This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
SED-MVS97.98 298.36 297.54 498.94 1899.29 298.81 496.64 397.14 395.16 597.96 299.61 296.92 1298.00 197.24 898.75 1899.25 3
DVP-MVS++98.07 198.46 197.62 199.08 499.29 298.84 396.63 497.89 195.35 397.83 499.48 396.98 997.99 297.14 1198.82 1199.60 1
CNVR-MVS97.30 1097.41 1197.18 999.02 1198.60 2298.15 1796.24 1496.12 1894.10 1395.54 2697.99 1296.99 797.97 397.17 998.57 2598.50 30
DVP-MVScopyleft97.93 398.23 397.58 399.05 799.31 198.64 696.62 597.56 295.08 696.61 1499.64 197.32 197.91 497.31 698.77 1699.26 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SMA-MVScopyleft97.53 797.93 797.07 1299.21 199.02 898.08 2096.25 1296.36 1293.57 1796.56 1599.27 596.78 1797.91 497.43 398.51 2798.94 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP97.10 1597.49 1096.65 2098.97 1498.95 998.43 995.96 1995.12 3091.46 3096.85 1097.60 1896.37 2597.76 697.16 1098.68 1998.97 11
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVScopyleft97.83 498.13 497.48 598.83 2499.19 498.99 196.70 196.05 2094.39 1198.30 199.47 497.02 697.75 797.02 1498.98 399.10 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS97.79 597.96 697.60 299.20 299.10 698.88 296.68 296.81 794.64 797.84 398.02 1197.24 397.74 897.02 1498.97 599.16 6
DeepPCF-MVS92.65 295.50 3596.96 1993.79 5496.44 5998.21 4493.51 9794.08 3896.94 489.29 4693.08 3296.77 2893.82 5797.68 997.40 495.59 17898.65 16
ACMMP_NAP96.93 1797.27 1596.53 2599.06 698.95 998.24 1496.06 1695.66 2390.96 3595.63 2597.71 1696.53 2197.66 1096.68 2098.30 5598.61 20
DeepC-MVS_fast93.32 196.48 2396.42 2896.56 2298.70 2798.31 4097.97 2395.76 2296.31 1492.01 2991.43 4195.42 4196.46 2397.65 1197.69 198.49 3198.12 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.97.31 997.64 996.92 1597.28 4898.56 2498.61 795.48 3096.72 894.03 1596.73 1398.29 997.15 497.61 1296.42 2698.96 699.13 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS94.53 4694.73 4394.31 4596.30 6298.53 2794.98 6289.24 8393.37 5190.24 4288.96 5689.76 7296.09 3097.48 1396.42 2698.99 298.59 21
NCCC96.75 2096.67 2596.85 1899.03 1098.44 3698.15 1796.28 1196.32 1392.39 2792.16 3697.55 2096.68 2097.32 1496.65 2298.55 2698.26 40
DELS-MVS93.71 5493.47 5494.00 4796.82 5598.39 3896.80 4091.07 5989.51 10089.94 4383.80 8689.29 7390.95 8997.32 1497.65 298.42 4198.32 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS++copyleft97.22 1197.40 1297.01 1399.08 498.55 2598.19 1596.48 796.02 2193.28 2296.26 1898.71 896.76 1897.30 1696.25 3798.30 5598.68 15
MSP-MVS97.70 698.09 597.24 799.00 1299.17 598.76 596.41 1096.91 593.88 1697.72 599.04 796.93 1197.29 1797.31 698.45 3799.23 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DROMVSNet94.19 5095.05 3993.18 6193.56 10497.65 6495.34 5986.37 11792.05 6288.71 5289.91 5093.32 4996.14 2997.29 1796.42 2698.98 398.70 14
ETV-MVS93.80 5394.57 4592.91 6893.98 9097.50 6793.62 9488.70 8891.95 6387.57 6290.21 4990.79 6394.56 4497.20 1996.35 3199.02 197.98 53
zzz-MVS96.98 1696.68 2497.33 699.09 398.71 1398.43 996.01 1796.11 1995.19 492.89 3497.32 2396.84 1397.20 1996.09 4798.44 3898.46 34
TSAR-MVS + ACMM96.19 2497.39 1394.78 3997.70 4198.41 3797.72 2895.49 2996.47 1186.66 7196.35 1697.85 1393.99 5397.19 2196.37 3097.12 13299.13 7
IS_MVSNet91.87 7193.35 5690.14 10494.09 8797.73 6193.09 10588.12 9688.71 10779.98 11784.49 8190.63 6687.49 13097.07 2296.96 1698.07 7997.88 62
APD-MVScopyleft97.12 1397.05 1897.19 899.04 898.63 2098.45 896.54 694.81 3893.50 1896.10 2097.40 2296.81 1497.05 2396.82 1998.80 1298.56 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CS-MVS-test94.63 4595.28 3793.88 5296.56 5898.67 1493.41 9989.31 8194.27 4389.64 4490.84 4591.64 5895.58 3597.04 2496.17 3998.77 1698.32 38
CANet94.85 4094.92 4094.78 3997.25 4998.52 2997.20 3491.81 5093.25 5291.06 3486.29 6894.46 4592.99 6797.02 2596.68 2098.34 4998.20 43
MCST-MVS96.83 1997.06 1796.57 2198.88 2298.47 3498.02 2296.16 1595.58 2590.96 3595.78 2497.84 1496.46 2397.00 2696.17 3998.94 798.55 27
SD-MVS97.35 897.73 896.90 1697.35 4698.66 1597.85 2696.25 1296.86 694.54 1096.75 1299.13 696.99 796.94 2796.58 2398.39 4599.20 5
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_030494.30 4994.68 4493.86 5396.33 6198.48 3297.41 3291.20 5692.75 5686.96 6886.03 7193.81 4892.64 7196.89 2896.54 2598.61 2398.24 41
DeepC-MVS92.10 395.22 3694.77 4295.75 3297.77 3998.54 2697.63 2995.96 1995.07 3388.85 5085.35 7691.85 5595.82 3296.88 2997.10 1298.44 3898.63 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xxxxxxxxxxxxxcwj95.62 3294.35 4997.10 1098.95 1698.51 3097.51 3096.48 796.17 1694.64 797.32 676.98 14096.23 2796.78 3096.15 4198.79 1498.55 27
SF-MVS97.20 1297.29 1497.10 1098.95 1698.51 3097.51 3096.48 796.17 1694.64 797.32 697.57 1996.23 2796.78 3096.15 4198.79 1498.55 27
test111190.47 9489.10 10692.07 7794.92 7998.30 4194.17 8090.30 6689.56 9983.92 9673.25 15273.66 14990.26 9896.77 3296.14 4398.87 896.04 123
MP-MVScopyleft96.56 2296.72 2396.37 2698.93 2098.48 3298.04 2195.55 2594.32 4290.95 3795.88 2397.02 2696.29 2696.77 3296.01 4998.47 3298.56 22
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test250690.93 8589.20 10492.95 6694.97 7798.30 4194.53 6790.25 6789.91 9388.39 5583.23 9064.17 19390.69 9296.75 3496.10 4598.87 895.97 125
ECVR-MVScopyleft90.77 8989.27 10292.52 7094.97 7798.30 4194.53 6790.25 6789.91 9385.80 8073.64 14574.31 14890.69 9296.75 3496.10 4598.87 895.91 128
X-MVS96.07 2796.33 2995.77 3198.94 1898.66 1597.94 2495.41 3295.12 3088.03 5693.00 3396.06 3395.85 3196.65 3696.35 3198.47 3298.48 31
HFP-MVS97.11 1497.19 1697.00 1498.97 1498.73 1298.37 1295.69 2396.60 993.28 2296.87 996.64 2997.27 296.64 3796.33 3598.44 3898.56 22
MVS_111021_HR94.84 4195.91 3193.60 5597.35 4698.46 3595.08 6191.19 5794.18 4485.97 7595.38 2792.56 5393.61 6096.61 3896.25 3798.40 4397.92 58
ACMMPR96.92 1896.96 1996.87 1798.99 1398.78 1198.38 1195.52 2696.57 1092.81 2696.06 2195.90 3797.07 596.60 3996.34 3498.46 3498.42 35
UA-Net90.81 8692.58 6488.74 11694.87 8197.44 6992.61 11088.22 9482.35 16078.93 12185.20 7895.61 3979.56 18696.52 4096.57 2498.23 6494.37 154
3Dnovator+90.56 595.06 3894.56 4695.65 3398.11 3398.15 4797.19 3591.59 5495.11 3293.23 2481.99 10394.71 4495.43 3896.48 4196.88 1898.35 4798.63 17
PGM-MVS96.16 2596.33 2995.95 2899.04 898.63 2098.32 1392.76 4493.42 5090.49 4096.30 1795.31 4296.71 1996.46 4296.02 4898.38 4698.19 44
PHI-MVS95.86 2996.93 2294.61 4397.60 4398.65 1996.49 4293.13 4294.07 4587.91 6097.12 897.17 2593.90 5696.46 4296.93 1798.64 2198.10 51
CP-MVS96.68 2196.59 2796.77 1998.85 2398.58 2398.18 1695.51 2895.34 2792.94 2595.21 2996.25 3296.79 1696.44 4495.77 5198.35 4798.56 22
PVSNet_BlendedMVS92.80 5992.44 6793.23 5896.02 6497.83 5793.74 9190.58 6291.86 6490.69 3885.87 7482.04 10890.01 9996.39 4595.26 5998.34 4997.81 63
PVSNet_Blended92.80 5992.44 6793.23 5896.02 6497.83 5793.74 9190.58 6291.86 6490.69 3885.87 7482.04 10890.01 9996.39 4595.26 5998.34 4997.81 63
Vis-MVSNet (Re-imp)90.54 9392.76 6287.94 12593.73 10196.94 8592.17 11987.91 9988.77 10676.12 13183.68 8790.80 6279.49 18796.34 4796.35 3198.21 6696.46 106
PVSNet_Blended_VisFu91.92 7092.39 6991.36 9095.45 7497.85 5692.25 11689.54 7888.53 11087.47 6379.82 11390.53 6785.47 15196.31 4895.16 6297.99 8798.56 22
train_agg96.15 2696.64 2695.58 3598.44 2998.03 5098.14 1995.40 3393.90 4787.72 6196.26 1898.10 1095.75 3396.25 4995.45 5698.01 8598.47 32
3Dnovator90.28 794.70 4494.34 5095.11 3798.06 3498.21 4496.89 3991.03 6094.72 3991.45 3182.87 9493.10 5194.61 4396.24 5097.08 1398.63 2298.16 45
gg-mvs-nofinetune81.83 19083.58 16379.80 19891.57 13196.54 9293.79 8968.80 21462.71 21843.01 22355.28 20985.06 8983.65 16596.13 5194.86 6697.98 9094.46 152
CDPH-MVS94.80 4395.50 3493.98 4998.34 3098.06 4997.41 3293.23 4192.81 5582.98 10092.51 3594.82 4393.53 6196.08 5296.30 3698.42 4197.94 56
EIA-MVS92.72 6192.96 6092.44 7293.86 9797.76 5993.13 10488.65 9089.78 9686.68 7086.69 6587.57 7493.74 5896.07 5395.32 5798.58 2497.53 73
TSAR-MVS + GP.95.86 2996.95 2194.60 4494.07 8898.11 4896.30 4591.76 5295.67 2291.07 3396.82 1197.69 1795.71 3495.96 5495.75 5298.68 1998.63 17
MVS_111021_LR94.84 4195.57 3394.00 4797.11 5197.72 6394.88 6591.16 5895.24 2988.74 5196.03 2291.52 6094.33 4995.96 5495.01 6397.79 9797.49 75
Vis-MVSNetpermissive89.36 10991.49 8286.88 13692.10 12597.60 6692.16 12085.89 12084.21 14675.20 13382.58 9887.13 7677.40 19195.90 5695.63 5398.51 2797.36 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DPM-MVS95.07 3794.84 4195.34 3697.44 4597.49 6897.76 2795.52 2694.88 3688.92 4987.25 6196.44 3194.41 4595.78 5796.11 4497.99 8795.95 126
MVSTER91.73 7491.61 8091.86 7993.18 10794.56 11494.37 7187.90 10090.16 8888.69 5389.23 5381.28 11388.92 11995.75 5893.95 8198.12 7496.37 110
QAPM94.13 5194.33 5193.90 5097.82 3898.37 3996.47 4390.89 6192.73 5885.63 8385.35 7693.87 4694.17 5195.71 5995.90 5098.40 4398.42 35
MSLP-MVS++96.05 2895.63 3296.55 2398.33 3198.17 4696.94 3894.61 3694.70 4094.37 1289.20 5495.96 3696.81 1495.57 6097.33 598.24 6398.47 32
ACMMPcopyleft95.54 3395.49 3595.61 3498.27 3298.53 2797.16 3694.86 3494.88 3689.34 4595.36 2891.74 5695.50 3795.51 6194.16 7598.50 2998.22 42
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet_DTU90.74 9192.93 6188.19 12194.36 8396.61 8994.34 7384.66 13390.66 7468.75 17090.41 4886.89 7889.78 10195.46 6294.87 6597.25 12495.62 133
FA-MVS(training)90.79 8891.33 8390.17 10293.76 10097.22 7592.74 10977.79 19090.60 7888.03 5678.80 11787.41 7591.00 8895.40 6393.43 9497.70 10696.46 106
casdiffmvs91.72 7591.16 8692.38 7493.16 10897.15 7793.95 8389.49 7991.58 6986.03 7480.75 11080.95 11493.16 6595.25 6495.22 6198.50 2997.23 84
EPNet93.92 5294.40 4793.36 5797.89 3696.55 9196.08 4892.14 4791.65 6789.16 4794.07 3190.17 7187.78 12695.24 6594.97 6497.09 13498.15 46
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gm-plane-assit77.65 20278.50 20076.66 20387.96 17085.43 21364.70 21974.50 19864.15 21751.26 21861.32 20158.17 21484.11 16395.16 6693.83 8297.45 11991.41 179
baseline190.81 8690.29 9291.42 8693.67 10295.86 10693.94 8589.69 7689.29 10282.85 10182.91 9380.30 11789.60 10295.05 6794.79 6798.80 1293.82 162
OpenMVScopyleft88.18 1192.51 6391.61 8093.55 5697.74 4098.02 5195.66 5590.46 6489.14 10386.50 7275.80 13690.38 7092.69 7094.99 6895.30 5898.27 5997.63 67
MAR-MVS92.71 6292.63 6392.79 6997.70 4197.15 7793.75 9087.98 9890.71 7385.76 8186.28 6986.38 8094.35 4894.95 6995.49 5597.22 12597.44 76
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 280x42090.77 8992.14 7289.17 11293.86 9792.81 16493.16 10380.22 18090.21 8584.67 9589.89 5191.38 6190.57 9694.94 7092.11 12592.52 20093.65 164
tfpn200view989.55 10687.86 12191.53 8493.90 9597.26 7294.31 7589.74 7385.87 13081.15 10876.46 13170.38 16091.76 8094.92 7193.51 8898.28 5896.61 101
thres600view789.28 11287.47 13191.39 8794.12 8697.25 7393.94 8589.74 7385.62 13580.63 11475.24 14069.33 16591.66 8294.92 7193.23 9998.27 5996.72 98
thres20089.49 10787.72 12391.55 8393.95 9297.25 7394.34 7389.74 7385.66 13381.18 10776.12 13570.19 16391.80 7894.92 7193.51 8898.27 5996.40 109
OMC-MVS94.49 4794.36 4894.64 4297.17 5097.73 6195.49 5792.25 4696.18 1590.34 4188.51 5792.88 5294.90 4294.92 7194.17 7497.69 10896.15 119
tttt051791.01 8491.71 7890.19 10192.98 11097.07 8191.96 12587.63 10990.61 7781.42 10586.76 6482.26 10789.23 11194.86 7593.03 10997.90 9297.36 79
EPP-MVSNet92.13 6793.06 5891.05 9293.66 10397.30 7192.18 11787.90 10090.24 8483.63 9786.14 7090.52 6990.76 9194.82 7694.38 7198.18 6997.98 53
thisisatest053091.04 8391.74 7790.21 9992.93 11497.00 8292.06 12287.63 10990.74 7281.51 10486.81 6382.48 10389.23 11194.81 7793.03 10997.90 9297.33 81
thres40089.40 10887.58 12891.53 8494.06 8997.21 7694.19 7989.83 7285.69 13281.08 11075.50 13869.76 16491.80 7894.79 7893.51 8898.20 6796.60 102
FC-MVSNet-train90.55 9290.19 9490.97 9393.78 9995.16 11092.11 12188.85 8587.64 11583.38 9984.36 8378.41 12989.53 10394.69 7993.15 10498.15 7097.92 58
UGNet91.52 7793.41 5589.32 11094.13 8597.15 7791.83 12689.01 8490.62 7685.86 7986.83 6291.73 5777.40 19194.68 8094.43 7097.71 10498.40 37
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
OPM-MVS91.08 8189.34 10193.11 6496.18 6396.13 10296.39 4492.39 4582.97 15781.74 10382.55 10080.20 11893.97 5594.62 8193.23 9998.00 8695.73 131
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+89.79 10389.83 9989.74 10692.98 11096.45 9693.48 9884.24 13887.62 11676.45 12981.76 10477.56 13793.48 6294.61 8293.59 8797.82 9697.22 86
CSCG95.68 3195.46 3695.93 2998.71 2699.07 797.13 3793.55 3995.48 2693.35 2190.61 4793.82 4795.16 3994.60 8395.57 5497.70 10699.08 10
CPTT-MVS95.54 3395.07 3896.10 2797.88 3797.98 5397.92 2594.86 3494.56 4192.16 2891.01 4395.71 3896.97 1094.56 8493.50 9196.81 15598.14 47
PLCcopyleft90.69 494.32 4892.99 5995.87 3097.91 3596.49 9395.95 5294.12 3794.94 3494.09 1485.90 7290.77 6495.58 3594.52 8593.32 9897.55 11595.00 147
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
AdaColmapbinary95.02 3993.71 5296.54 2498.51 2897.76 5996.69 4195.94 2193.72 4893.50 1889.01 5590.53 6796.49 2294.51 8693.76 8498.07 7996.69 99
TSAR-MVS + COLMAP92.39 6592.31 7092.47 7195.35 7696.46 9596.13 4792.04 4995.33 2880.11 11694.95 3077.35 13894.05 5294.49 8793.08 10597.15 12994.53 151
LS3D91.97 6990.98 8893.12 6397.03 5397.09 8095.33 6095.59 2492.47 5979.26 12081.60 10682.77 10194.39 4794.28 8894.23 7397.14 13194.45 153
LGP-MVS_train91.83 7292.04 7491.58 8295.46 7296.18 10195.97 5189.85 7190.45 8077.76 12391.92 3980.07 11992.34 7594.27 8993.47 9298.11 7697.90 61
FMVSNet289.61 10589.14 10590.16 10388.66 16193.65 13794.25 7685.44 12788.57 10984.96 9473.53 14783.82 9389.38 10694.23 9094.68 6998.31 5295.47 137
Fast-Effi-MVS+88.56 11687.99 11989.22 11191.56 13295.21 10992.29 11582.69 15686.82 12177.73 12476.24 13473.39 15093.36 6494.22 9193.64 8597.65 11196.43 108
DI_MVS_plusplus_trai91.05 8290.15 9592.11 7692.67 12096.61 8996.03 4988.44 9290.25 8385.92 7773.73 14484.89 9091.92 7794.17 9294.07 7997.68 10997.31 82
thres100view90089.36 10987.61 12691.39 8793.90 9596.86 8794.35 7289.66 7785.87 13081.15 10876.46 13170.38 16091.17 8594.09 9393.43 9498.13 7396.16 118
ACMM88.76 1091.70 7690.43 9193.19 6095.56 6995.14 11193.35 10191.48 5592.26 6187.12 6684.02 8479.34 12193.99 5394.07 9492.68 11397.62 11495.50 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_Test91.81 7392.19 7191.37 8993.24 10696.95 8494.43 6986.25 11891.45 7083.45 9886.31 6785.15 8892.93 6893.99 9594.71 6897.92 9196.77 97
GBi-Net90.21 9790.11 9690.32 9788.66 16193.65 13794.25 7685.78 12390.03 8985.56 8577.38 12286.13 8189.38 10693.97 9694.16 7598.31 5295.47 137
test190.21 9790.11 9690.32 9788.66 16193.65 13794.25 7685.78 12390.03 8985.56 8577.38 12286.13 8189.38 10693.97 9694.16 7598.31 5295.47 137
FMVSNet187.33 12586.00 14388.89 11387.13 18792.83 16393.08 10684.46 13781.35 16582.20 10266.33 18077.96 13288.96 11693.97 9694.16 7597.54 11695.38 142
canonicalmvs93.08 5793.09 5793.07 6594.24 8497.86 5595.45 5887.86 10494.00 4687.47 6388.32 5882.37 10695.13 4093.96 9996.41 2998.27 5998.73 13
TAPA-MVS90.35 693.69 5593.52 5393.90 5096.89 5497.62 6596.15 4691.67 5394.94 3485.97 7587.72 6091.96 5494.40 4693.76 10093.06 10798.30 5595.58 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS92.50 6491.96 7593.13 6293.93 9496.24 9995.69 5488.77 8792.92 5389.01 4888.19 5981.74 11193.13 6693.63 10193.08 10598.23 6497.91 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CNLPA93.69 5592.50 6595.06 3897.11 5197.36 7093.88 8793.30 4095.64 2493.44 2080.32 11190.73 6594.99 4193.58 10293.33 9697.67 11096.57 104
GA-MVS85.08 15185.65 14884.42 16389.77 15094.25 12389.26 15984.62 13481.19 16662.25 20075.72 13768.44 16984.14 16293.57 10391.68 13796.49 15894.71 150
PatchMatch-RL90.30 9688.93 10891.89 7895.41 7595.68 10790.94 12988.67 8989.80 9586.95 6985.90 7272.51 15192.46 7293.56 10492.18 12296.93 14792.89 172
baseline288.97 11389.50 10088.36 11891.14 13795.30 10890.13 14385.17 13087.24 11780.80 11284.46 8278.44 12885.60 14893.54 10591.87 13197.31 12295.66 132
pm-mvs184.55 15783.46 16485.82 14488.16 16893.39 14389.05 16485.36 12974.03 20372.43 14665.08 18871.11 15782.30 17393.48 10691.70 13597.64 11295.43 140
HQP-MVS92.39 6592.49 6692.29 7595.65 6895.94 10595.64 5692.12 4892.46 6079.65 11891.97 3882.68 10292.92 6993.47 10792.77 11297.74 10298.12 49
CHOSEN 1792x268888.57 11587.82 12289.44 10995.46 7296.89 8693.74 9185.87 12189.63 9777.42 12661.38 20083.31 9688.80 12193.44 10893.16 10395.37 18396.95 93
diffmvs91.37 7891.09 8791.70 8192.71 11996.47 9494.03 8188.78 8692.74 5785.43 9083.63 8880.37 11691.76 8093.39 10993.78 8397.50 11797.23 84
CDS-MVSNet88.34 11788.71 10987.90 12690.70 14594.54 11592.38 11286.02 11980.37 16979.42 11979.30 11483.43 9582.04 17493.39 10994.01 8096.86 15395.93 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GeoE89.29 11188.68 11089.99 10592.75 11896.03 10493.07 10783.79 14586.98 12081.34 10674.72 14178.92 12391.22 8493.31 11193.21 10197.78 9897.60 72
FMVSNet390.19 9990.06 9890.34 9688.69 16093.85 12994.58 6685.78 12390.03 8985.56 8577.38 12286.13 8189.22 11393.29 11294.36 7298.20 6795.40 141
ACMP89.13 992.03 6891.70 7992.41 7394.92 7996.44 9793.95 8389.96 7091.81 6685.48 8890.97 4479.12 12292.42 7393.28 11392.55 11697.76 10097.74 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
anonymousdsp84.51 15885.85 14782.95 18386.30 19893.51 14085.77 19280.38 17978.25 18463.42 19873.51 14872.20 15384.64 15793.21 11492.16 12497.19 12798.14 47
DCV-MVSNet91.24 7991.26 8491.22 9192.84 11593.44 14193.82 8886.75 11491.33 7185.61 8484.00 8585.46 8791.27 8392.91 11593.62 8697.02 13898.05 52
EPNet_dtu88.32 11890.61 9085.64 14896.79 5692.27 17692.03 12390.31 6589.05 10465.44 19189.43 5285.90 8574.22 20092.76 11692.09 12695.02 18992.76 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tfpnnormal83.80 17081.26 19286.77 13889.60 15293.26 15089.72 15487.60 11172.78 20470.44 15860.53 20361.15 20585.55 14992.72 11791.44 13997.71 10496.92 94
Anonymous20240521188.00 11893.16 10896.38 9893.58 9589.34 8087.92 11465.04 18983.03 9892.07 7692.67 11893.33 9696.96 14297.63 67
GG-mvs-BLEND62.84 21190.21 9330.91 2200.57 22894.45 11886.99 1820.34 22688.71 1070.98 22881.55 10891.58 590.86 22592.66 11991.43 14095.73 17291.11 183
Effi-MVS+-dtu87.51 12488.13 11786.77 13891.10 13894.90 11390.91 13082.67 15783.47 15371.55 14981.11 10977.04 13989.41 10592.65 12091.68 13795.00 19096.09 121
MSDG90.42 9588.25 11592.94 6796.67 5794.41 12093.96 8292.91 4389.59 9886.26 7376.74 12980.92 11590.43 9792.60 12192.08 12797.44 12091.41 179
thisisatest051585.70 14287.00 13284.19 16688.16 16893.67 13684.20 19784.14 14183.39 15572.91 14276.79 12874.75 14778.82 18992.57 12291.26 14296.94 14496.56 105
FC-MVSNet-test86.15 13689.10 10682.71 18689.83 14993.18 15287.88 17584.69 13286.54 12562.18 20182.39 10183.31 9674.18 20192.52 12391.86 13297.50 11793.88 161
test-mter86.09 13988.38 11283.43 17687.89 17192.61 16886.89 18377.11 19384.30 14468.62 17282.57 9982.45 10484.34 15892.40 12490.11 16795.74 17194.21 157
PMMVS89.88 10191.19 8588.35 11989.73 15191.97 18490.62 13281.92 16790.57 7980.58 11592.16 3686.85 7991.17 8592.31 12591.35 14196.11 16693.11 171
test-LLR86.88 12888.28 11385.24 15291.22 13592.07 18087.41 17883.62 14784.58 13969.33 16683.00 9182.79 9984.24 15992.26 12689.81 17395.64 17693.44 165
TESTMET0.1,186.11 13888.28 11383.59 17387.80 17292.07 18087.41 17877.12 19284.58 13969.33 16683.00 9182.79 9984.24 15992.26 12689.81 17395.64 17693.44 165
Anonymous2023121189.82 10288.18 11691.74 8092.52 12196.09 10393.38 10089.30 8288.95 10585.90 7864.55 19384.39 9192.41 7492.24 12893.06 10796.93 14797.95 55
MS-PatchMatch87.63 12187.61 12687.65 12993.95 9294.09 12592.60 11181.52 17286.64 12376.41 13073.46 14985.94 8485.01 15592.23 12990.00 17096.43 16290.93 185
MIMVSNet82.97 18184.00 16181.77 19482.23 20992.25 17787.40 18072.73 20881.48 16469.55 16468.79 16972.42 15281.82 17792.23 12992.25 12096.89 15088.61 199
HyFIR lowres test87.87 12086.42 13789.57 10795.56 6996.99 8392.37 11384.15 14086.64 12377.17 12757.65 20683.97 9291.08 8792.09 13192.44 11797.09 13495.16 144
baseline91.19 8091.89 7690.38 9592.76 11695.04 11293.55 9684.54 13692.92 5385.71 8286.68 6686.96 7789.28 10992.00 13292.62 11596.46 16096.99 91
PCF-MVS90.19 892.98 5892.07 7394.04 4696.39 6097.87 5496.03 4995.47 3187.16 11885.09 9384.81 8093.21 5093.46 6391.98 13391.98 13097.78 9897.51 74
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
USDC86.73 13185.96 14487.63 13091.64 12993.97 12792.76 10884.58 13588.19 11170.67 15780.10 11267.86 17289.43 10491.81 13489.77 17596.69 15790.05 192
NR-MVSNet85.46 14784.54 15786.52 14188.33 16693.78 13190.45 13487.87 10284.40 14171.61 14870.59 16162.09 20082.79 17091.75 13591.75 13498.10 7797.44 76
Fast-Effi-MVS+-dtu86.25 13387.70 12484.56 16190.37 14893.70 13490.54 13378.14 18783.50 15265.37 19281.59 10775.83 14686.09 14791.70 13691.70 13596.88 15195.84 129
TransMVSNet (Re)82.67 18480.93 19584.69 15988.71 15991.50 19187.90 17487.15 11271.54 20968.24 17463.69 19564.67 19278.51 19091.65 13790.73 15197.64 11292.73 175
EG-PatchMatch MVS81.70 19281.31 19182.15 19188.75 15893.81 13087.14 18178.89 18571.57 20764.12 19761.20 20268.46 16876.73 19591.48 13890.77 14897.28 12391.90 176
CR-MVSNet85.48 14686.29 13884.53 16291.08 14092.10 17889.18 16073.30 20584.75 13771.08 15473.12 15477.91 13386.27 14391.48 13890.75 14996.27 16493.94 159
PatchT83.86 16885.51 15081.94 19288.41 16491.56 19078.79 20971.57 20984.08 14971.08 15470.62 16076.13 14586.27 14391.48 13890.75 14995.52 18193.94 159
ET-MVSNet_ETH3D89.93 10090.84 8988.87 11479.60 21396.19 10094.43 6986.56 11590.63 7580.75 11390.71 4677.78 13493.73 5991.36 14193.45 9398.15 7095.77 130
ACMH85.51 1387.31 12686.59 13588.14 12293.96 9194.51 11689.00 16587.99 9781.58 16370.15 16078.41 12071.78 15690.60 9591.30 14291.99 12997.17 12896.58 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-SCA-FT85.44 14886.71 13383.97 17090.59 14690.84 19789.73 15378.34 18684.07 15066.40 18677.27 12778.66 12583.06 16791.20 14390.10 16895.72 17394.78 148
FMVSNet584.47 16184.72 15684.18 16783.30 20888.43 20588.09 17379.42 18384.25 14574.14 13773.15 15378.74 12483.65 16591.19 14491.19 14396.46 16086.07 206
UniMVSNet (Re)86.22 13585.46 15187.11 13388.34 16594.42 11989.65 15587.10 11384.39 14374.61 13470.41 16468.10 17085.10 15491.17 14591.79 13397.84 9597.94 56
test0.0.03 185.58 14487.69 12583.11 17991.22 13592.54 17185.60 19483.62 14785.66 13367.84 17782.79 9679.70 12073.51 20491.15 14690.79 14696.88 15191.23 182
v7n82.25 18881.54 18883.07 18185.55 20292.58 16986.68 18681.10 17776.54 19265.97 18862.91 19660.56 20782.36 17291.07 14790.35 15896.77 15696.80 96
IterMVS85.25 15086.49 13683.80 17190.42 14790.77 20090.02 14578.04 18884.10 14866.27 18777.28 12678.41 12983.01 16890.88 14889.72 17795.04 18894.24 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v1084.18 16383.17 17385.37 14987.34 18192.68 16690.32 13681.33 17379.93 17669.23 16866.33 18065.74 18387.03 13490.84 14990.38 15796.97 14096.29 115
pmmvs583.37 17582.68 17684.18 16787.13 18793.18 15286.74 18482.08 16676.48 19367.28 18171.26 15862.70 19784.71 15690.77 15090.12 16697.15 12994.24 155
v114484.03 16782.88 17585.37 14987.17 18593.15 15590.18 14083.31 15278.83 18067.85 17665.99 18264.99 18886.79 13790.75 15190.33 15996.90 14996.15 119
v119283.56 17382.35 17884.98 15486.84 19292.84 16190.01 14682.70 15578.54 18166.48 18464.88 19062.91 19586.91 13690.72 15290.25 16196.94 14496.32 113
LTVRE_ROB81.71 1682.44 18781.84 18583.13 17889.01 15692.99 15788.90 16682.32 16366.26 21554.02 21574.68 14259.62 21288.87 12090.71 15392.02 12895.68 17596.62 100
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-LS88.60 11488.45 11188.78 11592.02 12692.44 17492.00 12483.57 14986.52 12678.90 12278.61 11981.34 11289.12 11490.68 15493.18 10297.10 13396.35 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_part187.53 12384.97 15290.52 9492.11 12493.31 14693.32 10285.79 12279.56 17787.38 6562.89 19778.60 12689.25 11090.65 15592.17 12395.24 18597.62 69
TAMVS84.94 15484.95 15384.93 15688.82 15793.18 15288.44 17181.28 17477.16 18973.76 13975.43 13976.57 14382.04 17490.59 15690.79 14695.22 18690.94 184
TinyColmap84.04 16682.01 18386.42 14290.87 14191.84 18588.89 16784.07 14282.11 16269.89 16271.08 15960.81 20689.04 11590.52 15789.19 18195.76 17088.50 200
pmmvs680.90 19378.77 19983.38 17785.84 19991.61 18986.01 19082.54 15964.17 21670.43 15954.14 21367.06 17680.73 18390.50 15889.17 18294.74 19194.75 149
v192192083.30 17682.09 18284.70 15886.59 19692.67 16789.82 15282.23 16478.32 18265.76 18964.64 19262.35 19886.78 13890.34 15990.02 16997.02 13896.31 114
UniMVSNet_NR-MVSNet86.80 12985.86 14687.89 12788.17 16794.07 12690.15 14188.51 9184.20 14773.45 14072.38 15670.30 16288.95 11790.25 16092.21 12198.12 7497.62 69
DU-MVS86.12 13784.81 15587.66 12887.77 17493.78 13190.15 14187.87 10284.40 14173.45 14070.59 16164.82 19088.95 11790.14 16192.33 11897.76 10097.62 69
Baseline_NR-MVSNet85.28 14983.42 16787.46 13287.77 17490.80 19989.90 15187.69 10683.93 15174.16 13664.72 19166.43 18087.48 13190.14 16190.83 14597.73 10397.11 89
v124082.88 18281.66 18684.29 16486.46 19792.52 17389.06 16381.82 16977.16 18965.09 19364.17 19461.50 20386.36 14090.12 16390.13 16396.95 14396.04 123
testgi81.94 18984.09 16079.43 19989.53 15490.83 19882.49 20181.75 17080.59 16759.46 20782.82 9565.75 18267.97 20690.10 16489.52 17895.39 18289.03 195
RPMNet84.82 15585.90 14583.56 17491.10 13892.10 17888.73 16971.11 21084.75 13768.79 16973.56 14677.62 13685.33 15290.08 16589.43 17996.32 16393.77 163
COLMAP_ROBcopyleft84.39 1587.61 12286.03 14189.46 10895.54 7194.48 11791.77 12790.14 6987.16 11875.50 13273.41 15076.86 14287.33 13290.05 16689.76 17696.48 15990.46 188
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+85.75 1287.19 12786.02 14288.56 11793.42 10594.41 12089.91 14987.66 10883.45 15472.25 14776.42 13371.99 15590.78 9089.86 16790.94 14497.32 12195.11 146
CVMVSNet83.83 16985.53 14981.85 19389.60 15290.92 19587.81 17683.21 15380.11 17260.16 20576.47 13078.57 12776.79 19389.76 16890.13 16393.51 19292.75 174
TranMVSNet+NR-MVSNet85.57 14584.41 15886.92 13587.67 17793.34 14490.31 13788.43 9383.07 15670.11 16169.99 16765.28 18586.96 13589.73 16992.27 11998.06 8197.17 88
v14419283.48 17482.23 17984.94 15586.65 19392.84 16189.63 15682.48 16077.87 18567.36 18065.33 18763.50 19486.51 13989.72 17089.99 17197.03 13796.35 111
TDRefinement84.97 15383.39 16886.81 13792.97 11294.12 12492.18 11787.77 10582.78 15871.31 15268.43 17068.07 17181.10 18289.70 17189.03 18395.55 18091.62 177
IB-MVS85.10 1487.98 11987.97 12087.99 12494.55 8296.86 8784.52 19588.21 9586.48 12888.54 5474.41 14377.74 13574.10 20289.65 17292.85 11198.06 8197.80 65
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
V4284.48 16083.36 17085.79 14687.14 18693.28 14890.03 14483.98 14380.30 17071.20 15366.90 17767.17 17485.55 14989.35 17390.27 16096.82 15496.27 116
WR-MVS_H82.86 18382.66 17783.10 18087.44 18093.33 14585.71 19383.20 15477.36 18868.20 17566.37 17965.23 18676.05 19789.35 17390.13 16397.99 8796.89 95
pmmvs486.00 14084.28 15988.00 12387.80 17292.01 18389.94 14884.91 13186.79 12280.98 11173.41 15066.34 18188.12 12489.31 17588.90 18496.24 16593.20 170
v884.45 16283.30 17185.80 14587.53 17992.95 15890.31 13782.46 16180.46 16871.43 15066.99 17567.16 17586.14 14589.26 17690.22 16296.94 14496.06 122
CP-MVSNet83.11 18082.15 18084.23 16587.20 18492.70 16586.42 18783.53 15077.83 18667.67 17866.89 17860.53 20882.47 17189.23 17790.65 15398.08 7897.20 87
v2v48284.51 15883.05 17486.20 14387.25 18393.28 14890.22 13985.40 12879.94 17569.78 16367.74 17265.15 18787.57 12889.12 17890.55 15596.97 14095.60 134
PS-CasMVS82.53 18581.54 18883.68 17287.08 18992.54 17186.20 18983.46 15176.46 19465.73 19065.71 18559.41 21381.61 17989.06 17990.55 15598.03 8397.07 90
WR-MVS83.14 17883.38 16982.87 18487.55 17893.29 14786.36 18884.21 13980.05 17366.41 18566.91 17666.92 17775.66 19888.96 18090.56 15497.05 13696.96 92
Anonymous2023120678.09 20178.11 20278.07 20285.19 20489.17 20380.99 20481.24 17675.46 20058.25 20954.78 21259.90 21166.73 20988.94 18188.26 18596.01 16790.25 190
UniMVSNet_ETH3D84.57 15681.40 19088.28 12089.34 15594.38 12290.33 13586.50 11674.74 20277.52 12559.90 20462.04 20188.78 12288.82 18292.65 11497.22 12597.24 83
test20.0376.41 20478.49 20173.98 20685.64 20187.50 20875.89 21180.71 17870.84 21051.07 21968.06 17161.40 20454.99 21588.28 18387.20 18895.58 17986.15 205
SixPastTwentyTwo83.12 17983.44 16682.74 18587.71 17693.11 15682.30 20282.33 16279.24 17864.33 19578.77 11862.75 19684.11 16388.11 18487.89 18695.70 17494.21 157
v14883.61 17282.10 18185.37 14987.34 18192.94 15987.48 17785.72 12678.92 17973.87 13865.71 18564.69 19181.78 17887.82 18589.35 18096.01 16795.26 143
PEN-MVS82.49 18681.58 18783.56 17486.93 19092.05 18286.71 18583.84 14476.94 19164.68 19467.24 17360.11 20981.17 18187.78 18690.70 15298.02 8496.21 117
pmmvs-eth3d79.78 19877.58 20382.34 19081.57 21187.46 20982.92 19981.28 17475.33 20171.34 15161.88 19852.41 21781.59 18087.56 18786.90 18995.36 18491.48 178
PM-MVS80.29 19579.30 19881.45 19581.91 21088.23 20682.61 20079.01 18479.99 17467.15 18269.07 16851.39 21882.92 16987.55 18885.59 19395.08 18793.28 168
RPSCF89.68 10489.24 10390.20 10092.97 11292.93 16092.30 11487.69 10690.44 8185.12 9291.68 4085.84 8690.69 9287.34 18986.07 19192.46 20190.37 189
DTE-MVSNet81.76 19181.04 19382.60 18886.63 19491.48 19385.97 19183.70 14676.45 19562.44 19967.16 17459.98 21078.98 18887.15 19089.93 17297.88 9495.12 145
MIMVSNet173.19 20673.70 20772.60 20965.42 22186.69 21275.56 21279.65 18167.87 21455.30 21145.24 21756.41 21563.79 21186.98 19187.66 18795.85 16985.04 208
ambc67.96 21273.69 21679.79 21773.82 21471.61 20659.80 20646.00 21620.79 22666.15 21086.92 19280.11 21189.13 21590.50 187
MDTV_nov1_ep1386.64 13287.50 13085.65 14790.73 14393.69 13589.96 14778.03 18989.48 10176.85 12884.92 7982.42 10586.14 14586.85 19386.15 19092.17 20288.97 197
MVS-HIRNet78.16 20077.57 20478.83 20085.83 20087.76 20776.67 21070.22 21275.82 19967.39 17955.61 20870.52 15981.96 17686.67 19485.06 19890.93 20981.58 212
EU-MVSNet78.43 19980.25 19676.30 20483.81 20787.27 21180.99 20479.52 18276.01 19654.12 21470.44 16364.87 18967.40 20886.23 19585.54 19591.95 20591.41 179
SCA86.25 13387.52 12984.77 15791.59 13093.90 12889.11 16273.25 20790.38 8272.84 14383.26 8983.79 9488.49 12386.07 19685.56 19493.33 19389.67 194
tpm83.16 17783.64 16282.60 18890.75 14291.05 19488.49 17073.99 20082.36 15967.08 18378.10 12168.79 16684.17 16185.95 19785.96 19291.09 20793.23 169
EPMVS85.77 14186.24 13985.23 15392.76 11693.78 13189.91 14973.60 20390.19 8674.22 13582.18 10278.06 13187.55 12985.61 19885.38 19693.32 19488.48 201
PatchmatchNetpermissive85.70 14286.65 13484.60 16091.79 12793.40 14289.27 15873.62 20290.19 8672.63 14582.74 9781.93 11087.64 12784.99 19984.29 20192.64 19989.00 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep13_2view80.43 19480.94 19479.84 19784.82 20590.87 19684.23 19673.80 20180.28 17164.33 19570.05 16668.77 16779.67 18484.83 20083.50 20392.17 20288.25 203
CostFormer86.78 13086.05 14087.62 13192.15 12393.20 15191.55 12875.83 19588.11 11385.29 9181.76 10476.22 14487.80 12584.45 20185.21 19793.12 19593.42 167
dps85.00 15283.21 17287.08 13490.73 14392.55 17089.34 15775.29 19784.94 13687.01 6779.27 11567.69 17387.27 13384.22 20283.56 20292.83 19890.25 190
ADS-MVSNet84.08 16584.95 15383.05 18291.53 13491.75 18788.16 17270.70 21189.96 9269.51 16578.83 11676.97 14186.29 14284.08 20384.60 19992.13 20488.48 201
CMPMVSbinary61.19 1779.86 19777.46 20582.66 18791.54 13391.82 18683.25 19881.57 17170.51 21168.64 17159.89 20566.77 17879.63 18584.00 20484.30 20091.34 20684.89 209
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs371.13 20971.06 21171.21 21073.54 21780.19 21671.69 21764.86 21662.04 21952.10 21654.92 21148.00 22275.03 19983.75 20583.24 20490.04 21385.27 207
tpmrst83.72 17183.45 16584.03 16992.21 12291.66 18888.74 16873.58 20488.14 11272.67 14477.37 12572.11 15486.34 14182.94 20682.05 20590.63 21089.86 193
pmnet_mix0280.14 19680.21 19780.06 19686.61 19589.66 20280.40 20682.20 16582.29 16161.35 20271.52 15766.67 17976.75 19482.55 20780.18 21093.05 19688.62 198
N_pmnet77.55 20376.68 20678.56 20185.43 20387.30 21078.84 20881.88 16878.30 18360.61 20361.46 19962.15 19974.03 20382.04 20880.69 20990.59 21184.81 210
new_pmnet72.29 20873.25 20871.16 21175.35 21581.38 21573.72 21569.27 21375.97 19749.84 22056.27 20756.12 21669.08 20581.73 20980.86 20889.72 21480.44 214
tpm cat184.13 16481.99 18486.63 14091.74 12891.50 19190.68 13175.69 19686.12 12985.44 8972.39 15570.72 15885.16 15380.89 21081.56 20691.07 20890.71 186
test_method58.10 21464.61 21450.51 21528.26 22641.71 22561.28 22032.07 22275.92 19852.04 21747.94 21561.83 20251.80 21679.83 21163.95 21977.60 22081.05 213
new-patchmatchnet72.32 20771.09 21073.74 20781.17 21284.86 21472.21 21677.48 19168.32 21354.89 21355.10 21049.31 22163.68 21279.30 21276.46 21393.03 19784.32 211
Gipumacopyleft58.52 21356.17 21661.27 21367.14 22058.06 22152.16 22368.40 21569.00 21245.02 22222.79 22020.57 22755.11 21476.27 21379.33 21279.80 21967.16 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt50.24 21668.55 21946.86 22448.90 22418.28 22386.51 12768.32 17370.19 16565.33 18426.69 22274.37 21466.80 21670.72 222
FPMVS69.87 21067.10 21373.10 20884.09 20678.35 21879.40 20776.41 19471.92 20557.71 21054.06 21450.04 21956.72 21371.19 21568.70 21584.25 21675.43 216
MDA-MVSNet-bldmvs73.81 20572.56 20975.28 20572.52 21888.87 20474.95 21382.67 15771.57 20755.02 21265.96 18342.84 22476.11 19670.61 21681.47 20790.38 21286.59 204
PMVScopyleft56.77 1861.27 21258.64 21564.35 21275.66 21454.60 22253.62 22274.23 19953.69 22058.37 20844.27 21849.38 22044.16 21969.51 21765.35 21780.07 21873.66 217
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS253.68 21555.72 21751.30 21458.84 22267.02 22054.23 22160.97 21947.50 22119.42 22534.81 21931.97 22530.88 22165.84 21869.99 21483.47 21772.92 218
DeepMVS_CXcopyleft71.82 21968.37 21848.05 22177.38 18746.88 22165.77 18447.03 22367.48 20764.27 21976.89 22176.72 215
MVEpermissive39.81 1939.52 21741.58 21837.11 21933.93 22549.06 22326.45 22754.22 22029.46 22424.15 22420.77 22210.60 23034.42 22051.12 22065.27 21849.49 22564.81 220
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN40.00 21635.74 21944.98 21757.69 22439.15 22728.05 22562.70 21735.52 22317.78 22620.90 22114.36 22944.47 21835.89 22147.86 22059.15 22356.47 221
EMVS39.04 21834.32 22044.54 21858.25 22339.35 22627.61 22662.55 21835.99 22216.40 22720.04 22314.77 22844.80 21733.12 22244.10 22157.61 22452.89 222
testmvs4.35 2196.54 2211.79 2210.60 2271.82 2283.06 2290.95 2247.22 2250.88 22912.38 2241.25 2313.87 2246.09 2235.58 2221.40 22611.42 224
test1233.48 2205.31 2221.34 2220.20 2291.52 2292.17 2300.58 2256.13 2260.31 2309.85 2250.31 2323.90 2232.65 2245.28 2230.87 22711.46 223
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def60.19 204
9.1497.28 24
SR-MVS98.93 2096.00 1897.75 15
our_test_386.93 19089.77 20181.61 203
MTAPA95.36 297.46 21
MTMP95.70 196.90 27
Patchmatch-RL test18.47 228
XVS95.68 6698.66 1594.96 6388.03 5696.06 3398.46 34
X-MVStestdata95.68 6698.66 1594.96 6388.03 5696.06 3398.46 34
abl_694.78 3997.46 4497.99 5295.76 5391.80 5193.72 4891.25 3291.33 4296.47 3094.28 5098.14 7297.39 78
mPP-MVS98.76 2595.49 40
NP-MVS91.63 68
Patchmtry92.39 17589.18 16073.30 20571.08 154