This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6465.37 1378.78 2290.64 1858.63 2587.24 5279.00 1290.37 1485.26 128
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3666.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 57
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 41
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 20
IU-MVS87.77 459.15 6085.53 2653.93 22784.64 379.07 1190.87 588.37 16
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3664.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 117
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
test_part287.58 960.47 4283.42 12
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 20
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3084.42 4466.73 874.67 5589.38 4955.30 4689.18 2174.19 4687.34 4486.38 76
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 14
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 31
No_MVS79.95 487.24 1461.04 3185.62 2490.96 179.31 990.65 887.85 31
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 4962.81 5773.30 7190.58 2049.90 11188.21 3473.78 5087.03 4686.29 87
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4762.82 5573.55 6990.56 2149.80 11388.24 3374.02 4887.03 4686.32 84
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4662.82 5573.96 6490.50 2353.20 7288.35 3174.02 4887.05 4586.13 90
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16474.91 4888.19 6259.15 2387.68 4873.67 5187.45 4386.57 73
ZD-MVS86.64 2160.38 4382.70 8957.95 14978.10 2490.06 3656.12 4288.84 2674.05 4787.00 49
APDe-MVScopyleft80.16 880.59 678.86 2986.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1678.70 1388.32 3186.79 65
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3789.70 1779.85 591.48 188.19 22
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DP-MVS Recon72.15 9170.73 10376.40 6086.57 2457.99 7981.15 8782.96 8457.03 16166.78 17785.56 12644.50 18288.11 3851.77 21880.23 11483.10 197
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 6863.89 3773.60 6890.60 1954.85 5186.72 6677.20 2588.06 3685.74 107
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS76.54 3775.93 4178.34 3686.47 2663.50 385.74 2582.28 9362.90 5271.77 9890.26 3146.61 15886.55 7271.71 6585.66 6184.97 138
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4560.61 9179.05 2190.30 3055.54 4588.32 3273.48 5387.03 4684.83 141
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZNCC-MVS78.82 1378.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4390.47 2553.96 6188.68 2776.48 2889.63 2087.16 55
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5464.55 2372.17 9590.01 4047.95 13388.01 4071.55 6786.74 5386.37 78
X-MVStestdata70.21 12367.28 17279.00 2386.32 2962.62 1185.83 2283.92 5464.55 2372.17 956.49 41347.95 13388.01 4071.55 6786.74 5386.37 78
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2263.71 1289.23 2081.51 288.44 2788.09 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
114514_t70.83 11069.56 12274.64 9186.21 3154.63 13682.34 7081.81 10048.22 29663.01 24685.83 12240.92 22087.10 5857.91 16679.79 11682.18 214
save fliter86.17 3361.30 2883.98 4779.66 14559.00 126
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3284.85 4061.98 7473.06 8188.88 5553.72 6689.06 2368.27 8088.04 3787.42 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS76.77 3576.06 3978.88 2886.14 3562.73 982.55 6783.74 6361.71 7672.45 9490.34 2948.48 12988.13 3772.32 5986.85 5185.78 101
FOURS186.12 3660.82 3788.18 183.61 6660.87 8681.50 16
MTAPA76.90 3476.42 3678.35 3586.08 3763.57 274.92 20980.97 12765.13 1575.77 3690.88 1648.63 12686.66 6877.23 2488.17 3384.81 142
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 3063.56 4174.29 6190.03 3852.56 7888.53 2974.79 4288.34 2986.63 72
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7162.44 6472.68 8890.50 2348.18 13187.34 5173.59 5285.71 6084.76 145
SR-MVS76.13 4375.70 4477.40 4885.87 4061.20 2985.52 2782.19 9459.99 10875.10 4290.35 2847.66 13886.52 7371.64 6682.99 8084.47 151
新几何170.76 19685.66 4161.13 3066.43 30644.68 33270.29 11186.64 9241.29 21575.23 28649.72 23381.75 10075.93 303
MG-MVS73.96 6573.89 6374.16 10685.65 4249.69 21781.59 8281.29 11761.45 7871.05 10588.11 6351.77 9387.73 4761.05 14683.09 7885.05 134
TEST985.58 4361.59 2481.62 8081.26 11855.65 19374.93 4688.81 5653.70 6784.68 118
train_agg76.27 4076.15 3876.64 5785.58 4361.59 2481.62 8081.26 11855.86 18574.93 4688.81 5653.70 6784.68 11875.24 3888.33 3083.65 182
ACMMP_NAP78.77 1578.78 1478.74 3085.44 4561.04 3183.84 4985.16 3162.88 5378.10 2491.26 1352.51 7988.39 3079.34 890.52 1386.78 66
test_885.40 4660.96 3481.54 8381.18 12155.86 18574.81 5188.80 5853.70 6784.45 122
原ACMM174.69 8785.39 4759.40 5483.42 7251.47 25370.27 11286.61 9548.61 12786.51 7453.85 20087.96 3978.16 275
CDPH-MVS76.31 3975.67 4578.22 3785.35 4859.14 6281.31 8584.02 5056.32 17774.05 6288.98 5453.34 7187.92 4369.23 7888.42 2887.59 42
ACMMPcopyleft76.02 4475.33 4878.07 3885.20 4961.91 2085.49 2984.44 4363.04 4969.80 12389.74 4645.43 17187.16 5672.01 6282.87 8585.14 130
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
agg_prior85.04 5059.96 4781.04 12574.68 5484.04 128
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3362.57 6073.09 8089.97 4150.90 10687.48 5075.30 3686.85 5187.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVS-pluss78.35 2078.46 1778.03 4084.96 5259.52 5382.93 5985.39 2762.15 6776.41 3491.51 1152.47 8186.78 6580.66 489.64 1987.80 34
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.78.44 1978.28 1978.90 2784.96 5261.41 2684.03 4583.82 6259.34 12279.37 1989.76 4559.84 1687.62 4976.69 2786.74 5387.68 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
AdaColmapbinary69.99 12768.66 14073.97 11084.94 5457.83 8182.63 6578.71 16356.28 17964.34 22584.14 15141.57 21087.06 6046.45 26178.88 13277.02 293
DP-MVS65.68 21663.66 22771.75 16984.93 5556.87 9980.74 9273.16 25453.06 23459.09 29482.35 18836.79 26485.94 8732.82 35669.96 25572.45 339
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2862.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 24
CPTT-MVS72.78 7672.08 8174.87 8584.88 5761.41 2684.15 4377.86 18455.27 20067.51 16688.08 6541.93 20581.85 17769.04 7980.01 11581.35 230
test1277.76 4384.52 5858.41 7583.36 7572.93 8454.61 5488.05 3988.12 3486.81 64
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 5960.37 9879.89 1889.38 4954.97 4985.58 9576.12 3184.94 6486.33 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast74.30 6373.46 6876.80 5284.45 6059.04 6683.65 5281.05 12460.15 10570.43 10989.84 4341.09 21985.59 9467.61 8982.90 8485.77 104
test_prior76.69 5384.20 6157.27 8884.88 3986.43 7686.38 76
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8975.27 4084.83 13560.76 1586.56 7167.86 8587.87 4186.06 92
DeepC-MVS69.38 278.56 1778.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6690.25 3257.68 2989.96 1574.62 4389.03 2287.89 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net73.13 7172.93 7273.76 11683.58 6451.66 18778.75 11677.66 18867.75 472.61 9089.42 4749.82 11283.29 14353.61 20283.14 7786.32 84
SR-MVS-dyc-post74.57 5973.90 6276.58 5883.49 6559.87 4984.29 3781.36 11158.07 14473.14 7790.07 3444.74 17885.84 8968.20 8181.76 9884.03 161
RE-MVS-def73.71 6683.49 6559.87 4984.29 3781.36 11158.07 14473.14 7790.07 3443.06 19468.20 8181.76 9884.03 161
LFMVS71.78 9471.59 8472.32 15983.40 6746.38 25579.75 10671.08 26864.18 3272.80 8688.64 5942.58 19883.72 13557.41 17084.49 6886.86 62
test22283.14 6858.68 7372.57 24963.45 32841.78 35367.56 16586.12 11137.13 25978.73 13774.98 315
9.1478.75 1583.10 6984.15 4388.26 159.90 10978.57 2390.36 2757.51 3286.86 6377.39 2389.52 21
旧先验183.04 7053.15 15867.52 29687.85 7144.08 18580.76 10478.03 280
MSLP-MVS++73.77 6773.47 6774.66 8983.02 7159.29 5882.30 7481.88 9859.34 12271.59 10186.83 8545.94 16283.65 13765.09 11085.22 6381.06 237
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1554.26 5690.06 1478.42 1989.02 2387.69 37
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR74.02 6473.46 6875.69 7183.01 7260.63 4077.29 15478.40 17861.18 8370.58 10885.97 11754.18 5884.00 13167.52 9082.98 8282.45 209
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8184.99 3188.13 261.86 7579.16 2090.75 1757.96 2687.09 5977.08 2690.18 1587.87 30
VDDNet71.81 9371.33 9273.26 14182.80 7547.60 24678.74 11775.27 22459.59 11872.94 8389.40 4841.51 21383.91 13258.75 16482.99 8088.26 18
3Dnovator+66.72 475.84 4674.57 5679.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16089.24 5142.03 20389.38 1964.07 11786.50 5789.69 2
dcpmvs_274.55 6075.23 5072.48 15482.34 7753.34 15577.87 13681.46 10757.80 15475.49 3886.81 8662.22 1377.75 25371.09 6982.02 9486.34 80
APD-MVS_3200maxsize74.96 5174.39 5876.67 5582.20 7858.24 7783.67 5183.29 7858.41 13873.71 6790.14 3345.62 16485.99 8569.64 7482.85 8685.78 101
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5373.19 177.08 3191.21 1457.23 3390.73 1083.35 188.12 3489.22 5
PVSNet_Blended_VisFu71.45 10270.39 10974.65 9082.01 8058.82 7179.93 10280.35 13855.09 20565.82 19982.16 19549.17 12082.64 16360.34 15178.62 13982.50 208
TSAR-MVS + GP.74.90 5274.15 6077.17 4982.00 8158.77 7281.80 7778.57 16758.58 13574.32 6084.51 14655.94 4387.22 5367.11 9384.48 6985.52 113
h-mvs3372.71 7871.49 8776.40 6081.99 8259.58 5276.92 16476.74 20460.40 9574.81 5185.95 11845.54 16785.76 9170.41 7270.61 24083.86 170
API-MVS72.17 8871.41 8974.45 9881.95 8357.22 8984.03 4580.38 13759.89 11268.40 14382.33 18949.64 11487.83 4651.87 21684.16 7378.30 273
MAR-MVS71.51 9970.15 11575.60 7581.84 8459.39 5581.38 8482.90 8654.90 21268.08 15278.70 25947.73 13685.51 9751.68 22084.17 7281.88 220
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
balanced_conf0376.58 3676.55 3576.68 5481.73 8552.90 16480.94 8885.70 2361.12 8474.90 4987.17 8256.46 3888.14 3672.87 5688.03 3889.00 7
PAPM_NR72.63 7971.80 8275.13 8281.72 8653.42 15479.91 10383.28 7959.14 12466.31 18885.90 11951.86 9186.06 8257.45 16980.62 10585.91 97
VDD-MVS72.50 8072.09 8073.75 11881.58 8749.69 21777.76 14177.63 18963.21 4773.21 7489.02 5342.14 20283.32 14261.72 14182.50 8988.25 19
PS-MVSNAJ70.51 11669.70 12172.93 14581.52 8855.79 11674.92 20979.00 15655.04 21069.88 12178.66 26147.05 15182.19 17161.61 14279.58 12080.83 241
testdata64.66 28381.52 8852.93 16365.29 31446.09 32173.88 6587.46 7638.08 24866.26 33653.31 20578.48 14074.78 319
CHOSEN 1792x268865.08 22762.84 23971.82 16781.49 9056.26 10566.32 30974.20 24540.53 36363.16 24278.65 26241.30 21477.80 25245.80 26774.09 18981.40 227
HQP_MVS74.31 6273.73 6576.06 6481.41 9156.31 10284.22 4084.01 5164.52 2569.27 13186.10 11245.26 17587.21 5468.16 8380.58 10784.65 146
plane_prior781.41 9155.96 111
DPM-MVS75.47 5075.00 5176.88 5181.38 9359.16 5979.94 10185.71 2256.59 17272.46 9286.76 8756.89 3587.86 4566.36 9888.91 2583.64 183
CANet76.46 3875.93 4178.06 3981.29 9457.53 8582.35 6983.31 7767.78 370.09 11386.34 10554.92 5088.90 2572.68 5884.55 6787.76 36
Vis-MVSNetpermissive72.18 8771.37 9174.61 9281.29 9455.41 12680.90 8978.28 18060.73 9069.23 13488.09 6444.36 18482.65 16257.68 16781.75 10085.77 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
plane_prior181.27 96
xiu_mvs_v2_base70.52 11569.75 11972.84 14781.21 9755.63 12075.11 20278.92 15854.92 21169.96 12079.68 24447.00 15582.09 17361.60 14379.37 12380.81 242
plane_prior681.20 9856.24 10645.26 175
PAPR71.72 9770.82 10174.41 9981.20 9851.17 18979.55 11183.33 7655.81 18866.93 17684.61 14250.95 10486.06 8255.79 18179.20 12886.00 93
PLCcopyleft56.13 1465.09 22663.21 23570.72 19881.04 10054.87 13478.57 12277.47 19148.51 29255.71 32281.89 20133.71 29279.71 21941.66 30770.37 24477.58 284
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
NP-MVS80.98 10156.05 11085.54 129
MVSMamba_PlusPlus75.75 4875.44 4676.67 5580.84 10253.06 16178.62 12085.13 3259.65 11471.53 10287.47 7556.92 3488.17 3572.18 6186.63 5688.80 8
OPM-MVS74.73 5574.25 5976.19 6380.81 10359.01 6782.60 6683.64 6563.74 3972.52 9187.49 7447.18 14985.88 8869.47 7680.78 10383.66 181
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_030478.45 1878.28 1978.98 2680.73 10457.91 8084.68 3381.64 10368.35 275.77 3690.38 2653.98 5990.26 1381.30 387.68 4288.77 9
HQP-NCC80.66 10582.31 7162.10 6867.85 155
ACMP_Plane80.66 10582.31 7162.10 6867.85 155
HQP-MVS73.45 6872.80 7375.40 7780.66 10554.94 13182.31 7183.90 5662.10 6867.85 15585.54 12945.46 16986.93 6167.04 9480.35 11184.32 153
CS-MVS-test75.62 4975.31 4976.56 5980.63 10855.13 13083.88 4885.22 2962.05 7171.49 10386.03 11553.83 6386.36 7967.74 8686.91 5088.19 22
PHI-MVS75.87 4575.36 4777.41 4680.62 10955.91 11384.28 3985.78 2056.08 18373.41 7086.58 9750.94 10588.54 2870.79 7089.71 1787.79 35
ACMM61.98 770.80 11269.73 12074.02 10880.59 11058.59 7482.68 6482.02 9755.46 19767.18 17184.39 14838.51 24083.17 14660.65 14976.10 17280.30 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121169.28 14868.47 14571.73 17080.28 11147.18 25079.98 10082.37 9254.61 21567.24 16984.01 15539.43 23082.41 16955.45 18672.83 21385.62 111
ACMP63.53 672.30 8571.20 9575.59 7680.28 11157.54 8482.74 6382.84 8860.58 9265.24 21186.18 10939.25 23386.03 8466.95 9676.79 16583.22 191
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test72.74 7771.74 8375.76 6880.22 11357.51 8682.55 6783.40 7361.32 7966.67 18187.33 7839.15 23586.59 6967.70 8777.30 15883.19 193
LGP-MVS_train75.76 6880.22 11357.51 8683.40 7361.32 7966.67 18187.33 7839.15 23586.59 6967.70 8777.30 15883.19 193
WR-MVS68.47 16568.47 14568.44 23580.20 11539.84 31773.75 23476.07 21164.68 2268.11 15183.63 16350.39 10979.14 23349.78 23069.66 26386.34 80
Anonymous2024052969.91 12969.02 13272.56 15280.19 11647.65 24477.56 14580.99 12655.45 19869.88 12186.76 8739.24 23482.18 17254.04 19777.10 16287.85 31
Anonymous20240521166.84 20165.99 20069.40 22280.19 11642.21 29871.11 27171.31 26758.80 12967.90 15386.39 10429.83 33079.65 22049.60 23678.78 13586.33 82
CS-MVS76.25 4175.98 4077.06 5080.15 11855.63 12084.51 3583.90 5663.24 4573.30 7187.27 8055.06 4886.30 8171.78 6484.58 6689.25 4
BH-RMVSNet68.81 15567.42 16672.97 14480.11 11952.53 17374.26 22176.29 20758.48 13768.38 14484.20 14942.59 19783.83 13346.53 26075.91 17382.56 204
test_040263.25 24761.01 26269.96 20980.00 12054.37 14076.86 16772.02 26354.58 21758.71 29780.79 22635.00 27784.36 12326.41 38964.71 30771.15 358
HyFIR lowres test65.67 21763.01 23773.67 12379.97 12155.65 11969.07 29275.52 21942.68 35163.53 23677.95 27140.43 22281.64 18046.01 26571.91 22683.73 177
EIA-MVS71.78 9470.60 10575.30 8079.85 12253.54 15177.27 15583.26 8057.92 15066.49 18379.39 25152.07 8886.69 6760.05 15379.14 13085.66 109
BH-untuned68.27 16967.29 17171.21 18679.74 12353.22 15776.06 18277.46 19357.19 15966.10 19081.61 20745.37 17383.50 14045.42 27676.68 16776.91 297
VNet69.68 13670.19 11468.16 23879.73 12441.63 30570.53 27777.38 19460.37 9870.69 10786.63 9451.08 10277.09 26453.61 20281.69 10285.75 106
LS3D64.71 22962.50 24371.34 18479.72 12555.71 11779.82 10474.72 23548.50 29356.62 31584.62 14133.59 29582.34 17029.65 37775.23 18175.97 302
mvsmamba68.47 16566.56 18374.21 10579.60 12652.95 16274.94 20875.48 22052.09 24560.10 27883.27 16936.54 26584.70 11759.32 16377.69 15084.99 137
hse-mvs271.04 10569.86 11874.60 9379.58 12757.12 9673.96 22675.25 22560.40 9574.81 5181.95 20045.54 16782.90 15170.41 7266.83 29283.77 175
GeoE71.01 10670.15 11573.60 12979.57 12852.17 17978.93 11578.12 18158.02 14667.76 16383.87 15852.36 8382.72 16056.90 17275.79 17585.92 96
AUN-MVS68.45 16766.41 19074.57 9579.53 12957.08 9773.93 22975.23 22654.44 22066.69 18081.85 20237.10 26082.89 15262.07 13766.84 29183.75 176
test250665.33 22364.61 21667.50 24379.46 13034.19 37174.43 22051.92 37758.72 13066.75 17988.05 6625.99 35980.92 19951.94 21584.25 7087.39 48
ECVR-MVScopyleft67.72 18267.51 16368.35 23679.46 13036.29 35674.79 21266.93 30258.72 13067.19 17088.05 6636.10 26781.38 18652.07 21384.25 7087.39 48
BH-w/o66.85 20065.83 20269.90 21379.29 13252.46 17574.66 21576.65 20554.51 21964.85 22078.12 26745.59 16682.95 15043.26 29375.54 17974.27 325
1112_ss64.00 23963.36 23165.93 26979.28 13342.58 29471.35 26472.36 26046.41 31860.55 27577.89 27546.27 16173.28 29446.18 26369.97 25481.92 219
ETV-MVS74.46 6173.84 6476.33 6279.27 13455.24 12979.22 11385.00 3864.97 2172.65 8979.46 24953.65 7087.87 4467.45 9182.91 8385.89 98
test111167.21 18967.14 17967.42 24579.24 13534.76 36573.89 23165.65 31158.71 13266.96 17587.95 6936.09 26880.53 20652.03 21483.79 7586.97 59
UniMVSNet_NR-MVSNet71.11 10471.00 9971.44 17879.20 13644.13 27876.02 18582.60 9066.48 1168.20 14684.60 14356.82 3682.82 15854.62 19270.43 24287.36 52
VPNet67.52 18568.11 15265.74 27279.18 13736.80 34872.17 25572.83 25662.04 7267.79 16185.83 12248.88 12576.60 27651.30 22172.97 21283.81 171
TR-MVS66.59 20865.07 21371.17 18979.18 13749.63 21973.48 23675.20 22852.95 23567.90 15380.33 23239.81 22783.68 13643.20 29473.56 20080.20 250
TAMVS66.78 20365.27 21171.33 18579.16 13953.67 14773.84 23369.59 28152.32 24365.28 20681.72 20544.49 18377.40 25942.32 30178.66 13882.92 199
patch_mono-269.85 13071.09 9766.16 26379.11 14054.80 13571.97 25874.31 24153.50 23270.90 10684.17 15057.63 3163.31 34566.17 9982.02 9480.38 248
Test_1112_low_res62.32 25661.77 25164.00 28879.08 14139.53 32268.17 29670.17 27543.25 34659.03 29579.90 23844.08 18571.24 30543.79 28868.42 28081.25 231
CDS-MVSNet66.80 20265.37 20871.10 19178.98 14253.13 16073.27 23971.07 26952.15 24464.72 22180.23 23443.56 19077.10 26345.48 27478.88 13283.05 198
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sasdasda74.67 5674.98 5273.71 12178.94 14350.56 20180.23 9583.87 5960.30 10277.15 2986.56 9859.65 1782.00 17466.01 10282.12 9188.58 12
canonicalmvs74.67 5674.98 5273.71 12178.94 14350.56 20180.23 9583.87 5960.30 10277.15 2986.56 9859.65 1782.00 17466.01 10282.12 9188.58 12
EC-MVSNet75.84 4675.87 4375.74 7078.86 14552.65 16983.73 5086.08 1763.47 4272.77 8787.25 8153.13 7387.93 4271.97 6385.57 6286.66 70
IS-MVSNet71.57 9871.00 9973.27 14078.86 14545.63 26680.22 9778.69 16464.14 3566.46 18487.36 7749.30 11785.60 9350.26 22983.71 7688.59 11
CLD-MVS73.33 6972.68 7475.29 8178.82 14753.33 15678.23 12784.79 4161.30 8170.41 11081.04 21752.41 8287.12 5764.61 11682.49 9085.41 121
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVSFormer71.50 10070.38 11074.88 8478.76 14857.15 9482.79 6178.48 17151.26 25769.49 12683.22 17043.99 18783.24 14466.06 10079.37 12384.23 156
lupinMVS69.57 14068.28 15073.44 13578.76 14857.15 9476.57 17173.29 25346.19 32069.49 12682.18 19243.99 18779.23 22764.66 11479.37 12383.93 165
CNLPA65.43 22064.02 22069.68 21678.73 15058.07 7877.82 14070.71 27251.49 25261.57 26883.58 16538.23 24670.82 30643.90 28670.10 25280.16 251
EPP-MVSNet72.16 9071.31 9374.71 8678.68 15149.70 21582.10 7581.65 10260.40 9565.94 19385.84 12151.74 9486.37 7855.93 17879.55 12288.07 27
TranMVSNet+NR-MVSNet70.36 12070.10 11771.17 18978.64 15242.97 29276.53 17281.16 12366.95 668.53 14285.42 13151.61 9683.07 14752.32 21069.70 26287.46 45
UniMVSNet (Re)70.63 11470.20 11371.89 16478.55 15345.29 26975.94 18682.92 8563.68 4068.16 14983.59 16453.89 6283.49 14153.97 19871.12 23586.89 61
Fast-Effi-MVS+70.28 12269.12 13173.73 12078.50 15451.50 18875.01 20579.46 15056.16 18268.59 13979.55 24753.97 6084.05 12753.34 20477.53 15285.65 110
PS-MVSNAJss72.24 8671.21 9475.31 7978.50 15455.93 11281.63 7982.12 9556.24 18070.02 11785.68 12547.05 15184.34 12465.27 10974.41 18785.67 108
EI-MVSNet-Vis-set72.42 8471.59 8474.91 8378.47 15654.02 14277.05 16079.33 15265.03 1871.68 10079.35 25352.75 7684.89 11366.46 9774.23 18885.83 100
FA-MVS(test-final)69.82 13168.48 14373.84 11278.44 15750.04 21075.58 19478.99 15758.16 14267.59 16482.14 19642.66 19685.63 9256.60 17376.19 17185.84 99
testing9164.46 23363.80 22466.47 25678.43 15840.06 31567.63 30069.59 28159.06 12563.18 24178.05 26934.05 28676.99 26648.30 24675.87 17482.37 211
testing1162.81 25161.90 25065.54 27478.38 15940.76 31267.59 30266.78 30455.48 19660.13 27777.11 28731.67 31976.79 27145.53 27274.45 18579.06 266
MVS_111021_LR69.50 14368.78 13771.65 17378.38 15959.33 5674.82 21170.11 27658.08 14367.83 15984.68 13841.96 20476.34 28165.62 10777.54 15179.30 265
test_yl69.69 13469.13 12971.36 18278.37 16145.74 26274.71 21380.20 13957.91 15170.01 11883.83 15942.44 19982.87 15454.97 18879.72 11785.48 115
DCV-MVSNet69.69 13469.13 12971.36 18278.37 16145.74 26274.71 21380.20 13957.91 15170.01 11883.83 15942.44 19982.87 15454.97 18879.72 11785.48 115
FIs70.82 11171.43 8868.98 22878.33 16338.14 33376.96 16283.59 6761.02 8567.33 16886.73 8955.07 4781.64 18054.61 19479.22 12787.14 56
UGNet68.81 15567.39 16773.06 14378.33 16354.47 13779.77 10575.40 22260.45 9463.22 23984.40 14732.71 30880.91 20051.71 21980.56 10983.81 171
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jason69.65 13768.39 14973.43 13678.27 16556.88 9877.12 15873.71 25046.53 31769.34 13083.22 17043.37 19179.18 22864.77 11379.20 12884.23 156
jason: jason.
alignmvs73.86 6673.99 6173.45 13478.20 16650.50 20378.57 12282.43 9159.40 12076.57 3286.71 9156.42 4081.23 19165.84 10581.79 9788.62 10
xiu_mvs_v1_base_debu68.58 16167.28 17272.48 15478.19 16757.19 9175.28 19775.09 23051.61 24870.04 11481.41 21132.79 30479.02 23563.81 12377.31 15581.22 232
xiu_mvs_v1_base68.58 16167.28 17272.48 15478.19 16757.19 9175.28 19775.09 23051.61 24870.04 11481.41 21132.79 30479.02 23563.81 12377.31 15581.22 232
xiu_mvs_v1_base_debi68.58 16167.28 17272.48 15478.19 16757.19 9175.28 19775.09 23051.61 24870.04 11481.41 21132.79 30479.02 23563.81 12377.31 15581.22 232
testing9964.05 23763.29 23466.34 25878.17 17039.76 31967.33 30568.00 29558.60 13463.03 24478.10 26832.57 31376.94 26848.22 24775.58 17882.34 212
UBG59.62 28259.53 27259.89 31378.12 17135.92 35964.11 33260.81 34749.45 27961.34 26975.55 31333.05 29967.39 32938.68 32174.62 18376.35 301
PAPM67.92 17866.69 18271.63 17478.09 17249.02 22677.09 15981.24 12051.04 26060.91 27383.98 15647.71 13784.99 10740.81 31079.32 12680.90 240
ACMH55.70 1565.20 22563.57 22870.07 20878.07 17352.01 18479.48 11279.69 14355.75 19056.59 31680.98 21927.12 35180.94 19742.90 29871.58 23077.25 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DU-MVS70.01 12669.53 12371.44 17878.05 17444.13 27875.01 20581.51 10664.37 2868.20 14684.52 14449.12 12382.82 15854.62 19270.43 24287.37 50
NR-MVSNet69.54 14168.85 13471.59 17578.05 17443.81 28374.20 22280.86 12965.18 1462.76 24884.52 14452.35 8483.59 13950.96 22570.78 23787.37 50
WBMVS60.54 27260.61 26660.34 31278.00 17635.95 35864.55 32864.89 31649.63 27663.39 23878.70 25933.85 29167.65 32542.10 30370.35 24677.43 286
EI-MVSNet-UG-set71.92 9271.06 9874.52 9777.98 17753.56 15076.62 16979.16 15364.40 2771.18 10478.95 25852.19 8684.66 12065.47 10873.57 19985.32 124
WR-MVS_H67.02 19766.92 18167.33 24877.95 17837.75 33777.57 14482.11 9662.03 7362.65 25182.48 18650.57 10779.46 22342.91 29764.01 31384.79 143
testing22262.29 25861.31 25765.25 28077.87 17938.53 33068.34 29566.31 30856.37 17663.15 24377.58 28328.47 34076.18 28437.04 33176.65 16881.05 238
Effi-MVS+73.31 7072.54 7675.62 7477.87 17953.64 14879.62 11079.61 14661.63 7772.02 9782.61 18056.44 3985.97 8663.99 12079.07 13187.25 54
DELS-MVS74.76 5474.46 5775.65 7377.84 18152.25 17875.59 19284.17 4863.76 3873.15 7682.79 17559.58 2086.80 6467.24 9286.04 5987.89 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMH+57.40 1166.12 21264.06 21972.30 16077.79 18252.83 16780.39 9478.03 18257.30 15757.47 30982.55 18227.68 34684.17 12545.54 27169.78 25979.90 255
MGCFI-Net72.45 8273.34 7069.81 21577.77 18343.21 28975.84 18981.18 12159.59 11875.45 3986.64 9257.74 2877.94 24863.92 12181.90 9688.30 17
RRT-MVS71.46 10170.70 10473.74 11977.76 18449.30 22376.60 17080.45 13561.25 8268.17 14884.78 13744.64 18084.90 11264.79 11277.88 14887.03 57
3Dnovator64.47 572.49 8171.39 9075.79 6777.70 18558.99 6880.66 9383.15 8262.24 6665.46 20386.59 9642.38 20185.52 9659.59 15984.72 6582.85 202
EG-PatchMatch MVS64.71 22962.87 23870.22 20477.68 18653.48 15277.99 13478.82 15953.37 23356.03 32177.41 28524.75 36684.04 12846.37 26273.42 20473.14 331
UWE-MVS60.18 27559.78 27061.39 30777.67 18733.92 37469.04 29363.82 32548.56 29064.27 22877.64 28227.20 35070.40 31133.56 35376.24 17079.83 257
CP-MVSNet66.49 20966.41 19066.72 25177.67 18736.33 35376.83 16879.52 14862.45 6362.54 25483.47 16846.32 15978.37 24245.47 27563.43 32085.45 117
GBi-Net67.21 18966.55 18469.19 22477.63 18943.33 28677.31 15177.83 18556.62 16965.04 21682.70 17641.85 20680.33 21147.18 25572.76 21483.92 166
test167.21 18966.55 18469.19 22477.63 18943.33 28677.31 15177.83 18556.62 16965.04 21682.70 17641.85 20680.33 21147.18 25572.76 21483.92 166
FMVSNet266.93 19966.31 19568.79 23177.63 18942.98 29176.11 18077.47 19156.62 16965.22 21382.17 19441.85 20680.18 21747.05 25872.72 21783.20 192
PCF-MVS61.88 870.95 10869.49 12475.35 7877.63 18955.71 11776.04 18481.81 10050.30 26869.66 12485.40 13252.51 7984.89 11351.82 21780.24 11385.45 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVP-Stereo65.41 22163.80 22470.22 20477.62 19355.53 12476.30 17678.53 16950.59 26656.47 31978.65 26239.84 22682.68 16144.10 28472.12 22572.44 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FC-MVSNet-test69.80 13270.58 10767.46 24477.61 19434.73 36676.05 18383.19 8160.84 8765.88 19786.46 10254.52 5580.76 20452.52 20978.12 14486.91 60
PS-CasMVS66.42 21066.32 19466.70 25377.60 19536.30 35576.94 16379.61 14662.36 6562.43 25883.66 16245.69 16378.37 24245.35 27763.26 32185.42 120
testing356.54 30255.92 30458.41 32477.52 19627.93 39469.72 28656.36 36454.75 21458.63 30077.80 27720.88 37771.75 30325.31 39162.25 32975.53 308
FMVSNet166.70 20465.87 20169.19 22477.49 19743.33 28677.31 15177.83 18556.45 17464.60 22482.70 17638.08 24880.33 21146.08 26472.31 22283.92 166
ETVMVS59.51 28358.81 27761.58 30477.46 19834.87 36264.94 32659.35 35054.06 22561.08 27276.67 29429.54 33171.87 30232.16 35874.07 19078.01 281
VPA-MVSNet69.02 15269.47 12567.69 24277.42 19941.00 31074.04 22479.68 14460.06 10669.26 13384.81 13651.06 10377.58 25554.44 19574.43 18684.48 150
UniMVSNet_ETH3D67.60 18467.07 18069.18 22777.39 20042.29 29674.18 22375.59 21760.37 9866.77 17886.06 11437.64 25078.93 24052.16 21273.49 20186.32 84
FE-MVS65.91 21463.33 23273.63 12777.36 20151.95 18572.62 24775.81 21353.70 22965.31 20578.96 25728.81 33986.39 7743.93 28573.48 20282.55 205
thres100view90063.28 24662.41 24465.89 27077.31 20238.66 32872.65 24569.11 28857.07 16062.45 25781.03 21837.01 26279.17 22931.84 36273.25 20779.83 257
cascas65.98 21363.42 23073.64 12677.26 20352.58 17272.26 25477.21 19748.56 29061.21 27174.60 32332.57 31385.82 9050.38 22876.75 16682.52 207
thres600view763.30 24562.27 24566.41 25777.18 20438.87 32672.35 25269.11 28856.98 16262.37 25980.96 22037.01 26279.00 23831.43 36973.05 21181.36 228
SDMVSNet68.03 17468.10 15367.84 24077.13 20548.72 23265.32 32179.10 15458.02 14665.08 21482.55 18247.83 13573.40 29363.92 12173.92 19281.41 225
sd_testset64.46 23364.45 21764.51 28577.13 20542.25 29762.67 33772.11 26258.02 14665.08 21482.55 18241.22 21869.88 31447.32 25373.92 19281.41 225
PEN-MVS66.60 20666.45 18667.04 24977.11 20736.56 35077.03 16180.42 13662.95 5062.51 25684.03 15446.69 15779.07 23444.22 28063.08 32385.51 114
PatchMatch-RL56.25 30754.55 31461.32 30877.06 20856.07 10965.57 31554.10 37444.13 33953.49 35071.27 34725.20 36366.78 33236.52 33963.66 31661.12 381
PVSNet_BlendedMVS68.56 16467.72 15671.07 19277.03 20950.57 19974.50 21781.52 10453.66 23164.22 23179.72 24349.13 12182.87 15455.82 17973.92 19279.77 260
PVSNet_Blended68.59 16067.72 15671.19 18777.03 20950.57 19972.51 25081.52 10451.91 24664.22 23177.77 28049.13 12182.87 15455.82 17979.58 12080.14 252
F-COLMAP63.05 25060.87 26569.58 22076.99 21153.63 14978.12 13176.16 20847.97 30152.41 35281.61 20727.87 34478.11 24640.07 31366.66 29377.00 294
tfpn200view963.18 24862.18 24766.21 26276.85 21239.62 32071.96 25969.44 28456.63 16762.61 25279.83 23937.18 25679.17 22931.84 36273.25 20779.83 257
thres40063.31 24462.18 24766.72 25176.85 21239.62 32071.96 25969.44 28456.63 16762.61 25279.83 23937.18 25679.17 22931.84 36273.25 20781.36 228
tttt051767.83 18065.66 20574.33 10176.69 21450.82 19577.86 13773.99 24754.54 21864.64 22382.53 18535.06 27685.50 9855.71 18269.91 25686.67 69
ET-MVSNet_ETH3D67.96 17765.72 20474.68 8876.67 21555.62 12275.11 20274.74 23452.91 23660.03 28080.12 23533.68 29382.64 16361.86 14076.34 16985.78 101
TAPA-MVS59.36 1066.60 20665.20 21270.81 19576.63 21648.75 23076.52 17380.04 14150.64 26565.24 21184.93 13439.15 23578.54 24136.77 33376.88 16485.14 130
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS71.40 10370.60 10573.78 11476.60 21753.15 15879.74 10779.78 14258.37 13968.75 13886.45 10345.43 17180.60 20562.58 13277.73 14987.58 43
LTVRE_ROB55.42 1663.15 24961.23 26068.92 22976.57 21847.80 24159.92 35376.39 20654.35 22158.67 29882.46 18729.44 33481.49 18442.12 30271.14 23477.46 285
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
QAPM70.05 12568.81 13673.78 11476.54 21953.43 15383.23 5483.48 6952.89 23765.90 19586.29 10641.55 21286.49 7551.01 22378.40 14281.42 224
FMVSNet366.32 21165.61 20668.46 23476.48 22042.34 29574.98 20777.15 19855.83 18765.04 21681.16 21439.91 22480.14 21847.18 25572.76 21482.90 201
casdiffmvs_mvgpermissive76.14 4276.30 3775.66 7276.46 22151.83 18679.67 10885.08 3365.02 1975.84 3588.58 6059.42 2285.08 10672.75 5783.93 7490.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest053067.92 17865.78 20374.33 10176.29 22251.03 19076.89 16574.25 24353.67 23065.59 20181.76 20435.15 27585.50 9855.94 17772.47 21886.47 75
baseline163.81 24063.87 22363.62 28976.29 22236.36 35171.78 26167.29 29956.05 18464.23 23082.95 17447.11 15074.41 29047.30 25461.85 33280.10 253
ab-mvs66.65 20566.42 18967.37 24676.17 22441.73 30270.41 28076.14 21053.99 22665.98 19283.51 16649.48 11576.24 28248.60 24373.46 20384.14 159
Effi-MVS+-dtu69.64 13867.53 16275.95 6576.10 22562.29 1580.20 9876.06 21259.83 11365.26 21077.09 28841.56 21184.02 13060.60 15071.09 23681.53 223
DTE-MVSNet65.58 21865.34 20966.31 25976.06 22634.79 36376.43 17479.38 15162.55 6161.66 26683.83 15945.60 16579.15 23241.64 30960.88 33885.00 135
EPNet73.09 7272.16 7975.90 6675.95 22756.28 10483.05 5672.39 25966.53 1065.27 20787.00 8350.40 10885.47 10062.48 13486.32 5885.94 95
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SixPastTwentyTwo61.65 26558.80 27970.20 20675.80 22847.22 24975.59 19269.68 27954.61 21554.11 34179.26 25427.07 35282.96 14943.27 29249.79 37880.41 247
baseline74.61 5874.70 5574.34 10075.70 22949.99 21277.54 14684.63 4262.73 5973.98 6387.79 7357.67 3083.82 13469.49 7582.74 8889.20 6
Baseline_NR-MVSNet67.05 19667.56 15965.50 27575.65 23037.70 33975.42 19574.65 23759.90 10968.14 15083.15 17349.12 12377.20 26252.23 21169.78 25981.60 222
jajsoiax68.25 17066.45 18673.66 12475.62 23155.49 12580.82 9078.51 17052.33 24264.33 22684.11 15228.28 34281.81 17963.48 12770.62 23983.67 179
mvs_tets68.18 17266.36 19273.63 12775.61 23255.35 12880.77 9178.56 16852.48 24164.27 22884.10 15327.45 34881.84 17863.45 12870.56 24183.69 178
casdiffmvspermissive74.80 5374.89 5474.53 9675.59 23350.37 20478.17 13085.06 3562.80 5874.40 5887.86 7057.88 2783.61 13869.46 7782.79 8789.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet50.76 1958.40 28857.39 29061.42 30575.53 23444.04 28161.43 34363.45 32847.04 31456.91 31373.61 33027.00 35364.76 34139.12 31972.40 21975.47 309
MVS67.37 18766.33 19370.51 20275.46 23550.94 19173.95 22781.85 9941.57 35762.54 25478.57 26547.98 13285.47 10052.97 20782.05 9375.14 311
nrg03072.96 7473.01 7172.84 14775.41 23650.24 20580.02 9982.89 8758.36 14074.44 5786.73 8958.90 2480.83 20165.84 10574.46 18487.44 46
thres20062.20 25961.16 26165.34 27875.38 23739.99 31669.60 28769.29 28655.64 19461.87 26376.99 28937.07 26178.96 23931.28 37073.28 20677.06 292
TransMVSNet (Re)64.72 22864.33 21865.87 27175.22 23838.56 32974.66 21575.08 23358.90 12861.79 26482.63 17951.18 10078.07 24743.63 29055.87 36080.99 239
MS-PatchMatch62.42 25561.46 25565.31 27975.21 23952.10 18072.05 25674.05 24646.41 31857.42 31174.36 32434.35 28477.57 25645.62 27073.67 19666.26 377
WB-MVSnew59.66 28059.69 27159.56 31475.19 24035.78 36069.34 29064.28 32246.88 31561.76 26575.79 30940.61 22165.20 34032.16 35871.21 23377.70 282
IB-MVS56.42 1265.40 22262.73 24173.40 13774.89 24152.78 16873.09 24175.13 22955.69 19158.48 30273.73 32932.86 30386.32 8050.63 22670.11 25181.10 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_Test72.45 8272.46 7772.42 15874.88 24248.50 23476.28 17783.14 8359.40 12072.46 9284.68 13855.66 4481.12 19265.98 10479.66 11987.63 40
tt080567.77 18167.24 17669.34 22374.87 24340.08 31477.36 15081.37 11055.31 19966.33 18784.65 14037.35 25482.55 16555.65 18472.28 22385.39 122
CANet_DTU68.18 17267.71 15869.59 21874.83 24446.24 25778.66 11976.85 20159.60 11563.45 23782.09 19935.25 27477.41 25859.88 15678.76 13685.14 130
tfpnnormal62.47 25461.63 25364.99 28274.81 24539.01 32571.22 26773.72 24955.22 20260.21 27680.09 23741.26 21776.98 26730.02 37568.09 28278.97 269
Vis-MVSNet (Re-imp)63.69 24163.88 22263.14 29474.75 24631.04 38571.16 26963.64 32756.32 17759.80 28584.99 13344.51 18175.46 28539.12 31980.62 10582.92 199
HY-MVS56.14 1364.55 23263.89 22166.55 25574.73 24741.02 30769.96 28474.43 23849.29 28261.66 26680.92 22147.43 14576.68 27544.91 27971.69 22881.94 218
Syy-MVS56.00 30956.23 30255.32 34174.69 24826.44 40065.52 31657.49 35950.97 26156.52 31772.18 33639.89 22568.09 32124.20 39264.59 31071.44 354
myMVS_eth3d54.86 31954.61 31355.61 34074.69 24827.31 39765.52 31657.49 35950.97 26156.52 31772.18 33621.87 37568.09 32127.70 38364.59 31071.44 354
COLMAP_ROBcopyleft52.97 1761.27 27058.81 27768.64 23274.63 25052.51 17478.42 12573.30 25249.92 27450.96 35781.51 21023.06 36979.40 22431.63 36665.85 29874.01 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LCM-MVSNet-Re61.88 26361.35 25663.46 29074.58 25131.48 38461.42 34458.14 35558.71 13253.02 35179.55 24743.07 19376.80 27045.69 26877.96 14682.11 217
test_djsdf69.45 14567.74 15574.58 9474.57 25254.92 13382.79 6178.48 17151.26 25765.41 20483.49 16738.37 24283.24 14466.06 10069.25 26985.56 112
EI-MVSNet69.27 14968.44 14771.73 17074.47 25349.39 22275.20 20078.45 17459.60 11569.16 13576.51 30051.29 9882.50 16659.86 15871.45 23283.30 188
CVMVSNet59.63 28159.14 27561.08 31074.47 25338.84 32775.20 20068.74 29031.15 38358.24 30376.51 30032.39 31568.58 31949.77 23165.84 29975.81 304
IterMVS-LS69.22 15168.48 14371.43 18074.44 25549.40 22176.23 17877.55 19059.60 11565.85 19881.59 20951.28 9981.58 18359.87 15769.90 25783.30 188
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XVG-OURS-SEG-HR68.81 15567.47 16572.82 14974.40 25656.87 9970.59 27679.04 15554.77 21366.99 17486.01 11639.57 22978.21 24562.54 13373.33 20583.37 187
EGC-MVSNET42.47 35638.48 36454.46 34774.33 25748.73 23170.33 28151.10 3800.03 4160.18 41767.78 36813.28 39166.49 33418.91 39950.36 37648.15 396
XVG-OURS68.76 15867.37 16872.90 14674.32 25857.22 8970.09 28378.81 16055.24 20167.79 16185.81 12436.54 26578.28 24462.04 13875.74 17683.19 193
OpenMVScopyleft61.03 968.85 15467.56 15972.70 15174.26 25953.99 14381.21 8681.34 11552.70 23862.75 24985.55 12838.86 23884.14 12648.41 24583.01 7979.97 254
MIMVSNet57.35 29557.07 29258.22 32674.21 26037.18 34262.46 33860.88 34648.88 28755.29 32875.99 30731.68 31862.04 35031.87 36172.35 22075.43 310
SCA60.49 27358.38 28366.80 25074.14 26148.06 23963.35 33463.23 33049.13 28459.33 29372.10 33837.45 25274.27 29144.17 28162.57 32678.05 277
thisisatest051565.83 21563.50 22972.82 14973.75 26249.50 22071.32 26573.12 25549.39 28063.82 23376.50 30234.95 27884.84 11653.20 20675.49 18084.13 160
K. test v360.47 27457.11 29170.56 20073.74 26348.22 23775.10 20462.55 33458.27 14153.62 34776.31 30327.81 34581.59 18247.42 25139.18 39281.88 220
v1070.21 12369.02 13273.81 11373.51 26450.92 19378.74 11781.39 10960.05 10766.39 18681.83 20347.58 14085.41 10362.80 13168.86 27685.09 133
v114470.42 11969.31 12773.76 11673.22 26550.64 19877.83 13981.43 10858.58 13569.40 12981.16 21447.53 14285.29 10564.01 11970.64 23885.34 123
v119269.97 12868.68 13973.85 11173.19 26650.94 19177.68 14281.36 11157.51 15668.95 13780.85 22445.28 17485.33 10462.97 13070.37 24485.27 127
v870.33 12169.28 12873.49 13273.15 26750.22 20678.62 12080.78 13060.79 8866.45 18582.11 19849.35 11684.98 10963.58 12668.71 27785.28 126
v14419269.71 13368.51 14273.33 13973.10 26850.13 20877.54 14680.64 13156.65 16668.57 14180.55 22746.87 15684.96 11162.98 12969.66 26384.89 140
v192192069.47 14468.17 15173.36 13873.06 26950.10 20977.39 14980.56 13256.58 17368.59 13980.37 22944.72 17984.98 10962.47 13569.82 25885.00 135
PatchmatchNetpermissive59.84 27858.24 28464.65 28473.05 27046.70 25369.42 28962.18 34047.55 30658.88 29671.96 34034.49 28269.16 31642.99 29663.60 31778.07 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v124069.24 15067.91 15473.25 14273.02 27149.82 21377.21 15680.54 13356.43 17568.34 14580.51 22843.33 19284.99 10762.03 13969.77 26184.95 139
Fast-Effi-MVS+-dtu67.37 18765.33 21073.48 13372.94 27257.78 8377.47 14876.88 20057.60 15561.97 26176.85 29239.31 23180.49 20954.72 19170.28 24882.17 216
EPNet_dtu61.90 26261.97 24961.68 30272.89 27339.78 31875.85 18865.62 31255.09 20554.56 33779.36 25237.59 25167.02 33139.80 31676.95 16378.25 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm262.07 26060.10 26967.99 23972.79 27443.86 28271.05 27366.85 30343.14 34862.77 24775.39 31738.32 24480.80 20241.69 30668.88 27479.32 264
MDTV_nov1_ep1357.00 29372.73 27538.26 33265.02 32564.73 31944.74 33155.46 32472.48 33432.61 31270.47 30837.47 32767.75 285
MSDG61.81 26459.23 27469.55 22172.64 27652.63 17170.45 27975.81 21351.38 25453.70 34476.11 30429.52 33281.08 19537.70 32665.79 30074.93 316
gg-mvs-nofinetune57.86 29356.43 30062.18 30072.62 27735.35 36166.57 30656.33 36550.65 26457.64 30857.10 39130.65 32276.36 28037.38 32878.88 13274.82 318
v2v48270.50 11769.45 12673.66 12472.62 27750.03 21177.58 14380.51 13459.90 10969.52 12582.14 19647.53 14284.88 11565.07 11170.17 25086.09 91
baseline263.42 24361.26 25969.89 21472.55 27947.62 24571.54 26268.38 29250.11 27054.82 33375.55 31343.06 19480.96 19648.13 24867.16 29081.11 235
test_fmvsm_n_192071.73 9671.14 9673.50 13172.52 28056.53 10175.60 19176.16 20848.11 29877.22 2885.56 12653.10 7477.43 25774.86 4077.14 16086.55 74
v7n69.01 15367.36 16973.98 10972.51 28152.65 16978.54 12481.30 11660.26 10462.67 25081.62 20643.61 18984.49 12157.01 17168.70 27884.79 143
fmvsm_s_conf0.5_n_a69.54 14168.74 13871.93 16372.47 28253.82 14578.25 12662.26 33949.78 27573.12 7986.21 10852.66 7776.79 27175.02 3968.88 27485.18 129
mamv456.85 30058.00 28853.43 35472.46 28354.47 13757.56 36654.74 36938.81 37157.42 31179.45 25047.57 14138.70 40660.88 14753.07 36867.11 376
pm-mvs165.24 22464.97 21466.04 26772.38 28439.40 32372.62 24775.63 21655.53 19562.35 26083.18 17247.45 14476.47 27949.06 24066.54 29482.24 213
XVG-ACMP-BASELINE64.36 23562.23 24670.74 19772.35 28552.45 17670.80 27578.45 17453.84 22859.87 28381.10 21616.24 38579.32 22655.64 18571.76 22780.47 245
WTY-MVS59.75 27960.39 26757.85 33072.32 28637.83 33661.05 34964.18 32345.95 32561.91 26279.11 25647.01 15460.88 35342.50 30069.49 26574.83 317
fmvsm_s_conf0.5_n69.58 13968.84 13571.79 16872.31 28752.90 16477.90 13562.43 33749.97 27372.85 8585.90 11952.21 8576.49 27775.75 3370.26 24985.97 94
tpm cat159.25 28456.95 29466.15 26472.19 28846.96 25168.09 29765.76 31040.03 36757.81 30770.56 35038.32 24474.51 28938.26 32461.50 33577.00 294
mvs_anonymous68.03 17467.51 16369.59 21872.08 28944.57 27671.99 25775.23 22651.67 24767.06 17382.57 18154.68 5377.94 24856.56 17475.71 17786.26 88
OurMVSNet-221017-061.37 26958.63 28169.61 21772.05 29048.06 23973.93 22972.51 25847.23 31254.74 33480.92 22121.49 37681.24 19048.57 24456.22 35979.53 262
IterMVS-SCA-FT62.49 25361.52 25465.40 27771.99 29150.80 19671.15 27069.63 28045.71 32660.61 27477.93 27237.45 25265.99 33755.67 18363.50 31979.42 263
CostFormer64.04 23862.51 24268.61 23371.88 29245.77 26171.30 26670.60 27347.55 30664.31 22776.61 29841.63 20979.62 22249.74 23269.00 27380.42 246
131464.61 23163.21 23568.80 23071.87 29347.46 24773.95 22778.39 17942.88 35059.97 28176.60 29938.11 24779.39 22554.84 19072.32 22179.55 261
tpm57.34 29658.16 28554.86 34471.80 29434.77 36467.47 30456.04 36848.20 29760.10 27876.92 29037.17 25853.41 38740.76 31165.01 30476.40 300
eth_miper_zixun_eth67.63 18366.28 19671.67 17271.60 29548.33 23673.68 23577.88 18355.80 18965.91 19478.62 26447.35 14882.88 15359.45 16066.25 29683.81 171
pmmvs461.48 26859.39 27367.76 24171.57 29653.86 14471.42 26365.34 31344.20 33759.46 28977.92 27335.90 26974.71 28843.87 28764.87 30674.71 321
fmvsm_l_conf0.5_n70.99 10770.82 10171.48 17671.45 29754.40 13977.18 15770.46 27448.67 28975.17 4186.86 8453.77 6576.86 26976.33 3077.51 15383.17 196
AllTest57.08 29854.65 31264.39 28671.44 29849.03 22469.92 28567.30 29745.97 32347.16 37279.77 24117.47 37967.56 32733.65 35059.16 34776.57 298
TestCases64.39 28671.44 29849.03 22467.30 29745.97 32347.16 37279.77 24117.47 37967.56 32733.65 35059.16 34776.57 298
lessismore_v069.91 21271.42 30047.80 24150.90 38250.39 36375.56 31227.43 34981.33 18745.91 26634.10 39880.59 244
gm-plane-assit71.40 30141.72 30448.85 28873.31 33182.48 16848.90 241
GG-mvs-BLEND62.34 29971.36 30237.04 34669.20 29157.33 36154.73 33565.48 37930.37 32477.82 25134.82 34674.93 18272.17 345
fmvsm_l_conf0.5_n_a70.50 11770.27 11271.18 18871.30 30354.09 14176.89 16569.87 27747.90 30274.37 5986.49 10153.07 7576.69 27475.41 3577.11 16182.76 203
test_fmvsmconf_n73.01 7372.59 7574.27 10371.28 30455.88 11478.21 12975.56 21854.31 22274.86 5087.80 7254.72 5280.23 21578.07 2178.48 14086.70 67
test_fmvsmvis_n_192070.84 10970.38 11072.22 16171.16 30555.39 12775.86 18772.21 26149.03 28573.28 7386.17 11051.83 9277.29 26175.80 3278.05 14583.98 164
fmvsm_s_conf0.1_n69.41 14668.60 14171.83 16671.07 30652.88 16677.85 13862.44 33649.58 27872.97 8286.22 10751.68 9576.48 27875.53 3470.10 25286.14 89
FMVSNet555.86 31054.93 31058.66 32371.05 30736.35 35264.18 33162.48 33546.76 31650.66 36274.73 32225.80 36064.04 34333.11 35465.57 30175.59 307
fmvsm_s_conf0.1_n_a69.32 14768.44 14771.96 16270.91 30853.78 14678.12 13162.30 33849.35 28173.20 7586.55 10051.99 8976.79 27174.83 4168.68 27985.32 124
c3_l68.33 16867.56 15970.62 19970.87 30946.21 25874.47 21878.80 16156.22 18166.19 18978.53 26651.88 9081.40 18562.08 13669.04 27284.25 155
GA-MVS65.53 21963.70 22671.02 19370.87 30948.10 23870.48 27874.40 23956.69 16564.70 22276.77 29333.66 29481.10 19355.42 18770.32 24783.87 169
pmmvs663.69 24162.82 24066.27 26170.63 31139.27 32473.13 24075.47 22152.69 23959.75 28782.30 19039.71 22877.03 26547.40 25264.35 31282.53 206
miper_ehance_all_eth68.03 17467.24 17670.40 20370.54 31246.21 25873.98 22578.68 16555.07 20866.05 19177.80 27752.16 8781.31 18861.53 14569.32 26683.67 179
MonoMVSNet64.15 23663.31 23366.69 25470.51 31344.12 28074.47 21874.21 24457.81 15363.03 24476.62 29638.33 24377.31 26054.22 19660.59 34378.64 271
OpenMVS_ROBcopyleft52.78 1860.03 27658.14 28665.69 27370.47 31444.82 27175.33 19670.86 27145.04 32956.06 32076.00 30526.89 35479.65 22035.36 34567.29 28872.60 336
v14868.24 17167.19 17871.40 18170.43 31547.77 24375.76 19077.03 19958.91 12767.36 16780.10 23648.60 12881.89 17660.01 15466.52 29584.53 148
XXY-MVS60.68 27161.67 25257.70 33270.43 31538.45 33164.19 33066.47 30548.05 30063.22 23980.86 22349.28 11860.47 35445.25 27867.28 28974.19 326
MVSTER67.16 19465.58 20771.88 16570.37 31749.70 21570.25 28278.45 17451.52 25169.16 13580.37 22938.45 24182.50 16660.19 15271.46 23183.44 186
cl____67.18 19266.26 19769.94 21070.20 31845.74 26273.30 23776.83 20255.10 20365.27 20779.57 24647.39 14680.53 20659.41 16269.22 27083.53 185
DIV-MVS_self_test67.18 19266.26 19769.94 21070.20 31845.74 26273.29 23876.83 20255.10 20365.27 20779.58 24547.38 14780.53 20659.43 16169.22 27083.54 184
tpmvs58.47 28756.95 29463.03 29670.20 31841.21 30667.90 29967.23 30049.62 27754.73 33570.84 34834.14 28576.24 28236.64 33761.29 33671.64 350
anonymousdsp67.00 19864.82 21573.57 13070.09 32156.13 10776.35 17577.35 19548.43 29464.99 21980.84 22533.01 30180.34 21064.66 11467.64 28684.23 156
MIMVSNet155.17 31754.31 31857.77 33170.03 32232.01 38265.68 31464.81 31749.19 28346.75 37576.00 30525.53 36264.04 34328.65 38062.13 33077.26 290
CR-MVSNet59.91 27757.90 28965.96 26869.96 32352.07 18165.31 32263.15 33142.48 35259.36 29074.84 32035.83 27070.75 30745.50 27364.65 30875.06 312
RPMNet61.53 26658.42 28270.86 19469.96 32352.07 18165.31 32281.36 11143.20 34759.36 29070.15 35535.37 27385.47 10036.42 34064.65 30875.06 312
test_fmvsmconf0.1_n72.81 7572.33 7874.24 10469.89 32555.81 11578.22 12875.40 22254.17 22475.00 4588.03 6853.82 6480.23 21578.08 2078.34 14386.69 68
cl2267.47 18666.45 18670.54 20169.85 32646.49 25473.85 23277.35 19555.07 20865.51 20277.92 27347.64 13981.10 19361.58 14469.32 26684.01 163
Anonymous2023120655.10 31855.30 30954.48 34669.81 32733.94 37362.91 33662.13 34141.08 35955.18 32975.65 31132.75 30756.59 37630.32 37467.86 28372.91 332
our_test_356.49 30354.42 31562.68 29869.51 32845.48 26766.08 31061.49 34344.11 34050.73 36169.60 36033.05 29968.15 32038.38 32356.86 35574.40 323
ppachtmachnet_test58.06 29255.38 30866.10 26669.51 32848.99 22768.01 29866.13 30944.50 33454.05 34270.74 34932.09 31772.34 29836.68 33656.71 35876.99 296
diffmvspermissive70.69 11370.43 10871.46 17769.45 33048.95 22872.93 24278.46 17357.27 15871.69 9983.97 15751.48 9777.92 25070.70 7177.95 14787.53 44
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS62.79 25261.27 25867.35 24769.37 33152.04 18371.17 26868.24 29452.63 24059.82 28476.91 29137.32 25572.36 29752.80 20863.19 32277.66 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re56.77 30156.83 29656.61 33569.23 33241.02 30758.37 35864.18 32350.59 26657.45 31071.42 34435.54 27258.94 36437.23 32967.45 28769.87 367
miper_enhance_ethall67.11 19566.09 19970.17 20769.21 33345.98 26072.85 24478.41 17751.38 25465.65 20075.98 30851.17 10181.25 18960.82 14869.32 26683.29 190
Patchmtry57.16 29756.47 29959.23 31769.17 33434.58 36762.98 33563.15 33144.53 33356.83 31474.84 32035.83 27068.71 31840.03 31460.91 33774.39 324
CL-MVSNet_self_test61.53 26660.94 26363.30 29268.95 33536.93 34767.60 30172.80 25755.67 19259.95 28276.63 29545.01 17772.22 30039.74 31762.09 33180.74 243
V4268.65 15967.35 17072.56 15268.93 33650.18 20772.90 24379.47 14956.92 16369.45 12880.26 23346.29 16082.99 14864.07 11767.82 28484.53 148
test-LLR58.15 29158.13 28758.22 32668.57 33744.80 27265.46 31857.92 35650.08 27155.44 32569.82 35732.62 31057.44 37049.66 23473.62 19772.41 341
test-mter56.42 30555.82 30558.22 32668.57 33744.80 27265.46 31857.92 35639.94 36855.44 32569.82 35721.92 37257.44 37049.66 23473.62 19772.41 341
MVS-HIRNet45.52 35044.48 35248.65 36968.49 33934.05 37259.41 35644.50 39727.03 39037.96 39750.47 39926.16 35864.10 34226.74 38859.52 34547.82 398
dp51.89 33351.60 33252.77 35968.44 34032.45 38162.36 33954.57 37144.16 33849.31 36767.91 36528.87 33856.61 37533.89 34954.89 36269.24 372
PatchT53.17 32953.44 32652.33 36268.29 34125.34 40458.21 35954.41 37244.46 33554.56 33769.05 36333.32 29760.94 35236.93 33261.76 33470.73 361
test_fmvsmconf0.01_n72.17 8871.50 8674.16 10667.96 34255.58 12378.06 13374.67 23654.19 22374.54 5688.23 6150.35 11080.24 21478.07 2177.46 15486.65 71
Patchmatch-RL test58.16 29055.49 30766.15 26467.92 34348.89 22960.66 35151.07 38147.86 30359.36 29062.71 38534.02 28872.27 29956.41 17559.40 34677.30 288
pmmvs-eth3d58.81 28656.31 30166.30 26067.61 34452.42 17772.30 25364.76 31843.55 34354.94 33274.19 32628.95 33672.60 29643.31 29157.21 35473.88 329
PVSNet_043.31 2047.46 34845.64 35152.92 35867.60 34544.65 27454.06 37754.64 37041.59 35646.15 37758.75 38830.99 32158.66 36532.18 35724.81 40355.46 391
CHOSEN 280x42047.83 34646.36 35052.24 36467.37 34649.78 21438.91 40343.11 40035.00 37743.27 38563.30 38428.95 33649.19 39436.53 33860.80 33957.76 388
tpmrst58.24 28958.70 28056.84 33466.97 34734.32 36969.57 28861.14 34547.17 31358.58 30171.60 34341.28 21660.41 35549.20 23862.84 32475.78 305
sss56.17 30856.57 29854.96 34366.93 34836.32 35457.94 36161.69 34241.67 35558.64 29975.32 31838.72 23956.25 37742.04 30466.19 29772.31 344
TinyColmap54.14 32051.72 33161.40 30666.84 34941.97 29966.52 30768.51 29144.81 33042.69 38675.77 31011.66 39572.94 29531.96 36056.77 35769.27 371
miper_lstm_enhance62.03 26160.88 26465.49 27666.71 35046.25 25656.29 37175.70 21550.68 26361.27 27075.48 31540.21 22368.03 32356.31 17665.25 30382.18 214
TESTMET0.1,155.28 31554.90 31156.42 33666.56 35143.67 28465.46 31856.27 36639.18 37053.83 34367.44 36924.21 36755.46 38148.04 24973.11 21070.13 365
dmvs_testset50.16 34051.90 33044.94 37566.49 35211.78 41561.01 35051.50 37851.17 25950.30 36567.44 36939.28 23260.29 35622.38 39557.49 35362.76 380
D2MVS62.30 25760.29 26868.34 23766.46 35348.42 23565.70 31373.42 25147.71 30458.16 30475.02 31930.51 32377.71 25453.96 19971.68 22978.90 270
MDA-MVSNet-bldmvs53.87 32350.81 33563.05 29566.25 35448.58 23356.93 36963.82 32548.09 29941.22 38770.48 35330.34 32568.00 32434.24 34845.92 38472.57 337
ITE_SJBPF62.09 30166.16 35544.55 27764.32 32147.36 30955.31 32780.34 23119.27 37862.68 34836.29 34162.39 32879.04 267
EPMVS53.96 32153.69 32454.79 34566.12 35631.96 38362.34 34049.05 38544.42 33655.54 32371.33 34630.22 32656.70 37341.65 30862.54 32775.71 306
ADS-MVSNet251.33 33648.76 34359.07 32066.02 35744.60 27550.90 38559.76 34936.90 37250.74 35966.18 37726.38 35563.11 34627.17 38554.76 36369.50 369
ADS-MVSNet48.48 34547.77 34650.63 36666.02 35729.92 38750.90 38550.87 38336.90 37250.74 35966.18 37726.38 35552.47 38927.17 38554.76 36369.50 369
EU-MVSNet55.61 31354.41 31659.19 31965.41 35933.42 37672.44 25171.91 26428.81 38551.27 35573.87 32824.76 36569.08 31743.04 29558.20 35075.06 312
RPSCF55.80 31154.22 32060.53 31165.13 36042.91 29364.30 32957.62 35836.84 37458.05 30682.28 19128.01 34356.24 37837.14 33058.61 34982.44 210
USDC56.35 30654.24 31962.69 29764.74 36140.31 31365.05 32473.83 24843.93 34147.58 37077.71 28115.36 38875.05 28738.19 32561.81 33372.70 335
JIA-IIPM51.56 33447.68 34863.21 29364.61 36250.73 19747.71 39158.77 35342.90 34948.46 36951.72 39524.97 36470.24 31336.06 34253.89 36668.64 373
Patchmatch-test49.08 34348.28 34551.50 36564.40 36330.85 38645.68 39548.46 38835.60 37646.10 37872.10 33834.47 28346.37 39827.08 38760.65 34177.27 289
TDRefinement53.44 32750.72 33661.60 30364.31 36446.96 25170.89 27465.27 31541.78 35344.61 38177.98 27011.52 39766.36 33528.57 38151.59 37271.49 353
test_vis1_n_192058.86 28559.06 27658.25 32563.76 36543.14 29067.49 30366.36 30740.22 36565.89 19671.95 34131.04 32059.75 35959.94 15564.90 30571.85 348
N_pmnet39.35 36340.28 36036.54 38663.76 3651.62 42349.37 3880.76 42234.62 37843.61 38466.38 37626.25 35742.57 40226.02 39051.77 37165.44 378
ambc65.13 28163.72 36737.07 34547.66 39278.78 16254.37 34071.42 34411.24 39880.94 19745.64 26953.85 36777.38 287
WB-MVS43.26 35343.41 35342.83 37963.32 36810.32 41758.17 36045.20 39545.42 32740.44 39067.26 37234.01 28958.98 36311.96 40824.88 40259.20 383
KD-MVS_2432*160053.45 32551.50 33359.30 31562.82 36937.14 34355.33 37271.79 26547.34 31055.09 33070.52 35121.91 37370.45 30935.72 34342.97 38770.31 363
miper_refine_blended53.45 32551.50 33359.30 31562.82 36937.14 34355.33 37271.79 26547.34 31055.09 33070.52 35121.91 37370.45 30935.72 34342.97 38770.31 363
test0.0.03 153.32 32853.59 32552.50 36162.81 37129.45 38859.51 35454.11 37350.08 27154.40 33974.31 32532.62 31055.92 37930.50 37363.95 31572.15 346
PMMVS53.96 32153.26 32756.04 33762.60 37250.92 19361.17 34756.09 36732.81 38053.51 34966.84 37434.04 28759.93 35844.14 28368.18 28157.27 389
SSC-MVS41.96 35841.99 35741.90 38062.46 3739.28 41957.41 36744.32 39843.38 34438.30 39666.45 37532.67 30958.42 36710.98 40921.91 40557.99 387
PM-MVS52.33 33150.19 33958.75 32262.10 37445.14 27065.75 31240.38 40243.60 34253.52 34872.65 3339.16 40365.87 33850.41 22754.18 36565.24 379
Gipumacopyleft34.77 36731.91 37243.33 37762.05 37537.87 33420.39 40867.03 30123.23 39618.41 40925.84 4094.24 41062.73 34714.71 40251.32 37329.38 407
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test20.0353.87 32354.02 32153.41 35561.47 37628.11 39361.30 34559.21 35151.34 25652.09 35377.43 28433.29 29858.55 36629.76 37660.27 34473.58 330
pmmvs556.47 30455.68 30658.86 32161.41 37736.71 34966.37 30862.75 33340.38 36453.70 34476.62 29634.56 28067.05 33040.02 31565.27 30272.83 334
MDA-MVSNet_test_wron50.71 33948.95 34156.00 33961.17 37841.84 30051.90 38356.45 36240.96 36044.79 38067.84 36630.04 32855.07 38436.71 33550.69 37571.11 359
YYNet150.73 33848.96 34056.03 33861.10 37941.78 30151.94 38256.44 36340.94 36144.84 37967.80 36730.08 32755.08 38336.77 33350.71 37471.22 356
dongtai34.52 36834.94 36833.26 38961.06 38016.00 41452.79 38123.78 41540.71 36239.33 39448.65 40316.91 38348.34 39512.18 40719.05 40735.44 406
CMPMVSbinary42.80 2157.81 29455.97 30363.32 29160.98 38147.38 24864.66 32769.50 28332.06 38146.83 37477.80 27729.50 33371.36 30448.68 24273.75 19571.21 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld50.07 34148.87 34253.66 35160.97 38233.67 37557.62 36564.56 32039.47 36947.38 37164.02 38327.47 34759.32 36034.69 34743.68 38667.98 375
Anonymous2024052155.30 31454.41 31657.96 32960.92 38341.73 30271.09 27271.06 27041.18 35848.65 36873.31 33116.93 38259.25 36142.54 29964.01 31372.90 333
testgi51.90 33252.37 32950.51 36760.39 38423.55 40758.42 35758.15 35449.03 28551.83 35479.21 25522.39 37055.59 38029.24 37962.64 32572.40 343
UnsupCasMVSNet_eth53.16 33052.47 32855.23 34259.45 38533.39 37759.43 35569.13 28745.98 32250.35 36472.32 33529.30 33558.26 36842.02 30544.30 38574.05 327
mvs5depth55.64 31253.81 32361.11 30959.39 38640.98 31165.89 31168.28 29350.21 26958.11 30575.42 31617.03 38167.63 32643.79 28846.21 38274.73 320
test_cas_vis1_n_192056.91 29956.71 29757.51 33359.13 38745.40 26863.58 33361.29 34436.24 37567.14 17271.85 34229.89 32956.69 37457.65 16863.58 31870.46 362
new-patchmatchnet47.56 34747.73 34747.06 37058.81 3889.37 41848.78 38959.21 35143.28 34544.22 38268.66 36425.67 36157.20 37231.57 36849.35 37974.62 322
FPMVS42.18 35741.11 35945.39 37258.03 38941.01 30949.50 38753.81 37530.07 38433.71 39964.03 38111.69 39452.08 39214.01 40355.11 36143.09 400
KD-MVS_self_test55.22 31653.89 32259.21 31857.80 39027.47 39657.75 36474.32 24047.38 30850.90 35870.00 35628.45 34170.30 31240.44 31257.92 35179.87 256
test_vis1_n49.89 34248.69 34453.50 35353.97 39137.38 34161.53 34247.33 39228.54 38659.62 28867.10 37313.52 39052.27 39049.07 23957.52 35270.84 360
test_fmvs151.32 33750.48 33753.81 35053.57 39237.51 34060.63 35251.16 37928.02 38963.62 23569.23 36216.41 38453.93 38651.01 22360.70 34069.99 366
kuosan29.62 37530.82 37426.02 39452.99 39316.22 41351.09 38422.71 41633.91 37933.99 39840.85 40415.89 38633.11 4117.59 41518.37 40828.72 408
test_fmvs1_n51.37 33550.35 33854.42 34852.85 39437.71 33861.16 34851.93 37628.15 38763.81 23469.73 35913.72 38953.95 38551.16 22260.65 34171.59 351
new_pmnet34.13 36934.29 37033.64 38852.63 39518.23 41244.43 39833.90 40822.81 39830.89 40153.18 39310.48 40135.72 41020.77 39739.51 39146.98 399
pmmvs344.92 35141.95 35853.86 34952.58 39643.55 28562.11 34146.90 39426.05 39240.63 38860.19 38711.08 40057.91 36931.83 36546.15 38360.11 382
m2depth45.56 34942.95 35453.39 35652.33 39729.15 38957.77 36248.20 38931.81 38249.86 36677.21 2868.69 40459.16 36227.31 38433.40 39971.84 349
DSMNet-mixed39.30 36438.72 36341.03 38151.22 39819.66 41045.53 39631.35 40915.83 40839.80 39267.42 37122.19 37145.13 39922.43 39452.69 37058.31 386
mvsany_test139.38 36238.16 36543.02 37849.05 39934.28 37044.16 39925.94 41322.74 39946.57 37662.21 38623.85 36841.16 40533.01 35535.91 39553.63 392
APD_test137.39 36534.94 36844.72 37648.88 40033.19 37852.95 38044.00 39919.49 40227.28 40358.59 3893.18 41552.84 38818.92 39841.17 39048.14 397
test_fmvs248.69 34447.49 34952.29 36348.63 40133.06 37957.76 36348.05 39025.71 39359.76 28669.60 36011.57 39652.23 39149.45 23756.86 35571.58 352
LF4IMVS42.95 35442.26 35645.04 37348.30 40232.50 38054.80 37448.49 38728.03 38840.51 38970.16 3549.24 40243.89 40131.63 36649.18 38058.72 385
wuyk23d13.32 38212.52 38515.71 39647.54 40326.27 40131.06 4071.98 4214.93 4135.18 4161.94 4160.45 42118.54 4156.81 41612.83 4122.33 413
MVStest142.65 35539.29 36252.71 36047.26 40434.58 36754.41 37650.84 38423.35 39539.31 39574.08 32712.57 39255.09 38223.32 39328.47 40168.47 374
test_vis1_rt41.35 36039.45 36147.03 37146.65 40537.86 33547.76 39038.65 40323.10 39744.21 38351.22 39711.20 39944.08 40039.27 31853.02 36959.14 384
test_fmvs344.30 35242.55 35549.55 36842.83 40627.15 39953.03 37944.93 39622.03 40153.69 34664.94 3804.21 41149.63 39347.47 25049.82 37771.88 347
LCM-MVSNet40.30 36135.88 36753.57 35242.24 40729.15 38945.21 39760.53 34822.23 40028.02 40250.98 3983.72 41361.78 35131.22 37138.76 39369.78 368
E-PMN23.77 37722.73 38126.90 39242.02 40820.67 40942.66 40035.70 40617.43 40410.28 41425.05 4106.42 40642.39 40310.28 41114.71 41017.63 409
testf131.46 37328.89 37739.16 38241.99 40928.78 39146.45 39337.56 40414.28 40921.10 40548.96 4001.48 41947.11 39613.63 40434.56 39641.60 401
APD_test231.46 37328.89 37739.16 38241.99 40928.78 39146.45 39337.56 40414.28 40921.10 40548.96 4001.48 41947.11 39613.63 40434.56 39641.60 401
EMVS22.97 37821.84 38226.36 39340.20 41119.53 41141.95 40134.64 40717.09 4059.73 41522.83 4117.29 40542.22 4049.18 41313.66 41117.32 410
ANet_high41.38 35937.47 36653.11 35739.73 41224.45 40556.94 36869.69 27847.65 30526.04 40452.32 39412.44 39362.38 34921.80 39610.61 41372.49 338
PMMVS227.40 37625.91 37931.87 39139.46 4136.57 42031.17 40628.52 41123.96 39420.45 40848.94 4024.20 41237.94 40716.51 40019.97 40651.09 393
PMVScopyleft28.69 2236.22 36633.29 37145.02 37436.82 41435.98 35754.68 37548.74 38626.31 39121.02 40751.61 3962.88 41660.10 3579.99 41247.58 38138.99 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
mvsany_test332.62 37030.57 37538.77 38436.16 41524.20 40638.10 40420.63 41719.14 40340.36 39157.43 3905.06 40836.63 40929.59 37828.66 40055.49 390
test_vis3_rt32.09 37130.20 37637.76 38535.36 41627.48 39540.60 40228.29 41216.69 40632.52 40040.53 4051.96 41737.40 40833.64 35242.21 38948.39 395
MVEpermissive17.77 2321.41 37917.77 38432.34 39034.34 41725.44 40316.11 40924.11 41411.19 41113.22 41131.92 4071.58 41830.95 41310.47 41017.03 40940.62 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_f31.86 37231.05 37334.28 38732.33 41821.86 40832.34 40530.46 41016.02 40739.78 39355.45 3924.80 40932.36 41230.61 37237.66 39448.64 394
DeepMVS_CXcopyleft12.03 39717.97 41910.91 41610.60 4207.46 41211.07 41328.36 4083.28 41411.29 4168.01 4149.74 41513.89 411
test_method19.68 38018.10 38324.41 39513.68 4203.11 42212.06 41142.37 4012.00 41411.97 41236.38 4065.77 40729.35 41415.06 40123.65 40440.76 403
tmp_tt9.43 38311.14 3864.30 3982.38 4214.40 42113.62 41016.08 4190.39 41515.89 41013.06 41215.80 3875.54 41712.63 40610.46 4142.95 412
testmvs4.52 3866.03 3890.01 4000.01 4220.00 42553.86 3780.00 4230.01 4170.04 4180.27 4170.00 4230.00 4180.04 4170.00 4160.03 415
test1234.73 3856.30 3880.02 3990.01 4220.01 42456.36 3700.00 4230.01 4170.04 4180.21 4180.01 4220.00 4180.03 4180.00 4160.04 414
test_blank0.00 3880.00 3910.00 4010.00 4240.00 4250.00 4120.00 4230.00 4190.00 4200.00 4190.00 4230.00 4180.00 4190.00 4160.00 416
eth-test20.00 424
eth-test0.00 424
uanet_test0.00 3880.00 3910.00 4010.00 4240.00 4250.00 4120.00 4230.00 4190.00 4200.00 4190.00 4230.00 4180.00 4190.00 4160.00 416
DCPMVS0.00 3880.00 3910.00 4010.00 4240.00 4250.00 4120.00 4230.00 4190.00 4200.00 4190.00 4230.00 4180.00 4190.00 4160.00 416
cdsmvs_eth3d_5k17.50 38123.34 3800.00 4010.00 4240.00 4250.00 41278.63 1660.00 4190.00 42082.18 19249.25 1190.00 4180.00 4190.00 4160.00 416
pcd_1.5k_mvsjas3.92 3875.23 3900.00 4010.00 4240.00 4250.00 4120.00 4230.00 4190.00 4200.00 41947.05 1510.00 4180.00 4190.00 4160.00 416
sosnet-low-res0.00 3880.00 3910.00 4010.00 4240.00 4250.00 4120.00 4230.00 4190.00 4200.00 4190.00 4230.00 4180.00 4190.00 4160.00 416
sosnet0.00 3880.00 3910.00 4010.00 4240.00 4250.00 4120.00 4230.00 4190.00 4200.00 4190.00 4230.00 4180.00 4190.00 4160.00 416
uncertanet0.00 3880.00 3910.00 4010.00 4240.00 4250.00 4120.00 4230.00 4190.00 4200.00 4190.00 4230.00 4180.00 4190.00 4160.00 416
Regformer0.00 3880.00 3910.00 4010.00 4240.00 4250.00 4120.00 4230.00 4190.00 4200.00 4190.00 4230.00 4180.00 4190.00 4160.00 416
ab-mvs-re6.49 3848.65 3870.00 4010.00 4240.00 4250.00 4120.00 4230.00 4190.00 42077.89 2750.00 4230.00 4180.00 4190.00 4160.00 416
uanet0.00 3880.00 3910.00 4010.00 4240.00 4250.00 4120.00 4230.00 4190.00 4200.00 4190.00 4230.00 4180.00 4190.00 4160.00 416
WAC-MVS27.31 39727.77 382
PC_three_145255.09 20584.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 14
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 39
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 25
GSMVS78.05 277
sam_mvs134.74 27978.05 277
sam_mvs33.43 296
MTGPAbinary80.97 127
test_post168.67 2943.64 41432.39 31569.49 31544.17 281
test_post3.55 41533.90 29066.52 333
patchmatchnet-post64.03 38134.50 28174.27 291
MTMP86.03 1917.08 418
test9_res75.28 3788.31 3283.81 171
agg_prior273.09 5587.93 4084.33 152
test_prior462.51 1482.08 76
test_prior281.75 7860.37 9875.01 4489.06 5256.22 4172.19 6088.96 24
旧先验276.08 18145.32 32876.55 3365.56 33958.75 164
新几何276.12 179
无先验79.66 10974.30 24248.40 29580.78 20353.62 20179.03 268
原ACMM279.02 114
testdata272.18 30146.95 259
segment_acmp54.23 57
testdata172.65 24560.50 93
plane_prior584.01 5187.21 5468.16 8380.58 10784.65 146
plane_prior486.10 112
plane_prior356.09 10863.92 3669.27 131
plane_prior284.22 4064.52 25
plane_prior56.31 10283.58 5363.19 4880.48 110
n20.00 423
nn0.00 423
door-mid47.19 393
test1183.47 70
door47.60 391
HQP5-MVS54.94 131
BP-MVS67.04 94
HQP4-MVS67.85 15586.93 6184.32 153
HQP3-MVS83.90 5680.35 111
HQP2-MVS45.46 169
MDTV_nov1_ep13_2view25.89 40261.22 34640.10 36651.10 35632.97 30238.49 32278.61 272
ACMMP++_ref74.07 190
ACMMP++72.16 224
Test By Simon48.33 130