This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS98.87 199.20 298.48 199.32 1299.85 299.55 896.20 699.48 396.78 398.51 1599.99 199.36 298.98 897.59 2999.67 2099.99 3
DVP-MVS++98.75 299.11 798.33 399.41 599.85 299.61 496.22 599.32 995.80 598.27 1899.97 499.22 598.95 997.48 3399.71 1899.98 5
MSP-MVS98.75 299.27 198.15 899.21 1899.82 799.58 696.09 1399.32 995.16 998.79 699.55 999.05 799.54 197.88 2199.84 399.99 3
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS98.73 499.17 598.22 599.47 499.85 299.57 796.23 399.30 1194.90 1198.65 1098.93 2099.36 299.46 398.21 1199.81 699.80 33
DPE-MVScopyleft98.69 599.14 698.16 799.37 899.82 799.66 396.26 199.18 1795.02 1098.62 1299.98 398.88 1298.90 1297.51 3299.75 1199.97 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft98.65 698.87 1398.38 299.30 1499.85 299.14 2396.23 399.51 297.16 196.01 3499.99 198.90 1198.89 1397.88 2199.56 5299.98 5
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS98.60 798.97 1098.18 699.38 799.78 1299.35 1596.14 999.24 1495.66 798.19 2099.01 1798.66 1898.77 1597.80 2499.86 299.97 8
SF-MVS98.55 898.75 1598.32 499.48 299.68 2299.51 1096.24 299.08 2195.94 498.64 1199.30 1399.02 997.94 2996.86 5199.75 1199.76 36
SMA-MVScopyleft98.47 999.06 897.77 1199.48 299.78 1299.37 1296.14 999.29 1293.03 1997.59 2999.97 499.03 898.94 1098.30 999.60 3399.58 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC98.41 1099.18 397.52 1599.36 999.84 699.55 896.08 1599.33 891.77 2498.79 699.46 1198.59 2099.15 798.07 1899.73 1499.64 53
SD-MVS98.33 1199.01 997.54 1497.17 5099.77 1599.14 2396.09 1399.34 794.06 1597.91 2599.89 699.18 697.99 2898.21 1199.63 2799.95 13
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft98.28 1298.69 1697.80 1099.31 1399.62 2899.31 1896.15 899.19 1693.60 1697.28 3098.35 2798.72 1798.27 2198.22 1099.73 1499.89 25
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MCST-MVS98.20 1399.18 397.06 2199.27 1699.87 199.37 1296.11 1199.37 589.29 3298.76 899.50 1098.37 2599.23 597.64 2799.95 199.87 29
HPM-MVS++copyleft98.16 1498.87 1397.32 1799.39 699.70 2099.18 2196.10 1299.09 2091.14 2698.02 2399.89 698.44 2398.75 1697.03 4699.67 2099.63 56
MSLP-MVS++98.12 1598.23 2897.99 999.28 1599.72 1799.59 595.27 2898.61 3494.79 1296.11 3397.79 3699.27 496.62 6798.96 599.77 999.80 33
HFP-MVS98.02 1698.55 2097.40 1699.11 2199.69 2199.41 1195.41 2698.79 3091.86 2398.61 1398.16 2999.02 997.87 3397.40 3599.60 3399.35 83
TSAR-MVS + MP.97.98 1798.62 1997.23 1997.08 5199.55 3499.17 2295.69 2199.40 493.04 1896.68 3298.96 1998.58 2198.82 1496.95 4899.81 699.96 10
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP97.86 1898.91 1196.64 2598.89 2799.79 999.34 1695.20 3098.48 3689.91 3098.58 1498.69 2396.84 4898.92 1198.16 1599.66 2299.74 39
Skip Steuart: Steuart Systems R&D Blog.
CP-MVS97.81 1998.26 2797.28 1899.00 2499.65 2499.10 2595.32 2798.38 4292.21 2298.33 1797.74 3798.50 2297.66 4296.55 5999.57 4699.48 73
ACMMPR97.78 2098.28 2597.20 2099.03 2399.68 2299.37 1295.24 2998.86 2991.16 2597.86 2797.26 3998.79 1597.64 4497.40 3599.60 3399.25 89
DeepC-MVS_fast95.01 197.67 2198.22 2997.02 2299.00 2499.79 999.10 2595.82 1899.05 2389.53 3193.54 4996.77 4298.83 1399.34 499.44 299.82 499.63 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary97.54 2297.35 3897.77 1199.17 1999.55 3498.57 3195.76 2099.04 2494.66 1397.94 2494.39 5698.82 1496.21 7794.78 8699.62 2999.52 69
ACMMP_NAP97.51 2398.27 2696.63 2699.34 1099.72 1799.25 1995.94 1798.11 4787.10 4796.98 3198.50 2598.61 1998.58 1896.83 5299.56 5299.14 97
MP-MVScopyleft97.46 2498.30 2496.48 2798.93 2699.43 4399.20 2095.42 2598.43 3887.60 4398.19 2098.01 3598.09 2798.05 2696.67 5699.64 2599.35 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
train_agg97.42 2598.88 1295.71 3298.46 3499.60 3199.05 2795.16 3199.10 1984.38 6598.47 1698.85 2197.61 3198.54 1997.66 2699.62 2999.93 19
CPTT-MVS97.32 2697.60 3796.99 2398.29 3799.31 5599.04 2894.67 3597.99 5393.12 1798.03 2298.26 2898.77 1696.08 8094.26 9498.07 18299.27 88
X-MVS97.20 2798.42 2395.77 3099.04 2299.64 2598.95 3095.10 3398.16 4583.97 7198.27 1898.08 3297.95 2897.89 3097.46 3499.58 4299.47 74
PHI-MVS97.09 2898.69 1695.22 3697.99 4299.59 3397.56 4492.16 3998.41 4087.11 4698.70 999.42 1296.95 4496.88 6098.16 1599.56 5299.70 45
DPM-MVS97.07 2997.99 3296.00 2997.25 4999.16 6599.67 295.99 1699.08 2185.97 5293.00 5498.44 2697.47 3399.22 699.62 199.66 2297.44 154
PGM-MVS97.03 3098.14 3195.73 3199.34 1099.61 3099.34 1689.99 4597.70 5687.67 4299.44 296.45 4598.44 2397.65 4397.09 4399.58 4299.06 105
PLCcopyleft94.37 297.03 3096.54 4497.60 1398.84 2898.64 7498.17 3694.99 3499.01 2596.80 293.21 5395.64 4797.36 3496.37 7294.79 8599.41 8798.12 139
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + ACMM96.90 3298.64 1894.88 3898.12 4099.47 3999.01 2995.43 2499.23 1581.98 9095.95 3599.16 1695.13 6898.61 1798.11 1799.58 4299.93 19
TSAR-MVS + GP.96.47 3398.45 2294.17 4392.12 8799.29 5697.76 4088.05 5599.36 690.26 2997.82 2899.21 1497.21 3796.78 6596.74 5499.63 2799.94 16
EPNet96.23 3497.89 3494.29 4197.62 4599.44 4297.14 5188.63 5198.16 4588.14 3899.46 194.15 5994.61 7897.20 5297.23 3999.57 4699.59 61
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNLPA96.14 3595.43 5496.98 2498.55 3199.41 4795.91 5795.15 3299.00 2695.71 684.21 10494.55 5497.25 3595.50 10296.23 6599.28 10999.09 104
MVS_111021_LR96.07 3697.94 3393.88 4697.86 4399.43 4395.70 6089.65 4898.73 3184.86 6299.38 394.08 6095.78 6697.81 3696.73 5599.43 8399.42 77
ACMMPcopyleft96.05 3796.70 4395.29 3598.01 4199.43 4397.60 4394.33 3797.62 5986.17 5198.92 492.81 6896.10 5995.67 9293.33 11499.55 5799.12 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+90.72 795.99 3896.42 4695.50 3498.18 3999.33 5497.44 4687.73 6097.93 5492.36 2184.67 9797.33 3897.55 3297.32 4898.47 899.72 1799.88 26
DeepPCF-MVS94.02 395.92 3998.47 2192.95 5697.57 4699.79 991.45 11894.42 3699.76 186.48 5092.88 5598.12 3192.62 9999.49 299.32 395.15 20699.95 13
CDPH-MVS95.90 4097.77 3693.72 4998.28 3899.43 4398.40 3291.30 4398.34 4378.62 10894.80 4195.74 4696.11 5897.86 3498.67 799.59 3799.56 66
CSCG95.77 4195.35 5696.26 2899.13 2099.60 3198.14 3791.89 4296.57 7592.61 2089.65 6491.74 7696.96 4293.69 12696.58 5898.86 13699.63 56
OMC-MVS95.75 4295.84 5195.64 3398.52 3399.34 5397.15 5092.02 4198.94 2890.45 2888.31 7094.64 5296.35 5496.02 8395.99 7399.34 9897.65 150
MVS_111021_HR95.70 4398.16 3092.83 5797.57 4699.77 1594.78 7488.05 5598.61 3482.29 8598.85 594.66 5194.63 7697.80 3797.63 2899.64 2599.79 35
3Dnovator90.31 895.67 4496.16 4995.11 3798.59 3099.37 5297.50 4587.98 5798.02 5289.09 3385.36 9694.62 5397.66 2997.10 5698.90 699.82 499.73 41
CANet95.40 4596.27 4794.40 4096.25 5699.62 2898.37 3388.59 5298.09 4887.58 4484.57 9995.54 4995.87 6398.12 2498.03 2099.73 1499.90 24
QAPM95.17 4696.05 5094.14 4498.55 3199.49 3797.41 4787.88 5897.72 5584.21 6884.59 9895.60 4897.21 3797.10 5698.19 1499.57 4699.65 51
CS-MVS-test95.06 4796.98 4192.82 5995.83 5999.40 4893.23 9785.29 8499.27 1385.89 5493.86 4892.70 7097.19 3997.70 4096.18 6799.49 6699.76 36
CS-MVS94.82 4896.19 4893.22 5295.19 6499.24 5895.10 6985.07 8798.72 3287.33 4591.35 5789.98 8597.06 4198.01 2796.28 6399.60 3399.72 42
MVSTER94.75 4996.50 4592.70 6190.91 10394.51 14697.37 4883.37 9798.40 4189.04 3493.23 5297.04 4195.91 6297.73 3895.59 8299.61 3199.01 107
TAPA-MVS92.04 694.72 5095.13 5994.24 4297.72 4499.17 6397.61 4292.16 3997.66 5881.99 8987.84 7593.94 6296.50 5195.74 8994.27 9399.46 7797.31 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepC-MVS92.23 594.53 5194.26 7294.86 3996.73 5399.50 3697.85 3995.45 2396.22 8282.73 8080.68 11488.02 9096.92 4597.49 4798.20 1399.47 7199.69 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CHOSEN 280x42094.51 5297.78 3590.70 8395.54 6399.49 3794.14 8574.91 16098.43 3885.32 5994.78 4299.19 1594.95 7297.02 5896.18 6799.35 9499.36 82
ETV-MVS94.49 5397.23 4091.29 7690.43 11398.55 7793.41 9584.53 9099.16 1883.13 7694.72 4394.08 6096.61 5097.72 3996.60 5799.61 3199.81 32
MVS_030494.35 5495.66 5392.83 5794.82 6699.46 4198.19 3587.75 5997.32 6581.83 9383.50 10693.19 6794.71 7498.24 2398.07 1899.68 1999.83 31
EC-MVSNet94.33 5596.88 4291.36 7490.12 12097.70 9695.20 6880.27 12198.63 3385.97 5293.92 4793.85 6597.09 4097.54 4696.81 5399.49 6699.70 45
MAR-MVS94.18 5695.12 6093.09 5598.40 3699.17 6394.20 8481.92 10698.47 3786.52 4990.92 5984.21 11098.12 2695.88 8697.59 2999.40 8899.58 64
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PCF-MVS92.56 493.95 5793.82 7594.10 4596.07 5899.25 5796.82 5395.51 2292.00 12881.51 9482.97 10993.88 6495.63 6794.24 11494.71 8899.09 11999.70 45
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DELS-MVS93.82 5893.82 7593.81 4896.34 5599.47 3997.26 4988.53 5392.13 12587.80 4179.67 11788.01 9193.14 9198.28 2099.22 499.80 899.98 5
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OpenMVScopyleft88.43 1193.49 5993.62 7893.34 5098.46 3499.39 4997.00 5287.66 6295.37 8981.21 9675.96 13491.58 7896.21 5796.37 7297.10 4299.52 6199.54 68
EIA-MVS93.32 6095.32 5790.99 8090.45 11298.53 8093.46 9484.68 8997.56 6281.38 9591.04 5887.37 9496.39 5397.27 4995.73 7899.59 3799.76 36
PVSNet_BlendedMVS93.30 6193.46 8293.10 5395.60 6199.38 5093.59 9288.70 4998.09 4888.10 3986.96 8375.02 13493.08 9297.89 3096.90 4999.56 52100.00 1
PVSNet_Blended93.30 6193.46 8293.10 5395.60 6199.38 5093.59 9288.70 4998.09 4888.10 3986.96 8375.02 13493.08 9297.89 3096.90 4999.56 52100.00 1
test250693.08 6393.40 8492.70 6192.76 8099.20 6094.67 7786.82 6792.58 12190.81 2786.28 8885.24 10591.69 10896.85 6196.33 6199.45 8197.34 157
PMMVS93.05 6495.40 5590.31 8791.41 9597.54 10292.62 10883.25 9998.08 5179.44 10695.18 3988.52 8996.43 5295.70 9093.88 9798.68 15298.91 110
LS3D92.70 6592.23 9493.26 5196.24 5798.72 6997.93 3896.17 796.41 7672.46 12381.39 11380.76 12397.66 2995.69 9195.62 8099.07 12197.02 166
baseline192.67 6693.62 7891.55 7091.16 9897.15 10593.92 9085.97 7594.76 9784.07 7087.17 7986.89 9794.62 7796.72 6695.90 7699.57 4696.79 170
IS_MVSNet92.67 6694.99 6289.96 9291.17 9798.54 7892.77 10384.00 9192.72 11981.90 9285.67 9492.47 7190.39 12297.82 3597.81 2399.51 6299.91 23
TSAR-MVS + COLMAP92.56 6892.44 9292.71 6094.61 6897.69 9797.69 4191.09 4498.96 2776.71 11394.68 4469.41 16196.91 4695.80 8894.18 9599.26 11096.33 174
baseline92.56 6894.38 6890.43 8690.71 10798.23 8795.07 7080.73 12097.52 6382.45 8487.34 7885.91 10194.07 8596.29 7695.94 7599.58 4299.47 74
canonicalmvs92.54 7093.28 8591.68 6791.44 9498.24 8695.45 6581.84 11095.98 8684.85 6390.69 6078.53 12896.96 4292.97 13297.06 4499.57 4699.47 74
PatchMatch-RL92.54 7092.82 9192.21 6396.57 5498.74 6891.85 11586.30 7096.23 8185.18 6095.21 3873.58 14094.22 8495.40 10593.08 11899.14 11697.49 153
MVS_Test92.42 7294.43 6490.08 9190.69 10898.26 8594.78 7480.81 11997.27 6678.76 10787.06 8184.25 10995.84 6497.67 4197.56 3199.59 3798.93 109
thisisatest053092.31 7395.14 5889.02 10190.02 12198.45 8291.30 11983.58 9496.90 7177.90 11090.45 6294.33 5791.98 10595.57 9691.43 14299.31 10498.81 113
tttt051792.29 7495.12 6088.99 10290.02 12198.44 8491.19 12283.58 9496.88 7277.86 11190.45 6294.32 5891.98 10595.54 9891.43 14299.31 10498.78 115
EPP-MVSNet92.29 7494.35 7089.88 9390.36 11597.69 9790.89 12483.31 9893.39 11283.47 7585.56 9593.92 6391.93 10795.49 10394.77 8799.34 9899.62 59
HQP-MVS91.94 7693.03 8790.66 8593.69 7096.48 11995.92 5689.73 4697.33 6472.65 12195.37 3673.56 14192.75 9894.85 11194.12 9699.23 11399.51 70
MSDG91.93 7790.28 12293.85 4797.36 4897.12 10695.88 5894.07 3894.52 10184.13 6976.74 12780.89 12292.54 10093.97 12293.61 10899.14 11695.10 183
UGNet91.71 7894.43 6488.53 10492.72 8298.00 9090.22 13184.81 8894.45 10283.05 7787.65 7792.74 6981.04 17594.51 11394.45 9099.32 10399.21 93
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
thres100view90091.69 7991.52 10091.88 6691.61 8998.89 6695.49 6386.96 6493.24 11380.82 9887.90 7271.15 15296.88 4796.00 8493.51 11099.51 6299.95 13
CLD-MVS91.67 8091.30 10592.10 6491.25 9696.59 11695.93 5587.25 6396.86 7385.55 5887.08 8073.01 14293.26 9093.07 13092.84 12499.34 9899.68 49
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ET-MVSNet_ETH3D91.59 8194.96 6387.65 10772.75 21397.24 10495.29 6682.73 10296.81 7478.49 10995.30 3790.48 8497.23 3691.60 14794.31 9199.43 8399.01 107
tfpn200view991.47 8291.31 10391.65 6891.61 8998.69 7195.03 7186.17 7193.24 11380.82 9887.90 7271.15 15296.80 4995.53 9992.82 12699.47 7199.88 26
CANet_DTU91.36 8395.75 5286.23 11992.31 8698.71 7095.60 6278.41 13598.20 4456.48 18294.38 4587.96 9295.11 6996.89 5996.07 6999.48 6998.01 143
thres20091.36 8391.19 10791.55 7091.60 9198.69 7194.98 7286.17 7192.16 12480.76 10087.66 7671.15 15296.35 5495.53 9993.23 11699.47 7199.92 22
FMVSNet391.25 8592.13 9690.21 8885.64 15293.14 15595.29 6680.09 12296.40 7785.74 5577.13 12286.81 9894.98 7197.19 5397.11 4199.55 5797.13 163
thres40091.24 8691.01 11391.50 7391.56 9298.77 6794.66 7986.41 6991.87 13080.56 10187.05 8271.01 15596.35 5495.67 9292.82 12699.48 6999.88 26
PVSNet_Blended_VisFu91.20 8792.89 9089.23 9993.41 7398.61 7689.80 13385.39 8192.84 11782.80 7974.21 13891.38 8084.64 15497.22 5196.04 7299.34 9899.93 19
DCV-MVSNet91.15 8892.00 9790.17 9090.78 10592.23 17293.70 9181.17 11795.16 9282.98 7889.46 6683.31 11293.98 8791.79 14692.87 12198.41 17099.18 95
DI_MVS_plusplus_trai91.11 8991.47 10190.68 8490.01 12397.77 9495.87 5983.56 9694.72 9882.12 8768.46 15787.46 9393.07 9496.46 7195.73 7899.47 7199.71 44
diffmvspermissive91.05 9091.15 10890.93 8190.15 11897.79 9394.05 8685.45 7895.63 8781.95 9180.45 11673.01 14294.47 8095.56 9795.89 7799.49 6699.72 42
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)91.05 9094.43 6487.11 10991.05 10097.99 9192.53 11083.82 9392.71 12076.28 11484.50 10092.43 7279.52 18097.24 5097.68 2599.43 8398.45 127
thres600view790.97 9290.70 11591.30 7591.53 9398.69 7194.33 8086.17 7191.75 13280.19 10286.06 9270.90 15696.10 5995.53 9992.08 13499.47 7199.86 30
baseline290.91 9394.40 6786.84 11287.54 14396.83 11289.95 13279.22 13096.00 8577.04 11288.68 6789.73 8688.01 14396.35 7493.51 11099.29 10699.68 49
casdiffmvs_mvgpermissive90.83 9490.52 11991.20 7890.56 10997.67 9994.96 7385.45 7890.72 13882.03 8876.70 12877.08 12994.61 7896.57 6995.62 8099.57 4699.28 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMP89.80 990.72 9591.15 10890.21 8892.55 8496.52 11892.63 10785.71 7794.65 9981.06 9793.32 5070.56 15890.52 12192.68 13691.05 14798.76 14499.31 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
casdiffmvspermissive90.69 9690.56 11890.85 8290.14 11997.81 9292.94 10185.30 8293.47 11182.50 8376.34 13274.12 13894.67 7596.51 7096.26 6499.55 5799.42 77
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FA-MVS(training)90.67 9793.03 8787.92 10690.95 10298.45 8292.61 10966.04 19494.90 9484.47 6477.52 12191.74 7694.07 8597.11 5592.46 13299.40 8899.03 106
ACMM89.40 1090.58 9890.02 12591.23 7793.30 7594.75 14290.69 12788.22 5495.20 9082.70 8188.54 6871.40 15093.48 8993.64 12790.94 14898.99 12795.72 179
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net90.49 9991.12 11189.75 9584.99 15592.73 16093.94 8780.09 12296.40 7785.74 5577.13 12286.81 9894.42 8194.12 11693.73 9999.35 9496.90 167
test190.49 9991.12 11189.75 9584.99 15592.73 16093.94 8780.09 12296.40 7785.74 5577.13 12286.81 9894.42 8194.12 11693.73 9999.35 9496.90 167
ECVR-MVScopyleft90.37 10188.96 13492.01 6592.76 8099.20 6094.67 7786.82 6792.58 12186.71 4868.95 15671.46 14991.69 10896.85 6196.33 6199.45 8197.38 156
LGP-MVS_train90.34 10291.63 9988.83 10393.31 7496.14 12595.49 6385.24 8593.91 10668.71 13593.96 4671.63 14791.12 11793.82 12492.79 12899.07 12199.16 96
test111190.01 10388.67 13691.57 6992.68 8399.20 6094.25 8386.90 6692.03 12785.04 6167.79 16171.21 15191.12 11796.83 6396.34 6099.42 8697.28 159
EPNet_dtu89.82 10494.18 7384.74 12996.87 5295.54 13592.65 10686.91 6596.99 6854.17 19392.41 5688.54 8878.35 18396.15 7996.05 7199.47 7193.60 191
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF89.81 10589.75 12689.88 9393.22 7793.99 14994.78 7485.23 8694.01 10582.52 8295.00 4087.23 9592.01 10485.16 20083.48 20591.54 21189.38 205
MDTV_nov1_ep1389.63 10694.38 6884.09 13688.76 13597.53 10389.37 14168.46 19296.95 6970.27 13087.88 7493.67 6691.04 11993.12 12893.83 9896.62 20097.68 149
UA-Net89.56 10793.03 8785.52 12592.46 8597.55 10191.92 11381.91 10785.24 16571.39 12583.57 10596.56 4476.01 19496.81 6497.04 4599.46 7794.41 186
FMVSNet289.51 10889.63 12789.38 9784.99 15592.73 16093.94 8779.28 12993.73 10884.28 6769.36 15582.32 11594.42 8196.16 7896.22 6699.35 9496.90 167
CostFormer89.42 10991.67 9886.80 11489.99 12496.33 12190.75 12564.79 19695.17 9183.62 7486.20 9082.15 11792.96 9589.22 17092.94 11998.68 15299.65 51
FC-MVSNet-train89.37 11089.62 12889.08 10090.48 11194.16 14889.45 13783.99 9291.09 13680.09 10382.84 11074.52 13791.44 11493.79 12591.57 14099.01 12599.35 83
OPM-MVS89.33 11187.45 14691.53 7294.49 6996.20 12396.47 5489.72 4782.77 17275.43 11580.53 11570.86 15793.80 8894.00 12091.85 13899.29 10695.91 177
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test-LLR89.31 11293.60 8084.30 13388.08 13996.98 10888.10 14678.00 13694.83 9562.43 15684.29 10290.96 8189.70 12895.63 9492.86 12299.51 6299.64 53
EPMVS89.31 11293.70 7784.18 13591.10 9998.10 8889.17 14362.71 20096.24 8070.21 13286.46 8792.37 7392.79 9691.95 14493.59 10999.10 11897.19 160
Anonymous2023121189.22 11487.56 14491.16 7990.23 11796.62 11593.22 9885.44 8092.89 11684.37 6660.13 17781.25 12096.02 6190.61 15592.01 13597.70 19099.41 79
Effi-MVS+88.96 11591.13 11086.43 11789.12 13197.62 10093.15 9975.52 15493.90 10766.40 14086.23 8970.51 15995.03 7095.89 8594.28 9299.37 9099.51 70
SCA88.76 11694.29 7182.30 15289.33 12996.81 11387.68 14861.52 20596.95 6964.68 14688.35 6994.80 5091.58 11192.23 13893.21 11798.99 12797.70 148
test0.0.03 188.71 11792.22 9584.63 13188.08 13994.71 14485.91 17178.00 13695.54 8872.96 11986.10 9185.88 10383.59 16292.95 13493.24 11599.25 11297.09 164
PatchmatchNetpermissive88.67 11894.10 7482.34 15189.38 12897.72 9587.24 15462.18 20397.00 6764.79 14587.97 7194.43 5591.55 11291.21 15292.77 12998.90 13297.60 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dps88.66 11990.19 12386.88 11189.94 12596.48 11989.56 13564.08 19894.12 10489.00 3583.39 10782.56 11490.16 12586.81 19289.26 16698.53 16598.71 117
TESTMET0.1,188.63 12093.60 8082.84 14884.07 16396.98 10888.10 14673.22 17494.83 9562.43 15684.29 10290.96 8189.70 12895.63 9492.86 12299.51 6299.64 53
CHOSEN 1792x268888.63 12089.01 13288.19 10594.83 6599.21 5992.66 10579.85 12692.40 12372.18 12456.38 19780.22 12590.24 12397.64 4497.28 3899.37 9099.94 16
CDS-MVSNet88.59 12290.13 12486.79 11586.98 14895.43 13692.03 11281.33 11585.54 16274.51 11877.07 12585.14 10687.03 14893.90 12395.18 8398.88 13498.67 119
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IB-MVS84.67 1488.34 12390.61 11785.70 12292.99 7998.62 7578.85 19786.07 7494.35 10388.64 3685.99 9375.69 13268.09 20788.21 17391.43 14299.55 5799.96 10
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-mter88.25 12493.27 8682.38 15083.89 16496.86 11187.10 15872.80 17694.58 10061.85 16183.21 10890.65 8389.18 13295.43 10492.58 13199.46 7799.61 60
COLMAP_ROBcopyleft84.42 1588.24 12587.32 14789.32 9895.83 5995.82 12992.81 10287.68 6192.09 12672.64 12272.34 14679.96 12688.79 13489.54 16589.46 16298.16 17992.00 197
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-LS87.95 12689.40 13086.26 11888.79 13490.93 18791.23 12176.05 15190.87 13771.07 12775.51 13581.18 12191.21 11694.11 11995.01 8499.20 11598.23 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test87.86 12788.25 13987.40 10894.67 6798.54 7890.33 13076.51 15089.60 14670.89 12851.43 20885.69 10492.79 9696.59 6895.96 7499.22 11499.94 16
Vis-MVSNetpermissive87.60 12891.31 10383.27 14389.14 13098.04 8990.35 12979.42 12787.23 15166.92 13979.10 12084.63 10874.34 20195.81 8796.06 7099.46 7798.32 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE87.55 12988.17 14086.82 11388.74 13696.32 12292.75 10474.93 15990.13 14372.73 12069.47 15474.03 13992.51 10193.99 12193.62 10799.29 10699.59 61
dmvs_re87.43 13087.99 14186.77 11684.94 15996.19 12491.87 11485.95 7691.25 13568.58 13681.45 11266.04 16789.95 12790.91 15391.57 14099.37 9098.54 123
RPMNet87.35 13192.41 9381.45 15688.85 13396.06 12689.42 14059.59 21293.57 10961.81 16276.48 13191.48 7990.18 12496.32 7593.37 11398.87 13599.59 61
tpm cat187.34 13288.52 13885.95 12089.83 12695.80 13090.73 12664.91 19592.99 11582.21 8671.19 15282.68 11390.13 12686.38 19390.87 15097.90 18799.74 39
MS-PatchMatch87.19 13388.59 13785.55 12493.15 7896.58 11792.35 11174.19 16791.97 12970.33 12971.42 15085.89 10284.28 15693.12 12889.16 16899.00 12691.99 198
Effi-MVS+-dtu87.18 13490.48 12083.32 14286.51 14995.76 13291.16 12374.28 16690.44 14261.31 16586.72 8672.68 14591.25 11595.01 10993.64 10295.45 20599.12 100
FMVSNet587.06 13589.52 12984.20 13479.92 20186.57 20787.11 15772.37 17896.06 8375.41 11684.33 10191.76 7591.60 11091.51 14891.22 14598.77 14185.16 210
Fast-Effi-MVS+-dtu86.94 13691.27 10681.89 15386.27 15095.06 13790.68 12868.93 18991.76 13157.18 18089.56 6575.85 13189.19 13194.56 11292.84 12499.07 12199.23 90
Fast-Effi-MVS+86.94 13687.88 14385.84 12186.99 14795.80 13091.24 12073.48 17392.75 11869.22 13372.70 14465.71 16894.84 7394.98 11094.71 8899.26 11098.48 126
tpmrst86.78 13890.29 12182.69 14990.55 11096.95 11088.49 14562.58 20195.09 9363.52 15276.67 13084.00 11192.05 10387.93 17691.89 13798.98 12999.50 72
CR-MVSNet86.73 13991.47 10181.20 15988.56 13796.06 12689.43 13861.37 20693.57 10960.81 16772.89 14388.85 8788.13 14196.03 8193.64 10298.89 13399.22 91
ADS-MVSNet86.68 14090.79 11481.88 15490.38 11496.81 11386.90 15960.50 21096.01 8463.93 14981.67 11184.72 10790.78 12087.03 18691.67 13998.77 14197.63 151
FMVSNet185.85 14184.91 15786.96 11082.70 16991.39 18191.54 11777.45 14285.29 16479.56 10560.70 17472.68 14592.37 10294.12 11693.73 9998.12 18096.44 171
FC-MVSNet-test85.51 14289.08 13181.35 15785.31 15493.35 15187.65 14977.55 14190.01 14464.07 14879.63 11881.83 11974.94 19892.08 14190.83 15298.55 16295.81 178
ACMH85.22 1385.40 14385.73 15485.02 12791.76 8894.46 14784.97 17781.54 11385.18 16665.22 14476.92 12664.22 16988.58 13790.17 15790.25 15898.03 18398.90 111
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS85.35 14486.00 15384.59 13284.97 15895.57 13488.98 14477.29 14581.44 17771.36 12671.48 14975.00 13687.03 14891.92 14592.21 13397.92 18694.40 187
ACMH+85.62 1285.27 14584.96 15685.64 12390.84 10494.78 14187.46 15181.30 11686.94 15267.35 13874.56 13764.09 17088.70 13588.14 17489.00 16998.22 17897.19 160
USDC85.11 14685.35 15584.83 12889.45 12794.93 14092.98 10077.30 14490.53 14061.80 16376.69 12959.62 18088.90 13392.78 13590.79 15498.53 16592.12 195
IterMVS85.02 14788.98 13380.41 16587.03 14690.34 19589.78 13469.45 18689.77 14554.04 19473.71 14082.05 11883.44 16595.11 10793.64 10298.75 14598.22 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT84.91 14888.90 13580.25 16887.04 14590.27 19689.23 14269.25 18889.17 14754.04 19473.65 14182.22 11683.23 17095.11 10793.63 10698.73 14698.23 134
PatchT84.89 14990.67 11678.13 18887.83 14294.99 13972.46 20960.22 21191.74 13360.81 16772.16 14786.95 9688.13 14196.03 8193.64 10299.36 9399.22 91
pmmvs484.88 15084.67 15885.13 12682.80 16892.37 16587.29 15279.08 13190.51 14174.94 11770.37 15362.49 17388.17 14092.01 14388.51 17498.49 16896.44 171
CVMVSNet84.01 15186.91 14880.61 16388.39 13893.29 15286.06 16782.29 10483.13 17054.29 19072.68 14579.59 12775.11 19791.23 15192.91 12097.54 19495.58 180
tpm83.97 15287.97 14279.31 17887.35 14493.21 15486.00 16961.90 20490.69 13954.01 19679.42 11975.61 13388.65 13687.18 18490.48 15697.95 18599.21 93
GA-MVS83.83 15386.63 14980.58 16485.40 15394.73 14387.27 15378.76 13486.49 15449.57 20474.21 13867.67 16483.38 16695.28 10690.92 14999.08 12097.09 164
UniMVSNet_NR-MVSNet83.83 15383.70 16183.98 13781.41 17992.56 16486.54 16282.96 10085.98 15966.27 14166.16 16563.63 17187.78 14587.65 17990.81 15398.94 13099.13 98
UniMVSNet (Re)83.28 15583.16 16283.42 14181.93 17493.12 15686.27 16580.83 11885.88 16068.23 13764.56 16860.58 17584.25 15789.13 17189.44 16499.04 12499.40 80
thisisatest051583.17 15686.49 15079.30 17982.04 17293.12 15678.70 19877.92 13886.43 15563.05 15374.91 13673.01 14275.56 19692.10 14088.05 18798.50 16797.76 147
TinyColmap83.03 15782.24 16683.95 13888.88 13293.22 15389.48 13676.89 14787.53 15062.12 15868.46 15755.03 19688.43 13990.87 15489.65 16097.89 18890.91 201
testgi82.88 15886.14 15279.08 18186.05 15192.20 17381.23 19474.77 16288.70 14857.63 17986.73 8561.53 17476.83 19190.33 15689.43 16597.99 18494.05 188
DU-MVS82.87 15982.16 16783.70 14080.77 18892.24 16986.54 16281.91 10786.41 15666.27 14163.95 16955.66 19487.78 14586.83 18990.86 15198.94 13099.13 98
MIMVSNet82.87 15986.17 15179.02 18277.23 20992.88 15984.88 17860.62 20986.72 15364.16 14773.58 14271.48 14888.51 13894.14 11593.50 11298.72 14890.87 202
NR-MVSNet82.37 16181.95 16982.85 14782.56 17192.24 16987.49 15081.91 10786.41 15665.51 14363.95 16952.93 20580.80 17789.41 16789.61 16198.85 13799.10 103
Baseline_NR-MVSNet82.08 16280.64 17683.77 13980.77 18888.50 20286.88 16081.71 11185.58 16168.80 13458.20 18957.75 18686.16 15086.83 18988.68 17198.33 17598.90 111
TranMVSNet+NR-MVSNet82.07 16381.36 17282.90 14680.43 19491.39 18187.16 15682.75 10184.28 16862.98 15462.28 17356.01 19385.30 15386.06 19590.69 15598.80 13898.80 114
pm-mvs181.68 16481.70 17081.65 15582.61 17092.26 16885.54 17578.95 13276.29 19963.81 15058.43 18866.33 16680.63 17892.30 13789.93 15998.37 17496.39 173
TDRefinement81.49 16580.08 18283.13 14591.02 10194.53 14591.66 11682.43 10381.70 17562.12 15862.30 17259.32 18173.93 20287.31 18285.29 19897.61 19190.14 203
anonymousdsp81.29 16684.52 16077.52 19079.83 20292.62 16382.61 18970.88 18380.76 18150.82 20168.35 15968.76 16282.45 17393.00 13189.45 16398.55 16298.69 118
gg-mvs-nofinetune81.27 16784.65 15977.32 19187.96 14198.48 8195.64 6156.36 21559.35 21732.80 22247.96 21292.11 7491.49 11398.12 2497.00 4799.65 2499.56 66
tfpnnormal81.11 16879.33 19083.19 14484.23 16192.29 16786.76 16182.27 10572.67 20562.02 16056.10 19953.86 20285.35 15292.06 14289.23 16798.49 16899.11 102
UniMVSNet_ETH3D80.95 16977.71 19884.74 12984.45 16093.11 15886.45 16479.97 12575.21 20170.22 13151.24 20950.26 21189.55 13084.47 20291.12 14697.81 18998.53 124
V4280.88 17080.74 17481.05 16081.21 18292.01 17585.96 17077.75 14081.62 17659.73 17459.93 18058.35 18582.98 17286.90 18888.06 18698.69 15198.32 131
v2v48280.86 17180.52 18081.25 15880.79 18791.85 17685.68 17378.78 13381.05 17858.09 17760.46 17556.08 19185.45 15187.27 18388.53 17398.73 14698.38 130
v880.61 17280.61 17880.62 16281.51 17791.00 18686.06 16774.07 16981.78 17459.93 17360.10 17958.42 18483.35 16786.99 18788.11 18498.79 13997.83 145
pmmvs580.48 17381.43 17179.36 17781.50 17892.24 16982.07 19274.08 16878.10 19255.86 18567.72 16254.35 19983.91 16192.97 13288.65 17298.77 14196.01 175
v1080.38 17480.73 17579.96 17081.22 18190.40 19486.11 16671.63 18082.42 17357.65 17858.74 18657.47 18784.44 15589.75 16188.28 17798.71 14998.06 142
v114480.36 17580.63 17780.05 16980.86 18691.56 17985.78 17275.22 15680.73 18255.83 18658.51 18756.99 18983.93 16089.79 16088.25 17898.68 15298.56 122
SixPastTwentyTwo80.28 17682.06 16878.21 18781.89 17692.35 16677.72 19974.48 16383.04 17154.22 19176.06 13356.40 19083.55 16386.83 18984.83 20097.38 19594.93 184
CP-MVSNet79.90 17779.49 18780.38 16680.72 19090.83 18882.98 18675.17 15779.70 18761.39 16459.74 18151.98 20883.31 16887.37 18188.38 17598.71 14998.45 127
v119279.84 17880.05 18479.61 17380.49 19391.04 18585.56 17474.37 16580.73 18254.35 18957.07 19454.54 19884.23 15889.94 15888.38 17598.63 15698.61 120
WR-MVS_H79.76 17980.07 18379.40 17681.25 18091.73 17882.77 18774.82 16179.02 19162.55 15559.41 18357.32 18876.27 19387.61 18087.30 19298.78 14098.09 140
WR-MVS79.67 18080.25 18179.00 18380.65 19191.16 18383.31 18476.57 14980.97 17960.50 17259.20 18458.66 18374.38 20085.85 19787.76 18998.61 15798.14 137
v14879.66 18179.13 19280.27 16781.02 18491.76 17781.90 19379.32 12879.24 18963.79 15158.07 19154.34 20077.17 18984.42 20387.52 19198.40 17198.59 121
LTVRE_ROB79.45 1679.66 18180.55 17978.61 18583.01 16792.19 17487.18 15573.69 17271.70 20843.22 21771.22 15150.85 20987.82 14489.47 16690.43 15796.75 19898.00 144
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v14419279.61 18379.77 18579.41 17580.28 19591.06 18484.87 17973.86 17079.65 18855.38 18757.76 19255.20 19583.46 16488.42 17287.89 18898.61 15798.42 129
v192192079.55 18479.77 18579.30 17980.24 19690.77 19085.37 17673.75 17180.38 18453.78 19756.89 19654.18 20184.05 15989.55 16488.13 18398.59 15998.52 125
TransMVSNet (Re)79.51 18578.36 19480.84 16183.17 16589.72 19884.22 18281.45 11473.98 20460.79 17057.20 19356.05 19277.11 19089.88 15988.86 17098.30 17792.83 193
MVS-HIRNet79.34 18682.56 16375.57 19684.11 16295.02 13875.03 20657.28 21485.50 16355.88 18453.00 20570.51 15983.05 17192.12 13991.96 13698.09 18189.83 204
PS-CasMVS79.06 18778.58 19379.63 17280.59 19290.55 19282.54 19075.04 15877.76 19358.84 17558.16 19050.11 21382.09 17487.05 18588.18 18198.66 15598.27 133
v124078.97 18879.27 19178.63 18480.04 19790.61 19184.25 18172.95 17579.22 19052.70 19956.22 19852.88 20783.28 16989.60 16388.20 18098.56 16198.14 137
pmnet_mix0278.91 18981.17 17376.28 19581.91 17590.82 18974.25 20777.87 13986.17 15849.04 20567.97 16062.93 17277.40 18782.75 20882.11 20797.18 19695.42 181
MDTV_nov1_ep13_2view78.83 19082.35 16474.73 19978.65 20491.51 18079.18 19662.52 20284.51 16752.51 20067.49 16367.29 16578.90 18185.52 19986.34 19596.62 20093.76 189
PEN-MVS78.80 19178.13 19679.58 17480.03 19889.67 19983.61 18375.83 15277.71 19558.41 17660.11 17850.00 21481.02 17684.08 20488.14 18298.59 15997.18 162
EG-PatchMatch MVS78.32 19279.42 18977.03 19383.03 16693.77 15084.47 18069.26 18775.85 20053.69 19855.68 20060.23 17873.20 20389.69 16288.22 17998.55 16292.54 194
DTE-MVSNet77.92 19377.42 19978.51 18679.34 20389.00 20183.05 18575.60 15376.89 19756.58 18159.63 18250.31 21078.09 18682.57 20987.56 19098.38 17295.95 176
v7n77.71 19478.25 19577.09 19278.49 20590.55 19282.15 19171.11 18276.79 19854.18 19255.63 20150.20 21278.28 18489.36 16987.15 19398.33 17598.07 141
gm-plane-assit77.20 19582.26 16571.30 20281.10 18382.00 21554.33 22064.41 19763.80 21640.93 21959.04 18576.57 13087.30 14798.26 2297.36 3799.74 1398.76 116
N_pmnet76.83 19677.97 19775.50 19780.96 18588.23 20472.81 20876.83 14880.87 18050.55 20256.94 19560.09 17975.70 19583.28 20684.23 20296.14 20492.12 195
pmmvs676.79 19775.69 20478.09 18979.95 20089.57 20080.92 19574.46 16464.79 21460.74 17145.71 21460.55 17678.37 18288.04 17586.00 19694.07 20895.15 182
CMPMVSbinary58.73 1776.78 19874.27 20579.70 17193.26 7695.58 13382.74 18877.44 14371.46 21156.29 18353.58 20459.13 18277.33 18879.20 21079.71 21091.14 21381.24 213
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet76.76 19979.47 18873.60 20079.99 19987.47 20577.39 20075.43 15577.62 19647.83 20864.78 16760.44 17764.80 20886.28 19486.53 19496.17 20393.19 192
PM-MVS75.81 20076.11 20375.46 19873.81 21085.48 20976.42 20270.57 18480.05 18654.75 18862.33 17139.56 22080.59 17987.71 17882.81 20696.61 20294.81 185
pmmvs-eth3d75.17 20174.09 20676.43 19472.92 21184.49 21176.61 20172.42 17774.33 20261.28 16654.71 20339.42 22178.20 18587.77 17784.25 20197.17 19793.63 190
Anonymous2023120674.59 20277.00 20071.78 20177.89 20887.45 20675.14 20572.29 17977.76 19346.65 21052.14 20652.93 20561.10 21189.37 16888.09 18597.59 19291.30 200
test20.0372.81 20376.24 20268.80 20578.31 20685.40 21071.04 21071.20 18171.85 20743.40 21665.31 16654.71 19751.27 21485.92 19684.18 20397.58 19386.35 209
test_method71.90 20476.72 20166.28 21060.87 21978.37 21769.75 21449.81 22083.44 16949.63 20347.13 21353.23 20476.38 19291.32 15085.76 19791.22 21297.77 146
new_pmnet71.86 20573.67 20769.75 20472.56 21484.20 21270.95 21266.81 19380.34 18543.62 21551.60 20753.81 20371.24 20582.91 20780.93 20893.35 21081.92 212
MDA-MVSNet-bldmvs69.61 20670.36 20968.74 20662.88 21788.50 20265.40 21777.01 14671.60 21043.93 21266.71 16435.33 22372.47 20461.01 21680.63 20990.73 21488.75 207
pmmvs369.04 20770.75 20867.04 20866.83 21578.54 21664.99 21860.92 20864.67 21540.61 22055.08 20240.29 21974.89 19983.76 20584.01 20493.98 20988.88 206
MIMVSNet168.63 20870.24 21066.76 20956.86 22183.26 21367.93 21570.26 18568.05 21246.80 20940.44 21548.15 21562.01 20984.96 20184.86 19996.69 19981.93 211
GG-mvs-BLEND67.99 20997.35 3833.72 2171.22 22799.72 1798.30 340.57 22497.61 611.18 22893.26 5196.63 431.74 22497.15 5497.14 4099.34 9899.96 10
new-patchmatchnet67.66 21068.07 21167.18 20772.85 21282.86 21463.09 21968.61 19166.60 21342.64 21849.28 21038.68 22261.21 21075.84 21175.22 21294.67 20788.00 208
FPMVS63.27 21161.31 21365.57 21178.25 20774.42 22075.23 20468.92 19072.33 20643.87 21349.01 21143.94 21748.64 21661.15 21558.81 21778.51 22069.49 218
Gipumacopyleft54.59 21253.98 21455.30 21259.03 22052.63 22247.17 22256.08 21671.68 20937.54 22120.90 22119.00 22552.33 21371.69 21375.20 21379.64 21966.79 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft49.05 1851.88 21350.56 21653.42 21364.21 21643.30 22442.64 22362.93 19950.56 21843.72 21437.44 21642.95 21835.05 21958.76 21854.58 21871.95 22166.33 220
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS250.69 21452.33 21548.78 21451.24 22264.81 22147.91 22153.79 21944.95 21921.75 22329.98 21925.90 22431.98 22159.95 21765.37 21586.00 21775.36 216
E-PMN37.15 21534.82 21839.86 21547.53 22435.42 22623.79 22555.26 21735.18 22214.12 22517.38 22414.13 22739.73 21832.24 22046.98 21958.76 22262.39 222
EMVS36.45 21633.63 21939.74 21648.47 22335.73 22523.59 22655.11 21835.61 22112.88 22617.49 22214.62 22641.04 21729.33 22143.00 22057.32 22359.62 223
MVEpermissive42.40 1936.00 21738.65 21732.92 21829.16 22546.17 22322.61 22744.21 22126.44 22418.88 22417.41 2239.36 22932.29 22045.75 21961.38 21650.35 22464.03 221
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs21.55 21830.91 22010.62 2192.78 22611.66 22718.51 2284.82 22238.21 2204.06 22736.35 2174.47 23026.81 22223.27 22227.11 2216.75 22575.30 217
test12316.81 21924.80 2217.48 2200.82 2288.38 22811.92 2292.60 22328.96 2231.12 22928.39 2201.26 23124.51 2238.93 22322.19 2223.90 22675.49 215
uanet_test0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2210.00 2290.00 2290.00 2300.00 2250.00 2250.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
TPM-MVS99.50 199.78 1299.69 188.49 3797.88 2698.84 2299.42 199.76 1097.44 154
RE-MVS-def46.54 211
9.1499.73 8
SR-MVS99.27 1695.82 1899.00 18
Anonymous20240521187.54 14590.72 10697.10 10793.40 9685.30 8291.41 13460.23 17680.69 12495.80 6591.33 14992.60 13098.38 17299.40 80
our_test_381.94 17390.26 19775.39 203
ambc64.61 21261.80 21875.31 21971.00 21174.16 20348.83 20636.02 21813.22 22858.66 21285.80 19876.26 21188.01 21591.53 199
MTAPA94.58 1498.56 24
MTMP95.24 898.13 30
Patchmatch-RL test37.05 224
tmp_tt71.24 20390.29 11676.39 21865.81 21659.43 21397.62 5979.65 10490.60 6168.71 16349.71 21572.71 21265.70 21482.54 218
XVS93.63 7199.64 2594.32 8183.97 7198.08 3299.59 37
X-MVStestdata93.63 7199.64 2594.32 8183.97 7198.08 3299.59 37
mPP-MVS98.66 2997.11 40
NP-MVS97.69 57
Patchmtry95.86 12889.43 13861.37 20660.81 167
DeepMVS_CXcopyleft85.88 20869.83 21381.56 11287.99 14948.22 20771.85 14845.52 21668.67 20663.21 21486.64 21680.03 214