SED-MVS | | | 98.87 1 | 99.20 2 | 98.48 1 | 99.32 12 | 99.85 2 | 99.55 7 | 96.20 7 | 99.48 3 | 96.78 3 | 98.51 16 | 99.99 1 | 99.36 1 | 98.98 8 | 97.59 29 | 99.67 21 | 99.99 3 |
|
DVP-MVS++ | | | 98.75 2 | 99.11 7 | 98.33 3 | 99.41 5 | 99.85 2 | 99.61 3 | 96.22 6 | 99.32 10 | 95.80 6 | 98.27 19 | 99.97 4 | 99.22 4 | 98.95 9 | 97.48 33 | 99.71 19 | 99.98 5 |
|
MSP-MVS | | | 98.75 2 | 99.27 1 | 98.15 9 | 99.21 18 | 99.82 7 | 99.58 5 | 96.09 14 | 99.32 10 | 95.16 10 | 98.79 6 | 99.55 9 | 99.05 6 | 99.54 1 | 97.88 21 | 99.84 3 | 99.99 3 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 98.73 4 | 99.17 5 | 98.22 6 | 99.47 4 | 99.85 2 | 99.57 6 | 96.23 4 | 99.30 12 | 94.90 12 | 98.65 10 | 98.93 20 | 99.36 1 | 99.46 3 | 98.21 11 | 99.81 6 | 99.80 34 |
|
DPE-MVS |  | | 98.69 5 | 99.14 6 | 98.16 8 | 99.37 8 | 99.82 7 | 99.66 2 | 96.26 1 | 99.18 17 | 95.02 11 | 98.62 13 | 99.98 3 | 98.88 12 | 98.90 12 | 97.51 32 | 99.75 10 | 99.97 8 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS |  | | 98.65 6 | 98.87 13 | 98.38 2 | 99.30 14 | 99.85 2 | 99.14 24 | 96.23 4 | 99.51 2 | 97.16 1 | 96.01 35 | 99.99 1 | 98.90 11 | 98.89 13 | 97.88 21 | 99.56 51 | 99.98 5 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 98.60 7 | 98.97 10 | 98.18 7 | 99.38 7 | 99.78 12 | 99.35 16 | 96.14 10 | 99.24 14 | 95.66 8 | 98.19 21 | 99.01 17 | 98.66 18 | 98.77 15 | 97.80 24 | 99.86 2 | 99.97 8 |
|
SF-MVS | | | 98.55 8 | 98.75 15 | 98.32 4 | 99.48 1 | 99.68 21 | 99.51 9 | 96.24 2 | 99.08 21 | 95.94 4 | 98.64 11 | 99.30 13 | 99.02 8 | 97.94 29 | 96.86 51 | 99.75 10 | 99.76 37 |
|
SMA-MVS |  | | 98.47 9 | 99.06 8 | 97.77 13 | 99.48 1 | 99.78 12 | 99.37 13 | 96.14 10 | 99.29 13 | 93.03 21 | 97.59 29 | 99.97 4 | 99.03 7 | 98.94 10 | 98.30 9 | 99.60 34 | 99.58 66 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
NCCC | | | 98.41 10 | 99.18 3 | 97.52 17 | 99.36 9 | 99.84 6 | 99.55 7 | 96.08 16 | 99.33 9 | 91.77 26 | 98.79 6 | 99.46 11 | 98.59 20 | 99.15 7 | 98.07 18 | 99.73 14 | 99.64 55 |
|
SD-MVS | | | 98.33 11 | 99.01 9 | 97.54 16 | 97.17 52 | 99.77 14 | 99.14 24 | 96.09 14 | 99.34 8 | 94.06 17 | 97.91 26 | 99.89 6 | 99.18 5 | 97.99 28 | 98.21 11 | 99.63 28 | 99.95 13 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS |  | | 98.28 12 | 98.69 16 | 97.80 11 | 99.31 13 | 99.62 29 | 99.31 19 | 96.15 9 | 99.19 16 | 93.60 18 | 97.28 30 | 98.35 28 | 98.72 17 | 98.27 21 | 98.22 10 | 99.73 14 | 99.89 25 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MCST-MVS | | | 98.20 13 | 99.18 3 | 97.06 23 | 99.27 16 | 99.87 1 | 99.37 13 | 96.11 12 | 99.37 6 | 89.29 35 | 98.76 8 | 99.50 10 | 98.37 26 | 99.23 5 | 97.64 27 | 99.95 1 | 99.87 29 |
|
HPM-MVS++ |  | | 98.16 14 | 98.87 13 | 97.32 19 | 99.39 6 | 99.70 19 | 99.18 22 | 96.10 13 | 99.09 20 | 91.14 28 | 98.02 24 | 99.89 6 | 98.44 24 | 98.75 16 | 97.03 46 | 99.67 21 | 99.63 58 |
|
MSLP-MVS++ | | | 98.12 15 | 98.23 28 | 97.99 10 | 99.28 15 | 99.72 16 | 99.59 4 | 95.27 30 | 98.61 34 | 94.79 13 | 96.11 34 | 97.79 37 | 99.27 3 | 96.62 68 | 98.96 5 | 99.77 9 | 99.80 34 |
|
HFP-MVS | | | 98.02 16 | 98.55 20 | 97.40 18 | 99.11 22 | 99.69 20 | 99.41 11 | 95.41 28 | 98.79 31 | 91.86 25 | 98.61 14 | 98.16 30 | 99.02 8 | 97.87 34 | 97.40 35 | 99.60 34 | 99.35 85 |
|
TSAR-MVS + MP. | | | 97.98 17 | 98.62 19 | 97.23 21 | 97.08 53 | 99.55 35 | 99.17 23 | 95.69 23 | 99.40 5 | 93.04 20 | 96.68 32 | 98.96 19 | 98.58 21 | 98.82 14 | 96.95 48 | 99.81 6 | 99.96 10 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
zzz-MVS | | | 97.93 18 | 98.05 32 | 97.80 11 | 99.20 19 | 99.64 25 | 99.40 12 | 95.76 21 | 98.01 54 | 94.31 16 | 96.54 33 | 98.49 26 | 98.58 21 | 98.22 24 | 96.23 67 | 99.54 61 | 99.23 91 |
|
SteuartSystems-ACMMP | | | 97.86 19 | 98.91 11 | 96.64 27 | 98.89 28 | 99.79 9 | 99.34 17 | 95.20 32 | 98.48 36 | 89.91 33 | 98.58 15 | 98.69 22 | 96.84 50 | 98.92 11 | 98.16 15 | 99.66 23 | 99.74 40 |
Skip Steuart: Steuart Systems R&D Blog. |
CP-MVS | | | 97.81 20 | 98.26 27 | 97.28 20 | 99.00 25 | 99.65 24 | 99.10 26 | 95.32 29 | 98.38 42 | 92.21 24 | 98.33 18 | 97.74 38 | 98.50 23 | 97.66 43 | 96.55 61 | 99.57 46 | 99.48 75 |
|
ACMMPR | | | 97.78 21 | 98.28 25 | 97.20 22 | 99.03 24 | 99.68 21 | 99.37 13 | 95.24 31 | 98.86 30 | 91.16 27 | 97.86 27 | 97.26 40 | 98.79 15 | 97.64 45 | 97.40 35 | 99.60 34 | 99.25 90 |
|
DeepC-MVS_fast | | 95.01 1 | 97.67 22 | 98.22 29 | 97.02 24 | 99.00 25 | 99.79 9 | 99.10 26 | 95.82 19 | 99.05 24 | 89.53 34 | 93.54 50 | 96.77 43 | 98.83 13 | 99.34 4 | 99.44 2 | 99.82 4 | 99.63 58 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap |  | | 97.54 23 | 97.35 39 | 97.77 13 | 99.17 20 | 99.55 35 | 98.57 32 | 95.76 21 | 99.04 25 | 94.66 14 | 97.94 25 | 94.39 57 | 98.82 14 | 96.21 77 | 94.78 87 | 99.62 30 | 99.52 71 |
|
ACMMP_NAP | | | 97.51 24 | 98.27 26 | 96.63 28 | 99.34 10 | 99.72 16 | 99.25 20 | 95.94 18 | 98.11 48 | 87.10 48 | 96.98 31 | 98.50 25 | 98.61 19 | 98.58 18 | 96.83 54 | 99.56 51 | 99.14 99 |
|
MP-MVS |  | | 97.46 25 | 98.30 24 | 96.48 29 | 98.93 27 | 99.43 45 | 99.20 21 | 95.42 27 | 98.43 38 | 87.60 45 | 98.19 21 | 98.01 36 | 98.09 28 | 98.05 27 | 96.67 58 | 99.64 26 | 99.35 85 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
train_agg | | | 97.42 26 | 98.88 12 | 95.71 34 | 98.46 35 | 99.60 32 | 99.05 28 | 95.16 33 | 99.10 19 | 84.38 64 | 98.47 17 | 98.85 21 | 97.61 32 | 98.54 19 | 97.66 26 | 99.62 30 | 99.93 19 |
|
CPTT-MVS | | | 97.32 27 | 97.60 38 | 96.99 25 | 98.29 38 | 99.31 56 | 99.04 29 | 94.67 37 | 97.99 55 | 93.12 19 | 98.03 23 | 98.26 29 | 98.77 16 | 96.08 80 | 94.26 95 | 98.07 181 | 99.27 89 |
|
X-MVS | | | 97.20 28 | 98.42 23 | 95.77 32 | 99.04 23 | 99.64 25 | 98.95 31 | 95.10 35 | 98.16 46 | 83.97 70 | 98.27 19 | 98.08 33 | 97.95 29 | 97.89 31 | 97.46 34 | 99.58 42 | 99.47 76 |
|
PHI-MVS | | | 97.09 29 | 98.69 16 | 95.22 39 | 97.99 44 | 99.59 34 | 97.56 45 | 92.16 41 | 98.41 40 | 87.11 47 | 98.70 9 | 99.42 12 | 96.95 46 | 96.88 61 | 98.16 15 | 99.56 51 | 99.70 47 |
|
DPM-MVS | | | 97.07 30 | 97.99 33 | 96.00 31 | 97.25 51 | 99.16 65 | 99.67 1 | 95.99 17 | 99.08 21 | 85.97 53 | 93.00 55 | 98.44 27 | 97.47 35 | 99.22 6 | 99.62 1 | 99.66 23 | 97.44 155 |
|
PGM-MVS | | | 97.03 31 | 98.14 31 | 95.73 33 | 99.34 10 | 99.61 31 | 99.34 17 | 89.99 47 | 97.70 59 | 87.67 44 | 99.44 2 | 96.45 46 | 98.44 24 | 97.65 44 | 97.09 43 | 99.58 42 | 99.06 107 |
|
PLC |  | 94.37 2 | 97.03 31 | 96.54 44 | 97.60 15 | 98.84 29 | 98.64 74 | 98.17 37 | 94.99 36 | 99.01 26 | 96.80 2 | 93.21 54 | 95.64 48 | 97.36 36 | 96.37 72 | 94.79 86 | 99.41 87 | 98.12 140 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TSAR-MVS + ACMM | | | 96.90 33 | 98.64 18 | 94.88 41 | 98.12 42 | 99.47 40 | 99.01 30 | 95.43 26 | 99.23 15 | 81.98 90 | 95.95 36 | 99.16 16 | 95.13 70 | 98.61 17 | 98.11 17 | 99.58 42 | 99.93 19 |
|
TSAR-MVS + GP. | | | 96.47 34 | 98.45 22 | 94.17 46 | 92.12 87 | 99.29 57 | 97.76 41 | 88.05 58 | 99.36 7 | 90.26 32 | 97.82 28 | 99.21 14 | 97.21 40 | 96.78 66 | 96.74 56 | 99.63 28 | 99.94 16 |
|
xxxxxxxxxxxxxcwj | | | 96.27 35 | 94.51 65 | 98.32 4 | 99.48 1 | 99.68 21 | 99.51 9 | 96.24 2 | 99.08 21 | 95.94 4 | 98.64 11 | 69.64 161 | 99.02 8 | 97.94 29 | 96.86 51 | 99.75 10 | 99.76 37 |
|
EPNet | | | 96.23 36 | 97.89 35 | 94.29 44 | 97.62 47 | 99.44 44 | 97.14 53 | 88.63 54 | 98.16 46 | 88.14 40 | 99.46 1 | 94.15 60 | 94.61 80 | 97.20 54 | 97.23 39 | 99.57 46 | 99.59 63 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CNLPA | | | 96.14 37 | 95.43 55 | 96.98 26 | 98.55 32 | 99.41 49 | 95.91 59 | 95.15 34 | 99.00 27 | 95.71 7 | 84.21 106 | 94.55 55 | 97.25 38 | 95.50 102 | 96.23 67 | 99.28 108 | 99.09 106 |
|
MVS_111021_LR | | | 96.07 38 | 97.94 34 | 93.88 49 | 97.86 45 | 99.43 45 | 95.70 62 | 89.65 50 | 98.73 32 | 84.86 62 | 99.38 3 | 94.08 61 | 95.78 68 | 97.81 38 | 96.73 57 | 99.43 83 | 99.42 79 |
|
ACMMP |  | | 96.05 39 | 96.70 43 | 95.29 38 | 98.01 43 | 99.43 45 | 97.60 44 | 94.33 39 | 97.62 62 | 86.17 52 | 98.92 4 | 92.81 70 | 96.10 61 | 95.67 92 | 93.33 115 | 99.55 56 | 99.12 102 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
3Dnovator+ | | 90.72 7 | 95.99 40 | 96.42 46 | 95.50 36 | 98.18 40 | 99.33 55 | 97.44 47 | 87.73 63 | 97.93 56 | 92.36 23 | 84.67 99 | 97.33 39 | 97.55 34 | 97.32 50 | 98.47 8 | 99.72 18 | 99.88 26 |
|
DeepPCF-MVS | | 94.02 3 | 95.92 41 | 98.47 21 | 92.95 58 | 97.57 48 | 99.79 9 | 91.45 117 | 94.42 38 | 99.76 1 | 86.48 51 | 92.88 56 | 98.12 32 | 92.62 99 | 99.49 2 | 99.32 3 | 95.15 206 | 99.95 13 |
|
CDPH-MVS | | | 95.90 42 | 97.77 37 | 93.72 52 | 98.28 39 | 99.43 45 | 98.40 33 | 91.30 45 | 98.34 43 | 78.62 109 | 94.80 42 | 95.74 47 | 96.11 60 | 97.86 35 | 98.67 7 | 99.59 37 | 99.56 68 |
|
CSCG | | | 95.77 43 | 95.35 57 | 96.26 30 | 99.13 21 | 99.60 32 | 98.14 38 | 91.89 44 | 96.57 78 | 92.61 22 | 89.65 65 | 91.74 77 | 96.96 44 | 93.69 126 | 96.58 60 | 98.86 135 | 99.63 58 |
|
OMC-MVS | | | 95.75 44 | 95.84 52 | 95.64 35 | 98.52 34 | 99.34 54 | 97.15 52 | 92.02 43 | 98.94 29 | 90.45 31 | 88.31 72 | 94.64 53 | 96.35 56 | 96.02 83 | 95.99 75 | 99.34 97 | 97.65 151 |
|
MVS_111021_HR | | | 95.70 45 | 98.16 30 | 92.83 59 | 97.57 48 | 99.77 14 | 94.78 75 | 88.05 58 | 98.61 34 | 82.29 85 | 98.85 5 | 94.66 52 | 94.63 78 | 97.80 39 | 97.63 28 | 99.64 26 | 99.79 36 |
|
3Dnovator | | 90.31 8 | 95.67 46 | 96.16 48 | 95.11 40 | 98.59 31 | 99.37 53 | 97.50 46 | 87.98 60 | 98.02 53 | 89.09 36 | 85.36 98 | 94.62 54 | 97.66 30 | 97.10 57 | 98.90 6 | 99.82 4 | 99.73 43 |
|
CANet | | | 95.40 47 | 96.27 47 | 94.40 43 | 96.25 58 | 99.62 29 | 98.37 34 | 88.59 55 | 98.09 49 | 87.58 46 | 84.57 101 | 95.54 50 | 95.87 65 | 98.12 25 | 98.03 20 | 99.73 14 | 99.90 24 |
|
QAPM | | | 95.17 48 | 96.05 50 | 94.14 47 | 98.55 32 | 99.49 38 | 97.41 48 | 87.88 61 | 97.72 58 | 84.21 67 | 84.59 100 | 95.60 49 | 97.21 40 | 97.10 57 | 98.19 14 | 99.57 46 | 99.65 53 |
|
MVSTER | | | 94.75 49 | 96.50 45 | 92.70 62 | 90.91 102 | 94.51 145 | 97.37 50 | 83.37 96 | 98.40 41 | 89.04 37 | 93.23 53 | 97.04 42 | 95.91 64 | 97.73 40 | 95.59 83 | 99.61 32 | 99.01 108 |
|
TAPA-MVS | | 92.04 6 | 94.72 50 | 95.13 60 | 94.24 45 | 97.72 46 | 99.17 63 | 97.61 43 | 92.16 41 | 97.66 61 | 81.99 89 | 87.84 77 | 93.94 63 | 96.50 53 | 95.74 89 | 94.27 94 | 99.46 77 | 97.31 158 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DeepC-MVS | | 92.23 5 | 94.53 51 | 94.26 74 | 94.86 42 | 96.73 55 | 99.50 37 | 97.85 40 | 95.45 25 | 96.22 85 | 82.73 80 | 80.68 115 | 88.02 90 | 96.92 47 | 97.49 49 | 98.20 13 | 99.47 71 | 99.69 50 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CHOSEN 280x420 | | | 94.51 52 | 97.78 36 | 90.70 84 | 95.54 64 | 99.49 38 | 94.14 86 | 74.91 162 | 98.43 38 | 85.32 59 | 94.78 43 | 99.19 15 | 94.95 74 | 97.02 59 | 96.18 70 | 99.35 93 | 99.36 84 |
|
ETV-MVS | | | 94.49 53 | 97.23 41 | 91.29 77 | 90.43 111 | 98.55 77 | 93.41 97 | 84.53 89 | 99.16 18 | 83.13 75 | 94.72 44 | 94.08 61 | 96.61 52 | 97.72 41 | 96.60 59 | 99.61 32 | 99.81 33 |
|
MVS_0304 | | | 94.35 54 | 95.66 54 | 92.83 59 | 94.82 66 | 99.46 42 | 98.19 36 | 87.75 62 | 97.32 68 | 81.83 93 | 83.50 108 | 93.19 69 | 94.71 76 | 98.24 23 | 98.07 18 | 99.68 20 | 99.83 31 |
|
DROMVSNet | | | 94.33 55 | 96.88 42 | 91.36 75 | 90.12 118 | 97.70 96 | 95.20 70 | 80.27 121 | 98.63 33 | 85.97 53 | 93.92 49 | 93.85 66 | 97.09 42 | 97.54 47 | 96.81 55 | 99.49 67 | 99.70 47 |
|
MAR-MVS | | | 94.18 56 | 95.12 61 | 93.09 57 | 98.40 37 | 99.17 63 | 94.20 85 | 81.92 106 | 98.47 37 | 86.52 50 | 90.92 60 | 84.21 110 | 98.12 27 | 95.88 86 | 97.59 29 | 99.40 88 | 99.58 66 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 92.56 4 | 93.95 57 | 93.82 77 | 94.10 48 | 96.07 60 | 99.25 58 | 96.82 55 | 95.51 24 | 92.00 130 | 81.51 94 | 82.97 111 | 93.88 65 | 95.63 69 | 94.24 114 | 94.71 89 | 99.09 118 | 99.70 47 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DELS-MVS | | | 93.82 58 | 93.82 77 | 93.81 51 | 96.34 57 | 99.47 40 | 97.26 51 | 88.53 56 | 92.13 127 | 87.80 43 | 79.67 118 | 88.01 91 | 93.14 91 | 98.28 20 | 99.22 4 | 99.80 8 | 99.98 5 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CS-MVS-test | | | 93.60 59 | 96.02 51 | 90.78 83 | 89.70 126 | 96.59 115 | 95.20 70 | 80.27 121 | 97.92 57 | 83.05 76 | 92.48 57 | 91.67 78 | 97.09 42 | 97.54 47 | 96.24 66 | 99.36 91 | 99.72 44 |
|
CS-MVS | | | 93.54 60 | 96.14 49 | 90.51 87 | 89.94 123 | 98.14 87 | 93.50 95 | 82.81 100 | 98.32 44 | 79.69 104 | 88.76 68 | 93.30 68 | 97.56 33 | 97.83 36 | 96.85 53 | 99.55 56 | 99.74 40 |
|
OpenMVS |  | 88.43 11 | 93.49 61 | 93.62 80 | 93.34 53 | 98.46 35 | 99.39 50 | 97.00 54 | 87.66 65 | 95.37 92 | 81.21 96 | 75.96 133 | 91.58 79 | 96.21 59 | 96.37 72 | 97.10 42 | 99.52 62 | 99.54 70 |
|
EIA-MVS | | | 93.32 62 | 95.32 58 | 90.99 80 | 90.45 110 | 98.53 80 | 93.46 96 | 84.68 88 | 97.56 65 | 81.38 95 | 91.04 59 | 87.37 94 | 96.39 55 | 97.27 51 | 95.73 80 | 99.59 37 | 99.76 37 |
|
PVSNet_BlendedMVS | | | 93.30 63 | 93.46 84 | 93.10 55 | 95.60 62 | 99.38 51 | 93.59 93 | 88.70 52 | 98.09 49 | 88.10 41 | 86.96 85 | 75.02 133 | 93.08 92 | 97.89 31 | 96.90 49 | 99.56 51 | 100.00 1 |
|
PVSNet_Blended | | | 93.30 63 | 93.46 84 | 93.10 55 | 95.60 62 | 99.38 51 | 93.59 93 | 88.70 52 | 98.09 49 | 88.10 41 | 86.96 85 | 75.02 133 | 93.08 92 | 97.89 31 | 96.90 49 | 99.56 51 | 100.00 1 |
|
test2506 | | | 93.08 65 | 93.40 86 | 92.70 62 | 92.76 80 | 99.20 60 | 94.67 78 | 86.82 70 | 92.58 123 | 90.81 29 | 86.28 90 | 85.24 105 | 91.69 108 | 96.85 62 | 96.33 63 | 99.45 81 | 97.34 157 |
|
PMMVS | | | 93.05 66 | 95.40 56 | 90.31 89 | 91.41 95 | 97.54 101 | 92.62 109 | 83.25 98 | 98.08 52 | 79.44 107 | 95.18 40 | 88.52 89 | 96.43 54 | 95.70 90 | 93.88 98 | 98.68 151 | 98.91 111 |
|
LS3D | | | 92.70 67 | 92.23 95 | 93.26 54 | 96.24 59 | 98.72 69 | 97.93 39 | 96.17 8 | 96.41 79 | 72.46 124 | 81.39 114 | 80.76 123 | 97.66 30 | 95.69 91 | 95.62 82 | 99.07 120 | 97.02 166 |
|
baseline1 | | | 92.67 68 | 93.62 80 | 91.55 71 | 91.16 98 | 97.15 104 | 93.92 91 | 85.97 78 | 94.76 99 | 84.07 69 | 87.17 81 | 86.89 97 | 94.62 79 | 96.72 67 | 95.90 78 | 99.57 46 | 96.79 170 |
|
IS_MVSNet | | | 92.67 68 | 94.99 63 | 89.96 94 | 91.17 97 | 98.54 78 | 92.77 104 | 84.00 90 | 92.72 121 | 81.90 92 | 85.67 96 | 92.47 72 | 90.39 122 | 97.82 37 | 97.81 23 | 99.51 63 | 99.91 23 |
|
TSAR-MVS + COLMAP | | | 92.56 70 | 92.44 93 | 92.71 61 | 94.61 68 | 97.69 97 | 97.69 42 | 91.09 46 | 98.96 28 | 76.71 114 | 94.68 45 | 69.41 162 | 96.91 48 | 95.80 88 | 94.18 96 | 99.26 109 | 96.33 174 |
|
baseline | | | 92.56 70 | 94.38 70 | 90.43 88 | 90.71 106 | 98.23 86 | 95.07 72 | 80.73 120 | 97.52 66 | 82.45 84 | 87.34 80 | 85.91 101 | 94.07 86 | 96.29 76 | 95.94 77 | 99.58 42 | 99.47 76 |
|
canonicalmvs | | | 92.54 72 | 93.28 87 | 91.68 68 | 91.44 94 | 98.24 85 | 95.45 67 | 81.84 110 | 95.98 89 | 84.85 63 | 90.69 61 | 78.53 128 | 96.96 44 | 92.97 132 | 97.06 44 | 99.57 46 | 99.47 76 |
|
PatchMatch-RL | | | 92.54 72 | 92.82 92 | 92.21 64 | 96.57 56 | 98.74 68 | 91.85 114 | 86.30 73 | 96.23 84 | 85.18 60 | 95.21 39 | 73.58 139 | 94.22 85 | 95.40 105 | 93.08 119 | 99.14 115 | 97.49 154 |
|
MVS_Test | | | 92.42 74 | 94.43 66 | 90.08 93 | 90.69 107 | 98.26 84 | 94.78 75 | 80.81 119 | 97.27 69 | 78.76 108 | 87.06 83 | 84.25 109 | 95.84 66 | 97.67 42 | 97.56 31 | 99.59 37 | 98.93 110 |
|
thisisatest0530 | | | 92.31 75 | 95.14 59 | 89.02 103 | 90.02 119 | 98.45 82 | 91.30 118 | 83.58 93 | 96.90 74 | 77.90 111 | 90.45 63 | 94.33 58 | 91.98 105 | 95.57 96 | 91.43 141 | 99.31 103 | 98.81 114 |
|
tttt0517 | | | 92.29 76 | 95.12 61 | 88.99 104 | 90.02 119 | 98.44 83 | 91.19 121 | 83.58 93 | 96.88 75 | 77.86 112 | 90.45 63 | 94.32 59 | 91.98 105 | 95.54 98 | 91.43 141 | 99.31 103 | 98.78 116 |
|
EPP-MVSNet | | | 92.29 76 | 94.35 72 | 89.88 95 | 90.36 113 | 97.69 97 | 90.89 124 | 83.31 97 | 93.39 114 | 83.47 74 | 85.56 97 | 93.92 64 | 91.93 107 | 95.49 103 | 94.77 88 | 99.34 97 | 99.62 61 |
|
HQP-MVS | | | 91.94 78 | 93.03 89 | 90.66 86 | 93.69 70 | 96.48 119 | 95.92 58 | 89.73 48 | 97.33 67 | 72.65 122 | 95.37 37 | 73.56 140 | 92.75 98 | 94.85 111 | 94.12 97 | 99.23 112 | 99.51 72 |
|
MSDG | | | 91.93 79 | 90.28 122 | 93.85 50 | 97.36 50 | 97.12 105 | 95.88 60 | 94.07 40 | 94.52 103 | 84.13 68 | 76.74 127 | 80.89 122 | 92.54 100 | 93.97 122 | 93.61 109 | 99.14 115 | 95.10 183 |
|
UGNet | | | 91.71 80 | 94.43 66 | 88.53 106 | 92.72 82 | 98.00 90 | 90.22 131 | 84.81 87 | 94.45 104 | 83.05 76 | 87.65 79 | 92.74 71 | 81.04 175 | 94.51 113 | 94.45 91 | 99.32 102 | 99.21 95 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
thres100view900 | | | 91.69 81 | 91.52 101 | 91.88 67 | 91.61 89 | 98.89 66 | 95.49 65 | 86.96 67 | 93.24 115 | 80.82 98 | 87.90 74 | 71.15 151 | 96.88 49 | 96.00 84 | 93.51 111 | 99.51 63 | 99.95 13 |
|
CLD-MVS | | | 91.67 82 | 91.30 106 | 92.10 65 | 91.25 96 | 96.59 115 | 95.93 57 | 87.25 66 | 96.86 76 | 85.55 58 | 87.08 82 | 73.01 141 | 93.26 90 | 93.07 130 | 92.84 125 | 99.34 97 | 99.68 51 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ET-MVSNet_ETH3D | | | 91.59 83 | 94.96 64 | 87.65 109 | 72.75 213 | 97.24 103 | 95.29 68 | 82.73 102 | 96.81 77 | 78.49 110 | 95.30 38 | 90.48 85 | 97.23 39 | 91.60 147 | 94.31 92 | 99.43 83 | 99.01 108 |
|
tfpn200view9 | | | 91.47 84 | 91.31 104 | 91.65 69 | 91.61 89 | 98.69 71 | 95.03 73 | 86.17 74 | 93.24 115 | 80.82 98 | 87.90 74 | 71.15 151 | 96.80 51 | 95.53 99 | 92.82 127 | 99.47 71 | 99.88 26 |
|
CANet_DTU | | | 91.36 85 | 95.75 53 | 86.23 120 | 92.31 86 | 98.71 70 | 95.60 64 | 78.41 137 | 98.20 45 | 56.48 182 | 94.38 47 | 87.96 92 | 95.11 71 | 96.89 60 | 96.07 71 | 99.48 69 | 98.01 144 |
|
thres200 | | | 91.36 85 | 91.19 108 | 91.55 71 | 91.60 91 | 98.69 71 | 94.98 74 | 86.17 74 | 92.16 126 | 80.76 100 | 87.66 78 | 71.15 151 | 96.35 56 | 95.53 99 | 93.23 117 | 99.47 71 | 99.92 22 |
|
FMVSNet3 | | | 91.25 87 | 92.13 97 | 90.21 90 | 85.64 153 | 93.14 154 | 95.29 68 | 80.09 123 | 96.40 80 | 85.74 55 | 77.13 122 | 86.81 98 | 94.98 73 | 97.19 55 | 97.11 41 | 99.55 56 | 97.13 163 |
|
thres400 | | | 91.24 88 | 91.01 114 | 91.50 74 | 91.56 92 | 98.77 67 | 94.66 80 | 86.41 72 | 91.87 132 | 80.56 101 | 87.05 84 | 71.01 154 | 96.35 56 | 95.67 92 | 92.82 127 | 99.48 69 | 99.88 26 |
|
PVSNet_Blended_VisFu | | | 91.20 89 | 92.89 91 | 89.23 101 | 93.41 73 | 98.61 76 | 89.80 133 | 85.39 82 | 92.84 119 | 82.80 79 | 74.21 137 | 91.38 81 | 84.64 154 | 97.22 53 | 96.04 74 | 99.34 97 | 99.93 19 |
|
DCV-MVSNet | | | 91.15 90 | 92.00 98 | 90.17 92 | 90.78 104 | 92.23 171 | 93.70 92 | 81.17 117 | 95.16 95 | 82.98 78 | 89.46 67 | 83.31 112 | 93.98 87 | 91.79 146 | 92.87 122 | 98.41 169 | 99.18 97 |
|
DI_MVS_plusplus_trai | | | 91.11 91 | 91.47 102 | 90.68 85 | 90.01 121 | 97.77 94 | 95.87 61 | 83.56 95 | 94.72 100 | 82.12 88 | 68.46 156 | 87.46 93 | 93.07 94 | 96.46 71 | 95.73 80 | 99.47 71 | 99.71 46 |
|
diffmvs | | | 91.05 92 | 91.15 109 | 90.93 81 | 90.15 116 | 97.79 93 | 94.05 87 | 85.45 80 | 95.63 90 | 81.95 91 | 80.45 117 | 73.01 141 | 94.47 81 | 95.56 97 | 95.89 79 | 99.49 67 | 99.72 44 |
|
Vis-MVSNet (Re-imp) | | | 91.05 92 | 94.43 66 | 87.11 111 | 91.05 100 | 97.99 91 | 92.53 110 | 83.82 92 | 92.71 122 | 76.28 115 | 84.50 102 | 92.43 73 | 79.52 180 | 97.24 52 | 97.68 25 | 99.43 83 | 98.45 127 |
|
thres600view7 | | | 90.97 94 | 90.70 116 | 91.30 76 | 91.53 93 | 98.69 71 | 94.33 81 | 86.17 74 | 91.75 134 | 80.19 102 | 86.06 94 | 70.90 155 | 96.10 61 | 95.53 99 | 92.08 134 | 99.47 71 | 99.86 30 |
|
baseline2 | | | 90.91 95 | 94.40 69 | 86.84 114 | 87.54 144 | 96.83 111 | 89.95 132 | 79.22 132 | 96.00 88 | 77.04 113 | 88.68 69 | 89.73 86 | 88.01 143 | 96.35 74 | 93.51 111 | 99.29 105 | 99.68 51 |
|
ACMP | | 89.80 9 | 90.72 96 | 91.15 109 | 90.21 90 | 92.55 84 | 96.52 118 | 92.63 108 | 85.71 79 | 94.65 101 | 81.06 97 | 93.32 51 | 70.56 158 | 90.52 121 | 92.68 136 | 91.05 146 | 98.76 143 | 99.31 88 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
casdiffmvs | | | 90.69 97 | 90.56 119 | 90.85 82 | 90.14 117 | 97.81 92 | 92.94 102 | 85.30 83 | 93.47 113 | 82.50 83 | 76.34 131 | 74.12 137 | 94.67 77 | 96.51 70 | 96.26 65 | 99.55 56 | 99.42 79 |
|
ACMM | | 89.40 10 | 90.58 98 | 90.02 125 | 91.23 78 | 93.30 75 | 94.75 141 | 90.69 127 | 88.22 57 | 95.20 93 | 82.70 81 | 88.54 70 | 71.40 149 | 93.48 89 | 93.64 127 | 90.94 147 | 98.99 126 | 95.72 179 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GBi-Net | | | 90.49 99 | 91.12 112 | 89.75 97 | 84.99 156 | 92.73 159 | 93.94 88 | 80.09 123 | 96.40 80 | 85.74 55 | 77.13 122 | 86.81 98 | 94.42 82 | 94.12 116 | 93.73 100 | 99.35 93 | 96.90 167 |
|
test1 | | | 90.49 99 | 91.12 112 | 89.75 97 | 84.99 156 | 92.73 159 | 93.94 88 | 80.09 123 | 96.40 80 | 85.74 55 | 77.13 122 | 86.81 98 | 94.42 82 | 94.12 116 | 93.73 100 | 99.35 93 | 96.90 167 |
|
ECVR-MVS |  | | 90.37 101 | 88.96 134 | 92.01 66 | 92.76 80 | 99.20 60 | 94.67 78 | 86.82 70 | 92.58 123 | 86.71 49 | 68.95 155 | 71.46 148 | 91.69 108 | 96.85 62 | 96.33 63 | 99.45 81 | 97.38 156 |
|
LGP-MVS_train | | | 90.34 102 | 91.63 100 | 88.83 105 | 93.31 74 | 96.14 124 | 95.49 65 | 85.24 85 | 93.91 108 | 68.71 136 | 93.96 48 | 71.63 146 | 91.12 117 | 93.82 124 | 92.79 129 | 99.07 120 | 99.16 98 |
|
test1111 | | | 90.01 103 | 88.67 136 | 91.57 70 | 92.68 83 | 99.20 60 | 94.25 84 | 86.90 69 | 92.03 129 | 85.04 61 | 67.79 160 | 71.21 150 | 91.12 117 | 96.83 64 | 96.34 62 | 99.42 86 | 97.28 159 |
|
EPNet_dtu | | | 89.82 104 | 94.18 75 | 84.74 130 | 96.87 54 | 95.54 134 | 92.65 107 | 86.91 68 | 96.99 71 | 54.17 193 | 92.41 58 | 88.54 88 | 78.35 183 | 96.15 79 | 96.05 73 | 99.47 71 | 93.60 191 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RPSCF | | | 89.81 105 | 89.75 126 | 89.88 95 | 93.22 77 | 93.99 148 | 94.78 75 | 85.23 86 | 94.01 107 | 82.52 82 | 95.00 41 | 87.23 95 | 92.01 104 | 85.16 200 | 83.48 205 | 91.54 211 | 89.38 205 |
|
MDTV_nov1_ep13 | | | 89.63 106 | 94.38 70 | 84.09 137 | 88.76 136 | 97.53 102 | 89.37 141 | 68.46 194 | 96.95 72 | 70.27 131 | 87.88 76 | 93.67 67 | 91.04 119 | 93.12 128 | 93.83 99 | 96.62 199 | 97.68 150 |
|
UA-Net | | | 89.56 107 | 93.03 89 | 85.52 126 | 92.46 85 | 97.55 100 | 91.92 113 | 81.91 107 | 85.24 165 | 71.39 126 | 83.57 107 | 96.56 45 | 76.01 194 | 96.81 65 | 97.04 45 | 99.46 77 | 94.41 186 |
|
FMVSNet2 | | | 89.51 108 | 89.63 127 | 89.38 99 | 84.99 156 | 92.73 159 | 93.94 88 | 79.28 130 | 93.73 110 | 84.28 66 | 69.36 154 | 82.32 115 | 94.42 82 | 96.16 78 | 96.22 69 | 99.35 93 | 96.90 167 |
|
CostFormer | | | 89.42 109 | 91.67 99 | 86.80 116 | 89.99 122 | 96.33 121 | 90.75 125 | 64.79 197 | 95.17 94 | 83.62 73 | 86.20 92 | 82.15 117 | 92.96 95 | 89.22 169 | 92.94 120 | 98.68 151 | 99.65 53 |
|
FC-MVSNet-train | | | 89.37 110 | 89.62 128 | 89.08 102 | 90.48 109 | 94.16 147 | 89.45 137 | 83.99 91 | 91.09 137 | 80.09 103 | 82.84 112 | 74.52 136 | 91.44 114 | 93.79 125 | 91.57 140 | 99.01 124 | 99.35 85 |
|
OPM-MVS | | | 89.33 111 | 87.45 145 | 91.53 73 | 94.49 69 | 96.20 123 | 96.47 56 | 89.72 49 | 82.77 172 | 75.43 116 | 80.53 116 | 70.86 156 | 93.80 88 | 94.00 120 | 91.85 138 | 99.29 105 | 95.91 177 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
test-LLR | | | 89.31 112 | 93.60 82 | 84.30 134 | 88.08 140 | 96.98 107 | 88.10 146 | 78.00 138 | 94.83 97 | 62.43 156 | 84.29 104 | 90.96 82 | 89.70 127 | 95.63 94 | 92.86 123 | 99.51 63 | 99.64 55 |
|
EPMVS | | | 89.31 112 | 93.70 79 | 84.18 136 | 91.10 99 | 98.10 88 | 89.17 143 | 62.71 201 | 96.24 83 | 70.21 133 | 86.46 89 | 92.37 74 | 92.79 96 | 91.95 144 | 93.59 110 | 99.10 117 | 97.19 160 |
|
Anonymous20231211 | | | 89.22 114 | 87.56 143 | 91.16 79 | 90.23 115 | 96.62 114 | 93.22 99 | 85.44 81 | 92.89 118 | 84.37 65 | 60.13 176 | 81.25 120 | 96.02 63 | 90.61 154 | 92.01 135 | 97.70 189 | 99.41 81 |
|
Effi-MVS+ | | | 88.96 115 | 91.13 111 | 86.43 118 | 89.12 132 | 97.62 99 | 93.15 100 | 75.52 156 | 93.90 109 | 66.40 140 | 86.23 91 | 70.51 159 | 95.03 72 | 95.89 85 | 94.28 93 | 99.37 89 | 99.51 72 |
|
SCA | | | 88.76 116 | 94.29 73 | 82.30 153 | 89.33 129 | 96.81 112 | 87.68 148 | 61.52 206 | 96.95 72 | 64.68 146 | 88.35 71 | 94.80 51 | 91.58 111 | 92.23 138 | 93.21 118 | 98.99 126 | 97.70 149 |
|
test0.0.03 1 | | | 88.71 117 | 92.22 96 | 84.63 132 | 88.08 140 | 94.71 143 | 85.91 171 | 78.00 138 | 95.54 91 | 72.96 120 | 86.10 93 | 85.88 103 | 83.59 162 | 92.95 134 | 93.24 116 | 99.25 111 | 97.09 164 |
|
PatchmatchNet |  | | 88.67 118 | 94.10 76 | 82.34 152 | 89.38 128 | 97.72 95 | 87.24 154 | 62.18 204 | 97.00 70 | 64.79 145 | 87.97 73 | 94.43 56 | 91.55 112 | 91.21 152 | 92.77 130 | 98.90 131 | 97.60 153 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
dps | | | 88.66 119 | 90.19 123 | 86.88 113 | 89.94 123 | 96.48 119 | 89.56 135 | 64.08 199 | 94.12 106 | 89.00 38 | 83.39 109 | 82.56 114 | 90.16 125 | 86.81 192 | 89.26 166 | 98.53 164 | 98.71 118 |
|
TESTMET0.1,1 | | | 88.63 120 | 93.60 82 | 82.84 149 | 84.07 163 | 96.98 107 | 88.10 146 | 73.22 176 | 94.83 97 | 62.43 156 | 84.29 104 | 90.96 82 | 89.70 127 | 95.63 94 | 92.86 123 | 99.51 63 | 99.64 55 |
|
CHOSEN 1792x2688 | | | 88.63 120 | 89.01 132 | 88.19 107 | 94.83 65 | 99.21 59 | 92.66 106 | 79.85 127 | 92.40 125 | 72.18 125 | 56.38 197 | 80.22 125 | 90.24 123 | 97.64 45 | 97.28 38 | 99.37 89 | 99.94 16 |
|
CDS-MVSNet | | | 88.59 122 | 90.13 124 | 86.79 117 | 86.98 149 | 95.43 135 | 92.03 112 | 81.33 115 | 85.54 162 | 74.51 119 | 77.07 125 | 85.14 106 | 87.03 148 | 93.90 123 | 95.18 84 | 98.88 133 | 98.67 120 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IB-MVS | | 84.67 14 | 88.34 123 | 90.61 118 | 85.70 123 | 92.99 79 | 98.62 75 | 78.85 197 | 86.07 77 | 94.35 105 | 88.64 39 | 85.99 95 | 75.69 131 | 68.09 207 | 88.21 172 | 91.43 141 | 99.55 56 | 99.96 10 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test-mter | | | 88.25 124 | 93.27 88 | 82.38 151 | 83.89 164 | 96.86 110 | 87.10 158 | 72.80 178 | 94.58 102 | 61.85 161 | 83.21 110 | 90.65 84 | 89.18 131 | 95.43 104 | 92.58 132 | 99.46 77 | 99.61 62 |
|
COLMAP_ROB |  | 84.42 15 | 88.24 125 | 87.32 146 | 89.32 100 | 95.83 61 | 95.82 128 | 92.81 103 | 87.68 64 | 92.09 128 | 72.64 123 | 72.34 145 | 79.96 126 | 88.79 134 | 89.54 164 | 89.46 162 | 98.16 178 | 92.00 197 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
IterMVS-LS | | | 87.95 126 | 89.40 130 | 86.26 119 | 88.79 135 | 90.93 187 | 91.23 120 | 76.05 153 | 90.87 138 | 71.07 128 | 75.51 134 | 81.18 121 | 91.21 116 | 94.11 119 | 95.01 85 | 99.20 114 | 98.23 135 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HyFIR lowres test | | | 87.86 127 | 88.25 139 | 87.40 110 | 94.67 67 | 98.54 78 | 90.33 130 | 76.51 152 | 89.60 146 | 70.89 129 | 51.43 208 | 85.69 104 | 92.79 96 | 96.59 69 | 95.96 76 | 99.22 113 | 99.94 16 |
|
Vis-MVSNet |  | | 87.60 128 | 91.31 104 | 83.27 144 | 89.14 131 | 98.04 89 | 90.35 129 | 79.42 128 | 87.23 151 | 66.92 139 | 79.10 121 | 84.63 108 | 74.34 201 | 95.81 87 | 96.06 72 | 99.46 77 | 98.32 131 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
GeoE | | | 87.55 129 | 88.17 140 | 86.82 115 | 88.74 137 | 96.32 122 | 92.75 105 | 74.93 161 | 90.13 143 | 72.73 121 | 69.47 153 | 74.03 138 | 92.51 101 | 93.99 121 | 93.62 108 | 99.29 105 | 99.59 63 |
|
RPMNet | | | 87.35 130 | 92.41 94 | 81.45 157 | 88.85 134 | 96.06 125 | 89.42 140 | 59.59 213 | 93.57 111 | 61.81 162 | 76.48 130 | 91.48 80 | 90.18 124 | 96.32 75 | 93.37 114 | 98.87 134 | 99.59 63 |
|
tpm cat1 | | | 87.34 131 | 88.52 138 | 85.95 121 | 89.83 125 | 95.80 129 | 90.73 126 | 64.91 196 | 92.99 117 | 82.21 87 | 71.19 151 | 82.68 113 | 90.13 126 | 86.38 193 | 90.87 149 | 97.90 186 | 99.74 40 |
|
MS-PatchMatch | | | 87.19 132 | 88.59 137 | 85.55 125 | 93.15 78 | 96.58 117 | 92.35 111 | 74.19 169 | 91.97 131 | 70.33 130 | 71.42 149 | 85.89 102 | 84.28 156 | 93.12 128 | 89.16 168 | 99.00 125 | 91.99 198 |
|
Effi-MVS+-dtu | | | 87.18 133 | 90.48 120 | 83.32 143 | 86.51 150 | 95.76 131 | 91.16 123 | 74.28 168 | 90.44 142 | 61.31 165 | 86.72 88 | 72.68 144 | 91.25 115 | 95.01 109 | 93.64 103 | 95.45 205 | 99.12 102 |
|
FMVSNet5 | | | 87.06 134 | 89.52 129 | 84.20 135 | 79.92 201 | 86.57 207 | 87.11 157 | 72.37 180 | 96.06 86 | 75.41 117 | 84.33 103 | 91.76 76 | 91.60 110 | 91.51 148 | 91.22 144 | 98.77 140 | 85.16 210 |
|
Fast-Effi-MVS+-dtu | | | 86.94 135 | 91.27 107 | 81.89 154 | 86.27 151 | 95.06 136 | 90.68 128 | 68.93 191 | 91.76 133 | 57.18 180 | 89.56 66 | 75.85 130 | 89.19 130 | 94.56 112 | 92.84 125 | 99.07 120 | 99.23 91 |
|
Fast-Effi-MVS+ | | | 86.94 135 | 87.88 142 | 85.84 122 | 86.99 148 | 95.80 129 | 91.24 119 | 73.48 175 | 92.75 120 | 69.22 134 | 72.70 143 | 65.71 168 | 94.84 75 | 94.98 110 | 94.71 89 | 99.26 109 | 98.48 126 |
|
tpmrst | | | 86.78 137 | 90.29 121 | 82.69 150 | 90.55 108 | 96.95 109 | 88.49 145 | 62.58 202 | 95.09 96 | 63.52 152 | 76.67 129 | 84.00 111 | 92.05 103 | 87.93 175 | 91.89 137 | 98.98 128 | 99.50 74 |
|
CR-MVSNet | | | 86.73 138 | 91.47 102 | 81.20 160 | 88.56 138 | 96.06 125 | 89.43 138 | 61.37 207 | 93.57 111 | 60.81 167 | 72.89 142 | 88.85 87 | 88.13 141 | 96.03 81 | 93.64 103 | 98.89 132 | 99.22 93 |
|
ADS-MVSNet | | | 86.68 139 | 90.79 115 | 81.88 155 | 90.38 112 | 96.81 112 | 86.90 159 | 60.50 211 | 96.01 87 | 63.93 149 | 81.67 113 | 84.72 107 | 90.78 120 | 87.03 186 | 91.67 139 | 98.77 140 | 97.63 152 |
|
FMVSNet1 | | | 85.85 140 | 84.91 156 | 86.96 112 | 82.70 169 | 91.39 181 | 91.54 116 | 77.45 144 | 85.29 164 | 79.56 106 | 60.70 173 | 72.68 144 | 92.37 102 | 94.12 116 | 93.73 100 | 98.12 179 | 96.44 171 |
|
FC-MVSNet-test | | | 85.51 141 | 89.08 131 | 81.35 158 | 85.31 155 | 93.35 150 | 87.65 149 | 77.55 143 | 90.01 144 | 64.07 148 | 79.63 119 | 81.83 119 | 74.94 198 | 92.08 141 | 90.83 151 | 98.55 161 | 95.81 178 |
|
ACMH | | 85.22 13 | 85.40 142 | 85.73 153 | 85.02 128 | 91.76 88 | 94.46 146 | 84.97 177 | 81.54 113 | 85.18 166 | 65.22 144 | 76.92 126 | 64.22 169 | 88.58 137 | 90.17 156 | 90.25 157 | 98.03 182 | 98.90 112 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAMVS | | | 85.35 143 | 86.00 152 | 84.59 133 | 84.97 159 | 95.57 133 | 88.98 144 | 77.29 147 | 81.44 177 | 71.36 127 | 71.48 148 | 75.00 135 | 87.03 148 | 91.92 145 | 92.21 133 | 97.92 185 | 94.40 187 |
|
ACMH+ | | 85.62 12 | 85.27 144 | 84.96 155 | 85.64 124 | 90.84 103 | 94.78 140 | 87.46 151 | 81.30 116 | 86.94 152 | 67.35 138 | 74.56 136 | 64.09 170 | 88.70 135 | 88.14 173 | 89.00 169 | 98.22 177 | 97.19 160 |
|
USDC | | | 85.11 145 | 85.35 154 | 84.83 129 | 89.45 127 | 94.93 139 | 92.98 101 | 77.30 146 | 90.53 140 | 61.80 163 | 76.69 128 | 59.62 180 | 88.90 133 | 92.78 135 | 90.79 153 | 98.53 164 | 92.12 195 |
|
IterMVS | | | 85.02 146 | 88.98 133 | 80.41 166 | 87.03 147 | 90.34 195 | 89.78 134 | 69.45 188 | 89.77 145 | 54.04 194 | 73.71 139 | 82.05 118 | 83.44 165 | 95.11 107 | 93.64 103 | 98.75 144 | 98.22 137 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 84.91 147 | 88.90 135 | 80.25 169 | 87.04 146 | 90.27 196 | 89.23 142 | 69.25 190 | 89.17 147 | 54.04 194 | 73.65 140 | 82.22 116 | 83.23 170 | 95.11 107 | 93.63 107 | 98.73 145 | 98.23 135 |
|
PatchT | | | 84.89 148 | 90.67 117 | 78.13 189 | 87.83 143 | 94.99 138 | 72.46 209 | 60.22 212 | 91.74 135 | 60.81 167 | 72.16 146 | 86.95 96 | 88.13 141 | 96.03 81 | 93.64 103 | 99.36 91 | 99.22 93 |
|
pmmvs4 | | | 84.88 149 | 84.67 157 | 85.13 127 | 82.80 168 | 92.37 164 | 87.29 152 | 79.08 133 | 90.51 141 | 74.94 118 | 70.37 152 | 62.49 173 | 88.17 140 | 92.01 143 | 88.51 174 | 98.49 167 | 96.44 171 |
|
test_part1 | | | 84.71 150 | 82.08 167 | 87.78 108 | 89.19 130 | 91.40 180 | 91.19 121 | 79.25 131 | 79.62 189 | 82.23 86 | 57.07 193 | 70.79 157 | 88.95 132 | 87.46 180 | 89.91 159 | 95.89 204 | 98.31 133 |
|
CVMVSNet | | | 84.01 151 | 86.91 147 | 80.61 164 | 88.39 139 | 93.29 151 | 86.06 167 | 82.29 104 | 83.13 170 | 54.29 190 | 72.68 144 | 79.59 127 | 75.11 197 | 91.23 151 | 92.91 121 | 97.54 193 | 95.58 180 |
|
tpm | | | 83.97 152 | 87.97 141 | 79.31 179 | 87.35 145 | 93.21 153 | 86.00 169 | 61.90 205 | 90.69 139 | 54.01 196 | 79.42 120 | 75.61 132 | 88.65 136 | 87.18 184 | 90.48 155 | 97.95 184 | 99.21 95 |
|
GA-MVS | | | 83.83 153 | 86.63 148 | 80.58 165 | 85.40 154 | 94.73 142 | 87.27 153 | 78.76 136 | 86.49 154 | 49.57 204 | 74.21 137 | 67.67 165 | 83.38 166 | 95.28 106 | 90.92 148 | 99.08 119 | 97.09 164 |
|
UniMVSNet_NR-MVSNet | | | 83.83 153 | 83.70 160 | 83.98 138 | 81.41 179 | 92.56 163 | 86.54 162 | 82.96 99 | 85.98 159 | 66.27 141 | 66.16 164 | 63.63 171 | 87.78 145 | 87.65 178 | 90.81 152 | 98.94 129 | 99.13 100 |
|
UniMVSNet (Re) | | | 83.28 155 | 83.16 161 | 83.42 142 | 81.93 174 | 93.12 155 | 86.27 165 | 80.83 118 | 85.88 160 | 68.23 137 | 64.56 167 | 60.58 175 | 84.25 157 | 89.13 170 | 89.44 164 | 99.04 123 | 99.40 82 |
|
thisisatest0515 | | | 83.17 156 | 86.49 149 | 79.30 180 | 82.04 172 | 93.12 155 | 78.70 198 | 77.92 140 | 86.43 155 | 63.05 153 | 74.91 135 | 73.01 141 | 75.56 196 | 92.10 140 | 88.05 187 | 98.50 166 | 97.76 148 |
|
TinyColmap | | | 83.03 157 | 82.24 165 | 83.95 139 | 88.88 133 | 93.22 152 | 89.48 136 | 76.89 149 | 87.53 150 | 62.12 158 | 68.46 156 | 55.03 196 | 88.43 139 | 90.87 153 | 89.65 160 | 97.89 187 | 90.91 201 |
|
testgi | | | 82.88 158 | 86.14 151 | 79.08 182 | 86.05 152 | 92.20 172 | 81.23 194 | 74.77 164 | 88.70 148 | 57.63 179 | 86.73 87 | 61.53 174 | 76.83 191 | 90.33 155 | 89.43 165 | 97.99 183 | 94.05 188 |
|
DU-MVS | | | 82.87 159 | 82.16 166 | 83.70 141 | 80.77 188 | 92.24 168 | 86.54 162 | 81.91 107 | 86.41 156 | 66.27 141 | 63.95 168 | 55.66 194 | 87.78 145 | 86.83 189 | 90.86 150 | 98.94 129 | 99.13 100 |
|
MIMVSNet | | | 82.87 159 | 86.17 150 | 79.02 183 | 77.23 209 | 92.88 158 | 84.88 178 | 60.62 210 | 86.72 153 | 64.16 147 | 73.58 141 | 71.48 147 | 88.51 138 | 94.14 115 | 93.50 113 | 98.72 147 | 90.87 202 |
|
NR-MVSNet | | | 82.37 161 | 81.95 169 | 82.85 148 | 82.56 171 | 92.24 168 | 87.49 150 | 81.91 107 | 86.41 156 | 65.51 143 | 63.95 168 | 52.93 205 | 80.80 177 | 89.41 166 | 89.61 161 | 98.85 136 | 99.10 105 |
|
Baseline_NR-MVSNet | | | 82.08 162 | 80.64 176 | 83.77 140 | 80.77 188 | 88.50 202 | 86.88 160 | 81.71 111 | 85.58 161 | 68.80 135 | 58.20 188 | 57.75 186 | 86.16 150 | 86.83 189 | 88.68 171 | 98.33 174 | 98.90 112 |
|
TranMVSNet+NR-MVSNet | | | 82.07 163 | 81.36 172 | 82.90 147 | 80.43 194 | 91.39 181 | 87.16 156 | 82.75 101 | 84.28 168 | 62.98 154 | 62.28 172 | 56.01 193 | 85.30 153 | 86.06 195 | 90.69 154 | 98.80 137 | 98.80 115 |
|
pm-mvs1 | | | 81.68 164 | 81.70 170 | 81.65 156 | 82.61 170 | 92.26 167 | 85.54 175 | 78.95 134 | 76.29 200 | 63.81 150 | 58.43 187 | 66.33 167 | 80.63 178 | 92.30 137 | 89.93 158 | 98.37 173 | 96.39 173 |
|
TDRefinement | | | 81.49 165 | 80.08 182 | 83.13 146 | 91.02 101 | 94.53 144 | 91.66 115 | 82.43 103 | 81.70 175 | 62.12 158 | 62.30 171 | 59.32 181 | 73.93 202 | 87.31 182 | 85.29 198 | 97.61 190 | 90.14 203 |
|
anonymousdsp | | | 81.29 166 | 84.52 159 | 77.52 191 | 79.83 202 | 92.62 162 | 82.61 189 | 70.88 185 | 80.76 181 | 50.82 201 | 68.35 158 | 68.76 163 | 82.45 173 | 93.00 131 | 89.45 163 | 98.55 161 | 98.69 119 |
|
gg-mvs-nofinetune | | | 81.27 167 | 84.65 158 | 77.32 192 | 87.96 142 | 98.48 81 | 95.64 63 | 56.36 216 | 59.35 218 | 32.80 222 | 47.96 212 | 92.11 75 | 91.49 113 | 98.12 25 | 97.00 47 | 99.65 25 | 99.56 68 |
|
tfpnnormal | | | 81.11 168 | 79.33 190 | 83.19 145 | 84.23 161 | 92.29 166 | 86.76 161 | 82.27 105 | 72.67 206 | 62.02 160 | 56.10 199 | 53.86 202 | 85.35 152 | 92.06 142 | 89.23 167 | 98.49 167 | 99.11 104 |
|
UniMVSNet_ETH3D | | | 80.95 169 | 77.71 198 | 84.74 130 | 84.45 160 | 93.11 157 | 86.45 164 | 79.97 126 | 75.21 202 | 70.22 132 | 51.24 209 | 50.26 211 | 89.55 129 | 84.47 202 | 91.12 145 | 97.81 188 | 98.53 124 |
|
V42 | | | 80.88 170 | 80.74 174 | 81.05 161 | 81.21 182 | 92.01 174 | 85.96 170 | 77.75 142 | 81.62 176 | 59.73 174 | 59.93 179 | 58.35 185 | 82.98 172 | 86.90 188 | 88.06 186 | 98.69 150 | 98.32 131 |
|
v2v482 | | | 80.86 171 | 80.52 180 | 81.25 159 | 80.79 187 | 91.85 175 | 85.68 173 | 78.78 135 | 81.05 178 | 58.09 177 | 60.46 174 | 56.08 191 | 85.45 151 | 87.27 183 | 88.53 173 | 98.73 145 | 98.38 130 |
|
v8 | | | 80.61 172 | 80.61 178 | 80.62 163 | 81.51 177 | 91.00 186 | 86.06 167 | 74.07 171 | 81.78 174 | 59.93 173 | 60.10 178 | 58.42 184 | 83.35 167 | 86.99 187 | 88.11 184 | 98.79 138 | 97.83 146 |
|
pmmvs5 | | | 80.48 173 | 81.43 171 | 79.36 178 | 81.50 178 | 92.24 168 | 82.07 192 | 74.08 170 | 78.10 193 | 55.86 185 | 67.72 161 | 54.35 199 | 83.91 161 | 92.97 132 | 88.65 172 | 98.77 140 | 96.01 175 |
|
v10 | | | 80.38 174 | 80.73 175 | 79.96 171 | 81.22 181 | 90.40 194 | 86.11 166 | 71.63 182 | 82.42 173 | 57.65 178 | 58.74 185 | 57.47 187 | 84.44 155 | 89.75 160 | 88.28 177 | 98.71 148 | 98.06 143 |
|
v1144 | | | 80.36 175 | 80.63 177 | 80.05 170 | 80.86 186 | 91.56 178 | 85.78 172 | 75.22 158 | 80.73 182 | 55.83 186 | 58.51 186 | 56.99 189 | 83.93 160 | 89.79 159 | 88.25 178 | 98.68 151 | 98.56 123 |
|
SixPastTwentyTwo | | | 80.28 176 | 82.06 168 | 78.21 188 | 81.89 176 | 92.35 165 | 77.72 199 | 74.48 165 | 83.04 171 | 54.22 191 | 76.06 132 | 56.40 190 | 83.55 163 | 86.83 189 | 84.83 200 | 97.38 194 | 94.93 184 |
|
CP-MVSNet | | | 79.90 177 | 79.49 187 | 80.38 167 | 80.72 190 | 90.83 188 | 82.98 186 | 75.17 159 | 79.70 187 | 61.39 164 | 59.74 180 | 51.98 208 | 83.31 168 | 87.37 181 | 88.38 175 | 98.71 148 | 98.45 127 |
|
v1192 | | | 79.84 178 | 80.05 184 | 79.61 174 | 80.49 193 | 91.04 185 | 85.56 174 | 74.37 167 | 80.73 182 | 54.35 189 | 57.07 193 | 54.54 198 | 84.23 158 | 89.94 157 | 88.38 175 | 98.63 155 | 98.61 121 |
|
WR-MVS_H | | | 79.76 179 | 80.07 183 | 79.40 177 | 81.25 180 | 91.73 177 | 82.77 187 | 74.82 163 | 79.02 192 | 62.55 155 | 59.41 182 | 57.32 188 | 76.27 193 | 87.61 179 | 87.30 192 | 98.78 139 | 98.09 141 |
|
WR-MVS | | | 79.67 180 | 80.25 181 | 79.00 184 | 80.65 191 | 91.16 183 | 83.31 184 | 76.57 151 | 80.97 179 | 60.50 172 | 59.20 183 | 58.66 183 | 74.38 200 | 85.85 197 | 87.76 189 | 98.61 156 | 98.14 138 |
|
v148 | | | 79.66 181 | 79.13 192 | 80.27 168 | 81.02 184 | 91.76 176 | 81.90 193 | 79.32 129 | 79.24 190 | 63.79 151 | 58.07 190 | 54.34 200 | 77.17 189 | 84.42 203 | 87.52 191 | 98.40 170 | 98.59 122 |
|
LTVRE_ROB | | 79.45 16 | 79.66 181 | 80.55 179 | 78.61 186 | 83.01 167 | 92.19 173 | 87.18 155 | 73.69 174 | 71.70 209 | 43.22 217 | 71.22 150 | 50.85 209 | 87.82 144 | 89.47 165 | 90.43 156 | 96.75 197 | 98.00 145 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v144192 | | | 79.61 183 | 79.77 185 | 79.41 176 | 80.28 195 | 91.06 184 | 84.87 179 | 73.86 172 | 79.65 188 | 55.38 187 | 57.76 191 | 55.20 195 | 83.46 164 | 88.42 171 | 87.89 188 | 98.61 156 | 98.42 129 |
|
v1921920 | | | 79.55 184 | 79.77 185 | 79.30 180 | 80.24 196 | 90.77 190 | 85.37 176 | 73.75 173 | 80.38 184 | 53.78 197 | 56.89 196 | 54.18 201 | 84.05 159 | 89.55 163 | 88.13 183 | 98.59 158 | 98.52 125 |
|
TransMVSNet (Re) | | | 79.51 185 | 78.36 194 | 80.84 162 | 83.17 165 | 89.72 198 | 84.22 182 | 81.45 114 | 73.98 205 | 60.79 170 | 57.20 192 | 56.05 192 | 77.11 190 | 89.88 158 | 88.86 170 | 98.30 176 | 92.83 193 |
|
MVS-HIRNet | | | 79.34 186 | 82.56 162 | 75.57 197 | 84.11 162 | 95.02 137 | 75.03 206 | 57.28 215 | 85.50 163 | 55.88 184 | 53.00 205 | 70.51 159 | 83.05 171 | 92.12 139 | 91.96 136 | 98.09 180 | 89.83 204 |
|
PS-CasMVS | | | 79.06 187 | 78.58 193 | 79.63 173 | 80.59 192 | 90.55 192 | 82.54 190 | 75.04 160 | 77.76 194 | 58.84 175 | 58.16 189 | 50.11 213 | 82.09 174 | 87.05 185 | 88.18 181 | 98.66 154 | 98.27 134 |
|
v1240 | | | 78.97 188 | 79.27 191 | 78.63 185 | 80.04 197 | 90.61 191 | 84.25 181 | 72.95 177 | 79.22 191 | 52.70 199 | 56.22 198 | 52.88 207 | 83.28 169 | 89.60 162 | 88.20 180 | 98.56 160 | 98.14 138 |
|
pmnet_mix02 | | | 78.91 189 | 81.17 173 | 76.28 196 | 81.91 175 | 90.82 189 | 74.25 207 | 77.87 141 | 86.17 158 | 49.04 205 | 67.97 159 | 62.93 172 | 77.40 187 | 82.75 208 | 82.11 207 | 97.18 195 | 95.42 181 |
|
MDTV_nov1_ep13_2view | | | 78.83 190 | 82.35 163 | 74.73 200 | 78.65 204 | 91.51 179 | 79.18 196 | 62.52 203 | 84.51 167 | 52.51 200 | 67.49 162 | 67.29 166 | 78.90 181 | 85.52 199 | 86.34 195 | 96.62 199 | 93.76 189 |
|
PEN-MVS | | | 78.80 191 | 78.13 196 | 79.58 175 | 80.03 198 | 89.67 199 | 83.61 183 | 75.83 154 | 77.71 196 | 58.41 176 | 60.11 177 | 50.00 214 | 81.02 176 | 84.08 204 | 88.14 182 | 98.59 158 | 97.18 162 |
|
EG-PatchMatch MVS | | | 78.32 192 | 79.42 189 | 77.03 194 | 83.03 166 | 93.77 149 | 84.47 180 | 69.26 189 | 75.85 201 | 53.69 198 | 55.68 200 | 60.23 178 | 73.20 203 | 89.69 161 | 88.22 179 | 98.55 161 | 92.54 194 |
|
DTE-MVSNet | | | 77.92 193 | 77.42 199 | 78.51 187 | 79.34 203 | 89.00 201 | 83.05 185 | 75.60 155 | 76.89 198 | 56.58 181 | 59.63 181 | 50.31 210 | 78.09 186 | 82.57 209 | 87.56 190 | 98.38 171 | 95.95 176 |
|
v7n | | | 77.71 194 | 78.25 195 | 77.09 193 | 78.49 205 | 90.55 192 | 82.15 191 | 71.11 184 | 76.79 199 | 54.18 192 | 55.63 201 | 50.20 212 | 78.28 184 | 89.36 168 | 87.15 193 | 98.33 174 | 98.07 142 |
|
gm-plane-assit | | | 77.20 195 | 82.26 164 | 71.30 203 | 81.10 183 | 82.00 215 | 54.33 220 | 64.41 198 | 63.80 217 | 40.93 219 | 59.04 184 | 76.57 129 | 87.30 147 | 98.26 22 | 97.36 37 | 99.74 13 | 98.76 117 |
|
N_pmnet | | | 76.83 196 | 77.97 197 | 75.50 198 | 80.96 185 | 88.23 204 | 72.81 208 | 76.83 150 | 80.87 180 | 50.55 202 | 56.94 195 | 60.09 179 | 75.70 195 | 83.28 206 | 84.23 202 | 96.14 203 | 92.12 195 |
|
pmmvs6 | | | 76.79 197 | 75.69 204 | 78.09 190 | 79.95 200 | 89.57 200 | 80.92 195 | 74.46 166 | 64.79 215 | 60.74 171 | 45.71 214 | 60.55 176 | 78.37 182 | 88.04 174 | 86.00 196 | 94.07 208 | 95.15 182 |
|
CMPMVS |  | 58.73 17 | 76.78 198 | 74.27 205 | 79.70 172 | 93.26 76 | 95.58 132 | 82.74 188 | 77.44 145 | 71.46 212 | 56.29 183 | 53.58 204 | 59.13 182 | 77.33 188 | 79.20 210 | 79.71 210 | 91.14 213 | 81.24 213 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
EU-MVSNet | | | 76.76 199 | 79.47 188 | 73.60 201 | 79.99 199 | 87.47 205 | 77.39 200 | 75.43 157 | 77.62 197 | 47.83 208 | 64.78 166 | 60.44 177 | 64.80 208 | 86.28 194 | 86.53 194 | 96.17 202 | 93.19 192 |
|
PM-MVS | | | 75.81 200 | 76.11 203 | 75.46 199 | 73.81 210 | 85.48 209 | 76.42 202 | 70.57 186 | 80.05 186 | 54.75 188 | 62.33 170 | 39.56 220 | 80.59 179 | 87.71 177 | 82.81 206 | 96.61 201 | 94.81 185 |
|
pmmvs-eth3d | | | 75.17 201 | 74.09 206 | 76.43 195 | 72.92 211 | 84.49 211 | 76.61 201 | 72.42 179 | 74.33 203 | 61.28 166 | 54.71 203 | 39.42 221 | 78.20 185 | 87.77 176 | 84.25 201 | 97.17 196 | 93.63 190 |
|
Anonymous20231206 | | | 74.59 202 | 77.00 200 | 71.78 202 | 77.89 208 | 87.45 206 | 75.14 205 | 72.29 181 | 77.76 194 | 46.65 210 | 52.14 206 | 52.93 205 | 61.10 211 | 89.37 167 | 88.09 185 | 97.59 191 | 91.30 200 |
|
test20.03 | | | 72.81 203 | 76.24 202 | 68.80 206 | 78.31 206 | 85.40 210 | 71.04 210 | 71.20 183 | 71.85 208 | 43.40 216 | 65.31 165 | 54.71 197 | 51.27 214 | 85.92 196 | 84.18 203 | 97.58 192 | 86.35 209 |
|
test_method | | | 71.90 204 | 76.72 201 | 66.28 211 | 60.87 219 | 78.37 217 | 69.75 214 | 49.81 221 | 83.44 169 | 49.63 203 | 47.13 213 | 53.23 204 | 76.38 192 | 91.32 150 | 85.76 197 | 91.22 212 | 97.77 147 |
|
new_pmnet | | | 71.86 205 | 73.67 207 | 69.75 205 | 72.56 214 | 84.20 212 | 70.95 212 | 66.81 195 | 80.34 185 | 43.62 215 | 51.60 207 | 53.81 203 | 71.24 205 | 82.91 207 | 80.93 208 | 93.35 210 | 81.92 212 |
|
MDA-MVSNet-bldmvs | | | 69.61 206 | 70.36 209 | 68.74 207 | 62.88 217 | 88.50 202 | 65.40 217 | 77.01 148 | 71.60 211 | 43.93 212 | 66.71 163 | 35.33 223 | 72.47 204 | 61.01 216 | 80.63 209 | 90.73 214 | 88.75 207 |
|
pmmvs3 | | | 69.04 207 | 70.75 208 | 67.04 209 | 66.83 215 | 78.54 216 | 64.99 218 | 60.92 209 | 64.67 216 | 40.61 220 | 55.08 202 | 40.29 219 | 74.89 199 | 83.76 205 | 84.01 204 | 93.98 209 | 88.88 206 |
|
MIMVSNet1 | | | 68.63 208 | 70.24 210 | 66.76 210 | 56.86 221 | 83.26 213 | 67.93 215 | 70.26 187 | 68.05 213 | 46.80 209 | 40.44 215 | 48.15 215 | 62.01 209 | 84.96 201 | 84.86 199 | 96.69 198 | 81.93 211 |
|
GG-mvs-BLEND | | | 67.99 209 | 97.35 39 | 33.72 218 | 1.22 227 | 99.72 16 | 98.30 35 | 0.57 225 | 97.61 64 | 1.18 228 | 93.26 52 | 96.63 44 | 1.74 224 | 97.15 56 | 97.14 40 | 99.34 97 | 99.96 10 |
|
new-patchmatchnet | | | 67.66 210 | 68.07 211 | 67.18 208 | 72.85 212 | 82.86 214 | 63.09 219 | 68.61 193 | 66.60 214 | 42.64 218 | 49.28 210 | 38.68 222 | 61.21 210 | 75.84 211 | 75.22 212 | 94.67 207 | 88.00 208 |
|
FPMVS | | | 63.27 211 | 61.31 213 | 65.57 212 | 78.25 207 | 74.42 220 | 75.23 204 | 68.92 192 | 72.33 207 | 43.87 213 | 49.01 211 | 43.94 217 | 48.64 216 | 61.15 215 | 58.81 217 | 78.51 220 | 69.49 218 |
|
Gipuma |  | | 54.59 212 | 53.98 214 | 55.30 213 | 59.03 220 | 52.63 222 | 47.17 222 | 56.08 217 | 71.68 210 | 37.54 221 | 20.90 221 | 19.00 225 | 52.33 213 | 71.69 213 | 75.20 213 | 79.64 219 | 66.79 219 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 49.05 18 | 51.88 213 | 50.56 216 | 53.42 214 | 64.21 216 | 43.30 224 | 42.64 223 | 62.93 200 | 50.56 219 | 43.72 214 | 37.44 216 | 42.95 218 | 35.05 219 | 58.76 218 | 54.58 218 | 71.95 221 | 66.33 220 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PMMVS2 | | | 50.69 214 | 52.33 215 | 48.78 215 | 51.24 222 | 64.81 221 | 47.91 221 | 53.79 220 | 44.95 220 | 21.75 223 | 29.98 219 | 25.90 224 | 31.98 221 | 59.95 217 | 65.37 215 | 86.00 217 | 75.36 216 |
|
E-PMN | | | 37.15 215 | 34.82 218 | 39.86 216 | 47.53 224 | 35.42 226 | 23.79 225 | 55.26 218 | 35.18 223 | 14.12 225 | 17.38 224 | 14.13 227 | 39.73 218 | 32.24 220 | 46.98 219 | 58.76 222 | 62.39 222 |
|
EMVS | | | 36.45 216 | 33.63 219 | 39.74 217 | 48.47 223 | 35.73 225 | 23.59 226 | 55.11 219 | 35.61 222 | 12.88 226 | 17.49 222 | 14.62 226 | 41.04 217 | 29.33 221 | 43.00 220 | 57.32 223 | 59.62 223 |
|
MVE |  | 42.40 19 | 36.00 217 | 38.65 217 | 32.92 219 | 29.16 225 | 46.17 223 | 22.61 227 | 44.21 222 | 26.44 225 | 18.88 224 | 17.41 223 | 9.36 229 | 32.29 220 | 45.75 219 | 61.38 216 | 50.35 224 | 64.03 221 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 21.55 218 | 30.91 220 | 10.62 220 | 2.78 226 | 11.66 227 | 18.51 228 | 4.82 223 | 38.21 221 | 4.06 227 | 36.35 217 | 4.47 230 | 26.81 222 | 23.27 222 | 27.11 221 | 6.75 225 | 75.30 217 |
|
test123 | | | 16.81 219 | 24.80 221 | 7.48 221 | 0.82 228 | 8.38 228 | 11.92 229 | 2.60 224 | 28.96 224 | 1.12 229 | 28.39 220 | 1.26 231 | 24.51 223 | 8.93 223 | 22.19 222 | 3.90 226 | 75.49 215 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
RE-MVS-def | | | | | | | | | | | 46.54 211 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.73 8 | | | | | |
|
SR-MVS | | | | | | 99.27 16 | | | 95.82 19 | | | | 99.00 18 | | | | | |
|
Anonymous202405211 | | | | 87.54 144 | | 90.72 105 | 97.10 106 | 93.40 98 | 85.30 83 | 91.41 136 | | 60.23 175 | 80.69 124 | 95.80 67 | 91.33 149 | 92.60 131 | 98.38 171 | 99.40 82 |
|
our_test_3 | | | | | | 81.94 173 | 90.26 197 | 75.39 203 | | | | | | | | | | |
|
ambc | | | | 64.61 212 | | 61.80 218 | 75.31 219 | 71.00 211 | | 74.16 204 | 48.83 206 | 36.02 218 | 13.22 228 | 58.66 212 | 85.80 198 | 76.26 211 | 88.01 215 | 91.53 199 |
|
MTAPA | | | | | | | | | | | 94.58 15 | | 98.56 24 | | | | | |
|
MTMP | | | | | | | | | | | 95.24 9 | | 98.13 31 | | | | | |
|
Patchmatch-RL test | | | | | | | | 37.05 224 | | | | | | | | | | |
|
tmp_tt | | | | | 71.24 204 | 90.29 114 | 76.39 218 | 65.81 216 | 59.43 214 | 97.62 62 | 79.65 105 | 90.60 62 | 68.71 164 | 49.71 215 | 72.71 212 | 65.70 214 | 82.54 218 | |
|
XVS | | | | | | 93.63 71 | 99.64 25 | 94.32 82 | | | 83.97 70 | | 98.08 33 | | | | 99.59 37 | |
|
X-MVStestdata | | | | | | 93.63 71 | 99.64 25 | 94.32 82 | | | 83.97 70 | | 98.08 33 | | | | 99.59 37 | |
|
abl_6 | | | | | 95.40 37 | 98.18 40 | 99.45 43 | 97.39 49 | 89.27 51 | 99.48 3 | 90.52 30 | 94.52 46 | 98.63 23 | 97.32 37 | | | 99.73 14 | 99.82 32 |
|
mPP-MVS | | | | | | 98.66 30 | | | | | | | 97.11 41 | | | | | |
|
NP-MVS | | | | | | | | | | 97.69 60 | | | | | | | | |
|
Patchmtry | | | | | | | 95.86 127 | 89.43 138 | 61.37 207 | | 60.81 167 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 85.88 208 | 69.83 213 | 81.56 112 | 87.99 149 | 48.22 207 | 71.85 147 | 45.52 216 | 68.67 206 | 63.21 214 | | 86.64 216 | 80.03 214 |
|