This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS98.87 199.20 298.48 199.32 1199.85 299.55 696.20 699.48 396.78 398.51 1699.99 199.36 198.98 897.59 2999.67 2099.99 3
MSP-MVS98.75 299.27 198.15 899.21 1799.82 699.58 496.09 1399.32 1095.16 998.79 699.55 899.05 599.54 197.88 2199.84 399.99 3
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS98.73 399.17 598.22 599.47 499.85 299.57 596.23 499.30 1194.90 1198.65 1098.93 1999.36 199.46 398.21 1199.81 699.80 33
DPE-MVScopyleft98.69 499.14 698.16 799.37 799.82 699.66 296.26 199.18 1695.02 1098.62 1399.98 398.88 1198.90 1197.51 3299.75 1099.97 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS98.65 598.87 1298.38 299.30 1399.85 299.14 2396.23 499.51 297.16 196.01 3499.99 198.90 1098.89 1297.88 2199.56 5099.98 5
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS98.60 698.97 998.18 699.38 699.78 1199.35 1596.14 999.24 1395.66 798.19 2099.01 1698.66 1798.77 1497.80 2499.86 299.97 7
SF-MVS98.55 798.75 1498.32 399.48 199.68 2099.51 896.24 299.08 2095.94 498.64 1199.30 1299.02 797.94 2896.86 5099.75 1099.76 36
SMA-MVScopyleft98.47 899.06 797.77 1299.48 199.78 1199.37 1296.14 999.29 1293.03 2097.59 2899.97 499.03 698.94 998.30 999.60 3399.58 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC98.41 999.18 397.52 1699.36 899.84 599.55 696.08 1599.33 991.77 2598.79 699.46 1098.59 1999.15 798.07 1899.73 1499.64 51
SD-MVS98.33 1099.01 897.54 1597.17 5199.77 1399.14 2396.09 1399.34 894.06 1697.91 2599.89 599.18 497.99 2798.21 1199.63 2799.95 12
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft98.28 1198.69 1597.80 1099.31 1299.62 2899.31 1896.15 899.19 1593.60 1797.28 2998.35 2798.72 1698.27 2098.22 1099.73 1499.89 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MCST-MVS98.20 1299.18 397.06 2299.27 1599.87 199.37 1296.11 1199.37 689.29 3398.76 899.50 998.37 2599.23 597.64 2799.95 199.87 28
HPM-MVS++copyleft98.16 1398.87 1297.32 1899.39 599.70 1899.18 2196.10 1299.09 1991.14 2798.02 2399.89 598.44 2398.75 1597.03 4599.67 2099.63 55
MSLP-MVS++98.12 1498.23 2797.99 999.28 1499.72 1599.59 395.27 2998.61 3394.79 1296.11 3397.79 3699.27 396.62 6298.96 599.77 999.80 33
HFP-MVS98.02 1598.55 1997.40 1799.11 2199.69 1999.41 1095.41 2798.79 3191.86 2498.61 1498.16 2999.02 797.87 3397.40 3499.60 3399.35 82
TSAR-MVS + MP.97.98 1698.62 1897.23 2097.08 5299.55 3499.17 2295.69 2299.40 593.04 1996.68 3198.96 1898.58 2098.82 1396.95 4799.81 699.96 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
zzz-MVS97.93 1798.05 3197.80 1099.20 1899.64 2499.40 1195.76 2098.01 5294.31 1596.54 3298.49 2598.58 2098.22 2396.23 6099.54 6099.23 88
SteuartSystems-ACMMP97.86 1898.91 1096.64 2698.89 2799.79 899.34 1695.20 3198.48 3589.91 3198.58 1598.69 2196.84 4698.92 1098.16 1599.66 2299.74 39
Skip Steuart: Steuart Systems R&D Blog.
CP-MVS97.81 1998.26 2697.28 1999.00 2499.65 2399.10 2595.32 2898.38 4192.21 2398.33 1897.74 3798.50 2297.66 4296.55 5899.57 4599.48 72
ACMMPR97.78 2098.28 2497.20 2199.03 2399.68 2099.37 1295.24 3098.86 3091.16 2697.86 2697.26 3998.79 1497.64 4497.40 3499.60 3399.25 87
DeepC-MVS_fast95.01 197.67 2198.22 2897.02 2399.00 2499.79 899.10 2595.82 1899.05 2389.53 3293.54 4996.77 4298.83 1299.34 499.44 299.82 499.63 55
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary97.54 2297.35 3897.77 1299.17 1999.55 3498.57 3195.76 2099.04 2494.66 1397.94 2494.39 5798.82 1396.21 7194.78 8199.62 2999.52 68
ACMMP_NAP97.51 2398.27 2596.63 2799.34 999.72 1599.25 1995.94 1798.11 4687.10 4696.98 3098.50 2498.61 1898.58 1796.83 5299.56 5099.14 96
MP-MVScopyleft97.46 2498.30 2396.48 2898.93 2699.43 4499.20 2095.42 2698.43 3787.60 4398.19 2098.01 3598.09 2798.05 2696.67 5599.64 2599.35 82
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
train_agg97.42 2598.88 1195.71 3398.46 3499.60 3199.05 2795.16 3299.10 1884.38 6098.47 1798.85 2097.61 3198.54 1897.66 2699.62 2999.93 18
CPTT-MVS97.32 2697.60 3796.99 2498.29 3799.31 5599.04 2894.67 3697.99 5393.12 1898.03 2298.26 2898.77 1596.08 7494.26 8998.07 17599.27 86
X-MVS97.20 2798.42 2295.77 3199.04 2299.64 2498.95 3095.10 3498.16 4483.97 6698.27 1998.08 3297.95 2897.89 3097.46 3399.58 4199.47 73
PHI-MVS97.09 2898.69 1595.22 3897.99 4399.59 3397.56 4492.16 4098.41 3987.11 4598.70 999.42 1196.95 4296.88 5898.16 1599.56 5099.70 44
DPM-MVS97.07 2997.99 3296.00 3097.25 5099.16 6199.67 195.99 1699.08 2085.97 5093.00 5498.44 2697.47 3399.22 699.62 199.66 2297.44 152
PGM-MVS97.03 3098.14 3095.73 3299.34 999.61 3099.34 1689.99 4697.70 5687.67 4299.44 296.45 4598.44 2397.65 4397.09 4299.58 4199.06 104
PLCcopyleft94.37 297.03 3096.54 4397.60 1498.84 2898.64 7098.17 3694.99 3599.01 2696.80 293.21 5395.64 4797.36 3496.37 6694.79 8099.41 8298.12 137
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + ACMM96.90 3298.64 1794.88 4098.12 4199.47 3999.01 2995.43 2599.23 1481.98 8595.95 3599.16 1595.13 6798.61 1698.11 1799.58 4199.93 18
TSAR-MVS + GP.96.47 3398.45 2194.17 4592.12 8399.29 5697.76 4088.05 5799.36 790.26 3097.82 2799.21 1397.21 3896.78 6096.74 5399.63 2799.94 15
xxxxxxxxxxxxxcwj96.27 3494.51 6298.32 399.48 199.68 2099.51 896.24 299.08 2095.94 498.64 1169.64 15599.02 797.94 2896.86 5099.75 1099.76 36
EPNet96.23 3597.89 3494.29 4397.62 4699.44 4397.14 5288.63 5398.16 4488.14 3899.46 194.15 6094.61 7797.20 5197.23 3899.57 4599.59 60
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNLPA96.14 3695.43 5296.98 2598.55 3199.41 4895.91 5895.15 3399.00 2795.71 684.21 10294.55 5597.25 3695.50 9696.23 6099.28 10299.09 103
MVS_111021_LR96.07 3797.94 3393.88 4897.86 4499.43 4495.70 6189.65 4998.73 3284.86 5799.38 394.08 6195.78 6597.81 3696.73 5499.43 7999.42 76
ACMMPcopyleft96.05 3896.70 4295.29 3798.01 4299.43 4497.60 4394.33 3897.62 5986.17 4998.92 492.81 6896.10 5895.67 8693.33 10999.55 5599.12 99
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
3Dnovator+90.72 795.99 3996.42 4595.50 3598.18 3999.33 5497.44 4687.73 6297.93 5492.36 2284.67 9597.33 3897.55 3297.32 4798.47 899.72 1899.88 25
DeepPCF-MVS94.02 395.92 4098.47 2092.95 5797.57 4799.79 891.45 11194.42 3799.76 186.48 4892.88 5598.12 3192.62 9699.49 299.32 395.15 20099.95 12
CDPH-MVS95.90 4197.77 3693.72 5198.28 3899.43 4498.40 3291.30 4498.34 4278.62 10394.80 4195.74 4696.11 5797.86 3498.67 799.59 3699.56 65
CSCG95.77 4295.35 5496.26 2999.13 2099.60 3198.14 3791.89 4396.57 7592.61 2189.65 6391.74 7596.96 4093.69 12096.58 5798.86 12999.63 55
OMC-MVS95.75 4395.84 4995.64 3498.52 3399.34 5397.15 5192.02 4298.94 2990.45 2988.31 6994.64 5296.35 5396.02 7795.99 6999.34 9197.65 148
MVS_111021_HR95.70 4498.16 2992.83 5897.57 4799.77 1394.78 7388.05 5798.61 3382.29 8098.85 594.66 5194.63 7597.80 3797.63 2899.64 2599.79 35
3Dnovator90.31 895.67 4596.16 4795.11 3998.59 3099.37 5297.50 4587.98 5998.02 5189.09 3485.36 9494.62 5397.66 2997.10 5498.90 699.82 499.73 41
CANet95.40 4696.27 4694.40 4296.25 5799.62 2898.37 3388.59 5498.09 4787.58 4484.57 9795.54 4995.87 6298.12 2498.03 2099.73 1499.90 23
QAPM95.17 4796.05 4894.14 4698.55 3199.49 3797.41 4787.88 6097.72 5584.21 6384.59 9695.60 4897.21 3897.10 5498.19 1499.57 4599.65 49
MVSTER94.75 4896.50 4492.70 6190.91 9894.51 13997.37 4983.37 9298.40 4089.04 3593.23 5297.04 4195.91 6197.73 3895.59 7799.61 3199.01 105
TAPA-MVS92.04 694.72 4995.13 5794.24 4497.72 4599.17 5997.61 4292.16 4097.66 5881.99 8487.84 7493.94 6396.50 5095.74 8394.27 8899.46 7597.31 153
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS94.60 5097.10 4191.67 6690.73 10198.52 7795.51 6483.30 9499.02 2584.42 5994.12 4794.58 5496.52 4997.70 4096.12 6499.55 5599.64 51
DeepC-MVS92.23 594.53 5194.26 7194.86 4196.73 5499.50 3697.85 3995.45 2496.22 8282.73 7580.68 11188.02 8796.92 4397.49 4698.20 1399.47 6999.69 46
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CHOSEN 280x42094.51 5297.78 3590.70 7995.54 6399.49 3794.14 8174.91 15698.43 3785.32 5594.78 4299.19 1494.95 7197.02 5696.18 6399.35 8799.36 81
ETV-MVS94.49 5397.23 4091.29 7390.43 10898.55 7393.41 9184.53 8599.16 1783.13 7194.72 4394.08 6196.61 4897.72 3996.60 5699.61 3199.81 32
MVS_030494.35 5495.66 5192.83 5894.82 6599.46 4198.19 3587.75 6197.32 6581.83 8883.50 10493.19 6794.71 7398.24 2298.07 1899.68 1999.83 30
MAR-MVS94.18 5595.12 5893.09 5698.40 3699.17 5994.20 8081.92 10298.47 3686.52 4790.92 5884.21 10698.12 2695.88 8097.59 2999.40 8399.58 63
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PCF-MVS92.56 493.95 5693.82 7494.10 4796.07 5999.25 5796.82 5495.51 2392.00 12481.51 8982.97 10793.88 6595.63 6694.24 10894.71 8399.09 11299.70 44
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DELS-MVS93.82 5793.82 7493.81 5096.34 5699.47 3997.26 5088.53 5592.13 12287.80 4179.67 11488.01 8893.14 8898.28 1999.22 499.80 899.98 5
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OpenMVScopyleft88.43 1193.49 5893.62 7793.34 5298.46 3499.39 4997.00 5387.66 6495.37 8981.21 9175.96 12991.58 7696.21 5696.37 6697.10 4199.52 6199.54 67
EIA-MVS93.32 5995.32 5590.99 7690.45 10798.53 7693.46 9084.68 8497.56 6281.38 9091.04 5787.37 9196.39 5297.27 4895.73 7499.59 3699.76 36
PVSNet_BlendedMVS93.30 6093.46 8193.10 5495.60 6199.38 5093.59 8888.70 5198.09 4788.10 3986.96 8275.02 12993.08 8997.89 3096.90 4899.56 50100.00 1
PVSNet_Blended93.30 6093.46 8193.10 5495.60 6199.38 5093.59 8888.70 5198.09 4788.10 3986.96 8275.02 12993.08 8997.89 3096.90 4899.56 50100.00 1
PMMVS93.05 6295.40 5390.31 8391.41 9197.54 9692.62 10383.25 9598.08 5079.44 10195.18 3988.52 8696.43 5195.70 8493.88 9298.68 14598.91 108
LS3D92.70 6392.23 9193.26 5396.24 5898.72 6597.93 3896.17 796.41 7672.46 11881.39 11080.76 11997.66 2995.69 8595.62 7699.07 11497.02 160
baseline192.67 6493.62 7791.55 6891.16 9497.15 9993.92 8685.97 7494.76 9684.07 6587.17 7886.89 9494.62 7696.72 6195.90 7299.57 4596.79 164
IS_MVSNet92.67 6494.99 6089.96 8891.17 9398.54 7492.77 9884.00 8692.72 11881.90 8785.67 9292.47 7090.39 11697.82 3597.81 2399.51 6299.91 22
TSAR-MVS + COLMAP92.56 6692.44 8992.71 6094.61 6797.69 9297.69 4191.09 4598.96 2876.71 10894.68 4469.41 15696.91 4495.80 8294.18 9099.26 10396.33 168
baseline92.56 6694.38 6790.43 8290.71 10398.23 8395.07 7080.73 11697.52 6382.45 7987.34 7785.91 9894.07 8396.29 7095.94 7199.58 4199.47 73
canonicalmvs92.54 6893.28 8391.68 6591.44 9098.24 8295.45 6781.84 10695.98 8684.85 5890.69 5978.53 12496.96 4092.97 12697.06 4399.57 4599.47 73
PatchMatch-RL92.54 6892.82 8892.21 6296.57 5598.74 6491.85 10886.30 6996.23 8185.18 5695.21 3873.58 13594.22 8295.40 9993.08 11399.14 10997.49 151
MVS_Test92.42 7094.43 6390.08 8790.69 10498.26 8194.78 7380.81 11597.27 6678.76 10287.06 8084.25 10595.84 6397.67 4197.56 3199.59 3698.93 107
thisisatest053092.31 7195.14 5689.02 9790.02 11598.45 7991.30 11283.58 8996.90 7177.90 10590.45 6194.33 5891.98 10295.57 9091.43 13599.31 9798.81 111
tttt051792.29 7295.12 5888.99 9890.02 11598.44 8091.19 11583.58 8996.88 7277.86 10690.45 6194.32 5991.98 10295.54 9291.43 13599.31 9798.78 113
EPP-MVSNet92.29 7294.35 6989.88 8990.36 11097.69 9290.89 11883.31 9393.39 11183.47 7085.56 9393.92 6491.93 10495.49 9794.77 8299.34 9199.62 58
HQP-MVS91.94 7493.03 8590.66 8193.69 6996.48 11395.92 5789.73 4797.33 6472.65 11695.37 3673.56 13692.75 9594.85 10594.12 9199.23 10699.51 69
MSDG91.93 7590.28 11893.85 4997.36 4997.12 10095.88 5994.07 3994.52 10084.13 6476.74 12380.89 11892.54 9793.97 11693.61 10399.14 10995.10 177
UGNet91.71 7694.43 6388.53 10092.72 7998.00 8690.22 12584.81 8394.45 10183.05 7287.65 7692.74 6981.04 16994.51 10794.45 8599.32 9699.21 92
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
thres100view90091.69 7791.52 9791.88 6491.61 8598.89 6295.49 6586.96 6693.24 11280.82 9387.90 7171.15 14596.88 4596.00 7893.51 10599.51 6299.95 12
CLD-MVS91.67 7891.30 10292.10 6391.25 9296.59 11095.93 5687.25 6596.86 7385.55 5487.08 7973.01 13793.26 8793.07 12492.84 11999.34 9199.68 47
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ET-MVSNet_ETH3D91.59 7994.96 6187.65 10372.75 20797.24 9895.29 6882.73 9896.81 7478.49 10495.30 3790.48 8297.23 3791.60 14194.31 8699.43 7999.01 105
tfpn200view991.47 8091.31 10091.65 6791.61 8598.69 6795.03 7186.17 7093.24 11280.82 9387.90 7171.15 14596.80 4795.53 9392.82 12199.47 6999.88 25
CANet_DTU91.36 8195.75 5086.23 11492.31 8298.71 6695.60 6378.41 13198.20 4356.48 17694.38 4687.96 8995.11 6896.89 5796.07 6599.48 6798.01 141
thres20091.36 8191.19 10491.55 6891.60 8798.69 6794.98 7286.17 7092.16 12180.76 9587.66 7571.15 14596.35 5395.53 9393.23 11199.47 6999.92 21
FMVSNet391.25 8392.13 9390.21 8485.64 14793.14 14895.29 6880.09 11796.40 7785.74 5177.13 11886.81 9594.98 7097.19 5297.11 4099.55 5597.13 157
thres40091.24 8491.01 11091.50 7191.56 8898.77 6394.66 7686.41 6891.87 12680.56 9687.05 8171.01 14896.35 5395.67 8692.82 12199.48 6799.88 25
PVSNet_Blended_VisFu91.20 8592.89 8789.23 9593.41 7298.61 7289.80 12785.39 7892.84 11682.80 7474.21 13391.38 7884.64 14897.22 5096.04 6899.34 9199.93 18
DCV-MVSNet91.15 8692.00 9490.17 8690.78 10092.23 16593.70 8781.17 11395.16 9282.98 7389.46 6583.31 10893.98 8491.79 14092.87 11698.41 16399.18 94
DI_MVS_plusplus_trai91.11 8791.47 9890.68 8090.01 11797.77 9095.87 6083.56 9194.72 9782.12 8368.46 15187.46 9093.07 9196.46 6595.73 7499.47 6999.71 43
diffmvs91.05 8891.15 10590.93 7790.15 11397.79 8994.05 8285.45 7695.63 8781.95 8680.45 11373.01 13794.47 7895.56 9195.89 7399.49 6699.72 42
Vis-MVSNet (Re-imp)91.05 8894.43 6387.11 10591.05 9697.99 8792.53 10483.82 8892.71 11976.28 10984.50 9892.43 7179.52 17497.24 4997.68 2599.43 7998.45 124
thres600view790.97 9090.70 11291.30 7291.53 8998.69 6794.33 7786.17 7091.75 12880.19 9786.06 9070.90 14996.10 5895.53 9392.08 12899.47 6999.86 29
baseline290.91 9194.40 6686.84 10887.54 13896.83 10689.95 12679.22 12696.00 8577.04 10788.68 6689.73 8388.01 13796.35 6893.51 10599.29 9999.68 47
ACMP89.80 990.72 9291.15 10590.21 8492.55 8096.52 11292.63 10285.71 7594.65 9881.06 9293.32 5070.56 15290.52 11592.68 13091.05 14098.76 13799.31 85
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
casdiffmvs90.69 9390.56 11590.85 7890.14 11497.81 8892.94 9685.30 7993.47 11082.50 7876.34 12774.12 13394.67 7496.51 6496.26 5999.55 5599.42 76
ACMM89.40 1090.58 9490.02 12191.23 7493.30 7494.75 13590.69 12188.22 5695.20 9082.70 7688.54 6771.40 14493.48 8693.64 12190.94 14198.99 12095.72 173
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net90.49 9591.12 10889.75 9184.99 15092.73 15393.94 8380.09 11796.40 7785.74 5177.13 11886.81 9594.42 7994.12 11093.73 9499.35 8796.90 161
test190.49 9591.12 10889.75 9184.99 15092.73 15393.94 8380.09 11796.40 7785.74 5177.13 11886.81 9594.42 7994.12 11093.73 9499.35 8796.90 161
LGP-MVS_train90.34 9791.63 9688.83 9993.31 7396.14 11895.49 6585.24 8193.91 10568.71 13093.96 4871.63 14291.12 11293.82 11892.79 12399.07 11499.16 95
EPNet_dtu89.82 9894.18 7284.74 12496.87 5395.54 12892.65 10186.91 6796.99 6854.17 18792.41 5688.54 8578.35 17796.15 7396.05 6799.47 6993.60 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF89.81 9989.75 12289.88 8993.22 7693.99 14294.78 7385.23 8294.01 10482.52 7795.00 4087.23 9292.01 10185.16 19483.48 19991.54 20589.38 199
MDTV_nov1_ep1389.63 10094.38 6784.09 13188.76 13097.53 9789.37 13568.46 18896.95 6970.27 12587.88 7393.67 6691.04 11393.12 12293.83 9396.62 19397.68 147
UA-Net89.56 10193.03 8585.52 12092.46 8197.55 9591.92 10781.91 10385.24 15971.39 12083.57 10396.56 4476.01 18896.81 5997.04 4499.46 7594.41 180
FMVSNet289.51 10289.63 12389.38 9384.99 15092.73 15393.94 8379.28 12493.73 10784.28 6269.36 15082.32 11194.42 7996.16 7296.22 6299.35 8796.90 161
CostFormer89.42 10391.67 9586.80 11089.99 11896.33 11590.75 11964.79 19195.17 9183.62 6986.20 8882.15 11392.96 9289.22 16392.94 11498.68 14599.65 49
FC-MVSNet-train89.37 10489.62 12489.08 9690.48 10694.16 14189.45 13183.99 8791.09 13180.09 9882.84 10874.52 13291.44 10993.79 11991.57 13499.01 11899.35 82
OPM-MVS89.33 10587.45 13991.53 7094.49 6896.20 11796.47 5589.72 4882.77 16675.43 11080.53 11270.86 15093.80 8594.00 11491.85 13299.29 9995.91 171
test-LLR89.31 10693.60 7984.30 12888.08 13496.98 10288.10 14078.00 13294.83 9462.43 15084.29 10090.96 7989.70 12195.63 8892.86 11799.51 6299.64 51
EPMVS89.31 10693.70 7684.18 13091.10 9598.10 8489.17 13762.71 19596.24 8070.21 12786.46 8692.37 7292.79 9391.95 13893.59 10499.10 11197.19 154
Anonymous2023121189.22 10887.56 13791.16 7590.23 11296.62 10993.22 9385.44 7792.89 11584.37 6160.13 17081.25 11696.02 6090.61 14892.01 12997.70 18399.41 78
Effi-MVS+88.96 10991.13 10786.43 11289.12 12697.62 9493.15 9475.52 15093.90 10666.40 13486.23 8770.51 15395.03 6995.89 7994.28 8799.37 8499.51 69
SCA88.76 11094.29 7082.30 14789.33 12396.81 10787.68 14261.52 20096.95 6964.68 14088.35 6894.80 5091.58 10692.23 13293.21 11298.99 12097.70 146
test0.0.03 188.71 11192.22 9284.63 12688.08 13494.71 13785.91 16578.00 13295.54 8872.96 11486.10 8985.88 10083.59 15692.95 12893.24 11099.25 10597.09 158
PatchmatchNetpermissive88.67 11294.10 7382.34 14689.38 12297.72 9187.24 14862.18 19897.00 6764.79 13987.97 7094.43 5691.55 10791.21 14692.77 12498.90 12597.60 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dps88.66 11390.19 11986.88 10789.94 11996.48 11389.56 12964.08 19394.12 10389.00 3683.39 10582.56 11090.16 11986.81 18689.26 16098.53 15898.71 115
TESTMET0.1,188.63 11493.60 7982.84 14384.07 15796.98 10288.10 14073.22 17094.83 9462.43 15084.29 10090.96 7989.70 12195.63 8892.86 11799.51 6299.64 51
CHOSEN 1792x268888.63 11489.01 12888.19 10194.83 6499.21 5892.66 10079.85 12192.40 12072.18 11956.38 19180.22 12190.24 11797.64 4497.28 3799.37 8499.94 15
CDS-MVSNet88.59 11690.13 12086.79 11186.98 14395.43 12992.03 10681.33 11185.54 15674.51 11377.07 12185.14 10287.03 14293.90 11795.18 7898.88 12798.67 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IB-MVS84.67 1488.34 11790.61 11485.70 11792.99 7898.62 7178.85 19186.07 7394.35 10288.64 3785.99 9175.69 12768.09 20188.21 16691.43 13599.55 5599.96 9
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-mter88.25 11893.27 8482.38 14583.89 15896.86 10587.10 15272.80 17294.58 9961.85 15583.21 10690.65 8189.18 12595.43 9892.58 12699.46 7599.61 59
COLMAP_ROBcopyleft84.42 1588.24 11987.32 14089.32 9495.83 6095.82 12292.81 9787.68 6392.09 12372.64 11772.34 14179.96 12288.79 12889.54 15889.46 15698.16 17292.00 191
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-LS87.95 12089.40 12686.26 11388.79 12990.93 18191.23 11476.05 14790.87 13271.07 12275.51 13081.18 11791.21 11194.11 11395.01 7999.20 10898.23 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test87.86 12188.25 13387.40 10494.67 6698.54 7490.33 12476.51 14689.60 14070.89 12351.43 20285.69 10192.79 9396.59 6395.96 7099.22 10799.94 15
Vis-MVSNetpermissive87.60 12291.31 10083.27 13889.14 12598.04 8590.35 12379.42 12287.23 14566.92 13379.10 11784.63 10474.34 19595.81 8196.06 6699.46 7598.32 128
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE87.55 12388.17 13486.82 10988.74 13196.32 11692.75 9974.93 15590.13 13772.73 11569.47 14974.03 13492.51 9893.99 11593.62 10299.29 9999.59 60
RPMNet87.35 12492.41 9081.45 15188.85 12896.06 11989.42 13459.59 20793.57 10861.81 15676.48 12691.48 7790.18 11896.32 6993.37 10898.87 12899.59 60
tpm cat187.34 12588.52 13285.95 11589.83 12095.80 12390.73 12064.91 19092.99 11482.21 8271.19 14782.68 10990.13 12086.38 18790.87 14397.90 18099.74 39
MS-PatchMatch87.19 12688.59 13185.55 11993.15 7796.58 11192.35 10574.19 16391.97 12570.33 12471.42 14585.89 9984.28 15093.12 12289.16 16299.00 11991.99 192
Effi-MVS+-dtu87.18 12790.48 11683.32 13786.51 14495.76 12591.16 11774.28 16290.44 13661.31 15986.72 8572.68 14091.25 11095.01 10393.64 9795.45 19999.12 99
FMVSNet587.06 12889.52 12584.20 12979.92 19586.57 20187.11 15172.37 17496.06 8375.41 11184.33 9991.76 7491.60 10591.51 14291.22 13898.77 13485.16 204
Fast-Effi-MVS+-dtu86.94 12991.27 10381.89 14886.27 14595.06 13090.68 12268.93 18591.76 12757.18 17489.56 6475.85 12689.19 12494.56 10692.84 11999.07 11499.23 88
Fast-Effi-MVS+86.94 12987.88 13685.84 11686.99 14295.80 12391.24 11373.48 16992.75 11769.22 12872.70 13965.71 16294.84 7294.98 10494.71 8399.26 10398.48 123
tpmrst86.78 13190.29 11782.69 14490.55 10596.95 10488.49 13962.58 19695.09 9363.52 14676.67 12584.00 10792.05 10087.93 16991.89 13198.98 12299.50 71
CR-MVSNet86.73 13291.47 9881.20 15488.56 13296.06 11989.43 13261.37 20193.57 10860.81 16172.89 13888.85 8488.13 13596.03 7593.64 9798.89 12699.22 90
ADS-MVSNet86.68 13390.79 11181.88 14990.38 10996.81 10786.90 15360.50 20596.01 8463.93 14381.67 10984.72 10390.78 11487.03 18091.67 13398.77 13497.63 149
FMVSNet185.85 13484.91 15086.96 10682.70 16391.39 17591.54 11077.45 13885.29 15879.56 10060.70 16772.68 14092.37 9994.12 11093.73 9498.12 17396.44 165
FC-MVSNet-test85.51 13589.08 12781.35 15285.31 14993.35 14487.65 14377.55 13790.01 13864.07 14279.63 11581.83 11574.94 19292.08 13590.83 14598.55 15595.81 172
ACMH85.22 1385.40 13685.73 14785.02 12291.76 8494.46 14084.97 17181.54 10985.18 16065.22 13876.92 12264.22 16388.58 13190.17 15090.25 15198.03 17698.90 109
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS85.35 13786.00 14684.59 12784.97 15395.57 12788.98 13877.29 14181.44 17171.36 12171.48 14475.00 13187.03 14291.92 13992.21 12797.92 17994.40 181
ACMH+85.62 1285.27 13884.96 14985.64 11890.84 9994.78 13487.46 14581.30 11286.94 14667.35 13274.56 13264.09 16488.70 12988.14 16789.00 16398.22 17197.19 154
USDC85.11 13985.35 14884.83 12389.45 12194.93 13392.98 9577.30 14090.53 13461.80 15776.69 12459.62 17488.90 12792.78 12990.79 14798.53 15892.12 189
IterMVS85.02 14088.98 12980.41 16087.03 14190.34 18989.78 12869.45 18289.77 13954.04 18873.71 13582.05 11483.44 15995.11 10193.64 9798.75 13898.22 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT84.91 14188.90 13080.25 16387.04 14090.27 19089.23 13669.25 18489.17 14154.04 18873.65 13682.22 11283.23 16495.11 10193.63 10198.73 13998.23 132
PatchT84.89 14290.67 11378.13 18387.83 13794.99 13272.46 20360.22 20691.74 12960.81 16172.16 14286.95 9388.13 13596.03 7593.64 9799.36 8699.22 90
pmmvs484.88 14384.67 15185.13 12182.80 16292.37 15887.29 14679.08 12790.51 13574.94 11270.37 14862.49 16788.17 13492.01 13788.51 16898.49 16196.44 165
test_part184.71 14482.08 16187.78 10289.19 12491.40 17491.19 11579.25 12579.62 18382.23 8157.07 18770.79 15188.95 12687.46 17489.91 15395.89 19898.31 130
CVMVSNet84.01 14586.91 14180.61 15888.39 13393.29 14586.06 16182.29 10083.13 16454.29 18472.68 14079.59 12375.11 19191.23 14592.91 11597.54 18795.58 174
tpm83.97 14687.97 13579.31 17387.35 13993.21 14786.00 16361.90 19990.69 13354.01 19079.42 11675.61 12888.65 13087.18 17890.48 14997.95 17899.21 92
GA-MVS83.83 14786.63 14280.58 15985.40 14894.73 13687.27 14778.76 13086.49 14849.57 19874.21 13367.67 15983.38 16095.28 10090.92 14299.08 11397.09 158
UniMVSNet_NR-MVSNet83.83 14783.70 15483.98 13281.41 17392.56 15786.54 15682.96 9685.98 15366.27 13566.16 15863.63 16587.78 13987.65 17290.81 14698.94 12399.13 97
UniMVSNet (Re)83.28 14983.16 15583.42 13681.93 16893.12 14986.27 15980.83 11485.88 15468.23 13164.56 16160.58 16984.25 15189.13 16489.44 15899.04 11799.40 79
thisisatest051583.17 15086.49 14379.30 17482.04 16693.12 14978.70 19277.92 13486.43 14963.05 14774.91 13173.01 13775.56 19092.10 13488.05 18198.50 16097.76 145
TinyColmap83.03 15182.24 15983.95 13388.88 12793.22 14689.48 13076.89 14387.53 14462.12 15268.46 15155.03 19088.43 13390.87 14789.65 15497.89 18190.91 195
testgi82.88 15286.14 14579.08 17686.05 14692.20 16681.23 18874.77 15888.70 14257.63 17386.73 8461.53 16876.83 18590.33 14989.43 15997.99 17794.05 182
DU-MVS82.87 15382.16 16083.70 13580.77 18292.24 16286.54 15681.91 10386.41 15066.27 13563.95 16255.66 18887.78 13986.83 18390.86 14498.94 12399.13 97
MIMVSNet82.87 15386.17 14479.02 17777.23 20392.88 15284.88 17260.62 20486.72 14764.16 14173.58 13771.48 14388.51 13294.14 10993.50 10798.72 14190.87 196
NR-MVSNet82.37 15581.95 16382.85 14282.56 16592.24 16287.49 14481.91 10386.41 15065.51 13763.95 16252.93 19980.80 17189.41 16089.61 15598.85 13099.10 102
Baseline_NR-MVSNet82.08 15680.64 17083.77 13480.77 18288.50 19686.88 15481.71 10785.58 15568.80 12958.20 18257.75 18086.16 14486.83 18388.68 16598.33 16898.90 109
TranMVSNet+NR-MVSNet82.07 15781.36 16682.90 14180.43 18891.39 17587.16 15082.75 9784.28 16262.98 14862.28 16656.01 18785.30 14786.06 18990.69 14898.80 13198.80 112
pm-mvs181.68 15881.70 16481.65 15082.61 16492.26 16185.54 16978.95 12876.29 19463.81 14458.43 18166.33 16180.63 17292.30 13189.93 15298.37 16796.39 167
TDRefinement81.49 15980.08 17683.13 14091.02 9794.53 13891.66 10982.43 9981.70 16962.12 15262.30 16559.32 17573.93 19687.31 17685.29 19297.61 18490.14 197
anonymousdsp81.29 16084.52 15377.52 18579.83 19692.62 15682.61 18370.88 17980.76 17550.82 19568.35 15368.76 15782.45 16793.00 12589.45 15798.55 15598.69 116
gg-mvs-nofinetune81.27 16184.65 15277.32 18687.96 13698.48 7895.64 6256.36 21059.35 21232.80 21647.96 20692.11 7391.49 10898.12 2497.00 4699.65 2499.56 65
tfpnnormal81.11 16279.33 18483.19 13984.23 15592.29 16086.76 15582.27 10172.67 20062.02 15456.10 19353.86 19685.35 14692.06 13689.23 16198.49 16199.11 101
UniMVSNet_ETH3D80.95 16377.71 19284.74 12484.45 15493.11 15186.45 15879.97 12075.21 19670.22 12651.24 20350.26 20589.55 12384.47 19691.12 13997.81 18298.53 121
V4280.88 16480.74 16881.05 15581.21 17692.01 16885.96 16477.75 13681.62 17059.73 16859.93 17358.35 17982.98 16686.90 18288.06 18098.69 14498.32 128
v2v48280.86 16580.52 17481.25 15380.79 18191.85 16985.68 16778.78 12981.05 17258.09 17160.46 16856.08 18585.45 14587.27 17788.53 16798.73 13998.38 127
v880.61 16680.61 17280.62 15781.51 17191.00 18086.06 16174.07 16581.78 16859.93 16760.10 17258.42 17883.35 16186.99 18188.11 17898.79 13297.83 143
pmmvs580.48 16781.43 16579.36 17281.50 17292.24 16282.07 18674.08 16478.10 18755.86 17967.72 15554.35 19383.91 15592.97 12688.65 16698.77 13496.01 169
v1080.38 16880.73 16979.96 16581.22 17590.40 18886.11 16071.63 17682.42 16757.65 17258.74 17957.47 18184.44 14989.75 15488.28 17198.71 14298.06 140
v114480.36 16980.63 17180.05 16480.86 18091.56 17285.78 16675.22 15280.73 17655.83 18058.51 18056.99 18383.93 15489.79 15388.25 17298.68 14598.56 120
SixPastTwentyTwo80.28 17082.06 16278.21 18281.89 17092.35 15977.72 19374.48 15983.04 16554.22 18576.06 12856.40 18483.55 15786.83 18384.83 19497.38 18894.93 178
CP-MVSNet79.90 17179.49 18180.38 16180.72 18490.83 18282.98 18075.17 15379.70 18161.39 15859.74 17451.98 20283.31 16287.37 17588.38 16998.71 14298.45 124
v119279.84 17280.05 17879.61 16880.49 18791.04 17985.56 16874.37 16180.73 17654.35 18357.07 18754.54 19284.23 15289.94 15188.38 16998.63 14998.61 118
WR-MVS_H79.76 17380.07 17779.40 17181.25 17491.73 17182.77 18174.82 15779.02 18662.55 14959.41 17657.32 18276.27 18787.61 17387.30 18698.78 13398.09 138
WR-MVS79.67 17480.25 17579.00 17880.65 18591.16 17783.31 17876.57 14580.97 17360.50 16659.20 17758.66 17774.38 19485.85 19187.76 18398.61 15098.14 135
v14879.66 17579.13 18680.27 16281.02 17891.76 17081.90 18779.32 12379.24 18463.79 14558.07 18454.34 19477.17 18384.42 19787.52 18598.40 16498.59 119
LTVRE_ROB79.45 1679.66 17580.55 17378.61 18083.01 16192.19 16787.18 14973.69 16871.70 20343.22 21171.22 14650.85 20387.82 13889.47 15990.43 15096.75 19198.00 142
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v14419279.61 17779.77 17979.41 17080.28 18991.06 17884.87 17373.86 16679.65 18255.38 18157.76 18555.20 18983.46 15888.42 16587.89 18298.61 15098.42 126
v192192079.55 17879.77 17979.30 17480.24 19090.77 18485.37 17073.75 16780.38 17853.78 19156.89 19054.18 19584.05 15389.55 15788.13 17798.59 15298.52 122
TransMVSNet (Re)79.51 17978.36 18880.84 15683.17 15989.72 19284.22 17681.45 11073.98 19960.79 16457.20 18656.05 18677.11 18489.88 15288.86 16498.30 17092.83 187
MVS-HIRNet79.34 18082.56 15675.57 19184.11 15695.02 13175.03 20057.28 20985.50 15755.88 17853.00 19970.51 15383.05 16592.12 13391.96 13098.09 17489.83 198
PS-CasMVS79.06 18178.58 18779.63 16780.59 18690.55 18682.54 18475.04 15477.76 18858.84 16958.16 18350.11 20782.09 16887.05 17988.18 17598.66 14898.27 131
v124078.97 18279.27 18578.63 17980.04 19190.61 18584.25 17572.95 17179.22 18552.70 19356.22 19252.88 20183.28 16389.60 15688.20 17498.56 15498.14 135
pmnet_mix0278.91 18381.17 16776.28 19081.91 16990.82 18374.25 20177.87 13586.17 15249.04 19967.97 15462.93 16677.40 18182.75 20282.11 20197.18 18995.42 175
MDTV_nov1_ep13_2view78.83 18482.35 15774.73 19478.65 19891.51 17379.18 19062.52 19784.51 16152.51 19467.49 15667.29 16078.90 17585.52 19386.34 18996.62 19393.76 183
PEN-MVS78.80 18578.13 19079.58 16980.03 19289.67 19383.61 17775.83 14877.71 19058.41 17060.11 17150.00 20881.02 17084.08 19888.14 17698.59 15297.18 156
EG-PatchMatch MVS78.32 18679.42 18377.03 18883.03 16093.77 14384.47 17469.26 18375.85 19553.69 19255.68 19460.23 17273.20 19789.69 15588.22 17398.55 15592.54 188
DTE-MVSNet77.92 18777.42 19378.51 18179.34 19789.00 19583.05 17975.60 14976.89 19256.58 17559.63 17550.31 20478.09 18082.57 20387.56 18498.38 16595.95 170
v7n77.71 18878.25 18977.09 18778.49 19990.55 18682.15 18571.11 17876.79 19354.18 18655.63 19550.20 20678.28 17889.36 16287.15 18798.33 16898.07 139
gm-plane-assit77.20 18982.26 15871.30 19781.10 17782.00 20954.33 21464.41 19263.80 21140.93 21359.04 17876.57 12587.30 14198.26 2197.36 3699.74 1398.76 114
N_pmnet76.83 19077.97 19175.50 19280.96 17988.23 19872.81 20276.83 14480.87 17450.55 19656.94 18960.09 17375.70 18983.28 20084.23 19696.14 19792.12 189
pmmvs676.79 19175.69 19878.09 18479.95 19489.57 19480.92 18974.46 16064.79 20960.74 16545.71 20860.55 17078.37 17688.04 16886.00 19094.07 20295.15 176
CMPMVSbinary58.73 1776.78 19274.27 19979.70 16693.26 7595.58 12682.74 18277.44 13971.46 20656.29 17753.58 19859.13 17677.33 18279.20 20479.71 20491.14 20781.24 207
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet76.76 19379.47 18273.60 19579.99 19387.47 19977.39 19475.43 15177.62 19147.83 20264.78 16060.44 17164.80 20286.28 18886.53 18896.17 19693.19 186
PM-MVS75.81 19476.11 19775.46 19373.81 20485.48 20376.42 19670.57 18080.05 18054.75 18262.33 16439.56 21480.59 17387.71 17182.81 20096.61 19594.81 179
pmmvs-eth3d75.17 19574.09 20076.43 18972.92 20584.49 20576.61 19572.42 17374.33 19761.28 16054.71 19739.42 21578.20 17987.77 17084.25 19597.17 19093.63 184
Anonymous2023120674.59 19677.00 19471.78 19677.89 20287.45 20075.14 19972.29 17577.76 18846.65 20452.14 20052.93 19961.10 20589.37 16188.09 17997.59 18591.30 194
test20.0372.81 19776.24 19668.80 20078.31 20085.40 20471.04 20471.20 17771.85 20243.40 21065.31 15954.71 19151.27 20885.92 19084.18 19797.58 18686.35 203
test_method71.90 19876.72 19566.28 20560.87 21378.37 21169.75 20849.81 21583.44 16349.63 19747.13 20753.23 19876.38 18691.32 14485.76 19191.22 20697.77 144
new_pmnet71.86 19973.67 20169.75 19972.56 20884.20 20670.95 20666.81 18980.34 17943.62 20951.60 20153.81 19771.24 19982.91 20180.93 20293.35 20481.92 206
MDA-MVSNet-bldmvs69.61 20070.36 20368.74 20162.88 21188.50 19665.40 21177.01 14271.60 20543.93 20666.71 15735.33 21772.47 19861.01 21080.63 20390.73 20888.75 201
pmmvs369.04 20170.75 20267.04 20366.83 20978.54 21064.99 21260.92 20364.67 21040.61 21455.08 19640.29 21374.89 19383.76 19984.01 19893.98 20388.88 200
MIMVSNet168.63 20270.24 20466.76 20456.86 21583.26 20767.93 20970.26 18168.05 20746.80 20340.44 20948.15 20962.01 20384.96 19584.86 19396.69 19281.93 205
GG-mvs-BLEND67.99 20397.35 3833.72 2121.22 22199.72 1598.30 340.57 21997.61 611.18 22293.26 5196.63 431.74 21897.15 5397.14 3999.34 9199.96 9
new-patchmatchnet67.66 20468.07 20567.18 20272.85 20682.86 20863.09 21368.61 18766.60 20842.64 21249.28 20438.68 21661.21 20475.84 20575.22 20694.67 20188.00 202
FPMVS63.27 20561.31 20765.57 20678.25 20174.42 21475.23 19868.92 18672.33 20143.87 20749.01 20543.94 21148.64 21061.15 20958.81 21178.51 21469.49 212
Gipumacopyleft54.59 20653.98 20855.30 20759.03 21452.63 21647.17 21656.08 21171.68 20437.54 21520.90 21519.00 21952.33 20771.69 20775.20 20779.64 21366.79 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft49.05 1851.88 20750.56 21053.42 20864.21 21043.30 21842.64 21762.93 19450.56 21343.72 20837.44 21042.95 21235.05 21358.76 21254.58 21271.95 21566.33 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS250.69 20852.33 20948.78 20951.24 21664.81 21547.91 21553.79 21444.95 21421.75 21729.98 21325.90 21831.98 21559.95 21165.37 20986.00 21175.36 210
E-PMN37.15 20934.82 21239.86 21047.53 21835.42 22023.79 21955.26 21235.18 21714.12 21917.38 21814.13 22139.73 21232.24 21446.98 21358.76 21662.39 216
EMVS36.45 21033.63 21339.74 21148.47 21735.73 21923.59 22055.11 21335.61 21612.88 22017.49 21614.62 22041.04 21129.33 21543.00 21457.32 21759.62 217
MVEpermissive42.40 1936.00 21138.65 21132.92 21329.16 21946.17 21722.61 22144.21 21626.44 21918.88 21817.41 2179.36 22332.29 21445.75 21361.38 21050.35 21864.03 215
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs21.55 21230.91 21410.62 2142.78 22011.66 22118.51 2224.82 21738.21 2154.06 22136.35 2114.47 22426.81 21623.27 21627.11 2156.75 21975.30 211
test12316.81 21324.80 2157.48 2150.82 2228.38 22211.92 2232.60 21828.96 2181.12 22328.39 2141.26 22524.51 2178.93 21722.19 2163.90 22075.49 209
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def46.54 205
9.1499.73 7
SR-MVS99.27 1595.82 1899.00 17
Anonymous20240521187.54 13890.72 10297.10 10193.40 9285.30 7991.41 13060.23 16980.69 12095.80 6491.33 14392.60 12598.38 16599.40 79
our_test_381.94 16790.26 19175.39 197
ambc64.61 20661.80 21275.31 21371.00 20574.16 19848.83 20036.02 21213.22 22258.66 20685.80 19276.26 20588.01 20991.53 193
MTAPA94.58 1498.56 23
MTMP95.24 898.13 30
Patchmatch-RL test37.05 218
tmp_tt71.24 19890.29 11176.39 21265.81 21059.43 20897.62 5979.65 9990.60 6068.71 15849.71 20972.71 20665.70 20882.54 212
XVS93.63 7099.64 2494.32 7883.97 6698.08 3299.59 36
X-MVStestdata93.63 7099.64 2494.32 7883.97 6698.08 3299.59 36
abl_695.40 3698.18 3999.45 4297.39 4889.27 5099.48 390.52 2894.52 4598.63 2297.32 3599.73 1499.82 31
mPP-MVS98.66 2997.11 40
NP-MVS97.69 57
Patchmtry95.86 12189.43 13261.37 20160.81 161
DeepMVS_CXcopyleft85.88 20269.83 20781.56 10887.99 14348.22 20171.85 14345.52 21068.67 20063.21 20886.64 21080.03 208