 | 98.10 252 | 93.83 219 | 95.94 214 | 97.98 214 | 85.59 273 | 99.03 222 | 94.35 217 | 80.94 389 | 98.22 232 |
|
| baseline1 | | | 95.84 174 | 95.12 194 | 98.01 137 | 98.49 166 | 95.98 147 | 98.73 151 | 97.03 341 | 95.37 140 | 96.22 202 | 98.19 197 | 89.96 176 | 99.16 200 | 94.60 208 | 87.48 355 | 98.90 184 |
|
| HY-MVS | | 93.96 8 | 96.82 133 | 96.23 145 | 98.57 83 | 98.46 167 | 97.00 100 | 98.14 241 | 98.21 226 | 93.95 211 | 96.72 181 | 97.99 212 | 91.58 141 | 99.76 107 | 94.51 212 | 96.54 219 | 98.95 180 |
|
| ETV-MVS | | | 97.96 66 | 97.81 68 | 98.40 104 | 98.42 168 | 97.27 87 | 98.73 151 | 98.55 158 | 96.84 71 | 98.38 95 | 97.44 262 | 95.39 55 | 99.35 180 | 97.62 92 | 98.89 135 | 98.58 215 |
|
| casdiffmvs_mvg |  | | 97.72 78 | 97.48 85 | 98.44 99 | 98.42 168 | 96.59 121 | 98.92 99 | 98.44 183 | 96.20 101 | 97.76 132 | 99.20 67 | 91.66 140 | 99.23 193 | 98.27 56 | 98.41 163 | 99.49 96 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tttt0517 | | | 96.07 161 | 95.51 173 | 97.78 151 | 98.41 170 | 94.84 210 | 99.28 24 | 94.33 393 | 94.26 198 | 97.64 146 | 98.64 149 | 84.05 307 | 99.47 170 | 95.34 183 | 97.60 192 | 99.03 171 |
|
| EIA-MVS | | | 97.75 76 | 97.58 76 | 98.27 111 | 98.38 171 | 96.44 128 | 99.01 78 | 98.60 142 | 95.88 113 | 97.26 156 | 97.53 256 | 94.97 77 | 99.33 183 | 97.38 108 | 99.20 121 | 99.05 170 |
|
| thisisatest0530 | | | 96.01 163 | 95.36 180 | 97.97 139 | 98.38 171 | 95.52 175 | 98.88 111 | 94.19 395 | 94.04 203 | 97.64 146 | 98.31 185 | 83.82 314 | 99.46 171 | 95.29 187 | 97.70 189 | 98.93 182 |
|
| FE-MVS | | | 95.62 186 | 94.90 205 | 97.78 151 | 98.37 173 | 94.92 207 | 97.17 335 | 97.38 318 | 90.95 333 | 97.73 137 | 97.70 239 | 85.32 280 | 99.63 134 | 91.18 302 | 98.33 167 | 98.79 191 |
|
| GeoE | | | 96.58 142 | 96.07 148 | 98.10 131 | 98.35 174 | 95.89 162 | 99.34 16 | 98.12 246 | 93.12 261 | 96.09 206 | 98.87 122 | 89.71 180 | 98.97 229 | 92.95 261 | 98.08 175 | 99.43 109 |
|
| xiu_mvs_v1_base_debu | | | 97.60 88 | 97.56 78 | 97.72 158 | 98.35 174 | 95.98 147 | 97.86 278 | 98.51 167 | 97.13 59 | 99.01 50 | 98.40 172 | 91.56 142 | 99.80 88 | 98.53 33 | 98.68 144 | 97.37 259 |
|
| xiu_mvs_v1_base | | | 97.60 88 | 97.56 78 | 97.72 158 | 98.35 174 | 95.98 147 | 97.86 278 | 98.51 167 | 97.13 59 | 99.01 50 | 98.40 172 | 91.56 142 | 99.80 88 | 98.53 33 | 98.68 144 | 97.37 259 |
|
| xiu_mvs_v1_base_debi | | | 97.60 88 | 97.56 78 | 97.72 158 | 98.35 174 | 95.98 147 | 97.86 278 | 98.51 167 | 97.13 59 | 99.01 50 | 98.40 172 | 91.56 142 | 99.80 88 | 98.53 33 | 98.68 144 | 97.37 259 |
|
| baseline | | | 97.64 85 | 97.44 88 | 98.25 115 | 98.35 174 | 96.20 140 | 99.00 80 | 98.32 207 | 96.33 98 | 98.03 113 | 99.17 74 | 91.35 149 | 99.16 200 | 98.10 60 | 98.29 170 | 99.39 112 |
|
| mvsmamba | | | 97.25 111 | 96.99 109 | 98.02 136 | 98.34 179 | 95.54 174 | 99.18 47 | 97.47 307 | 95.04 159 | 98.15 102 | 98.57 158 | 89.46 186 | 99.31 185 | 97.68 89 | 99.01 129 | 99.22 139 |
|
| BH-w/o | | | 95.38 200 | 95.08 196 | 96.26 271 | 98.34 179 | 91.79 303 | 97.70 293 | 97.43 314 | 92.87 271 | 94.24 259 | 97.22 280 | 88.66 209 | 98.84 252 | 91.55 298 | 97.70 189 | 98.16 235 |
|
| EC-MVSNet | | | 98.21 60 | 98.11 57 | 98.49 93 | 98.34 179 | 97.26 91 | 99.61 5 | 98.43 187 | 96.78 74 | 98.87 63 | 98.84 125 | 93.72 100 | 99.01 227 | 98.91 23 | 99.50 97 | 99.19 146 |
|
| test_fmvsmvis_n_1920 | | | 98.44 41 | 98.51 18 | 98.23 117 | 98.33 182 | 96.15 143 | 98.97 86 | 99.15 28 | 98.55 7 | 98.45 91 | 99.55 6 | 94.26 93 | 99.97 1 | 99.65 6 | 99.66 64 | 98.57 216 |
|
| MVS_Test | | | 97.28 109 | 97.00 108 | 98.13 126 | 98.33 182 | 95.97 152 | 98.74 147 | 98.07 259 | 94.27 197 | 98.44 93 | 98.07 204 | 92.48 114 | 99.26 189 | 96.43 146 | 98.19 171 | 99.16 152 |
|
| casdiffmvs |  | | 97.63 86 | 97.41 89 | 98.28 110 | 98.33 182 | 96.14 144 | 98.82 127 | 98.32 207 | 96.38 96 | 97.95 121 | 99.21 65 | 91.23 154 | 99.23 193 | 98.12 59 | 98.37 164 | 99.48 98 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| diffmvs |  | | 97.58 91 | 97.40 90 | 98.13 126 | 98.32 185 | 95.81 165 | 98.06 252 | 98.37 199 | 96.20 101 | 98.74 72 | 98.89 120 | 91.31 152 | 99.25 190 | 98.16 58 | 98.52 155 | 99.34 117 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| BH-RMVSNet | | | 95.92 170 | 95.32 184 | 97.69 162 | 98.32 185 | 94.64 219 | 98.19 234 | 97.45 312 | 94.56 185 | 96.03 208 | 98.61 150 | 85.02 283 | 99.12 208 | 90.68 315 | 99.06 125 | 99.30 126 |
|
| Fast-Effi-MVS+ | | | 96.28 155 | 95.70 167 | 98.03 135 | 98.29 187 | 95.97 152 | 98.58 180 | 98.25 223 | 91.74 307 | 95.29 225 | 97.23 279 | 91.03 160 | 99.15 203 | 92.90 263 | 97.96 178 | 98.97 177 |
|
| mvsany_test1 | | | 97.69 81 | 97.70 72 | 97.66 168 | 98.24 188 | 94.18 243 | 97.53 305 | 97.53 301 | 95.52 131 | 99.66 15 | 99.51 13 | 94.30 91 | 99.56 147 | 98.38 48 | 98.62 149 | 99.23 137 |
|
| UGNet | | | 96.78 134 | 96.30 141 | 98.19 122 | 98.24 188 | 95.89 162 | 98.88 111 | 98.93 50 | 97.39 38 | 96.81 178 | 97.84 227 | 82.60 319 | 99.90 45 | 96.53 142 | 99.49 99 | 98.79 191 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| MVSTER | | | 96.06 162 | 95.72 162 | 97.08 202 | 98.23 190 | 95.93 158 | 98.73 151 | 98.27 218 | 94.86 171 | 95.07 227 | 98.09 203 | 88.21 220 | 98.54 279 | 96.59 140 | 93.46 278 | 96.79 291 |
|
| ET-MVSNet_ETH3D | | | 94.13 286 | 92.98 303 | 97.58 172 | 98.22 191 | 96.20 140 | 97.31 323 | 95.37 382 | 94.53 187 | 79.56 399 | 97.63 249 | 86.51 254 | 97.53 361 | 96.91 122 | 90.74 315 | 99.02 172 |
|
| FA-MVS(test-final) | | | 96.41 150 | 95.94 154 | 97.82 148 | 98.21 192 | 95.20 192 | 97.80 285 | 97.58 291 | 93.21 255 | 97.36 154 | 97.70 239 | 89.47 185 | 99.56 147 | 94.12 226 | 97.99 176 | 98.71 201 |
|
| GBi-Net | | | 94.49 261 | 93.80 272 | 96.56 244 | 98.21 192 | 95.00 200 | 98.82 127 | 98.18 233 | 92.46 283 | 94.09 266 | 97.07 292 | 81.16 327 | 97.95 339 | 92.08 283 | 92.14 296 | 96.72 299 |
|
| test1 | | | 94.49 261 | 93.80 272 | 96.56 244 | 98.21 192 | 95.00 200 | 98.82 127 | 98.18 233 | 92.46 283 | 94.09 266 | 97.07 292 | 81.16 327 | 97.95 339 | 92.08 283 | 92.14 296 | 96.72 299 |
|
| FMVSNet2 | | | 94.47 264 | 93.61 285 | 97.04 204 | 98.21 192 | 96.43 129 | 98.79 141 | 98.27 218 | 92.46 283 | 93.50 293 | 97.09 289 | 81.16 327 | 98.00 336 | 91.09 305 | 91.93 299 | 96.70 303 |
|
| Effi-MVS+ | | | 97.12 120 | 96.69 126 | 98.39 105 | 98.19 196 | 96.72 114 | 97.37 316 | 98.43 187 | 93.71 228 | 97.65 145 | 98.02 208 | 92.20 125 | 99.25 190 | 96.87 131 | 97.79 184 | 99.19 146 |
|
| mvs_anonymous | | | 96.70 137 | 96.53 134 | 97.18 193 | 98.19 196 | 93.78 252 | 98.31 217 | 98.19 230 | 94.01 207 | 94.47 243 | 98.27 190 | 92.08 130 | 98.46 287 | 97.39 107 | 97.91 179 | 99.31 123 |
|
| ETVMVS | | | 94.50 260 | 93.44 293 | 97.68 164 | 98.18 198 | 95.35 184 | 98.19 234 | 97.11 333 | 93.73 225 | 96.40 198 | 95.39 368 | 74.53 378 | 98.84 252 | 91.10 304 | 96.31 227 | 98.84 188 |
|
| LCM-MVSNet-Re | | | 95.22 212 | 95.32 184 | 94.91 320 | 98.18 198 | 87.85 377 | 98.75 144 | 95.66 379 | 95.11 154 | 88.96 364 | 96.85 319 | 90.26 173 | 97.65 355 | 95.65 175 | 98.44 160 | 99.22 139 |
|
| FMVSNet3 | | | 94.97 230 | 94.26 236 | 97.11 200 | 98.18 198 | 96.62 116 | 98.56 187 | 98.26 222 | 93.67 235 | 94.09 266 | 97.10 285 | 84.25 301 | 98.01 334 | 92.08 283 | 92.14 296 | 96.70 303 |
|
| CANet_DTU | | | 96.96 126 | 96.55 132 | 98.21 118 | 98.17 201 | 96.07 146 | 97.98 261 | 98.21 226 | 97.24 50 | 97.13 160 | 98.93 114 | 86.88 250 | 99.91 39 | 95.00 195 | 99.37 115 | 98.66 207 |
|
| thisisatest0515 | | | 95.61 189 | 94.89 206 | 97.76 155 | 98.15 202 | 95.15 195 | 96.77 361 | 94.41 391 | 92.95 268 | 97.18 159 | 97.43 263 | 84.78 289 | 99.45 172 | 94.63 205 | 97.73 188 | 98.68 203 |
|
| IterMVS-LS | | | 95.46 193 | 95.21 189 | 96.22 272 | 98.12 203 | 93.72 258 | 98.32 216 | 98.13 245 | 93.71 228 | 94.26 257 | 97.31 273 | 92.24 122 | 98.10 327 | 94.63 205 | 90.12 322 | 96.84 288 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| cl22 | | | 94.68 243 | 94.19 240 | 96.13 275 | 98.11 204 | 93.60 260 | 96.94 347 | 98.31 209 | 92.43 287 | 93.32 300 | 96.87 318 | 86.51 254 | 98.28 317 | 94.10 228 | 91.16 310 | 96.51 331 |
|
| VDDNet | | | 95.36 203 | 94.53 221 | 97.86 144 | 98.10 205 | 95.13 196 | 98.85 119 | 97.75 282 | 90.46 340 | 98.36 96 | 99.39 31 | 73.27 384 | 99.64 131 | 97.98 66 | 96.58 217 | 98.81 190 |
|
| testing3 | | | 93.19 312 | 92.48 314 | 95.30 310 | 98.07 206 | 92.27 294 | 98.64 171 | 97.17 331 | 93.94 213 | 93.98 272 | 97.04 300 | 67.97 392 | 96.01 387 | 88.40 347 | 97.14 200 | 97.63 250 |
|
| MVSFormer | | | 97.57 92 | 97.49 83 | 97.84 145 | 98.07 206 | 95.76 166 | 99.47 7 | 98.40 191 | 94.98 163 | 98.79 68 | 98.83 127 | 92.34 117 | 98.41 299 | 96.91 122 | 99.59 79 | 99.34 117 |
|
| lupinMVS | | | 97.44 100 | 97.22 99 | 98.12 129 | 98.07 206 | 95.76 166 | 97.68 294 | 97.76 281 | 94.50 190 | 98.79 68 | 98.61 150 | 92.34 117 | 99.30 186 | 97.58 95 | 99.59 79 | 99.31 123 |
|
| MVS_0304 | | | 98.23 58 | 97.91 67 | 99.21 39 | 98.06 209 | 97.96 63 | 98.58 180 | 95.51 380 | 98.58 5 | 98.87 63 | 99.26 56 | 92.99 108 | 99.95 7 | 99.62 9 | 99.67 61 | 99.73 41 |
|
| TAMVS | | | 97.02 124 | 96.79 119 | 97.70 161 | 98.06 209 | 95.31 187 | 98.52 190 | 98.31 209 | 93.95 211 | 97.05 166 | 98.61 150 | 93.49 102 | 98.52 281 | 95.33 184 | 97.81 183 | 99.29 128 |
|
| UBG | | | 95.32 207 | 94.72 213 | 97.13 197 | 98.05 211 | 93.26 277 | 97.87 276 | 97.20 329 | 94.96 165 | 96.18 204 | 95.66 365 | 80.97 330 | 99.35 180 | 94.47 214 | 97.08 201 | 98.78 194 |
|
| CDS-MVSNet | | | 96.99 125 | 96.69 126 | 97.90 143 | 98.05 211 | 95.98 147 | 98.20 231 | 98.33 206 | 93.67 235 | 96.95 168 | 98.49 164 | 93.54 101 | 98.42 292 | 95.24 190 | 97.74 187 | 99.31 123 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| WBMVS | | | 94.56 253 | 94.04 250 | 96.10 277 | 98.03 213 | 93.08 287 | 97.82 284 | 98.18 233 | 94.02 205 | 93.77 283 | 96.82 321 | 81.28 326 | 98.34 306 | 95.47 182 | 91.00 313 | 96.88 282 |
|
| testing222 | | | 94.12 288 | 93.03 302 | 97.37 186 | 98.02 214 | 94.66 217 | 97.94 265 | 96.65 364 | 94.63 182 | 95.78 215 | 95.76 357 | 71.49 386 | 98.92 240 | 91.17 303 | 95.88 244 | 98.52 217 |
|
| ADS-MVSNet2 | | | 94.58 252 | 94.40 232 | 95.11 315 | 98.00 215 | 88.74 363 | 96.04 374 | 97.30 321 | 90.15 346 | 96.47 195 | 96.64 331 | 87.89 230 | 97.56 360 | 90.08 322 | 97.06 202 | 99.02 172 |
|
| ADS-MVSNet | | | 95.00 224 | 94.45 228 | 96.63 234 | 98.00 215 | 91.91 302 | 96.04 374 | 97.74 283 | 90.15 346 | 96.47 195 | 96.64 331 | 87.89 230 | 98.96 233 | 90.08 322 | 97.06 202 | 99.02 172 |
|
| IterMVS | | | 94.09 291 | 93.85 269 | 94.80 327 | 97.99 217 | 90.35 335 | 97.18 333 | 98.12 246 | 93.68 233 | 92.46 328 | 97.34 269 | 84.05 307 | 97.41 364 | 92.51 276 | 91.33 306 | 96.62 312 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PVSNet_0 | | 88.72 19 | 91.28 332 | 90.03 339 | 95.00 318 | 97.99 217 | 87.29 380 | 94.84 390 | 98.50 172 | 92.06 300 | 89.86 357 | 95.19 371 | 79.81 340 | 99.39 178 | 92.27 280 | 69.79 406 | 98.33 228 |
|
| tt0805 | | | 94.54 255 | 93.85 269 | 96.63 234 | 97.98 219 | 93.06 288 | 98.77 143 | 97.84 278 | 93.67 235 | 93.80 281 | 98.04 207 | 76.88 367 | 98.96 233 | 94.79 202 | 92.86 289 | 97.86 242 |
|
| IterMVS-SCA-FT | | | 94.11 289 | 93.87 267 | 94.85 324 | 97.98 219 | 90.56 331 | 97.18 333 | 98.11 249 | 93.75 222 | 92.58 322 | 97.48 258 | 83.97 309 | 97.41 364 | 92.48 278 | 91.30 307 | 96.58 316 |
|
| testing11 | | | 95.00 224 | 94.28 235 | 97.16 195 | 97.96 221 | 93.36 274 | 98.09 249 | 97.06 339 | 94.94 169 | 95.33 224 | 96.15 347 | 76.89 366 | 99.40 175 | 95.77 170 | 96.30 228 | 98.72 198 |
|
| testing91 | | | 94.98 228 | 94.25 237 | 97.20 190 | 97.94 222 | 93.41 269 | 98.00 259 | 97.58 291 | 94.99 162 | 95.45 220 | 96.04 351 | 77.20 362 | 99.42 174 | 94.97 196 | 96.02 242 | 98.78 194 |
|
| testing99 | | | 94.83 236 | 94.08 248 | 97.07 203 | 97.94 222 | 93.13 283 | 98.10 248 | 97.17 331 | 94.86 171 | 95.34 221 | 96.00 354 | 76.31 369 | 99.40 175 | 95.08 193 | 95.90 243 | 98.68 203 |
|
| EI-MVSNet | | | 95.96 165 | 95.83 158 | 96.36 264 | 97.93 224 | 93.70 259 | 98.12 244 | 98.27 218 | 93.70 230 | 95.07 227 | 99.02 98 | 92.23 123 | 98.54 279 | 94.68 203 | 93.46 278 | 96.84 288 |
|
| CVMVSNet | | | 95.43 196 | 96.04 150 | 93.57 351 | 97.93 224 | 83.62 389 | 98.12 244 | 98.59 146 | 95.68 124 | 96.56 188 | 99.02 98 | 87.51 238 | 97.51 362 | 93.56 245 | 97.44 195 | 99.60 77 |
|
| RRT-MVS | | | 97.03 123 | 96.78 120 | 97.77 154 | 97.90 226 | 94.34 236 | 99.12 56 | 98.35 202 | 95.87 114 | 98.06 109 | 98.70 143 | 86.45 258 | 99.63 134 | 98.04 65 | 98.54 154 | 99.35 115 |
|
| PMMVS | | | 96.60 139 | 96.33 140 | 97.41 181 | 97.90 226 | 93.93 248 | 97.35 319 | 98.41 189 | 92.84 272 | 97.76 132 | 97.45 261 | 91.10 158 | 99.20 197 | 96.26 151 | 97.91 179 | 99.11 159 |
|
| Effi-MVS+-dtu | | | 96.29 153 | 96.56 131 | 95.51 301 | 97.89 228 | 90.22 337 | 98.80 136 | 98.10 252 | 96.57 88 | 96.45 197 | 96.66 328 | 90.81 161 | 98.91 242 | 95.72 171 | 97.99 176 | 97.40 256 |
|
| QAPM | | | 96.29 153 | 95.40 175 | 98.96 62 | 97.85 229 | 97.60 74 | 99.23 32 | 98.93 50 | 89.76 353 | 93.11 308 | 99.02 98 | 89.11 197 | 99.93 25 | 91.99 288 | 99.62 74 | 99.34 117 |
|
| UWE-MVS | | | 94.30 273 | 93.89 266 | 95.53 300 | 97.83 230 | 88.95 360 | 97.52 307 | 93.25 399 | 94.44 193 | 96.63 184 | 97.07 292 | 78.70 347 | 99.28 188 | 91.99 288 | 97.56 194 | 98.36 226 |
|
| 3Dnovator+ | | 94.38 6 | 97.43 101 | 96.78 120 | 99.38 18 | 97.83 230 | 98.52 28 | 99.37 12 | 98.71 116 | 97.09 62 | 92.99 311 | 99.13 82 | 89.36 189 | 99.89 47 | 96.97 119 | 99.57 83 | 99.71 49 |
|
| ACMH+ | | 92.99 14 | 94.30 273 | 93.77 275 | 95.88 288 | 97.81 232 | 92.04 301 | 98.71 156 | 98.37 199 | 93.99 209 | 90.60 351 | 98.47 166 | 80.86 333 | 99.05 218 | 92.75 267 | 92.40 295 | 96.55 322 |
|
| 3Dnovator | | 94.51 5 | 97.46 96 | 96.93 112 | 99.07 53 | 97.78 233 | 97.64 71 | 99.35 15 | 99.06 34 | 97.02 64 | 93.75 284 | 99.16 77 | 89.25 192 | 99.92 31 | 97.22 112 | 99.75 44 | 99.64 71 |
|
| test_vis1_n | | | 95.47 192 | 95.13 192 | 96.49 252 | 97.77 234 | 90.41 334 | 99.27 26 | 98.11 249 | 96.58 86 | 99.66 15 | 99.18 73 | 67.00 395 | 99.62 138 | 99.21 16 | 99.40 112 | 99.44 107 |
|
| miper_lstm_enhance | | | 94.33 271 | 94.07 249 | 95.11 315 | 97.75 235 | 90.97 318 | 97.22 328 | 98.03 266 | 91.67 311 | 92.76 316 | 96.97 308 | 90.03 175 | 97.78 351 | 92.51 276 | 89.64 328 | 96.56 320 |
|
| c3_l | | | 94.79 238 | 94.43 230 | 95.89 287 | 97.75 235 | 93.12 285 | 97.16 337 | 98.03 266 | 92.23 295 | 93.46 295 | 97.05 299 | 91.39 147 | 98.01 334 | 93.58 244 | 89.21 337 | 96.53 325 |
|
| TR-MVS | | | 94.94 233 | 94.20 239 | 97.17 194 | 97.75 235 | 94.14 244 | 97.59 302 | 97.02 343 | 92.28 294 | 95.75 216 | 97.64 247 | 83.88 311 | 98.96 233 | 89.77 328 | 96.15 239 | 98.40 223 |
|
| Fast-Effi-MVS+-dtu | | | 95.87 172 | 95.85 157 | 95.91 285 | 97.74 238 | 91.74 306 | 98.69 162 | 98.15 242 | 95.56 129 | 94.92 230 | 97.68 244 | 88.98 203 | 98.79 259 | 93.19 253 | 97.78 185 | 97.20 263 |
|
| test_fmvsmconf0.1_n | | | 98.58 23 | 98.44 24 | 98.99 57 | 97.73 239 | 97.15 97 | 98.84 123 | 98.97 42 | 98.75 2 | 99.43 27 | 99.54 8 | 93.29 104 | 99.93 25 | 99.64 8 | 99.79 27 | 99.89 4 |
|
| MIMVSNet | | | 93.26 309 | 92.21 318 | 96.41 261 | 97.73 239 | 93.13 283 | 95.65 381 | 97.03 341 | 91.27 326 | 94.04 269 | 96.06 350 | 75.33 374 | 97.19 367 | 86.56 360 | 96.23 237 | 98.92 183 |
|
| miper_ehance_all_eth | | | 95.01 223 | 94.69 215 | 95.97 282 | 97.70 241 | 93.31 275 | 97.02 343 | 98.07 259 | 92.23 295 | 93.51 292 | 96.96 310 | 91.85 135 | 98.15 323 | 93.68 239 | 91.16 310 | 96.44 339 |
|
| dmvs_re | | | 94.48 263 | 94.18 242 | 95.37 307 | 97.68 242 | 90.11 339 | 98.54 189 | 97.08 335 | 94.56 185 | 94.42 249 | 97.24 278 | 84.25 301 | 97.76 352 | 91.02 311 | 92.83 290 | 98.24 230 |
|
| SCA | | | 95.46 193 | 95.13 192 | 96.46 258 | 97.67 243 | 91.29 314 | 97.33 321 | 97.60 290 | 94.68 179 | 96.92 172 | 97.10 285 | 83.97 309 | 98.89 246 | 92.59 271 | 98.32 169 | 99.20 142 |
|
| ACMP | | 93.49 10 | 95.34 205 | 94.98 201 | 96.43 260 | 97.67 243 | 93.48 266 | 98.73 151 | 98.44 183 | 94.94 169 | 92.53 324 | 98.53 160 | 84.50 298 | 99.14 205 | 95.48 181 | 94.00 266 | 96.66 309 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| fmvsm_s_conf0.1_n_a | | | 98.08 62 | 98.04 62 | 98.21 118 | 97.66 245 | 95.39 180 | 98.89 106 | 99.17 26 | 97.24 50 | 99.76 8 | 99.67 1 | 91.13 155 | 99.88 56 | 99.39 13 | 99.41 109 | 99.35 115 |
|
| eth_miper_zixun_eth | | | 94.68 243 | 94.41 231 | 95.47 303 | 97.64 246 | 91.71 307 | 96.73 364 | 98.07 259 | 92.71 276 | 93.64 285 | 97.21 281 | 90.54 167 | 98.17 322 | 93.38 247 | 89.76 326 | 96.54 323 |
|
| ACMH | | 92.88 16 | 94.55 254 | 93.95 260 | 96.34 266 | 97.63 247 | 93.26 277 | 98.81 135 | 98.49 177 | 93.43 246 | 89.74 358 | 98.53 160 | 81.91 321 | 99.08 216 | 93.69 238 | 93.30 284 | 96.70 303 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ACMM | | 93.85 9 | 95.69 183 | 95.38 179 | 96.61 237 | 97.61 248 | 93.84 251 | 98.91 101 | 98.44 183 | 95.25 147 | 94.28 256 | 98.47 166 | 86.04 267 | 99.12 208 | 95.50 180 | 93.95 268 | 96.87 285 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Patchmatch-test | | | 94.42 267 | 93.68 283 | 96.63 234 | 97.60 249 | 91.76 304 | 94.83 391 | 97.49 306 | 89.45 359 | 94.14 264 | 97.10 285 | 88.99 200 | 98.83 255 | 85.37 370 | 98.13 173 | 99.29 128 |
|
| cl____ | | | 94.51 259 | 94.01 255 | 96.02 279 | 97.58 250 | 93.40 271 | 97.05 341 | 97.96 271 | 91.73 309 | 92.76 316 | 97.08 291 | 89.06 199 | 98.13 325 | 92.61 268 | 90.29 320 | 96.52 328 |
|
| tpm cat1 | | | 93.36 304 | 92.80 306 | 95.07 317 | 97.58 250 | 87.97 375 | 96.76 362 | 97.86 277 | 82.17 395 | 93.53 289 | 96.04 351 | 86.13 263 | 99.13 206 | 89.24 339 | 95.87 245 | 98.10 236 |
|
| MVS-HIRNet | | | 89.46 351 | 88.40 350 | 92.64 362 | 97.58 250 | 82.15 394 | 94.16 400 | 93.05 403 | 75.73 402 | 90.90 347 | 82.52 405 | 79.42 343 | 98.33 308 | 83.53 381 | 98.68 144 | 97.43 254 |
|
| PatchmatchNet |  | | 95.71 180 | 95.52 172 | 96.29 270 | 97.58 250 | 90.72 326 | 96.84 359 | 97.52 302 | 94.06 202 | 97.08 162 | 96.96 310 | 89.24 193 | 98.90 245 | 92.03 287 | 98.37 164 | 99.26 133 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| DIV-MVS_self_test | | | 94.52 258 | 94.03 252 | 95.99 280 | 97.57 254 | 93.38 272 | 97.05 341 | 97.94 272 | 91.74 307 | 92.81 314 | 97.10 285 | 89.12 196 | 98.07 331 | 92.60 269 | 90.30 319 | 96.53 325 |
|
| tpmrst | | | 95.63 185 | 95.69 168 | 95.44 305 | 97.54 255 | 88.54 366 | 96.97 345 | 97.56 294 | 93.50 242 | 97.52 152 | 96.93 314 | 89.49 183 | 99.16 200 | 95.25 189 | 96.42 223 | 98.64 209 |
|
| FMVSNet1 | | | 93.19 312 | 92.07 319 | 96.56 244 | 97.54 255 | 95.00 200 | 98.82 127 | 98.18 233 | 90.38 343 | 92.27 331 | 97.07 292 | 73.68 383 | 97.95 339 | 89.36 338 | 91.30 307 | 96.72 299 |
|
| miper_enhance_ethall | | | 95.10 219 | 94.75 211 | 96.12 276 | 97.53 257 | 93.73 257 | 96.61 367 | 98.08 257 | 92.20 298 | 93.89 275 | 96.65 330 | 92.44 115 | 98.30 313 | 94.21 223 | 91.16 310 | 96.34 342 |
|
| CLD-MVS | | | 95.62 186 | 95.34 181 | 96.46 258 | 97.52 258 | 93.75 255 | 97.27 326 | 98.46 179 | 95.53 130 | 94.42 249 | 98.00 211 | 86.21 262 | 98.97 229 | 96.25 153 | 94.37 253 | 96.66 309 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| MDTV_nov1_ep13 | | | | 95.40 175 | | 97.48 259 | 88.34 370 | 96.85 358 | 97.29 322 | 93.74 224 | 97.48 153 | 97.26 275 | 89.18 194 | 99.05 218 | 91.92 291 | 97.43 196 | |
|
| IB-MVS | | 91.98 17 | 93.27 308 | 91.97 321 | 97.19 192 | 97.47 260 | 93.41 269 | 97.09 340 | 95.99 373 | 93.32 250 | 92.47 327 | 95.73 360 | 78.06 354 | 99.53 157 | 94.59 210 | 82.98 380 | 98.62 210 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| tpmvs | | | 94.60 249 | 94.36 233 | 95.33 309 | 97.46 261 | 88.60 365 | 96.88 356 | 97.68 284 | 91.29 324 | 93.80 281 | 96.42 338 | 88.58 210 | 99.24 192 | 91.06 308 | 96.04 241 | 98.17 234 |
|
| LPG-MVS_test | | | 95.62 186 | 95.34 181 | 96.47 255 | 97.46 261 | 93.54 262 | 98.99 83 | 98.54 160 | 94.67 180 | 94.36 252 | 98.77 134 | 85.39 275 | 99.11 210 | 95.71 172 | 94.15 261 | 96.76 294 |
|
| LGP-MVS_train | | | | | 96.47 255 | 97.46 261 | 93.54 262 | | 98.54 160 | 94.67 180 | 94.36 252 | 98.77 134 | 85.39 275 | 99.11 210 | 95.71 172 | 94.15 261 | 96.76 294 |
|
| test_vis1_rt | | | 91.29 331 | 90.65 331 | 93.19 359 | 97.45 264 | 86.25 383 | 98.57 186 | 90.90 409 | 93.30 252 | 86.94 377 | 93.59 387 | 62.07 401 | 99.11 210 | 97.48 104 | 95.58 249 | 94.22 382 |
|
| jason | | | 97.32 108 | 97.08 105 | 98.06 134 | 97.45 264 | 95.59 169 | 97.87 276 | 97.91 275 | 94.79 175 | 98.55 86 | 98.83 127 | 91.12 156 | 99.23 193 | 97.58 95 | 99.60 77 | 99.34 117 |
| jason: jason. |
| HQP_MVS | | | 96.14 160 | 95.90 156 | 96.85 218 | 97.42 266 | 94.60 225 | 98.80 136 | 98.56 156 | 97.28 45 | 95.34 221 | 98.28 187 | 87.09 245 | 99.03 222 | 96.07 155 | 94.27 255 | 96.92 273 |
|
| plane_prior7 | | | | | | 97.42 266 | 94.63 220 | | | | | | | | | | |
|
| ITE_SJBPF | | | | | 95.44 305 | 97.42 266 | 91.32 313 | | 97.50 304 | 95.09 157 | 93.59 286 | 98.35 178 | 81.70 322 | 98.88 248 | 89.71 330 | 93.39 282 | 96.12 350 |
|
| LTVRE_ROB | | 92.95 15 | 94.60 249 | 93.90 264 | 96.68 229 | 97.41 269 | 94.42 231 | 98.52 190 | 98.59 146 | 91.69 310 | 91.21 344 | 98.35 178 | 84.87 286 | 99.04 221 | 91.06 308 | 93.44 281 | 96.60 314 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| Syy-MVS | | | 92.55 321 | 92.61 311 | 92.38 364 | 97.39 270 | 83.41 390 | 97.91 268 | 97.46 308 | 93.16 258 | 93.42 296 | 95.37 369 | 84.75 290 | 96.12 385 | 77.00 398 | 96.99 204 | 97.60 251 |
|
| myMVS_eth3d | | | 92.73 318 | 92.01 320 | 94.89 322 | 97.39 270 | 90.94 319 | 97.91 268 | 97.46 308 | 93.16 258 | 93.42 296 | 95.37 369 | 68.09 391 | 96.12 385 | 88.34 348 | 96.99 204 | 97.60 251 |
|
| plane_prior1 | | | | | | 97.37 272 | | | | | | | | | | | |
|
| plane_prior6 | | | | | | 97.35 273 | 94.61 223 | | | | | | 87.09 245 | | | | |
|
| dp | | | 94.15 285 | 93.90 264 | 94.90 321 | 97.31 274 | 86.82 382 | 96.97 345 | 97.19 330 | 91.22 328 | 96.02 209 | 96.61 333 | 85.51 274 | 99.02 225 | 90.00 326 | 94.30 254 | 98.85 186 |
|
| NP-MVS | | | | | | 97.28 275 | 94.51 228 | | | | | 97.73 236 | | | | | |
|
| CostFormer | | | 94.95 231 | 94.73 212 | 95.60 299 | 97.28 275 | 89.06 356 | 97.53 305 | 96.89 352 | 89.66 355 | 96.82 177 | 96.72 326 | 86.05 265 | 98.95 238 | 95.53 179 | 96.13 240 | 98.79 191 |
|
| VPA-MVSNet | | | 95.75 178 | 95.11 195 | 97.69 162 | 97.24 277 | 97.27 87 | 98.94 95 | 99.23 20 | 95.13 152 | 95.51 219 | 97.32 272 | 85.73 270 | 98.91 242 | 97.33 110 | 89.55 331 | 96.89 281 |
|
| tpm2 | | | 94.19 281 | 93.76 277 | 95.46 304 | 97.23 278 | 89.04 357 | 97.31 323 | 96.85 356 | 87.08 374 | 96.21 203 | 96.79 323 | 83.75 315 | 98.74 262 | 92.43 279 | 96.23 237 | 98.59 213 |
|
| EPMVS | | | 94.99 226 | 94.48 224 | 96.52 250 | 97.22 279 | 91.75 305 | 97.23 327 | 91.66 406 | 94.11 200 | 97.28 155 | 96.81 322 | 85.70 271 | 98.84 252 | 93.04 258 | 97.28 198 | 98.97 177 |
|
| FMVSNet5 | | | 91.81 326 | 90.92 329 | 94.49 337 | 97.21 280 | 92.09 298 | 98.00 259 | 97.55 299 | 89.31 362 | 90.86 348 | 95.61 366 | 74.48 379 | 95.32 393 | 85.57 367 | 89.70 327 | 96.07 352 |
|
| HQP-NCC | | | | | | 97.20 281 | | 98.05 253 | | 96.43 91 | 94.45 244 | | | | | | |
|
| ACMP_Plane | | | | | | 97.20 281 | | 98.05 253 | | 96.43 91 | 94.45 244 | | | | | | |
|
| HQP-MVS | | | 95.72 179 | 95.40 175 | 96.69 228 | 97.20 281 | 94.25 241 | 98.05 253 | 98.46 179 | 96.43 91 | 94.45 244 | 97.73 236 | 86.75 251 | 98.96 233 | 95.30 185 | 94.18 259 | 96.86 287 |
|
| UniMVSNet_ETH3D | | | 94.24 278 | 93.33 296 | 96.97 209 | 97.19 284 | 93.38 272 | 98.74 147 | 98.57 153 | 91.21 329 | 93.81 280 | 98.58 155 | 72.85 385 | 98.77 261 | 95.05 194 | 93.93 269 | 98.77 197 |
|
| OpenMVS |  | 93.04 13 | 95.83 175 | 95.00 199 | 98.32 108 | 97.18 285 | 97.32 85 | 99.21 39 | 98.97 42 | 89.96 349 | 91.14 345 | 99.05 97 | 86.64 253 | 99.92 31 | 93.38 247 | 99.47 102 | 97.73 246 |
|
| VPNet | | | 94.99 226 | 94.19 240 | 97.40 183 | 97.16 286 | 96.57 122 | 98.71 156 | 98.97 42 | 95.67 125 | 94.84 232 | 98.24 194 | 80.36 336 | 98.67 269 | 96.46 144 | 87.32 359 | 96.96 270 |
|
| GA-MVS | | | 94.81 237 | 94.03 252 | 97.14 196 | 97.15 287 | 93.86 250 | 96.76 362 | 97.58 291 | 94.00 208 | 94.76 237 | 97.04 300 | 80.91 331 | 98.48 283 | 91.79 293 | 96.25 235 | 99.09 161 |
|
| FIs | | | 96.51 144 | 96.12 147 | 97.67 165 | 97.13 288 | 97.54 77 | 99.36 13 | 99.22 23 | 95.89 112 | 94.03 270 | 98.35 178 | 91.98 132 | 98.44 290 | 96.40 147 | 92.76 291 | 97.01 267 |
|
| 1314 | | | 96.25 157 | 95.73 161 | 97.79 150 | 97.13 288 | 95.55 173 | 98.19 234 | 98.59 146 | 93.47 244 | 92.03 336 | 97.82 231 | 91.33 150 | 99.49 163 | 94.62 207 | 98.44 160 | 98.32 229 |
|
| D2MVS | | | 95.18 215 | 95.08 196 | 95.48 302 | 97.10 290 | 92.07 299 | 98.30 219 | 99.13 30 | 94.02 205 | 92.90 312 | 96.73 325 | 89.48 184 | 98.73 263 | 94.48 213 | 93.60 277 | 95.65 361 |
|
| DeepMVS_CX |  | | | | 86.78 377 | 97.09 291 | 72.30 407 | | 95.17 386 | 75.92 401 | 84.34 390 | 95.19 371 | 70.58 387 | 95.35 391 | 79.98 391 | 89.04 340 | 92.68 395 |
|
| PAPM | | | 94.95 231 | 94.00 256 | 97.78 151 | 97.04 292 | 95.65 168 | 96.03 376 | 98.25 223 | 91.23 327 | 94.19 262 | 97.80 233 | 91.27 153 | 98.86 251 | 82.61 384 | 97.61 191 | 98.84 188 |
|
| CR-MVSNet | | | 94.76 240 | 94.15 244 | 96.59 240 | 97.00 293 | 93.43 267 | 94.96 387 | 97.56 294 | 92.46 283 | 96.93 170 | 96.24 341 | 88.15 222 | 97.88 347 | 87.38 356 | 96.65 215 | 98.46 221 |
|
| RPMNet | | | 92.81 317 | 91.34 327 | 97.24 188 | 97.00 293 | 93.43 267 | 94.96 387 | 98.80 93 | 82.27 394 | 96.93 170 | 92.12 398 | 86.98 248 | 99.82 76 | 76.32 399 | 96.65 215 | 98.46 221 |
|
| UniMVSNet (Re) | | | 95.78 177 | 95.19 190 | 97.58 172 | 96.99 295 | 97.47 81 | 98.79 141 | 99.18 25 | 95.60 127 | 93.92 274 | 97.04 300 | 91.68 138 | 98.48 283 | 95.80 168 | 87.66 354 | 96.79 291 |
|
| test_fmvs2 | | | 93.43 303 | 93.58 286 | 92.95 361 | 96.97 296 | 83.91 387 | 99.19 43 | 97.24 327 | 95.74 120 | 95.20 226 | 98.27 190 | 69.65 388 | 98.72 264 | 96.26 151 | 93.73 272 | 96.24 346 |
|
| FC-MVSNet-test | | | 96.42 147 | 96.05 149 | 97.53 175 | 96.95 297 | 97.27 87 | 99.36 13 | 99.23 20 | 95.83 116 | 93.93 273 | 98.37 176 | 92.00 131 | 98.32 309 | 96.02 160 | 92.72 292 | 97.00 268 |
|
| tfpnnormal | | | 93.66 299 | 92.70 309 | 96.55 248 | 96.94 298 | 95.94 155 | 98.97 86 | 99.19 24 | 91.04 331 | 91.38 343 | 97.34 269 | 84.94 285 | 98.61 273 | 85.45 369 | 89.02 341 | 95.11 370 |
|
| TESTMET0.1,1 | | | 94.18 284 | 93.69 282 | 95.63 297 | 96.92 299 | 89.12 355 | 96.91 350 | 94.78 388 | 93.17 257 | 94.88 231 | 96.45 337 | 78.52 348 | 98.92 240 | 93.09 255 | 98.50 157 | 98.85 186 |
|
| TinyColmap | | | 92.31 324 | 91.53 325 | 94.65 332 | 96.92 299 | 89.75 343 | 96.92 348 | 96.68 361 | 90.45 341 | 89.62 359 | 97.85 226 | 76.06 372 | 98.81 257 | 86.74 359 | 92.51 294 | 95.41 363 |
|
| cascas | | | 94.63 248 | 93.86 268 | 96.93 212 | 96.91 301 | 94.27 239 | 96.00 377 | 98.51 167 | 85.55 384 | 94.54 240 | 96.23 343 | 84.20 305 | 98.87 249 | 95.80 168 | 96.98 207 | 97.66 249 |
|
| nrg030 | | | 96.28 155 | 95.72 162 | 97.96 141 | 96.90 302 | 98.15 54 | 99.39 10 | 98.31 209 | 95.47 133 | 94.42 249 | 98.35 178 | 92.09 129 | 98.69 265 | 97.50 103 | 89.05 339 | 97.04 266 |
|
| MVS | | | 94.67 246 | 93.54 289 | 98.08 132 | 96.88 303 | 96.56 123 | 98.19 234 | 98.50 172 | 78.05 399 | 92.69 319 | 98.02 208 | 91.07 159 | 99.63 134 | 90.09 321 | 98.36 166 | 98.04 237 |
|
| WR-MVS_H | | | 95.05 222 | 94.46 226 | 96.81 221 | 96.86 304 | 95.82 164 | 99.24 30 | 99.24 17 | 93.87 216 | 92.53 324 | 96.84 320 | 90.37 169 | 98.24 319 | 93.24 251 | 87.93 351 | 96.38 341 |
|
| UniMVSNet_NR-MVSNet | | | 95.71 180 | 95.15 191 | 97.40 183 | 96.84 305 | 96.97 101 | 98.74 147 | 99.24 17 | 95.16 151 | 93.88 276 | 97.72 238 | 91.68 138 | 98.31 311 | 95.81 166 | 87.25 360 | 96.92 273 |
|
| USDC | | | 93.33 307 | 92.71 308 | 95.21 311 | 96.83 306 | 90.83 324 | 96.91 350 | 97.50 304 | 93.84 217 | 90.72 349 | 98.14 200 | 77.69 356 | 98.82 256 | 89.51 335 | 93.21 286 | 95.97 354 |
|
| WB-MVSnew | | | 94.19 281 | 94.04 250 | 94.66 331 | 96.82 307 | 92.14 296 | 97.86 278 | 95.96 375 | 93.50 242 | 95.64 217 | 96.77 324 | 88.06 226 | 97.99 337 | 84.87 373 | 96.86 208 | 93.85 390 |
|
| test-LLR | | | 95.10 219 | 94.87 207 | 95.80 290 | 96.77 308 | 89.70 345 | 96.91 350 | 95.21 383 | 95.11 154 | 94.83 234 | 95.72 362 | 87.71 234 | 98.97 229 | 93.06 256 | 98.50 157 | 98.72 198 |
|
| test-mter | | | 94.08 292 | 93.51 290 | 95.80 290 | 96.77 308 | 89.70 345 | 96.91 350 | 95.21 383 | 92.89 270 | 94.83 234 | 95.72 362 | 77.69 356 | 98.97 229 | 93.06 256 | 98.50 157 | 98.72 198 |
|
| Patchmtry | | | 93.22 310 | 92.35 316 | 95.84 289 | 96.77 308 | 93.09 286 | 94.66 394 | 97.56 294 | 87.37 373 | 92.90 312 | 96.24 341 | 88.15 222 | 97.90 343 | 87.37 357 | 90.10 323 | 96.53 325 |
|
| gg-mvs-nofinetune | | | 92.21 325 | 90.58 333 | 97.13 197 | 96.75 311 | 95.09 197 | 95.85 378 | 89.40 411 | 85.43 385 | 94.50 242 | 81.98 406 | 80.80 334 | 98.40 305 | 92.16 281 | 98.33 167 | 97.88 240 |
|
| XXY-MVS | | | 95.20 214 | 94.45 228 | 97.46 176 | 96.75 311 | 96.56 123 | 98.86 117 | 98.65 136 | 93.30 252 | 93.27 301 | 98.27 190 | 84.85 287 | 98.87 249 | 94.82 200 | 91.26 309 | 96.96 270 |
|
| CP-MVSNet | | | 94.94 233 | 94.30 234 | 96.83 219 | 96.72 313 | 95.56 171 | 99.11 58 | 98.95 46 | 93.89 214 | 92.42 329 | 97.90 220 | 87.19 244 | 98.12 326 | 94.32 219 | 88.21 348 | 96.82 290 |
|
| PatchT | | | 93.06 315 | 91.97 321 | 96.35 265 | 96.69 314 | 92.67 291 | 94.48 397 | 97.08 335 | 86.62 375 | 97.08 162 | 92.23 397 | 87.94 229 | 97.90 343 | 78.89 394 | 96.69 213 | 98.49 219 |
|
| PS-CasMVS | | | 94.67 246 | 93.99 258 | 96.71 225 | 96.68 315 | 95.26 188 | 99.13 55 | 99.03 37 | 93.68 233 | 92.33 330 | 97.95 216 | 85.35 277 | 98.10 327 | 93.59 243 | 88.16 350 | 96.79 291 |
|
| WR-MVS | | | 95.15 216 | 94.46 226 | 97.22 189 | 96.67 316 | 96.45 127 | 98.21 229 | 98.81 86 | 94.15 199 | 93.16 304 | 97.69 241 | 87.51 238 | 98.30 313 | 95.29 187 | 88.62 345 | 96.90 280 |
|
| baseline2 | | | 95.11 218 | 94.52 222 | 96.87 217 | 96.65 317 | 93.56 261 | 98.27 224 | 94.10 397 | 93.45 245 | 92.02 337 | 97.43 263 | 87.45 242 | 99.19 198 | 93.88 234 | 97.41 197 | 97.87 241 |
|
| test_0402 | | | 91.32 330 | 90.27 336 | 94.48 338 | 96.60 318 | 91.12 316 | 98.50 196 | 97.22 328 | 86.10 380 | 88.30 370 | 96.98 307 | 77.65 358 | 97.99 337 | 78.13 396 | 92.94 288 | 94.34 379 |
|
| TransMVSNet (Re) | | | 92.67 319 | 91.51 326 | 96.15 273 | 96.58 319 | 94.65 218 | 98.90 102 | 96.73 358 | 90.86 334 | 89.46 362 | 97.86 224 | 85.62 272 | 98.09 329 | 86.45 361 | 81.12 387 | 95.71 359 |
|
| XVG-ACMP-BASELINE | | | 94.54 255 | 94.14 245 | 95.75 293 | 96.55 320 | 91.65 308 | 98.11 246 | 98.44 183 | 94.96 165 | 94.22 260 | 97.90 220 | 79.18 345 | 99.11 210 | 94.05 230 | 93.85 270 | 96.48 336 |
|
| DU-MVS | | | 95.42 197 | 94.76 210 | 97.40 183 | 96.53 321 | 96.97 101 | 98.66 168 | 98.99 41 | 95.43 135 | 93.88 276 | 97.69 241 | 88.57 211 | 98.31 311 | 95.81 166 | 87.25 360 | 96.92 273 |
|
| NR-MVSNet | | | 94.98 228 | 94.16 243 | 97.44 178 | 96.53 321 | 97.22 94 | 98.74 147 | 98.95 46 | 94.96 165 | 89.25 363 | 97.69 241 | 89.32 190 | 98.18 321 | 94.59 210 | 87.40 357 | 96.92 273 |
|
| tpm | | | 94.13 286 | 93.80 272 | 95.12 314 | 96.50 323 | 87.91 376 | 97.44 309 | 95.89 378 | 92.62 279 | 96.37 200 | 96.30 340 | 84.13 306 | 98.30 313 | 93.24 251 | 91.66 304 | 99.14 155 |
|
| pm-mvs1 | | | 93.94 297 | 93.06 301 | 96.59 240 | 96.49 324 | 95.16 193 | 98.95 92 | 98.03 266 | 92.32 292 | 91.08 346 | 97.84 227 | 84.54 297 | 98.41 299 | 92.16 281 | 86.13 372 | 96.19 349 |
|
| JIA-IIPM | | | 93.35 305 | 92.49 313 | 95.92 284 | 96.48 325 | 90.65 328 | 95.01 386 | 96.96 346 | 85.93 381 | 96.08 207 | 87.33 403 | 87.70 236 | 98.78 260 | 91.35 300 | 95.58 249 | 98.34 227 |
|
| TranMVSNet+NR-MVSNet | | | 95.14 217 | 94.48 224 | 97.11 200 | 96.45 326 | 96.36 134 | 99.03 73 | 99.03 37 | 95.04 159 | 93.58 287 | 97.93 217 | 88.27 219 | 98.03 333 | 94.13 225 | 86.90 365 | 96.95 272 |
|
| testgi | | | 93.06 315 | 92.45 315 | 94.88 323 | 96.43 327 | 89.90 340 | 98.75 144 | 97.54 300 | 95.60 127 | 91.63 342 | 97.91 219 | 74.46 380 | 97.02 369 | 86.10 363 | 93.67 273 | 97.72 247 |
|
| v10 | | | 94.29 275 | 93.55 288 | 96.51 251 | 96.39 328 | 94.80 214 | 98.99 83 | 98.19 230 | 91.35 320 | 93.02 310 | 96.99 306 | 88.09 224 | 98.41 299 | 90.50 317 | 88.41 347 | 96.33 344 |
|
| v8 | | | 94.47 264 | 93.77 275 | 96.57 243 | 96.36 329 | 94.83 212 | 99.05 67 | 98.19 230 | 91.92 303 | 93.16 304 | 96.97 308 | 88.82 208 | 98.48 283 | 91.69 296 | 87.79 352 | 96.39 340 |
|
| GG-mvs-BLEND | | | | | 96.59 240 | 96.34 330 | 94.98 203 | 96.51 370 | 88.58 412 | | 93.10 309 | 94.34 383 | 80.34 338 | 98.05 332 | 89.53 334 | 96.99 204 | 96.74 296 |
|
| V42 | | | 94.78 239 | 94.14 245 | 96.70 227 | 96.33 331 | 95.22 191 | 98.97 86 | 98.09 256 | 92.32 292 | 94.31 255 | 97.06 296 | 88.39 217 | 98.55 278 | 92.90 263 | 88.87 343 | 96.34 342 |
|
| PEN-MVS | | | 94.42 267 | 93.73 279 | 96.49 252 | 96.28 332 | 94.84 210 | 99.17 48 | 99.00 39 | 93.51 241 | 92.23 332 | 97.83 230 | 86.10 264 | 97.90 343 | 92.55 274 | 86.92 364 | 96.74 296 |
|
| v1144 | | | 94.59 251 | 93.92 261 | 96.60 239 | 96.21 333 | 94.78 216 | 98.59 178 | 98.14 244 | 91.86 306 | 94.21 261 | 97.02 303 | 87.97 228 | 98.41 299 | 91.72 295 | 89.57 329 | 96.61 313 |
|
| Baseline_NR-MVSNet | | | 94.35 270 | 93.81 271 | 95.96 283 | 96.20 334 | 94.05 246 | 98.61 177 | 96.67 362 | 91.44 316 | 93.85 278 | 97.60 250 | 88.57 211 | 98.14 324 | 94.39 215 | 86.93 363 | 95.68 360 |
|
| MS-PatchMatch | | | 93.84 298 | 93.63 284 | 94.46 340 | 96.18 335 | 89.45 350 | 97.76 288 | 98.27 218 | 92.23 295 | 92.13 334 | 97.49 257 | 79.50 342 | 98.69 265 | 89.75 329 | 99.38 114 | 95.25 366 |
|
| v2v482 | | | 94.69 241 | 94.03 252 | 96.65 230 | 96.17 336 | 94.79 215 | 98.67 166 | 98.08 257 | 92.72 275 | 94.00 271 | 97.16 283 | 87.69 237 | 98.45 288 | 92.91 262 | 88.87 343 | 96.72 299 |
|
| EPNet_dtu | | | 95.21 213 | 94.95 203 | 95.99 280 | 96.17 336 | 90.45 332 | 98.16 240 | 97.27 325 | 96.77 75 | 93.14 307 | 98.33 183 | 90.34 170 | 98.42 292 | 85.57 367 | 98.81 142 | 99.09 161 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| OPM-MVS | | | 95.69 183 | 95.33 183 | 96.76 223 | 96.16 338 | 94.63 220 | 98.43 205 | 98.39 193 | 96.64 84 | 95.02 229 | 98.78 132 | 85.15 282 | 99.05 218 | 95.21 191 | 94.20 258 | 96.60 314 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| v1192 | | | 94.32 272 | 93.58 286 | 96.53 249 | 96.10 339 | 94.45 229 | 98.50 196 | 98.17 239 | 91.54 313 | 94.19 262 | 97.06 296 | 86.95 249 | 98.43 291 | 90.14 320 | 89.57 329 | 96.70 303 |
|
| v148 | | | 94.29 275 | 93.76 277 | 95.91 285 | 96.10 339 | 92.93 289 | 98.58 180 | 97.97 269 | 92.59 281 | 93.47 294 | 96.95 312 | 88.53 215 | 98.32 309 | 92.56 273 | 87.06 362 | 96.49 334 |
|
| v144192 | | | 94.39 269 | 93.70 281 | 96.48 254 | 96.06 341 | 94.35 235 | 98.58 180 | 98.16 241 | 91.45 315 | 94.33 254 | 97.02 303 | 87.50 240 | 98.45 288 | 91.08 307 | 89.11 338 | 96.63 311 |
|
| DTE-MVSNet | | | 93.98 296 | 93.26 299 | 96.14 274 | 96.06 341 | 94.39 233 | 99.20 41 | 98.86 75 | 93.06 263 | 91.78 338 | 97.81 232 | 85.87 269 | 97.58 359 | 90.53 316 | 86.17 369 | 96.46 338 |
|
| v1240 | | | 94.06 294 | 93.29 298 | 96.34 266 | 96.03 343 | 93.90 249 | 98.44 203 | 98.17 239 | 91.18 330 | 94.13 265 | 97.01 305 | 86.05 265 | 98.42 292 | 89.13 341 | 89.50 333 | 96.70 303 |
|
| APD_test1 | | | 88.22 355 | 88.01 354 | 88.86 374 | 95.98 344 | 74.66 406 | 97.21 329 | 96.44 368 | 83.96 390 | 86.66 380 | 97.90 220 | 60.95 402 | 97.84 349 | 82.73 382 | 90.23 321 | 94.09 385 |
|
| v1921920 | | | 94.20 280 | 93.47 292 | 96.40 263 | 95.98 344 | 94.08 245 | 98.52 190 | 98.15 242 | 91.33 321 | 94.25 258 | 97.20 282 | 86.41 259 | 98.42 292 | 90.04 325 | 89.39 335 | 96.69 308 |
|
| EU-MVSNet | | | 93.66 299 | 94.14 245 | 92.25 367 | 95.96 346 | 83.38 391 | 98.52 190 | 98.12 246 | 94.69 178 | 92.61 321 | 98.13 201 | 87.36 243 | 96.39 383 | 91.82 292 | 90.00 324 | 96.98 269 |
|
| v7n | | | 94.19 281 | 93.43 294 | 96.47 255 | 95.90 347 | 94.38 234 | 99.26 27 | 98.34 205 | 91.99 301 | 92.76 316 | 97.13 284 | 88.31 218 | 98.52 281 | 89.48 336 | 87.70 353 | 96.52 328 |
|
| gm-plane-assit | | | | | | 95.88 348 | 87.47 378 | | | 89.74 354 | | 96.94 313 | | 99.19 198 | 93.32 250 | | |
|
| LF4IMVS | | | 93.14 314 | 92.79 307 | 94.20 344 | 95.88 348 | 88.67 364 | 97.66 296 | 97.07 337 | 93.81 220 | 91.71 339 | 97.65 245 | 77.96 355 | 98.81 257 | 91.47 299 | 91.92 300 | 95.12 369 |
|
| PS-MVSNAJss | | | 96.43 146 | 96.26 143 | 96.92 215 | 95.84 350 | 95.08 198 | 99.16 49 | 98.50 172 | 95.87 114 | 93.84 279 | 98.34 182 | 94.51 84 | 98.61 273 | 96.88 128 | 93.45 280 | 97.06 265 |
|
| pmmvs4 | | | 94.69 241 | 93.99 258 | 96.81 221 | 95.74 351 | 95.94 155 | 97.40 312 | 97.67 285 | 90.42 342 | 93.37 298 | 97.59 251 | 89.08 198 | 98.20 320 | 92.97 260 | 91.67 303 | 96.30 345 |
|
| test_djsdf | | | 96.00 164 | 95.69 168 | 96.93 212 | 95.72 352 | 95.49 176 | 99.47 7 | 98.40 191 | 94.98 163 | 94.58 239 | 97.86 224 | 89.16 195 | 98.41 299 | 96.91 122 | 94.12 263 | 96.88 282 |
|
| SixPastTwentyTwo | | | 93.34 306 | 92.86 305 | 94.75 328 | 95.67 353 | 89.41 352 | 98.75 144 | 96.67 362 | 93.89 214 | 90.15 356 | 98.25 193 | 80.87 332 | 98.27 318 | 90.90 312 | 90.64 316 | 96.57 318 |
|
| K. test v3 | | | 92.55 321 | 91.91 324 | 94.48 338 | 95.64 354 | 89.24 353 | 99.07 64 | 94.88 387 | 94.04 203 | 86.78 378 | 97.59 251 | 77.64 359 | 97.64 356 | 92.08 283 | 89.43 334 | 96.57 318 |
|
| OurMVSNet-221017-0 | | | 94.21 279 | 94.00 256 | 94.85 324 | 95.60 355 | 89.22 354 | 98.89 106 | 97.43 314 | 95.29 144 | 92.18 333 | 98.52 163 | 82.86 317 | 98.59 276 | 93.46 246 | 91.76 301 | 96.74 296 |
|
| mvs_tets | | | 95.41 199 | 95.00 199 | 96.65 230 | 95.58 356 | 94.42 231 | 99.00 80 | 98.55 158 | 95.73 122 | 93.21 303 | 98.38 175 | 83.45 316 | 98.63 271 | 97.09 115 | 94.00 266 | 96.91 278 |
|
| MonoMVSNet | | | 95.51 190 | 95.45 174 | 95.68 294 | 95.54 357 | 90.87 321 | 98.92 99 | 97.37 319 | 95.79 118 | 95.53 218 | 97.38 268 | 89.58 182 | 97.68 354 | 96.40 147 | 92.59 293 | 98.49 219 |
|
| Gipuma |  | | 78.40 372 | 76.75 375 | 83.38 385 | 95.54 357 | 80.43 397 | 79.42 410 | 97.40 316 | 64.67 407 | 73.46 404 | 80.82 408 | 45.65 407 | 93.14 402 | 66.32 406 | 87.43 356 | 76.56 410 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test0.0.03 1 | | | 94.08 292 | 93.51 290 | 95.80 290 | 95.53 359 | 92.89 290 | 97.38 314 | 95.97 374 | 95.11 154 | 92.51 326 | 96.66 328 | 87.71 234 | 96.94 371 | 87.03 358 | 93.67 273 | 97.57 253 |
|
| pmmvs5 | | | 93.65 301 | 92.97 304 | 95.68 294 | 95.49 360 | 92.37 293 | 98.20 231 | 97.28 324 | 89.66 355 | 92.58 322 | 97.26 275 | 82.14 320 | 98.09 329 | 93.18 254 | 90.95 314 | 96.58 316 |
|
| test_fmvsmconf0.01_n | | | 97.86 71 | 97.54 81 | 98.83 69 | 95.48 361 | 96.83 108 | 98.95 92 | 98.60 142 | 98.58 5 | 98.93 59 | 99.55 6 | 88.57 211 | 99.91 39 | 99.54 11 | 99.61 75 | 99.77 26 |
|
| N_pmnet | | | 87.12 360 | 87.77 358 | 85.17 380 | 95.46 362 | 61.92 416 | 97.37 316 | 70.66 421 | 85.83 382 | 88.73 369 | 96.04 351 | 85.33 279 | 97.76 352 | 80.02 389 | 90.48 317 | 95.84 356 |
|
| our_test_3 | | | 93.65 301 | 93.30 297 | 94.69 329 | 95.45 363 | 89.68 347 | 96.91 350 | 97.65 286 | 91.97 302 | 91.66 341 | 96.88 316 | 89.67 181 | 97.93 342 | 88.02 352 | 91.49 305 | 96.48 336 |
|
| ppachtmachnet_test | | | 93.22 310 | 92.63 310 | 94.97 319 | 95.45 363 | 90.84 323 | 96.88 356 | 97.88 276 | 90.60 337 | 92.08 335 | 97.26 275 | 88.08 225 | 97.86 348 | 85.12 372 | 90.33 318 | 96.22 347 |
|
| jajsoiax | | | 95.45 195 | 95.03 198 | 96.73 224 | 95.42 365 | 94.63 220 | 99.14 52 | 98.52 165 | 95.74 120 | 93.22 302 | 98.36 177 | 83.87 312 | 98.65 270 | 96.95 121 | 94.04 264 | 96.91 278 |
|
| dmvs_testset | | | 87.64 357 | 88.93 349 | 83.79 383 | 95.25 366 | 63.36 415 | 97.20 330 | 91.17 407 | 93.07 262 | 85.64 386 | 95.98 355 | 85.30 281 | 91.52 405 | 69.42 404 | 87.33 358 | 96.49 334 |
|
| MDA-MVSNet-bldmvs | | | 89.97 345 | 88.35 351 | 94.83 326 | 95.21 367 | 91.34 312 | 97.64 298 | 97.51 303 | 88.36 369 | 71.17 407 | 96.13 348 | 79.22 344 | 96.63 380 | 83.65 380 | 86.27 368 | 96.52 328 |
|
| dongtai | | | 82.47 365 | 81.88 368 | 84.22 382 | 95.19 368 | 76.03 399 | 94.59 396 | 74.14 420 | 82.63 392 | 87.19 376 | 96.09 349 | 64.10 398 | 87.85 410 | 58.91 408 | 84.11 377 | 88.78 402 |
|
| anonymousdsp | | | 95.42 197 | 94.91 204 | 96.94 211 | 95.10 369 | 95.90 161 | 99.14 52 | 98.41 189 | 93.75 222 | 93.16 304 | 97.46 259 | 87.50 240 | 98.41 299 | 95.63 176 | 94.03 265 | 96.50 333 |
|
| EPNet | | | 97.28 109 | 96.87 115 | 98.51 90 | 94.98 370 | 96.14 144 | 98.90 102 | 97.02 343 | 98.28 10 | 95.99 210 | 99.11 84 | 91.36 148 | 99.89 47 | 96.98 118 | 99.19 122 | 99.50 91 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MVP-Stereo | | | 94.28 277 | 93.92 261 | 95.35 308 | 94.95 371 | 92.60 292 | 97.97 262 | 97.65 286 | 91.61 312 | 90.68 350 | 97.09 289 | 86.32 261 | 98.42 292 | 89.70 331 | 99.34 116 | 95.02 374 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| lessismore_v0 | | | | | 94.45 341 | 94.93 372 | 88.44 369 | | 91.03 408 | | 86.77 379 | 97.64 247 | 76.23 370 | 98.42 292 | 90.31 319 | 85.64 373 | 96.51 331 |
|
| MDA-MVSNet_test_wron | | | 90.71 339 | 89.38 344 | 94.68 330 | 94.83 373 | 90.78 325 | 97.19 332 | 97.46 308 | 87.60 371 | 72.41 406 | 95.72 362 | 86.51 254 | 96.71 378 | 85.92 365 | 86.80 366 | 96.56 320 |
|
| EGC-MVSNET | | | 75.22 375 | 69.54 378 | 92.28 366 | 94.81 374 | 89.58 348 | 97.64 298 | 96.50 366 | 1.82 418 | 5.57 419 | 95.74 358 | 68.21 390 | 96.26 384 | 73.80 401 | 91.71 302 | 90.99 396 |
|
| YYNet1 | | | 90.70 340 | 89.39 343 | 94.62 333 | 94.79 375 | 90.65 328 | 97.20 330 | 97.46 308 | 87.54 372 | 72.54 405 | 95.74 358 | 86.51 254 | 96.66 379 | 86.00 364 | 86.76 367 | 96.54 323 |
|
| EG-PatchMatch MVS | | | 91.13 335 | 90.12 338 | 94.17 346 | 94.73 376 | 89.00 358 | 98.13 243 | 97.81 279 | 89.22 363 | 85.32 388 | 96.46 336 | 67.71 393 | 98.42 292 | 87.89 355 | 93.82 271 | 95.08 371 |
|
| pmmvs6 | | | 91.77 327 | 90.63 332 | 95.17 313 | 94.69 377 | 91.24 315 | 98.67 166 | 97.92 274 | 86.14 379 | 89.62 359 | 97.56 255 | 75.79 373 | 98.34 306 | 90.75 314 | 84.56 374 | 95.94 355 |
|
| MVStest1 | | | 89.53 350 | 87.99 355 | 94.14 348 | 94.39 378 | 90.42 333 | 98.25 226 | 96.84 357 | 82.81 391 | 81.18 396 | 97.33 271 | 77.09 365 | 96.94 371 | 85.27 371 | 78.79 395 | 95.06 372 |
|
| new_pmnet | | | 90.06 344 | 89.00 348 | 93.22 358 | 94.18 379 | 88.32 371 | 96.42 372 | 96.89 352 | 86.19 378 | 85.67 385 | 93.62 386 | 77.18 363 | 97.10 368 | 81.61 386 | 89.29 336 | 94.23 381 |
|
| DSMNet-mixed | | | 92.52 323 | 92.58 312 | 92.33 365 | 94.15 380 | 82.65 393 | 98.30 219 | 94.26 394 | 89.08 364 | 92.65 320 | 95.73 360 | 85.01 284 | 95.76 389 | 86.24 362 | 97.76 186 | 98.59 213 |
|
| m2depth | | | 92.61 320 | 91.96 323 | 94.55 334 | 94.10 381 | 90.60 330 | 98.52 190 | 97.29 322 | 92.67 277 | 90.18 354 | 97.92 218 | 79.75 341 | 97.79 350 | 91.09 305 | 86.15 371 | 95.26 365 |
|
| UnsupCasMVSNet_eth | | | 90.99 337 | 89.92 340 | 94.19 345 | 94.08 382 | 89.83 341 | 97.13 339 | 98.67 129 | 93.69 231 | 85.83 384 | 96.19 346 | 75.15 375 | 96.74 375 | 89.14 340 | 79.41 394 | 96.00 353 |
|
| KD-MVS_2432*1600 | | | 89.61 348 | 87.96 356 | 94.54 335 | 94.06 383 | 91.59 309 | 95.59 382 | 97.63 288 | 89.87 351 | 88.95 365 | 94.38 381 | 78.28 351 | 96.82 373 | 84.83 374 | 68.05 407 | 95.21 367 |
|
| miper_refine_blended | | | 89.61 348 | 87.96 356 | 94.54 335 | 94.06 383 | 91.59 309 | 95.59 382 | 97.63 288 | 89.87 351 | 88.95 365 | 94.38 381 | 78.28 351 | 96.82 373 | 84.83 374 | 68.05 407 | 95.21 367 |
|
| Anonymous20231206 | | | 91.66 328 | 91.10 328 | 93.33 355 | 94.02 385 | 87.35 379 | 98.58 180 | 97.26 326 | 90.48 339 | 90.16 355 | 96.31 339 | 83.83 313 | 96.53 381 | 79.36 392 | 89.90 325 | 96.12 350 |
|
| Anonymous20240521 | | | 91.18 334 | 90.44 334 | 93.42 352 | 93.70 386 | 88.47 368 | 98.94 95 | 97.56 294 | 88.46 368 | 89.56 361 | 95.08 374 | 77.15 364 | 96.97 370 | 83.92 379 | 89.55 331 | 94.82 376 |
|
| test20.03 | | | 90.89 338 | 90.38 335 | 92.43 363 | 93.48 387 | 88.14 374 | 98.33 212 | 97.56 294 | 93.40 247 | 87.96 371 | 96.71 327 | 80.69 335 | 94.13 398 | 79.15 393 | 86.17 369 | 95.01 375 |
|
| CMPMVS |  | 66.06 21 | 89.70 346 | 89.67 342 | 89.78 372 | 93.19 388 | 76.56 398 | 97.00 344 | 98.35 202 | 80.97 396 | 81.57 394 | 97.75 235 | 74.75 377 | 98.61 273 | 89.85 327 | 93.63 275 | 94.17 383 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| OpenMVS_ROB |  | 86.42 20 | 89.00 352 | 87.43 360 | 93.69 350 | 93.08 389 | 89.42 351 | 97.91 268 | 96.89 352 | 78.58 398 | 85.86 383 | 94.69 376 | 69.48 389 | 98.29 316 | 77.13 397 | 93.29 285 | 93.36 392 |
|
| KD-MVS_self_test | | | 90.38 341 | 89.38 344 | 93.40 354 | 92.85 390 | 88.94 361 | 97.95 263 | 97.94 272 | 90.35 344 | 90.25 353 | 93.96 384 | 79.82 339 | 95.94 388 | 84.62 378 | 76.69 401 | 95.33 364 |
|
| MIMVSNet1 | | | 89.67 347 | 88.28 352 | 93.82 349 | 92.81 391 | 91.08 317 | 98.01 257 | 97.45 312 | 87.95 370 | 87.90 372 | 95.87 356 | 67.63 394 | 94.56 397 | 78.73 395 | 88.18 349 | 95.83 357 |
|
| kuosan | | | 78.45 371 | 77.69 372 | 80.72 390 | 92.73 392 | 75.32 403 | 94.63 395 | 74.51 419 | 75.96 400 | 80.87 398 | 93.19 391 | 63.23 400 | 79.99 414 | 42.56 414 | 81.56 386 | 86.85 406 |
|
| mvs5depth | | | 91.23 333 | 90.17 337 | 94.41 342 | 92.09 393 | 89.79 342 | 95.26 385 | 96.50 366 | 90.73 335 | 91.69 340 | 97.06 296 | 76.12 371 | 98.62 272 | 88.02 352 | 84.11 377 | 94.82 376 |
|
| UnsupCasMVSNet_bld | | | 87.17 358 | 85.12 365 | 93.31 356 | 91.94 394 | 88.77 362 | 94.92 389 | 98.30 215 | 84.30 389 | 82.30 392 | 90.04 400 | 63.96 399 | 97.25 366 | 85.85 366 | 74.47 405 | 93.93 389 |
|
| CL-MVSNet_self_test | | | 90.11 343 | 89.14 346 | 93.02 360 | 91.86 395 | 88.23 373 | 96.51 370 | 98.07 259 | 90.49 338 | 90.49 352 | 94.41 379 | 84.75 290 | 95.34 392 | 80.79 388 | 74.95 403 | 95.50 362 |
|
| Patchmatch-RL test | | | 91.49 329 | 90.85 330 | 93.41 353 | 91.37 396 | 84.40 385 | 92.81 401 | 95.93 377 | 91.87 305 | 87.25 374 | 94.87 375 | 88.99 200 | 96.53 381 | 92.54 275 | 82.00 382 | 99.30 126 |
|
| test_fmvs3 | | | 87.17 358 | 87.06 361 | 87.50 376 | 91.21 397 | 75.66 401 | 99.05 67 | 96.61 365 | 92.79 274 | 88.85 367 | 92.78 393 | 43.72 408 | 93.49 399 | 93.95 231 | 84.56 374 | 93.34 393 |
|
| pmmvs-eth3d | | | 90.36 342 | 89.05 347 | 94.32 343 | 91.10 398 | 92.12 297 | 97.63 301 | 96.95 347 | 88.86 366 | 84.91 389 | 93.13 392 | 78.32 350 | 96.74 375 | 88.70 344 | 81.81 384 | 94.09 385 |
|
| PM-MVS | | | 87.77 356 | 86.55 362 | 91.40 370 | 91.03 399 | 83.36 392 | 96.92 348 | 95.18 385 | 91.28 325 | 86.48 382 | 93.42 388 | 53.27 405 | 96.74 375 | 89.43 337 | 81.97 383 | 94.11 384 |
|
| new-patchmatchnet | | | 88.50 354 | 87.45 359 | 91.67 369 | 90.31 400 | 85.89 384 | 97.16 337 | 97.33 320 | 89.47 358 | 83.63 391 | 92.77 394 | 76.38 368 | 95.06 395 | 82.70 383 | 77.29 400 | 94.06 387 |
|
| mvsany_test3 | | | 88.80 353 | 88.04 353 | 91.09 371 | 89.78 401 | 81.57 396 | 97.83 283 | 95.49 381 | 93.81 220 | 87.53 373 | 93.95 385 | 56.14 404 | 97.43 363 | 94.68 203 | 83.13 379 | 94.26 380 |
|
| WB-MVS | | | 84.86 363 | 85.33 364 | 83.46 384 | 89.48 402 | 69.56 410 | 98.19 234 | 96.42 369 | 89.55 357 | 81.79 393 | 94.67 377 | 84.80 288 | 90.12 406 | 52.44 410 | 80.64 391 | 90.69 397 |
|
| test_f | | | 86.07 362 | 85.39 363 | 88.10 375 | 89.28 403 | 75.57 402 | 97.73 291 | 96.33 370 | 89.41 361 | 85.35 387 | 91.56 399 | 43.31 410 | 95.53 390 | 91.32 301 | 84.23 376 | 93.21 394 |
|
| SSC-MVS | | | 84.27 364 | 84.71 367 | 82.96 388 | 89.19 404 | 68.83 411 | 98.08 250 | 96.30 371 | 89.04 365 | 81.37 395 | 94.47 378 | 84.60 295 | 89.89 407 | 49.80 412 | 79.52 393 | 90.15 398 |
|
| pmmvs3 | | | 86.67 361 | 84.86 366 | 92.11 368 | 88.16 405 | 87.19 381 | 96.63 366 | 94.75 389 | 79.88 397 | 87.22 375 | 92.75 395 | 66.56 396 | 95.20 394 | 81.24 387 | 76.56 402 | 93.96 388 |
|
| testf1 | | | 79.02 368 | 77.70 370 | 82.99 386 | 88.10 406 | 66.90 412 | 94.67 392 | 93.11 400 | 71.08 404 | 74.02 402 | 93.41 389 | 34.15 414 | 93.25 400 | 72.25 402 | 78.50 397 | 88.82 400 |
|
| APD_test2 | | | 79.02 368 | 77.70 370 | 82.99 386 | 88.10 406 | 66.90 412 | 94.67 392 | 93.11 400 | 71.08 404 | 74.02 402 | 93.41 389 | 34.15 414 | 93.25 400 | 72.25 402 | 78.50 397 | 88.82 400 |
|
| ambc | | | | | 89.49 373 | 86.66 408 | 75.78 400 | 92.66 402 | 96.72 359 | | 86.55 381 | 92.50 396 | 46.01 406 | 97.90 343 | 90.32 318 | 82.09 381 | 94.80 378 |
|
| test_vis3_rt | | | 79.22 366 | 77.40 373 | 84.67 381 | 86.44 409 | 74.85 405 | 97.66 296 | 81.43 416 | 84.98 386 | 67.12 409 | 81.91 407 | 28.09 418 | 97.60 357 | 88.96 342 | 80.04 392 | 81.55 407 |
|
| test_method | | | 79.03 367 | 78.17 369 | 81.63 389 | 86.06 410 | 54.40 421 | 82.75 409 | 96.89 352 | 39.54 413 | 80.98 397 | 95.57 367 | 58.37 403 | 94.73 396 | 84.74 377 | 78.61 396 | 95.75 358 |
|
| TDRefinement | | | 91.06 336 | 89.68 341 | 95.21 311 | 85.35 411 | 91.49 311 | 98.51 195 | 97.07 337 | 91.47 314 | 88.83 368 | 97.84 227 | 77.31 360 | 99.09 215 | 92.79 266 | 77.98 399 | 95.04 373 |
|
| PMMVS2 | | | 77.95 373 | 75.44 377 | 85.46 379 | 82.54 412 | 74.95 404 | 94.23 399 | 93.08 402 | 72.80 403 | 74.68 401 | 87.38 402 | 36.36 413 | 91.56 404 | 73.95 400 | 63.94 409 | 89.87 399 |
|
| E-PMN | | | 64.94 379 | 64.25 381 | 67.02 396 | 82.28 413 | 59.36 419 | 91.83 404 | 85.63 413 | 52.69 410 | 60.22 411 | 77.28 410 | 41.06 411 | 80.12 413 | 46.15 413 | 41.14 411 | 61.57 412 |
|
| EMVS | | | 64.07 380 | 63.26 383 | 66.53 397 | 81.73 414 | 58.81 420 | 91.85 403 | 84.75 414 | 51.93 412 | 59.09 412 | 75.13 411 | 43.32 409 | 79.09 415 | 42.03 415 | 39.47 412 | 61.69 411 |
|
| FPMVS | | | 77.62 374 | 77.14 374 | 79.05 392 | 79.25 415 | 60.97 417 | 95.79 379 | 95.94 376 | 65.96 406 | 67.93 408 | 94.40 380 | 37.73 412 | 88.88 409 | 68.83 405 | 88.46 346 | 87.29 403 |
|
| wuyk23d | | | 30.17 382 | 30.18 386 | 30.16 398 | 78.61 416 | 43.29 423 | 66.79 411 | 14.21 422 | 17.31 415 | 14.82 418 | 11.93 418 | 11.55 421 | 41.43 417 | 37.08 416 | 19.30 415 | 5.76 415 |
|
| LCM-MVSNet | | | 78.70 370 | 76.24 376 | 86.08 378 | 77.26 417 | 71.99 408 | 94.34 398 | 96.72 359 | 61.62 408 | 76.53 400 | 89.33 401 | 33.91 416 | 92.78 403 | 81.85 385 | 74.60 404 | 93.46 391 |
|
| MVE |  | 62.14 22 | 63.28 381 | 59.38 384 | 74.99 393 | 74.33 418 | 65.47 414 | 85.55 407 | 80.50 417 | 52.02 411 | 51.10 413 | 75.00 412 | 10.91 422 | 80.50 412 | 51.60 411 | 53.40 410 | 78.99 408 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| ANet_high | | | 69.08 376 | 65.37 380 | 80.22 391 | 65.99 419 | 71.96 409 | 90.91 405 | 90.09 410 | 82.62 393 | 49.93 414 | 78.39 409 | 29.36 417 | 81.75 411 | 62.49 407 | 38.52 413 | 86.95 405 |
|
| PMVS |  | 61.03 23 | 65.95 378 | 63.57 382 | 73.09 395 | 57.90 420 | 51.22 422 | 85.05 408 | 93.93 398 | 54.45 409 | 44.32 415 | 83.57 404 | 13.22 419 | 89.15 408 | 58.68 409 | 81.00 388 | 78.91 409 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| tmp_tt | | | 68.90 377 | 66.97 379 | 74.68 394 | 50.78 421 | 59.95 418 | 87.13 406 | 83.47 415 | 38.80 414 | 62.21 410 | 96.23 343 | 64.70 397 | 76.91 416 | 88.91 343 | 30.49 414 | 87.19 404 |
|
| testmvs | | | 21.48 384 | 24.95 387 | 11.09 400 | 14.89 422 | 6.47 425 | 96.56 368 | 9.87 423 | 7.55 416 | 17.93 416 | 39.02 414 | 9.43 423 | 5.90 419 | 16.56 418 | 12.72 416 | 20.91 414 |
|
| test123 | | | 20.95 385 | 23.72 388 | 12.64 399 | 13.54 423 | 8.19 424 | 96.55 369 | 6.13 424 | 7.48 417 | 16.74 417 | 37.98 415 | 12.97 420 | 6.05 418 | 16.69 417 | 5.43 417 | 23.68 413 |
|
| test_blank | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| eth-test2 | | | | | | 0.00 424 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 424 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| DCPMVS | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| cdsmvs_eth3d_5k | | | 23.98 383 | 31.98 385 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 98.59 146 | 0.00 419 | 0.00 420 | 98.61 150 | 90.60 166 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| pcd_1.5k_mvsjas | | | 7.88 387 | 10.50 390 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 94.51 84 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| sosnet-low-res | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| sosnet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| uncertanet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| Regformer | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| ab-mvs-re | | | 8.20 386 | 10.94 389 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 98.43 168 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| uanet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 426 | 0.00 412 | 0.00 425 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 424 | 0.00 420 | 0.00 419 | 0.00 418 | 0.00 416 |
|
| WAC-MVS | | | | | | | 90.94 319 | | | | | | | | 88.66 345 | | |
|
| PC_three_1452 | | | | | | | | | | 95.08 158 | 99.60 19 | 99.16 77 | 97.86 2 | 98.47 286 | 97.52 102 | 99.72 54 | 99.74 36 |
|
| test_241102_TWO | | | | | | | | | 98.87 69 | 97.65 22 | 99.53 23 | 99.48 18 | 97.34 11 | 99.94 9 | 98.43 45 | 99.80 21 | 99.83 12 |
|
| test_0728_THIRD | | | | | | | | | | 97.32 42 | 99.45 25 | 99.46 24 | 97.88 1 | 99.94 9 | 98.47 41 | 99.86 2 | 99.85 9 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.20 142 |
|
| sam_mvs1 | | | | | | | | | | | | | 89.45 187 | | | | 99.20 142 |
|
| sam_mvs | | | | | | | | | | | | | 88.99 200 | | | | |
|
| MTGPA |  | | | | | | | | 98.74 108 | | | | | | | | |
|
| test_post1 | | | | | | | | 96.68 365 | | | | 30.43 417 | 87.85 233 | 98.69 265 | 92.59 271 | | |
|
| test_post | | | | | | | | | | | | 31.83 416 | 88.83 207 | 98.91 242 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 95.10 373 | 89.42 188 | 98.89 246 | | | |
|
| MTMP | | | | | | | | 98.89 106 | 94.14 396 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 96.39 149 | 99.57 83 | 99.69 56 |
|
| agg_prior2 | | | | | | | | | | | | | | | 95.87 165 | 99.57 83 | 99.68 61 |
|
| test_prior4 | | | | | | | 98.01 61 | 97.86 278 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 97.80 285 | | 96.12 105 | 97.89 128 | 98.69 144 | 95.96 38 | | 96.89 126 | 99.60 77 | |
|
| 旧先验2 | | | | | | | | 97.57 304 | | 91.30 323 | 98.67 76 | | | 99.80 88 | 95.70 174 | | |
|
| 新几何2 | | | | | | | | 97.64 298 | | | | | | | | | |
|
| 无先验 | | | | | | | | 97.58 303 | 98.72 113 | 91.38 317 | | | | 99.87 58 | 93.36 249 | | 99.60 77 |
|
| 原ACMM2 | | | | | | | | 97.67 295 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.89 47 | 91.65 297 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.85 14 | | | | |
|
| testdata1 | | | | | | | | 97.32 322 | | 96.34 97 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 98.56 156 | | | | | 99.03 222 | 96.07 155 | 94.27 255 | 96.92 273 |
|
| plane_prior4 | | | | | | | | | | | | 98.28 187 | | | | | |
|
| plane_prior3 | | | | | | | 94.61 223 | | | 97.02 64 | 95.34 221 | | | | | | |
|
| plane_prior2 | | | | | | | | 98.80 136 | | 97.28 45 | | | | | | | |
|
| plane_prior | | | | | | | 94.60 225 | 98.44 203 | | 96.74 78 | | | | | | 94.22 257 | |
|
| n2 | | | | | | | | | 0.00 425 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 425 | | | | | | | | |
|
| door-mid | | | | | | | | | 94.37 392 | | | | | | | | |
|
| test11 | | | | | | | | | 98.66 132 | | | | | | | | |
|
| door | | | | | | | | | 94.64 390 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 94.25 241 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 95.30 185 | | |
|
| HQP4-MVS | | | | | | | | | | | 94.45 244 | | | 98.96 233 | | | 96.87 285 |
|
| HQP3-MVS | | | | | | | | | 98.46 179 | | | | | | | 94.18 259 | |
|
| HQP2-MVS | | | | | | | | | | | | | 86.75 251 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 84.26 386 | 96.89 355 | | 90.97 332 | 97.90 127 | | 89.89 177 | | 93.91 233 | | 99.18 151 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 287 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 93.61 276 | |
|
| Test By Simon | | | | | | | | | | | | | 94.64 81 | | | | |
|