This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MTAPA98.58 2398.29 4399.46 1499.76 298.64 2598.90 10298.74 10897.27 4998.02 11599.39 3194.81 8099.96 497.91 7199.79 2799.77 26
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2798.88 6297.52 2999.41 2898.78 13296.00 3699.79 9897.79 7999.59 7999.85 9
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft98.33 5598.01 6399.28 3299.75 398.18 5199.22 3698.79 9896.13 10497.92 12699.23 6294.54 8399.94 996.74 13999.78 3199.73 41
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3398.26 4499.25 3599.75 398.04 5999.28 2498.81 8696.24 9998.35 9899.23 6295.46 5299.94 997.42 10699.81 1499.77 26
HPM-MVS_fast98.38 4798.13 5599.12 5099.75 397.86 6599.44 998.82 8194.46 19298.94 5599.20 6795.16 7099.74 11197.58 9599.85 699.77 26
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3298.93 5096.15 10398.94 5599.17 7495.91 4099.94 997.55 9999.79 2799.78 20
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3298.95 4696.10 10698.93 5999.19 7295.70 4699.94 997.62 9299.79 2799.78 20
HPM-MVScopyleft98.36 5098.10 5999.13 4899.74 797.82 6999.53 698.80 9394.63 18298.61 8398.97 10595.13 7299.77 10697.65 9099.83 1399.79 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft98.23 5897.95 6599.09 5299.74 797.62 7399.03 7399.41 695.98 10897.60 14999.36 4194.45 8899.93 2597.14 11398.85 13999.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4398.86 7595.77 11998.31 10199.10 8695.46 5299.93 2597.57 9899.81 1499.74 36
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8698.58 15197.62 2499.45 2599.46 2497.42 999.94 998.47 4199.81 1499.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 8698.88 6299.94 998.47 4199.81 1499.84 11
test072699.72 1299.25 299.06 6598.88 6297.62 2499.56 2099.50 1597.42 9
GST-MVS98.43 4398.12 5699.34 2399.72 1298.38 3599.09 6298.82 8195.71 12398.73 7499.06 9695.27 6399.93 2597.07 11699.63 7299.72 45
MP-MVS-pluss98.31 5697.92 6699.49 1299.72 1298.88 1898.43 20598.78 10094.10 20197.69 14099.42 2895.25 6599.92 3198.09 6199.80 2199.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3298.96 4596.10 10698.94 5599.17 7496.06 3399.92 3197.62 9299.78 3199.75 34
PGM-MVS98.49 3598.23 4999.27 3499.72 1298.08 5898.99 8399.49 595.43 13599.03 4899.32 4895.56 4999.94 996.80 13699.77 3399.78 20
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7698.87 6997.65 2299.73 1099.48 1897.53 799.94 998.43 4599.81 1499.70 53
IU-MVS99.71 1999.23 798.64 13795.28 14599.63 1898.35 5099.81 1499.83 12
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3197.53 799.74 111
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2298.88 6297.40 3698.46 8899.20 6795.90 4299.89 4797.85 7599.74 4899.78 20
X-MVStestdata94.06 29492.30 31799.34 2399.70 2298.35 4299.29 2298.88 6297.40 3698.46 8843.50 41395.90 4299.89 4797.85 7599.74 4899.78 20
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5298.66 13296.84 7199.56 2099.31 5096.34 2599.70 11998.32 5199.73 5199.73 41
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.85 7397.74 7198.20 12099.67 2595.16 19399.22 3699.32 1193.04 26497.02 16798.92 11695.36 5899.91 3997.43 10599.64 7199.52 86
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3999.47 2097.57 6
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6599.34 1698.87 6995.96 10998.60 8499.13 8296.05 3499.94 997.77 8099.86 299.77 26
CPTT-MVS97.72 7897.32 9498.92 6499.64 2897.10 9899.12 5698.81 8692.34 29098.09 10799.08 9493.01 10799.92 3196.06 15899.77 3399.75 34
test_part299.63 2999.18 1099.27 36
ACMMP_NAP98.61 1898.30 4299.55 999.62 3098.95 1798.82 12798.81 8695.80 11799.16 4599.47 2095.37 5799.92 3197.89 7399.75 4499.79 18
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20898.68 12497.04 6398.52 8798.80 13096.78 1699.83 6997.93 6999.61 7599.74 36
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20798.91 5697.58 2799.54 2299.46 2497.10 1299.94 997.64 9199.84 1199.83 12
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
dcpmvs_298.08 6298.59 1496.56 24499.57 3390.34 33699.15 5098.38 19796.82 7399.29 3599.49 1795.78 4499.57 14498.94 2299.86 299.77 26
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1098.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2499.85 699.87 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SF-MVS98.59 2198.32 4199.41 1799.54 3598.71 2299.04 7098.81 8695.12 15399.32 3499.39 3196.22 2799.84 6797.72 8399.73 5199.67 65
patch_mono-298.36 5098.87 696.82 22099.53 3690.68 32798.64 17199.29 1497.88 1599.19 4199.52 1196.80 1599.97 199.11 1899.86 299.82 15
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6298.82 8196.58 8699.10 4799.32 4895.39 5599.82 7697.70 8799.63 7299.72 45
DP-MVS Recon97.86 7197.46 8699.06 5499.53 3698.35 4298.33 21298.89 5992.62 27998.05 11098.94 11395.34 5999.65 12996.04 15999.42 10899.19 146
SMA-MVScopyleft98.58 2398.25 4599.56 899.51 3999.04 1598.95 9298.80 9393.67 23599.37 3199.52 1196.52 2299.89 4798.06 6299.81 1499.76 33
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft98.35 5298.00 6499.42 1699.51 3998.72 2198.80 13698.82 8194.52 18999.23 3899.25 6195.54 5199.80 8896.52 14399.77 3399.74 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.58 2398.25 4599.55 999.50 4199.08 1198.72 15598.66 13297.51 3098.15 10298.83 12795.70 4699.92 3197.53 10199.67 6199.66 68
APD-MVS_3200maxsize98.53 3298.33 4099.15 4699.50 4197.92 6499.15 5098.81 8696.24 9999.20 3999.37 3795.30 6199.80 8897.73 8299.67 6199.72 45
114514_t96.93 12796.27 14298.92 6499.50 4197.63 7298.85 11998.90 5784.80 38797.77 13199.11 8492.84 10999.66 12894.85 19899.77 3399.47 100
PAPM_NR97.46 9697.11 10398.50 9199.50 4196.41 13198.63 17498.60 14295.18 15097.06 16598.06 20594.26 9399.57 14493.80 23798.87 13899.52 86
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6599.11 5898.80 9396.49 8999.17 4299.35 4395.34 5999.82 7697.72 8399.65 6799.71 49
RE-MVS-def98.34 3699.49 4597.86 6599.11 5898.80 9396.49 8999.17 4299.35 4395.29 6297.72 8399.65 6799.71 49
9.1498.06 6099.47 4798.71 15698.82 8194.36 19599.16 4599.29 5296.05 3499.81 8197.00 11799.71 56
CDPH-MVS97.94 6897.49 8399.28 3299.47 4798.44 3197.91 26898.67 12992.57 28298.77 7098.85 12495.93 3999.72 11395.56 17799.69 5899.68 61
ZD-MVS99.46 4998.70 2398.79 9893.21 25598.67 7698.97 10595.70 4699.83 6996.07 15599.58 82
save fliter99.46 4998.38 3598.21 22998.71 11697.95 13
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7599.46 4996.49 12698.30 21998.69 12197.21 5298.84 6599.36 4195.41 5499.78 10198.62 2999.65 6799.80 17
EI-MVSNet-UG-set98.41 4598.34 3698.61 8199.45 5296.32 13698.28 22298.68 12497.17 5598.74 7299.37 3795.25 6599.79 9898.57 3099.54 9299.73 41
F-COLMAP97.09 12296.80 11797.97 13999.45 5294.95 20698.55 18898.62 14193.02 26596.17 20598.58 15594.01 9799.81 8193.95 23198.90 13499.14 155
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7998.88 11199.30 1398.47 999.85 499.43 2796.71 1799.96 499.86 199.80 2199.89 4
test_fmvsm_n_192098.87 1099.01 398.45 9799.42 5596.43 12998.96 9199.36 998.63 499.86 299.51 1395.91 4099.97 199.72 499.75 4498.94 181
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7798.89 10699.31 1298.49 899.86 299.42 2896.45 2499.96 499.86 199.74 4899.90 3
新几何199.16 4599.34 5798.01 6198.69 12190.06 34898.13 10498.95 11294.60 8299.89 4791.97 29099.47 10299.59 79
DP-MVS96.59 14095.93 15598.57 8399.34 5796.19 14298.70 16098.39 19389.45 35994.52 24199.35 4391.85 13599.85 6392.89 26598.88 13699.68 61
SD-MVS98.64 1698.68 1198.53 8999.33 5998.36 4198.90 10298.85 7897.28 4599.72 1299.39 3196.63 2097.60 35798.17 5799.85 699.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HyFIR lowres test96.90 12996.49 13598.14 12399.33 5995.56 17197.38 31499.65 292.34 29097.61 14898.20 19689.29 19199.10 21496.97 11997.60 19299.77 26
OMC-MVS97.55 9497.34 9398.20 12099.33 5995.92 15998.28 22298.59 14695.52 13197.97 12099.10 8693.28 10599.49 16395.09 19298.88 13699.19 146
原ACMM198.65 7999.32 6296.62 11698.67 12993.27 25497.81 13098.97 10595.18 6999.83 6993.84 23599.46 10599.50 91
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19998.81 8697.72 1798.76 7199.16 7797.05 1399.78 10198.06 6299.66 6499.69 56
TEST999.31 6498.50 2997.92 26698.73 11192.63 27897.74 13598.68 14596.20 2999.80 88
train_agg97.97 6597.52 8299.33 2699.31 6498.50 2997.92 26698.73 11192.98 26697.74 13598.68 14596.20 2999.80 8896.59 14099.57 8399.68 61
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
PatchMatch-RL96.59 14096.03 15198.27 11199.31 6496.51 12597.91 26899.06 3493.72 22796.92 17298.06 20588.50 21699.65 12991.77 29499.00 13198.66 207
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12699.30 6895.25 18998.85 11999.39 797.94 1499.74 999.62 392.59 11399.91 3999.65 699.52 9599.25 135
SDMVSNet96.85 13196.42 13698.14 12399.30 6896.38 13299.21 3999.23 2095.92 11095.96 21298.76 13985.88 26899.44 17397.93 6995.59 24798.60 211
sd_testset96.17 15895.76 16097.42 18099.30 6894.34 23698.82 12799.08 3295.92 11095.96 21298.76 13982.83 31899.32 18495.56 17795.59 24798.60 211
agg_prior99.30 6898.38 3598.72 11397.57 15199.81 81
CHOSEN 1792x268897.12 12096.80 11798.08 13299.30 6894.56 22798.05 25399.71 193.57 24097.09 16198.91 11788.17 22199.89 4796.87 13199.56 8999.81 16
test_899.29 7398.44 3197.89 27498.72 11392.98 26697.70 13998.66 14896.20 2999.80 88
旧先验199.29 7397.48 7998.70 12099.09 9295.56 4999.47 10299.61 75
PLCcopyleft95.07 497.20 11596.78 12098.44 9999.29 7396.31 13898.14 24198.76 10492.41 28896.39 19998.31 18594.92 7999.78 10194.06 22998.77 14399.23 137
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
COLMAP_ROBcopyleft93.27 1295.33 20694.87 20796.71 22599.29 7393.24 28098.58 18098.11 24989.92 35093.57 28899.10 8686.37 26099.79 9890.78 31398.10 17497.09 264
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 20098.76 10497.82 1698.45 9198.93 11496.65 1999.83 6997.38 10899.41 10999.71 49
PVSNet_Blended_VisFu97.70 8097.46 8698.44 9999.27 7895.91 16098.63 17499.16 2794.48 19197.67 14198.88 12192.80 11099.91 3997.11 11499.12 12499.50 91
MVS_111021_LR98.34 5398.23 4998.67 7799.27 7896.90 10597.95 26399.58 397.14 5898.44 9399.01 10295.03 7699.62 13897.91 7199.75 4499.50 91
MSLP-MVS++98.56 2998.57 1598.55 8599.26 8096.80 10998.71 15699.05 3697.28 4598.84 6599.28 5396.47 2399.40 17598.52 3999.70 5799.47 100
AllTest95.24 21194.65 21696.99 20699.25 8193.21 28198.59 17898.18 23391.36 31893.52 29098.77 13484.67 29399.72 11389.70 33197.87 18198.02 238
TestCases96.99 20699.25 8193.21 28198.18 23391.36 31893.52 29098.77 13484.67 29399.72 11389.70 33197.87 18198.02 238
PVSNet_BlendedMVS96.73 13596.60 13097.12 19999.25 8195.35 18498.26 22599.26 1594.28 19697.94 12397.46 25992.74 11199.81 8196.88 12893.32 28396.20 348
PVSNet_Blended97.38 10597.12 10298.14 12399.25 8195.35 18497.28 32599.26 1593.13 26097.94 12398.21 19592.74 11199.81 8196.88 12899.40 11299.27 130
DeepC-MVS95.98 397.88 7097.58 7698.77 7199.25 8196.93 10398.83 12598.75 10696.96 6796.89 17499.50 1590.46 16899.87 5897.84 7799.76 3999.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast96.70 198.55 3098.34 3699.18 4299.25 8198.04 5998.50 19698.78 10097.72 1798.92 6199.28 5395.27 6399.82 7697.55 9999.77 3399.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.37 2099.24 8799.05 1499.02 7699.16 7797.81 399.37 17997.24 11199.73 5199.70 53
test22299.23 8897.17 9697.40 31298.66 13288.68 36798.05 11098.96 11094.14 9599.53 9499.61 75
TSAR-MVS + GP.98.38 4798.24 4798.81 7099.22 8997.25 9298.11 24698.29 21797.19 5498.99 5399.02 9896.22 2799.67 12698.52 3998.56 15399.51 89
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 6198.87 6997.38 3999.35 3299.40 3097.78 599.87 5897.77 8099.85 699.78 20
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR98.47 3898.34 3698.88 6899.22 8997.32 8597.91 26899.58 397.20 5398.33 9999.00 10395.99 3799.64 13198.05 6499.76 3999.69 56
CS-MVS-test98.49 3598.50 2098.46 9699.20 9297.05 9999.64 498.50 17297.45 3598.88 6299.14 8195.25 6599.15 20398.83 2599.56 8999.20 142
testdata98.26 11499.20 9295.36 18298.68 12491.89 30498.60 8499.10 8694.44 8999.82 7694.27 22199.44 10699.58 83
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 998.47 4199.72 5499.74 36
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13999.94 998.53 3399.80 2199.86 7
No_MVS99.62 699.17 9499.08 1198.63 13999.94 998.53 3399.80 2199.86 7
PVSNet91.96 1896.35 15196.15 14696.96 21099.17 9492.05 30096.08 37398.68 12493.69 23197.75 13497.80 23388.86 20699.69 12494.26 22299.01 12999.15 153
test1299.18 4299.16 9898.19 5098.53 16298.07 10895.13 7299.72 11399.56 8999.63 73
AdaColmapbinary97.15 11896.70 12598.48 9499.16 9896.69 11598.01 25798.89 5994.44 19396.83 17598.68 14590.69 16599.76 10794.36 21699.29 11998.98 176
PHI-MVS98.34 5398.06 6099.18 4299.15 10098.12 5799.04 7099.09 3193.32 25098.83 6799.10 8696.54 2199.83 6997.70 8799.76 3999.59 79
TAPA-MVS93.98 795.35 20494.56 22097.74 15799.13 10194.83 21298.33 21298.64 13786.62 37596.29 20198.61 15094.00 9899.29 18780.00 39099.41 10999.09 161
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MM98.51 3398.24 4799.33 2699.12 10298.14 5698.93 9797.02 34398.96 199.17 4299.47 2091.97 13499.94 999.85 399.69 5899.91 2
MG-MVS97.81 7497.60 7598.44 9999.12 10295.97 15297.75 28998.78 10096.89 7098.46 8899.22 6493.90 9999.68 12594.81 20199.52 9599.67 65
test_vis1_n_192096.71 13696.84 11696.31 26899.11 10489.74 34499.05 6798.58 15198.08 1299.87 199.37 3778.48 34999.93 2599.29 1499.69 5899.27 130
Anonymous2023121194.10 29093.26 29996.61 23799.11 10494.28 23899.01 7898.88 6286.43 37792.81 31497.57 25381.66 32398.68 26894.83 19989.02 34196.88 282
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 11199.09 10695.41 17998.86 11799.37 897.69 2199.78 699.61 492.38 11699.91 3999.58 1099.43 10799.49 96
CS-MVS98.44 4198.49 2198.31 10999.08 10796.73 11399.67 398.47 17897.17 5598.94 5599.10 8695.73 4599.13 20698.71 2799.49 9999.09 161
CNLPA97.45 9997.03 10798.73 7399.05 10897.44 8398.07 25198.53 16295.32 14396.80 17998.53 16093.32 10399.72 11394.31 22099.31 11899.02 172
DPM-MVS97.55 9496.99 10999.23 3899.04 10998.55 2797.17 33598.35 20294.85 17397.93 12598.58 15595.07 7499.71 11892.60 26999.34 11699.43 109
h-mvs3396.17 15895.62 17197.81 14999.03 11094.45 22998.64 17198.75 10697.48 3298.67 7698.72 14289.76 17899.86 6297.95 6781.59 38599.11 159
test250694.44 26693.91 26396.04 27899.02 11188.99 35999.06 6579.47 41896.96 6798.36 9699.26 5677.21 36199.52 16096.78 13799.04 12699.59 79
ECVR-MVScopyleft95.95 16695.71 16596.65 23099.02 11190.86 32299.03 7391.80 40596.96 6798.10 10699.26 5681.31 32599.51 16196.90 12599.04 12699.59 79
Anonymous2024052995.10 21994.22 23897.75 15699.01 11394.26 24098.87 11498.83 8085.79 38396.64 18398.97 10578.73 34699.85 6396.27 15094.89 25299.12 157
Anonymous20240521195.28 20994.49 22397.67 16599.00 11493.75 25598.70 16097.04 34090.66 33696.49 19498.80 13078.13 35399.83 6996.21 15495.36 25199.44 107
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28998.89 5997.71 1998.33 9998.97 10594.97 7799.88 5698.42 4799.76 3999.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS96.37 297.93 6998.48 2396.30 26999.00 11489.54 34997.43 31198.87 6998.16 1199.26 3799.38 3696.12 3299.64 13198.30 5299.77 3399.72 45
test111195.94 16895.78 15996.41 26198.99 11790.12 33899.04 7092.45 40496.99 6698.03 11399.27 5581.40 32499.48 16896.87 13199.04 12699.63 73
thres100view90095.38 20094.70 21497.41 18198.98 11894.92 20798.87 11496.90 35095.38 13896.61 18696.88 31684.29 29999.56 14788.11 34996.29 22997.76 243
thres600view795.49 19194.77 20997.67 16598.98 11895.02 19998.85 11996.90 35095.38 13896.63 18496.90 31584.29 29999.59 14188.65 34696.33 22598.40 223
mamv497.13 11998.11 5794.17 34698.97 12083.70 38898.66 16898.71 11694.63 18297.83 12998.90 11896.25 2699.55 15499.27 1599.76 3999.27 130
MVSMamba_PlusPlus98.31 5698.19 5498.67 7798.96 12197.36 8499.24 3098.57 15394.81 17498.99 5398.90 11895.22 6899.59 14199.15 1799.84 1199.07 169
test_cas_vis1_n_192097.38 10597.36 9297.45 17798.95 12293.25 27999.00 8098.53 16297.70 2099.77 799.35 4384.71 29299.85 6398.57 3099.66 6499.26 133
tfpn200view995.32 20794.62 21797.43 17998.94 12394.98 20398.68 16396.93 34895.33 14196.55 19096.53 33484.23 30399.56 14788.11 34996.29 22997.76 243
thres40095.38 20094.62 21797.65 16998.94 12394.98 20398.68 16396.93 34895.33 14196.55 19096.53 33484.23 30399.56 14788.11 34996.29 22998.40 223
MSDG95.93 16995.30 18697.83 14698.90 12595.36 18296.83 36098.37 19991.32 32294.43 24898.73 14190.27 17299.60 14090.05 32498.82 14198.52 217
RPSCF94.87 23595.40 17593.26 35798.89 12682.06 39598.33 21298.06 26490.30 34596.56 18899.26 5687.09 24599.49 16393.82 23696.32 22698.24 230
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12797.25 9298.82 12799.34 1098.75 299.80 599.61 495.16 7099.95 799.70 599.80 2199.93 1
VNet97.79 7597.40 9098.96 6298.88 12797.55 7598.63 17498.93 5096.74 7899.02 4998.84 12590.33 17199.83 6998.53 3396.66 21499.50 91
LFMVS95.86 17394.98 20198.47 9598.87 12996.32 13698.84 12396.02 37293.40 24798.62 8299.20 6774.99 37699.63 13497.72 8397.20 19999.46 104
UA-Net97.96 6697.62 7498.98 5998.86 13097.47 8198.89 10699.08 3296.67 8398.72 7599.54 893.15 10699.81 8194.87 19798.83 14099.65 69
WTY-MVS97.37 10796.92 11398.72 7498.86 13096.89 10798.31 21798.71 11695.26 14697.67 14198.56 15992.21 12499.78 10195.89 16396.85 20999.48 98
IS-MVSNet97.22 11296.88 11498.25 11598.85 13296.36 13499.19 4397.97 26995.39 13797.23 15798.99 10491.11 15798.93 23994.60 20898.59 15199.47 100
VDD-MVS95.82 17695.23 18897.61 17198.84 13393.98 24798.68 16397.40 31695.02 16197.95 12199.34 4774.37 38199.78 10198.64 2896.80 21099.08 165
test_fmvs196.42 14796.67 12895.66 29698.82 13488.53 36798.80 13698.20 22896.39 9599.64 1799.20 6780.35 33799.67 12699.04 1999.57 8398.78 194
CHOSEN 280x42097.18 11697.18 10197.20 19098.81 13593.27 27695.78 38099.15 2895.25 14796.79 18098.11 20292.29 11999.07 21798.56 3299.85 699.25 135
thres20095.25 21094.57 21997.28 18798.81 13594.92 20798.20 23197.11 33395.24 14996.54 19296.22 34584.58 29699.53 15787.93 35496.50 22197.39 257
XVG-OURS-SEG-HR96.51 14496.34 13997.02 20598.77 13793.76 25397.79 28798.50 17295.45 13496.94 16999.09 9287.87 23299.55 15496.76 13895.83 24697.74 245
XVG-OURS96.55 14396.41 13796.99 20698.75 13893.76 25397.50 30898.52 16595.67 12596.83 17599.30 5188.95 20599.53 15795.88 16496.26 23497.69 248
test_yl97.22 11296.78 12098.54 8798.73 13996.60 11998.45 20098.31 20994.70 17698.02 11598.42 17090.80 16299.70 11996.81 13496.79 21199.34 117
DCV-MVSNet97.22 11296.78 12098.54 8798.73 13996.60 11998.45 20098.31 20994.70 17698.02 11598.42 17090.80 16299.70 11996.81 13496.79 21199.34 117
CANet98.05 6497.76 7098.90 6798.73 13997.27 8798.35 21098.78 10097.37 4197.72 13898.96 11091.53 14699.92 3198.79 2699.65 6799.51 89
Vis-MVSNet (Re-imp)96.87 13096.55 13297.83 14698.73 13995.46 17799.20 4198.30 21594.96 16596.60 18798.87 12290.05 17498.59 27693.67 24198.60 15099.46 104
PAPR96.84 13296.24 14498.65 7998.72 14396.92 10497.36 31898.57 15393.33 24996.67 18297.57 25394.30 9199.56 14791.05 31098.59 15199.47 100
sasdasda97.67 8297.23 9798.98 5998.70 14498.38 3599.34 1698.39 19396.76 7697.67 14197.40 26692.26 12099.49 16398.28 5396.28 23299.08 165
canonicalmvs97.67 8297.23 9798.98 5998.70 14498.38 3599.34 1698.39 19396.76 7697.67 14197.40 26692.26 12099.49 16398.28 5396.28 23299.08 165
API-MVS97.41 10397.25 9697.91 14298.70 14496.80 10998.82 12798.69 12194.53 18798.11 10598.28 18794.50 8799.57 14494.12 22699.49 9997.37 259
MAR-MVS96.91 12896.40 13898.45 9798.69 14796.90 10598.66 16898.68 12492.40 28997.07 16497.96 21591.54 14599.75 10993.68 23998.92 13398.69 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ97.73 7797.77 6997.62 17098.68 14895.58 17097.34 32098.51 16797.29 4498.66 8097.88 22394.51 8499.90 4597.87 7499.17 12397.39 257
test_fmvs1_n95.90 17195.99 15395.63 29798.67 14988.32 37199.26 2798.22 22596.40 9499.67 1499.26 5673.91 38299.70 11999.02 2099.50 9798.87 185
MGCFI-Net97.62 8797.19 10098.92 6498.66 15098.20 4999.32 2198.38 19796.69 8297.58 15097.42 26592.10 12899.50 16298.28 5396.25 23599.08 165
alignmvs97.56 9397.07 10699.01 5698.66 15098.37 4098.83 12598.06 26496.74 7898.00 11997.65 24590.80 16299.48 16898.37 4996.56 21899.19 146
Vis-MVSNetpermissive97.42 10297.11 10398.34 10798.66 15096.23 13999.22 3699.00 3996.63 8598.04 11299.21 6588.05 22799.35 18096.01 16199.21 12099.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
balanced_conf0398.45 4098.35 3298.74 7298.65 15397.55 7599.19 4398.60 14296.72 8199.35 3298.77 13495.06 7599.55 15498.95 2199.87 199.12 157
EPP-MVSNet97.46 9697.28 9597.99 13898.64 15495.38 18199.33 2098.31 20993.61 23997.19 15899.07 9594.05 9699.23 19396.89 12698.43 16299.37 114
ab-mvs96.42 14795.71 16598.55 8598.63 15596.75 11297.88 27598.74 10893.84 21796.54 19298.18 19885.34 27899.75 10995.93 16296.35 22499.15 153
PCF-MVS93.45 1194.68 24393.43 29498.42 10398.62 15696.77 11195.48 38498.20 22884.63 38893.34 29998.32 18488.55 21499.81 8184.80 37698.96 13298.68 203
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v2_base97.66 8497.70 7297.56 17498.61 15795.46 17797.44 30998.46 17997.15 5798.65 8198.15 19994.33 9099.80 8897.84 7798.66 14897.41 255
sss97.39 10496.98 11198.61 8198.60 15896.61 11898.22 22898.93 5093.97 21098.01 11898.48 16591.98 13299.85 6396.45 14598.15 17299.39 112
Test_1112_low_res96.34 15295.66 17098.36 10698.56 15995.94 15597.71 29298.07 25992.10 29994.79 23697.29 27491.75 13799.56 14794.17 22496.50 22199.58 83
1112_ss96.63 13896.00 15298.50 9198.56 15996.37 13398.18 23998.10 25292.92 26994.84 23298.43 16892.14 12699.58 14394.35 21796.51 22099.56 85
BH-untuned95.95 16695.72 16296.65 23098.55 16192.26 29598.23 22797.79 28093.73 22594.62 23898.01 21088.97 20499.00 22893.04 25898.51 15698.68 203
fmvsm_s_conf0.1_n98.18 6198.21 5198.11 13098.54 16295.24 19098.87 11499.24 1797.50 3199.70 1399.67 191.33 15099.89 4799.47 1299.54 9299.21 141
LS3D97.16 11796.66 12998.68 7698.53 16397.19 9598.93 9798.90 5792.83 27395.99 21099.37 3792.12 12799.87 5893.67 24199.57 8398.97 177
hse-mvs295.71 18095.30 18696.93 21298.50 16493.53 26498.36 20998.10 25297.48 3298.67 7697.99 21289.76 17899.02 22597.95 6780.91 39098.22 232
AUN-MVS94.53 25793.73 27996.92 21598.50 16493.52 26598.34 21198.10 25293.83 21995.94 21497.98 21485.59 27399.03 22294.35 21780.94 38998.22 232
baseline195.84 17495.12 19498.01 13798.49 16695.98 14798.73 15197.03 34195.37 14096.22 20298.19 19789.96 17699.16 20094.60 20887.48 35598.90 184
HY-MVS93.96 896.82 13396.23 14598.57 8398.46 16797.00 10098.14 24198.21 22693.95 21196.72 18197.99 21291.58 14199.76 10794.51 21296.54 21998.95 180
ETV-MVS97.96 6697.81 6898.40 10498.42 16897.27 8798.73 15198.55 15896.84 7198.38 9597.44 26295.39 5599.35 18097.62 9298.89 13598.58 215
casdiffmvs_mvgpermissive97.72 7897.48 8598.44 9998.42 16896.59 12198.92 9998.44 18396.20 10197.76 13299.20 6791.66 14099.23 19398.27 5698.41 16399.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051796.07 16195.51 17397.78 15198.41 17094.84 21099.28 2494.33 39394.26 19897.64 14698.64 14984.05 30799.47 17095.34 18397.60 19299.03 171
EIA-MVS97.75 7697.58 7698.27 11198.38 17196.44 12899.01 7898.60 14295.88 11397.26 15697.53 25694.97 7799.33 18397.38 10899.20 12199.05 170
thisisatest053096.01 16395.36 18097.97 13998.38 17195.52 17598.88 11194.19 39594.04 20397.64 14698.31 18583.82 31499.46 17195.29 18797.70 18998.93 182
FE-MVS95.62 18694.90 20597.78 15198.37 17394.92 20797.17 33597.38 31890.95 33397.73 13797.70 23985.32 28099.63 13491.18 30298.33 16798.79 191
GeoE96.58 14296.07 14898.10 13198.35 17495.89 16299.34 1698.12 24693.12 26196.09 20698.87 12289.71 18098.97 22992.95 26198.08 17599.43 109
xiu_mvs_v1_base_debu97.60 8897.56 7897.72 15898.35 17495.98 14797.86 27898.51 16797.13 5999.01 5098.40 17291.56 14299.80 8898.53 3398.68 14497.37 259
xiu_mvs_v1_base97.60 8897.56 7897.72 15898.35 17495.98 14797.86 27898.51 16797.13 5999.01 5098.40 17291.56 14299.80 8898.53 3398.68 14497.37 259
xiu_mvs_v1_base_debi97.60 8897.56 7897.72 15898.35 17495.98 14797.86 27898.51 16797.13 5999.01 5098.40 17291.56 14299.80 8898.53 3398.68 14497.37 259
baseline97.64 8597.44 8898.25 11598.35 17496.20 14099.00 8098.32 20796.33 9898.03 11399.17 7491.35 14999.16 20098.10 6098.29 17099.39 112
mvsmamba97.25 11196.99 10998.02 13698.34 17995.54 17499.18 4797.47 30795.04 15998.15 10298.57 15889.46 18699.31 18597.68 8999.01 12999.22 139
BH-w/o95.38 20095.08 19696.26 27198.34 17991.79 30397.70 29397.43 31492.87 27194.24 25997.22 28088.66 20998.84 25291.55 29897.70 18998.16 235
EC-MVSNet98.21 6098.11 5798.49 9398.34 17997.26 9199.61 598.43 18796.78 7498.87 6398.84 12593.72 10099.01 22798.91 2399.50 9799.19 146
test_fmvsmvis_n_192098.44 4198.51 1898.23 11798.33 18296.15 14398.97 8699.15 2898.55 798.45 9199.55 694.26 9399.97 199.65 699.66 6498.57 216
MVS_Test97.28 10997.00 10898.13 12698.33 18295.97 15298.74 14798.07 25994.27 19798.44 9398.07 20492.48 11499.26 18996.43 14698.19 17199.16 152
casdiffmvspermissive97.63 8697.41 8998.28 11098.33 18296.14 14498.82 12798.32 20796.38 9697.95 12199.21 6591.23 15499.23 19398.12 5998.37 16499.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive97.58 9197.40 9098.13 12698.32 18595.81 16598.06 25298.37 19996.20 10198.74 7298.89 12091.31 15299.25 19098.16 5898.52 15599.34 117
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet95.92 17095.32 18497.69 16298.32 18594.64 21998.19 23497.45 31294.56 18596.03 20898.61 15085.02 28399.12 20890.68 31599.06 12599.30 126
Fast-Effi-MVS+96.28 15595.70 16798.03 13598.29 18795.97 15298.58 18098.25 22391.74 30795.29 22597.23 27991.03 16099.15 20392.90 26397.96 17898.97 177
mvsany_test197.69 8197.70 7297.66 16898.24 18894.18 24397.53 30597.53 30195.52 13199.66 1599.51 1394.30 9199.56 14798.38 4898.62 14999.23 137
UGNet96.78 13496.30 14198.19 12298.24 18895.89 16298.88 11198.93 5097.39 3896.81 17897.84 22782.60 31999.90 4596.53 14299.49 9998.79 191
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSTER96.06 16295.72 16297.08 20298.23 19095.93 15898.73 15198.27 21894.86 17195.07 22798.09 20388.21 22098.54 27996.59 14093.46 27896.79 291
ET-MVSNet_ETH3D94.13 28692.98 30397.58 17298.22 19196.20 14097.31 32395.37 38294.53 18779.56 39997.63 24986.51 25497.53 36196.91 12290.74 31599.02 172
FA-MVS(test-final)96.41 15095.94 15497.82 14898.21 19295.20 19297.80 28597.58 29193.21 25597.36 15497.70 23989.47 18599.56 14794.12 22697.99 17698.71 201
GBi-Net94.49 26193.80 27296.56 24498.21 19295.00 20098.82 12798.18 23392.46 28394.09 26697.07 29281.16 32797.95 33992.08 28392.14 29696.72 299
test194.49 26193.80 27296.56 24498.21 19295.00 20098.82 12798.18 23392.46 28394.09 26697.07 29281.16 32797.95 33992.08 28392.14 29696.72 299
FMVSNet294.47 26493.61 28597.04 20498.21 19296.43 12998.79 14198.27 21892.46 28393.50 29397.09 28981.16 32798.00 33691.09 30591.93 29996.70 303
Effi-MVS+97.12 12096.69 12698.39 10598.19 19696.72 11497.37 31698.43 18793.71 22897.65 14598.02 20892.20 12599.25 19096.87 13197.79 18499.19 146
mvs_anonymous96.70 13796.53 13497.18 19398.19 19693.78 25298.31 21798.19 23094.01 20794.47 24398.27 19092.08 13098.46 28797.39 10797.91 17999.31 123
ETVMVS94.50 26093.44 29397.68 16498.18 19895.35 18498.19 23497.11 33393.73 22596.40 19895.39 36874.53 37898.84 25291.10 30496.31 22798.84 188
LCM-MVSNet-Re95.22 21295.32 18494.91 32098.18 19887.85 37798.75 14495.66 37995.11 15488.96 36496.85 31990.26 17397.65 35595.65 17598.44 16099.22 139
FMVSNet394.97 23094.26 23697.11 20098.18 19896.62 11698.56 18798.26 22293.67 23594.09 26697.10 28584.25 30198.01 33492.08 28392.14 29696.70 303
CANet_DTU96.96 12696.55 13298.21 11898.17 20196.07 14697.98 26198.21 22697.24 5097.13 16098.93 11486.88 25099.91 3995.00 19599.37 11598.66 207
thisisatest051595.61 18994.89 20697.76 15598.15 20295.15 19596.77 36194.41 39192.95 26897.18 15997.43 26384.78 28999.45 17294.63 20597.73 18898.68 203
IterMVS-LS95.46 19395.21 18996.22 27298.12 20393.72 25898.32 21698.13 24593.71 22894.26 25797.31 27392.24 12298.10 32794.63 20590.12 32296.84 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2294.68 24394.19 24096.13 27598.11 20493.60 26096.94 34798.31 20992.43 28793.32 30096.87 31886.51 25498.28 31794.10 22891.16 31096.51 331
VDDNet95.36 20394.53 22197.86 14498.10 20595.13 19698.85 11997.75 28290.46 34098.36 9699.39 3173.27 38499.64 13197.98 6696.58 21798.81 190
testing393.19 31292.48 31495.30 31098.07 20692.27 29498.64 17197.17 33193.94 21393.98 27297.04 30067.97 39296.01 38788.40 34797.14 20097.63 250
MVSFormer97.57 9297.49 8397.84 14598.07 20695.76 16699.47 798.40 19194.98 16398.79 6898.83 12792.34 11798.41 29996.91 12299.59 7999.34 117
lupinMVS97.44 10097.22 9998.12 12998.07 20695.76 16697.68 29497.76 28194.50 19098.79 6898.61 15092.34 11799.30 18697.58 9599.59 7999.31 123
MVS_030498.23 5897.91 6799.21 3998.06 20997.96 6398.58 18095.51 38098.58 598.87 6399.26 5692.99 10899.95 799.62 999.67 6199.73 41
TAMVS97.02 12496.79 11997.70 16198.06 20995.31 18798.52 19098.31 20993.95 21197.05 16698.61 15093.49 10298.52 28195.33 18497.81 18399.29 128
UBG95.32 20794.72 21397.13 19798.05 21193.26 27797.87 27697.20 32994.96 16596.18 20495.66 36580.97 33099.35 18094.47 21497.08 20198.78 194
CDS-MVSNet96.99 12596.69 12697.90 14398.05 21195.98 14798.20 23198.33 20693.67 23596.95 16898.49 16493.54 10198.42 29295.24 19097.74 18799.31 123
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WBMVS94.56 25394.04 25096.10 27798.03 21393.08 28797.82 28498.18 23394.02 20593.77 28396.82 32181.28 32698.34 30695.47 18291.00 31396.88 282
testing22294.12 28893.03 30297.37 18698.02 21494.66 21797.94 26596.65 36494.63 18295.78 21595.76 35771.49 38698.92 24091.17 30395.88 24498.52 217
ADS-MVSNet294.58 25294.40 23295.11 31598.00 21588.74 36396.04 37497.30 32190.15 34696.47 19596.64 33187.89 23097.56 36090.08 32297.06 20299.02 172
ADS-MVSNet95.00 22494.45 22896.63 23498.00 21591.91 30296.04 37497.74 28390.15 34696.47 19596.64 33187.89 23098.96 23390.08 32297.06 20299.02 172
IterMVS94.09 29193.85 26994.80 32797.99 21790.35 33597.18 33398.12 24693.68 23392.46 32897.34 26984.05 30797.41 36492.51 27691.33 30696.62 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet_088.72 1991.28 33290.03 33995.00 31897.99 21787.29 38094.84 39098.50 17292.06 30089.86 35795.19 37179.81 34099.39 17892.27 28069.79 40698.33 228
tt080594.54 25593.85 26996.63 23497.98 21993.06 28898.77 14397.84 27893.67 23593.80 28198.04 20776.88 36798.96 23394.79 20292.86 28997.86 242
IterMVS-SCA-FT94.11 28993.87 26794.85 32497.98 21990.56 33197.18 33398.11 24993.75 22292.58 32297.48 25883.97 30997.41 36492.48 27891.30 30796.58 316
testing1195.00 22494.28 23597.16 19597.96 22193.36 27498.09 24997.06 33994.94 16995.33 22496.15 34776.89 36699.40 17595.77 17096.30 22898.72 198
testing9194.98 22894.25 23797.20 19097.94 22293.41 26998.00 25997.58 29194.99 16295.45 22096.04 35177.20 36299.42 17494.97 19696.02 24298.78 194
testing9994.83 23694.08 24897.07 20397.94 22293.13 28398.10 24897.17 33194.86 17195.34 22196.00 35476.31 36999.40 17595.08 19395.90 24398.68 203
EI-MVSNet95.96 16595.83 15896.36 26497.93 22493.70 25998.12 24498.27 21893.70 23095.07 22799.02 9892.23 12398.54 27994.68 20393.46 27896.84 288
CVMVSNet95.43 19696.04 15093.57 35197.93 22483.62 38998.12 24498.59 14695.68 12496.56 18899.02 9887.51 23897.51 36293.56 24597.44 19599.60 77
RRT-MVS97.03 12396.78 12097.77 15497.90 22694.34 23699.12 5698.35 20295.87 11498.06 10998.70 14386.45 25899.63 13498.04 6598.54 15499.35 115
PMMVS96.60 13996.33 14097.41 18197.90 22693.93 24897.35 31998.41 18992.84 27297.76 13297.45 26191.10 15899.20 19796.26 15197.91 17999.11 159
Effi-MVS+-dtu96.29 15396.56 13195.51 30197.89 22890.22 33798.80 13698.10 25296.57 8896.45 19796.66 32890.81 16198.91 24295.72 17197.99 17697.40 256
QAPM96.29 15395.40 17598.96 6297.85 22997.60 7499.23 3298.93 5089.76 35393.11 30899.02 9889.11 19799.93 2591.99 28899.62 7499.34 117
UWE-MVS94.30 27393.89 26695.53 30097.83 23088.95 36097.52 30793.25 39994.44 19396.63 18497.07 29278.70 34799.28 18891.99 28897.56 19498.36 226
3Dnovator+94.38 697.43 10196.78 12099.38 1897.83 23098.52 2899.37 1298.71 11697.09 6292.99 31199.13 8289.36 18999.89 4796.97 11999.57 8399.71 49
ACMH+92.99 1494.30 27393.77 27595.88 28897.81 23292.04 30198.71 15698.37 19993.99 20990.60 35198.47 16680.86 33399.05 21892.75 26792.40 29596.55 322
3Dnovator94.51 597.46 9696.93 11299.07 5397.78 23397.64 7199.35 1599.06 3497.02 6493.75 28499.16 7789.25 19299.92 3197.22 11299.75 4499.64 71
test_vis1_n95.47 19295.13 19296.49 25297.77 23490.41 33499.27 2698.11 24996.58 8699.66 1599.18 7367.00 39599.62 13899.21 1699.40 11299.44 107
miper_lstm_enhance94.33 27194.07 24995.11 31597.75 23590.97 31897.22 32898.03 26691.67 31192.76 31696.97 30890.03 17597.78 35192.51 27689.64 32896.56 320
c3_l94.79 23894.43 23095.89 28797.75 23593.12 28597.16 33798.03 26692.23 29593.46 29597.05 29991.39 14798.01 33493.58 24489.21 33796.53 325
TR-MVS94.94 23394.20 23997.17 19497.75 23594.14 24497.59 30297.02 34392.28 29495.75 21697.64 24783.88 31198.96 23389.77 32896.15 23998.40 223
Fast-Effi-MVS+-dtu95.87 17295.85 15795.91 28597.74 23891.74 30698.69 16298.15 24295.56 12994.92 23097.68 24488.98 20398.79 25993.19 25397.78 18597.20 263
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23997.15 9798.84 12398.97 4298.75 299.43 2799.54 893.29 10499.93 2599.64 899.79 2799.89 4
MIMVSNet93.26 30992.21 31896.41 26197.73 23993.13 28395.65 38197.03 34191.27 32694.04 26996.06 35075.33 37497.19 36786.56 36096.23 23798.92 183
miper_ehance_all_eth95.01 22394.69 21595.97 28297.70 24193.31 27597.02 34398.07 25992.23 29593.51 29296.96 31091.85 13598.15 32393.68 23991.16 31096.44 339
dmvs_re94.48 26394.18 24295.37 30797.68 24290.11 33998.54 18997.08 33594.56 18594.42 24997.24 27884.25 30197.76 35291.02 31192.83 29098.24 230
SCA95.46 19395.13 19296.46 25897.67 24391.29 31497.33 32197.60 29094.68 17996.92 17297.10 28583.97 30998.89 24692.59 27198.32 16999.20 142
ACMP93.49 1095.34 20594.98 20196.43 26097.67 24393.48 26698.73 15198.44 18394.94 16992.53 32498.53 16084.50 29899.14 20595.48 18194.00 26696.66 309
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
fmvsm_s_conf0.1_n_a98.08 6298.04 6298.21 11897.66 24595.39 18098.89 10699.17 2697.24 5099.76 899.67 191.13 15599.88 5699.39 1399.41 10999.35 115
eth_miper_zixun_eth94.68 24394.41 23195.47 30397.64 24691.71 30796.73 36498.07 25992.71 27693.64 28597.21 28190.54 16798.17 32293.38 24789.76 32696.54 323
ACMH92.88 1694.55 25493.95 26096.34 26697.63 24793.26 27798.81 13598.49 17793.43 24689.74 35898.53 16081.91 32199.08 21693.69 23893.30 28496.70 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMM93.85 995.69 18395.38 17996.61 23797.61 24893.84 25198.91 10198.44 18395.25 14794.28 25698.47 16686.04 26799.12 20895.50 18093.95 26896.87 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmatch-test94.42 26793.68 28396.63 23497.60 24991.76 30494.83 39197.49 30689.45 35994.14 26497.10 28588.99 20098.83 25585.37 37098.13 17399.29 128
cl____94.51 25994.01 25596.02 27997.58 25093.40 27197.05 34197.96 27191.73 30992.76 31697.08 29189.06 19998.13 32592.61 26890.29 32096.52 328
tpm cat193.36 30492.80 30695.07 31797.58 25087.97 37596.76 36297.86 27782.17 39593.53 28996.04 35186.13 26399.13 20689.24 33995.87 24598.10 236
MVS-HIRNet89.46 35188.40 35092.64 36297.58 25082.15 39494.16 40093.05 40375.73 40290.90 34782.52 40579.42 34398.33 30883.53 38198.68 14497.43 254
PatchmatchNetpermissive95.71 18095.52 17296.29 27097.58 25090.72 32696.84 35997.52 30294.06 20297.08 16296.96 31089.24 19398.90 24592.03 28798.37 16499.26 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DIV-MVS_self_test94.52 25894.03 25295.99 28097.57 25493.38 27297.05 34197.94 27291.74 30792.81 31497.10 28589.12 19698.07 33192.60 26990.30 31996.53 325
tpmrst95.63 18595.69 16895.44 30597.54 25588.54 36696.97 34597.56 29493.50 24297.52 15296.93 31489.49 18399.16 20095.25 18996.42 22398.64 209
FMVSNet193.19 31292.07 31996.56 24497.54 25595.00 20098.82 12798.18 23390.38 34392.27 33197.07 29273.68 38397.95 33989.36 33891.30 30796.72 299
miper_enhance_ethall95.10 21994.75 21196.12 27697.53 25793.73 25796.61 36798.08 25792.20 29893.89 27596.65 33092.44 11598.30 31394.21 22391.16 31096.34 342
CLD-MVS95.62 18695.34 18196.46 25897.52 25893.75 25597.27 32698.46 17995.53 13094.42 24998.00 21186.21 26298.97 22996.25 15394.37 25396.66 309
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MDTV_nov1_ep1395.40 17597.48 25988.34 37096.85 35897.29 32293.74 22497.48 15397.26 27589.18 19499.05 21891.92 29197.43 196
IB-MVS91.98 1793.27 30891.97 32197.19 19297.47 26093.41 26997.09 34095.99 37393.32 25092.47 32795.73 36078.06 35499.53 15794.59 21082.98 38098.62 210
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs94.60 24994.36 23395.33 30997.46 26188.60 36596.88 35697.68 28491.29 32493.80 28196.42 33888.58 21099.24 19291.06 30896.04 24198.17 234
LPG-MVS_test95.62 18695.34 18196.47 25597.46 26193.54 26298.99 8398.54 16094.67 18094.36 25298.77 13485.39 27599.11 21095.71 17294.15 26196.76 294
LGP-MVS_train96.47 25597.46 26193.54 26298.54 16094.67 18094.36 25298.77 13485.39 27599.11 21095.71 17294.15 26196.76 294
test_vis1_rt91.29 33190.65 33193.19 35997.45 26486.25 38398.57 18690.90 40993.30 25286.94 37793.59 38762.07 40199.11 21097.48 10495.58 24994.22 382
jason97.32 10897.08 10598.06 13497.45 26495.59 16997.87 27697.91 27594.79 17598.55 8698.83 12791.12 15699.23 19397.58 9599.60 7799.34 117
jason: jason.
HQP_MVS96.14 16095.90 15696.85 21897.42 26694.60 22598.80 13698.56 15697.28 4595.34 22198.28 18787.09 24599.03 22296.07 15594.27 25596.92 273
plane_prior797.42 26694.63 220
ITE_SJBPF95.44 30597.42 26691.32 31397.50 30495.09 15793.59 28698.35 17881.70 32298.88 24889.71 33093.39 28296.12 350
LTVRE_ROB92.95 1594.60 24993.90 26496.68 22997.41 26994.42 23198.52 19098.59 14691.69 31091.21 34498.35 17884.87 28699.04 22191.06 30893.44 28196.60 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Syy-MVS92.55 32192.61 31192.38 36497.39 27083.41 39097.91 26897.46 30893.16 25893.42 29695.37 36984.75 29096.12 38577.00 39896.99 20497.60 251
myMVS_eth3d92.73 31892.01 32094.89 32297.39 27090.94 31997.91 26897.46 30893.16 25893.42 29695.37 36968.09 39196.12 38588.34 34896.99 20497.60 251
plane_prior197.37 272
plane_prior697.35 27394.61 22387.09 245
dp94.15 28593.90 26494.90 32197.31 27486.82 38296.97 34597.19 33091.22 32896.02 20996.61 33385.51 27499.02 22590.00 32694.30 25498.85 186
NP-MVS97.28 27594.51 22897.73 236
CostFormer94.95 23194.73 21295.60 29997.28 27589.06 35697.53 30596.89 35289.66 35596.82 17796.72 32686.05 26598.95 23895.53 17996.13 24098.79 191
VPA-MVSNet95.75 17895.11 19597.69 16297.24 27797.27 8798.94 9599.23 2095.13 15295.51 21997.32 27285.73 27098.91 24297.33 11089.55 33196.89 281
tpm294.19 28193.76 27795.46 30497.23 27889.04 35797.31 32396.85 35687.08 37496.21 20396.79 32383.75 31598.74 26292.43 27996.23 23798.59 213
EPMVS94.99 22694.48 22496.52 25097.22 27991.75 30597.23 32791.66 40694.11 20097.28 15596.81 32285.70 27198.84 25293.04 25897.28 19898.97 177
FMVSNet591.81 32690.92 32994.49 33797.21 28092.09 29898.00 25997.55 29989.31 36290.86 34895.61 36674.48 37995.32 39385.57 36789.70 32796.07 352
HQP-NCC97.20 28198.05 25396.43 9194.45 244
ACMP_Plane97.20 28198.05 25396.43 9194.45 244
HQP-MVS95.72 17995.40 17596.69 22897.20 28194.25 24198.05 25398.46 17996.43 9194.45 24497.73 23686.75 25198.96 23395.30 18594.18 25996.86 287
UniMVSNet_ETH3D94.24 27893.33 29696.97 20997.19 28493.38 27298.74 14798.57 15391.21 32993.81 28098.58 15572.85 38598.77 26195.05 19493.93 26998.77 197
OpenMVScopyleft93.04 1395.83 17595.00 19998.32 10897.18 28597.32 8599.21 3998.97 4289.96 34991.14 34599.05 9786.64 25399.92 3193.38 24799.47 10297.73 246
VPNet94.99 22694.19 24097.40 18397.16 28696.57 12298.71 15698.97 4295.67 12594.84 23298.24 19480.36 33698.67 26996.46 14487.32 35996.96 270
GA-MVS94.81 23794.03 25297.14 19697.15 28793.86 25096.76 36297.58 29194.00 20894.76 23797.04 30080.91 33198.48 28391.79 29396.25 23599.09 161
FIs96.51 14496.12 14797.67 16597.13 28897.54 7799.36 1399.22 2395.89 11294.03 27098.35 17891.98 13298.44 29096.40 14792.76 29197.01 267
131496.25 15795.73 16197.79 15097.13 28895.55 17398.19 23498.59 14693.47 24492.03 33697.82 23191.33 15099.49 16394.62 20798.44 16098.32 229
D2MVS95.18 21595.08 19695.48 30297.10 29092.07 29998.30 21999.13 3094.02 20592.90 31296.73 32589.48 18498.73 26394.48 21393.60 27795.65 361
DeepMVS_CXcopyleft86.78 37797.09 29172.30 40795.17 38675.92 40184.34 39095.19 37170.58 38795.35 39179.98 39189.04 34092.68 395
PAPM94.95 23194.00 25697.78 15197.04 29295.65 16896.03 37698.25 22391.23 32794.19 26297.80 23391.27 15398.86 25182.61 38497.61 19198.84 188
CR-MVSNet94.76 24094.15 24496.59 24097.00 29393.43 26794.96 38797.56 29492.46 28396.93 17096.24 34188.15 22297.88 34787.38 35696.65 21598.46 221
RPMNet92.81 31791.34 32797.24 18897.00 29393.43 26794.96 38798.80 9382.27 39496.93 17092.12 39886.98 24899.82 7676.32 39996.65 21598.46 221
UniMVSNet (Re)95.78 17795.19 19097.58 17296.99 29597.47 8198.79 14199.18 2595.60 12793.92 27497.04 30091.68 13898.48 28395.80 16887.66 35496.79 291
test_fmvs293.43 30393.58 28692.95 36196.97 29683.91 38799.19 4397.24 32795.74 12095.20 22698.27 19069.65 38898.72 26496.26 15193.73 27296.24 346
FC-MVSNet-test96.42 14796.05 14997.53 17596.95 29797.27 8799.36 1399.23 2095.83 11693.93 27398.37 17692.00 13198.32 30996.02 16092.72 29297.00 268
tfpnnormal93.66 29992.70 30996.55 24896.94 29895.94 15598.97 8699.19 2491.04 33191.38 34397.34 26984.94 28598.61 27385.45 36989.02 34195.11 370
TESTMET0.1,194.18 28493.69 28295.63 29796.92 29989.12 35596.91 35094.78 38893.17 25794.88 23196.45 33778.52 34898.92 24093.09 25598.50 15798.85 186
TinyColmap92.31 32491.53 32594.65 33296.92 29989.75 34396.92 34896.68 36190.45 34189.62 35997.85 22676.06 37298.81 25786.74 35992.51 29495.41 363
cascas94.63 24893.86 26896.93 21296.91 30194.27 23996.00 37798.51 16785.55 38494.54 24096.23 34384.20 30598.87 24995.80 16896.98 20797.66 249
nrg03096.28 15595.72 16297.96 14196.90 30298.15 5499.39 1098.31 20995.47 13394.42 24998.35 17892.09 12998.69 26597.50 10389.05 33997.04 266
MVS94.67 24693.54 28998.08 13296.88 30396.56 12398.19 23498.50 17278.05 39992.69 31998.02 20891.07 15999.63 13490.09 32198.36 16698.04 237
WR-MVS_H95.05 22294.46 22696.81 22196.86 30495.82 16499.24 3099.24 1793.87 21692.53 32496.84 32090.37 16998.24 31993.24 25187.93 35196.38 341
UniMVSNet_NR-MVSNet95.71 18095.15 19197.40 18396.84 30596.97 10198.74 14799.24 1795.16 15193.88 27697.72 23891.68 13898.31 31195.81 16687.25 36096.92 273
USDC93.33 30792.71 30895.21 31196.83 30690.83 32496.91 35097.50 30493.84 21790.72 34998.14 20077.69 35698.82 25689.51 33593.21 28695.97 354
WB-MVSnew94.19 28194.04 25094.66 33196.82 30792.14 29697.86 27895.96 37593.50 24295.64 21796.77 32488.06 22697.99 33784.87 37396.86 20893.85 390
test-LLR95.10 21994.87 20795.80 29096.77 30889.70 34596.91 35095.21 38395.11 15494.83 23495.72 36287.71 23498.97 22993.06 25698.50 15798.72 198
test-mter94.08 29293.51 29095.80 29096.77 30889.70 34596.91 35095.21 38392.89 27094.83 23495.72 36277.69 35698.97 22993.06 25698.50 15798.72 198
Patchmtry93.22 31092.35 31695.84 28996.77 30893.09 28694.66 39497.56 29487.37 37392.90 31296.24 34188.15 22297.90 34387.37 35790.10 32396.53 325
gg-mvs-nofinetune92.21 32590.58 33397.13 19796.75 31195.09 19795.85 37889.40 41185.43 38594.50 24281.98 40680.80 33498.40 30592.16 28198.33 16797.88 240
XXY-MVS95.20 21494.45 22897.46 17696.75 31196.56 12398.86 11798.65 13693.30 25293.27 30198.27 19084.85 28798.87 24994.82 20091.26 30996.96 270
CP-MVSNet94.94 23394.30 23496.83 21996.72 31395.56 17199.11 5898.95 4693.89 21492.42 32997.90 22087.19 24498.12 32694.32 21988.21 34896.82 290
PatchT93.06 31591.97 32196.35 26596.69 31492.67 29194.48 39797.08 33586.62 37597.08 16292.23 39787.94 22997.90 34378.89 39496.69 21398.49 219
PS-CasMVS94.67 24693.99 25896.71 22596.68 31595.26 18899.13 5599.03 3793.68 23392.33 33097.95 21685.35 27798.10 32793.59 24388.16 35096.79 291
WR-MVS95.15 21694.46 22697.22 18996.67 31696.45 12798.21 22998.81 8694.15 19993.16 30497.69 24187.51 23898.30 31395.29 18788.62 34596.90 280
baseline295.11 21894.52 22296.87 21796.65 31793.56 26198.27 22494.10 39793.45 24592.02 33797.43 26387.45 24299.19 19893.88 23497.41 19797.87 241
test_040291.32 33090.27 33694.48 33896.60 31891.12 31698.50 19697.22 32886.10 38088.30 37096.98 30777.65 35897.99 33778.13 39692.94 28894.34 379
TransMVSNet (Re)92.67 31991.51 32696.15 27396.58 31994.65 21898.90 10296.73 35890.86 33489.46 36297.86 22485.62 27298.09 32986.45 36181.12 38795.71 359
XVG-ACMP-BASELINE94.54 25594.14 24595.75 29396.55 32091.65 30898.11 24698.44 18394.96 16594.22 26097.90 22079.18 34599.11 21094.05 23093.85 27096.48 336
DU-MVS95.42 19794.76 21097.40 18396.53 32196.97 10198.66 16898.99 4195.43 13593.88 27697.69 24188.57 21198.31 31195.81 16687.25 36096.92 273
NR-MVSNet94.98 22894.16 24397.44 17896.53 32197.22 9498.74 14798.95 4694.96 16589.25 36397.69 24189.32 19098.18 32194.59 21087.40 35796.92 273
tpm94.13 28693.80 27295.12 31496.50 32387.91 37697.44 30995.89 37892.62 27996.37 20096.30 34084.13 30698.30 31393.24 25191.66 30499.14 155
pm-mvs193.94 29793.06 30196.59 24096.49 32495.16 19398.95 9298.03 26692.32 29291.08 34697.84 22784.54 29798.41 29992.16 28186.13 37296.19 349
JIA-IIPM93.35 30592.49 31395.92 28496.48 32590.65 32895.01 38696.96 34685.93 38196.08 20787.33 40387.70 23698.78 26091.35 30095.58 24998.34 227
TranMVSNet+NR-MVSNet95.14 21794.48 22497.11 20096.45 32696.36 13499.03 7399.03 3795.04 15993.58 28797.93 21788.27 21998.03 33394.13 22586.90 36596.95 272
testgi93.06 31592.45 31594.88 32396.43 32789.90 34098.75 14497.54 30095.60 12791.63 34297.91 21974.46 38097.02 36986.10 36393.67 27397.72 247
v1094.29 27593.55 28896.51 25196.39 32894.80 21498.99 8398.19 23091.35 32093.02 31096.99 30688.09 22498.41 29990.50 31788.41 34796.33 344
v894.47 26493.77 27596.57 24396.36 32994.83 21299.05 6798.19 23091.92 30393.16 30496.97 30888.82 20898.48 28391.69 29687.79 35296.39 340
GG-mvs-BLEND96.59 24096.34 33094.98 20396.51 37088.58 41293.10 30994.34 38380.34 33898.05 33289.53 33496.99 20496.74 296
V4294.78 23994.14 24596.70 22796.33 33195.22 19198.97 8698.09 25692.32 29294.31 25597.06 29688.39 21798.55 27892.90 26388.87 34396.34 342
PEN-MVS94.42 26793.73 27996.49 25296.28 33294.84 21099.17 4899.00 3993.51 24192.23 33297.83 23086.10 26497.90 34392.55 27486.92 36496.74 296
v114494.59 25193.92 26196.60 23996.21 33394.78 21698.59 17898.14 24491.86 30694.21 26197.02 30387.97 22898.41 29991.72 29589.57 32996.61 313
Baseline_NR-MVSNet94.35 27093.81 27195.96 28396.20 33494.05 24698.61 17796.67 36291.44 31693.85 27897.60 25088.57 21198.14 32494.39 21586.93 36395.68 360
MS-PatchMatch93.84 29893.63 28494.46 34096.18 33589.45 35097.76 28898.27 21892.23 29592.13 33497.49 25779.50 34298.69 26589.75 32999.38 11495.25 366
v2v48294.69 24194.03 25296.65 23096.17 33694.79 21598.67 16698.08 25792.72 27594.00 27197.16 28387.69 23798.45 28892.91 26288.87 34396.72 299
EPNet_dtu95.21 21394.95 20395.99 28096.17 33690.45 33298.16 24097.27 32596.77 7593.14 30798.33 18390.34 17098.42 29285.57 36798.81 14299.09 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS95.69 18395.33 18396.76 22396.16 33894.63 22098.43 20598.39 19396.64 8495.02 22998.78 13285.15 28299.05 21895.21 19194.20 25896.60 314
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v119294.32 27293.58 28696.53 24996.10 33994.45 22998.50 19698.17 23991.54 31394.19 26297.06 29686.95 24998.43 29190.14 32089.57 32996.70 303
v14894.29 27593.76 27795.91 28596.10 33992.93 28998.58 18097.97 26992.59 28193.47 29496.95 31288.53 21598.32 30992.56 27387.06 36296.49 334
v14419294.39 26993.70 28196.48 25496.06 34194.35 23598.58 18098.16 24191.45 31594.33 25497.02 30387.50 24098.45 28891.08 30789.11 33896.63 311
DTE-MVSNet93.98 29693.26 29996.14 27496.06 34194.39 23399.20 4198.86 7593.06 26391.78 33897.81 23285.87 26997.58 35990.53 31686.17 36996.46 338
v124094.06 29493.29 29896.34 26696.03 34393.90 24998.44 20398.17 23991.18 33094.13 26597.01 30586.05 26598.42 29289.13 34189.50 33396.70 303
APD_test188.22 35588.01 35488.86 37495.98 34474.66 40697.21 32996.44 36883.96 39086.66 38097.90 22060.95 40297.84 34982.73 38290.23 32194.09 385
v192192094.20 28093.47 29296.40 26395.98 34494.08 24598.52 19098.15 24291.33 32194.25 25897.20 28286.41 25998.42 29290.04 32589.39 33596.69 308
EU-MVSNet93.66 29994.14 24592.25 36795.96 34683.38 39198.52 19098.12 24694.69 17892.61 32198.13 20187.36 24396.39 38391.82 29290.00 32496.98 269
v7n94.19 28193.43 29496.47 25595.90 34794.38 23499.26 2798.34 20591.99 30192.76 31697.13 28488.31 21898.52 28189.48 33687.70 35396.52 328
gm-plane-assit95.88 34887.47 37889.74 35496.94 31399.19 19893.32 250
LF4IMVS93.14 31492.79 30794.20 34495.88 34888.67 36497.66 29697.07 33793.81 22091.71 33997.65 24577.96 35598.81 25791.47 29991.92 30095.12 369
PS-MVSNAJss96.43 14696.26 14396.92 21595.84 35095.08 19899.16 4998.50 17295.87 11493.84 27998.34 18294.51 8498.61 27396.88 12893.45 28097.06 265
pmmvs494.69 24193.99 25896.81 22195.74 35195.94 15597.40 31297.67 28590.42 34293.37 29897.59 25189.08 19898.20 32092.97 26091.67 30396.30 345
test_djsdf96.00 16495.69 16896.93 21295.72 35295.49 17699.47 798.40 19194.98 16394.58 23997.86 22489.16 19598.41 29996.91 12294.12 26396.88 282
SixPastTwentyTwo93.34 30692.86 30594.75 32895.67 35389.41 35298.75 14496.67 36293.89 21490.15 35698.25 19380.87 33298.27 31890.90 31290.64 31696.57 318
K. test v392.55 32191.91 32494.48 33895.64 35489.24 35399.07 6494.88 38794.04 20386.78 37897.59 25177.64 35997.64 35692.08 28389.43 33496.57 318
OurMVSNet-221017-094.21 27994.00 25694.85 32495.60 35589.22 35498.89 10697.43 31495.29 14492.18 33398.52 16382.86 31798.59 27693.46 24691.76 30196.74 296
mvs_tets95.41 19995.00 19996.65 23095.58 35694.42 23199.00 8098.55 15895.73 12293.21 30398.38 17583.45 31698.63 27197.09 11594.00 26696.91 278
MonoMVSNet95.51 19095.45 17495.68 29495.54 35790.87 32198.92 9997.37 31995.79 11895.53 21897.38 26889.58 18297.68 35496.40 14792.59 29398.49 219
Gipumacopyleft78.40 37276.75 37583.38 38595.54 35780.43 39779.42 41097.40 31664.67 40773.46 40480.82 40845.65 40793.14 40266.32 40687.43 35676.56 410
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 194.08 29293.51 29095.80 29095.53 35992.89 29097.38 31495.97 37495.11 15492.51 32696.66 32887.71 23496.94 37187.03 35893.67 27397.57 253
pmmvs593.65 30192.97 30495.68 29495.49 36092.37 29398.20 23197.28 32489.66 35592.58 32297.26 27582.14 32098.09 32993.18 25490.95 31496.58 316
test_fmvsmconf0.01_n97.86 7197.54 8198.83 6995.48 36196.83 10898.95 9298.60 14298.58 598.93 5999.55 688.57 21199.91 3999.54 1199.61 7599.77 26
N_pmnet87.12 36087.77 35885.17 38095.46 36261.92 41697.37 31670.66 42185.83 38288.73 36996.04 35185.33 27997.76 35280.02 38990.48 31795.84 356
our_test_393.65 30193.30 29794.69 32995.45 36389.68 34796.91 35097.65 28691.97 30291.66 34196.88 31689.67 18197.93 34288.02 35291.49 30596.48 336
ppachtmachnet_test93.22 31092.63 31094.97 31995.45 36390.84 32396.88 35697.88 27690.60 33792.08 33597.26 27588.08 22597.86 34885.12 37290.33 31896.22 347
jajsoiax95.45 19595.03 19896.73 22495.42 36594.63 22099.14 5298.52 16595.74 12093.22 30298.36 17783.87 31298.65 27096.95 12194.04 26496.91 278
dmvs_testset87.64 35788.93 34983.79 38395.25 36663.36 41597.20 33091.17 40793.07 26285.64 38695.98 35585.30 28191.52 40569.42 40487.33 35896.49 334
MDA-MVSNet-bldmvs89.97 34588.35 35194.83 32695.21 36791.34 31297.64 29897.51 30388.36 36971.17 40796.13 34879.22 34496.63 38083.65 38086.27 36896.52 328
dongtai82.47 36581.88 36884.22 38295.19 36876.03 39994.59 39674.14 42082.63 39287.19 37696.09 34964.10 39887.85 41058.91 40884.11 37788.78 402
anonymousdsp95.42 19794.91 20496.94 21195.10 36995.90 16199.14 5298.41 18993.75 22293.16 30497.46 25987.50 24098.41 29995.63 17694.03 26596.50 333
EPNet97.28 10996.87 11598.51 9094.98 37096.14 14498.90 10297.02 34398.28 1095.99 21099.11 8491.36 14899.89 4796.98 11899.19 12299.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo94.28 27793.92 26195.35 30894.95 37192.60 29297.97 26297.65 28691.61 31290.68 35097.09 28986.32 26198.42 29289.70 33199.34 11695.02 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lessismore_v094.45 34194.93 37288.44 36991.03 40886.77 37997.64 24776.23 37098.42 29290.31 31985.64 37396.51 331
MDA-MVSNet_test_wron90.71 33989.38 34494.68 33094.83 37390.78 32597.19 33297.46 30887.60 37172.41 40695.72 36286.51 25496.71 37885.92 36586.80 36696.56 320
EGC-MVSNET75.22 37569.54 37892.28 36694.81 37489.58 34897.64 29896.50 3661.82 4185.57 41995.74 35868.21 39096.26 38473.80 40191.71 30290.99 396
YYNet190.70 34089.39 34394.62 33394.79 37590.65 32897.20 33097.46 30887.54 37272.54 40595.74 35886.51 25496.66 37986.00 36486.76 36796.54 323
EG-PatchMatch MVS91.13 33590.12 33894.17 34694.73 37689.00 35898.13 24397.81 27989.22 36385.32 38896.46 33667.71 39398.42 29287.89 35593.82 27195.08 371
pmmvs691.77 32790.63 33295.17 31394.69 37791.24 31598.67 16697.92 27486.14 37989.62 35997.56 25575.79 37398.34 30690.75 31484.56 37495.94 355
MVStest189.53 35087.99 35594.14 34894.39 37890.42 33398.25 22696.84 35782.81 39181.18 39697.33 27177.09 36596.94 37185.27 37178.79 39595.06 372
new_pmnet90.06 34489.00 34893.22 35894.18 37988.32 37196.42 37296.89 35286.19 37885.67 38593.62 38677.18 36397.10 36881.61 38689.29 33694.23 381
DSMNet-mixed92.52 32392.58 31292.33 36594.15 38082.65 39398.30 21994.26 39489.08 36492.65 32095.73 36085.01 28495.76 38986.24 36297.76 18698.59 213
m2depth92.61 32091.96 32394.55 33494.10 38190.60 33098.52 19097.29 32292.67 27790.18 35497.92 21879.75 34197.79 35091.09 30586.15 37195.26 365
UnsupCasMVSNet_eth90.99 33789.92 34094.19 34594.08 38289.83 34197.13 33998.67 12993.69 23185.83 38496.19 34675.15 37596.74 37589.14 34079.41 39496.00 353
KD-MVS_2432*160089.61 34887.96 35694.54 33594.06 38391.59 30995.59 38297.63 28889.87 35188.95 36594.38 38178.28 35196.82 37384.83 37468.05 40795.21 367
miper_refine_blended89.61 34887.96 35694.54 33594.06 38391.59 30995.59 38297.63 28889.87 35188.95 36594.38 38178.28 35196.82 37384.83 37468.05 40795.21 367
Anonymous2023120691.66 32891.10 32893.33 35594.02 38587.35 37998.58 18097.26 32690.48 33990.16 35596.31 33983.83 31396.53 38179.36 39289.90 32596.12 350
Anonymous2024052191.18 33490.44 33493.42 35293.70 38688.47 36898.94 9597.56 29488.46 36889.56 36195.08 37477.15 36496.97 37083.92 37989.55 33194.82 376
test20.0390.89 33890.38 33592.43 36393.48 38788.14 37498.33 21297.56 29493.40 24787.96 37196.71 32780.69 33594.13 39879.15 39386.17 36995.01 375
CMPMVSbinary66.06 2189.70 34689.67 34289.78 37293.19 38876.56 39897.00 34498.35 20280.97 39681.57 39497.75 23574.75 37798.61 27389.85 32793.63 27594.17 383
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft86.42 2089.00 35287.43 36093.69 35093.08 38989.42 35197.91 26896.89 35278.58 39885.86 38394.69 37669.48 38998.29 31677.13 39793.29 28593.36 392
KD-MVS_self_test90.38 34189.38 34493.40 35492.85 39088.94 36197.95 26397.94 27290.35 34490.25 35393.96 38479.82 33995.94 38884.62 37876.69 40195.33 364
MIMVSNet189.67 34788.28 35293.82 34992.81 39191.08 31798.01 25797.45 31287.95 37087.90 37295.87 35667.63 39494.56 39778.73 39588.18 34995.83 357
kuosan78.45 37177.69 37280.72 39092.73 39275.32 40394.63 39574.51 41975.96 40080.87 39893.19 39163.23 40079.99 41442.56 41481.56 38686.85 406
mvs5depth91.23 33390.17 33794.41 34292.09 39389.79 34295.26 38596.50 36690.73 33591.69 34097.06 29676.12 37198.62 27288.02 35284.11 37794.82 376
UnsupCasMVSNet_bld87.17 35885.12 36593.31 35691.94 39488.77 36294.92 38998.30 21584.30 38982.30 39290.04 40063.96 39997.25 36685.85 36674.47 40593.93 389
CL-MVSNet_self_test90.11 34389.14 34693.02 36091.86 39588.23 37396.51 37098.07 25990.49 33890.49 35294.41 37984.75 29095.34 39280.79 38874.95 40395.50 362
Patchmatch-RL test91.49 32990.85 33093.41 35391.37 39684.40 38592.81 40195.93 37791.87 30587.25 37494.87 37588.99 20096.53 38192.54 27582.00 38299.30 126
test_fmvs387.17 35887.06 36187.50 37691.21 39775.66 40199.05 6796.61 36592.79 27488.85 36792.78 39343.72 40893.49 39993.95 23184.56 37493.34 393
pmmvs-eth3d90.36 34289.05 34794.32 34391.10 39892.12 29797.63 30196.95 34788.86 36684.91 38993.13 39278.32 35096.74 37588.70 34481.81 38494.09 385
PM-MVS87.77 35686.55 36291.40 37091.03 39983.36 39296.92 34895.18 38591.28 32586.48 38293.42 38853.27 40596.74 37589.43 33781.97 38394.11 384
new-patchmatchnet88.50 35487.45 35991.67 36990.31 40085.89 38497.16 33797.33 32089.47 35883.63 39192.77 39476.38 36895.06 39582.70 38377.29 40094.06 387
mvsany_test388.80 35388.04 35391.09 37189.78 40181.57 39697.83 28395.49 38193.81 22087.53 37393.95 38556.14 40497.43 36394.68 20383.13 37994.26 380
WB-MVS84.86 36385.33 36483.46 38489.48 40269.56 41098.19 23496.42 36989.55 35781.79 39394.67 37784.80 28890.12 40652.44 41080.64 39190.69 397
test_f86.07 36285.39 36388.10 37589.28 40375.57 40297.73 29196.33 37089.41 36185.35 38791.56 39943.31 41095.53 39091.32 30184.23 37693.21 394
SSC-MVS84.27 36484.71 36782.96 38889.19 40468.83 41198.08 25096.30 37189.04 36581.37 39594.47 37884.60 29589.89 40749.80 41279.52 39390.15 398
pmmvs386.67 36184.86 36692.11 36888.16 40587.19 38196.63 36694.75 38979.88 39787.22 37592.75 39566.56 39695.20 39481.24 38776.56 40293.96 388
testf179.02 36877.70 37082.99 38688.10 40666.90 41294.67 39293.11 40071.08 40474.02 40293.41 38934.15 41493.25 40072.25 40278.50 39788.82 400
APD_test279.02 36877.70 37082.99 38688.10 40666.90 41294.67 39293.11 40071.08 40474.02 40293.41 38934.15 41493.25 40072.25 40278.50 39788.82 400
ambc89.49 37386.66 40875.78 40092.66 40296.72 35986.55 38192.50 39646.01 40697.90 34390.32 31882.09 38194.80 378
test_vis3_rt79.22 36677.40 37384.67 38186.44 40974.85 40597.66 29681.43 41684.98 38667.12 40981.91 40728.09 41897.60 35788.96 34280.04 39281.55 407
test_method79.03 36778.17 36981.63 38986.06 41054.40 42182.75 40996.89 35239.54 41380.98 39795.57 36758.37 40394.73 39684.74 37778.61 39695.75 358
TDRefinement91.06 33689.68 34195.21 31185.35 41191.49 31198.51 19597.07 33791.47 31488.83 36897.84 22777.31 36099.09 21592.79 26677.98 39995.04 373
PMMVS277.95 37375.44 37785.46 37982.54 41274.95 40494.23 39993.08 40272.80 40374.68 40187.38 40236.36 41391.56 40473.95 40063.94 40989.87 399
E-PMN64.94 37964.25 38167.02 39682.28 41359.36 41991.83 40485.63 41352.69 41060.22 41177.28 41041.06 41180.12 41346.15 41341.14 41161.57 412
EMVS64.07 38063.26 38366.53 39781.73 41458.81 42091.85 40384.75 41451.93 41259.09 41275.13 41143.32 40979.09 41542.03 41539.47 41261.69 411
FPMVS77.62 37477.14 37479.05 39279.25 41560.97 41795.79 37995.94 37665.96 40667.93 40894.40 38037.73 41288.88 40968.83 40588.46 34687.29 403
wuyk23d30.17 38230.18 38630.16 39878.61 41643.29 42366.79 41114.21 42217.31 41514.82 41811.93 41811.55 42141.43 41737.08 41619.30 4155.76 415
LCM-MVSNet78.70 37076.24 37686.08 37877.26 41771.99 40894.34 39896.72 35961.62 40876.53 40089.33 40133.91 41692.78 40381.85 38574.60 40493.46 391
MVEpermissive62.14 2263.28 38159.38 38474.99 39374.33 41865.47 41485.55 40780.50 41752.02 41151.10 41375.00 41210.91 42280.50 41251.60 41153.40 41078.99 408
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high69.08 37665.37 38080.22 39165.99 41971.96 40990.91 40590.09 41082.62 39349.93 41478.39 40929.36 41781.75 41162.49 40738.52 41386.95 405
PMVScopyleft61.03 2365.95 37863.57 38273.09 39557.90 42051.22 42285.05 40893.93 39854.45 40944.32 41583.57 40413.22 41989.15 40858.68 40981.00 38878.91 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt68.90 37766.97 37974.68 39450.78 42159.95 41887.13 40683.47 41538.80 41462.21 41096.23 34364.70 39776.91 41688.91 34330.49 41487.19 404
testmvs21.48 38424.95 38711.09 40014.89 4226.47 42596.56 3689.87 4237.55 41617.93 41639.02 4149.43 4235.90 41916.56 41812.72 41620.91 414
test12320.95 38523.72 38812.64 39913.54 4238.19 42496.55 3696.13 4247.48 41716.74 41737.98 41512.97 4206.05 41816.69 4175.43 41723.68 413
test_blank0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
eth-test20.00 424
eth-test0.00 424
uanet_test0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
DCPMVS0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
cdsmvs_eth3d_5k23.98 38331.98 3850.00 4010.00 4240.00 4260.00 41298.59 1460.00 4190.00 42098.61 15090.60 1660.00 4200.00 4190.00 4180.00 416
pcd_1.5k_mvsjas7.88 38710.50 3900.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 41994.51 840.00 4200.00 4190.00 4180.00 416
sosnet-low-res0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
sosnet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
uncertanet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
Regformer0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
ab-mvs-re8.20 38610.94 3890.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 42098.43 1680.00 4240.00 4200.00 4190.00 4180.00 416
uanet0.00 3880.00 3910.00 4010.00 4240.00 4260.00 4120.00 4250.00 4190.00 4200.00 4190.00 4240.00 4200.00 4190.00 4180.00 416
WAC-MVS90.94 31988.66 345
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 28697.52 10299.72 5499.74 36
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 998.43 4599.80 2199.83 12
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 998.47 4199.86 299.85 9
GSMVS99.20 142
sam_mvs189.45 18799.20 142
sam_mvs88.99 200
MTGPAbinary98.74 108
test_post196.68 36530.43 41787.85 23398.69 26592.59 271
test_post31.83 41688.83 20798.91 242
patchmatchnet-post95.10 37389.42 18898.89 246
MTMP98.89 10694.14 396
test9_res96.39 14999.57 8399.69 56
agg_prior295.87 16599.57 8399.68 61
test_prior498.01 6197.86 278
test_prior297.80 28596.12 10597.89 12898.69 14495.96 3896.89 12699.60 77
旧先验297.57 30491.30 32398.67 7699.80 8895.70 174
新几何297.64 298
无先验97.58 30398.72 11391.38 31799.87 5893.36 24999.60 77
原ACMM297.67 295
testdata299.89 4791.65 297
segment_acmp96.85 14
testdata197.32 32296.34 97
plane_prior598.56 15699.03 22296.07 15594.27 25596.92 273
plane_prior498.28 187
plane_prior394.61 22397.02 6495.34 221
plane_prior298.80 13697.28 45
plane_prior94.60 22598.44 20396.74 7894.22 257
n20.00 425
nn0.00 425
door-mid94.37 392
test1198.66 132
door94.64 390
HQP5-MVS94.25 241
BP-MVS95.30 185
HQP4-MVS94.45 24498.96 23396.87 285
HQP3-MVS98.46 17994.18 259
HQP2-MVS86.75 251
MDTV_nov1_ep13_2view84.26 38696.89 35590.97 33297.90 12789.89 17793.91 23399.18 151
ACMMP++_ref92.97 287
ACMMP++93.61 276
Test By Simon94.64 81