This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 795.09 188.55 576.83 694.16 186.57 190.85 587.07 186.18 186.36 785.08 1288.67 2098.21 3
DVP-MVScopyleft88.07 290.73 284.97 491.98 1095.01 287.86 1076.88 593.90 285.15 290.11 786.90 279.46 1286.26 1084.67 1888.50 2798.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DVP-MVS++87.98 389.76 585.89 292.57 694.57 388.34 676.61 792.40 683.40 389.26 1085.57 586.04 286.24 1184.89 1588.39 3095.42 20
SF-MVS87.30 688.71 685.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 383.29 1179.75 983.52 2682.72 3288.75 1995.37 23
TPM-MVS94.34 293.91 589.34 375.49 1882.52 2083.34 1083.53 489.62 790.78 72
DPE-MVScopyleft87.60 590.44 484.29 792.09 993.44 688.69 475.11 993.06 580.80 694.23 286.70 381.44 784.84 1883.52 2787.64 4897.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CSCG82.90 2084.52 2381.02 1891.85 1193.43 787.14 1274.01 1481.96 3176.14 1470.84 3782.49 1469.71 6382.32 4185.18 1187.26 6095.40 22
MCST-MVS85.75 986.99 1384.31 694.07 392.80 888.15 979.10 285.66 2170.72 2976.50 3380.45 2282.17 588.35 287.49 391.63 297.65 4
DELS-MVS79.49 3079.84 4079.08 2788.26 3792.49 984.12 2670.63 2765.27 8169.60 3561.29 6366.50 6072.75 4388.07 388.03 289.13 1397.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CHOSEN 1792x268872.55 7171.98 8073.22 5986.57 4592.41 1075.63 7166.77 4962.08 8852.32 9030.27 19350.74 13366.14 8586.22 1285.41 791.90 196.75 12
CNVR-MVS85.96 887.58 1184.06 892.58 592.40 1187.62 1177.77 488.44 1475.93 1679.49 2681.97 1881.65 687.04 686.58 488.79 1797.18 7
CANet80.90 2782.93 2878.53 2986.83 4492.26 1281.19 4266.95 4781.60 3469.90 3266.93 4574.80 3276.79 2184.68 1984.77 1789.50 1095.50 18
QAPM77.50 4477.43 5177.59 3491.52 1492.00 1381.41 4070.63 2766.22 7458.05 7254.70 8171.79 4474.49 3282.46 3782.04 3689.46 1192.79 53
DPM-MVS85.41 1186.72 1683.89 1091.66 1391.92 1490.49 278.09 386.90 1773.95 2074.52 3582.01 1779.29 1390.24 190.65 189.86 690.78 72
APDe-MVS86.37 788.41 884.00 991.43 1591.83 1588.34 674.67 1091.19 781.76 591.13 481.94 1980.07 883.38 2782.58 3487.69 4696.78 10
MVS_030479.43 3282.20 3076.20 4084.22 5291.79 1681.82 3763.81 6976.83 4961.71 5766.37 4875.52 3176.38 2385.54 1485.03 1389.28 1294.32 32
MSP-MVS87.87 490.57 384.73 589.38 2791.60 1788.24 874.15 1293.55 382.28 494.99 183.21 1285.96 387.67 484.67 1888.32 3198.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PHI-MVS79.43 3284.06 2574.04 5586.15 4791.57 1880.85 4668.90 3882.22 3051.81 9378.10 2874.28 3370.39 6084.01 2484.00 2286.14 8694.24 33
DeepPCF-MVS76.94 183.08 1987.77 1077.60 3390.11 2090.96 1978.48 5572.63 2293.10 465.84 4180.67 2481.55 2074.80 2985.94 1385.39 883.75 14496.77 11
SMA-MVScopyleft85.24 1288.27 981.72 1591.74 1290.71 2086.71 1373.16 1990.56 1074.33 1983.07 1885.88 477.16 2086.28 985.58 687.23 6195.77 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_111021_HR77.42 4578.40 4776.28 3986.95 4290.68 2177.41 6470.56 3066.21 7562.48 5466.17 5063.98 6972.08 4882.87 3383.15 2888.24 3495.71 15
MAR-MVS77.19 4778.37 4875.81 4489.87 2290.58 2279.33 5465.56 5877.62 4758.33 7159.24 7167.98 5574.83 2882.37 4083.12 2986.95 6887.67 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
NCCC84.16 1685.46 2182.64 1192.34 890.57 2386.57 1476.51 886.85 1872.91 2377.20 3278.69 2679.09 1584.64 2084.88 1688.44 2895.41 21
OpenMVScopyleft67.62 874.92 6173.91 7176.09 4290.10 2190.38 2478.01 5966.35 5266.09 7662.80 5046.33 12464.55 6771.77 5079.92 6580.88 5987.52 5289.20 92
3Dnovator70.49 578.42 3876.77 5780.35 2091.43 1590.27 2581.84 3670.79 2672.10 5871.95 2450.02 10067.86 5777.47 1982.89 3284.24 2088.61 2389.99 83
HPM-MVS++copyleft85.64 1088.43 782.39 1292.65 490.24 2685.83 1774.21 1190.68 975.63 1786.77 1384.15 878.68 1686.33 885.26 987.32 5795.60 17
EPNet79.28 3682.25 2975.83 4388.31 3690.14 2779.43 5368.07 4181.76 3361.26 6077.26 3170.08 5070.06 6182.43 3982.00 3887.82 4292.09 57
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP83.54 1786.37 1880.25 2189.57 2690.10 2885.27 2171.66 2387.38 1573.08 2284.23 1780.16 2375.31 2584.85 1783.64 2486.57 7594.21 35
GG-mvs-BLEND54.54 18277.58 5027.67 2100.03 22590.09 2977.20 660.02 22166.83 730.05 22659.90 6873.33 360.04 22178.40 7979.30 7388.65 2195.20 25
PVSNet_BlendedMVS76.84 4978.47 4574.95 5082.37 5789.90 3075.45 7565.45 5974.99 5470.66 3063.07 5658.27 9967.60 7984.24 2281.70 4388.18 3597.10 8
PVSNet_Blended76.84 4978.47 4574.95 5082.37 5789.90 3075.45 7565.45 5974.99 5470.66 3063.07 5658.27 9967.60 7984.24 2281.70 4388.18 3597.10 8
canonicalmvs77.65 4279.59 4175.39 4581.52 6389.83 3281.32 4160.74 10580.05 3966.72 3968.43 4165.09 6374.72 3178.87 7482.73 3187.32 5792.16 56
SteuartSystems-ACMMP82.51 2185.35 2279.20 2590.25 1889.39 3384.79 2270.95 2582.86 2768.32 3786.44 1477.19 2773.07 3983.63 2583.64 2487.82 4294.34 31
Skip Steuart: Steuart Systems R&D Blog.
casdiffmvs_mvgpermissive75.57 5676.04 6275.02 4980.48 7289.31 3480.79 4764.04 6766.95 7263.87 4657.52 7361.33 8272.90 4182.01 4781.99 3988.03 3993.16 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft84.83 1387.00 1282.30 1389.61 2589.21 3586.51 1573.64 1690.98 877.99 1289.89 880.04 2479.18 1482.00 4881.37 4986.88 7095.49 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
casdiffmvspermissive75.20 5975.69 6574.63 5479.26 7989.07 3678.47 5663.59 7267.05 7163.79 4755.72 7860.32 8773.58 3582.16 4381.78 4189.08 1493.72 42
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IB-MVS64.48 1169.02 9168.97 10269.09 8681.75 6289.01 3764.50 15164.91 6256.65 10962.59 5347.89 10845.23 14651.99 15569.18 17081.88 4088.77 1892.93 50
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_Test75.22 5876.69 5873.51 5679.30 7788.82 3880.06 5058.74 11469.77 6557.50 7659.78 7061.35 8075.31 2582.07 4583.60 2690.13 591.41 64
SD-MVS84.31 1586.96 1481.22 1688.98 3188.68 3985.65 1873.85 1589.09 1379.63 887.34 1284.84 673.71 3482.66 3581.60 4685.48 10794.51 29
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
gg-mvs-nofinetune62.34 13966.19 12357.86 16376.15 10888.61 4071.18 11141.24 20825.74 21113.16 21422.91 20663.97 7054.52 15085.06 1685.25 1090.92 391.78 61
DeepC-MVS74.46 380.30 2981.05 3579.42 2387.42 4088.50 4183.23 2873.27 1882.78 2871.01 2862.86 5869.93 5174.80 2984.30 2184.20 2186.79 7394.77 26
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg83.35 1886.93 1579.17 2689.70 2488.41 4285.60 2072.89 2186.31 1966.58 4090.48 682.24 1673.06 4083.10 3182.64 3387.21 6595.30 24
CDPH-MVS79.39 3582.13 3176.19 4189.22 3088.34 4384.20 2571.00 2479.67 4156.97 7777.77 2972.24 4268.50 7581.33 5282.74 3087.23 6192.84 51
3Dnovator+70.16 677.87 4177.29 5378.55 2889.25 2988.32 4480.09 4967.95 4274.89 5671.83 2552.05 9370.68 4876.27 2482.27 4282.04 3685.92 9090.77 74
TSAR-MVS + GP.82.27 2385.98 1977.94 3180.72 7088.25 4581.12 4367.71 4387.10 1673.31 2185.23 1583.68 976.64 2280.43 6181.47 4888.15 3795.66 16
MP-MVScopyleft80.94 2683.49 2677.96 3088.48 3288.16 4682.82 3269.34 3480.79 3769.67 3382.35 2177.13 2871.60 5280.97 5880.96 5785.87 9394.06 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HyFIR lowres test68.39 9668.28 10868.52 9080.85 6788.11 4771.08 11358.09 11954.87 12547.80 11127.55 19955.80 11164.97 8979.11 7279.14 7488.31 3293.35 44
CLD-MVS77.36 4677.29 5377.45 3582.21 5988.11 4781.92 3568.96 3777.97 4569.62 3462.08 5959.44 9273.57 3681.75 5081.27 5188.41 2990.39 79
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ET-MVSNet_ETH3D71.38 7874.70 6967.51 9851.61 20888.06 4977.29 6560.95 10463.61 8348.36 10866.60 4760.67 8579.55 1073.56 12780.58 6287.30 5989.80 85
PCF-MVS70.85 475.73 5576.55 6074.78 5383.67 5388.04 5081.47 3870.62 2969.24 6957.52 7560.59 6769.18 5370.65 5877.11 9077.65 8884.75 12794.01 37
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ETV-MVS76.25 5180.22 3871.63 7178.23 8787.95 5172.75 9360.27 11077.50 4857.73 7371.53 3666.60 5973.16 3880.99 5781.23 5287.63 4995.73 14
DeepC-MVS_fast75.41 281.69 2482.10 3281.20 1791.04 1787.81 5283.42 2774.04 1383.77 2571.09 2766.88 4672.44 3879.48 1185.08 1584.97 1488.12 3893.78 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS82.48 2284.12 2480.56 1990.15 1987.55 5384.28 2469.67 3285.22 2277.95 1384.69 1675.94 3075.04 2781.85 4981.17 5386.30 8292.40 55
baseline72.89 6874.46 7071.07 7275.99 10987.50 5474.57 8160.49 10770.72 6257.60 7460.63 6660.97 8370.79 5775.27 10776.33 10086.94 6989.79 86
diffmvspermissive74.32 6275.42 6673.04 6075.60 11387.27 5578.20 5762.96 7868.66 7061.89 5559.79 6959.84 9071.80 4978.30 8179.87 6687.80 4494.23 34
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EIA-MVS73.48 6676.05 6170.47 7778.12 8887.21 5671.78 10160.63 10669.66 6655.56 8264.86 5260.69 8469.53 6677.35 8978.59 7787.22 6394.01 37
PVSNet_Blended_VisFu71.76 7573.54 7469.69 8079.01 8187.16 5772.05 9861.80 9356.46 11159.66 6853.88 8962.48 7259.08 12781.17 5478.90 7586.53 7794.74 27
ACMMPR80.62 2882.98 2777.87 3288.41 3387.05 5883.02 2969.18 3583.91 2468.35 3682.89 1973.64 3572.16 4780.78 5981.13 5486.10 8791.43 62
CS-MVS-test75.09 6077.84 4971.87 7079.27 7886.92 5970.53 11960.36 10875.13 5363.13 4967.92 4265.08 6471.43 5378.15 8278.51 8086.53 7793.16 48
DI_MVS_plusplus_trai73.94 6574.85 6872.88 6176.57 10586.80 6080.41 4861.47 9662.35 8759.44 6947.91 10768.12 5472.24 4682.84 3481.50 4787.15 6794.42 30
CS-MVS75.84 5478.61 4472.61 6579.03 8086.74 6174.43 8960.27 11074.15 5762.78 5166.26 4964.25 6872.81 4283.36 2881.69 4586.32 8093.85 39
PGM-MVS79.42 3481.84 3376.60 3888.38 3586.69 6282.97 3165.75 5680.39 3864.94 4381.95 2372.11 4371.41 5480.45 6080.55 6386.18 8490.76 75
test111166.72 11067.80 11165.45 10877.42 9886.63 6369.69 12362.98 7755.29 11939.47 14840.12 15247.11 14155.70 14579.96 6480.00 6587.47 5385.49 128
EC-MVSNet76.05 5378.87 4372.77 6278.87 8386.63 6377.50 6357.04 13575.34 5261.68 5864.20 5369.56 5273.96 3382.12 4480.65 6187.57 5093.57 43
CANet_DTU72.84 6976.63 5968.43 9276.81 10286.62 6575.54 7454.71 16072.06 5943.54 12867.11 4458.46 9672.40 4581.13 5680.82 6087.57 5090.21 81
TSAR-MVS + ACMM81.59 2585.84 2076.63 3789.82 2386.53 6686.32 1666.72 5085.96 2065.43 4288.98 1182.29 1567.57 8182.06 4681.33 5083.93 14293.75 41
TSAR-MVS + MP.84.39 1486.58 1781.83 1488.09 3886.47 6785.63 1973.62 1790.13 1179.24 989.67 982.99 1377.72 1881.22 5380.92 5886.68 7494.66 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test250669.26 8770.79 9167.48 9978.64 8486.40 6872.22 9662.75 8558.05 10345.24 11850.76 9654.93 11758.05 13379.82 6679.70 6787.96 4085.90 123
ECVR-MVScopyleft67.93 10168.49 10567.28 10278.64 8486.40 6872.22 9662.75 8558.05 10344.06 12640.92 14748.20 13858.05 13379.82 6679.70 6787.96 4086.32 118
baseline271.22 8073.01 7769.13 8475.76 11186.34 7071.23 10962.78 8462.62 8552.85 8957.32 7454.31 12063.27 10079.74 6879.31 7288.89 1691.43 62
XVS82.43 5586.27 7175.70 6961.07 6272.27 3985.67 101
X-MVStestdata82.43 5586.27 7175.70 6961.07 6272.27 3985.67 101
X-MVS78.16 4080.55 3775.38 4687.99 3986.27 7181.05 4468.98 3678.33 4361.07 6275.25 3472.27 3967.52 8280.03 6380.52 6485.66 10491.20 66
CostFormer72.18 7273.90 7270.18 7979.47 7586.19 7476.94 6748.62 18066.07 7760.40 6754.14 8765.82 6167.98 7675.84 10276.41 9987.67 4792.83 52
FA-MVS(training)70.24 8671.77 8368.45 9177.52 9686.03 7573.33 9249.12 17963.55 8455.77 7948.91 10456.26 10767.78 7877.60 8479.62 6987.19 6690.40 78
CP-MVS79.44 3181.51 3477.02 3686.95 4285.96 7682.00 3468.44 4081.82 3267.39 3877.43 3073.68 3471.62 5179.56 7079.58 7085.73 9792.51 54
ACMMPcopyleft77.61 4379.59 4175.30 4785.87 4885.58 7781.42 3967.38 4679.38 4262.61 5278.53 2765.79 6268.80 7478.56 7778.50 8185.75 9490.80 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MS-PatchMatch70.34 8569.00 10171.91 6985.20 5185.35 7877.84 6161.77 9458.01 10555.40 8341.26 14358.34 9861.69 10881.70 5178.29 8289.56 980.02 161
Effi-MVS+70.42 8171.23 8769.47 8178.04 8985.24 7975.57 7358.88 11359.56 9748.47 10752.73 9254.94 11669.69 6478.34 8077.06 9286.18 8490.73 76
MVS_111021_LR74.26 6375.95 6372.27 6679.43 7685.04 8072.71 9465.27 6170.92 6163.58 4869.32 3960.31 8869.43 6877.01 9177.15 9183.22 15191.93 60
AdaColmapbinary76.23 5273.55 7379.35 2489.38 2785.00 8179.99 5173.04 2076.60 5071.17 2655.18 8057.99 10177.87 1776.82 9376.82 9484.67 12986.45 115
MSLP-MVS++78.57 3777.33 5280.02 2288.39 3484.79 8284.62 2366.17 5475.96 5178.40 1061.59 6171.47 4573.54 3778.43 7878.88 7688.97 1590.18 82
Vis-MVSNetpermissive65.53 11769.83 9760.52 14670.80 13984.59 8366.37 14855.47 15148.40 14540.62 14657.67 7258.43 9745.37 17977.49 8576.24 10284.47 13385.99 122
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline171.47 7672.02 7970.82 7480.56 7184.51 8476.61 6866.93 4856.22 11348.66 10655.40 7960.43 8662.55 10483.35 2980.99 5589.60 883.28 144
thisisatest053068.38 9770.98 8965.35 10972.61 12684.42 8568.21 13257.98 12059.77 9650.80 9854.63 8258.48 9557.92 13576.99 9277.47 8984.60 13085.07 129
Anonymous20240521166.35 12278.00 9084.41 8674.85 7963.18 7551.00 13431.37 19053.73 12469.67 6576.28 9676.84 9383.21 15390.85 70
OPM-MVS72.74 7070.93 9074.85 5285.30 5084.34 8782.82 3269.79 3149.96 13855.39 8454.09 8860.14 8970.04 6280.38 6279.43 7185.74 9688.20 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP-MVS78.26 3980.91 3675.17 4885.67 4984.33 8883.01 3069.38 3379.88 4055.83 7879.85 2564.90 6670.81 5682.46 3781.78 4186.30 8293.18 47
IS_MVSNet67.29 10771.98 8061.82 14076.92 10184.32 8965.90 14958.22 11755.75 11739.22 15154.51 8462.47 7345.99 17678.83 7578.52 7984.70 12889.47 89
EPMVS66.21 11167.49 11464.73 11475.81 11084.20 9068.94 12844.37 19561.55 8948.07 11049.21 10354.87 11862.88 10171.82 14671.40 15988.28 3379.37 164
tttt051767.99 10070.61 9264.94 11271.94 13183.96 9167.62 13657.98 12059.30 9849.90 10354.50 8557.98 10257.92 13576.48 9577.47 8984.24 13784.58 132
thres100view90067.14 10966.09 12468.38 9377.70 9183.84 9274.52 8566.33 5349.16 14243.40 13043.24 12841.34 15362.59 10379.31 7175.92 10585.73 9789.81 84
Anonymous2023121168.44 9566.37 12170.86 7377.58 9483.49 9375.15 7861.89 9152.54 13158.50 7028.89 19556.78 10569.29 7174.96 11176.61 9582.73 15791.36 65
EPP-MVSNet67.58 10371.10 8863.48 12675.71 11283.35 9466.85 14257.83 12553.02 13041.15 14255.82 7667.89 5656.01 14474.40 11672.92 14583.33 14990.30 80
GeoE68.96 9269.32 9868.54 8976.61 10483.12 9571.78 10156.87 13760.21 9554.86 8645.95 12554.79 11964.27 9374.59 11375.54 11186.84 7291.01 69
MVSTER76.92 4879.92 3973.42 5874.98 11682.97 9678.15 5863.41 7378.02 4464.41 4567.54 4372.80 3771.05 5583.29 3083.73 2388.53 2691.12 67
PatchmatchNetpermissive65.43 11867.71 11262.78 13273.49 12382.83 9766.42 14745.40 19060.40 9445.27 11749.22 10257.60 10360.01 11970.61 15671.38 16086.08 8881.91 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres40065.18 12064.44 13266.04 10576.40 10682.63 9871.52 10664.27 6544.93 16040.69 14541.86 14040.79 15958.12 13177.67 8374.64 11885.26 11088.56 100
UGNet67.57 10471.69 8462.76 13369.88 14182.58 9966.43 14658.64 11554.71 12651.87 9261.74 6062.01 7745.46 17874.78 11274.99 11484.24 13791.02 68
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CPTT-MVS75.43 5777.13 5573.44 5781.43 6482.55 10080.96 4564.35 6477.95 4661.39 5969.20 4070.94 4769.38 7073.89 12373.32 13783.14 15492.06 58
TSAR-MVS + COLMAP73.09 6776.86 5668.71 8774.97 11782.49 10174.51 8661.83 9283.16 2649.31 10582.22 2251.62 13068.94 7378.76 7675.52 11282.67 15984.23 136
PMMVS70.37 8475.06 6764.90 11371.46 13281.88 10264.10 15355.64 14771.31 6046.69 11270.69 3858.56 9369.53 6679.03 7375.63 10881.96 16888.32 103
MDTV_nov1_ep1365.21 11967.28 11562.79 13170.91 13781.72 10369.28 12749.50 17858.08 10243.94 12750.50 9956.02 10958.86 12870.72 15573.37 13584.24 13780.52 160
thres600view763.77 13063.14 13864.51 11675.49 11481.61 10469.59 12462.95 7943.96 16338.90 15341.09 14440.24 16455.25 14876.24 9771.54 15484.89 12087.30 109
thres20065.58 11564.74 13066.56 10477.52 9681.61 10473.44 9162.95 7946.23 15442.45 13742.76 13041.18 15558.12 13176.24 9775.59 10984.89 12089.58 87
tfpn200view965.90 11464.96 12867.00 10377.70 9181.58 10671.71 10462.94 8149.16 14243.40 13043.24 12841.34 15361.42 11076.24 9774.63 11984.84 12288.52 101
GA-MVS64.55 12465.76 12763.12 12869.68 14281.56 10769.59 12458.16 11845.23 15935.58 17147.01 11941.82 15259.41 12379.62 6978.54 7886.32 8086.56 114
tpm cat167.47 10567.05 11667.98 9476.63 10381.51 10874.49 8747.65 18561.18 9061.12 6142.51 13553.02 12864.74 9270.11 16471.50 15583.22 15189.49 88
UA-Net64.62 12268.23 10960.42 14777.53 9581.38 10960.08 17557.47 13047.01 14944.75 12260.68 6571.32 4641.84 18673.27 12972.25 15180.83 17871.68 188
CNLPA71.37 7970.27 9572.66 6480.79 6981.33 11071.07 11465.75 5682.36 2964.80 4442.46 13656.49 10672.70 4473.00 13470.52 16880.84 17785.76 125
test-LLR68.23 9871.61 8564.28 12071.37 13381.32 11163.98 15661.03 9958.62 10042.96 13352.74 9061.65 7857.74 13875.64 10478.09 8688.61 2393.21 45
TESTMET0.1,167.38 10671.61 8562.45 13666.05 16681.32 11163.98 15655.36 15258.62 10042.96 13352.74 9061.65 7857.74 13875.64 10478.09 8688.61 2393.21 45
Fast-Effi-MVS+67.59 10267.56 11367.62 9773.67 12181.14 11371.12 11254.79 15958.88 9950.61 10046.70 12247.05 14269.12 7276.06 10076.44 9886.43 7986.65 113
tpmrst67.15 10868.12 11066.03 10676.21 10780.98 11471.27 10845.05 19160.69 9350.63 9946.95 12054.15 12265.30 8771.80 14771.77 15387.72 4590.48 77
OMC-MVS74.03 6475.82 6471.95 6879.56 7480.98 11475.35 7763.21 7484.48 2361.83 5661.54 6266.89 5869.41 6976.60 9474.07 12782.34 16486.15 119
ACMP68.86 772.15 7372.25 7872.03 6780.96 6680.87 11677.93 6064.13 6669.29 6760.79 6564.04 5453.54 12563.91 9573.74 12675.27 11384.45 13488.98 94
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TAPA-MVS67.10 971.45 7773.47 7569.10 8577.04 10080.78 11773.81 9062.10 8880.80 3651.28 9460.91 6463.80 7167.98 7674.59 11372.42 14982.37 16380.97 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CDS-MVSNet64.22 12665.89 12662.28 13870.05 14080.59 11869.91 12257.98 12043.53 16446.58 11348.22 10650.76 13246.45 17375.68 10376.08 10382.70 15886.34 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EG-PatchMatch MVS58.73 16758.03 17459.55 15272.32 12780.49 11963.44 16255.55 14932.49 20038.31 15628.87 19637.22 17442.84 18474.30 12075.70 10784.84 12277.14 170
v2v48263.68 13162.85 14364.65 11568.01 15280.46 12071.90 9957.60 12744.26 16142.82 13539.80 15438.62 16961.56 10973.06 13274.86 11686.03 8988.90 97
v114463.00 13662.39 14763.70 12567.72 15580.27 12171.23 10956.40 13842.51 16640.81 14438.12 16237.73 17060.42 11774.46 11574.55 12185.64 10589.12 93
LGP-MVS_train72.02 7473.18 7670.67 7682.13 6080.26 12279.58 5263.04 7670.09 6351.98 9165.06 5155.62 11362.49 10575.97 10176.32 10184.80 12688.93 95
FC-MVSNet-train68.83 9368.29 10769.47 8178.35 8679.94 12364.72 15066.38 5154.96 12254.51 8756.75 7547.91 14066.91 8375.57 10675.75 10685.92 9087.12 110
v14419262.05 14661.46 15462.73 13566.59 16479.87 12469.30 12655.88 14341.50 17339.41 15037.23 16536.45 17859.62 12172.69 13973.51 13285.61 10688.93 95
v119262.25 14261.64 15262.96 12966.88 16079.72 12569.96 12155.77 14541.58 17139.42 14937.05 16735.96 18360.50 11674.30 12074.09 12685.24 11188.76 98
dps64.08 12763.22 13765.08 11175.27 11579.65 12666.68 14446.63 18956.94 10755.67 8143.96 12743.63 15064.00 9469.50 16969.82 17082.25 16579.02 165
v192192061.66 14961.10 15762.31 13766.32 16579.57 12768.41 13155.49 15041.03 17438.69 15436.64 17335.27 18659.60 12273.23 13073.41 13485.37 10888.51 102
v14862.00 14761.19 15662.96 12967.46 15879.49 12867.87 13357.66 12642.30 16745.02 12138.20 16138.89 16854.77 14969.83 16672.60 14884.96 11687.01 111
FMVSNet370.41 8371.89 8268.68 8870.89 13879.42 12975.63 7160.97 10165.32 7851.06 9547.37 11262.05 7464.90 9082.49 3682.27 3588.64 2284.34 135
v124061.09 15260.55 16161.72 14165.92 16979.28 13067.16 14154.91 15639.79 18038.10 15736.08 17534.64 18859.15 12672.86 13573.36 13685.10 11387.84 106
CMPMVSbinary43.63 1757.67 17355.43 18160.28 14872.01 12979.00 13162.77 16653.23 16841.77 17045.42 11630.74 19239.03 16653.01 15364.81 18464.65 19075.26 19968.03 197
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
V4262.86 13862.97 14062.74 13460.84 18978.99 13271.46 10757.13 13446.85 15044.28 12538.87 15640.73 16157.63 14072.60 14074.14 12585.09 11588.63 99
Vis-MVSNet (Re-imp)62.25 14268.74 10354.68 17873.70 12078.74 13356.51 18457.49 12955.22 12026.86 19254.56 8361.35 8031.06 19473.10 13174.90 11582.49 16183.31 142
GBi-Net69.21 8870.40 9367.81 9569.49 14378.65 13474.54 8260.97 10165.32 7851.06 9547.37 11262.05 7463.43 9777.49 8578.22 8387.37 5483.73 138
test169.21 8870.40 9367.81 9569.49 14378.65 13474.54 8260.97 10165.32 7851.06 9547.37 11262.05 7463.43 9777.49 8578.22 8387.37 5483.73 138
FMVSNet268.06 9968.57 10467.45 10069.49 14378.65 13474.54 8260.23 11256.29 11249.64 10442.13 13957.08 10463.43 9781.15 5580.99 5587.37 5483.73 138
tpm64.85 12166.02 12563.48 12674.52 11878.38 13770.98 11544.99 19351.61 13343.28 13247.66 11053.18 12660.57 11470.58 15871.30 16286.54 7689.45 90
ACMH59.42 1461.59 15059.22 16964.36 11978.92 8278.26 13867.65 13567.48 4539.81 17930.98 18638.25 16034.59 18961.37 11270.55 15973.47 13379.74 18479.59 162
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v863.44 13362.58 14564.43 11768.28 15178.07 13971.82 10054.85 15746.70 15245.20 11939.40 15540.91 15860.54 11572.85 13674.39 12485.92 9085.76 125
Patchmtry78.06 14067.53 13743.18 19841.40 139
UniMVSNet (Re)60.62 15562.93 14257.92 16267.64 15677.90 14161.75 16961.24 9849.83 13929.80 18842.57 13340.62 16243.36 18270.49 16073.27 13983.76 14385.81 124
UniMVSNet_NR-MVSNet62.30 14163.51 13660.89 14469.48 14677.83 14264.07 15463.94 6850.03 13731.17 18444.82 12641.12 15651.37 15871.02 15274.81 11785.30 10984.95 130
v1063.00 13662.22 14863.90 12467.88 15477.78 14371.59 10554.34 16145.37 15842.76 13638.53 15738.93 16761.05 11374.39 11774.52 12285.75 9486.04 120
ACMM66.70 1070.42 8168.49 10572.67 6382.85 5477.76 14477.70 6264.76 6364.61 8260.74 6649.29 10153.97 12365.86 8674.97 10975.57 11084.13 14183.29 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS58.86 16560.91 15856.47 17362.38 18577.57 14558.97 17952.98 16938.76 18336.17 16742.26 13847.94 13946.45 17370.23 16370.79 16581.86 16978.82 166
DCV-MVSNet69.13 9069.07 10069.21 8377.65 9377.52 14674.68 8057.85 12454.92 12355.34 8555.74 7755.56 11466.35 8475.05 10876.56 9783.35 14888.13 105
test-mter64.06 12869.24 9958.01 16159.07 19577.40 14759.13 17848.11 18355.64 11839.18 15251.56 9558.54 9455.38 14773.52 12876.00 10487.22 6392.05 59
EPNet_dtu66.17 11270.13 9661.54 14281.04 6577.39 14868.87 12962.50 8769.78 6433.51 17963.77 5556.22 10837.65 19272.20 14272.18 15285.69 10079.38 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs559.72 15960.24 16359.11 15762.77 18377.33 14963.17 16454.00 16340.21 17837.23 16140.41 14935.99 18251.75 15672.55 14172.74 14785.72 9982.45 151
MIMVSNet57.78 17259.71 16755.53 17554.79 20377.10 15063.89 15845.02 19246.59 15336.79 16428.36 19740.77 16045.84 17774.97 10976.58 9686.87 7173.60 181
pm-mvs159.21 16359.58 16858.77 15967.97 15377.07 15164.12 15257.20 13234.73 19636.86 16235.34 17840.54 16343.34 18374.32 11973.30 13883.13 15581.77 156
Fast-Effi-MVS+-dtu63.05 13564.72 13161.11 14371.21 13676.81 15270.72 11743.13 20052.51 13235.34 17246.55 12346.36 14361.40 11171.57 15071.44 15784.84 12287.79 107
MSDG65.57 11661.57 15370.24 7882.02 6176.47 15374.46 8868.73 3956.52 11050.33 10138.47 15841.10 15762.42 10672.12 14372.94 14483.47 14773.37 183
pmmvs463.14 13462.46 14663.94 12366.03 16776.40 15466.82 14357.60 12756.74 10850.26 10240.81 14837.51 17259.26 12571.75 14871.48 15683.68 14682.53 149
FMVSNet163.48 13263.07 13963.97 12265.31 17176.37 15571.77 10357.90 12343.32 16545.66 11535.06 18149.43 13558.57 12977.49 8578.22 8384.59 13181.60 157
tfpnnormal58.97 16456.48 17961.89 13971.27 13576.21 15666.65 14561.76 9532.90 19936.41 16627.83 19829.14 20650.64 16273.06 13273.05 14384.58 13283.15 147
DU-MVS60.87 15461.82 15159.76 15166.69 16175.87 15764.07 15461.96 8949.31 14031.17 18442.76 13036.95 17551.37 15869.67 16773.20 14283.30 15084.95 130
NR-MVSNet61.08 15362.09 15059.90 14971.96 13075.87 15763.60 16061.96 8949.31 14027.95 18942.76 13033.85 19348.82 16574.35 11874.05 12885.13 11284.45 133
LS3D64.54 12562.14 14967.34 10180.85 6775.79 15969.99 12065.87 5560.77 9244.35 12442.43 13745.95 14565.01 8869.88 16568.69 17577.97 19271.43 190
PatchMatch-RL62.22 14560.69 15964.01 12168.74 14875.75 16059.27 17760.35 10956.09 11453.80 8847.06 11836.45 17864.80 9168.22 17267.22 17977.10 19474.02 178
PatchT60.46 15663.85 13456.51 17265.95 16875.68 16147.34 19841.39 20553.89 12941.40 13937.84 16350.30 13457.29 14172.76 13773.27 13985.67 10183.23 145
thisisatest051559.37 16260.68 16057.84 16464.39 17575.65 16258.56 18053.86 16441.55 17242.12 13840.40 15039.59 16547.09 17171.69 14973.79 12981.02 17682.08 154
TranMVSNet+NR-MVSNet60.38 15761.30 15559.30 15568.34 15075.57 16363.38 16363.78 7046.74 15127.73 19042.56 13436.84 17647.66 16870.36 16174.59 12084.91 11982.46 150
Effi-MVS+-dtu64.58 12364.08 13365.16 11073.04 12575.17 16470.68 11856.23 14154.12 12844.71 12347.42 11151.10 13163.82 9668.08 17366.32 18482.47 16286.38 116
IterMVS-LS66.08 11366.56 12065.51 10773.67 12174.88 16570.89 11653.55 16650.42 13648.32 10950.59 9855.66 11261.83 10773.93 12274.42 12384.82 12586.01 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PLCcopyleft64.00 1268.54 9466.66 11870.74 7580.28 7374.88 16572.64 9563.70 7169.26 6855.71 8047.24 11555.31 11570.42 5972.05 14570.67 16681.66 17177.19 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n57.04 17556.64 17857.52 16662.85 18274.75 16761.76 16851.80 17435.58 19536.02 16932.33 18733.61 19450.16 16367.73 17470.34 16982.51 16082.12 153
TransMVSNet (Re)57.83 17056.90 17758.91 15872.26 12874.69 16863.57 16161.42 9732.30 20132.65 18033.97 18335.96 18339.17 19073.84 12572.84 14684.37 13574.69 176
ADS-MVSNet58.40 16959.16 17057.52 16665.80 17074.57 16960.26 17340.17 20950.51 13538.01 15840.11 15344.72 14759.36 12464.91 18266.55 18281.53 17272.72 186
ACMH+60.36 1361.16 15158.38 17164.42 11877.37 9974.35 17068.45 13062.81 8345.86 15638.48 15535.71 17637.35 17359.81 12067.24 17569.80 17279.58 18578.32 167
Baseline_NR-MVSNet59.47 16160.28 16258.54 16066.69 16173.90 17161.63 17062.90 8249.15 14426.87 19135.18 18037.62 17148.20 16669.67 16773.61 13184.92 11782.82 148
MDTV_nov1_ep13_2view54.47 18354.61 18254.30 18260.50 19073.82 17257.92 18143.38 19739.43 18232.51 18133.23 18434.05 19147.26 17062.36 19066.21 18584.24 13773.19 184
test0.0.03 157.35 17459.89 16654.38 18171.37 13373.45 17352.71 19061.03 9946.11 15526.33 19341.73 14144.08 14829.72 19671.43 15170.90 16385.10 11371.56 189
UniMVSNet_ETH3D57.83 17056.46 18059.43 15463.24 18073.22 17467.70 13455.58 14836.17 19136.84 16332.64 18535.14 18751.50 15765.81 17869.81 17181.73 17082.44 152
pmmvs654.20 18453.54 18654.97 17663.22 18172.98 17560.17 17452.32 17326.77 21034.30 17623.29 20536.23 18040.33 18968.77 17168.76 17479.47 18778.00 168
MVS-HIRNet53.86 18653.02 18854.85 17760.30 19172.36 17644.63 20642.20 20339.45 18143.47 12921.66 20934.00 19255.47 14665.42 18067.16 18083.02 15671.08 192
IterMVS61.87 14863.55 13559.90 14967.29 15972.20 17767.34 14048.56 18147.48 14837.86 16047.07 11748.27 13654.08 15172.12 14373.71 13084.30 13683.99 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT60.21 15862.97 14057.00 17066.64 16371.84 17867.53 13746.93 18847.56 14736.77 16546.85 12148.21 13752.51 15470.36 16172.40 15071.63 20783.53 141
USDC59.69 16060.03 16559.28 15664.04 17671.84 17863.15 16555.36 15254.90 12435.02 17348.34 10529.79 20558.16 13070.60 15771.33 16179.99 18273.42 182
SCA63.90 12966.67 11760.66 14573.75 11971.78 18059.87 17643.66 19661.13 9145.03 12051.64 9459.45 9157.92 13570.96 15370.80 16483.71 14580.92 159
anonymousdsp54.99 17957.24 17652.36 18453.82 20571.75 18151.49 19148.14 18233.74 19733.66 17838.34 15936.13 18147.54 16964.53 18670.60 16779.53 18685.59 127
pmnet_mix0253.92 18553.30 18754.65 18061.89 18671.33 18254.54 18854.17 16240.38 17634.65 17434.76 18230.68 20440.44 18860.97 19263.71 19282.19 16671.24 191
CR-MVSNet62.31 14064.75 12959.47 15368.63 14971.29 18367.53 13743.18 19855.83 11541.40 13941.04 14555.85 11057.29 14172.76 13773.27 13978.77 18983.23 145
RPMNet58.63 16862.80 14453.76 18367.59 15771.29 18354.60 18738.13 21055.83 11535.70 17041.58 14253.04 12747.89 16766.10 17767.38 17778.65 19184.40 134
our_test_363.32 17871.07 18555.90 185
LTVRE_ROB47.26 1649.41 19749.91 20048.82 19164.76 17369.79 18649.05 19447.12 18720.36 21716.52 20636.65 17226.96 20950.76 16160.47 19363.16 19564.73 21072.00 187
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023120652.23 18952.80 19151.56 18664.70 17469.41 18751.01 19258.60 11636.63 18822.44 19921.80 20831.42 20030.52 19566.79 17667.83 17682.10 16775.73 172
WR-MVS51.02 19154.56 18346.90 19763.84 17769.23 18844.78 20556.38 13938.19 18414.19 21037.38 16436.82 17722.39 20660.14 19466.20 18679.81 18373.95 180
CHOSEN 280x42062.23 14466.57 11957.17 16959.88 19268.92 18961.20 17242.28 20254.17 12739.57 14747.78 10964.97 6562.68 10273.85 12469.52 17377.43 19386.75 112
CVMVSNet54.92 18158.16 17251.13 18862.61 18468.44 19055.45 18652.38 17242.28 16821.45 20047.10 11646.10 14437.96 19164.42 18763.81 19176.92 19575.01 175
pmmvs-eth3d55.20 17653.95 18556.65 17157.34 20167.77 19157.54 18253.74 16540.93 17541.09 14331.19 19129.10 20749.07 16465.54 17967.28 17881.14 17475.81 171
WR-MVS_H49.62 19652.63 19246.11 20058.80 19667.58 19246.14 20354.94 15436.51 18913.63 21336.75 17135.67 18522.10 20756.43 20262.76 19681.06 17572.73 185
COLMAP_ROBcopyleft51.17 1555.13 17752.90 19057.73 16573.47 12467.21 19362.13 16755.82 14447.83 14634.39 17531.60 18934.24 19044.90 18063.88 18962.52 19775.67 19763.02 206
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testgi48.51 19950.53 19746.16 19964.78 17267.15 19441.54 20854.81 15829.12 20617.03 20432.07 18831.98 19620.15 21065.26 18167.00 18178.67 19061.10 210
FMVSNet558.86 16560.24 16357.25 16852.66 20766.25 19563.77 15952.86 17157.85 10637.92 15936.12 17452.22 12951.37 15870.88 15471.43 15884.92 11766.91 199
PEN-MVS51.04 19052.94 18948.82 19161.45 18866.00 19648.68 19557.20 13236.87 18615.36 20836.98 16832.72 19528.77 20057.63 19866.37 18381.44 17374.00 179
CP-MVSNet50.57 19252.60 19348.21 19458.77 19765.82 19748.17 19656.29 14037.41 18516.59 20537.14 16631.95 19729.21 19756.60 20163.71 19280.22 18075.56 173
PS-CasMVS50.17 19352.02 19448.02 19558.60 19865.54 19848.04 19756.19 14236.42 19016.42 20735.68 17731.33 20128.85 19956.42 20363.54 19480.01 18175.18 174
TDRefinement52.70 18751.02 19654.66 17957.41 20065.06 19961.47 17154.94 15444.03 16233.93 17730.13 19427.57 20846.17 17561.86 19162.48 19874.01 20366.06 200
test20.0347.23 20248.69 20245.53 20163.28 17964.39 20041.01 20956.93 13629.16 20515.21 20923.90 20230.76 20317.51 21364.63 18565.26 18779.21 18862.71 207
DTE-MVSNet49.82 19551.92 19547.37 19661.75 18764.38 20145.89 20457.33 13136.11 19212.79 21536.87 16931.93 19825.73 20358.01 19665.22 18880.75 17970.93 193
SixPastTwentyTwo49.11 19849.22 20148.99 19058.54 19964.14 20247.18 19947.75 18431.15 20324.42 19541.01 14626.55 21044.04 18154.76 20658.70 20371.99 20668.21 195
TinyColmap52.66 18850.09 19955.65 17459.72 19364.02 20357.15 18352.96 17040.28 17732.51 18132.42 18620.97 21656.65 14363.95 18865.15 18974.91 20063.87 204
N_pmnet47.67 20047.00 20448.45 19354.72 20462.78 20446.95 20051.25 17536.01 19326.09 19426.59 20125.93 21335.50 19355.67 20559.01 20176.22 19663.04 205
MDA-MVSNet-bldmvs44.15 20442.27 20946.34 19838.34 21562.31 20546.28 20155.74 14629.83 20420.98 20127.11 20016.45 22141.98 18541.11 21357.47 20474.72 20161.65 209
PM-MVS50.11 19450.38 19849.80 18947.23 21362.08 20650.91 19344.84 19441.90 16936.10 16835.22 17926.05 21246.83 17257.64 19755.42 20872.90 20474.32 177
new-patchmatchnet42.21 20542.97 20641.33 20453.05 20659.89 20739.38 21049.61 17728.26 20812.10 21622.17 20721.54 21519.22 21150.96 20856.04 20674.61 20261.92 208
RPSCF55.07 17858.06 17351.57 18548.87 21158.95 20853.68 18941.26 20762.42 8645.88 11454.38 8654.26 12153.75 15257.15 19953.53 20966.01 20965.75 201
MIMVSNet140.84 20743.46 20537.79 20732.14 21658.92 20939.24 21150.83 17627.00 20911.29 21716.76 21526.53 21117.75 21257.14 20061.12 20075.46 19856.78 211
FC-MVSNet-test47.24 20154.37 18438.93 20659.49 19458.25 21034.48 21453.36 16745.66 1576.66 22050.62 9742.02 15116.62 21458.39 19561.21 19962.99 21164.40 203
EU-MVSNet44.84 20347.85 20341.32 20549.26 21056.59 21143.07 20747.64 18633.03 19813.82 21136.78 17030.99 20224.37 20453.80 20755.57 20769.78 20868.21 195
gm-plane-assit54.99 17957.99 17551.49 18769.27 14754.42 21232.32 21542.59 20121.18 21513.71 21223.61 20343.84 14960.21 11887.09 586.55 590.81 489.28 91
pmmvs341.86 20642.29 20841.36 20339.80 21452.66 21338.93 21235.85 21423.40 21420.22 20219.30 21020.84 21740.56 18755.98 20458.79 20272.80 20565.03 202
ambc42.30 20750.36 20949.51 21435.47 21332.04 20223.53 19617.36 2128.95 22329.06 19864.88 18356.26 20561.29 21267.12 198
FPMVS39.11 20836.39 21042.28 20255.97 20245.94 21546.23 20241.57 20435.73 19422.61 19723.46 20419.82 21828.32 20143.57 21040.67 21258.96 21345.54 213
new_pmnet33.19 20935.52 21130.47 20927.55 22045.31 21629.29 21630.92 21529.00 2079.88 21918.77 21117.64 22026.77 20244.07 20945.98 21158.41 21447.87 212
PMMVS220.45 21322.31 21518.27 21520.52 22126.73 21714.85 22128.43 21713.69 2180.79 22510.35 2179.10 2223.83 22027.64 21632.87 21441.17 21635.81 215
PMVScopyleft27.44 1832.08 21029.07 21335.60 20848.33 21224.79 21826.97 21741.34 20620.45 21622.50 19817.11 21418.64 21920.44 20941.99 21238.06 21354.02 21542.44 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft24.91 21224.61 21425.26 21131.47 21721.59 21918.06 21937.53 21125.43 21210.03 2184.18 2214.25 22514.85 21543.20 21147.03 21039.62 21726.55 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method28.15 21134.48 21220.76 2126.76 22421.18 22021.03 21818.41 21836.77 18717.52 20315.67 21631.63 19924.05 20541.03 21426.69 21636.82 21868.38 194
MVEpermissive15.98 1914.37 21616.36 21612.04 2177.72 22320.24 2215.90 22529.05 2168.28 2213.92 2224.72 2202.42 2269.57 21818.89 21831.46 21516.07 22328.53 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft19.81 22217.01 22010.02 21923.61 2135.85 22117.21 2138.03 22421.13 20822.60 21721.42 22230.01 216
E-PMN15.08 21411.65 21719.08 21328.73 21812.31 2236.95 22436.87 21310.71 2203.63 2235.13 2182.22 22813.81 21711.34 21918.50 21824.49 22021.32 219
EMVS14.40 21510.71 21818.70 21428.15 21912.09 2247.06 22336.89 21211.00 2193.56 2244.95 2192.27 22713.91 21610.13 22016.06 21922.63 22118.51 220
tmp_tt16.09 21613.07 2228.12 22513.61 2222.08 22055.09 12130.10 18740.26 15122.83 2145.35 21929.91 21525.25 21732.33 219
testmvs0.05 2170.08 2190.01 2180.00 2260.01 2260.03 2270.01 2220.05 2220.00 2270.14 2230.01 2290.03 2230.05 2210.05 2200.01 2240.24 222
test1230.05 2170.08 2190.01 2180.00 2260.01 2260.01 2280.00 2230.05 2220.00 2270.16 2220.00 2300.04 2210.02 2220.05 2200.00 2250.26 221
uanet_test0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
sosnet-low-res0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
sosnet0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
RE-MVS-def31.47 183
9.1484.47 7
SR-MVS86.33 4667.54 4480.78 21
MTAPA78.32 1179.42 25
MTMP76.04 1576.65 29
Patchmatch-RL test2.17 226
mPP-MVS86.96 4170.61 49
NP-MVS81.60 34