| HPM-MVS++ |  | | 79.88 9 | 80.14 9 | 79.10 21 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 64 | 65.37 13 | 78.78 22 | 90.64 18 | 58.63 25 | 87.24 52 | 79.00 12 | 90.37 14 | 85.26 128 |
|
| CNVR-MVS | | | 79.84 10 | 79.97 10 | 79.45 11 | 87.90 2 | 62.17 17 | 84.37 36 | 85.03 36 | 66.96 5 | 77.58 27 | 90.06 36 | 59.47 21 | 89.13 22 | 78.67 14 | 89.73 16 | 87.03 57 |
|
| test_0728_SECOND | | | | | 79.19 16 | 87.82 3 | 59.11 63 | 87.85 5 | 87.15 3 | | | | | 90.84 3 | 78.66 15 | 90.61 11 | 87.62 41 |
|
| SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 13 | 87.77 4 | 58.90 69 | 87.82 7 | 86.78 10 | 64.18 32 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 17 | 90.87 5 | 88.23 20 |
|
| IU-MVS | | | | | | 87.77 4 | 59.15 60 | | 85.53 26 | 53.93 227 | 84.64 3 | | | | 79.07 11 | 90.87 5 | 88.37 16 |
|
| test_241102_ONE | | | | | | 87.77 4 | 58.90 69 | | 86.78 10 | 64.20 31 | 85.97 1 | 91.34 12 | 66.87 3 | 90.78 7 | | | |
|
| DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 34 | 87.75 7 | 59.07 64 | 87.85 5 | 85.03 36 | 64.26 29 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 15 | 90.61 11 | 85.45 117 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 87.75 7 | 59.07 64 | 87.86 4 | 86.83 8 | 64.26 29 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
| test_one_0601 | | | | | | 87.58 9 | 59.30 57 | | 86.84 7 | 65.01 20 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
| test_part2 | | | | | | 87.58 9 | 60.47 42 | | | | 83.42 12 | | | | | | |
|
| OPU-MVS | | | | | 79.83 7 | 87.54 11 | 60.93 35 | 87.82 7 | | | | 89.89 42 | 67.01 1 | 90.33 12 | 73.16 54 | 91.15 4 | 88.23 20 |
|
| NCCC | | | 78.58 16 | 78.31 18 | 79.39 12 | 87.51 12 | 62.61 13 | 85.20 30 | 84.42 44 | 66.73 8 | 74.67 55 | 89.38 49 | 55.30 46 | 89.18 21 | 74.19 46 | 87.34 44 | 86.38 76 |
|
| DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 15 | 87.27 13 | 60.56 41 | 85.71 26 | 86.42 14 | 63.28 44 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 11 | 76.41 29 | 89.67 18 | 86.84 63 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 10 | 87.24 14 | 59.15 60 | 88.18 1 | 87.15 3 | 65.04 16 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 6 | 91.38 2 | 88.42 14 |
|
| MSC_two_6792asdad | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 24 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 31 |
|
| No_MVS | | | | | 79.95 4 | 87.24 14 | 61.04 31 | | 85.62 24 | | | | | 90.96 1 | 79.31 9 | 90.65 8 | 87.85 31 |
|
| region2R | | | 77.67 27 | 77.18 29 | 79.15 18 | 86.76 17 | 62.95 6 | 86.29 14 | 84.16 49 | 62.81 57 | 73.30 71 | 90.58 20 | 49.90 111 | 88.21 34 | 73.78 50 | 87.03 46 | 86.29 87 |
|
| ACMMPR | | | 77.71 25 | 77.23 28 | 79.16 17 | 86.75 18 | 62.93 7 | 86.29 14 | 84.24 47 | 62.82 55 | 73.55 69 | 90.56 21 | 49.80 113 | 88.24 33 | 74.02 48 | 87.03 46 | 86.32 84 |
|
| HFP-MVS | | | 78.01 24 | 77.65 25 | 79.10 21 | 86.71 19 | 62.81 8 | 86.29 14 | 84.32 46 | 62.82 55 | 73.96 64 | 90.50 23 | 53.20 72 | 88.35 31 | 74.02 48 | 87.05 45 | 86.13 90 |
|
| MCST-MVS | | | 77.48 28 | 77.45 27 | 77.54 45 | 86.67 20 | 58.36 76 | 83.22 55 | 86.93 5 | 56.91 164 | 74.91 48 | 88.19 62 | 59.15 23 | 87.68 48 | 73.67 51 | 87.45 43 | 86.57 73 |
|
| ZD-MVS | | | | | | 86.64 21 | 60.38 43 | | 82.70 89 | 57.95 149 | 78.10 24 | 90.06 36 | 56.12 42 | 88.84 26 | 74.05 47 | 87.00 49 | |
|
| APDe-MVS |  | | 80.16 8 | 80.59 6 | 78.86 29 | 86.64 21 | 60.02 45 | 88.12 3 | 86.42 14 | 62.94 51 | 82.40 14 | 92.12 2 | 59.64 19 | 89.76 16 | 78.70 13 | 88.32 31 | 86.79 65 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 4 | 86.60 23 | 61.95 19 | 86.33 13 | 85.75 21 | 62.49 62 | 82.20 15 | 92.28 1 | 56.53 37 | 89.70 17 | 79.85 5 | 91.48 1 | 88.19 22 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| DP-MVS Recon | | | 72.15 91 | 70.73 103 | 76.40 60 | 86.57 24 | 57.99 79 | 81.15 87 | 82.96 84 | 57.03 161 | 66.78 177 | 85.56 126 | 44.50 182 | 88.11 38 | 51.77 218 | 80.23 114 | 83.10 197 |
|
| MP-MVS |  | | 78.35 20 | 78.26 21 | 78.64 31 | 86.54 25 | 63.47 4 | 86.02 20 | 83.55 68 | 63.89 37 | 73.60 68 | 90.60 19 | 54.85 51 | 86.72 66 | 77.20 25 | 88.06 36 | 85.74 107 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| mPP-MVS | | | 76.54 37 | 75.93 41 | 78.34 36 | 86.47 26 | 63.50 3 | 85.74 25 | 82.28 93 | 62.90 52 | 71.77 98 | 90.26 31 | 46.61 158 | 86.55 72 | 71.71 65 | 85.66 61 | 84.97 138 |
|
| APD-MVS |  | | 78.02 23 | 78.04 23 | 77.98 41 | 86.44 27 | 60.81 38 | 85.52 27 | 84.36 45 | 60.61 91 | 79.05 21 | 90.30 30 | 55.54 45 | 88.32 32 | 73.48 53 | 87.03 46 | 84.83 141 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ZNCC-MVS | | | 78.82 13 | 78.67 16 | 79.30 14 | 86.43 28 | 62.05 18 | 86.62 11 | 86.01 18 | 63.32 43 | 75.08 43 | 90.47 25 | 53.96 61 | 88.68 27 | 76.48 28 | 89.63 20 | 87.16 55 |
|
| XVS | | | 77.17 31 | 76.56 34 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 54 | 64.55 23 | 72.17 95 | 90.01 40 | 47.95 133 | 88.01 40 | 71.55 67 | 86.74 53 | 86.37 78 |
|
| X-MVStestdata | | | 70.21 123 | 67.28 172 | 79.00 23 | 86.32 29 | 62.62 11 | 85.83 22 | 83.92 54 | 64.55 23 | 72.17 95 | 6.49 413 | 47.95 133 | 88.01 40 | 71.55 67 | 86.74 53 | 86.37 78 |
|
| MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 31 | 62.73 9 | 86.09 18 | 86.83 8 | 65.51 12 | 83.81 10 | 90.51 22 | 63.71 12 | 89.23 20 | 81.51 2 | 88.44 27 | 88.09 25 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| 114514_t | | | 70.83 110 | 69.56 122 | 74.64 91 | 86.21 31 | 54.63 136 | 82.34 70 | 81.81 100 | 48.22 296 | 63.01 246 | 85.83 122 | 40.92 220 | 87.10 58 | 57.91 166 | 79.79 116 | 82.18 214 |
|
| save fliter | | | | | | 86.17 33 | 61.30 28 | 83.98 47 | 79.66 145 | 59.00 126 | | | | | | | |
|
| DeepC-MVS_fast | | 68.24 3 | 77.25 30 | 76.63 33 | 79.12 20 | 86.15 34 | 60.86 36 | 84.71 32 | 84.85 40 | 61.98 74 | 73.06 81 | 88.88 55 | 53.72 66 | 89.06 23 | 68.27 80 | 88.04 37 | 87.42 47 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| PGM-MVS | | | 76.77 35 | 76.06 39 | 78.88 28 | 86.14 35 | 62.73 9 | 82.55 67 | 83.74 63 | 61.71 76 | 72.45 94 | 90.34 29 | 48.48 129 | 88.13 37 | 72.32 59 | 86.85 51 | 85.78 101 |
|
| FOURS1 | | | | | | 86.12 36 | 60.82 37 | 88.18 1 | 83.61 66 | 60.87 86 | 81.50 16 | | | | | | |
|
| MTAPA | | | 76.90 34 | 76.42 36 | 78.35 35 | 86.08 37 | 63.57 2 | 74.92 209 | 80.97 127 | 65.13 15 | 75.77 36 | 90.88 16 | 48.63 126 | 86.66 68 | 77.23 24 | 88.17 33 | 84.81 142 |
|
| GST-MVS | | | 78.14 22 | 77.85 24 | 78.99 25 | 86.05 38 | 61.82 22 | 85.84 21 | 85.21 30 | 63.56 41 | 74.29 61 | 90.03 38 | 52.56 78 | 88.53 29 | 74.79 42 | 88.34 29 | 86.63 72 |
|
| CP-MVS | | | 77.12 32 | 76.68 32 | 78.43 33 | 86.05 38 | 63.18 5 | 87.55 10 | 83.45 71 | 62.44 64 | 72.68 88 | 90.50 23 | 48.18 131 | 87.34 51 | 73.59 52 | 85.71 60 | 84.76 145 |
|
| SR-MVS | | | 76.13 43 | 75.70 44 | 77.40 48 | 85.87 40 | 61.20 29 | 85.52 27 | 82.19 94 | 59.99 108 | 75.10 42 | 90.35 28 | 47.66 138 | 86.52 73 | 71.64 66 | 82.99 80 | 84.47 151 |
|
| 新几何1 | | | | | 70.76 196 | 85.66 41 | 61.13 30 | | 66.43 306 | 44.68 332 | 70.29 111 | 86.64 92 | 41.29 215 | 75.23 286 | 49.72 233 | 81.75 100 | 75.93 303 |
|
| MG-MVS | | | 73.96 65 | 73.89 63 | 74.16 106 | 85.65 42 | 49.69 217 | 81.59 82 | 81.29 117 | 61.45 78 | 71.05 105 | 88.11 63 | 51.77 93 | 87.73 47 | 61.05 146 | 83.09 78 | 85.05 134 |
|
| TEST9 | | | | | | 85.58 43 | 61.59 24 | 81.62 80 | 81.26 118 | 55.65 193 | 74.93 46 | 88.81 56 | 53.70 67 | 84.68 118 | | | |
|
| train_agg | | | 76.27 40 | 76.15 38 | 76.64 57 | 85.58 43 | 61.59 24 | 81.62 80 | 81.26 118 | 55.86 185 | 74.93 46 | 88.81 56 | 53.70 67 | 84.68 118 | 75.24 38 | 88.33 30 | 83.65 182 |
|
| ACMMP_NAP | | | 78.77 15 | 78.78 14 | 78.74 30 | 85.44 45 | 61.04 31 | 83.84 49 | 85.16 31 | 62.88 53 | 78.10 24 | 91.26 13 | 52.51 79 | 88.39 30 | 79.34 8 | 90.52 13 | 86.78 66 |
|
| test_8 | | | | | | 85.40 46 | 60.96 34 | 81.54 83 | 81.18 121 | 55.86 185 | 74.81 51 | 88.80 58 | 53.70 67 | 84.45 122 | | | |
|
| 原ACMM1 | | | | | 74.69 87 | 85.39 47 | 59.40 54 | | 83.42 72 | 51.47 253 | 70.27 112 | 86.61 95 | 48.61 127 | 86.51 74 | 53.85 200 | 87.96 39 | 78.16 275 |
|
| CDPH-MVS | | | 76.31 39 | 75.67 45 | 78.22 37 | 85.35 48 | 59.14 62 | 81.31 85 | 84.02 50 | 56.32 177 | 74.05 62 | 88.98 54 | 53.34 71 | 87.92 43 | 69.23 78 | 88.42 28 | 87.59 42 |
|
| ACMMP |  | | 76.02 44 | 75.33 48 | 78.07 38 | 85.20 49 | 61.91 20 | 85.49 29 | 84.44 43 | 63.04 49 | 69.80 123 | 89.74 46 | 45.43 171 | 87.16 56 | 72.01 62 | 82.87 85 | 85.14 130 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| agg_prior | | | | | | 85.04 50 | 59.96 47 | | 81.04 125 | | 74.68 54 | | | 84.04 128 | | | |
|
| HPM-MVS |  | | 77.28 29 | 76.85 30 | 78.54 32 | 85.00 51 | 60.81 38 | 82.91 60 | 85.08 33 | 62.57 60 | 73.09 80 | 89.97 41 | 50.90 106 | 87.48 50 | 75.30 36 | 86.85 51 | 87.33 53 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| MP-MVS-pluss | | | 78.35 20 | 78.46 17 | 78.03 40 | 84.96 52 | 59.52 53 | 82.93 59 | 85.39 27 | 62.15 67 | 76.41 34 | 91.51 11 | 52.47 81 | 86.78 65 | 80.66 4 | 89.64 19 | 87.80 34 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TSAR-MVS + MP. | | | 78.44 19 | 78.28 19 | 78.90 27 | 84.96 52 | 61.41 26 | 84.03 45 | 83.82 62 | 59.34 122 | 79.37 19 | 89.76 45 | 59.84 16 | 87.62 49 | 76.69 27 | 86.74 53 | 87.68 38 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| AdaColmap |  | | 69.99 127 | 68.66 140 | 73.97 110 | 84.94 54 | 57.83 81 | 82.63 65 | 78.71 163 | 56.28 179 | 64.34 225 | 84.14 151 | 41.57 210 | 87.06 60 | 46.45 261 | 78.88 132 | 77.02 293 |
|
| DP-MVS | | | 65.68 216 | 63.66 227 | 71.75 169 | 84.93 55 | 56.87 99 | 80.74 92 | 73.16 254 | 53.06 234 | 59.09 294 | 82.35 188 | 36.79 264 | 85.94 87 | 32.82 356 | 69.96 255 | 72.45 339 |
|
| DeepPCF-MVS | | 69.58 1 | 79.03 12 | 79.00 13 | 79.13 19 | 84.92 56 | 60.32 44 | 83.03 57 | 85.33 28 | 62.86 54 | 80.17 17 | 90.03 38 | 61.76 14 | 88.95 24 | 74.21 45 | 88.67 26 | 88.12 24 |
|
| CPTT-MVS | | | 72.78 76 | 72.08 81 | 74.87 85 | 84.88 57 | 61.41 26 | 84.15 43 | 77.86 184 | 55.27 200 | 67.51 166 | 88.08 65 | 41.93 205 | 81.85 177 | 69.04 79 | 80.01 115 | 81.35 230 |
|
| test12 | | | | | 77.76 43 | 84.52 58 | 58.41 75 | | 83.36 75 | | 72.93 84 | | 54.61 54 | 88.05 39 | | 88.12 34 | 86.81 64 |
|
| SD-MVS | | | 77.70 26 | 77.62 26 | 77.93 42 | 84.47 59 | 61.88 21 | 84.55 34 | 83.87 59 | 60.37 98 | 79.89 18 | 89.38 49 | 54.97 49 | 85.58 95 | 76.12 31 | 84.94 64 | 86.33 82 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| HPM-MVS_fast | | | 74.30 63 | 73.46 68 | 76.80 52 | 84.45 60 | 59.04 66 | 83.65 52 | 81.05 124 | 60.15 105 | 70.43 109 | 89.84 43 | 41.09 219 | 85.59 94 | 67.61 89 | 82.90 84 | 85.77 104 |
|
| test_prior | | | | | 76.69 53 | 84.20 61 | 57.27 88 | | 84.88 39 | | | | | 86.43 76 | | | 86.38 76 |
|
| CSCG | | | 76.92 33 | 76.75 31 | 77.41 46 | 83.96 62 | 59.60 51 | 82.95 58 | 86.50 13 | 60.78 89 | 75.27 40 | 84.83 135 | 60.76 15 | 86.56 71 | 67.86 85 | 87.87 41 | 86.06 92 |
|
| DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 22 | 79.83 7 | 83.60 63 | 61.62 23 | 84.17 42 | 86.85 6 | 63.23 46 | 73.84 66 | 90.25 32 | 57.68 29 | 89.96 15 | 74.62 43 | 89.03 22 | 87.89 28 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| UA-Net | | | 73.13 71 | 72.93 72 | 73.76 116 | 83.58 64 | 51.66 187 | 78.75 116 | 77.66 188 | 67.75 4 | 72.61 90 | 89.42 47 | 49.82 112 | 83.29 143 | 53.61 202 | 83.14 77 | 86.32 84 |
|
| SR-MVS-dyc-post | | | 74.57 59 | 73.90 62 | 76.58 58 | 83.49 65 | 59.87 49 | 84.29 37 | 81.36 111 | 58.07 144 | 73.14 77 | 90.07 34 | 44.74 178 | 85.84 89 | 68.20 81 | 81.76 98 | 84.03 161 |
|
| RE-MVS-def | | | | 73.71 66 | | 83.49 65 | 59.87 49 | 84.29 37 | 81.36 111 | 58.07 144 | 73.14 77 | 90.07 34 | 43.06 194 | | 68.20 81 | 81.76 98 | 84.03 161 |
|
| LFMVS | | | 71.78 94 | 71.59 84 | 72.32 159 | 83.40 67 | 46.38 255 | 79.75 106 | 71.08 268 | 64.18 32 | 72.80 86 | 88.64 59 | 42.58 198 | 83.72 135 | 57.41 170 | 84.49 68 | 86.86 62 |
|
| test222 | | | | | | 83.14 68 | 58.68 73 | 72.57 249 | 63.45 328 | 41.78 353 | 67.56 165 | 86.12 111 | 37.13 259 | | | 78.73 137 | 74.98 315 |
|
| 9.14 | | | | 78.75 15 | | 83.10 69 | | 84.15 43 | 88.26 1 | 59.90 109 | 78.57 23 | 90.36 27 | 57.51 32 | 86.86 63 | 77.39 23 | 89.52 21 | |
|
| 旧先验1 | | | | | | 83.04 70 | 53.15 158 | | 67.52 296 | | | 87.85 71 | 44.08 185 | | | 80.76 104 | 78.03 280 |
|
| MSLP-MVS++ | | | 73.77 67 | 73.47 67 | 74.66 89 | 83.02 71 | 59.29 58 | 82.30 74 | 81.88 98 | 59.34 122 | 71.59 101 | 86.83 85 | 45.94 162 | 83.65 137 | 65.09 110 | 85.22 63 | 81.06 237 |
|
| SteuartSystems-ACMMP | | | 79.48 11 | 79.31 11 | 79.98 3 | 83.01 72 | 62.18 16 | 87.60 9 | 85.83 19 | 66.69 9 | 78.03 26 | 90.98 15 | 54.26 56 | 90.06 14 | 78.42 19 | 89.02 23 | 87.69 37 |
| Skip Steuart: Steuart Systems R&D Blog. |
| MVS_111021_HR | | | 74.02 64 | 73.46 68 | 75.69 71 | 83.01 72 | 60.63 40 | 77.29 154 | 78.40 178 | 61.18 83 | 70.58 108 | 85.97 117 | 54.18 58 | 84.00 131 | 67.52 90 | 82.98 82 | 82.45 209 |
|
| SF-MVS | | | 78.82 13 | 79.22 12 | 77.60 44 | 82.88 74 | 57.83 81 | 84.99 31 | 88.13 2 | 61.86 75 | 79.16 20 | 90.75 17 | 57.96 26 | 87.09 59 | 77.08 26 | 90.18 15 | 87.87 30 |
|
| VDDNet | | | 71.81 93 | 71.33 92 | 73.26 141 | 82.80 75 | 47.60 246 | 78.74 117 | 75.27 224 | 59.59 118 | 72.94 83 | 89.40 48 | 41.51 213 | 83.91 132 | 58.75 164 | 82.99 80 | 88.26 18 |
|
| 3Dnovator+ | | 66.72 4 | 75.84 46 | 74.57 56 | 79.66 9 | 82.40 76 | 59.92 48 | 85.83 22 | 86.32 16 | 66.92 7 | 67.80 160 | 89.24 51 | 42.03 203 | 89.38 19 | 64.07 117 | 86.50 57 | 89.69 2 |
|
| dcpmvs_2 | | | 74.55 60 | 75.23 50 | 72.48 154 | 82.34 77 | 53.34 155 | 77.87 136 | 81.46 107 | 57.80 154 | 75.49 38 | 86.81 86 | 62.22 13 | 77.75 253 | 71.09 69 | 82.02 94 | 86.34 80 |
|
| APD-MVS_3200maxsize | | | 74.96 51 | 74.39 58 | 76.67 55 | 82.20 78 | 58.24 77 | 83.67 51 | 83.29 78 | 58.41 138 | 73.71 67 | 90.14 33 | 45.62 164 | 85.99 85 | 69.64 74 | 82.85 86 | 85.78 101 |
|
| MM | | | 80.20 7 | 80.28 8 | 79.99 2 | 82.19 79 | 60.01 46 | 86.19 17 | 83.93 53 | 73.19 1 | 77.08 31 | 91.21 14 | 57.23 33 | 90.73 10 | 83.35 1 | 88.12 34 | 89.22 5 |
|
| PVSNet_Blended_VisFu | | | 71.45 102 | 70.39 109 | 74.65 90 | 82.01 80 | 58.82 71 | 79.93 102 | 80.35 138 | 55.09 205 | 65.82 199 | 82.16 195 | 49.17 120 | 82.64 163 | 60.34 151 | 78.62 139 | 82.50 208 |
|
| TSAR-MVS + GP. | | | 74.90 52 | 74.15 60 | 77.17 49 | 82.00 81 | 58.77 72 | 81.80 77 | 78.57 167 | 58.58 135 | 74.32 60 | 84.51 146 | 55.94 43 | 87.22 53 | 67.11 93 | 84.48 69 | 85.52 113 |
|
| h-mvs33 | | | 72.71 78 | 71.49 87 | 76.40 60 | 81.99 82 | 59.58 52 | 76.92 164 | 76.74 204 | 60.40 95 | 74.81 51 | 85.95 118 | 45.54 167 | 85.76 91 | 70.41 72 | 70.61 240 | 83.86 170 |
|
| API-MVS | | | 72.17 88 | 71.41 89 | 74.45 98 | 81.95 83 | 57.22 89 | 84.03 45 | 80.38 137 | 59.89 112 | 68.40 143 | 82.33 189 | 49.64 114 | 87.83 46 | 51.87 216 | 84.16 73 | 78.30 273 |
|
| MAR-MVS | | | 71.51 99 | 70.15 115 | 75.60 75 | 81.84 84 | 59.39 55 | 81.38 84 | 82.90 86 | 54.90 212 | 68.08 152 | 78.70 259 | 47.73 136 | 85.51 97 | 51.68 220 | 84.17 72 | 81.88 220 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| balanced_conf03 | | | 76.58 36 | 76.55 35 | 76.68 54 | 81.73 85 | 52.90 164 | 80.94 88 | 85.70 23 | 61.12 84 | 74.90 49 | 87.17 82 | 56.46 38 | 88.14 36 | 72.87 56 | 88.03 38 | 89.00 7 |
|
| PAPM_NR | | | 72.63 79 | 71.80 82 | 75.13 82 | 81.72 86 | 53.42 154 | 79.91 103 | 83.28 79 | 59.14 124 | 66.31 188 | 85.90 119 | 51.86 91 | 86.06 82 | 57.45 169 | 80.62 105 | 85.91 97 |
|
| VDD-MVS | | | 72.50 80 | 72.09 80 | 73.75 118 | 81.58 87 | 49.69 217 | 77.76 141 | 77.63 189 | 63.21 47 | 73.21 74 | 89.02 53 | 42.14 202 | 83.32 142 | 61.72 141 | 82.50 89 | 88.25 19 |
|
| PS-MVSNAJ | | | 70.51 116 | 69.70 121 | 72.93 145 | 81.52 88 | 55.79 116 | 74.92 209 | 79.00 156 | 55.04 210 | 69.88 121 | 78.66 261 | 47.05 151 | 82.19 171 | 61.61 142 | 79.58 120 | 80.83 241 |
|
| testdata | | | | | 64.66 283 | 81.52 88 | 52.93 163 | | 65.29 314 | 46.09 321 | 73.88 65 | 87.46 76 | 38.08 248 | 66.26 336 | 53.31 205 | 78.48 140 | 74.78 319 |
|
| CHOSEN 1792x2688 | | | 65.08 227 | 62.84 239 | 71.82 167 | 81.49 90 | 56.26 105 | 66.32 309 | 74.20 245 | 40.53 363 | 63.16 242 | 78.65 262 | 41.30 214 | 77.80 252 | 45.80 267 | 74.09 189 | 81.40 227 |
|
| HQP_MVS | | | 74.31 62 | 73.73 65 | 76.06 64 | 81.41 91 | 56.31 102 | 84.22 40 | 84.01 51 | 64.52 25 | 69.27 131 | 86.10 112 | 45.26 175 | 87.21 54 | 68.16 83 | 80.58 107 | 84.65 146 |
|
| plane_prior7 | | | | | | 81.41 91 | 55.96 111 | | | | | | | | | | |
|
| DPM-MVS | | | 75.47 50 | 75.00 51 | 76.88 51 | 81.38 93 | 59.16 59 | 79.94 101 | 85.71 22 | 56.59 172 | 72.46 92 | 86.76 87 | 56.89 35 | 87.86 45 | 66.36 98 | 88.91 25 | 83.64 183 |
|
| CANet | | | 76.46 38 | 75.93 41 | 78.06 39 | 81.29 94 | 57.53 85 | 82.35 69 | 83.31 77 | 67.78 3 | 70.09 113 | 86.34 105 | 54.92 50 | 88.90 25 | 72.68 58 | 84.55 67 | 87.76 36 |
|
| Vis-MVSNet |  | | 72.18 87 | 71.37 91 | 74.61 92 | 81.29 94 | 55.41 126 | 80.90 89 | 78.28 180 | 60.73 90 | 69.23 134 | 88.09 64 | 44.36 184 | 82.65 162 | 57.68 167 | 81.75 100 | 85.77 104 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| plane_prior1 | | | | | | 81.27 96 | | | | | | | | | | | |
|
| xiu_mvs_v2_base | | | 70.52 115 | 69.75 119 | 72.84 147 | 81.21 97 | 55.63 120 | 75.11 202 | 78.92 158 | 54.92 211 | 69.96 120 | 79.68 244 | 47.00 155 | 82.09 173 | 61.60 143 | 79.37 123 | 80.81 242 |
|
| plane_prior6 | | | | | | 81.20 98 | 56.24 106 | | | | | | 45.26 175 | | | | |
|
| PAPR | | | 71.72 97 | 70.82 101 | 74.41 99 | 81.20 98 | 51.17 189 | 79.55 111 | 83.33 76 | 55.81 188 | 66.93 176 | 84.61 142 | 50.95 104 | 86.06 82 | 55.79 181 | 79.20 128 | 86.00 93 |
|
| PLC |  | 56.13 14 | 65.09 226 | 63.21 235 | 70.72 198 | 81.04 100 | 54.87 134 | 78.57 122 | 77.47 191 | 48.51 292 | 55.71 322 | 81.89 201 | 33.71 292 | 79.71 219 | 41.66 307 | 70.37 244 | 77.58 284 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| NP-MVS | | | | | | 80.98 101 | 56.05 110 | | | | | 85.54 129 | | | | | |
|
| MVSMamba_PlusPlus | | | 75.75 48 | 75.44 46 | 76.67 55 | 80.84 102 | 53.06 161 | 78.62 120 | 85.13 32 | 59.65 114 | 71.53 102 | 87.47 75 | 56.92 34 | 88.17 35 | 72.18 61 | 86.63 56 | 88.80 8 |
|
| OPM-MVS | | | 74.73 55 | 74.25 59 | 76.19 63 | 80.81 103 | 59.01 67 | 82.60 66 | 83.64 65 | 63.74 39 | 72.52 91 | 87.49 74 | 47.18 149 | 85.88 88 | 69.47 76 | 80.78 103 | 83.66 181 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| MVS_0304 | | | 78.45 18 | 78.28 19 | 78.98 26 | 80.73 104 | 57.91 80 | 84.68 33 | 81.64 103 | 68.35 2 | 75.77 36 | 90.38 26 | 53.98 59 | 90.26 13 | 81.30 3 | 87.68 42 | 88.77 9 |
|
| HQP-NCC | | | | | | 80.66 105 | | 82.31 71 | | 62.10 68 | 67.85 155 | | | | | | |
|
| ACMP_Plane | | | | | | 80.66 105 | | 82.31 71 | | 62.10 68 | 67.85 155 | | | | | | |
|
| HQP-MVS | | | 73.45 68 | 72.80 73 | 75.40 77 | 80.66 105 | 54.94 131 | 82.31 71 | 83.90 56 | 62.10 68 | 67.85 155 | 85.54 129 | 45.46 169 | 86.93 61 | 67.04 94 | 80.35 111 | 84.32 153 |
|
| CS-MVS-test | | | 75.62 49 | 75.31 49 | 76.56 59 | 80.63 108 | 55.13 130 | 83.88 48 | 85.22 29 | 62.05 71 | 71.49 103 | 86.03 115 | 53.83 63 | 86.36 79 | 67.74 86 | 86.91 50 | 88.19 22 |
|
| PHI-MVS | | | 75.87 45 | 75.36 47 | 77.41 46 | 80.62 109 | 55.91 113 | 84.28 39 | 85.78 20 | 56.08 183 | 73.41 70 | 86.58 97 | 50.94 105 | 88.54 28 | 70.79 70 | 89.71 17 | 87.79 35 |
|
| ACMM | | 61.98 7 | 70.80 112 | 69.73 120 | 74.02 108 | 80.59 110 | 58.59 74 | 82.68 64 | 82.02 97 | 55.46 197 | 67.18 171 | 84.39 148 | 38.51 240 | 83.17 146 | 60.65 149 | 76.10 172 | 80.30 249 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Anonymous20231211 | | | 69.28 148 | 68.47 145 | 71.73 170 | 80.28 111 | 47.18 250 | 79.98 100 | 82.37 92 | 54.61 215 | 67.24 169 | 84.01 155 | 39.43 230 | 82.41 169 | 55.45 186 | 72.83 213 | 85.62 111 |
|
| ACMP | | 63.53 6 | 72.30 85 | 71.20 95 | 75.59 76 | 80.28 111 | 57.54 84 | 82.74 63 | 82.84 88 | 60.58 92 | 65.24 211 | 86.18 109 | 39.25 233 | 86.03 84 | 66.95 96 | 76.79 165 | 83.22 191 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| LPG-MVS_test | | | 72.74 77 | 71.74 83 | 75.76 68 | 80.22 113 | 57.51 86 | 82.55 67 | 83.40 73 | 61.32 79 | 66.67 181 | 87.33 78 | 39.15 235 | 86.59 69 | 67.70 87 | 77.30 158 | 83.19 193 |
|
| LGP-MVS_train | | | | | 75.76 68 | 80.22 113 | 57.51 86 | | 83.40 73 | 61.32 79 | 66.67 181 | 87.33 78 | 39.15 235 | 86.59 69 | 67.70 87 | 77.30 158 | 83.19 193 |
|
| WR-MVS | | | 68.47 165 | 68.47 145 | 68.44 235 | 80.20 115 | 39.84 317 | 73.75 234 | 76.07 211 | 64.68 22 | 68.11 151 | 83.63 163 | 50.39 109 | 79.14 233 | 49.78 230 | 69.66 263 | 86.34 80 |
|
| Anonymous20240529 | | | 69.91 129 | 69.02 132 | 72.56 152 | 80.19 116 | 47.65 244 | 77.56 145 | 80.99 126 | 55.45 198 | 69.88 121 | 86.76 87 | 39.24 234 | 82.18 172 | 54.04 197 | 77.10 162 | 87.85 31 |
|
| Anonymous202405211 | | | 66.84 201 | 65.99 200 | 69.40 222 | 80.19 116 | 42.21 298 | 71.11 271 | 71.31 267 | 58.80 129 | 67.90 153 | 86.39 104 | 29.83 330 | 79.65 220 | 49.60 236 | 78.78 135 | 86.33 82 |
|
| CS-MVS | | | 76.25 41 | 75.98 40 | 77.06 50 | 80.15 118 | 55.63 120 | 84.51 35 | 83.90 56 | 63.24 45 | 73.30 71 | 87.27 80 | 55.06 48 | 86.30 81 | 71.78 64 | 84.58 66 | 89.25 4 |
|
| BH-RMVSNet | | | 68.81 155 | 67.42 166 | 72.97 144 | 80.11 119 | 52.53 173 | 74.26 221 | 76.29 207 | 58.48 137 | 68.38 144 | 84.20 149 | 42.59 197 | 83.83 133 | 46.53 260 | 75.91 173 | 82.56 204 |
|
| test_0402 | | | 63.25 247 | 61.01 262 | 69.96 209 | 80.00 120 | 54.37 140 | 76.86 167 | 72.02 263 | 54.58 217 | 58.71 297 | 80.79 226 | 35.00 277 | 84.36 123 | 26.41 389 | 64.71 307 | 71.15 358 |
|
| HyFIR lowres test | | | 65.67 217 | 63.01 237 | 73.67 123 | 79.97 121 | 55.65 119 | 69.07 292 | 75.52 219 | 42.68 351 | 63.53 236 | 77.95 271 | 40.43 222 | 81.64 180 | 46.01 265 | 71.91 226 | 83.73 177 |
|
| EIA-MVS | | | 71.78 94 | 70.60 105 | 75.30 80 | 79.85 122 | 53.54 151 | 77.27 155 | 83.26 80 | 57.92 150 | 66.49 183 | 79.39 251 | 52.07 88 | 86.69 67 | 60.05 153 | 79.14 130 | 85.66 109 |
|
| BH-untuned | | | 68.27 169 | 67.29 171 | 71.21 186 | 79.74 123 | 53.22 157 | 76.06 182 | 77.46 193 | 57.19 159 | 66.10 190 | 81.61 207 | 45.37 173 | 83.50 140 | 45.42 276 | 76.68 167 | 76.91 297 |
|
| VNet | | | 69.68 136 | 70.19 114 | 68.16 238 | 79.73 124 | 41.63 305 | 70.53 277 | 77.38 194 | 60.37 98 | 70.69 107 | 86.63 94 | 51.08 102 | 77.09 264 | 53.61 202 | 81.69 102 | 85.75 106 |
|
| LS3D | | | 64.71 229 | 62.50 243 | 71.34 184 | 79.72 125 | 55.71 117 | 79.82 104 | 74.72 235 | 48.50 293 | 56.62 315 | 84.62 141 | 33.59 295 | 82.34 170 | 29.65 377 | 75.23 181 | 75.97 302 |
|
| mvsmamba | | | 68.47 165 | 66.56 183 | 74.21 105 | 79.60 126 | 52.95 162 | 74.94 208 | 75.48 220 | 52.09 245 | 60.10 278 | 83.27 169 | 36.54 265 | 84.70 117 | 59.32 163 | 77.69 150 | 84.99 137 |
|
| hse-mvs2 | | | 71.04 105 | 69.86 118 | 74.60 93 | 79.58 127 | 57.12 96 | 73.96 226 | 75.25 225 | 60.40 95 | 74.81 51 | 81.95 200 | 45.54 167 | 82.90 151 | 70.41 72 | 66.83 292 | 83.77 175 |
|
| GeoE | | | 71.01 106 | 70.15 115 | 73.60 129 | 79.57 128 | 52.17 179 | 78.93 115 | 78.12 181 | 58.02 146 | 67.76 163 | 83.87 158 | 52.36 83 | 82.72 160 | 56.90 172 | 75.79 175 | 85.92 96 |
|
| AUN-MVS | | | 68.45 167 | 66.41 190 | 74.57 95 | 79.53 129 | 57.08 97 | 73.93 229 | 75.23 226 | 54.44 220 | 66.69 180 | 81.85 202 | 37.10 260 | 82.89 152 | 62.07 137 | 66.84 291 | 83.75 176 |
|
| test2506 | | | 65.33 223 | 64.61 216 | 67.50 243 | 79.46 130 | 34.19 371 | 74.43 220 | 51.92 377 | 58.72 130 | 66.75 179 | 88.05 66 | 25.99 359 | 80.92 199 | 51.94 215 | 84.25 70 | 87.39 48 |
|
| ECVR-MVS |  | | 67.72 182 | 67.51 163 | 68.35 236 | 79.46 130 | 36.29 356 | 74.79 212 | 66.93 302 | 58.72 130 | 67.19 170 | 88.05 66 | 36.10 267 | 81.38 186 | 52.07 213 | 84.25 70 | 87.39 48 |
|
| BH-w/o | | | 66.85 200 | 65.83 202 | 69.90 213 | 79.29 132 | 52.46 175 | 74.66 215 | 76.65 205 | 54.51 219 | 64.85 220 | 78.12 267 | 45.59 166 | 82.95 150 | 43.26 293 | 75.54 179 | 74.27 325 |
|
| 1112_ss | | | 64.00 239 | 63.36 231 | 65.93 269 | 79.28 133 | 42.58 294 | 71.35 264 | 72.36 260 | 46.41 318 | 60.55 275 | 77.89 275 | 46.27 161 | 73.28 294 | 46.18 263 | 69.97 254 | 81.92 219 |
|
| ETV-MVS | | | 74.46 61 | 73.84 64 | 76.33 62 | 79.27 134 | 55.24 129 | 79.22 113 | 85.00 38 | 64.97 21 | 72.65 89 | 79.46 249 | 53.65 70 | 87.87 44 | 67.45 91 | 82.91 83 | 85.89 98 |
|
| test1111 | | | 67.21 189 | 67.14 179 | 67.42 245 | 79.24 135 | 34.76 365 | 73.89 231 | 65.65 311 | 58.71 132 | 66.96 175 | 87.95 69 | 36.09 268 | 80.53 206 | 52.03 214 | 83.79 75 | 86.97 59 |
|
| UniMVSNet_NR-MVSNet | | | 71.11 104 | 71.00 99 | 71.44 178 | 79.20 136 | 44.13 278 | 76.02 185 | 82.60 90 | 66.48 11 | 68.20 146 | 84.60 143 | 56.82 36 | 82.82 158 | 54.62 192 | 70.43 242 | 87.36 52 |
|
| VPNet | | | 67.52 185 | 68.11 152 | 65.74 272 | 79.18 137 | 36.80 348 | 72.17 255 | 72.83 256 | 62.04 72 | 67.79 161 | 85.83 122 | 48.88 125 | 76.60 276 | 51.30 221 | 72.97 212 | 83.81 171 |
|
| TR-MVS | | | 66.59 208 | 65.07 213 | 71.17 189 | 79.18 137 | 49.63 219 | 73.48 236 | 75.20 228 | 52.95 235 | 67.90 153 | 80.33 232 | 39.81 227 | 83.68 136 | 43.20 294 | 73.56 200 | 80.20 250 |
|
| TAMVS | | | 66.78 203 | 65.27 211 | 71.33 185 | 79.16 139 | 53.67 147 | 73.84 233 | 69.59 281 | 52.32 243 | 65.28 206 | 81.72 205 | 44.49 183 | 77.40 259 | 42.32 301 | 78.66 138 | 82.92 199 |
|
| patch_mono-2 | | | 69.85 130 | 71.09 97 | 66.16 263 | 79.11 140 | 54.80 135 | 71.97 258 | 74.31 241 | 53.50 232 | 70.90 106 | 84.17 150 | 57.63 31 | 63.31 345 | 66.17 99 | 82.02 94 | 80.38 248 |
|
| Test_1112_low_res | | | 62.32 256 | 61.77 251 | 64.00 288 | 79.08 141 | 39.53 322 | 68.17 296 | 70.17 275 | 43.25 346 | 59.03 295 | 79.90 238 | 44.08 185 | 71.24 305 | 43.79 288 | 68.42 280 | 81.25 231 |
|
| CDS-MVSNet | | | 66.80 202 | 65.37 208 | 71.10 191 | 78.98 142 | 53.13 160 | 73.27 239 | 71.07 269 | 52.15 244 | 64.72 221 | 80.23 234 | 43.56 190 | 77.10 263 | 45.48 274 | 78.88 132 | 83.05 198 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| sasdasda | | | 74.67 56 | 74.98 52 | 73.71 121 | 78.94 143 | 50.56 201 | 80.23 95 | 83.87 59 | 60.30 102 | 77.15 29 | 86.56 98 | 59.65 17 | 82.00 174 | 66.01 102 | 82.12 91 | 88.58 12 |
|
| canonicalmvs | | | 74.67 56 | 74.98 52 | 73.71 121 | 78.94 143 | 50.56 201 | 80.23 95 | 83.87 59 | 60.30 102 | 77.15 29 | 86.56 98 | 59.65 17 | 82.00 174 | 66.01 102 | 82.12 91 | 88.58 12 |
|
| EC-MVSNet | | | 75.84 46 | 75.87 43 | 75.74 70 | 78.86 145 | 52.65 169 | 83.73 50 | 86.08 17 | 63.47 42 | 72.77 87 | 87.25 81 | 53.13 73 | 87.93 42 | 71.97 63 | 85.57 62 | 86.66 70 |
|
| IS-MVSNet | | | 71.57 98 | 71.00 99 | 73.27 140 | 78.86 145 | 45.63 266 | 80.22 97 | 78.69 164 | 64.14 35 | 66.46 184 | 87.36 77 | 49.30 117 | 85.60 93 | 50.26 229 | 83.71 76 | 88.59 11 |
|
| CLD-MVS | | | 73.33 69 | 72.68 74 | 75.29 81 | 78.82 147 | 53.33 156 | 78.23 127 | 84.79 41 | 61.30 81 | 70.41 110 | 81.04 217 | 52.41 82 | 87.12 57 | 64.61 116 | 82.49 90 | 85.41 121 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| MVSFormer | | | 71.50 100 | 70.38 110 | 74.88 84 | 78.76 148 | 57.15 94 | 82.79 61 | 78.48 171 | 51.26 257 | 69.49 126 | 83.22 170 | 43.99 187 | 83.24 144 | 66.06 100 | 79.37 123 | 84.23 156 |
|
| lupinMVS | | | 69.57 140 | 68.28 150 | 73.44 135 | 78.76 148 | 57.15 94 | 76.57 171 | 73.29 253 | 46.19 320 | 69.49 126 | 82.18 192 | 43.99 187 | 79.23 227 | 64.66 114 | 79.37 123 | 83.93 165 |
|
| CNLPA | | | 65.43 220 | 64.02 220 | 69.68 216 | 78.73 150 | 58.07 78 | 77.82 140 | 70.71 272 | 51.49 252 | 61.57 268 | 83.58 165 | 38.23 246 | 70.82 306 | 43.90 286 | 70.10 252 | 80.16 251 |
|
| EPP-MVSNet | | | 72.16 90 | 71.31 93 | 74.71 86 | 78.68 151 | 49.70 215 | 82.10 75 | 81.65 102 | 60.40 95 | 65.94 193 | 85.84 121 | 51.74 94 | 86.37 78 | 55.93 178 | 79.55 122 | 88.07 27 |
|
| TranMVSNet+NR-MVSNet | | | 70.36 120 | 70.10 117 | 71.17 189 | 78.64 152 | 42.97 292 | 76.53 172 | 81.16 123 | 66.95 6 | 68.53 142 | 85.42 131 | 51.61 96 | 83.07 147 | 52.32 210 | 69.70 262 | 87.46 45 |
|
| UniMVSNet (Re) | | | 70.63 114 | 70.20 113 | 71.89 164 | 78.55 153 | 45.29 269 | 75.94 186 | 82.92 85 | 63.68 40 | 68.16 149 | 83.59 164 | 53.89 62 | 83.49 141 | 53.97 198 | 71.12 235 | 86.89 61 |
|
| Fast-Effi-MVS+ | | | 70.28 122 | 69.12 131 | 73.73 120 | 78.50 154 | 51.50 188 | 75.01 205 | 79.46 150 | 56.16 182 | 68.59 139 | 79.55 247 | 53.97 60 | 84.05 127 | 53.34 204 | 77.53 152 | 85.65 110 |
|
| PS-MVSNAJss | | | 72.24 86 | 71.21 94 | 75.31 79 | 78.50 154 | 55.93 112 | 81.63 79 | 82.12 95 | 56.24 180 | 70.02 117 | 85.68 125 | 47.05 151 | 84.34 124 | 65.27 109 | 74.41 187 | 85.67 108 |
|
| EI-MVSNet-Vis-set | | | 72.42 84 | 71.59 84 | 74.91 83 | 78.47 156 | 54.02 142 | 77.05 160 | 79.33 152 | 65.03 18 | 71.68 100 | 79.35 253 | 52.75 76 | 84.89 113 | 66.46 97 | 74.23 188 | 85.83 100 |
|
| FA-MVS(test-final) | | | 69.82 131 | 68.48 143 | 73.84 112 | 78.44 157 | 50.04 210 | 75.58 194 | 78.99 157 | 58.16 142 | 67.59 164 | 82.14 196 | 42.66 196 | 85.63 92 | 56.60 173 | 76.19 171 | 85.84 99 |
|
| testing91 | | | 64.46 233 | 63.80 224 | 66.47 256 | 78.43 158 | 40.06 315 | 67.63 300 | 69.59 281 | 59.06 125 | 63.18 241 | 78.05 269 | 34.05 286 | 76.99 266 | 48.30 246 | 75.87 174 | 82.37 211 |
|
| testing11 | | | 62.81 251 | 61.90 250 | 65.54 274 | 78.38 159 | 40.76 312 | 67.59 302 | 66.78 304 | 55.48 196 | 60.13 277 | 77.11 287 | 31.67 319 | 76.79 271 | 45.53 272 | 74.45 185 | 79.06 266 |
|
| MVS_111021_LR | | | 69.50 143 | 68.78 137 | 71.65 173 | 78.38 159 | 59.33 56 | 74.82 211 | 70.11 276 | 58.08 143 | 67.83 159 | 84.68 138 | 41.96 204 | 76.34 281 | 65.62 107 | 77.54 151 | 79.30 265 |
|
| test_yl | | | 69.69 134 | 69.13 129 | 71.36 182 | 78.37 161 | 45.74 262 | 74.71 213 | 80.20 139 | 57.91 151 | 70.01 118 | 83.83 159 | 42.44 199 | 82.87 154 | 54.97 188 | 79.72 117 | 85.48 115 |
|
| DCV-MVSNet | | | 69.69 134 | 69.13 129 | 71.36 182 | 78.37 161 | 45.74 262 | 74.71 213 | 80.20 139 | 57.91 151 | 70.01 118 | 83.83 159 | 42.44 199 | 82.87 154 | 54.97 188 | 79.72 117 | 85.48 115 |
|
| FIs | | | 70.82 111 | 71.43 88 | 68.98 228 | 78.33 163 | 38.14 333 | 76.96 162 | 83.59 67 | 61.02 85 | 67.33 168 | 86.73 89 | 55.07 47 | 81.64 180 | 54.61 194 | 79.22 127 | 87.14 56 |
|
| UGNet | | | 68.81 155 | 67.39 167 | 73.06 143 | 78.33 163 | 54.47 137 | 79.77 105 | 75.40 222 | 60.45 94 | 63.22 239 | 84.40 147 | 32.71 308 | 80.91 200 | 51.71 219 | 80.56 109 | 83.81 171 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| jason | | | 69.65 137 | 68.39 149 | 73.43 136 | 78.27 165 | 56.88 98 | 77.12 158 | 73.71 250 | 46.53 317 | 69.34 130 | 83.22 170 | 43.37 191 | 79.18 228 | 64.77 113 | 79.20 128 | 84.23 156 |
| jason: jason. |
| alignmvs | | | 73.86 66 | 73.99 61 | 73.45 134 | 78.20 166 | 50.50 203 | 78.57 122 | 82.43 91 | 59.40 120 | 76.57 32 | 86.71 91 | 56.42 40 | 81.23 191 | 65.84 105 | 81.79 97 | 88.62 10 |
|
| xiu_mvs_v1_base_debu | | | 68.58 161 | 67.28 172 | 72.48 154 | 78.19 167 | 57.19 91 | 75.28 197 | 75.09 230 | 51.61 248 | 70.04 114 | 81.41 211 | 32.79 304 | 79.02 235 | 63.81 123 | 77.31 155 | 81.22 232 |
|
| xiu_mvs_v1_base | | | 68.58 161 | 67.28 172 | 72.48 154 | 78.19 167 | 57.19 91 | 75.28 197 | 75.09 230 | 51.61 248 | 70.04 114 | 81.41 211 | 32.79 304 | 79.02 235 | 63.81 123 | 77.31 155 | 81.22 232 |
|
| xiu_mvs_v1_base_debi | | | 68.58 161 | 67.28 172 | 72.48 154 | 78.19 167 | 57.19 91 | 75.28 197 | 75.09 230 | 51.61 248 | 70.04 114 | 81.41 211 | 32.79 304 | 79.02 235 | 63.81 123 | 77.31 155 | 81.22 232 |
|
| testing99 | | | 64.05 237 | 63.29 234 | 66.34 258 | 78.17 170 | 39.76 319 | 67.33 305 | 68.00 295 | 58.60 134 | 63.03 244 | 78.10 268 | 32.57 313 | 76.94 268 | 48.22 247 | 75.58 178 | 82.34 212 |
|
| UBG | | | 59.62 282 | 59.53 272 | 59.89 313 | 78.12 171 | 35.92 359 | 64.11 332 | 60.81 347 | 49.45 279 | 61.34 269 | 75.55 313 | 33.05 299 | 67.39 329 | 38.68 321 | 74.62 183 | 76.35 301 |
|
| PAPM | | | 67.92 178 | 66.69 182 | 71.63 174 | 78.09 172 | 49.02 226 | 77.09 159 | 81.24 120 | 51.04 260 | 60.91 273 | 83.98 156 | 47.71 137 | 84.99 107 | 40.81 310 | 79.32 126 | 80.90 240 |
|
| ACMH | | 55.70 15 | 65.20 225 | 63.57 228 | 70.07 208 | 78.07 173 | 52.01 184 | 79.48 112 | 79.69 143 | 55.75 190 | 56.59 316 | 80.98 219 | 27.12 351 | 80.94 197 | 42.90 298 | 71.58 230 | 77.25 291 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| DU-MVS | | | 70.01 126 | 69.53 123 | 71.44 178 | 78.05 174 | 44.13 278 | 75.01 205 | 81.51 106 | 64.37 28 | 68.20 146 | 84.52 144 | 49.12 123 | 82.82 158 | 54.62 192 | 70.43 242 | 87.37 50 |
|
| NR-MVSNet | | | 69.54 141 | 68.85 134 | 71.59 175 | 78.05 174 | 43.81 283 | 74.20 222 | 80.86 129 | 65.18 14 | 62.76 248 | 84.52 144 | 52.35 84 | 83.59 139 | 50.96 225 | 70.78 237 | 87.37 50 |
|
| WBMVS | | | 60.54 272 | 60.61 266 | 60.34 312 | 78.00 176 | 35.95 358 | 64.55 328 | 64.89 316 | 49.63 276 | 63.39 238 | 78.70 259 | 33.85 291 | 67.65 325 | 42.10 303 | 70.35 246 | 77.43 286 |
|
| EI-MVSNet-UG-set | | | 71.92 92 | 71.06 98 | 74.52 97 | 77.98 177 | 53.56 150 | 76.62 169 | 79.16 153 | 64.40 27 | 71.18 104 | 78.95 258 | 52.19 86 | 84.66 120 | 65.47 108 | 73.57 199 | 85.32 124 |
|
| WR-MVS_H | | | 67.02 197 | 66.92 181 | 67.33 248 | 77.95 178 | 37.75 337 | 77.57 144 | 82.11 96 | 62.03 73 | 62.65 251 | 82.48 186 | 50.57 107 | 79.46 223 | 42.91 297 | 64.01 313 | 84.79 143 |
|
| testing222 | | | 62.29 258 | 61.31 257 | 65.25 280 | 77.87 179 | 38.53 330 | 68.34 295 | 66.31 308 | 56.37 176 | 63.15 243 | 77.58 283 | 28.47 340 | 76.18 284 | 37.04 331 | 76.65 168 | 81.05 238 |
|
| Effi-MVS+ | | | 73.31 70 | 72.54 76 | 75.62 74 | 77.87 179 | 53.64 148 | 79.62 110 | 79.61 146 | 61.63 77 | 72.02 97 | 82.61 180 | 56.44 39 | 85.97 86 | 63.99 120 | 79.07 131 | 87.25 54 |
|
| DELS-MVS | | | 74.76 54 | 74.46 57 | 75.65 73 | 77.84 181 | 52.25 178 | 75.59 192 | 84.17 48 | 63.76 38 | 73.15 76 | 82.79 175 | 59.58 20 | 86.80 64 | 67.24 92 | 86.04 59 | 87.89 28 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| ACMH+ | | 57.40 11 | 66.12 212 | 64.06 219 | 72.30 160 | 77.79 182 | 52.83 167 | 80.39 94 | 78.03 182 | 57.30 157 | 57.47 309 | 82.55 182 | 27.68 346 | 84.17 125 | 45.54 271 | 69.78 259 | 79.90 255 |
|
| MGCFI-Net | | | 72.45 82 | 73.34 70 | 69.81 215 | 77.77 183 | 43.21 289 | 75.84 189 | 81.18 121 | 59.59 118 | 75.45 39 | 86.64 92 | 57.74 28 | 77.94 248 | 63.92 121 | 81.90 96 | 88.30 17 |
|
| RRT-MVS | | | 71.46 101 | 70.70 104 | 73.74 119 | 77.76 184 | 49.30 223 | 76.60 170 | 80.45 135 | 61.25 82 | 68.17 148 | 84.78 137 | 44.64 180 | 84.90 112 | 64.79 112 | 77.88 148 | 87.03 57 |
|
| 3Dnovator | | 64.47 5 | 72.49 81 | 71.39 90 | 75.79 67 | 77.70 185 | 58.99 68 | 80.66 93 | 83.15 82 | 62.24 66 | 65.46 203 | 86.59 96 | 42.38 201 | 85.52 96 | 59.59 159 | 84.72 65 | 82.85 202 |
|
| EG-PatchMatch MVS | | | 64.71 229 | 62.87 238 | 70.22 204 | 77.68 186 | 53.48 152 | 77.99 134 | 78.82 159 | 53.37 233 | 56.03 321 | 77.41 285 | 24.75 366 | 84.04 128 | 46.37 262 | 73.42 204 | 73.14 331 |
|
| UWE-MVS | | | 60.18 275 | 59.78 270 | 61.39 307 | 77.67 187 | 33.92 374 | 69.04 293 | 63.82 325 | 48.56 290 | 64.27 228 | 77.64 282 | 27.20 350 | 70.40 311 | 33.56 353 | 76.24 170 | 79.83 257 |
|
| CP-MVSNet | | | 66.49 209 | 66.41 190 | 66.72 251 | 77.67 187 | 36.33 353 | 76.83 168 | 79.52 148 | 62.45 63 | 62.54 254 | 83.47 168 | 46.32 159 | 78.37 242 | 45.47 275 | 63.43 320 | 85.45 117 |
|
| GBi-Net | | | 67.21 189 | 66.55 184 | 69.19 224 | 77.63 189 | 43.33 286 | 77.31 151 | 77.83 185 | 56.62 169 | 65.04 216 | 82.70 176 | 41.85 206 | 80.33 211 | 47.18 255 | 72.76 214 | 83.92 166 |
|
| test1 | | | 67.21 189 | 66.55 184 | 69.19 224 | 77.63 189 | 43.33 286 | 77.31 151 | 77.83 185 | 56.62 169 | 65.04 216 | 82.70 176 | 41.85 206 | 80.33 211 | 47.18 255 | 72.76 214 | 83.92 166 |
|
| FMVSNet2 | | | 66.93 199 | 66.31 195 | 68.79 231 | 77.63 189 | 42.98 291 | 76.11 180 | 77.47 191 | 56.62 169 | 65.22 213 | 82.17 194 | 41.85 206 | 80.18 217 | 47.05 258 | 72.72 217 | 83.20 192 |
|
| PCF-MVS | | 61.88 8 | 70.95 108 | 69.49 124 | 75.35 78 | 77.63 189 | 55.71 117 | 76.04 184 | 81.81 100 | 50.30 268 | 69.66 124 | 85.40 132 | 52.51 79 | 84.89 113 | 51.82 217 | 80.24 113 | 85.45 117 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MVP-Stereo | | | 65.41 221 | 63.80 224 | 70.22 204 | 77.62 193 | 55.53 124 | 76.30 176 | 78.53 169 | 50.59 266 | 56.47 319 | 78.65 262 | 39.84 226 | 82.68 161 | 44.10 284 | 72.12 225 | 72.44 340 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| FC-MVSNet-test | | | 69.80 132 | 70.58 107 | 67.46 244 | 77.61 194 | 34.73 366 | 76.05 183 | 83.19 81 | 60.84 87 | 65.88 197 | 86.46 102 | 54.52 55 | 80.76 204 | 52.52 209 | 78.12 144 | 86.91 60 |
|
| PS-CasMVS | | | 66.42 210 | 66.32 194 | 66.70 253 | 77.60 195 | 36.30 355 | 76.94 163 | 79.61 146 | 62.36 65 | 62.43 258 | 83.66 162 | 45.69 163 | 78.37 242 | 45.35 277 | 63.26 321 | 85.42 120 |
|
| testing3 | | | 56.54 302 | 55.92 304 | 58.41 324 | 77.52 196 | 27.93 394 | 69.72 286 | 56.36 364 | 54.75 214 | 58.63 300 | 77.80 277 | 20.88 377 | 71.75 303 | 25.31 391 | 62.25 329 | 75.53 308 |
|
| FMVSNet1 | | | 66.70 204 | 65.87 201 | 69.19 224 | 77.49 197 | 43.33 286 | 77.31 151 | 77.83 185 | 56.45 174 | 64.60 224 | 82.70 176 | 38.08 248 | 80.33 211 | 46.08 264 | 72.31 222 | 83.92 166 |
|
| ETVMVS | | | 59.51 283 | 58.81 277 | 61.58 304 | 77.46 198 | 34.87 362 | 64.94 326 | 59.35 350 | 54.06 225 | 61.08 272 | 76.67 294 | 29.54 331 | 71.87 302 | 32.16 358 | 74.07 190 | 78.01 281 |
|
| VPA-MVSNet | | | 69.02 152 | 69.47 125 | 67.69 242 | 77.42 199 | 41.00 310 | 74.04 224 | 79.68 144 | 60.06 106 | 69.26 133 | 84.81 136 | 51.06 103 | 77.58 255 | 54.44 195 | 74.43 186 | 84.48 150 |
|
| UniMVSNet_ETH3D | | | 67.60 184 | 67.07 180 | 69.18 227 | 77.39 200 | 42.29 296 | 74.18 223 | 75.59 217 | 60.37 98 | 66.77 178 | 86.06 114 | 37.64 250 | 78.93 240 | 52.16 212 | 73.49 201 | 86.32 84 |
|
| FE-MVS | | | 65.91 214 | 63.33 232 | 73.63 127 | 77.36 201 | 51.95 185 | 72.62 247 | 75.81 213 | 53.70 229 | 65.31 205 | 78.96 257 | 28.81 339 | 86.39 77 | 43.93 285 | 73.48 202 | 82.55 205 |
|
| thres100view900 | | | 63.28 246 | 62.41 244 | 65.89 270 | 77.31 202 | 38.66 328 | 72.65 245 | 69.11 288 | 57.07 160 | 62.45 257 | 81.03 218 | 37.01 262 | 79.17 229 | 31.84 362 | 73.25 207 | 79.83 257 |
|
| cascas | | | 65.98 213 | 63.42 230 | 73.64 126 | 77.26 203 | 52.58 172 | 72.26 254 | 77.21 197 | 48.56 290 | 61.21 271 | 74.60 323 | 32.57 313 | 85.82 90 | 50.38 228 | 76.75 166 | 82.52 207 |
|
| thres600view7 | | | 63.30 245 | 62.27 245 | 66.41 257 | 77.18 204 | 38.87 326 | 72.35 252 | 69.11 288 | 56.98 162 | 62.37 259 | 80.96 220 | 37.01 262 | 79.00 238 | 31.43 369 | 73.05 211 | 81.36 228 |
|
| SDMVSNet | | | 68.03 174 | 68.10 153 | 67.84 240 | 77.13 205 | 48.72 232 | 65.32 321 | 79.10 154 | 58.02 146 | 65.08 214 | 82.55 182 | 47.83 135 | 73.40 293 | 63.92 121 | 73.92 192 | 81.41 225 |
|
| sd_testset | | | 64.46 233 | 64.45 217 | 64.51 285 | 77.13 205 | 42.25 297 | 62.67 337 | 72.11 262 | 58.02 146 | 65.08 214 | 82.55 182 | 41.22 218 | 69.88 314 | 47.32 253 | 73.92 192 | 81.41 225 |
|
| PEN-MVS | | | 66.60 206 | 66.45 186 | 67.04 249 | 77.11 207 | 36.56 350 | 77.03 161 | 80.42 136 | 62.95 50 | 62.51 256 | 84.03 154 | 46.69 157 | 79.07 234 | 44.22 280 | 63.08 323 | 85.51 114 |
|
| PatchMatch-RL | | | 56.25 307 | 54.55 314 | 61.32 308 | 77.06 208 | 56.07 109 | 65.57 315 | 54.10 374 | 44.13 339 | 53.49 350 | 71.27 347 | 25.20 363 | 66.78 332 | 36.52 339 | 63.66 316 | 61.12 381 |
|
| PVSNet_BlendedMVS | | | 68.56 164 | 67.72 156 | 71.07 192 | 77.03 209 | 50.57 199 | 74.50 217 | 81.52 104 | 53.66 231 | 64.22 231 | 79.72 243 | 49.13 121 | 82.87 154 | 55.82 179 | 73.92 192 | 79.77 260 |
|
| PVSNet_Blended | | | 68.59 160 | 67.72 156 | 71.19 187 | 77.03 209 | 50.57 199 | 72.51 250 | 81.52 104 | 51.91 246 | 64.22 231 | 77.77 280 | 49.13 121 | 82.87 154 | 55.82 179 | 79.58 120 | 80.14 252 |
|
| F-COLMAP | | | 63.05 250 | 60.87 265 | 69.58 220 | 76.99 211 | 53.63 149 | 78.12 131 | 76.16 208 | 47.97 301 | 52.41 352 | 81.61 207 | 27.87 344 | 78.11 246 | 40.07 313 | 66.66 293 | 77.00 294 |
|
| tfpn200view9 | | | 63.18 248 | 62.18 247 | 66.21 262 | 76.85 212 | 39.62 320 | 71.96 259 | 69.44 284 | 56.63 167 | 62.61 252 | 79.83 239 | 37.18 256 | 79.17 229 | 31.84 362 | 73.25 207 | 79.83 257 |
|
| thres400 | | | 63.31 244 | 62.18 247 | 66.72 251 | 76.85 212 | 39.62 320 | 71.96 259 | 69.44 284 | 56.63 167 | 62.61 252 | 79.83 239 | 37.18 256 | 79.17 229 | 31.84 362 | 73.25 207 | 81.36 228 |
|
| tttt0517 | | | 67.83 180 | 65.66 205 | 74.33 101 | 76.69 214 | 50.82 195 | 77.86 137 | 73.99 247 | 54.54 218 | 64.64 223 | 82.53 185 | 35.06 276 | 85.50 98 | 55.71 182 | 69.91 256 | 86.67 69 |
|
| ET-MVSNet_ETH3D | | | 67.96 177 | 65.72 204 | 74.68 88 | 76.67 215 | 55.62 122 | 75.11 202 | 74.74 234 | 52.91 236 | 60.03 280 | 80.12 235 | 33.68 293 | 82.64 163 | 61.86 140 | 76.34 169 | 85.78 101 |
|
| TAPA-MVS | | 59.36 10 | 66.60 206 | 65.20 212 | 70.81 195 | 76.63 216 | 48.75 230 | 76.52 173 | 80.04 141 | 50.64 265 | 65.24 211 | 84.93 134 | 39.15 235 | 78.54 241 | 36.77 333 | 76.88 164 | 85.14 130 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| OMC-MVS | | | 71.40 103 | 70.60 105 | 73.78 114 | 76.60 217 | 53.15 158 | 79.74 107 | 79.78 142 | 58.37 139 | 68.75 138 | 86.45 103 | 45.43 171 | 80.60 205 | 62.58 132 | 77.73 149 | 87.58 43 |
|
| LTVRE_ROB | | 55.42 16 | 63.15 249 | 61.23 260 | 68.92 229 | 76.57 218 | 47.80 241 | 59.92 353 | 76.39 206 | 54.35 221 | 58.67 298 | 82.46 187 | 29.44 334 | 81.49 184 | 42.12 302 | 71.14 234 | 77.46 285 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| QAPM | | | 70.05 125 | 68.81 136 | 73.78 114 | 76.54 219 | 53.43 153 | 83.23 54 | 83.48 69 | 52.89 237 | 65.90 195 | 86.29 106 | 41.55 212 | 86.49 75 | 51.01 223 | 78.40 142 | 81.42 224 |
|
| FMVSNet3 | | | 66.32 211 | 65.61 206 | 68.46 234 | 76.48 220 | 42.34 295 | 74.98 207 | 77.15 198 | 55.83 187 | 65.04 216 | 81.16 214 | 39.91 224 | 80.14 218 | 47.18 255 | 72.76 214 | 82.90 201 |
|
| casdiffmvs_mvg |  | | 76.14 42 | 76.30 37 | 75.66 72 | 76.46 221 | 51.83 186 | 79.67 108 | 85.08 33 | 65.02 19 | 75.84 35 | 88.58 60 | 59.42 22 | 85.08 106 | 72.75 57 | 83.93 74 | 90.08 1 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| thisisatest0530 | | | 67.92 178 | 65.78 203 | 74.33 101 | 76.29 222 | 51.03 190 | 76.89 165 | 74.25 243 | 53.67 230 | 65.59 201 | 81.76 204 | 35.15 275 | 85.50 98 | 55.94 177 | 72.47 218 | 86.47 75 |
|
| baseline1 | | | 63.81 240 | 63.87 223 | 63.62 289 | 76.29 222 | 36.36 351 | 71.78 261 | 67.29 299 | 56.05 184 | 64.23 230 | 82.95 174 | 47.11 150 | 74.41 290 | 47.30 254 | 61.85 332 | 80.10 253 |
|
| ab-mvs | | | 66.65 205 | 66.42 189 | 67.37 246 | 76.17 224 | 41.73 302 | 70.41 280 | 76.14 210 | 53.99 226 | 65.98 192 | 83.51 166 | 49.48 115 | 76.24 282 | 48.60 243 | 73.46 203 | 84.14 159 |
|
| Effi-MVS+-dtu | | | 69.64 138 | 67.53 162 | 75.95 65 | 76.10 225 | 62.29 15 | 80.20 98 | 76.06 212 | 59.83 113 | 65.26 210 | 77.09 288 | 41.56 211 | 84.02 130 | 60.60 150 | 71.09 236 | 81.53 223 |
|
| DTE-MVSNet | | | 65.58 218 | 65.34 209 | 66.31 259 | 76.06 226 | 34.79 363 | 76.43 174 | 79.38 151 | 62.55 61 | 61.66 266 | 83.83 159 | 45.60 165 | 79.15 232 | 41.64 309 | 60.88 338 | 85.00 135 |
|
| EPNet | | | 73.09 72 | 72.16 79 | 75.90 66 | 75.95 227 | 56.28 104 | 83.05 56 | 72.39 259 | 66.53 10 | 65.27 207 | 87.00 83 | 50.40 108 | 85.47 100 | 62.48 134 | 86.32 58 | 85.94 95 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| SixPastTwentyTwo | | | 61.65 265 | 58.80 279 | 70.20 206 | 75.80 228 | 47.22 249 | 75.59 192 | 69.68 279 | 54.61 215 | 54.11 341 | 79.26 254 | 27.07 352 | 82.96 149 | 43.27 292 | 49.79 378 | 80.41 247 |
|
| baseline | | | 74.61 58 | 74.70 55 | 74.34 100 | 75.70 229 | 49.99 212 | 77.54 146 | 84.63 42 | 62.73 59 | 73.98 63 | 87.79 73 | 57.67 30 | 83.82 134 | 69.49 75 | 82.74 88 | 89.20 6 |
|
| Baseline_NR-MVSNet | | | 67.05 196 | 67.56 159 | 65.50 275 | 75.65 230 | 37.70 339 | 75.42 195 | 74.65 237 | 59.90 109 | 68.14 150 | 83.15 173 | 49.12 123 | 77.20 262 | 52.23 211 | 69.78 259 | 81.60 222 |
|
| jajsoiax | | | 68.25 170 | 66.45 186 | 73.66 124 | 75.62 231 | 55.49 125 | 80.82 90 | 78.51 170 | 52.33 242 | 64.33 226 | 84.11 152 | 28.28 342 | 81.81 179 | 63.48 127 | 70.62 239 | 83.67 179 |
|
| mvs_tets | | | 68.18 172 | 66.36 192 | 73.63 127 | 75.61 232 | 55.35 128 | 80.77 91 | 78.56 168 | 52.48 241 | 64.27 228 | 84.10 153 | 27.45 348 | 81.84 178 | 63.45 128 | 70.56 241 | 83.69 178 |
|
| casdiffmvs |  | | 74.80 53 | 74.89 54 | 74.53 96 | 75.59 233 | 50.37 204 | 78.17 130 | 85.06 35 | 62.80 58 | 74.40 58 | 87.86 70 | 57.88 27 | 83.61 138 | 69.46 77 | 82.79 87 | 89.59 3 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PVSNet | | 50.76 19 | 58.40 288 | 57.39 290 | 61.42 305 | 75.53 234 | 44.04 281 | 61.43 343 | 63.45 328 | 47.04 314 | 56.91 313 | 73.61 330 | 27.00 353 | 64.76 341 | 39.12 319 | 72.40 219 | 75.47 309 |
|
| MVS | | | 67.37 187 | 66.33 193 | 70.51 202 | 75.46 235 | 50.94 191 | 73.95 227 | 81.85 99 | 41.57 357 | 62.54 254 | 78.57 265 | 47.98 132 | 85.47 100 | 52.97 207 | 82.05 93 | 75.14 311 |
|
| nrg030 | | | 72.96 74 | 73.01 71 | 72.84 147 | 75.41 236 | 50.24 205 | 80.02 99 | 82.89 87 | 58.36 140 | 74.44 57 | 86.73 89 | 58.90 24 | 80.83 201 | 65.84 105 | 74.46 184 | 87.44 46 |
|
| thres200 | | | 62.20 259 | 61.16 261 | 65.34 278 | 75.38 237 | 39.99 316 | 69.60 287 | 69.29 286 | 55.64 194 | 61.87 263 | 76.99 289 | 37.07 261 | 78.96 239 | 31.28 370 | 73.28 206 | 77.06 292 |
|
| TransMVSNet (Re) | | | 64.72 228 | 64.33 218 | 65.87 271 | 75.22 238 | 38.56 329 | 74.66 215 | 75.08 233 | 58.90 128 | 61.79 264 | 82.63 179 | 51.18 100 | 78.07 247 | 43.63 290 | 55.87 360 | 80.99 239 |
|
| MS-PatchMatch | | | 62.42 255 | 61.46 255 | 65.31 279 | 75.21 239 | 52.10 180 | 72.05 256 | 74.05 246 | 46.41 318 | 57.42 311 | 74.36 324 | 34.35 284 | 77.57 256 | 45.62 270 | 73.67 196 | 66.26 377 |
|
| WB-MVSnew | | | 59.66 280 | 59.69 271 | 59.56 314 | 75.19 240 | 35.78 360 | 69.34 290 | 64.28 322 | 46.88 315 | 61.76 265 | 75.79 309 | 40.61 221 | 65.20 340 | 32.16 358 | 71.21 233 | 77.70 282 |
|
| IB-MVS | | 56.42 12 | 65.40 222 | 62.73 241 | 73.40 137 | 74.89 241 | 52.78 168 | 73.09 241 | 75.13 229 | 55.69 191 | 58.48 302 | 73.73 329 | 32.86 303 | 86.32 80 | 50.63 226 | 70.11 251 | 81.10 236 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MVS_Test | | | 72.45 82 | 72.46 77 | 72.42 158 | 74.88 242 | 48.50 234 | 76.28 177 | 83.14 83 | 59.40 120 | 72.46 92 | 84.68 138 | 55.66 44 | 81.12 192 | 65.98 104 | 79.66 119 | 87.63 40 |
|
| tt0805 | | | 67.77 181 | 67.24 176 | 69.34 223 | 74.87 243 | 40.08 314 | 77.36 150 | 81.37 110 | 55.31 199 | 66.33 187 | 84.65 140 | 37.35 254 | 82.55 165 | 55.65 184 | 72.28 223 | 85.39 122 |
|
| CANet_DTU | | | 68.18 172 | 67.71 158 | 69.59 218 | 74.83 244 | 46.24 257 | 78.66 119 | 76.85 201 | 59.60 115 | 63.45 237 | 82.09 199 | 35.25 274 | 77.41 258 | 59.88 156 | 78.76 136 | 85.14 130 |
|
| tfpnnormal | | | 62.47 254 | 61.63 253 | 64.99 282 | 74.81 245 | 39.01 325 | 71.22 267 | 73.72 249 | 55.22 202 | 60.21 276 | 80.09 237 | 41.26 217 | 76.98 267 | 30.02 375 | 68.09 282 | 78.97 269 |
|
| Vis-MVSNet (Re-imp) | | | 63.69 241 | 63.88 222 | 63.14 294 | 74.75 246 | 31.04 385 | 71.16 269 | 63.64 327 | 56.32 177 | 59.80 285 | 84.99 133 | 44.51 181 | 75.46 285 | 39.12 319 | 80.62 105 | 82.92 199 |
|
| HY-MVS | | 56.14 13 | 64.55 232 | 63.89 221 | 66.55 255 | 74.73 247 | 41.02 307 | 69.96 284 | 74.43 238 | 49.29 282 | 61.66 266 | 80.92 221 | 47.43 145 | 76.68 275 | 44.91 279 | 71.69 228 | 81.94 218 |
|
| Syy-MVS | | | 56.00 309 | 56.23 302 | 55.32 341 | 74.69 248 | 26.44 400 | 65.52 316 | 57.49 359 | 50.97 261 | 56.52 317 | 72.18 336 | 39.89 225 | 68.09 321 | 24.20 392 | 64.59 310 | 71.44 354 |
|
| myMVS_eth3d | | | 54.86 319 | 54.61 313 | 55.61 340 | 74.69 248 | 27.31 397 | 65.52 316 | 57.49 359 | 50.97 261 | 56.52 317 | 72.18 336 | 21.87 375 | 68.09 321 | 27.70 383 | 64.59 310 | 71.44 354 |
|
| COLMAP_ROB |  | 52.97 17 | 61.27 270 | 58.81 277 | 68.64 232 | 74.63 250 | 52.51 174 | 78.42 125 | 73.30 252 | 49.92 274 | 50.96 357 | 81.51 210 | 23.06 369 | 79.40 224 | 31.63 366 | 65.85 298 | 74.01 328 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| LCM-MVSNet-Re | | | 61.88 263 | 61.35 256 | 63.46 290 | 74.58 251 | 31.48 384 | 61.42 344 | 58.14 355 | 58.71 132 | 53.02 351 | 79.55 247 | 43.07 193 | 76.80 270 | 45.69 268 | 77.96 146 | 82.11 217 |
|
| test_djsdf | | | 69.45 145 | 67.74 155 | 74.58 94 | 74.57 252 | 54.92 133 | 82.79 61 | 78.48 171 | 51.26 257 | 65.41 204 | 83.49 167 | 38.37 242 | 83.24 144 | 66.06 100 | 69.25 269 | 85.56 112 |
|
| EI-MVSNet | | | 69.27 149 | 68.44 147 | 71.73 170 | 74.47 253 | 49.39 222 | 75.20 200 | 78.45 174 | 59.60 115 | 69.16 135 | 76.51 300 | 51.29 98 | 82.50 166 | 59.86 158 | 71.45 232 | 83.30 188 |
|
| CVMVSNet | | | 59.63 281 | 59.14 275 | 61.08 310 | 74.47 253 | 38.84 327 | 75.20 200 | 68.74 290 | 31.15 383 | 58.24 303 | 76.51 300 | 32.39 315 | 68.58 319 | 49.77 231 | 65.84 299 | 75.81 304 |
|
| IterMVS-LS | | | 69.22 151 | 68.48 143 | 71.43 180 | 74.44 255 | 49.40 221 | 76.23 178 | 77.55 190 | 59.60 115 | 65.85 198 | 81.59 209 | 51.28 99 | 81.58 183 | 59.87 157 | 69.90 257 | 83.30 188 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| XVG-OURS-SEG-HR | | | 68.81 155 | 67.47 165 | 72.82 149 | 74.40 256 | 56.87 99 | 70.59 276 | 79.04 155 | 54.77 213 | 66.99 174 | 86.01 116 | 39.57 229 | 78.21 245 | 62.54 133 | 73.33 205 | 83.37 187 |
|
| EGC-MVSNET | | | 42.47 356 | 38.48 364 | 54.46 347 | 74.33 257 | 48.73 231 | 70.33 281 | 51.10 380 | 0.03 416 | 0.18 417 | 67.78 368 | 13.28 391 | 66.49 334 | 18.91 399 | 50.36 376 | 48.15 396 |
|
| XVG-OURS | | | 68.76 158 | 67.37 168 | 72.90 146 | 74.32 258 | 57.22 89 | 70.09 283 | 78.81 160 | 55.24 201 | 67.79 161 | 85.81 124 | 36.54 265 | 78.28 244 | 62.04 138 | 75.74 176 | 83.19 193 |
|
| OpenMVS |  | 61.03 9 | 68.85 154 | 67.56 159 | 72.70 151 | 74.26 259 | 53.99 143 | 81.21 86 | 81.34 115 | 52.70 238 | 62.75 249 | 85.55 128 | 38.86 238 | 84.14 126 | 48.41 245 | 83.01 79 | 79.97 254 |
|
| MIMVSNet | | | 57.35 295 | 57.07 292 | 58.22 326 | 74.21 260 | 37.18 342 | 62.46 338 | 60.88 346 | 48.88 287 | 55.29 328 | 75.99 307 | 31.68 318 | 62.04 350 | 31.87 361 | 72.35 220 | 75.43 310 |
|
| SCA | | | 60.49 273 | 58.38 283 | 66.80 250 | 74.14 261 | 48.06 239 | 63.35 334 | 63.23 330 | 49.13 284 | 59.33 293 | 72.10 338 | 37.45 252 | 74.27 291 | 44.17 281 | 62.57 326 | 78.05 277 |
|
| thisisatest0515 | | | 65.83 215 | 63.50 229 | 72.82 149 | 73.75 262 | 49.50 220 | 71.32 265 | 73.12 255 | 49.39 280 | 63.82 233 | 76.50 302 | 34.95 278 | 84.84 116 | 53.20 206 | 75.49 180 | 84.13 160 |
|
| K. test v3 | | | 60.47 274 | 57.11 291 | 70.56 200 | 73.74 263 | 48.22 237 | 75.10 204 | 62.55 334 | 58.27 141 | 53.62 347 | 76.31 303 | 27.81 345 | 81.59 182 | 47.42 251 | 39.18 392 | 81.88 220 |
|
| v10 | | | 70.21 123 | 69.02 132 | 73.81 113 | 73.51 264 | 50.92 193 | 78.74 117 | 81.39 109 | 60.05 107 | 66.39 186 | 81.83 203 | 47.58 140 | 85.41 103 | 62.80 131 | 68.86 276 | 85.09 133 |
|
| v1144 | | | 70.42 119 | 69.31 127 | 73.76 116 | 73.22 265 | 50.64 198 | 77.83 139 | 81.43 108 | 58.58 135 | 69.40 129 | 81.16 214 | 47.53 142 | 85.29 105 | 64.01 119 | 70.64 238 | 85.34 123 |
|
| v1192 | | | 69.97 128 | 68.68 139 | 73.85 111 | 73.19 266 | 50.94 191 | 77.68 142 | 81.36 111 | 57.51 156 | 68.95 137 | 80.85 224 | 45.28 174 | 85.33 104 | 62.97 130 | 70.37 244 | 85.27 127 |
|
| v8 | | | 70.33 121 | 69.28 128 | 73.49 132 | 73.15 267 | 50.22 206 | 78.62 120 | 80.78 130 | 60.79 88 | 66.45 185 | 82.11 198 | 49.35 116 | 84.98 109 | 63.58 126 | 68.71 277 | 85.28 126 |
|
| v144192 | | | 69.71 133 | 68.51 142 | 73.33 139 | 73.10 268 | 50.13 208 | 77.54 146 | 80.64 131 | 56.65 166 | 68.57 141 | 80.55 227 | 46.87 156 | 84.96 111 | 62.98 129 | 69.66 263 | 84.89 140 |
|
| v1921920 | | | 69.47 144 | 68.17 151 | 73.36 138 | 73.06 269 | 50.10 209 | 77.39 149 | 80.56 132 | 56.58 173 | 68.59 139 | 80.37 229 | 44.72 179 | 84.98 109 | 62.47 135 | 69.82 258 | 85.00 135 |
|
| PatchmatchNet |  | | 59.84 278 | 58.24 284 | 64.65 284 | 73.05 270 | 46.70 253 | 69.42 289 | 62.18 340 | 47.55 306 | 58.88 296 | 71.96 340 | 34.49 282 | 69.16 316 | 42.99 296 | 63.60 317 | 78.07 276 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v1240 | | | 69.24 150 | 67.91 154 | 73.25 142 | 73.02 271 | 49.82 213 | 77.21 156 | 80.54 133 | 56.43 175 | 68.34 145 | 80.51 228 | 43.33 192 | 84.99 107 | 62.03 139 | 69.77 261 | 84.95 139 |
|
| Fast-Effi-MVS+-dtu | | | 67.37 187 | 65.33 210 | 73.48 133 | 72.94 272 | 57.78 83 | 77.47 148 | 76.88 200 | 57.60 155 | 61.97 261 | 76.85 292 | 39.31 231 | 80.49 209 | 54.72 191 | 70.28 248 | 82.17 216 |
|
| EPNet_dtu | | | 61.90 262 | 61.97 249 | 61.68 302 | 72.89 273 | 39.78 318 | 75.85 188 | 65.62 312 | 55.09 205 | 54.56 337 | 79.36 252 | 37.59 251 | 67.02 331 | 39.80 316 | 76.95 163 | 78.25 274 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tpm2 | | | 62.07 260 | 60.10 269 | 67.99 239 | 72.79 274 | 43.86 282 | 71.05 273 | 66.85 303 | 43.14 348 | 62.77 247 | 75.39 317 | 38.32 244 | 80.80 202 | 41.69 306 | 68.88 274 | 79.32 264 |
|
| MDTV_nov1_ep13 | | | | 57.00 293 | | 72.73 275 | 38.26 332 | 65.02 325 | 64.73 319 | 44.74 331 | 55.46 324 | 72.48 334 | 32.61 312 | 70.47 308 | 37.47 327 | 67.75 285 | |
|
| MSDG | | | 61.81 264 | 59.23 274 | 69.55 221 | 72.64 276 | 52.63 171 | 70.45 279 | 75.81 213 | 51.38 254 | 53.70 344 | 76.11 304 | 29.52 332 | 81.08 195 | 37.70 326 | 65.79 300 | 74.93 316 |
|
| gg-mvs-nofinetune | | | 57.86 293 | 56.43 300 | 62.18 300 | 72.62 277 | 35.35 361 | 66.57 306 | 56.33 365 | 50.65 264 | 57.64 308 | 57.10 391 | 30.65 322 | 76.36 280 | 37.38 328 | 78.88 132 | 74.82 318 |
|
| v2v482 | | | 70.50 117 | 69.45 126 | 73.66 124 | 72.62 277 | 50.03 211 | 77.58 143 | 80.51 134 | 59.90 109 | 69.52 125 | 82.14 196 | 47.53 142 | 84.88 115 | 65.07 111 | 70.17 250 | 86.09 91 |
|
| baseline2 | | | 63.42 243 | 61.26 259 | 69.89 214 | 72.55 279 | 47.62 245 | 71.54 262 | 68.38 292 | 50.11 270 | 54.82 333 | 75.55 313 | 43.06 194 | 80.96 196 | 48.13 248 | 67.16 290 | 81.11 235 |
|
| test_fmvsm_n_1920 | | | 71.73 96 | 71.14 96 | 73.50 131 | 72.52 280 | 56.53 101 | 75.60 191 | 76.16 208 | 48.11 298 | 77.22 28 | 85.56 126 | 53.10 74 | 77.43 257 | 74.86 40 | 77.14 160 | 86.55 74 |
|
| v7n | | | 69.01 153 | 67.36 169 | 73.98 109 | 72.51 281 | 52.65 169 | 78.54 124 | 81.30 116 | 60.26 104 | 62.67 250 | 81.62 206 | 43.61 189 | 84.49 121 | 57.01 171 | 68.70 278 | 84.79 143 |
|
| fmvsm_s_conf0.5_n_a | | | 69.54 141 | 68.74 138 | 71.93 163 | 72.47 282 | 53.82 145 | 78.25 126 | 62.26 339 | 49.78 275 | 73.12 79 | 86.21 108 | 52.66 77 | 76.79 271 | 75.02 39 | 68.88 274 | 85.18 129 |
|
| mamv4 | | | 56.85 300 | 58.00 288 | 53.43 354 | 72.46 283 | 54.47 137 | 57.56 366 | 54.74 369 | 38.81 371 | 57.42 311 | 79.45 250 | 47.57 141 | 38.70 406 | 60.88 147 | 53.07 368 | 67.11 376 |
|
| pm-mvs1 | | | 65.24 224 | 64.97 214 | 66.04 267 | 72.38 284 | 39.40 323 | 72.62 247 | 75.63 216 | 55.53 195 | 62.35 260 | 83.18 172 | 47.45 144 | 76.47 279 | 49.06 240 | 66.54 294 | 82.24 213 |
|
| XVG-ACMP-BASELINE | | | 64.36 235 | 62.23 246 | 70.74 197 | 72.35 285 | 52.45 176 | 70.80 275 | 78.45 174 | 53.84 228 | 59.87 283 | 81.10 216 | 16.24 385 | 79.32 226 | 55.64 185 | 71.76 227 | 80.47 245 |
|
| WTY-MVS | | | 59.75 279 | 60.39 267 | 57.85 330 | 72.32 286 | 37.83 336 | 61.05 349 | 64.18 323 | 45.95 325 | 61.91 262 | 79.11 256 | 47.01 154 | 60.88 353 | 42.50 300 | 69.49 265 | 74.83 317 |
|
| fmvsm_s_conf0.5_n | | | 69.58 139 | 68.84 135 | 71.79 168 | 72.31 287 | 52.90 164 | 77.90 135 | 62.43 337 | 49.97 273 | 72.85 85 | 85.90 119 | 52.21 85 | 76.49 277 | 75.75 33 | 70.26 249 | 85.97 94 |
|
| tpm cat1 | | | 59.25 284 | 56.95 294 | 66.15 264 | 72.19 288 | 46.96 251 | 68.09 297 | 65.76 310 | 40.03 367 | 57.81 307 | 70.56 350 | 38.32 244 | 74.51 289 | 38.26 324 | 61.50 335 | 77.00 294 |
|
| mvs_anonymous | | | 68.03 174 | 67.51 163 | 69.59 218 | 72.08 289 | 44.57 276 | 71.99 257 | 75.23 226 | 51.67 247 | 67.06 173 | 82.57 181 | 54.68 53 | 77.94 248 | 56.56 174 | 75.71 177 | 86.26 88 |
|
| OurMVSNet-221017-0 | | | 61.37 269 | 58.63 281 | 69.61 217 | 72.05 290 | 48.06 239 | 73.93 229 | 72.51 258 | 47.23 312 | 54.74 334 | 80.92 221 | 21.49 376 | 81.24 190 | 48.57 244 | 56.22 359 | 79.53 262 |
|
| IterMVS-SCA-FT | | | 62.49 253 | 61.52 254 | 65.40 277 | 71.99 291 | 50.80 196 | 71.15 270 | 69.63 280 | 45.71 326 | 60.61 274 | 77.93 272 | 37.45 252 | 65.99 337 | 55.67 183 | 63.50 319 | 79.42 263 |
|
| CostFormer | | | 64.04 238 | 62.51 242 | 68.61 233 | 71.88 292 | 45.77 261 | 71.30 266 | 70.60 273 | 47.55 306 | 64.31 227 | 76.61 298 | 41.63 209 | 79.62 222 | 49.74 232 | 69.00 273 | 80.42 246 |
|
| 1314 | | | 64.61 231 | 63.21 235 | 68.80 230 | 71.87 293 | 47.46 247 | 73.95 227 | 78.39 179 | 42.88 350 | 59.97 281 | 76.60 299 | 38.11 247 | 79.39 225 | 54.84 190 | 72.32 221 | 79.55 261 |
|
| tpm | | | 57.34 296 | 58.16 285 | 54.86 344 | 71.80 294 | 34.77 364 | 67.47 304 | 56.04 368 | 48.20 297 | 60.10 278 | 76.92 290 | 37.17 258 | 53.41 387 | 40.76 311 | 65.01 304 | 76.40 300 |
|
| eth_miper_zixun_eth | | | 67.63 183 | 66.28 196 | 71.67 172 | 71.60 295 | 48.33 236 | 73.68 235 | 77.88 183 | 55.80 189 | 65.91 194 | 78.62 264 | 47.35 148 | 82.88 153 | 59.45 160 | 66.25 296 | 83.81 171 |
|
| pmmvs4 | | | 61.48 268 | 59.39 273 | 67.76 241 | 71.57 296 | 53.86 144 | 71.42 263 | 65.34 313 | 44.20 337 | 59.46 289 | 77.92 273 | 35.90 269 | 74.71 288 | 43.87 287 | 64.87 306 | 74.71 321 |
|
| fmvsm_l_conf0.5_n | | | 70.99 107 | 70.82 101 | 71.48 176 | 71.45 297 | 54.40 139 | 77.18 157 | 70.46 274 | 48.67 289 | 75.17 41 | 86.86 84 | 53.77 65 | 76.86 269 | 76.33 30 | 77.51 153 | 83.17 196 |
|
| AllTest | | | 57.08 298 | 54.65 312 | 64.39 286 | 71.44 298 | 49.03 224 | 69.92 285 | 67.30 297 | 45.97 323 | 47.16 372 | 79.77 241 | 17.47 379 | 67.56 327 | 33.65 350 | 59.16 347 | 76.57 298 |
|
| TestCases | | | | | 64.39 286 | 71.44 298 | 49.03 224 | | 67.30 297 | 45.97 323 | 47.16 372 | 79.77 241 | 17.47 379 | 67.56 327 | 33.65 350 | 59.16 347 | 76.57 298 |
|
| lessismore_v0 | | | | | 69.91 212 | 71.42 300 | 47.80 241 | | 50.90 382 | | 50.39 363 | 75.56 312 | 27.43 349 | 81.33 187 | 45.91 266 | 34.10 398 | 80.59 244 |
|
| gm-plane-assit | | | | | | 71.40 301 | 41.72 304 | | | 48.85 288 | | 73.31 331 | | 82.48 168 | 48.90 241 | | |
|
| GG-mvs-BLEND | | | | | 62.34 299 | 71.36 302 | 37.04 346 | 69.20 291 | 57.33 361 | | 54.73 335 | 65.48 379 | 30.37 324 | 77.82 251 | 34.82 346 | 74.93 182 | 72.17 345 |
|
| fmvsm_l_conf0.5_n_a | | | 70.50 117 | 70.27 112 | 71.18 188 | 71.30 303 | 54.09 141 | 76.89 165 | 69.87 277 | 47.90 302 | 74.37 59 | 86.49 101 | 53.07 75 | 76.69 274 | 75.41 35 | 77.11 161 | 82.76 203 |
|
| test_fmvsmconf_n | | | 73.01 73 | 72.59 75 | 74.27 103 | 71.28 304 | 55.88 114 | 78.21 129 | 75.56 218 | 54.31 222 | 74.86 50 | 87.80 72 | 54.72 52 | 80.23 215 | 78.07 21 | 78.48 140 | 86.70 67 |
|
| test_fmvsmvis_n_1920 | | | 70.84 109 | 70.38 110 | 72.22 161 | 71.16 305 | 55.39 127 | 75.86 187 | 72.21 261 | 49.03 285 | 73.28 73 | 86.17 110 | 51.83 92 | 77.29 261 | 75.80 32 | 78.05 145 | 83.98 164 |
|
| fmvsm_s_conf0.1_n | | | 69.41 146 | 68.60 141 | 71.83 166 | 71.07 306 | 52.88 166 | 77.85 138 | 62.44 336 | 49.58 278 | 72.97 82 | 86.22 107 | 51.68 95 | 76.48 278 | 75.53 34 | 70.10 252 | 86.14 89 |
|
| FMVSNet5 | | | 55.86 310 | 54.93 310 | 58.66 323 | 71.05 307 | 36.35 352 | 64.18 331 | 62.48 335 | 46.76 316 | 50.66 362 | 74.73 322 | 25.80 360 | 64.04 343 | 33.11 354 | 65.57 301 | 75.59 307 |
|
| fmvsm_s_conf0.1_n_a | | | 69.32 147 | 68.44 147 | 71.96 162 | 70.91 308 | 53.78 146 | 78.12 131 | 62.30 338 | 49.35 281 | 73.20 75 | 86.55 100 | 51.99 89 | 76.79 271 | 74.83 41 | 68.68 279 | 85.32 124 |
|
| c3_l | | | 68.33 168 | 67.56 159 | 70.62 199 | 70.87 309 | 46.21 258 | 74.47 218 | 78.80 161 | 56.22 181 | 66.19 189 | 78.53 266 | 51.88 90 | 81.40 185 | 62.08 136 | 69.04 272 | 84.25 155 |
|
| GA-MVS | | | 65.53 219 | 63.70 226 | 71.02 193 | 70.87 309 | 48.10 238 | 70.48 278 | 74.40 239 | 56.69 165 | 64.70 222 | 76.77 293 | 33.66 294 | 81.10 193 | 55.42 187 | 70.32 247 | 83.87 169 |
|
| pmmvs6 | | | 63.69 241 | 62.82 240 | 66.27 261 | 70.63 311 | 39.27 324 | 73.13 240 | 75.47 221 | 52.69 239 | 59.75 287 | 82.30 190 | 39.71 228 | 77.03 265 | 47.40 252 | 64.35 312 | 82.53 206 |
|
| miper_ehance_all_eth | | | 68.03 174 | 67.24 176 | 70.40 203 | 70.54 312 | 46.21 258 | 73.98 225 | 78.68 165 | 55.07 208 | 66.05 191 | 77.80 277 | 52.16 87 | 81.31 188 | 61.53 145 | 69.32 266 | 83.67 179 |
|
| MonoMVSNet | | | 64.15 236 | 63.31 233 | 66.69 254 | 70.51 313 | 44.12 280 | 74.47 218 | 74.21 244 | 57.81 153 | 63.03 244 | 76.62 296 | 38.33 243 | 77.31 260 | 54.22 196 | 60.59 343 | 78.64 271 |
|
| OpenMVS_ROB |  | 52.78 18 | 60.03 276 | 58.14 286 | 65.69 273 | 70.47 314 | 44.82 271 | 75.33 196 | 70.86 271 | 45.04 329 | 56.06 320 | 76.00 305 | 26.89 354 | 79.65 220 | 35.36 345 | 67.29 288 | 72.60 336 |
|
| v148 | | | 68.24 171 | 67.19 178 | 71.40 181 | 70.43 315 | 47.77 243 | 75.76 190 | 77.03 199 | 58.91 127 | 67.36 167 | 80.10 236 | 48.60 128 | 81.89 176 | 60.01 154 | 66.52 295 | 84.53 148 |
|
| XXY-MVS | | | 60.68 271 | 61.67 252 | 57.70 332 | 70.43 315 | 38.45 331 | 64.19 330 | 66.47 305 | 48.05 300 | 63.22 239 | 80.86 223 | 49.28 118 | 60.47 354 | 45.25 278 | 67.28 289 | 74.19 326 |
|
| MVSTER | | | 67.16 194 | 65.58 207 | 71.88 165 | 70.37 317 | 49.70 215 | 70.25 282 | 78.45 174 | 51.52 251 | 69.16 135 | 80.37 229 | 38.45 241 | 82.50 166 | 60.19 152 | 71.46 231 | 83.44 186 |
|
| cl____ | | | 67.18 192 | 66.26 197 | 69.94 210 | 70.20 318 | 45.74 262 | 73.30 237 | 76.83 202 | 55.10 203 | 65.27 207 | 79.57 246 | 47.39 146 | 80.53 206 | 59.41 162 | 69.22 270 | 83.53 185 |
|
| DIV-MVS_self_test | | | 67.18 192 | 66.26 197 | 69.94 210 | 70.20 318 | 45.74 262 | 73.29 238 | 76.83 202 | 55.10 203 | 65.27 207 | 79.58 245 | 47.38 147 | 80.53 206 | 59.43 161 | 69.22 270 | 83.54 184 |
|
| tpmvs | | | 58.47 287 | 56.95 294 | 63.03 296 | 70.20 318 | 41.21 306 | 67.90 299 | 67.23 300 | 49.62 277 | 54.73 335 | 70.84 348 | 34.14 285 | 76.24 282 | 36.64 337 | 61.29 336 | 71.64 350 |
|
| anonymousdsp | | | 67.00 198 | 64.82 215 | 73.57 130 | 70.09 321 | 56.13 107 | 76.35 175 | 77.35 195 | 48.43 294 | 64.99 219 | 80.84 225 | 33.01 301 | 80.34 210 | 64.66 114 | 67.64 286 | 84.23 156 |
|
| MIMVSNet1 | | | 55.17 317 | 54.31 318 | 57.77 331 | 70.03 322 | 32.01 382 | 65.68 314 | 64.81 317 | 49.19 283 | 46.75 375 | 76.00 305 | 25.53 362 | 64.04 343 | 28.65 380 | 62.13 330 | 77.26 290 |
|
| CR-MVSNet | | | 59.91 277 | 57.90 289 | 65.96 268 | 69.96 323 | 52.07 181 | 65.31 322 | 63.15 331 | 42.48 352 | 59.36 290 | 74.84 320 | 35.83 270 | 70.75 307 | 45.50 273 | 64.65 308 | 75.06 312 |
|
| RPMNet | | | 61.53 266 | 58.42 282 | 70.86 194 | 69.96 323 | 52.07 181 | 65.31 322 | 81.36 111 | 43.20 347 | 59.36 290 | 70.15 355 | 35.37 273 | 85.47 100 | 36.42 340 | 64.65 308 | 75.06 312 |
|
| test_fmvsmconf0.1_n | | | 72.81 75 | 72.33 78 | 74.24 104 | 69.89 325 | 55.81 115 | 78.22 128 | 75.40 222 | 54.17 224 | 75.00 45 | 88.03 68 | 53.82 64 | 80.23 215 | 78.08 20 | 78.34 143 | 86.69 68 |
|
| cl22 | | | 67.47 186 | 66.45 186 | 70.54 201 | 69.85 326 | 46.49 254 | 73.85 232 | 77.35 195 | 55.07 208 | 65.51 202 | 77.92 273 | 47.64 139 | 81.10 193 | 61.58 144 | 69.32 266 | 84.01 163 |
|
| Anonymous20231206 | | | 55.10 318 | 55.30 309 | 54.48 346 | 69.81 327 | 33.94 373 | 62.91 336 | 62.13 341 | 41.08 359 | 55.18 329 | 75.65 311 | 32.75 307 | 56.59 376 | 30.32 374 | 67.86 283 | 72.91 332 |
|
| our_test_3 | | | 56.49 303 | 54.42 315 | 62.68 298 | 69.51 328 | 45.48 267 | 66.08 310 | 61.49 343 | 44.11 340 | 50.73 361 | 69.60 360 | 33.05 299 | 68.15 320 | 38.38 323 | 56.86 355 | 74.40 323 |
|
| ppachtmachnet_test | | | 58.06 292 | 55.38 308 | 66.10 266 | 69.51 328 | 48.99 227 | 68.01 298 | 66.13 309 | 44.50 334 | 54.05 342 | 70.74 349 | 32.09 317 | 72.34 298 | 36.68 336 | 56.71 358 | 76.99 296 |
|
| diffmvs |  | | 70.69 113 | 70.43 108 | 71.46 177 | 69.45 330 | 48.95 228 | 72.93 242 | 78.46 173 | 57.27 158 | 71.69 99 | 83.97 157 | 51.48 97 | 77.92 250 | 70.70 71 | 77.95 147 | 87.53 44 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| IterMVS | | | 62.79 252 | 61.27 258 | 67.35 247 | 69.37 331 | 52.04 183 | 71.17 268 | 68.24 294 | 52.63 240 | 59.82 284 | 76.91 291 | 37.32 255 | 72.36 297 | 52.80 208 | 63.19 322 | 77.66 283 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| dmvs_re | | | 56.77 301 | 56.83 296 | 56.61 335 | 69.23 332 | 41.02 307 | 58.37 358 | 64.18 323 | 50.59 266 | 57.45 310 | 71.42 344 | 35.54 272 | 58.94 364 | 37.23 329 | 67.45 287 | 69.87 367 |
|
| miper_enhance_ethall | | | 67.11 195 | 66.09 199 | 70.17 207 | 69.21 333 | 45.98 260 | 72.85 244 | 78.41 177 | 51.38 254 | 65.65 200 | 75.98 308 | 51.17 101 | 81.25 189 | 60.82 148 | 69.32 266 | 83.29 190 |
|
| Patchmtry | | | 57.16 297 | 56.47 299 | 59.23 317 | 69.17 334 | 34.58 367 | 62.98 335 | 63.15 331 | 44.53 333 | 56.83 314 | 74.84 320 | 35.83 270 | 68.71 318 | 40.03 314 | 60.91 337 | 74.39 324 |
|
| CL-MVSNet_self_test | | | 61.53 266 | 60.94 263 | 63.30 292 | 68.95 335 | 36.93 347 | 67.60 301 | 72.80 257 | 55.67 192 | 59.95 282 | 76.63 295 | 45.01 177 | 72.22 300 | 39.74 317 | 62.09 331 | 80.74 243 |
|
| V42 | | | 68.65 159 | 67.35 170 | 72.56 152 | 68.93 336 | 50.18 207 | 72.90 243 | 79.47 149 | 56.92 163 | 69.45 128 | 80.26 233 | 46.29 160 | 82.99 148 | 64.07 117 | 67.82 284 | 84.53 148 |
|
| test-LLR | | | 58.15 291 | 58.13 287 | 58.22 326 | 68.57 337 | 44.80 272 | 65.46 318 | 57.92 356 | 50.08 271 | 55.44 325 | 69.82 357 | 32.62 310 | 57.44 370 | 49.66 234 | 73.62 197 | 72.41 341 |
|
| test-mter | | | 56.42 305 | 55.82 305 | 58.22 326 | 68.57 337 | 44.80 272 | 65.46 318 | 57.92 356 | 39.94 368 | 55.44 325 | 69.82 357 | 21.92 372 | 57.44 370 | 49.66 234 | 73.62 197 | 72.41 341 |
|
| MVS-HIRNet | | | 45.52 350 | 44.48 352 | 48.65 369 | 68.49 339 | 34.05 372 | 59.41 356 | 44.50 397 | 27.03 390 | 37.96 397 | 50.47 399 | 26.16 358 | 64.10 342 | 26.74 388 | 59.52 345 | 47.82 398 |
|
| dp | | | 51.89 333 | 51.60 332 | 52.77 359 | 68.44 340 | 32.45 381 | 62.36 339 | 54.57 371 | 44.16 338 | 49.31 367 | 67.91 365 | 28.87 338 | 56.61 375 | 33.89 349 | 54.89 362 | 69.24 372 |
|
| PatchT | | | 53.17 329 | 53.44 326 | 52.33 362 | 68.29 341 | 25.34 404 | 58.21 359 | 54.41 372 | 44.46 335 | 54.56 337 | 69.05 363 | 33.32 297 | 60.94 352 | 36.93 332 | 61.76 334 | 70.73 361 |
|
| test_fmvsmconf0.01_n | | | 72.17 88 | 71.50 86 | 74.16 106 | 67.96 342 | 55.58 123 | 78.06 133 | 74.67 236 | 54.19 223 | 74.54 56 | 88.23 61 | 50.35 110 | 80.24 214 | 78.07 21 | 77.46 154 | 86.65 71 |
|
| Patchmatch-RL test | | | 58.16 290 | 55.49 307 | 66.15 264 | 67.92 343 | 48.89 229 | 60.66 351 | 51.07 381 | 47.86 303 | 59.36 290 | 62.71 385 | 34.02 288 | 72.27 299 | 56.41 175 | 59.40 346 | 77.30 288 |
|
| pmmvs-eth3d | | | 58.81 286 | 56.31 301 | 66.30 260 | 67.61 344 | 52.42 177 | 72.30 253 | 64.76 318 | 43.55 343 | 54.94 332 | 74.19 326 | 28.95 336 | 72.60 296 | 43.31 291 | 57.21 354 | 73.88 329 |
|
| PVSNet_0 | | 43.31 20 | 47.46 348 | 45.64 351 | 52.92 358 | 67.60 345 | 44.65 274 | 54.06 377 | 54.64 370 | 41.59 356 | 46.15 377 | 58.75 388 | 30.99 321 | 58.66 365 | 32.18 357 | 24.81 403 | 55.46 391 |
|
| CHOSEN 280x420 | | | 47.83 346 | 46.36 350 | 52.24 364 | 67.37 346 | 49.78 214 | 38.91 403 | 43.11 400 | 35.00 377 | 43.27 385 | 63.30 384 | 28.95 336 | 49.19 394 | 36.53 338 | 60.80 339 | 57.76 388 |
|
| tpmrst | | | 58.24 289 | 58.70 280 | 56.84 334 | 66.97 347 | 34.32 369 | 69.57 288 | 61.14 345 | 47.17 313 | 58.58 301 | 71.60 343 | 41.28 216 | 60.41 355 | 49.20 238 | 62.84 324 | 75.78 305 |
|
| sss | | | 56.17 308 | 56.57 298 | 54.96 343 | 66.93 348 | 36.32 354 | 57.94 361 | 61.69 342 | 41.67 355 | 58.64 299 | 75.32 318 | 38.72 239 | 56.25 377 | 42.04 304 | 66.19 297 | 72.31 344 |
|
| TinyColmap | | | 54.14 320 | 51.72 331 | 61.40 306 | 66.84 349 | 41.97 299 | 66.52 307 | 68.51 291 | 44.81 330 | 42.69 386 | 75.77 310 | 11.66 395 | 72.94 295 | 31.96 360 | 56.77 357 | 69.27 371 |
|
| miper_lstm_enhance | | | 62.03 261 | 60.88 264 | 65.49 276 | 66.71 350 | 46.25 256 | 56.29 371 | 75.70 215 | 50.68 263 | 61.27 270 | 75.48 315 | 40.21 223 | 68.03 323 | 56.31 176 | 65.25 303 | 82.18 214 |
|
| TESTMET0.1,1 | | | 55.28 315 | 54.90 311 | 56.42 336 | 66.56 351 | 43.67 284 | 65.46 318 | 56.27 366 | 39.18 370 | 53.83 343 | 67.44 369 | 24.21 367 | 55.46 381 | 48.04 249 | 73.11 210 | 70.13 365 |
|
| dmvs_testset | | | 50.16 340 | 51.90 330 | 44.94 375 | 66.49 352 | 11.78 415 | 61.01 350 | 51.50 378 | 51.17 259 | 50.30 365 | 67.44 369 | 39.28 232 | 60.29 356 | 22.38 395 | 57.49 353 | 62.76 380 |
|
| D2MVS | | | 62.30 257 | 60.29 268 | 68.34 237 | 66.46 353 | 48.42 235 | 65.70 313 | 73.42 251 | 47.71 304 | 58.16 304 | 75.02 319 | 30.51 323 | 77.71 254 | 53.96 199 | 71.68 229 | 78.90 270 |
|
| MDA-MVSNet-bldmvs | | | 53.87 323 | 50.81 335 | 63.05 295 | 66.25 354 | 48.58 233 | 56.93 369 | 63.82 325 | 48.09 299 | 41.22 387 | 70.48 353 | 30.34 325 | 68.00 324 | 34.24 348 | 45.92 384 | 72.57 337 |
|
| ITE_SJBPF | | | | | 62.09 301 | 66.16 355 | 44.55 277 | | 64.32 321 | 47.36 309 | 55.31 327 | 80.34 231 | 19.27 378 | 62.68 348 | 36.29 341 | 62.39 328 | 79.04 267 |
|
| EPMVS | | | 53.96 321 | 53.69 324 | 54.79 345 | 66.12 356 | 31.96 383 | 62.34 340 | 49.05 385 | 44.42 336 | 55.54 323 | 71.33 346 | 30.22 326 | 56.70 373 | 41.65 308 | 62.54 327 | 75.71 306 |
|
| ADS-MVSNet2 | | | 51.33 336 | 48.76 343 | 59.07 320 | 66.02 357 | 44.60 275 | 50.90 385 | 59.76 349 | 36.90 372 | 50.74 359 | 66.18 377 | 26.38 355 | 63.11 346 | 27.17 385 | 54.76 363 | 69.50 369 |
|
| ADS-MVSNet | | | 48.48 345 | 47.77 346 | 50.63 366 | 66.02 357 | 29.92 387 | 50.90 385 | 50.87 383 | 36.90 372 | 50.74 359 | 66.18 377 | 26.38 355 | 52.47 389 | 27.17 385 | 54.76 363 | 69.50 369 |
|
| EU-MVSNet | | | 55.61 313 | 54.41 316 | 59.19 319 | 65.41 359 | 33.42 376 | 72.44 251 | 71.91 264 | 28.81 385 | 51.27 355 | 73.87 328 | 24.76 365 | 69.08 317 | 43.04 295 | 58.20 350 | 75.06 312 |
|
| RPSCF | | | 55.80 311 | 54.22 320 | 60.53 311 | 65.13 360 | 42.91 293 | 64.30 329 | 57.62 358 | 36.84 374 | 58.05 306 | 82.28 191 | 28.01 343 | 56.24 378 | 37.14 330 | 58.61 349 | 82.44 210 |
|
| USDC | | | 56.35 306 | 54.24 319 | 62.69 297 | 64.74 361 | 40.31 313 | 65.05 324 | 73.83 248 | 43.93 341 | 47.58 370 | 77.71 281 | 15.36 388 | 75.05 287 | 38.19 325 | 61.81 333 | 72.70 335 |
|
| JIA-IIPM | | | 51.56 334 | 47.68 348 | 63.21 293 | 64.61 362 | 50.73 197 | 47.71 391 | 58.77 353 | 42.90 349 | 48.46 369 | 51.72 395 | 24.97 364 | 70.24 313 | 36.06 342 | 53.89 366 | 68.64 373 |
|
| Patchmatch-test | | | 49.08 343 | 48.28 345 | 51.50 365 | 64.40 363 | 30.85 386 | 45.68 395 | 48.46 388 | 35.60 376 | 46.10 378 | 72.10 338 | 34.47 283 | 46.37 398 | 27.08 387 | 60.65 341 | 77.27 289 |
|
| TDRefinement | | | 53.44 327 | 50.72 336 | 61.60 303 | 64.31 364 | 46.96 251 | 70.89 274 | 65.27 315 | 41.78 353 | 44.61 381 | 77.98 270 | 11.52 397 | 66.36 335 | 28.57 381 | 51.59 372 | 71.49 353 |
|
| test_vis1_n_1920 | | | 58.86 285 | 59.06 276 | 58.25 325 | 63.76 365 | 43.14 290 | 67.49 303 | 66.36 307 | 40.22 365 | 65.89 196 | 71.95 341 | 31.04 320 | 59.75 359 | 59.94 155 | 64.90 305 | 71.85 348 |
|
| N_pmnet | | | 39.35 363 | 40.28 360 | 36.54 386 | 63.76 365 | 1.62 423 | 49.37 388 | 0.76 422 | 34.62 378 | 43.61 384 | 66.38 376 | 26.25 357 | 42.57 402 | 26.02 390 | 51.77 371 | 65.44 378 |
|
| ambc | | | | | 65.13 281 | 63.72 367 | 37.07 345 | 47.66 392 | 78.78 162 | | 54.37 340 | 71.42 344 | 11.24 398 | 80.94 197 | 45.64 269 | 53.85 367 | 77.38 287 |
|
| WB-MVS | | | 43.26 353 | 43.41 353 | 42.83 379 | 63.32 368 | 10.32 417 | 58.17 360 | 45.20 395 | 45.42 327 | 40.44 390 | 67.26 372 | 34.01 289 | 58.98 363 | 11.96 408 | 24.88 402 | 59.20 383 |
|
| KD-MVS_2432*1600 | | | 53.45 325 | 51.50 333 | 59.30 315 | 62.82 369 | 37.14 343 | 55.33 372 | 71.79 265 | 47.34 310 | 55.09 330 | 70.52 351 | 21.91 373 | 70.45 309 | 35.72 343 | 42.97 387 | 70.31 363 |
|
| miper_refine_blended | | | 53.45 325 | 51.50 333 | 59.30 315 | 62.82 369 | 37.14 343 | 55.33 372 | 71.79 265 | 47.34 310 | 55.09 330 | 70.52 351 | 21.91 373 | 70.45 309 | 35.72 343 | 42.97 387 | 70.31 363 |
|
| test0.0.03 1 | | | 53.32 328 | 53.59 325 | 52.50 361 | 62.81 371 | 29.45 388 | 59.51 354 | 54.11 373 | 50.08 271 | 54.40 339 | 74.31 325 | 32.62 310 | 55.92 379 | 30.50 373 | 63.95 315 | 72.15 346 |
|
| PMMVS | | | 53.96 321 | 53.26 327 | 56.04 337 | 62.60 372 | 50.92 193 | 61.17 347 | 56.09 367 | 32.81 380 | 53.51 349 | 66.84 374 | 34.04 287 | 59.93 358 | 44.14 283 | 68.18 281 | 57.27 389 |
|
| SSC-MVS | | | 41.96 358 | 41.99 357 | 41.90 380 | 62.46 373 | 9.28 419 | 57.41 367 | 44.32 398 | 43.38 344 | 38.30 396 | 66.45 375 | 32.67 309 | 58.42 367 | 10.98 409 | 21.91 405 | 57.99 387 |
|
| PM-MVS | | | 52.33 331 | 50.19 339 | 58.75 322 | 62.10 374 | 45.14 270 | 65.75 312 | 40.38 402 | 43.60 342 | 53.52 348 | 72.65 333 | 9.16 403 | 65.87 338 | 50.41 227 | 54.18 365 | 65.24 379 |
|
| Gipuma |  | | 34.77 367 | 31.91 372 | 43.33 377 | 62.05 375 | 37.87 334 | 20.39 408 | 67.03 301 | 23.23 396 | 18.41 409 | 25.84 409 | 4.24 410 | 62.73 347 | 14.71 402 | 51.32 373 | 29.38 407 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test20.03 | | | 53.87 323 | 54.02 321 | 53.41 355 | 61.47 376 | 28.11 393 | 61.30 345 | 59.21 351 | 51.34 256 | 52.09 353 | 77.43 284 | 33.29 298 | 58.55 366 | 29.76 376 | 60.27 344 | 73.58 330 |
|
| pmmvs5 | | | 56.47 304 | 55.68 306 | 58.86 321 | 61.41 377 | 36.71 349 | 66.37 308 | 62.75 333 | 40.38 364 | 53.70 344 | 76.62 296 | 34.56 280 | 67.05 330 | 40.02 315 | 65.27 302 | 72.83 334 |
|
| MDA-MVSNet_test_wron | | | 50.71 339 | 48.95 341 | 56.00 339 | 61.17 378 | 41.84 300 | 51.90 383 | 56.45 362 | 40.96 360 | 44.79 380 | 67.84 366 | 30.04 328 | 55.07 384 | 36.71 335 | 50.69 375 | 71.11 359 |
|
| YYNet1 | | | 50.73 338 | 48.96 340 | 56.03 338 | 61.10 379 | 41.78 301 | 51.94 382 | 56.44 363 | 40.94 361 | 44.84 379 | 67.80 367 | 30.08 327 | 55.08 383 | 36.77 333 | 50.71 374 | 71.22 356 |
|
| dongtai | | | 34.52 368 | 34.94 368 | 33.26 389 | 61.06 380 | 16.00 414 | 52.79 381 | 23.78 415 | 40.71 362 | 39.33 394 | 48.65 403 | 16.91 383 | 48.34 395 | 12.18 407 | 19.05 407 | 35.44 406 |
|
| CMPMVS |  | 42.80 21 | 57.81 294 | 55.97 303 | 63.32 291 | 60.98 381 | 47.38 248 | 64.66 327 | 69.50 283 | 32.06 381 | 46.83 374 | 77.80 277 | 29.50 333 | 71.36 304 | 48.68 242 | 73.75 195 | 71.21 357 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| UnsupCasMVSNet_bld | | | 50.07 341 | 48.87 342 | 53.66 351 | 60.97 382 | 33.67 375 | 57.62 365 | 64.56 320 | 39.47 369 | 47.38 371 | 64.02 383 | 27.47 347 | 59.32 360 | 34.69 347 | 43.68 386 | 67.98 375 |
|
| Anonymous20240521 | | | 55.30 314 | 54.41 316 | 57.96 329 | 60.92 383 | 41.73 302 | 71.09 272 | 71.06 270 | 41.18 358 | 48.65 368 | 73.31 331 | 16.93 382 | 59.25 361 | 42.54 299 | 64.01 313 | 72.90 333 |
|
| testgi | | | 51.90 332 | 52.37 329 | 50.51 367 | 60.39 384 | 23.55 407 | 58.42 357 | 58.15 354 | 49.03 285 | 51.83 354 | 79.21 255 | 22.39 370 | 55.59 380 | 29.24 379 | 62.64 325 | 72.40 343 |
|
| UnsupCasMVSNet_eth | | | 53.16 330 | 52.47 328 | 55.23 342 | 59.45 385 | 33.39 377 | 59.43 355 | 69.13 287 | 45.98 322 | 50.35 364 | 72.32 335 | 29.30 335 | 58.26 368 | 42.02 305 | 44.30 385 | 74.05 327 |
|
| mvs5depth | | | 55.64 312 | 53.81 323 | 61.11 309 | 59.39 386 | 40.98 311 | 65.89 311 | 68.28 293 | 50.21 269 | 58.11 305 | 75.42 316 | 17.03 381 | 67.63 326 | 43.79 288 | 46.21 382 | 74.73 320 |
|
| test_cas_vis1_n_1920 | | | 56.91 299 | 56.71 297 | 57.51 333 | 59.13 387 | 45.40 268 | 63.58 333 | 61.29 344 | 36.24 375 | 67.14 172 | 71.85 342 | 29.89 329 | 56.69 374 | 57.65 168 | 63.58 318 | 70.46 362 |
|
| new-patchmatchnet | | | 47.56 347 | 47.73 347 | 47.06 370 | 58.81 388 | 9.37 418 | 48.78 389 | 59.21 351 | 43.28 345 | 44.22 382 | 68.66 364 | 25.67 361 | 57.20 372 | 31.57 368 | 49.35 379 | 74.62 322 |
|
| FPMVS | | | 42.18 357 | 41.11 359 | 45.39 372 | 58.03 389 | 41.01 309 | 49.50 387 | 53.81 375 | 30.07 384 | 33.71 399 | 64.03 381 | 11.69 394 | 52.08 392 | 14.01 403 | 55.11 361 | 43.09 400 |
|
| KD-MVS_self_test | | | 55.22 316 | 53.89 322 | 59.21 318 | 57.80 390 | 27.47 396 | 57.75 364 | 74.32 240 | 47.38 308 | 50.90 358 | 70.00 356 | 28.45 341 | 70.30 312 | 40.44 312 | 57.92 351 | 79.87 256 |
|
| test_vis1_n | | | 49.89 342 | 48.69 344 | 53.50 353 | 53.97 391 | 37.38 341 | 61.53 342 | 47.33 392 | 28.54 386 | 59.62 288 | 67.10 373 | 13.52 390 | 52.27 390 | 49.07 239 | 57.52 352 | 70.84 360 |
|
| test_fmvs1 | | | 51.32 337 | 50.48 337 | 53.81 350 | 53.57 392 | 37.51 340 | 60.63 352 | 51.16 379 | 28.02 389 | 63.62 235 | 69.23 362 | 16.41 384 | 53.93 386 | 51.01 223 | 60.70 340 | 69.99 366 |
|
| kuosan | | | 29.62 375 | 30.82 374 | 26.02 394 | 52.99 393 | 16.22 413 | 51.09 384 | 22.71 416 | 33.91 379 | 33.99 398 | 40.85 404 | 15.89 386 | 33.11 411 | 7.59 415 | 18.37 408 | 28.72 408 |
|
| test_fmvs1_n | | | 51.37 335 | 50.35 338 | 54.42 348 | 52.85 394 | 37.71 338 | 61.16 348 | 51.93 376 | 28.15 387 | 63.81 234 | 69.73 359 | 13.72 389 | 53.95 385 | 51.16 222 | 60.65 341 | 71.59 351 |
|
| new_pmnet | | | 34.13 369 | 34.29 370 | 33.64 388 | 52.63 395 | 18.23 412 | 44.43 398 | 33.90 408 | 22.81 398 | 30.89 401 | 53.18 393 | 10.48 401 | 35.72 410 | 20.77 397 | 39.51 391 | 46.98 399 |
|
| pmmvs3 | | | 44.92 351 | 41.95 358 | 53.86 349 | 52.58 396 | 43.55 285 | 62.11 341 | 46.90 394 | 26.05 392 | 40.63 388 | 60.19 387 | 11.08 400 | 57.91 369 | 31.83 365 | 46.15 383 | 60.11 382 |
|
| m2depth | | | 45.56 349 | 42.95 354 | 53.39 356 | 52.33 397 | 29.15 389 | 57.77 362 | 48.20 389 | 31.81 382 | 49.86 366 | 77.21 286 | 8.69 404 | 59.16 362 | 27.31 384 | 33.40 399 | 71.84 349 |
|
| DSMNet-mixed | | | 39.30 364 | 38.72 363 | 41.03 381 | 51.22 398 | 19.66 410 | 45.53 396 | 31.35 409 | 15.83 408 | 39.80 392 | 67.42 371 | 22.19 371 | 45.13 399 | 22.43 394 | 52.69 370 | 58.31 386 |
|
| mvsany_test1 | | | 39.38 362 | 38.16 365 | 43.02 378 | 49.05 399 | 34.28 370 | 44.16 399 | 25.94 413 | 22.74 399 | 46.57 376 | 62.21 386 | 23.85 368 | 41.16 405 | 33.01 355 | 35.91 395 | 53.63 392 |
|
| APD_test1 | | | 37.39 365 | 34.94 368 | 44.72 376 | 48.88 400 | 33.19 378 | 52.95 380 | 44.00 399 | 19.49 402 | 27.28 403 | 58.59 389 | 3.18 415 | 52.84 388 | 18.92 398 | 41.17 390 | 48.14 397 |
|
| test_fmvs2 | | | 48.69 344 | 47.49 349 | 52.29 363 | 48.63 401 | 33.06 379 | 57.76 363 | 48.05 390 | 25.71 393 | 59.76 286 | 69.60 360 | 11.57 396 | 52.23 391 | 49.45 237 | 56.86 355 | 71.58 352 |
|
| LF4IMVS | | | 42.95 354 | 42.26 356 | 45.04 373 | 48.30 402 | 32.50 380 | 54.80 374 | 48.49 387 | 28.03 388 | 40.51 389 | 70.16 354 | 9.24 402 | 43.89 401 | 31.63 366 | 49.18 380 | 58.72 385 |
|
| wuyk23d | | | 13.32 382 | 12.52 385 | 15.71 396 | 47.54 403 | 26.27 401 | 31.06 407 | 1.98 421 | 4.93 413 | 5.18 416 | 1.94 416 | 0.45 421 | 18.54 415 | 6.81 416 | 12.83 412 | 2.33 413 |
|
| MVStest1 | | | 42.65 355 | 39.29 362 | 52.71 360 | 47.26 404 | 34.58 367 | 54.41 376 | 50.84 384 | 23.35 395 | 39.31 395 | 74.08 327 | 12.57 392 | 55.09 382 | 23.32 393 | 28.47 401 | 68.47 374 |
|
| test_vis1_rt | | | 41.35 360 | 39.45 361 | 47.03 371 | 46.65 405 | 37.86 335 | 47.76 390 | 38.65 403 | 23.10 397 | 44.21 383 | 51.22 397 | 11.20 399 | 44.08 400 | 39.27 318 | 53.02 369 | 59.14 384 |
|
| test_fmvs3 | | | 44.30 352 | 42.55 355 | 49.55 368 | 42.83 406 | 27.15 399 | 53.03 379 | 44.93 396 | 22.03 401 | 53.69 346 | 64.94 380 | 4.21 411 | 49.63 393 | 47.47 250 | 49.82 377 | 71.88 347 |
|
| LCM-MVSNet | | | 40.30 361 | 35.88 367 | 53.57 352 | 42.24 407 | 29.15 389 | 45.21 397 | 60.53 348 | 22.23 400 | 28.02 402 | 50.98 398 | 3.72 413 | 61.78 351 | 31.22 371 | 38.76 393 | 69.78 368 |
|
| E-PMN | | | 23.77 377 | 22.73 381 | 26.90 392 | 42.02 408 | 20.67 409 | 42.66 400 | 35.70 406 | 17.43 404 | 10.28 414 | 25.05 410 | 6.42 406 | 42.39 403 | 10.28 411 | 14.71 410 | 17.63 409 |
|
| testf1 | | | 31.46 373 | 28.89 377 | 39.16 382 | 41.99 409 | 28.78 391 | 46.45 393 | 37.56 404 | 14.28 409 | 21.10 405 | 48.96 400 | 1.48 419 | 47.11 396 | 13.63 404 | 34.56 396 | 41.60 401 |
|
| APD_test2 | | | 31.46 373 | 28.89 377 | 39.16 382 | 41.99 409 | 28.78 391 | 46.45 393 | 37.56 404 | 14.28 409 | 21.10 405 | 48.96 400 | 1.48 419 | 47.11 396 | 13.63 404 | 34.56 396 | 41.60 401 |
|
| EMVS | | | 22.97 378 | 21.84 382 | 26.36 393 | 40.20 411 | 19.53 411 | 41.95 401 | 34.64 407 | 17.09 405 | 9.73 415 | 22.83 411 | 7.29 405 | 42.22 404 | 9.18 413 | 13.66 411 | 17.32 410 |
|
| ANet_high | | | 41.38 359 | 37.47 366 | 53.11 357 | 39.73 412 | 24.45 405 | 56.94 368 | 69.69 278 | 47.65 305 | 26.04 404 | 52.32 394 | 12.44 393 | 62.38 349 | 21.80 396 | 10.61 413 | 72.49 338 |
|
| PMMVS2 | | | 27.40 376 | 25.91 379 | 31.87 391 | 39.46 413 | 6.57 420 | 31.17 406 | 28.52 411 | 23.96 394 | 20.45 408 | 48.94 402 | 4.20 412 | 37.94 407 | 16.51 400 | 19.97 406 | 51.09 393 |
|
| PMVS |  | 28.69 22 | 36.22 366 | 33.29 371 | 45.02 374 | 36.82 414 | 35.98 357 | 54.68 375 | 48.74 386 | 26.31 391 | 21.02 407 | 51.61 396 | 2.88 416 | 60.10 357 | 9.99 412 | 47.58 381 | 38.99 405 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| mvsany_test3 | | | 32.62 370 | 30.57 375 | 38.77 384 | 36.16 415 | 24.20 406 | 38.10 404 | 20.63 417 | 19.14 403 | 40.36 391 | 57.43 390 | 5.06 408 | 36.63 409 | 29.59 378 | 28.66 400 | 55.49 390 |
|
| test_vis3_rt | | | 32.09 371 | 30.20 376 | 37.76 385 | 35.36 416 | 27.48 395 | 40.60 402 | 28.29 412 | 16.69 406 | 32.52 400 | 40.53 405 | 1.96 417 | 37.40 408 | 33.64 352 | 42.21 389 | 48.39 395 |
|
| MVE |  | 17.77 23 | 21.41 379 | 17.77 384 | 32.34 390 | 34.34 417 | 25.44 403 | 16.11 409 | 24.11 414 | 11.19 411 | 13.22 411 | 31.92 407 | 1.58 418 | 30.95 413 | 10.47 410 | 17.03 409 | 40.62 404 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_f | | | 31.86 372 | 31.05 373 | 34.28 387 | 32.33 418 | 21.86 408 | 32.34 405 | 30.46 410 | 16.02 407 | 39.78 393 | 55.45 392 | 4.80 409 | 32.36 412 | 30.61 372 | 37.66 394 | 48.64 394 |
|
| DeepMVS_CX |  | | | | 12.03 397 | 17.97 419 | 10.91 416 | | 10.60 420 | 7.46 412 | 11.07 413 | 28.36 408 | 3.28 414 | 11.29 416 | 8.01 414 | 9.74 415 | 13.89 411 |
|
| test_method | | | 19.68 380 | 18.10 383 | 24.41 395 | 13.68 420 | 3.11 422 | 12.06 411 | 42.37 401 | 2.00 414 | 11.97 412 | 36.38 406 | 5.77 407 | 29.35 414 | 15.06 401 | 23.65 404 | 40.76 403 |
|
| tmp_tt | | | 9.43 383 | 11.14 386 | 4.30 398 | 2.38 421 | 4.40 421 | 13.62 410 | 16.08 419 | 0.39 415 | 15.89 410 | 13.06 412 | 15.80 387 | 5.54 417 | 12.63 406 | 10.46 414 | 2.95 412 |
|
| testmvs | | | 4.52 386 | 6.03 389 | 0.01 400 | 0.01 422 | 0.00 425 | 53.86 378 | 0.00 423 | 0.01 417 | 0.04 418 | 0.27 417 | 0.00 423 | 0.00 418 | 0.04 417 | 0.00 416 | 0.03 415 |
|
| test123 | | | 4.73 385 | 6.30 388 | 0.02 399 | 0.01 422 | 0.01 424 | 56.36 370 | 0.00 423 | 0.01 417 | 0.04 418 | 0.21 418 | 0.01 422 | 0.00 418 | 0.03 418 | 0.00 416 | 0.04 414 |
|
| test_blank | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 425 | 0.00 412 | 0.00 423 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 423 | 0.00 418 | 0.00 419 | 0.00 416 | 0.00 416 |
|
| eth-test2 | | | | | | 0.00 424 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 424 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 425 | 0.00 412 | 0.00 423 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 423 | 0.00 418 | 0.00 419 | 0.00 416 | 0.00 416 |
|
| DCPMVS | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 425 | 0.00 412 | 0.00 423 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 423 | 0.00 418 | 0.00 419 | 0.00 416 | 0.00 416 |
|
| cdsmvs_eth3d_5k | | | 17.50 381 | 23.34 380 | 0.00 401 | 0.00 424 | 0.00 425 | 0.00 412 | 78.63 166 | 0.00 419 | 0.00 420 | 82.18 192 | 49.25 119 | 0.00 418 | 0.00 419 | 0.00 416 | 0.00 416 |
|
| pcd_1.5k_mvsjas | | | 3.92 387 | 5.23 390 | 0.00 401 | 0.00 424 | 0.00 425 | 0.00 412 | 0.00 423 | 0.00 419 | 0.00 420 | 0.00 419 | 47.05 151 | 0.00 418 | 0.00 419 | 0.00 416 | 0.00 416 |
|
| sosnet-low-res | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 425 | 0.00 412 | 0.00 423 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 423 | 0.00 418 | 0.00 419 | 0.00 416 | 0.00 416 |
|
| sosnet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 425 | 0.00 412 | 0.00 423 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 423 | 0.00 418 | 0.00 419 | 0.00 416 | 0.00 416 |
|
| uncertanet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 425 | 0.00 412 | 0.00 423 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 423 | 0.00 418 | 0.00 419 | 0.00 416 | 0.00 416 |
|
| Regformer | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 425 | 0.00 412 | 0.00 423 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 423 | 0.00 418 | 0.00 419 | 0.00 416 | 0.00 416 |
|
| ab-mvs-re | | | 6.49 384 | 8.65 387 | 0.00 401 | 0.00 424 | 0.00 425 | 0.00 412 | 0.00 423 | 0.00 419 | 0.00 420 | 77.89 275 | 0.00 423 | 0.00 418 | 0.00 419 | 0.00 416 | 0.00 416 |
|
| uanet | | | 0.00 388 | 0.00 391 | 0.00 401 | 0.00 424 | 0.00 425 | 0.00 412 | 0.00 423 | 0.00 419 | 0.00 420 | 0.00 419 | 0.00 423 | 0.00 418 | 0.00 419 | 0.00 416 | 0.00 416 |
|
| WAC-MVS | | | | | | | 27.31 397 | | | | | | | | 27.77 382 | | |
|
| PC_three_1452 | | | | | | | | | | 55.09 205 | 84.46 4 | 89.84 43 | 66.68 5 | 89.41 18 | 74.24 44 | 91.38 2 | 88.42 14 |
|
| test_241102_TWO | | | | | | | | | 86.73 12 | 64.18 32 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 17 | 90.70 7 | 87.65 39 |
|
| test_0728_THIRD | | | | | | | | | | 65.04 16 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 6 | 90.63 10 | 88.09 25 |
|
| GSMVS | | | | | | | | | | | | | | | | | 78.05 277 |
|
| sam_mvs1 | | | | | | | | | | | | | 34.74 279 | | | | 78.05 277 |
|
| sam_mvs | | | | | | | | | | | | | 33.43 296 | | | | |
|
| MTGPA |  | | | | | | | | 80.97 127 | | | | | | | | |
|
| test_post1 | | | | | | | | 68.67 294 | | | | 3.64 414 | 32.39 315 | 69.49 315 | 44.17 281 | | |
|
| test_post | | | | | | | | | | | | 3.55 415 | 33.90 290 | 66.52 333 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 64.03 381 | 34.50 281 | 74.27 291 | | | |
|
| MTMP | | | | | | | | 86.03 19 | 17.08 418 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 75.28 37 | 88.31 32 | 83.81 171 |
|
| agg_prior2 | | | | | | | | | | | | | | | 73.09 55 | 87.93 40 | 84.33 152 |
|
| test_prior4 | | | | | | | 62.51 14 | 82.08 76 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 81.75 78 | | 60.37 98 | 75.01 44 | 89.06 52 | 56.22 41 | | 72.19 60 | 88.96 24 | |
|
| 旧先验2 | | | | | | | | 76.08 181 | | 45.32 328 | 76.55 33 | | | 65.56 339 | 58.75 164 | | |
|
| 新几何2 | | | | | | | | 76.12 179 | | | | | | | | | |
|
| 无先验 | | | | | | | | 79.66 109 | 74.30 242 | 48.40 295 | | | | 80.78 203 | 53.62 201 | | 79.03 268 |
|
| 原ACMM2 | | | | | | | | 79.02 114 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 72.18 301 | 46.95 259 | | |
|
| segment_acmp | | | | | | | | | | | | | 54.23 57 | | | | |
|
| testdata1 | | | | | | | | 72.65 245 | | 60.50 93 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 84.01 51 | | | | | 87.21 54 | 68.16 83 | 80.58 107 | 84.65 146 |
|
| plane_prior4 | | | | | | | | | | | | 86.10 112 | | | | | |
|
| plane_prior3 | | | | | | | 56.09 108 | | | 63.92 36 | 69.27 131 | | | | | | |
|
| plane_prior2 | | | | | | | | 84.22 40 | | 64.52 25 | | | | | | | |
|
| plane_prior | | | | | | | 56.31 102 | 83.58 53 | | 63.19 48 | | | | | | 80.48 110 | |
|
| n2 | | | | | | | | | 0.00 423 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 423 | | | | | | | | |
|
| door-mid | | | | | | | | | 47.19 393 | | | | | | | | |
|
| test11 | | | | | | | | | 83.47 70 | | | | | | | | |
|
| door | | | | | | | | | 47.60 391 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 54.94 131 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.04 94 | | |
|
| HQP4-MVS | | | | | | | | | | | 67.85 155 | | | 86.93 61 | | | 84.32 153 |
|
| HQP3-MVS | | | | | | | | | 83.90 56 | | | | | | | 80.35 111 | |
|
| HQP2-MVS | | | | | | | | | | | | | 45.46 169 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 25.89 402 | 61.22 346 | | 40.10 366 | 51.10 356 | | 32.97 302 | | 38.49 322 | | 78.61 272 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 190 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 72.16 224 | |
|
| Test By Simon | | | | | | | | | | | | | 48.33 130 | | | | |
|