SED-MVS | | | 98.87 1 | 99.20 2 | 98.48 1 | 99.32 11 | 99.85 2 | 99.55 6 | 96.20 6 | 99.48 3 | 96.78 3 | 98.51 16 | 99.99 1 | 99.36 1 | 98.98 8 | 97.59 29 | 99.67 20 | 99.99 3 |
|
MSP-MVS | | | 98.75 2 | 99.27 1 | 98.15 8 | 99.21 17 | 99.82 6 | 99.58 4 | 96.09 13 | 99.32 10 | 95.16 9 | 98.79 6 | 99.55 8 | 99.05 5 | 99.54 1 | 97.88 21 | 99.84 3 | 99.99 3 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 98.73 3 | 99.17 5 | 98.22 5 | 99.47 4 | 99.85 2 | 99.57 5 | 96.23 4 | 99.30 11 | 94.90 11 | 98.65 10 | 98.93 19 | 99.36 1 | 99.46 3 | 98.21 11 | 99.81 6 | 99.80 33 |
|
DPE-MVS |  | | 98.69 4 | 99.14 6 | 98.16 7 | 99.37 7 | 99.82 6 | 99.66 2 | 96.26 1 | 99.18 16 | 95.02 10 | 98.62 13 | 99.98 3 | 98.88 11 | 98.90 11 | 97.51 32 | 99.75 10 | 99.97 7 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS | | | 98.65 5 | 98.87 12 | 98.38 2 | 99.30 13 | 99.85 2 | 99.14 23 | 96.23 4 | 99.51 2 | 97.16 1 | 96.01 34 | 99.99 1 | 98.90 10 | 98.89 12 | 97.88 21 | 99.56 50 | 99.98 5 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 98.60 6 | 98.97 9 | 98.18 6 | 99.38 6 | 99.78 11 | 99.35 15 | 96.14 9 | 99.24 13 | 95.66 7 | 98.19 20 | 99.01 16 | 98.66 17 | 98.77 14 | 97.80 24 | 99.86 2 | 99.97 7 |
|
SF-MVS | | | 98.55 7 | 98.75 14 | 98.32 3 | 99.48 1 | 99.68 20 | 99.51 8 | 96.24 2 | 99.08 20 | 95.94 4 | 98.64 11 | 99.30 12 | 99.02 7 | 97.94 28 | 96.86 50 | 99.75 10 | 99.76 36 |
|
SMA-MVS |  | | 98.47 8 | 99.06 7 | 97.77 12 | 99.48 1 | 99.78 11 | 99.37 12 | 96.14 9 | 99.29 12 | 93.03 20 | 97.59 28 | 99.97 4 | 99.03 6 | 98.94 9 | 98.30 9 | 99.60 33 | 99.58 63 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
NCCC | | | 98.41 9 | 99.18 3 | 97.52 16 | 99.36 8 | 99.84 5 | 99.55 6 | 96.08 15 | 99.33 9 | 91.77 25 | 98.79 6 | 99.46 10 | 98.59 19 | 99.15 7 | 98.07 18 | 99.73 14 | 99.64 51 |
|
SD-MVS | | | 98.33 10 | 99.01 8 | 97.54 15 | 97.17 51 | 99.77 13 | 99.14 23 | 96.09 13 | 99.34 8 | 94.06 16 | 97.91 25 | 99.89 5 | 99.18 4 | 97.99 27 | 98.21 11 | 99.63 27 | 99.95 12 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS |  | | 98.28 11 | 98.69 15 | 97.80 10 | 99.31 12 | 99.62 28 | 99.31 18 | 96.15 8 | 99.19 15 | 93.60 17 | 97.28 29 | 98.35 27 | 98.72 16 | 98.27 20 | 98.22 10 | 99.73 14 | 99.89 24 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MCST-MVS | | | 98.20 12 | 99.18 3 | 97.06 22 | 99.27 15 | 99.87 1 | 99.37 12 | 96.11 11 | 99.37 6 | 89.29 33 | 98.76 8 | 99.50 9 | 98.37 25 | 99.23 5 | 97.64 27 | 99.95 1 | 99.87 28 |
|
HPM-MVS++ |  | | 98.16 13 | 98.87 12 | 97.32 18 | 99.39 5 | 99.70 18 | 99.18 21 | 96.10 12 | 99.09 19 | 91.14 27 | 98.02 23 | 99.89 5 | 98.44 23 | 98.75 15 | 97.03 45 | 99.67 20 | 99.63 55 |
|
MSLP-MVS++ | | | 98.12 14 | 98.23 27 | 97.99 9 | 99.28 14 | 99.72 15 | 99.59 3 | 95.27 29 | 98.61 33 | 94.79 12 | 96.11 33 | 97.79 36 | 99.27 3 | 96.62 62 | 98.96 5 | 99.77 9 | 99.80 33 |
|
HFP-MVS | | | 98.02 15 | 98.55 19 | 97.40 17 | 99.11 21 | 99.69 19 | 99.41 10 | 95.41 27 | 98.79 31 | 91.86 24 | 98.61 14 | 98.16 29 | 99.02 7 | 97.87 33 | 97.40 34 | 99.60 33 | 99.35 82 |
|
TSAR-MVS + MP. | | | 97.98 16 | 98.62 18 | 97.23 20 | 97.08 52 | 99.55 34 | 99.17 22 | 95.69 22 | 99.40 5 | 93.04 19 | 96.68 31 | 98.96 18 | 98.58 20 | 98.82 13 | 96.95 47 | 99.81 6 | 99.96 9 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
zzz-MVS | | | 97.93 17 | 98.05 31 | 97.80 10 | 99.20 18 | 99.64 24 | 99.40 11 | 95.76 20 | 98.01 52 | 94.31 15 | 96.54 32 | 98.49 25 | 98.58 20 | 98.22 23 | 96.23 60 | 99.54 60 | 99.23 88 |
|
SteuartSystems-ACMMP | | | 97.86 18 | 98.91 10 | 96.64 26 | 98.89 27 | 99.79 8 | 99.34 16 | 95.20 31 | 98.48 35 | 89.91 31 | 98.58 15 | 98.69 21 | 96.84 46 | 98.92 10 | 98.16 15 | 99.66 22 | 99.74 39 |
Skip Steuart: Steuart Systems R&D Blog. |
CP-MVS | | | 97.81 19 | 98.26 26 | 97.28 19 | 99.00 24 | 99.65 23 | 99.10 25 | 95.32 28 | 98.38 41 | 92.21 23 | 98.33 18 | 97.74 37 | 98.50 22 | 97.66 42 | 96.55 58 | 99.57 45 | 99.48 72 |
|
ACMMPR | | | 97.78 20 | 98.28 24 | 97.20 21 | 99.03 23 | 99.68 20 | 99.37 12 | 95.24 30 | 98.86 30 | 91.16 26 | 97.86 26 | 97.26 39 | 98.79 14 | 97.64 44 | 97.40 34 | 99.60 33 | 99.25 87 |
|
DeepC-MVS_fast | | 95.01 1 | 97.67 21 | 98.22 28 | 97.02 23 | 99.00 24 | 99.79 8 | 99.10 25 | 95.82 18 | 99.05 23 | 89.53 32 | 93.54 49 | 96.77 42 | 98.83 12 | 99.34 4 | 99.44 2 | 99.82 4 | 99.63 55 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap |  | | 97.54 22 | 97.35 38 | 97.77 12 | 99.17 19 | 99.55 34 | 98.57 31 | 95.76 20 | 99.04 24 | 94.66 13 | 97.94 24 | 94.39 57 | 98.82 13 | 96.21 71 | 94.78 81 | 99.62 29 | 99.52 68 |
|
ACMMP_NAP | | | 97.51 23 | 98.27 25 | 96.63 27 | 99.34 9 | 99.72 15 | 99.25 19 | 95.94 17 | 98.11 46 | 87.10 46 | 96.98 30 | 98.50 24 | 98.61 18 | 98.58 17 | 96.83 52 | 99.56 50 | 99.14 96 |
|
MP-MVS |  | | 97.46 24 | 98.30 23 | 96.48 28 | 98.93 26 | 99.43 44 | 99.20 20 | 95.42 26 | 98.43 37 | 87.60 43 | 98.19 20 | 98.01 35 | 98.09 27 | 98.05 26 | 96.67 55 | 99.64 25 | 99.35 82 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
train_agg | | | 97.42 25 | 98.88 11 | 95.71 33 | 98.46 34 | 99.60 31 | 99.05 27 | 95.16 32 | 99.10 18 | 84.38 60 | 98.47 17 | 98.85 20 | 97.61 31 | 98.54 18 | 97.66 26 | 99.62 29 | 99.93 18 |
|
CPTT-MVS | | | 97.32 26 | 97.60 37 | 96.99 24 | 98.29 37 | 99.31 55 | 99.04 28 | 94.67 36 | 97.99 53 | 93.12 18 | 98.03 22 | 98.26 28 | 98.77 15 | 96.08 74 | 94.26 89 | 98.07 175 | 99.27 86 |
|
X-MVS | | | 97.20 27 | 98.42 22 | 95.77 31 | 99.04 22 | 99.64 24 | 98.95 30 | 95.10 34 | 98.16 44 | 83.97 66 | 98.27 19 | 98.08 32 | 97.95 28 | 97.89 30 | 97.46 33 | 99.58 41 | 99.47 73 |
|
PHI-MVS | | | 97.09 28 | 98.69 15 | 95.22 38 | 97.99 43 | 99.59 33 | 97.56 44 | 92.16 40 | 98.41 39 | 87.11 45 | 98.70 9 | 99.42 11 | 96.95 42 | 96.88 58 | 98.16 15 | 99.56 50 | 99.70 44 |
|
DPM-MVS | | | 97.07 29 | 97.99 32 | 96.00 30 | 97.25 50 | 99.16 61 | 99.67 1 | 95.99 16 | 99.08 20 | 85.97 50 | 93.00 54 | 98.44 26 | 97.47 33 | 99.22 6 | 99.62 1 | 99.66 22 | 97.44 152 |
|
PGM-MVS | | | 97.03 30 | 98.14 30 | 95.73 32 | 99.34 9 | 99.61 30 | 99.34 16 | 89.99 46 | 97.70 56 | 87.67 42 | 99.44 2 | 96.45 45 | 98.44 23 | 97.65 43 | 97.09 42 | 99.58 41 | 99.06 104 |
|
PLC |  | 94.37 2 | 97.03 30 | 96.54 43 | 97.60 14 | 98.84 28 | 98.64 70 | 98.17 36 | 94.99 35 | 99.01 26 | 96.80 2 | 93.21 53 | 95.64 47 | 97.36 34 | 96.37 66 | 94.79 80 | 99.41 82 | 98.12 137 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TSAR-MVS + ACMM | | | 96.90 32 | 98.64 17 | 94.88 40 | 98.12 41 | 99.47 39 | 99.01 29 | 95.43 25 | 99.23 14 | 81.98 85 | 95.95 35 | 99.16 15 | 95.13 67 | 98.61 16 | 98.11 17 | 99.58 41 | 99.93 18 |
|
TSAR-MVS + GP. | | | 96.47 33 | 98.45 21 | 94.17 45 | 92.12 83 | 99.29 56 | 97.76 40 | 88.05 57 | 99.36 7 | 90.26 30 | 97.82 27 | 99.21 13 | 97.21 38 | 96.78 60 | 96.74 53 | 99.63 27 | 99.94 15 |
|
xxxxxxxxxxxxxcwj | | | 96.27 34 | 94.51 62 | 98.32 3 | 99.48 1 | 99.68 20 | 99.51 8 | 96.24 2 | 99.08 20 | 95.94 4 | 98.64 11 | 69.64 155 | 99.02 7 | 97.94 28 | 96.86 50 | 99.75 10 | 99.76 36 |
|
EPNet | | | 96.23 35 | 97.89 34 | 94.29 43 | 97.62 46 | 99.44 43 | 97.14 52 | 88.63 53 | 98.16 44 | 88.14 38 | 99.46 1 | 94.15 60 | 94.61 77 | 97.20 51 | 97.23 38 | 99.57 45 | 99.59 60 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CNLPA | | | 96.14 36 | 95.43 52 | 96.98 25 | 98.55 31 | 99.41 48 | 95.91 58 | 95.15 33 | 99.00 27 | 95.71 6 | 84.21 102 | 94.55 55 | 97.25 36 | 95.50 96 | 96.23 60 | 99.28 102 | 99.09 103 |
|
MVS_111021_LR | | | 96.07 37 | 97.94 33 | 93.88 48 | 97.86 44 | 99.43 44 | 95.70 61 | 89.65 49 | 98.73 32 | 84.86 57 | 99.38 3 | 94.08 61 | 95.78 65 | 97.81 36 | 96.73 54 | 99.43 79 | 99.42 76 |
|
ACMMP |  | | 96.05 38 | 96.70 42 | 95.29 37 | 98.01 42 | 99.43 44 | 97.60 43 | 94.33 38 | 97.62 59 | 86.17 49 | 98.92 4 | 92.81 68 | 96.10 58 | 95.67 86 | 93.33 109 | 99.55 55 | 99.12 99 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
3Dnovator+ | | 90.72 7 | 95.99 39 | 96.42 45 | 95.50 35 | 98.18 39 | 99.33 54 | 97.44 46 | 87.73 62 | 97.93 54 | 92.36 22 | 84.67 95 | 97.33 38 | 97.55 32 | 97.32 47 | 98.47 8 | 99.72 18 | 99.88 25 |
|
DeepPCF-MVS | | 94.02 3 | 95.92 40 | 98.47 20 | 92.95 57 | 97.57 47 | 99.79 8 | 91.45 111 | 94.42 37 | 99.76 1 | 86.48 48 | 92.88 55 | 98.12 31 | 92.62 96 | 99.49 2 | 99.32 3 | 95.15 200 | 99.95 12 |
|
CDPH-MVS | | | 95.90 41 | 97.77 36 | 93.72 51 | 98.28 38 | 99.43 44 | 98.40 32 | 91.30 44 | 98.34 42 | 78.62 103 | 94.80 41 | 95.74 46 | 96.11 57 | 97.86 34 | 98.67 7 | 99.59 36 | 99.56 65 |
|
CSCG | | | 95.77 42 | 95.35 54 | 96.26 29 | 99.13 20 | 99.60 31 | 98.14 37 | 91.89 43 | 96.57 75 | 92.61 21 | 89.65 63 | 91.74 75 | 96.96 40 | 93.69 120 | 96.58 57 | 98.86 129 | 99.63 55 |
|
OMC-MVS | | | 95.75 43 | 95.84 49 | 95.64 34 | 98.52 33 | 99.34 53 | 97.15 51 | 92.02 42 | 98.94 29 | 90.45 29 | 88.31 69 | 94.64 52 | 96.35 53 | 96.02 77 | 95.99 69 | 99.34 91 | 97.65 148 |
|
MVS_111021_HR | | | 95.70 44 | 98.16 29 | 92.83 58 | 97.57 47 | 99.77 13 | 94.78 73 | 88.05 57 | 98.61 33 | 82.29 80 | 98.85 5 | 94.66 51 | 94.63 75 | 97.80 37 | 97.63 28 | 99.64 25 | 99.79 35 |
|
3Dnovator | | 90.31 8 | 95.67 45 | 96.16 47 | 95.11 39 | 98.59 30 | 99.37 52 | 97.50 45 | 87.98 59 | 98.02 51 | 89.09 34 | 85.36 94 | 94.62 53 | 97.66 29 | 97.10 54 | 98.90 6 | 99.82 4 | 99.73 41 |
|
CANet | | | 95.40 46 | 96.27 46 | 94.40 42 | 96.25 57 | 99.62 28 | 98.37 33 | 88.59 54 | 98.09 47 | 87.58 44 | 84.57 97 | 95.54 49 | 95.87 62 | 98.12 24 | 98.03 20 | 99.73 14 | 99.90 23 |
|
QAPM | | | 95.17 47 | 96.05 48 | 94.14 46 | 98.55 31 | 99.49 37 | 97.41 47 | 87.88 60 | 97.72 55 | 84.21 63 | 84.59 96 | 95.60 48 | 97.21 38 | 97.10 54 | 98.19 14 | 99.57 45 | 99.65 49 |
|
MVSTER | | | 94.75 48 | 96.50 44 | 92.70 61 | 90.91 98 | 94.51 139 | 97.37 49 | 83.37 92 | 98.40 40 | 89.04 35 | 93.23 52 | 97.04 41 | 95.91 61 | 97.73 38 | 95.59 77 | 99.61 31 | 99.01 105 |
|
TAPA-MVS | | 92.04 6 | 94.72 49 | 95.13 57 | 94.24 44 | 97.72 45 | 99.17 59 | 97.61 42 | 92.16 40 | 97.66 58 | 81.99 84 | 87.84 74 | 93.94 63 | 96.50 50 | 95.74 83 | 94.27 88 | 99.46 75 | 97.31 153 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CS-MVS | | | 94.60 50 | 97.10 41 | 91.67 66 | 90.73 101 | 98.52 77 | 95.51 64 | 83.30 94 | 99.02 25 | 84.42 59 | 94.12 47 | 94.58 54 | 96.52 49 | 97.70 40 | 96.12 64 | 99.55 55 | 99.64 51 |
|
DeepC-MVS | | 92.23 5 | 94.53 51 | 94.26 71 | 94.86 41 | 96.73 54 | 99.50 36 | 97.85 39 | 95.45 24 | 96.22 82 | 82.73 75 | 80.68 111 | 88.02 87 | 96.92 43 | 97.49 46 | 98.20 13 | 99.47 69 | 99.69 46 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CHOSEN 280x420 | | | 94.51 52 | 97.78 35 | 90.70 79 | 95.54 63 | 99.49 37 | 94.14 81 | 74.91 156 | 98.43 37 | 85.32 55 | 94.78 42 | 99.19 14 | 94.95 71 | 97.02 56 | 96.18 63 | 99.35 87 | 99.36 81 |
|
ETV-MVS | | | 94.49 53 | 97.23 40 | 91.29 73 | 90.43 108 | 98.55 73 | 93.41 91 | 84.53 85 | 99.16 17 | 83.13 71 | 94.72 43 | 94.08 61 | 96.61 48 | 97.72 39 | 96.60 56 | 99.61 31 | 99.81 32 |
|
MVS_0304 | | | 94.35 54 | 95.66 51 | 92.83 58 | 94.82 65 | 99.46 41 | 98.19 35 | 87.75 61 | 97.32 65 | 81.83 88 | 83.50 104 | 93.19 67 | 94.71 73 | 98.24 22 | 98.07 18 | 99.68 19 | 99.83 30 |
|
MAR-MVS | | | 94.18 55 | 95.12 58 | 93.09 56 | 98.40 36 | 99.17 59 | 94.20 80 | 81.92 102 | 98.47 36 | 86.52 47 | 90.92 58 | 84.21 106 | 98.12 26 | 95.88 80 | 97.59 29 | 99.40 83 | 99.58 63 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 92.56 4 | 93.95 56 | 93.82 74 | 94.10 47 | 96.07 59 | 99.25 57 | 96.82 54 | 95.51 23 | 92.00 124 | 81.51 89 | 82.97 107 | 93.88 65 | 95.63 66 | 94.24 108 | 94.71 83 | 99.09 112 | 99.70 44 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DELS-MVS | | | 93.82 57 | 93.82 74 | 93.81 50 | 96.34 56 | 99.47 39 | 97.26 50 | 88.53 55 | 92.13 122 | 87.80 41 | 79.67 114 | 88.01 88 | 93.14 88 | 98.28 19 | 99.22 4 | 99.80 8 | 99.98 5 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
OpenMVS |  | 88.43 11 | 93.49 58 | 93.62 77 | 93.34 52 | 98.46 34 | 99.39 49 | 97.00 53 | 87.66 64 | 95.37 89 | 81.21 91 | 75.96 129 | 91.58 76 | 96.21 56 | 96.37 66 | 97.10 41 | 99.52 61 | 99.54 67 |
|
EIA-MVS | | | 93.32 59 | 95.32 55 | 90.99 76 | 90.45 107 | 98.53 76 | 93.46 90 | 84.68 84 | 97.56 62 | 81.38 90 | 91.04 57 | 87.37 91 | 96.39 52 | 97.27 48 | 95.73 74 | 99.59 36 | 99.76 36 |
|
PVSNet_BlendedMVS | | | 93.30 60 | 93.46 81 | 93.10 54 | 95.60 61 | 99.38 50 | 93.59 88 | 88.70 51 | 98.09 47 | 88.10 39 | 86.96 82 | 75.02 129 | 93.08 89 | 97.89 30 | 96.90 48 | 99.56 50 | 100.00 1 |
|
PVSNet_Blended | | | 93.30 60 | 93.46 81 | 93.10 54 | 95.60 61 | 99.38 50 | 93.59 88 | 88.70 51 | 98.09 47 | 88.10 39 | 86.96 82 | 75.02 129 | 93.08 89 | 97.89 30 | 96.90 48 | 99.56 50 | 100.00 1 |
|
PMMVS | | | 93.05 62 | 95.40 53 | 90.31 83 | 91.41 91 | 97.54 96 | 92.62 103 | 83.25 95 | 98.08 50 | 79.44 101 | 95.18 39 | 88.52 86 | 96.43 51 | 95.70 84 | 93.88 92 | 98.68 145 | 98.91 108 |
|
LS3D | | | 92.70 63 | 92.23 91 | 93.26 53 | 96.24 58 | 98.72 65 | 97.93 38 | 96.17 7 | 96.41 76 | 72.46 118 | 81.39 110 | 80.76 119 | 97.66 29 | 95.69 85 | 95.62 76 | 99.07 114 | 97.02 160 |
|
baseline1 | | | 92.67 64 | 93.62 77 | 91.55 68 | 91.16 94 | 97.15 99 | 93.92 86 | 85.97 74 | 94.76 96 | 84.07 65 | 87.17 78 | 86.89 94 | 94.62 76 | 96.72 61 | 95.90 72 | 99.57 45 | 96.79 164 |
|
IS_MVSNet | | | 92.67 64 | 94.99 60 | 89.96 88 | 91.17 93 | 98.54 74 | 92.77 98 | 84.00 86 | 92.72 118 | 81.90 87 | 85.67 92 | 92.47 70 | 90.39 116 | 97.82 35 | 97.81 23 | 99.51 62 | 99.91 22 |
|
TSAR-MVS + COLMAP | | | 92.56 66 | 92.44 89 | 92.71 60 | 94.61 67 | 97.69 92 | 97.69 41 | 91.09 45 | 98.96 28 | 76.71 108 | 94.68 44 | 69.41 156 | 96.91 44 | 95.80 82 | 94.18 90 | 99.26 103 | 96.33 168 |
|
baseline | | | 92.56 66 | 94.38 67 | 90.43 82 | 90.71 103 | 98.23 83 | 95.07 70 | 80.73 116 | 97.52 63 | 82.45 79 | 87.34 77 | 85.91 98 | 94.07 83 | 96.29 70 | 95.94 71 | 99.58 41 | 99.47 73 |
|
canonicalmvs | | | 92.54 68 | 93.28 83 | 91.68 65 | 91.44 90 | 98.24 82 | 95.45 67 | 81.84 106 | 95.98 86 | 84.85 58 | 90.69 59 | 78.53 124 | 96.96 40 | 92.97 126 | 97.06 43 | 99.57 45 | 99.47 73 |
|
PatchMatch-RL | | | 92.54 68 | 92.82 88 | 92.21 62 | 96.57 55 | 98.74 64 | 91.85 108 | 86.30 69 | 96.23 81 | 85.18 56 | 95.21 38 | 73.58 135 | 94.22 82 | 95.40 99 | 93.08 113 | 99.14 109 | 97.49 151 |
|
MVS_Test | | | 92.42 70 | 94.43 63 | 90.08 87 | 90.69 104 | 98.26 81 | 94.78 73 | 80.81 115 | 97.27 66 | 78.76 102 | 87.06 80 | 84.25 105 | 95.84 63 | 97.67 41 | 97.56 31 | 99.59 36 | 98.93 107 |
|
thisisatest0530 | | | 92.31 71 | 95.14 56 | 89.02 97 | 90.02 115 | 98.45 79 | 91.30 112 | 83.58 89 | 96.90 71 | 77.90 105 | 90.45 61 | 94.33 58 | 91.98 102 | 95.57 90 | 91.43 135 | 99.31 97 | 98.81 111 |
|
tttt0517 | | | 92.29 72 | 95.12 58 | 88.99 98 | 90.02 115 | 98.44 80 | 91.19 115 | 83.58 89 | 96.88 72 | 77.86 106 | 90.45 61 | 94.32 59 | 91.98 102 | 95.54 92 | 91.43 135 | 99.31 97 | 98.78 113 |
|
EPP-MVSNet | | | 92.29 72 | 94.35 69 | 89.88 89 | 90.36 110 | 97.69 92 | 90.89 118 | 83.31 93 | 93.39 111 | 83.47 70 | 85.56 93 | 93.92 64 | 91.93 104 | 95.49 97 | 94.77 82 | 99.34 91 | 99.62 58 |
|
HQP-MVS | | | 91.94 74 | 93.03 85 | 90.66 81 | 93.69 69 | 96.48 113 | 95.92 57 | 89.73 47 | 97.33 64 | 72.65 116 | 95.37 36 | 73.56 136 | 92.75 95 | 94.85 105 | 94.12 91 | 99.23 106 | 99.51 69 |
|
MSDG | | | 91.93 75 | 90.28 118 | 93.85 49 | 97.36 49 | 97.12 100 | 95.88 59 | 94.07 39 | 94.52 100 | 84.13 64 | 76.74 123 | 80.89 118 | 92.54 97 | 93.97 116 | 93.61 103 | 99.14 109 | 95.10 177 |
|
UGNet | | | 91.71 76 | 94.43 63 | 88.53 100 | 92.72 79 | 98.00 86 | 90.22 125 | 84.81 83 | 94.45 101 | 83.05 72 | 87.65 76 | 92.74 69 | 81.04 169 | 94.51 107 | 94.45 85 | 99.32 96 | 99.21 92 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
thres100view900 | | | 91.69 77 | 91.52 97 | 91.88 64 | 91.61 85 | 98.89 62 | 95.49 65 | 86.96 66 | 93.24 112 | 80.82 93 | 87.90 71 | 71.15 145 | 96.88 45 | 96.00 78 | 93.51 105 | 99.51 62 | 99.95 12 |
|
CLD-MVS | | | 91.67 78 | 91.30 102 | 92.10 63 | 91.25 92 | 96.59 110 | 95.93 56 | 87.25 65 | 96.86 73 | 85.55 54 | 87.08 79 | 73.01 137 | 93.26 87 | 93.07 124 | 92.84 119 | 99.34 91 | 99.68 47 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ET-MVSNet_ETH3D | | | 91.59 79 | 94.96 61 | 87.65 103 | 72.75 207 | 97.24 98 | 95.29 68 | 82.73 98 | 96.81 74 | 78.49 104 | 95.30 37 | 90.48 82 | 97.23 37 | 91.60 141 | 94.31 86 | 99.43 79 | 99.01 105 |
|
tfpn200view9 | | | 91.47 80 | 91.31 100 | 91.65 67 | 91.61 85 | 98.69 67 | 95.03 71 | 86.17 70 | 93.24 112 | 80.82 93 | 87.90 71 | 71.15 145 | 96.80 47 | 95.53 93 | 92.82 121 | 99.47 69 | 99.88 25 |
|
CANet_DTU | | | 91.36 81 | 95.75 50 | 86.23 114 | 92.31 82 | 98.71 66 | 95.60 63 | 78.41 131 | 98.20 43 | 56.48 176 | 94.38 46 | 87.96 89 | 95.11 68 | 96.89 57 | 96.07 65 | 99.48 67 | 98.01 141 |
|
thres200 | | | 91.36 81 | 91.19 104 | 91.55 68 | 91.60 87 | 98.69 67 | 94.98 72 | 86.17 70 | 92.16 121 | 80.76 95 | 87.66 75 | 71.15 145 | 96.35 53 | 95.53 93 | 93.23 111 | 99.47 69 | 99.92 21 |
|
FMVSNet3 | | | 91.25 83 | 92.13 93 | 90.21 84 | 85.64 147 | 93.14 148 | 95.29 68 | 80.09 117 | 96.40 77 | 85.74 51 | 77.13 118 | 86.81 95 | 94.98 70 | 97.19 52 | 97.11 40 | 99.55 55 | 97.13 157 |
|
thres400 | | | 91.24 84 | 91.01 110 | 91.50 71 | 91.56 88 | 98.77 63 | 94.66 76 | 86.41 68 | 91.87 126 | 80.56 96 | 87.05 81 | 71.01 148 | 96.35 53 | 95.67 86 | 92.82 121 | 99.48 67 | 99.88 25 |
|
PVSNet_Blended_VisFu | | | 91.20 85 | 92.89 87 | 89.23 95 | 93.41 72 | 98.61 72 | 89.80 127 | 85.39 78 | 92.84 116 | 82.80 74 | 74.21 133 | 91.38 78 | 84.64 148 | 97.22 50 | 96.04 68 | 99.34 91 | 99.93 18 |
|
DCV-MVSNet | | | 91.15 86 | 92.00 94 | 90.17 86 | 90.78 100 | 92.23 165 | 93.70 87 | 81.17 113 | 95.16 92 | 82.98 73 | 89.46 65 | 83.31 108 | 93.98 84 | 91.79 140 | 92.87 116 | 98.41 163 | 99.18 94 |
|
DI_MVS_plusplus_trai | | | 91.11 87 | 91.47 98 | 90.68 80 | 90.01 117 | 97.77 90 | 95.87 60 | 83.56 91 | 94.72 97 | 82.12 83 | 68.46 151 | 87.46 90 | 93.07 91 | 96.46 65 | 95.73 74 | 99.47 69 | 99.71 43 |
|
diffmvs | | | 91.05 88 | 91.15 105 | 90.93 77 | 90.15 113 | 97.79 89 | 94.05 82 | 85.45 76 | 95.63 87 | 81.95 86 | 80.45 113 | 73.01 137 | 94.47 78 | 95.56 91 | 95.89 73 | 99.49 66 | 99.72 42 |
|
Vis-MVSNet (Re-imp) | | | 91.05 88 | 94.43 63 | 87.11 105 | 91.05 96 | 97.99 87 | 92.53 104 | 83.82 88 | 92.71 119 | 76.28 109 | 84.50 98 | 92.43 71 | 79.52 174 | 97.24 49 | 97.68 25 | 99.43 79 | 98.45 124 |
|
thres600view7 | | | 90.97 90 | 90.70 112 | 91.30 72 | 91.53 89 | 98.69 67 | 94.33 77 | 86.17 70 | 91.75 128 | 80.19 97 | 86.06 90 | 70.90 149 | 96.10 58 | 95.53 93 | 92.08 128 | 99.47 69 | 99.86 29 |
|
baseline2 | | | 90.91 91 | 94.40 66 | 86.84 108 | 87.54 138 | 96.83 106 | 89.95 126 | 79.22 126 | 96.00 85 | 77.04 107 | 88.68 66 | 89.73 83 | 88.01 137 | 96.35 68 | 93.51 105 | 99.29 99 | 99.68 47 |
|
ACMP | | 89.80 9 | 90.72 92 | 91.15 105 | 90.21 84 | 92.55 80 | 96.52 112 | 92.63 102 | 85.71 75 | 94.65 98 | 81.06 92 | 93.32 50 | 70.56 152 | 90.52 115 | 92.68 130 | 91.05 140 | 98.76 137 | 99.31 85 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
casdiffmvs | | | 90.69 93 | 90.56 115 | 90.85 78 | 90.14 114 | 97.81 88 | 92.94 96 | 85.30 79 | 93.47 110 | 82.50 78 | 76.34 127 | 74.12 133 | 94.67 74 | 96.51 64 | 96.26 59 | 99.55 55 | 99.42 76 |
|
ACMM | | 89.40 10 | 90.58 94 | 90.02 121 | 91.23 74 | 93.30 74 | 94.75 135 | 90.69 121 | 88.22 56 | 95.20 90 | 82.70 76 | 88.54 67 | 71.40 144 | 93.48 86 | 93.64 121 | 90.94 141 | 98.99 120 | 95.72 173 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GBi-Net | | | 90.49 95 | 91.12 108 | 89.75 91 | 84.99 150 | 92.73 153 | 93.94 83 | 80.09 117 | 96.40 77 | 85.74 51 | 77.13 118 | 86.81 95 | 94.42 79 | 94.12 110 | 93.73 94 | 99.35 87 | 96.90 161 |
|
test1 | | | 90.49 95 | 91.12 108 | 89.75 91 | 84.99 150 | 92.73 153 | 93.94 83 | 80.09 117 | 96.40 77 | 85.74 51 | 77.13 118 | 86.81 95 | 94.42 79 | 94.12 110 | 93.73 94 | 99.35 87 | 96.90 161 |
|
LGP-MVS_train | | | 90.34 97 | 91.63 96 | 88.83 99 | 93.31 73 | 96.14 118 | 95.49 65 | 85.24 81 | 93.91 105 | 68.71 130 | 93.96 48 | 71.63 142 | 91.12 112 | 93.82 118 | 92.79 123 | 99.07 114 | 99.16 95 |
|
EPNet_dtu | | | 89.82 98 | 94.18 72 | 84.74 124 | 96.87 53 | 95.54 128 | 92.65 101 | 86.91 67 | 96.99 68 | 54.17 187 | 92.41 56 | 88.54 85 | 78.35 177 | 96.15 73 | 96.05 67 | 99.47 69 | 93.60 185 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RPSCF | | | 89.81 99 | 89.75 122 | 89.88 89 | 93.22 76 | 93.99 142 | 94.78 73 | 85.23 82 | 94.01 104 | 82.52 77 | 95.00 40 | 87.23 92 | 92.01 101 | 85.16 194 | 83.48 199 | 91.54 205 | 89.38 199 |
|
MDTV_nov1_ep13 | | | 89.63 100 | 94.38 67 | 84.09 131 | 88.76 130 | 97.53 97 | 89.37 135 | 68.46 188 | 96.95 69 | 70.27 125 | 87.88 73 | 93.67 66 | 91.04 113 | 93.12 122 | 93.83 93 | 96.62 193 | 97.68 147 |
|
UA-Net | | | 89.56 101 | 93.03 85 | 85.52 120 | 92.46 81 | 97.55 95 | 91.92 107 | 81.91 103 | 85.24 159 | 71.39 120 | 83.57 103 | 96.56 44 | 76.01 188 | 96.81 59 | 97.04 44 | 99.46 75 | 94.41 180 |
|
FMVSNet2 | | | 89.51 102 | 89.63 123 | 89.38 93 | 84.99 150 | 92.73 153 | 93.94 83 | 79.28 124 | 93.73 107 | 84.28 62 | 69.36 150 | 82.32 111 | 94.42 79 | 96.16 72 | 96.22 62 | 99.35 87 | 96.90 161 |
|
CostFormer | | | 89.42 103 | 91.67 95 | 86.80 110 | 89.99 118 | 96.33 115 | 90.75 119 | 64.79 191 | 95.17 91 | 83.62 69 | 86.20 88 | 82.15 113 | 92.96 92 | 89.22 163 | 92.94 114 | 98.68 145 | 99.65 49 |
|
FC-MVSNet-train | | | 89.37 104 | 89.62 124 | 89.08 96 | 90.48 106 | 94.16 141 | 89.45 131 | 83.99 87 | 91.09 131 | 80.09 98 | 82.84 108 | 74.52 132 | 91.44 109 | 93.79 119 | 91.57 134 | 99.01 118 | 99.35 82 |
|
OPM-MVS | | | 89.33 105 | 87.45 139 | 91.53 70 | 94.49 68 | 96.20 117 | 96.47 55 | 89.72 48 | 82.77 166 | 75.43 110 | 80.53 112 | 70.86 150 | 93.80 85 | 94.00 114 | 91.85 132 | 99.29 99 | 95.91 171 |
|
test-LLR | | | 89.31 106 | 93.60 79 | 84.30 128 | 88.08 134 | 96.98 102 | 88.10 140 | 78.00 132 | 94.83 94 | 62.43 150 | 84.29 100 | 90.96 79 | 89.70 121 | 95.63 88 | 92.86 117 | 99.51 62 | 99.64 51 |
|
EPMVS | | | 89.31 106 | 93.70 76 | 84.18 130 | 91.10 95 | 98.10 84 | 89.17 137 | 62.71 195 | 96.24 80 | 70.21 127 | 86.46 86 | 92.37 72 | 92.79 93 | 91.95 138 | 93.59 104 | 99.10 111 | 97.19 154 |
|
Anonymous20231211 | | | 89.22 108 | 87.56 137 | 91.16 75 | 90.23 112 | 96.62 109 | 93.22 93 | 85.44 77 | 92.89 115 | 84.37 61 | 60.13 170 | 81.25 116 | 96.02 60 | 90.61 148 | 92.01 129 | 97.70 183 | 99.41 78 |
|
Effi-MVS+ | | | 88.96 109 | 91.13 107 | 86.43 112 | 89.12 126 | 97.62 94 | 93.15 94 | 75.52 150 | 93.90 106 | 66.40 134 | 86.23 87 | 70.51 153 | 95.03 69 | 95.89 79 | 94.28 87 | 99.37 84 | 99.51 69 |
|
SCA | | | 88.76 110 | 94.29 70 | 82.30 147 | 89.33 123 | 96.81 107 | 87.68 142 | 61.52 200 | 96.95 69 | 64.68 140 | 88.35 68 | 94.80 50 | 91.58 106 | 92.23 132 | 93.21 112 | 98.99 120 | 97.70 146 |
|
test0.0.03 1 | | | 88.71 111 | 92.22 92 | 84.63 126 | 88.08 134 | 94.71 137 | 85.91 165 | 78.00 132 | 95.54 88 | 72.96 114 | 86.10 89 | 85.88 100 | 83.59 156 | 92.95 128 | 93.24 110 | 99.25 105 | 97.09 158 |
|
PatchmatchNet |  | | 88.67 112 | 94.10 73 | 82.34 146 | 89.38 122 | 97.72 91 | 87.24 148 | 62.18 198 | 97.00 67 | 64.79 139 | 87.97 70 | 94.43 56 | 91.55 107 | 91.21 146 | 92.77 124 | 98.90 125 | 97.60 150 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
dps | | | 88.66 113 | 90.19 119 | 86.88 107 | 89.94 119 | 96.48 113 | 89.56 129 | 64.08 193 | 94.12 103 | 89.00 36 | 83.39 105 | 82.56 110 | 90.16 119 | 86.81 186 | 89.26 160 | 98.53 158 | 98.71 115 |
|
TESTMET0.1,1 | | | 88.63 114 | 93.60 79 | 82.84 143 | 84.07 157 | 96.98 102 | 88.10 140 | 73.22 170 | 94.83 94 | 62.43 150 | 84.29 100 | 90.96 79 | 89.70 121 | 95.63 88 | 92.86 117 | 99.51 62 | 99.64 51 |
|
CHOSEN 1792x2688 | | | 88.63 114 | 89.01 128 | 88.19 101 | 94.83 64 | 99.21 58 | 92.66 100 | 79.85 121 | 92.40 120 | 72.18 119 | 56.38 191 | 80.22 121 | 90.24 117 | 97.64 44 | 97.28 37 | 99.37 84 | 99.94 15 |
|
CDS-MVSNet | | | 88.59 116 | 90.13 120 | 86.79 111 | 86.98 143 | 95.43 129 | 92.03 106 | 81.33 111 | 85.54 156 | 74.51 113 | 77.07 121 | 85.14 102 | 87.03 142 | 93.90 117 | 95.18 78 | 98.88 127 | 98.67 117 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IB-MVS | | 84.67 14 | 88.34 117 | 90.61 114 | 85.70 117 | 92.99 78 | 98.62 71 | 78.85 191 | 86.07 73 | 94.35 102 | 88.64 37 | 85.99 91 | 75.69 127 | 68.09 201 | 88.21 166 | 91.43 135 | 99.55 55 | 99.96 9 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test-mter | | | 88.25 118 | 93.27 84 | 82.38 145 | 83.89 158 | 96.86 105 | 87.10 152 | 72.80 172 | 94.58 99 | 61.85 155 | 83.21 106 | 90.65 81 | 89.18 125 | 95.43 98 | 92.58 126 | 99.46 75 | 99.61 59 |
|
COLMAP_ROB |  | 84.42 15 | 88.24 119 | 87.32 140 | 89.32 94 | 95.83 60 | 95.82 122 | 92.81 97 | 87.68 63 | 92.09 123 | 72.64 117 | 72.34 141 | 79.96 122 | 88.79 128 | 89.54 158 | 89.46 156 | 98.16 172 | 92.00 191 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
IterMVS-LS | | | 87.95 120 | 89.40 126 | 86.26 113 | 88.79 129 | 90.93 181 | 91.23 114 | 76.05 147 | 90.87 132 | 71.07 122 | 75.51 130 | 81.18 117 | 91.21 111 | 94.11 113 | 95.01 79 | 99.20 108 | 98.23 132 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HyFIR lowres test | | | 87.86 121 | 88.25 133 | 87.40 104 | 94.67 66 | 98.54 74 | 90.33 124 | 76.51 146 | 89.60 140 | 70.89 123 | 51.43 202 | 85.69 101 | 92.79 93 | 96.59 63 | 95.96 70 | 99.22 107 | 99.94 15 |
|
Vis-MVSNet |  | | 87.60 122 | 91.31 100 | 83.27 138 | 89.14 125 | 98.04 85 | 90.35 123 | 79.42 122 | 87.23 145 | 66.92 133 | 79.10 117 | 84.63 104 | 74.34 195 | 95.81 81 | 96.06 66 | 99.46 75 | 98.32 128 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
GeoE | | | 87.55 123 | 88.17 134 | 86.82 109 | 88.74 131 | 96.32 116 | 92.75 99 | 74.93 155 | 90.13 137 | 72.73 115 | 69.47 149 | 74.03 134 | 92.51 98 | 93.99 115 | 93.62 102 | 99.29 99 | 99.59 60 |
|
RPMNet | | | 87.35 124 | 92.41 90 | 81.45 151 | 88.85 128 | 96.06 119 | 89.42 134 | 59.59 207 | 93.57 108 | 61.81 156 | 76.48 126 | 91.48 77 | 90.18 118 | 96.32 69 | 93.37 108 | 98.87 128 | 99.59 60 |
|
tpm cat1 | | | 87.34 125 | 88.52 132 | 85.95 115 | 89.83 120 | 95.80 123 | 90.73 120 | 64.91 190 | 92.99 114 | 82.21 82 | 71.19 147 | 82.68 109 | 90.13 120 | 86.38 187 | 90.87 143 | 97.90 180 | 99.74 39 |
|
MS-PatchMatch | | | 87.19 126 | 88.59 131 | 85.55 119 | 93.15 77 | 96.58 111 | 92.35 105 | 74.19 163 | 91.97 125 | 70.33 124 | 71.42 145 | 85.89 99 | 84.28 150 | 93.12 122 | 89.16 162 | 99.00 119 | 91.99 192 |
|
Effi-MVS+-dtu | | | 87.18 127 | 90.48 116 | 83.32 137 | 86.51 144 | 95.76 125 | 91.16 117 | 74.28 162 | 90.44 136 | 61.31 159 | 86.72 85 | 72.68 140 | 91.25 110 | 95.01 103 | 93.64 97 | 95.45 199 | 99.12 99 |
|
FMVSNet5 | | | 87.06 128 | 89.52 125 | 84.20 129 | 79.92 195 | 86.57 201 | 87.11 151 | 72.37 174 | 96.06 83 | 75.41 111 | 84.33 99 | 91.76 74 | 91.60 105 | 91.51 142 | 91.22 138 | 98.77 134 | 85.16 204 |
|
Fast-Effi-MVS+-dtu | | | 86.94 129 | 91.27 103 | 81.89 148 | 86.27 145 | 95.06 130 | 90.68 122 | 68.93 185 | 91.76 127 | 57.18 174 | 89.56 64 | 75.85 126 | 89.19 124 | 94.56 106 | 92.84 119 | 99.07 114 | 99.23 88 |
|
Fast-Effi-MVS+ | | | 86.94 129 | 87.88 136 | 85.84 116 | 86.99 142 | 95.80 123 | 91.24 113 | 73.48 169 | 92.75 117 | 69.22 128 | 72.70 139 | 65.71 162 | 94.84 72 | 94.98 104 | 94.71 83 | 99.26 103 | 98.48 123 |
|
tpmrst | | | 86.78 131 | 90.29 117 | 82.69 144 | 90.55 105 | 96.95 104 | 88.49 139 | 62.58 196 | 95.09 93 | 63.52 146 | 76.67 125 | 84.00 107 | 92.05 100 | 87.93 169 | 91.89 131 | 98.98 122 | 99.50 71 |
|
CR-MVSNet | | | 86.73 132 | 91.47 98 | 81.20 154 | 88.56 132 | 96.06 119 | 89.43 132 | 61.37 201 | 93.57 108 | 60.81 161 | 72.89 138 | 88.85 84 | 88.13 135 | 96.03 75 | 93.64 97 | 98.89 126 | 99.22 90 |
|
ADS-MVSNet | | | 86.68 133 | 90.79 111 | 81.88 149 | 90.38 109 | 96.81 107 | 86.90 153 | 60.50 205 | 96.01 84 | 63.93 143 | 81.67 109 | 84.72 103 | 90.78 114 | 87.03 180 | 91.67 133 | 98.77 134 | 97.63 149 |
|
FMVSNet1 | | | 85.85 134 | 84.91 150 | 86.96 106 | 82.70 163 | 91.39 175 | 91.54 110 | 77.45 138 | 85.29 158 | 79.56 100 | 60.70 167 | 72.68 140 | 92.37 99 | 94.12 110 | 93.73 94 | 98.12 173 | 96.44 165 |
|
FC-MVSNet-test | | | 85.51 135 | 89.08 127 | 81.35 152 | 85.31 149 | 93.35 144 | 87.65 143 | 77.55 137 | 90.01 138 | 64.07 142 | 79.63 115 | 81.83 115 | 74.94 192 | 92.08 135 | 90.83 145 | 98.55 155 | 95.81 172 |
|
ACMH | | 85.22 13 | 85.40 136 | 85.73 147 | 85.02 122 | 91.76 84 | 94.46 140 | 84.97 171 | 81.54 109 | 85.18 160 | 65.22 138 | 76.92 122 | 64.22 163 | 88.58 131 | 90.17 150 | 90.25 151 | 98.03 176 | 98.90 109 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAMVS | | | 85.35 137 | 86.00 146 | 84.59 127 | 84.97 153 | 95.57 127 | 88.98 138 | 77.29 141 | 81.44 171 | 71.36 121 | 71.48 144 | 75.00 131 | 87.03 142 | 91.92 139 | 92.21 127 | 97.92 179 | 94.40 181 |
|
ACMH+ | | 85.62 12 | 85.27 138 | 84.96 149 | 85.64 118 | 90.84 99 | 94.78 134 | 87.46 145 | 81.30 112 | 86.94 146 | 67.35 132 | 74.56 132 | 64.09 164 | 88.70 129 | 88.14 167 | 89.00 163 | 98.22 171 | 97.19 154 |
|
USDC | | | 85.11 139 | 85.35 148 | 84.83 123 | 89.45 121 | 94.93 133 | 92.98 95 | 77.30 140 | 90.53 134 | 61.80 157 | 76.69 124 | 59.62 174 | 88.90 127 | 92.78 129 | 90.79 147 | 98.53 158 | 92.12 189 |
|
IterMVS | | | 85.02 140 | 88.98 129 | 80.41 160 | 87.03 141 | 90.34 189 | 89.78 128 | 69.45 182 | 89.77 139 | 54.04 188 | 73.71 135 | 82.05 114 | 83.44 159 | 95.11 101 | 93.64 97 | 98.75 138 | 98.22 134 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 84.91 141 | 88.90 130 | 80.25 163 | 87.04 140 | 90.27 190 | 89.23 136 | 69.25 184 | 89.17 141 | 54.04 188 | 73.65 136 | 82.22 112 | 83.23 164 | 95.11 101 | 93.63 101 | 98.73 139 | 98.23 132 |
|
PatchT | | | 84.89 142 | 90.67 113 | 78.13 183 | 87.83 137 | 94.99 132 | 72.46 203 | 60.22 206 | 91.74 129 | 60.81 161 | 72.16 142 | 86.95 93 | 88.13 135 | 96.03 75 | 93.64 97 | 99.36 86 | 99.22 90 |
|
pmmvs4 | | | 84.88 143 | 84.67 151 | 85.13 121 | 82.80 162 | 92.37 158 | 87.29 146 | 79.08 127 | 90.51 135 | 74.94 112 | 70.37 148 | 62.49 167 | 88.17 134 | 92.01 137 | 88.51 168 | 98.49 161 | 96.44 165 |
|
test_part1 | | | 84.71 144 | 82.08 161 | 87.78 102 | 89.19 124 | 91.40 174 | 91.19 115 | 79.25 125 | 79.62 183 | 82.23 81 | 57.07 187 | 70.79 151 | 88.95 126 | 87.46 174 | 89.91 153 | 95.89 198 | 98.31 130 |
|
CVMVSNet | | | 84.01 145 | 86.91 141 | 80.61 158 | 88.39 133 | 93.29 145 | 86.06 161 | 82.29 100 | 83.13 164 | 54.29 184 | 72.68 140 | 79.59 123 | 75.11 191 | 91.23 145 | 92.91 115 | 97.54 187 | 95.58 174 |
|
tpm | | | 83.97 146 | 87.97 135 | 79.31 173 | 87.35 139 | 93.21 147 | 86.00 163 | 61.90 199 | 90.69 133 | 54.01 190 | 79.42 116 | 75.61 128 | 88.65 130 | 87.18 178 | 90.48 149 | 97.95 178 | 99.21 92 |
|
GA-MVS | | | 83.83 147 | 86.63 142 | 80.58 159 | 85.40 148 | 94.73 136 | 87.27 147 | 78.76 130 | 86.49 148 | 49.57 198 | 74.21 133 | 67.67 159 | 83.38 160 | 95.28 100 | 90.92 142 | 99.08 113 | 97.09 158 |
|
UniMVSNet_NR-MVSNet | | | 83.83 147 | 83.70 154 | 83.98 132 | 81.41 173 | 92.56 157 | 86.54 156 | 82.96 96 | 85.98 153 | 66.27 135 | 66.16 158 | 63.63 165 | 87.78 139 | 87.65 172 | 90.81 146 | 98.94 123 | 99.13 97 |
|
UniMVSNet (Re) | | | 83.28 149 | 83.16 155 | 83.42 136 | 81.93 168 | 93.12 149 | 86.27 159 | 80.83 114 | 85.88 154 | 68.23 131 | 64.56 161 | 60.58 169 | 84.25 151 | 89.13 164 | 89.44 158 | 99.04 117 | 99.40 79 |
|
thisisatest0515 | | | 83.17 150 | 86.49 143 | 79.30 174 | 82.04 166 | 93.12 149 | 78.70 192 | 77.92 134 | 86.43 149 | 63.05 147 | 74.91 131 | 73.01 137 | 75.56 190 | 92.10 134 | 88.05 181 | 98.50 160 | 97.76 145 |
|
TinyColmap | | | 83.03 151 | 82.24 159 | 83.95 133 | 88.88 127 | 93.22 146 | 89.48 130 | 76.89 143 | 87.53 144 | 62.12 152 | 68.46 151 | 55.03 190 | 88.43 133 | 90.87 147 | 89.65 154 | 97.89 181 | 90.91 195 |
|
testgi | | | 82.88 152 | 86.14 145 | 79.08 176 | 86.05 146 | 92.20 166 | 81.23 188 | 74.77 158 | 88.70 142 | 57.63 173 | 86.73 84 | 61.53 168 | 76.83 185 | 90.33 149 | 89.43 159 | 97.99 177 | 94.05 182 |
|
DU-MVS | | | 82.87 153 | 82.16 160 | 83.70 135 | 80.77 182 | 92.24 162 | 86.54 156 | 81.91 103 | 86.41 150 | 66.27 135 | 63.95 162 | 55.66 188 | 87.78 139 | 86.83 183 | 90.86 144 | 98.94 123 | 99.13 97 |
|
MIMVSNet | | | 82.87 153 | 86.17 144 | 79.02 177 | 77.23 203 | 92.88 152 | 84.88 172 | 60.62 204 | 86.72 147 | 64.16 141 | 73.58 137 | 71.48 143 | 88.51 132 | 94.14 109 | 93.50 107 | 98.72 141 | 90.87 196 |
|
NR-MVSNet | | | 82.37 155 | 81.95 163 | 82.85 142 | 82.56 165 | 92.24 162 | 87.49 144 | 81.91 103 | 86.41 150 | 65.51 137 | 63.95 162 | 52.93 199 | 80.80 171 | 89.41 160 | 89.61 155 | 98.85 130 | 99.10 102 |
|
Baseline_NR-MVSNet | | | 82.08 156 | 80.64 170 | 83.77 134 | 80.77 182 | 88.50 196 | 86.88 154 | 81.71 107 | 85.58 155 | 68.80 129 | 58.20 182 | 57.75 180 | 86.16 144 | 86.83 183 | 88.68 165 | 98.33 168 | 98.90 109 |
|
TranMVSNet+NR-MVSNet | | | 82.07 157 | 81.36 166 | 82.90 141 | 80.43 188 | 91.39 175 | 87.16 150 | 82.75 97 | 84.28 162 | 62.98 148 | 62.28 166 | 56.01 187 | 85.30 147 | 86.06 189 | 90.69 148 | 98.80 131 | 98.80 112 |
|
pm-mvs1 | | | 81.68 158 | 81.70 164 | 81.65 150 | 82.61 164 | 92.26 161 | 85.54 169 | 78.95 128 | 76.29 194 | 63.81 144 | 58.43 181 | 66.33 161 | 80.63 172 | 92.30 131 | 89.93 152 | 98.37 167 | 96.39 167 |
|
TDRefinement | | | 81.49 159 | 80.08 176 | 83.13 140 | 91.02 97 | 94.53 138 | 91.66 109 | 82.43 99 | 81.70 169 | 62.12 152 | 62.30 165 | 59.32 175 | 73.93 196 | 87.31 176 | 85.29 192 | 97.61 184 | 90.14 197 |
|
anonymousdsp | | | 81.29 160 | 84.52 153 | 77.52 185 | 79.83 196 | 92.62 156 | 82.61 183 | 70.88 179 | 80.76 175 | 50.82 195 | 68.35 153 | 68.76 157 | 82.45 167 | 93.00 125 | 89.45 157 | 98.55 155 | 98.69 116 |
|
gg-mvs-nofinetune | | | 81.27 161 | 84.65 152 | 77.32 186 | 87.96 136 | 98.48 78 | 95.64 62 | 56.36 210 | 59.35 212 | 32.80 216 | 47.96 206 | 92.11 73 | 91.49 108 | 98.12 24 | 97.00 46 | 99.65 24 | 99.56 65 |
|
tfpnnormal | | | 81.11 162 | 79.33 184 | 83.19 139 | 84.23 155 | 92.29 160 | 86.76 155 | 82.27 101 | 72.67 200 | 62.02 154 | 56.10 193 | 53.86 196 | 85.35 146 | 92.06 136 | 89.23 161 | 98.49 161 | 99.11 101 |
|
UniMVSNet_ETH3D | | | 80.95 163 | 77.71 192 | 84.74 124 | 84.45 154 | 93.11 151 | 86.45 158 | 79.97 120 | 75.21 196 | 70.22 126 | 51.24 203 | 50.26 205 | 89.55 123 | 84.47 196 | 91.12 139 | 97.81 182 | 98.53 121 |
|
V42 | | | 80.88 164 | 80.74 168 | 81.05 155 | 81.21 176 | 92.01 168 | 85.96 164 | 77.75 136 | 81.62 170 | 59.73 168 | 59.93 173 | 58.35 179 | 82.98 166 | 86.90 182 | 88.06 180 | 98.69 144 | 98.32 128 |
|
v2v482 | | | 80.86 165 | 80.52 174 | 81.25 153 | 80.79 181 | 91.85 169 | 85.68 167 | 78.78 129 | 81.05 172 | 58.09 171 | 60.46 168 | 56.08 185 | 85.45 145 | 87.27 177 | 88.53 167 | 98.73 139 | 98.38 127 |
|
v8 | | | 80.61 166 | 80.61 172 | 80.62 157 | 81.51 171 | 91.00 180 | 86.06 161 | 74.07 165 | 81.78 168 | 59.93 167 | 60.10 172 | 58.42 178 | 83.35 161 | 86.99 181 | 88.11 178 | 98.79 132 | 97.83 143 |
|
pmmvs5 | | | 80.48 167 | 81.43 165 | 79.36 172 | 81.50 172 | 92.24 162 | 82.07 186 | 74.08 164 | 78.10 187 | 55.86 179 | 67.72 155 | 54.35 193 | 83.91 155 | 92.97 126 | 88.65 166 | 98.77 134 | 96.01 169 |
|
v10 | | | 80.38 168 | 80.73 169 | 79.96 165 | 81.22 175 | 90.40 188 | 86.11 160 | 71.63 176 | 82.42 167 | 57.65 172 | 58.74 179 | 57.47 181 | 84.44 149 | 89.75 154 | 88.28 171 | 98.71 142 | 98.06 140 |
|
v1144 | | | 80.36 169 | 80.63 171 | 80.05 164 | 80.86 180 | 91.56 172 | 85.78 166 | 75.22 152 | 80.73 176 | 55.83 180 | 58.51 180 | 56.99 183 | 83.93 154 | 89.79 153 | 88.25 172 | 98.68 145 | 98.56 120 |
|
SixPastTwentyTwo | | | 80.28 170 | 82.06 162 | 78.21 182 | 81.89 170 | 92.35 159 | 77.72 193 | 74.48 159 | 83.04 165 | 54.22 185 | 76.06 128 | 56.40 184 | 83.55 157 | 86.83 183 | 84.83 194 | 97.38 188 | 94.93 178 |
|
CP-MVSNet | | | 79.90 171 | 79.49 181 | 80.38 161 | 80.72 184 | 90.83 182 | 82.98 180 | 75.17 153 | 79.70 181 | 61.39 158 | 59.74 174 | 51.98 202 | 83.31 162 | 87.37 175 | 88.38 169 | 98.71 142 | 98.45 124 |
|
v1192 | | | 79.84 172 | 80.05 178 | 79.61 168 | 80.49 187 | 91.04 179 | 85.56 168 | 74.37 161 | 80.73 176 | 54.35 183 | 57.07 187 | 54.54 192 | 84.23 152 | 89.94 151 | 88.38 169 | 98.63 149 | 98.61 118 |
|
WR-MVS_H | | | 79.76 173 | 80.07 177 | 79.40 171 | 81.25 174 | 91.73 171 | 82.77 181 | 74.82 157 | 79.02 186 | 62.55 149 | 59.41 176 | 57.32 182 | 76.27 187 | 87.61 173 | 87.30 186 | 98.78 133 | 98.09 138 |
|
WR-MVS | | | 79.67 174 | 80.25 175 | 79.00 178 | 80.65 185 | 91.16 177 | 83.31 178 | 76.57 145 | 80.97 173 | 60.50 166 | 59.20 177 | 58.66 177 | 74.38 194 | 85.85 191 | 87.76 183 | 98.61 150 | 98.14 135 |
|
v148 | | | 79.66 175 | 79.13 186 | 80.27 162 | 81.02 178 | 91.76 170 | 81.90 187 | 79.32 123 | 79.24 184 | 63.79 145 | 58.07 184 | 54.34 194 | 77.17 183 | 84.42 197 | 87.52 185 | 98.40 164 | 98.59 119 |
|
LTVRE_ROB | | 79.45 16 | 79.66 175 | 80.55 173 | 78.61 180 | 83.01 161 | 92.19 167 | 87.18 149 | 73.69 168 | 71.70 203 | 43.22 211 | 71.22 146 | 50.85 203 | 87.82 138 | 89.47 159 | 90.43 150 | 96.75 191 | 98.00 142 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v144192 | | | 79.61 177 | 79.77 179 | 79.41 170 | 80.28 189 | 91.06 178 | 84.87 173 | 73.86 166 | 79.65 182 | 55.38 181 | 57.76 185 | 55.20 189 | 83.46 158 | 88.42 165 | 87.89 182 | 98.61 150 | 98.42 126 |
|
v1921920 | | | 79.55 178 | 79.77 179 | 79.30 174 | 80.24 190 | 90.77 184 | 85.37 170 | 73.75 167 | 80.38 178 | 53.78 191 | 56.89 190 | 54.18 195 | 84.05 153 | 89.55 157 | 88.13 177 | 98.59 152 | 98.52 122 |
|
TransMVSNet (Re) | | | 79.51 179 | 78.36 188 | 80.84 156 | 83.17 159 | 89.72 192 | 84.22 176 | 81.45 110 | 73.98 199 | 60.79 164 | 57.20 186 | 56.05 186 | 77.11 184 | 89.88 152 | 88.86 164 | 98.30 170 | 92.83 187 |
|
MVS-HIRNet | | | 79.34 180 | 82.56 156 | 75.57 191 | 84.11 156 | 95.02 131 | 75.03 200 | 57.28 209 | 85.50 157 | 55.88 178 | 53.00 199 | 70.51 153 | 83.05 165 | 92.12 133 | 91.96 130 | 98.09 174 | 89.83 198 |
|
PS-CasMVS | | | 79.06 181 | 78.58 187 | 79.63 167 | 80.59 186 | 90.55 186 | 82.54 184 | 75.04 154 | 77.76 188 | 58.84 169 | 58.16 183 | 50.11 207 | 82.09 168 | 87.05 179 | 88.18 175 | 98.66 148 | 98.27 131 |
|
v1240 | | | 78.97 182 | 79.27 185 | 78.63 179 | 80.04 191 | 90.61 185 | 84.25 175 | 72.95 171 | 79.22 185 | 52.70 193 | 56.22 192 | 52.88 201 | 83.28 163 | 89.60 156 | 88.20 174 | 98.56 154 | 98.14 135 |
|
pmnet_mix02 | | | 78.91 183 | 81.17 167 | 76.28 190 | 81.91 169 | 90.82 183 | 74.25 201 | 77.87 135 | 86.17 152 | 49.04 199 | 67.97 154 | 62.93 166 | 77.40 181 | 82.75 202 | 82.11 201 | 97.18 189 | 95.42 175 |
|
MDTV_nov1_ep13_2view | | | 78.83 184 | 82.35 157 | 74.73 194 | 78.65 198 | 91.51 173 | 79.18 190 | 62.52 197 | 84.51 161 | 52.51 194 | 67.49 156 | 67.29 160 | 78.90 175 | 85.52 193 | 86.34 189 | 96.62 193 | 93.76 183 |
|
PEN-MVS | | | 78.80 185 | 78.13 190 | 79.58 169 | 80.03 192 | 89.67 193 | 83.61 177 | 75.83 148 | 77.71 190 | 58.41 170 | 60.11 171 | 50.00 208 | 81.02 170 | 84.08 198 | 88.14 176 | 98.59 152 | 97.18 156 |
|
EG-PatchMatch MVS | | | 78.32 186 | 79.42 183 | 77.03 188 | 83.03 160 | 93.77 143 | 84.47 174 | 69.26 183 | 75.85 195 | 53.69 192 | 55.68 194 | 60.23 172 | 73.20 197 | 89.69 155 | 88.22 173 | 98.55 155 | 92.54 188 |
|
DTE-MVSNet | | | 77.92 187 | 77.42 193 | 78.51 181 | 79.34 197 | 89.00 195 | 83.05 179 | 75.60 149 | 76.89 192 | 56.58 175 | 59.63 175 | 50.31 204 | 78.09 180 | 82.57 203 | 87.56 184 | 98.38 165 | 95.95 170 |
|
v7n | | | 77.71 188 | 78.25 189 | 77.09 187 | 78.49 199 | 90.55 186 | 82.15 185 | 71.11 178 | 76.79 193 | 54.18 186 | 55.63 195 | 50.20 206 | 78.28 178 | 89.36 162 | 87.15 187 | 98.33 168 | 98.07 139 |
|
gm-plane-assit | | | 77.20 189 | 82.26 158 | 71.30 197 | 81.10 177 | 82.00 209 | 54.33 214 | 64.41 192 | 63.80 211 | 40.93 213 | 59.04 178 | 76.57 125 | 87.30 141 | 98.26 21 | 97.36 36 | 99.74 13 | 98.76 114 |
|
N_pmnet | | | 76.83 190 | 77.97 191 | 75.50 192 | 80.96 179 | 88.23 198 | 72.81 202 | 76.83 144 | 80.87 174 | 50.55 196 | 56.94 189 | 60.09 173 | 75.70 189 | 83.28 200 | 84.23 196 | 96.14 197 | 92.12 189 |
|
pmmvs6 | | | 76.79 191 | 75.69 198 | 78.09 184 | 79.95 194 | 89.57 194 | 80.92 189 | 74.46 160 | 64.79 209 | 60.74 165 | 45.71 208 | 60.55 170 | 78.37 176 | 88.04 168 | 86.00 190 | 94.07 202 | 95.15 176 |
|
CMPMVS |  | 58.73 17 | 76.78 192 | 74.27 199 | 79.70 166 | 93.26 75 | 95.58 126 | 82.74 182 | 77.44 139 | 71.46 206 | 56.29 177 | 53.58 198 | 59.13 176 | 77.33 182 | 79.20 204 | 79.71 204 | 91.14 207 | 81.24 207 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
EU-MVSNet | | | 76.76 193 | 79.47 182 | 73.60 195 | 79.99 193 | 87.47 199 | 77.39 194 | 75.43 151 | 77.62 191 | 47.83 202 | 64.78 160 | 60.44 171 | 64.80 202 | 86.28 188 | 86.53 188 | 96.17 196 | 93.19 186 |
|
PM-MVS | | | 75.81 194 | 76.11 197 | 75.46 193 | 73.81 204 | 85.48 203 | 76.42 196 | 70.57 180 | 80.05 180 | 54.75 182 | 62.33 164 | 39.56 214 | 80.59 173 | 87.71 171 | 82.81 200 | 96.61 195 | 94.81 179 |
|
pmmvs-eth3d | | | 75.17 195 | 74.09 200 | 76.43 189 | 72.92 205 | 84.49 205 | 76.61 195 | 72.42 173 | 74.33 197 | 61.28 160 | 54.71 197 | 39.42 215 | 78.20 179 | 87.77 170 | 84.25 195 | 97.17 190 | 93.63 184 |
|
Anonymous20231206 | | | 74.59 196 | 77.00 194 | 71.78 196 | 77.89 202 | 87.45 200 | 75.14 199 | 72.29 175 | 77.76 188 | 46.65 204 | 52.14 200 | 52.93 199 | 61.10 205 | 89.37 161 | 88.09 179 | 97.59 185 | 91.30 194 |
|
test20.03 | | | 72.81 197 | 76.24 196 | 68.80 200 | 78.31 200 | 85.40 204 | 71.04 204 | 71.20 177 | 71.85 202 | 43.40 210 | 65.31 159 | 54.71 191 | 51.27 208 | 85.92 190 | 84.18 197 | 97.58 186 | 86.35 203 |
|
test_method | | | 71.90 198 | 76.72 195 | 66.28 205 | 60.87 213 | 78.37 211 | 69.75 208 | 49.81 215 | 83.44 163 | 49.63 197 | 47.13 207 | 53.23 198 | 76.38 186 | 91.32 144 | 85.76 191 | 91.22 206 | 97.77 144 |
|
new_pmnet | | | 71.86 199 | 73.67 201 | 69.75 199 | 72.56 208 | 84.20 206 | 70.95 206 | 66.81 189 | 80.34 179 | 43.62 209 | 51.60 201 | 53.81 197 | 71.24 199 | 82.91 201 | 80.93 202 | 93.35 204 | 81.92 206 |
|
MDA-MVSNet-bldmvs | | | 69.61 200 | 70.36 203 | 68.74 201 | 62.88 211 | 88.50 196 | 65.40 211 | 77.01 142 | 71.60 205 | 43.93 206 | 66.71 157 | 35.33 217 | 72.47 198 | 61.01 210 | 80.63 203 | 90.73 208 | 88.75 201 |
|
pmmvs3 | | | 69.04 201 | 70.75 202 | 67.04 203 | 66.83 209 | 78.54 210 | 64.99 212 | 60.92 203 | 64.67 210 | 40.61 214 | 55.08 196 | 40.29 213 | 74.89 193 | 83.76 199 | 84.01 198 | 93.98 203 | 88.88 200 |
|
MIMVSNet1 | | | 68.63 202 | 70.24 204 | 66.76 204 | 56.86 215 | 83.26 207 | 67.93 209 | 70.26 181 | 68.05 207 | 46.80 203 | 40.44 209 | 48.15 209 | 62.01 203 | 84.96 195 | 84.86 193 | 96.69 192 | 81.93 205 |
|
GG-mvs-BLEND | | | 67.99 203 | 97.35 38 | 33.72 212 | 1.22 221 | 99.72 15 | 98.30 34 | 0.57 219 | 97.61 61 | 1.18 222 | 93.26 51 | 96.63 43 | 1.74 218 | 97.15 53 | 97.14 39 | 99.34 91 | 99.96 9 |
|
new-patchmatchnet | | | 67.66 204 | 68.07 205 | 67.18 202 | 72.85 206 | 82.86 208 | 63.09 213 | 68.61 187 | 66.60 208 | 42.64 212 | 49.28 204 | 38.68 216 | 61.21 204 | 75.84 205 | 75.22 206 | 94.67 201 | 88.00 202 |
|
FPMVS | | | 63.27 205 | 61.31 207 | 65.57 206 | 78.25 201 | 74.42 214 | 75.23 198 | 68.92 186 | 72.33 201 | 43.87 207 | 49.01 205 | 43.94 211 | 48.64 210 | 61.15 209 | 58.81 211 | 78.51 214 | 69.49 212 |
|
Gipuma |  | | 54.59 206 | 53.98 208 | 55.30 207 | 59.03 214 | 52.63 216 | 47.17 216 | 56.08 211 | 71.68 204 | 37.54 215 | 20.90 215 | 19.00 219 | 52.33 207 | 71.69 207 | 75.20 207 | 79.64 213 | 66.79 213 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 49.05 18 | 51.88 207 | 50.56 210 | 53.42 208 | 64.21 210 | 43.30 218 | 42.64 217 | 62.93 194 | 50.56 213 | 43.72 208 | 37.44 210 | 42.95 212 | 35.05 213 | 58.76 212 | 54.58 212 | 71.95 215 | 66.33 214 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PMMVS2 | | | 50.69 208 | 52.33 209 | 48.78 209 | 51.24 216 | 64.81 215 | 47.91 215 | 53.79 214 | 44.95 214 | 21.75 217 | 29.98 213 | 25.90 218 | 31.98 215 | 59.95 211 | 65.37 209 | 86.00 211 | 75.36 210 |
|
E-PMN | | | 37.15 209 | 34.82 212 | 39.86 210 | 47.53 218 | 35.42 220 | 23.79 219 | 55.26 212 | 35.18 217 | 14.12 219 | 17.38 218 | 14.13 221 | 39.73 212 | 32.24 214 | 46.98 213 | 58.76 216 | 62.39 216 |
|
EMVS | | | 36.45 210 | 33.63 213 | 39.74 211 | 48.47 217 | 35.73 219 | 23.59 220 | 55.11 213 | 35.61 216 | 12.88 220 | 17.49 216 | 14.62 220 | 41.04 211 | 29.33 215 | 43.00 214 | 57.32 217 | 59.62 217 |
|
MVE |  | 42.40 19 | 36.00 211 | 38.65 211 | 32.92 213 | 29.16 219 | 46.17 217 | 22.61 221 | 44.21 216 | 26.44 219 | 18.88 218 | 17.41 217 | 9.36 223 | 32.29 214 | 45.75 213 | 61.38 210 | 50.35 218 | 64.03 215 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 21.55 212 | 30.91 214 | 10.62 214 | 2.78 220 | 11.66 221 | 18.51 222 | 4.82 217 | 38.21 215 | 4.06 221 | 36.35 211 | 4.47 224 | 26.81 216 | 23.27 216 | 27.11 215 | 6.75 219 | 75.30 211 |
|
test123 | | | 16.81 213 | 24.80 215 | 7.48 215 | 0.82 222 | 8.38 222 | 11.92 223 | 2.60 218 | 28.96 218 | 1.12 223 | 28.39 214 | 1.26 225 | 24.51 217 | 8.93 217 | 22.19 216 | 3.90 220 | 75.49 209 |
|
uanet_test | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet-low-res | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
sosnet | | | 0.00 214 | 0.00 216 | 0.00 216 | 0.00 223 | 0.00 223 | 0.00 224 | 0.00 220 | 0.00 220 | 0.00 224 | 0.00 219 | 0.00 226 | 0.00 219 | 0.00 218 | 0.00 217 | 0.00 221 | 0.00 218 |
|
RE-MVS-def | | | | | | | | | | | 46.54 205 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.73 7 | | | | | |
|
SR-MVS | | | | | | 99.27 15 | | | 95.82 18 | | | | 99.00 17 | | | | | |
|
Anonymous202405211 | | | | 87.54 138 | | 90.72 102 | 97.10 101 | 93.40 92 | 85.30 79 | 91.41 130 | | 60.23 169 | 80.69 120 | 95.80 64 | 91.33 143 | 92.60 125 | 98.38 165 | 99.40 79 |
|
our_test_3 | | | | | | 81.94 167 | 90.26 191 | 75.39 197 | | | | | | | | | | |
|
ambc | | | | 64.61 206 | | 61.80 212 | 75.31 213 | 71.00 205 | | 74.16 198 | 48.83 200 | 36.02 212 | 13.22 222 | 58.66 206 | 85.80 192 | 76.26 205 | 88.01 209 | 91.53 193 |
|
MTAPA | | | | | | | | | | | 94.58 14 | | 98.56 23 | | | | | |
|
MTMP | | | | | | | | | | | 95.24 8 | | 98.13 30 | | | | | |
|
Patchmatch-RL test | | | | | | | | 37.05 218 | | | | | | | | | | |
|
tmp_tt | | | | | 71.24 198 | 90.29 111 | 76.39 212 | 65.81 210 | 59.43 208 | 97.62 59 | 79.65 99 | 90.60 60 | 68.71 158 | 49.71 209 | 72.71 206 | 65.70 208 | 82.54 212 | |
|
XVS | | | | | | 93.63 70 | 99.64 24 | 94.32 78 | | | 83.97 66 | | 98.08 32 | | | | 99.59 36 | |
|
X-MVStestdata | | | | | | 93.63 70 | 99.64 24 | 94.32 78 | | | 83.97 66 | | 98.08 32 | | | | 99.59 36 | |
|
abl_6 | | | | | 95.40 36 | 98.18 39 | 99.45 42 | 97.39 48 | 89.27 50 | 99.48 3 | 90.52 28 | 94.52 45 | 98.63 22 | 97.32 35 | | | 99.73 14 | 99.82 31 |
|
mPP-MVS | | | | | | 98.66 29 | | | | | | | 97.11 40 | | | | | |
|
NP-MVS | | | | | | | | | | 97.69 57 | | | | | | | | |
|
Patchmtry | | | | | | | 95.86 121 | 89.43 132 | 61.37 201 | | 60.81 161 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 85.88 202 | 69.83 207 | 81.56 108 | 87.99 143 | 48.22 201 | 71.85 143 | 45.52 210 | 68.67 200 | 63.21 208 | | 86.64 210 | 80.03 208 |
|