This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 795.09 188.55 576.83 694.16 186.57 190.85 587.07 186.18 186.36 785.08 1288.67 2098.21 3
DVP-MVScopyleft88.07 290.73 284.97 491.98 1095.01 287.86 1076.88 593.90 285.15 290.11 786.90 279.46 1286.26 1084.67 1888.50 2798.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft87.60 590.44 484.29 792.09 993.44 688.69 475.11 993.06 580.80 694.23 286.70 381.44 784.84 1883.52 2787.64 4897.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft85.24 1288.27 981.72 1591.74 1290.71 2086.71 1373.16 1990.56 1074.33 1983.07 1885.88 477.16 2086.28 985.58 687.23 6195.77 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++87.98 389.76 585.89 292.57 694.57 388.34 676.61 792.40 683.40 389.26 1085.57 586.04 286.24 1184.89 1588.39 3095.42 20
SD-MVS84.31 1586.96 1481.22 1688.98 3188.68 3985.65 1873.85 1589.09 1379.63 887.34 1284.84 673.71 3482.66 3581.60 4685.48 10794.51 29
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1484.47 7
HPM-MVS++copyleft85.64 1088.43 782.39 1292.65 490.24 2685.83 1774.21 1190.68 975.63 1786.77 1384.15 878.68 1686.33 885.26 987.32 5795.60 17
TSAR-MVS + GP.82.27 2385.98 1977.94 3180.72 7088.25 4581.12 4367.71 4387.10 1673.31 2185.23 1583.68 976.64 2280.43 6181.47 4888.15 3795.66 16
TPM-MVS94.34 293.91 589.34 375.49 1882.52 2083.34 1083.53 489.62 790.78 72
SF-MVS87.30 688.71 685.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 383.29 1179.75 983.52 2682.72 3288.75 1995.37 23
MSP-MVS87.87 490.57 384.73 589.38 2791.60 1788.24 874.15 1293.55 382.28 494.99 183.21 1285.96 387.67 484.67 1888.32 3198.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.84.39 1486.58 1781.83 1488.09 3886.47 6785.63 1973.62 1790.13 1179.24 989.67 982.99 1377.72 1881.22 5380.92 5886.68 7494.66 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG82.90 2084.52 2381.02 1891.85 1193.43 787.14 1274.01 1481.96 3176.14 1470.84 3782.49 1469.71 6382.32 4185.18 1187.26 6095.40 22
TSAR-MVS + ACMM81.59 2585.84 2076.63 3789.82 2386.53 6686.32 1666.72 5085.96 2065.43 4288.98 1182.29 1567.57 8182.06 4681.33 5083.93 14293.75 41
train_agg83.35 1886.93 1579.17 2689.70 2488.41 4285.60 2072.89 2186.31 1966.58 4090.48 682.24 1673.06 4083.10 3182.64 3387.21 6595.30 24
DPM-MVS85.41 1186.72 1683.89 1091.66 1391.92 1490.49 278.09 386.90 1773.95 2074.52 3582.01 1779.29 1390.24 190.65 189.86 690.78 72
CNVR-MVS85.96 887.58 1184.06 892.58 592.40 1187.62 1177.77 488.44 1475.93 1679.49 2681.97 1881.65 687.04 686.58 488.79 1797.18 7
APDe-MVS86.37 788.41 884.00 991.43 1591.83 1588.34 674.67 1091.19 781.76 591.13 481.94 1980.07 883.38 2782.58 3487.69 4696.78 10
DeepPCF-MVS76.94 183.08 1987.77 1077.60 3390.11 2090.96 1978.48 5572.63 2293.10 465.84 4180.67 2481.55 2074.80 2985.94 1385.39 883.75 14496.77 11
SR-MVS86.33 4667.54 4480.78 21
MCST-MVS85.75 986.99 1384.31 694.07 392.80 888.15 979.10 285.66 2170.72 2976.50 3380.45 2282.17 588.35 287.49 391.63 297.65 4
ACMMP_NAP83.54 1786.37 1880.25 2189.57 2690.10 2885.27 2171.66 2387.38 1573.08 2284.23 1780.16 2375.31 2584.85 1783.64 2486.57 7594.21 35
APD-MVScopyleft84.83 1387.00 1282.30 1389.61 2589.21 3586.51 1573.64 1690.98 877.99 1289.89 880.04 2479.18 1482.00 4881.37 4986.88 7095.49 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MTAPA78.32 1179.42 25
NCCC84.16 1685.46 2182.64 1192.34 890.57 2386.57 1476.51 886.85 1872.91 2377.20 3278.69 2679.09 1584.64 2084.88 1688.44 2895.41 21
SteuartSystems-ACMMP82.51 2185.35 2279.20 2590.25 1889.39 3384.79 2270.95 2582.86 2768.32 3786.44 1477.19 2773.07 3983.63 2583.64 2487.82 4294.34 31
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft80.94 2683.49 2677.96 3088.48 3288.16 4682.82 3269.34 3480.79 3769.67 3382.35 2177.13 2871.60 5280.97 5880.96 5785.87 9394.06 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTMP76.04 1576.65 29
HFP-MVS82.48 2284.12 2480.56 1990.15 1987.55 5384.28 2469.67 3285.22 2277.95 1384.69 1675.94 3075.04 2781.85 4981.17 5386.30 8292.40 55
MVS_030479.43 3282.20 3076.20 4084.22 5291.79 1681.82 3763.81 6976.83 4961.71 5766.37 4875.52 3176.38 2385.54 1485.03 1389.28 1294.32 32
CANet80.90 2782.93 2878.53 2986.83 4492.26 1281.19 4266.95 4781.60 3469.90 3266.93 4574.80 3276.79 2184.68 1984.77 1789.50 1095.50 18
PHI-MVS79.43 3284.06 2574.04 5586.15 4791.57 1880.85 4668.90 3882.22 3051.81 9378.10 2874.28 3370.39 6084.01 2484.00 2286.14 8694.24 33
CP-MVS79.44 3181.51 3477.02 3686.95 4285.96 7682.00 3468.44 4081.82 3267.39 3877.43 3073.68 3471.62 5179.56 7079.58 7085.73 9792.51 54
ACMMPR80.62 2882.98 2777.87 3288.41 3387.05 5883.02 2969.18 3583.91 2468.35 3682.89 1973.64 3572.16 4780.78 5981.13 5486.10 8791.43 62
GG-mvs-BLEND54.54 18277.58 5027.67 2100.03 22590.09 2977.20 660.02 22166.83 730.05 22659.90 6873.33 360.04 22178.40 7979.30 7388.65 2195.20 25
MVSTER76.92 4879.92 3973.42 5874.98 11682.97 9678.15 5863.41 7378.02 4464.41 4567.54 4372.80 3771.05 5583.29 3083.73 2388.53 2691.12 67
DeepC-MVS_fast75.41 281.69 2482.10 3281.20 1791.04 1787.81 5283.42 2774.04 1383.77 2571.09 2766.88 4672.44 3879.48 1185.08 1584.97 1488.12 3893.78 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS82.43 5586.27 7175.70 6961.07 6272.27 3985.67 101
X-MVStestdata82.43 5586.27 7175.70 6961.07 6272.27 3985.67 101
X-MVS78.16 4080.55 3775.38 4687.99 3986.27 7181.05 4468.98 3678.33 4361.07 6275.25 3472.27 3967.52 8280.03 6380.52 6485.66 10491.20 66
CDPH-MVS79.39 3582.13 3176.19 4189.22 3088.34 4384.20 2571.00 2479.67 4156.97 7777.77 2972.24 4268.50 7581.33 5282.74 3087.23 6192.84 51
PGM-MVS79.42 3481.84 3376.60 3888.38 3586.69 6282.97 3165.75 5680.39 3864.94 4381.95 2372.11 4371.41 5480.45 6080.55 6386.18 8490.76 75
QAPM77.50 4477.43 5177.59 3491.52 1492.00 1381.41 4070.63 2766.22 7458.05 7254.70 8171.79 4474.49 3282.46 3782.04 3689.46 1192.79 53
MSLP-MVS++78.57 3777.33 5280.02 2288.39 3484.79 8284.62 2366.17 5475.96 5178.40 1061.59 6171.47 4573.54 3778.43 7878.88 7688.97 1590.18 82
UA-Net64.62 12268.23 10960.42 14777.53 9581.38 10960.08 17557.47 13047.01 14944.75 12260.68 6571.32 4641.84 18673.27 12972.25 15180.83 17871.68 188
CPTT-MVS75.43 5777.13 5573.44 5781.43 6482.55 10080.96 4564.35 6477.95 4661.39 5969.20 4070.94 4769.38 7073.89 12373.32 13783.14 15492.06 58
3Dnovator+70.16 677.87 4177.29 5378.55 2889.25 2988.32 4480.09 4967.95 4274.89 5671.83 2552.05 9370.68 4876.27 2482.27 4282.04 3685.92 9090.77 74
mPP-MVS86.96 4170.61 49
EPNet79.28 3682.25 2975.83 4388.31 3690.14 2779.43 5368.07 4181.76 3361.26 6077.26 3170.08 5070.06 6182.43 3982.00 3887.82 4292.09 57
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS74.46 380.30 2981.05 3579.42 2387.42 4088.50 4183.23 2873.27 1882.78 2871.01 2862.86 5869.93 5174.80 2984.30 2184.20 2186.79 7394.77 26
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet76.05 5378.87 4372.77 6278.87 8386.63 6377.50 6357.04 13575.34 5261.68 5864.20 5369.56 5273.96 3382.12 4480.65 6187.57 5093.57 43
PCF-MVS70.85 475.73 5576.55 6074.78 5383.67 5388.04 5081.47 3870.62 2969.24 6957.52 7560.59 6769.18 5370.65 5877.11 9077.65 8884.75 12794.01 37
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DI_MVS_plusplus_trai73.94 6574.85 6872.88 6176.57 10586.80 6080.41 4861.47 9662.35 8759.44 6947.91 10768.12 5472.24 4682.84 3481.50 4787.15 6794.42 30
MAR-MVS77.19 4778.37 4875.81 4489.87 2290.58 2279.33 5465.56 5877.62 4758.33 7159.24 7167.98 5574.83 2882.37 4083.12 2986.95 6887.67 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPP-MVSNet67.58 10371.10 8863.48 12675.71 11283.35 9466.85 14257.83 12553.02 13041.15 14255.82 7667.89 5656.01 14474.40 11672.92 14583.33 14990.30 80
3Dnovator70.49 578.42 3876.77 5780.35 2091.43 1590.27 2581.84 3670.79 2672.10 5871.95 2450.02 10067.86 5777.47 1982.89 3284.24 2088.61 2389.99 83
OMC-MVS74.03 6475.82 6471.95 6879.56 7480.98 11475.35 7763.21 7484.48 2361.83 5661.54 6266.89 5869.41 6976.60 9474.07 12782.34 16486.15 119
ETV-MVS76.25 5180.22 3871.63 7178.23 8787.95 5172.75 9360.27 11077.50 4857.73 7371.53 3666.60 5973.16 3880.99 5781.23 5287.63 4995.73 14
DELS-MVS79.49 3079.84 4079.08 2788.26 3792.49 984.12 2670.63 2765.27 8169.60 3561.29 6366.50 6072.75 4388.07 388.03 289.13 1397.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CostFormer72.18 7273.90 7270.18 7979.47 7586.19 7476.94 6748.62 18066.07 7760.40 6754.14 8765.82 6167.98 7675.84 10276.41 9987.67 4792.83 52
ACMMPcopyleft77.61 4379.59 4175.30 4785.87 4885.58 7781.42 3967.38 4679.38 4262.61 5278.53 2765.79 6268.80 7478.56 7778.50 8185.75 9490.80 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
canonicalmvs77.65 4279.59 4175.39 4581.52 6389.83 3281.32 4160.74 10580.05 3966.72 3968.43 4165.09 6374.72 3178.87 7482.73 3187.32 5792.16 56
CS-MVS-test75.09 6077.84 4971.87 7079.27 7886.92 5970.53 11960.36 10875.13 5363.13 4967.92 4265.08 6471.43 5378.15 8278.51 8086.53 7793.16 48
CHOSEN 280x42062.23 14466.57 11957.17 16959.88 19268.92 18961.20 17242.28 20254.17 12739.57 14747.78 10964.97 6562.68 10273.85 12469.52 17377.43 19386.75 112
HQP-MVS78.26 3980.91 3675.17 4885.67 4984.33 8883.01 3069.38 3379.88 4055.83 7879.85 2564.90 6670.81 5682.46 3781.78 4186.30 8293.18 47
OpenMVScopyleft67.62 874.92 6173.91 7176.09 4290.10 2190.38 2478.01 5966.35 5266.09 7662.80 5046.33 12464.55 6771.77 5079.92 6580.88 5987.52 5289.20 92
CS-MVS75.84 5478.61 4472.61 6579.03 8086.74 6174.43 8960.27 11074.15 5762.78 5166.26 4964.25 6872.81 4283.36 2881.69 4586.32 8093.85 39
MVS_111021_HR77.42 4578.40 4776.28 3986.95 4290.68 2177.41 6470.56 3066.21 7562.48 5466.17 5063.98 6972.08 4882.87 3383.15 2888.24 3495.71 15
gg-mvs-nofinetune62.34 13966.19 12357.86 16376.15 10888.61 4071.18 11141.24 20825.74 21113.16 21422.91 20663.97 7054.52 15085.06 1685.25 1090.92 391.78 61
TAPA-MVS67.10 971.45 7773.47 7569.10 8577.04 10080.78 11773.81 9062.10 8880.80 3651.28 9460.91 6463.80 7167.98 7674.59 11372.42 14982.37 16380.97 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet_Blended_VisFu71.76 7573.54 7469.69 8079.01 8187.16 5772.05 9861.80 9356.46 11159.66 6853.88 8962.48 7259.08 12781.17 5478.90 7586.53 7794.74 27
IS_MVSNet67.29 10771.98 8061.82 14076.92 10184.32 8965.90 14958.22 11755.75 11739.22 15154.51 8462.47 7345.99 17678.83 7578.52 7984.70 12889.47 89
GBi-Net69.21 8870.40 9367.81 9569.49 14378.65 13474.54 8260.97 10165.32 7851.06 9547.37 11262.05 7463.43 9777.49 8578.22 8387.37 5483.73 138
test169.21 8870.40 9367.81 9569.49 14378.65 13474.54 8260.97 10165.32 7851.06 9547.37 11262.05 7463.43 9777.49 8578.22 8387.37 5483.73 138
FMVSNet370.41 8371.89 8268.68 8870.89 13879.42 12975.63 7160.97 10165.32 7851.06 9547.37 11262.05 7464.90 9082.49 3682.27 3588.64 2284.34 135
UGNet67.57 10471.69 8462.76 13369.88 14182.58 9966.43 14658.64 11554.71 12651.87 9261.74 6062.01 7745.46 17874.78 11274.99 11484.24 13791.02 68
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test-LLR68.23 9871.61 8564.28 12071.37 13381.32 11163.98 15661.03 9958.62 10042.96 13352.74 9061.65 7857.74 13875.64 10478.09 8688.61 2393.21 45
TESTMET0.1,167.38 10671.61 8562.45 13666.05 16681.32 11163.98 15655.36 15258.62 10042.96 13352.74 9061.65 7857.74 13875.64 10478.09 8688.61 2393.21 45
MVS_Test75.22 5876.69 5873.51 5679.30 7788.82 3880.06 5058.74 11469.77 6557.50 7659.78 7061.35 8075.31 2582.07 4583.60 2690.13 591.41 64
Vis-MVSNet (Re-imp)62.25 14268.74 10354.68 17873.70 12078.74 13356.51 18457.49 12955.22 12026.86 19254.56 8361.35 8031.06 19473.10 13174.90 11582.49 16183.31 142
casdiffmvs_mvgpermissive75.57 5676.04 6275.02 4980.48 7289.31 3480.79 4764.04 6766.95 7263.87 4657.52 7361.33 8272.90 4182.01 4781.99 3988.03 3993.16 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline72.89 6874.46 7071.07 7275.99 10987.50 5474.57 8160.49 10770.72 6257.60 7460.63 6660.97 8370.79 5775.27 10776.33 10086.94 6989.79 86
EIA-MVS73.48 6676.05 6170.47 7778.12 8887.21 5671.78 10160.63 10669.66 6655.56 8264.86 5260.69 8469.53 6677.35 8978.59 7787.22 6394.01 37
ET-MVSNet_ETH3D71.38 7874.70 6967.51 9851.61 20888.06 4977.29 6560.95 10463.61 8348.36 10866.60 4760.67 8579.55 1073.56 12780.58 6287.30 5989.80 85
baseline171.47 7672.02 7970.82 7480.56 7184.51 8476.61 6866.93 4856.22 11348.66 10655.40 7960.43 8662.55 10483.35 2980.99 5589.60 883.28 144
casdiffmvspermissive75.20 5975.69 6574.63 5479.26 7989.07 3678.47 5663.59 7267.05 7163.79 4755.72 7860.32 8773.58 3582.16 4381.78 4189.08 1493.72 42
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR74.26 6375.95 6372.27 6679.43 7685.04 8072.71 9465.27 6170.92 6163.58 4869.32 3960.31 8869.43 6877.01 9177.15 9183.22 15191.93 60
OPM-MVS72.74 7070.93 9074.85 5285.30 5084.34 8782.82 3269.79 3149.96 13855.39 8454.09 8860.14 8970.04 6280.38 6279.43 7185.74 9688.20 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
diffmvspermissive74.32 6275.42 6673.04 6075.60 11387.27 5578.20 5762.96 7868.66 7061.89 5559.79 6959.84 9071.80 4978.30 8179.87 6687.80 4494.23 34
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SCA63.90 12966.67 11760.66 14573.75 11971.78 18059.87 17643.66 19661.13 9145.03 12051.64 9459.45 9157.92 13570.96 15370.80 16483.71 14580.92 159
CLD-MVS77.36 4677.29 5377.45 3582.21 5988.11 4781.92 3568.96 3777.97 4569.62 3462.08 5959.44 9273.57 3681.75 5081.27 5188.41 2990.39 79
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PMMVS70.37 8475.06 6764.90 11371.46 13281.88 10264.10 15355.64 14771.31 6046.69 11270.69 3858.56 9369.53 6679.03 7375.63 10881.96 16888.32 103
test-mter64.06 12869.24 9958.01 16159.07 19577.40 14759.13 17848.11 18355.64 11839.18 15251.56 9558.54 9455.38 14773.52 12876.00 10487.22 6392.05 59
thisisatest053068.38 9770.98 8965.35 10972.61 12684.42 8568.21 13257.98 12059.77 9650.80 9854.63 8258.48 9557.92 13576.99 9277.47 8984.60 13085.07 129
CANet_DTU72.84 6976.63 5968.43 9276.81 10286.62 6575.54 7454.71 16072.06 5943.54 12867.11 4458.46 9672.40 4581.13 5680.82 6087.57 5090.21 81
Vis-MVSNetpermissive65.53 11769.83 9760.52 14670.80 13984.59 8366.37 14855.47 15148.40 14540.62 14657.67 7258.43 9745.37 17977.49 8576.24 10284.47 13385.99 122
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MS-PatchMatch70.34 8569.00 10171.91 6985.20 5185.35 7877.84 6161.77 9458.01 10555.40 8341.26 14358.34 9861.69 10881.70 5178.29 8289.56 980.02 161
PVSNet_BlendedMVS76.84 4978.47 4574.95 5082.37 5789.90 3075.45 7565.45 5974.99 5470.66 3063.07 5658.27 9967.60 7984.24 2281.70 4388.18 3597.10 8
PVSNet_Blended76.84 4978.47 4574.95 5082.37 5789.90 3075.45 7565.45 5974.99 5470.66 3063.07 5658.27 9967.60 7984.24 2281.70 4388.18 3597.10 8
AdaColmapbinary76.23 5273.55 7379.35 2489.38 2785.00 8179.99 5173.04 2076.60 5071.17 2655.18 8057.99 10177.87 1776.82 9376.82 9484.67 12986.45 115
tttt051767.99 10070.61 9264.94 11271.94 13183.96 9167.62 13657.98 12059.30 9849.90 10354.50 8557.98 10257.92 13576.48 9577.47 8984.24 13784.58 132
PatchmatchNetpermissive65.43 11867.71 11262.78 13273.49 12382.83 9766.42 14745.40 19060.40 9445.27 11749.22 10257.60 10360.01 11970.61 15671.38 16086.08 8881.91 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FMVSNet268.06 9968.57 10467.45 10069.49 14378.65 13474.54 8260.23 11256.29 11249.64 10442.13 13957.08 10463.43 9781.15 5580.99 5587.37 5483.73 138
Anonymous2023121168.44 9566.37 12170.86 7377.58 9483.49 9375.15 7861.89 9152.54 13158.50 7028.89 19556.78 10569.29 7174.96 11176.61 9582.73 15791.36 65
CNLPA71.37 7970.27 9572.66 6480.79 6981.33 11071.07 11465.75 5682.36 2964.80 4442.46 13656.49 10672.70 4473.00 13470.52 16880.84 17785.76 125
FA-MVS(training)70.24 8671.77 8368.45 9177.52 9686.03 7573.33 9249.12 17963.55 8455.77 7948.91 10456.26 10767.78 7877.60 8479.62 6987.19 6690.40 78
EPNet_dtu66.17 11270.13 9661.54 14281.04 6577.39 14868.87 12962.50 8769.78 6433.51 17963.77 5556.22 10837.65 19272.20 14272.18 15285.69 10079.38 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1365.21 11967.28 11562.79 13170.91 13781.72 10369.28 12749.50 17858.08 10243.94 12750.50 9956.02 10958.86 12870.72 15573.37 13584.24 13780.52 160
CR-MVSNet62.31 14064.75 12959.47 15368.63 14971.29 18367.53 13743.18 19855.83 11541.40 13941.04 14555.85 11057.29 14172.76 13773.27 13978.77 18983.23 145
HyFIR lowres test68.39 9668.28 10868.52 9080.85 6788.11 4771.08 11358.09 11954.87 12547.80 11127.55 19955.80 11164.97 8979.11 7279.14 7488.31 3293.35 44
IterMVS-LS66.08 11366.56 12065.51 10773.67 12174.88 16570.89 11653.55 16650.42 13648.32 10950.59 9855.66 11261.83 10773.93 12274.42 12384.82 12586.01 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LGP-MVS_train72.02 7473.18 7670.67 7682.13 6080.26 12279.58 5263.04 7670.09 6351.98 9165.06 5155.62 11362.49 10575.97 10176.32 10184.80 12688.93 95
DCV-MVSNet69.13 9069.07 10069.21 8377.65 9377.52 14674.68 8057.85 12454.92 12355.34 8555.74 7755.56 11466.35 8475.05 10876.56 9783.35 14888.13 105
PLCcopyleft64.00 1268.54 9466.66 11870.74 7580.28 7374.88 16572.64 9563.70 7169.26 6855.71 8047.24 11555.31 11570.42 5972.05 14570.67 16681.66 17177.19 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+70.42 8171.23 8769.47 8178.04 8985.24 7975.57 7358.88 11359.56 9748.47 10752.73 9254.94 11669.69 6478.34 8077.06 9286.18 8490.73 76
test250669.26 8770.79 9167.48 9978.64 8486.40 6872.22 9662.75 8558.05 10345.24 11850.76 9654.93 11758.05 13379.82 6679.70 6787.96 4085.90 123
EPMVS66.21 11167.49 11464.73 11475.81 11084.20 9068.94 12844.37 19561.55 8948.07 11049.21 10354.87 11862.88 10171.82 14671.40 15988.28 3379.37 164
GeoE68.96 9269.32 9868.54 8976.61 10483.12 9571.78 10156.87 13760.21 9554.86 8645.95 12554.79 11964.27 9374.59 11375.54 11186.84 7291.01 69
baseline271.22 8073.01 7769.13 8475.76 11186.34 7071.23 10962.78 8462.62 8552.85 8957.32 7454.31 12063.27 10079.74 6879.31 7288.89 1691.43 62
RPSCF55.07 17858.06 17351.57 18548.87 21158.95 20853.68 18941.26 20762.42 8645.88 11454.38 8654.26 12153.75 15257.15 19953.53 20966.01 20965.75 201
tpmrst67.15 10868.12 11066.03 10676.21 10780.98 11471.27 10845.05 19160.69 9350.63 9946.95 12054.15 12265.30 8771.80 14771.77 15387.72 4590.48 77
ACMM66.70 1070.42 8168.49 10572.67 6382.85 5477.76 14477.70 6264.76 6364.61 8260.74 6649.29 10153.97 12365.86 8674.97 10975.57 11084.13 14183.29 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous20240521166.35 12278.00 9084.41 8674.85 7963.18 7551.00 13431.37 19053.73 12469.67 6576.28 9676.84 9383.21 15390.85 70
ACMP68.86 772.15 7372.25 7872.03 6780.96 6680.87 11677.93 6064.13 6669.29 6760.79 6564.04 5453.54 12563.91 9573.74 12675.27 11384.45 13488.98 94
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tpm64.85 12166.02 12563.48 12674.52 11878.38 13770.98 11544.99 19351.61 13343.28 13247.66 11053.18 12660.57 11470.58 15871.30 16286.54 7689.45 90
RPMNet58.63 16862.80 14453.76 18367.59 15771.29 18354.60 18738.13 21055.83 11535.70 17041.58 14253.04 12747.89 16766.10 17767.38 17778.65 19184.40 134
tpm cat167.47 10567.05 11667.98 9476.63 10381.51 10874.49 8747.65 18561.18 9061.12 6142.51 13553.02 12864.74 9270.11 16471.50 15583.22 15189.49 88
FMVSNet558.86 16560.24 16357.25 16852.66 20766.25 19563.77 15952.86 17157.85 10637.92 15936.12 17452.22 12951.37 15870.88 15471.43 15884.92 11766.91 199
TSAR-MVS + COLMAP73.09 6776.86 5668.71 8774.97 11782.49 10174.51 8661.83 9283.16 2649.31 10582.22 2251.62 13068.94 7378.76 7675.52 11282.67 15984.23 136
Effi-MVS+-dtu64.58 12364.08 13365.16 11073.04 12575.17 16470.68 11856.23 14154.12 12844.71 12347.42 11151.10 13163.82 9668.08 17366.32 18482.47 16286.38 116
CDS-MVSNet64.22 12665.89 12662.28 13870.05 14080.59 11869.91 12257.98 12043.53 16446.58 11348.22 10650.76 13246.45 17375.68 10376.08 10382.70 15886.34 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 1792x268872.55 7171.98 8073.22 5986.57 4592.41 1075.63 7166.77 4962.08 8852.32 9030.27 19350.74 13366.14 8586.22 1285.41 791.90 196.75 12
PatchT60.46 15663.85 13456.51 17265.95 16875.68 16147.34 19841.39 20553.89 12941.40 13937.84 16350.30 13457.29 14172.76 13773.27 13985.67 10183.23 145
FMVSNet163.48 13263.07 13963.97 12265.31 17176.37 15571.77 10357.90 12343.32 16545.66 11535.06 18149.43 13558.57 12977.49 8578.22 8384.59 13181.60 157
IterMVS61.87 14863.55 13559.90 14967.29 15972.20 17767.34 14048.56 18147.48 14837.86 16047.07 11748.27 13654.08 15172.12 14373.71 13084.30 13683.99 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT60.21 15862.97 14057.00 17066.64 16371.84 17867.53 13746.93 18847.56 14736.77 16546.85 12148.21 13752.51 15470.36 16172.40 15071.63 20783.53 141
ECVR-MVScopyleft67.93 10168.49 10567.28 10278.64 8486.40 6872.22 9662.75 8558.05 10344.06 12640.92 14748.20 13858.05 13379.82 6679.70 6787.96 4086.32 118
TAMVS58.86 16560.91 15856.47 17362.38 18577.57 14558.97 17952.98 16938.76 18336.17 16742.26 13847.94 13946.45 17370.23 16370.79 16581.86 16978.82 166
FC-MVSNet-train68.83 9368.29 10769.47 8178.35 8679.94 12364.72 15066.38 5154.96 12254.51 8756.75 7547.91 14066.91 8375.57 10675.75 10685.92 9087.12 110
test111166.72 11067.80 11165.45 10877.42 9886.63 6369.69 12362.98 7755.29 11939.47 14840.12 15247.11 14155.70 14579.96 6480.00 6587.47 5385.49 128
Fast-Effi-MVS+67.59 10267.56 11367.62 9773.67 12181.14 11371.12 11254.79 15958.88 9950.61 10046.70 12247.05 14269.12 7276.06 10076.44 9886.43 7986.65 113
Fast-Effi-MVS+-dtu63.05 13564.72 13161.11 14371.21 13676.81 15270.72 11743.13 20052.51 13235.34 17246.55 12346.36 14361.40 11171.57 15071.44 15784.84 12287.79 107
CVMVSNet54.92 18158.16 17251.13 18862.61 18468.44 19055.45 18652.38 17242.28 16821.45 20047.10 11646.10 14437.96 19164.42 18763.81 19176.92 19575.01 175
LS3D64.54 12562.14 14967.34 10180.85 6775.79 15969.99 12065.87 5560.77 9244.35 12442.43 13745.95 14565.01 8869.88 16568.69 17577.97 19271.43 190
IB-MVS64.48 1169.02 9168.97 10269.09 8681.75 6289.01 3764.50 15164.91 6256.65 10962.59 5347.89 10845.23 14651.99 15569.18 17081.88 4088.77 1892.93 50
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ADS-MVSNet58.40 16959.16 17057.52 16665.80 17074.57 16960.26 17340.17 20950.51 13538.01 15840.11 15344.72 14759.36 12464.91 18266.55 18281.53 17272.72 186
test0.0.03 157.35 17459.89 16654.38 18171.37 13373.45 17352.71 19061.03 9946.11 15526.33 19341.73 14144.08 14829.72 19671.43 15170.90 16385.10 11371.56 189
gm-plane-assit54.99 17957.99 17551.49 18769.27 14754.42 21232.32 21542.59 20121.18 21513.71 21223.61 20343.84 14960.21 11887.09 586.55 590.81 489.28 91
dps64.08 12763.22 13765.08 11175.27 11579.65 12666.68 14446.63 18956.94 10755.67 8143.96 12743.63 15064.00 9469.50 16969.82 17082.25 16579.02 165
FC-MVSNet-test47.24 20154.37 18438.93 20659.49 19458.25 21034.48 21453.36 16745.66 1576.66 22050.62 9742.02 15116.62 21458.39 19561.21 19962.99 21164.40 203
GA-MVS64.55 12465.76 12763.12 12869.68 14281.56 10769.59 12458.16 11845.23 15935.58 17147.01 11941.82 15259.41 12379.62 6978.54 7886.32 8086.56 114
thres100view90067.14 10966.09 12468.38 9377.70 9183.84 9274.52 8566.33 5349.16 14243.40 13043.24 12841.34 15362.59 10379.31 7175.92 10585.73 9789.81 84
tfpn200view965.90 11464.96 12867.00 10377.70 9181.58 10671.71 10462.94 8149.16 14243.40 13043.24 12841.34 15361.42 11076.24 9774.63 11984.84 12288.52 101
thres20065.58 11564.74 13066.56 10477.52 9681.61 10473.44 9162.95 7946.23 15442.45 13742.76 13041.18 15558.12 13176.24 9775.59 10984.89 12089.58 87
UniMVSNet_NR-MVSNet62.30 14163.51 13660.89 14469.48 14677.83 14264.07 15463.94 6850.03 13731.17 18444.82 12641.12 15651.37 15871.02 15274.81 11785.30 10984.95 130
MSDG65.57 11661.57 15370.24 7882.02 6176.47 15374.46 8868.73 3956.52 11050.33 10138.47 15841.10 15762.42 10672.12 14372.94 14483.47 14773.37 183
v863.44 13362.58 14564.43 11768.28 15178.07 13971.82 10054.85 15746.70 15245.20 11939.40 15540.91 15860.54 11572.85 13674.39 12485.92 9085.76 125
thres40065.18 12064.44 13266.04 10576.40 10682.63 9871.52 10664.27 6544.93 16040.69 14541.86 14040.79 15958.12 13177.67 8374.64 11885.26 11088.56 100
MIMVSNet57.78 17259.71 16755.53 17554.79 20377.10 15063.89 15845.02 19246.59 15336.79 16428.36 19740.77 16045.84 17774.97 10976.58 9686.87 7173.60 181
V4262.86 13862.97 14062.74 13460.84 18978.99 13271.46 10757.13 13446.85 15044.28 12538.87 15640.73 16157.63 14072.60 14074.14 12585.09 11588.63 99
UniMVSNet (Re)60.62 15562.93 14257.92 16267.64 15677.90 14161.75 16961.24 9849.83 13929.80 18842.57 13340.62 16243.36 18270.49 16073.27 13983.76 14385.81 124
pm-mvs159.21 16359.58 16858.77 15967.97 15377.07 15164.12 15257.20 13234.73 19636.86 16235.34 17840.54 16343.34 18374.32 11973.30 13883.13 15581.77 156
thres600view763.77 13063.14 13864.51 11675.49 11481.61 10469.59 12462.95 7943.96 16338.90 15341.09 14440.24 16455.25 14876.24 9771.54 15484.89 12087.30 109
thisisatest051559.37 16260.68 16057.84 16464.39 17575.65 16258.56 18053.86 16441.55 17242.12 13840.40 15039.59 16547.09 17171.69 14973.79 12981.02 17682.08 154
CMPMVSbinary43.63 1757.67 17355.43 18160.28 14872.01 12979.00 13162.77 16653.23 16841.77 17045.42 11630.74 19239.03 16653.01 15364.81 18464.65 19075.26 19968.03 197
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v1063.00 13662.22 14863.90 12467.88 15477.78 14371.59 10554.34 16145.37 15842.76 13638.53 15738.93 16761.05 11374.39 11774.52 12285.75 9486.04 120
v14862.00 14761.19 15662.96 12967.46 15879.49 12867.87 13357.66 12642.30 16745.02 12138.20 16138.89 16854.77 14969.83 16672.60 14884.96 11687.01 111
v2v48263.68 13162.85 14364.65 11568.01 15280.46 12071.90 9957.60 12744.26 16142.82 13539.80 15438.62 16961.56 10973.06 13274.86 11686.03 8988.90 97
v114463.00 13662.39 14763.70 12567.72 15580.27 12171.23 10956.40 13842.51 16640.81 14438.12 16237.73 17060.42 11774.46 11574.55 12185.64 10589.12 93
Baseline_NR-MVSNet59.47 16160.28 16258.54 16066.69 16173.90 17161.63 17062.90 8249.15 14426.87 19135.18 18037.62 17148.20 16669.67 16773.61 13184.92 11782.82 148
pmmvs463.14 13462.46 14663.94 12366.03 16776.40 15466.82 14357.60 12756.74 10850.26 10240.81 14837.51 17259.26 12571.75 14871.48 15683.68 14682.53 149
ACMH+60.36 1361.16 15158.38 17164.42 11877.37 9974.35 17068.45 13062.81 8345.86 15638.48 15535.71 17637.35 17359.81 12067.24 17569.80 17279.58 18578.32 167
EG-PatchMatch MVS58.73 16758.03 17459.55 15272.32 12780.49 11963.44 16255.55 14932.49 20038.31 15628.87 19637.22 17442.84 18474.30 12075.70 10784.84 12277.14 170
DU-MVS60.87 15461.82 15159.76 15166.69 16175.87 15764.07 15461.96 8949.31 14031.17 18442.76 13036.95 17551.37 15869.67 16773.20 14283.30 15084.95 130
TranMVSNet+NR-MVSNet60.38 15761.30 15559.30 15568.34 15075.57 16363.38 16363.78 7046.74 15127.73 19042.56 13436.84 17647.66 16870.36 16174.59 12084.91 11982.46 150
WR-MVS51.02 19154.56 18346.90 19763.84 17769.23 18844.78 20556.38 13938.19 18414.19 21037.38 16436.82 17722.39 20660.14 19466.20 18679.81 18373.95 180
v14419262.05 14661.46 15462.73 13566.59 16479.87 12469.30 12655.88 14341.50 17339.41 15037.23 16536.45 17859.62 12172.69 13973.51 13285.61 10688.93 95
PatchMatch-RL62.22 14560.69 15964.01 12168.74 14875.75 16059.27 17760.35 10956.09 11453.80 8847.06 11836.45 17864.80 9168.22 17267.22 17977.10 19474.02 178
pmmvs654.20 18453.54 18654.97 17663.22 18172.98 17560.17 17452.32 17326.77 21034.30 17623.29 20536.23 18040.33 18968.77 17168.76 17479.47 18778.00 168
anonymousdsp54.99 17957.24 17652.36 18453.82 20571.75 18151.49 19148.14 18233.74 19733.66 17838.34 15936.13 18147.54 16964.53 18670.60 16779.53 18685.59 127
pmmvs559.72 15960.24 16359.11 15762.77 18377.33 14963.17 16454.00 16340.21 17837.23 16140.41 14935.99 18251.75 15672.55 14172.74 14785.72 9982.45 151
v119262.25 14261.64 15262.96 12966.88 16079.72 12569.96 12155.77 14541.58 17139.42 14937.05 16735.96 18360.50 11674.30 12074.09 12685.24 11188.76 98
TransMVSNet (Re)57.83 17056.90 17758.91 15872.26 12874.69 16863.57 16161.42 9732.30 20132.65 18033.97 18335.96 18339.17 19073.84 12572.84 14684.37 13574.69 176
WR-MVS_H49.62 19652.63 19246.11 20058.80 19667.58 19246.14 20354.94 15436.51 18913.63 21336.75 17135.67 18522.10 20756.43 20262.76 19681.06 17572.73 185
v192192061.66 14961.10 15762.31 13766.32 16579.57 12768.41 13155.49 15041.03 17438.69 15436.64 17335.27 18659.60 12273.23 13073.41 13485.37 10888.51 102
UniMVSNet_ETH3D57.83 17056.46 18059.43 15463.24 18073.22 17467.70 13455.58 14836.17 19136.84 16332.64 18535.14 18751.50 15765.81 17869.81 17181.73 17082.44 152
v124061.09 15260.55 16161.72 14165.92 16979.28 13067.16 14154.91 15639.79 18038.10 15736.08 17534.64 18859.15 12672.86 13573.36 13685.10 11387.84 106
ACMH59.42 1461.59 15059.22 16964.36 11978.92 8278.26 13867.65 13567.48 4539.81 17930.98 18638.25 16034.59 18961.37 11270.55 15973.47 13379.74 18479.59 162
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft51.17 1555.13 17752.90 19057.73 16573.47 12467.21 19362.13 16755.82 14447.83 14634.39 17531.60 18934.24 19044.90 18063.88 18962.52 19775.67 19763.02 206
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MDTV_nov1_ep13_2view54.47 18354.61 18254.30 18260.50 19073.82 17257.92 18143.38 19739.43 18232.51 18133.23 18434.05 19147.26 17062.36 19066.21 18584.24 13773.19 184
MVS-HIRNet53.86 18653.02 18854.85 17760.30 19172.36 17644.63 20642.20 20339.45 18143.47 12921.66 20934.00 19255.47 14665.42 18067.16 18083.02 15671.08 192
NR-MVSNet61.08 15362.09 15059.90 14971.96 13075.87 15763.60 16061.96 8949.31 14027.95 18942.76 13033.85 19348.82 16574.35 11874.05 12885.13 11284.45 133
v7n57.04 17556.64 17857.52 16662.85 18274.75 16761.76 16851.80 17435.58 19536.02 16932.33 18733.61 19450.16 16367.73 17470.34 16982.51 16082.12 153
PEN-MVS51.04 19052.94 18948.82 19161.45 18866.00 19648.68 19557.20 13236.87 18615.36 20836.98 16832.72 19528.77 20057.63 19866.37 18381.44 17374.00 179
testgi48.51 19950.53 19746.16 19964.78 17267.15 19441.54 20854.81 15829.12 20617.03 20432.07 18831.98 19620.15 21065.26 18167.00 18178.67 19061.10 210
CP-MVSNet50.57 19252.60 19348.21 19458.77 19765.82 19748.17 19656.29 14037.41 18516.59 20537.14 16631.95 19729.21 19756.60 20163.71 19280.22 18075.56 173
DTE-MVSNet49.82 19551.92 19547.37 19661.75 18764.38 20145.89 20457.33 13136.11 19212.79 21536.87 16931.93 19825.73 20358.01 19665.22 18880.75 17970.93 193
test_method28.15 21134.48 21220.76 2126.76 22421.18 22021.03 21818.41 21836.77 18717.52 20315.67 21631.63 19924.05 20541.03 21426.69 21636.82 21868.38 194
Anonymous2023120652.23 18952.80 19151.56 18664.70 17469.41 18751.01 19258.60 11636.63 18822.44 19921.80 20831.42 20030.52 19566.79 17667.83 17682.10 16775.73 172
PS-CasMVS50.17 19352.02 19448.02 19558.60 19865.54 19848.04 19756.19 14236.42 19016.42 20735.68 17731.33 20128.85 19956.42 20363.54 19480.01 18175.18 174
EU-MVSNet44.84 20347.85 20341.32 20549.26 21056.59 21143.07 20747.64 18633.03 19813.82 21136.78 17030.99 20224.37 20453.80 20755.57 20769.78 20868.21 195
test20.0347.23 20248.69 20245.53 20163.28 17964.39 20041.01 20956.93 13629.16 20515.21 20923.90 20230.76 20317.51 21364.63 18565.26 18779.21 18862.71 207
pmnet_mix0253.92 18553.30 18754.65 18061.89 18671.33 18254.54 18854.17 16240.38 17634.65 17434.76 18230.68 20440.44 18860.97 19263.71 19282.19 16671.24 191
USDC59.69 16060.03 16559.28 15664.04 17671.84 17863.15 16555.36 15254.90 12435.02 17348.34 10529.79 20558.16 13070.60 15771.33 16179.99 18273.42 182
tfpnnormal58.97 16456.48 17961.89 13971.27 13576.21 15666.65 14561.76 9532.90 19936.41 16627.83 19829.14 20650.64 16273.06 13273.05 14384.58 13283.15 147
pmmvs-eth3d55.20 17653.95 18556.65 17157.34 20167.77 19157.54 18253.74 16540.93 17541.09 14331.19 19129.10 20749.07 16465.54 17967.28 17881.14 17475.81 171
TDRefinement52.70 18751.02 19654.66 17957.41 20065.06 19961.47 17154.94 15444.03 16233.93 17730.13 19427.57 20846.17 17561.86 19162.48 19874.01 20366.06 200
LTVRE_ROB47.26 1649.41 19749.91 20048.82 19164.76 17369.79 18649.05 19447.12 18720.36 21716.52 20636.65 17226.96 20950.76 16160.47 19363.16 19564.73 21072.00 187
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo49.11 19849.22 20148.99 19058.54 19964.14 20247.18 19947.75 18431.15 20324.42 19541.01 14626.55 21044.04 18154.76 20658.70 20371.99 20668.21 195
MIMVSNet140.84 20743.46 20537.79 20732.14 21658.92 20939.24 21150.83 17627.00 20911.29 21716.76 21526.53 21117.75 21257.14 20061.12 20075.46 19856.78 211
PM-MVS50.11 19450.38 19849.80 18947.23 21362.08 20650.91 19344.84 19441.90 16936.10 16835.22 17926.05 21246.83 17257.64 19755.42 20872.90 20474.32 177
N_pmnet47.67 20047.00 20448.45 19354.72 20462.78 20446.95 20051.25 17536.01 19326.09 19426.59 20125.93 21335.50 19355.67 20559.01 20176.22 19663.04 205
tmp_tt16.09 21613.07 2228.12 22513.61 2222.08 22055.09 12130.10 18740.26 15122.83 2145.35 21929.91 21525.25 21732.33 219
new-patchmatchnet42.21 20542.97 20641.33 20453.05 20659.89 20739.38 21049.61 17728.26 20812.10 21622.17 20721.54 21519.22 21150.96 20856.04 20674.61 20261.92 208
TinyColmap52.66 18850.09 19955.65 17459.72 19364.02 20357.15 18352.96 17040.28 17732.51 18132.42 18620.97 21656.65 14363.95 18865.15 18974.91 20063.87 204
pmmvs341.86 20642.29 20841.36 20339.80 21452.66 21338.93 21235.85 21423.40 21420.22 20219.30 21020.84 21740.56 18755.98 20458.79 20272.80 20565.03 202
FPMVS39.11 20836.39 21042.28 20255.97 20245.94 21546.23 20241.57 20435.73 19422.61 19723.46 20419.82 21828.32 20143.57 21040.67 21258.96 21345.54 213
PMVScopyleft27.44 1832.08 21029.07 21335.60 20848.33 21224.79 21826.97 21741.34 20620.45 21622.50 19817.11 21418.64 21920.44 20941.99 21238.06 21354.02 21542.44 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet33.19 20935.52 21130.47 20927.55 22045.31 21629.29 21630.92 21529.00 2079.88 21918.77 21117.64 22026.77 20244.07 20945.98 21158.41 21447.87 212
MDA-MVSNet-bldmvs44.15 20442.27 20946.34 19838.34 21562.31 20546.28 20155.74 14629.83 20420.98 20127.11 20016.45 22141.98 18541.11 21357.47 20474.72 20161.65 209
PMMVS220.45 21322.31 21518.27 21520.52 22126.73 21714.85 22128.43 21713.69 2180.79 22510.35 2179.10 2223.83 22027.64 21632.87 21441.17 21635.81 215
ambc42.30 20750.36 20949.51 21435.47 21332.04 20223.53 19617.36 2128.95 22329.06 19864.88 18356.26 20561.29 21267.12 198
DeepMVS_CXcopyleft19.81 22217.01 22010.02 21923.61 2135.85 22117.21 2138.03 22421.13 20822.60 21721.42 22230.01 216
Gipumacopyleft24.91 21224.61 21425.26 21131.47 21721.59 21918.06 21937.53 21125.43 21210.03 2184.18 2214.25 22514.85 21543.20 21147.03 21039.62 21726.55 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive15.98 1914.37 21616.36 21612.04 2177.72 22320.24 2215.90 22529.05 2168.28 2213.92 2224.72 2202.42 2269.57 21818.89 21831.46 21516.07 22328.53 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS14.40 21510.71 21818.70 21428.15 21912.09 2247.06 22336.89 21211.00 2193.56 2244.95 2192.27 22713.91 21610.13 22016.06 21922.63 22118.51 220
E-PMN15.08 21411.65 21719.08 21328.73 21812.31 2236.95 22436.87 21310.71 2203.63 2235.13 2182.22 22813.81 21711.34 21918.50 21824.49 22021.32 219
testmvs0.05 2170.08 2190.01 2180.00 2260.01 2260.03 2270.01 2220.05 2220.00 2270.14 2230.01 2290.03 2230.05 2210.05 2200.01 2240.24 222
uanet_test0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
sosnet-low-res0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
sosnet0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
test1230.05 2170.08 2190.01 2180.00 2260.01 2260.01 2280.00 2230.05 2220.00 2270.16 2220.00 2300.04 2210.02 2220.05 2200.00 2250.26 221
RE-MVS-def31.47 183
our_test_363.32 17871.07 18555.90 185
Patchmatch-RL test2.17 226
NP-MVS81.60 34
Patchmtry78.06 14067.53 13743.18 19841.40 139