SED-MVS | | | 78.97 1 | 84.56 1 | 72.45 1 | 81.70 3 | 86.20 3 | 77.82 4 | 59.97 6 | 88.89 1 | 65.96 1 | 86.00 6 | 84.02 1 | 70.03 1 | 76.19 4 | 76.17 5 | 79.22 19 | 94.46 1 |
|
DVP-MVS | | | 77.54 2 | 84.41 2 | 69.54 6 | 79.93 4 | 86.08 4 | 77.20 8 | 60.31 4 | 88.62 2 | 62.54 2 | 86.67 3 | 83.77 2 | 58.04 32 | 75.84 6 | 75.69 7 | 79.21 20 | 94.17 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SF-MVS | | | 76.41 3 | 80.45 5 | 71.69 2 | 82.90 1 | 86.54 1 | 82.08 1 | 64.58 1 | 81.67 10 | 59.82 4 | 86.26 4 | 77.90 7 | 61.11 14 | 71.81 26 | 70.75 33 | 79.63 12 | 88.22 25 |
|
MSP-MVS | | | 76.38 4 | 82.99 3 | 68.68 7 | 71.93 18 | 78.65 23 | 77.61 5 | 55.44 18 | 88.04 3 | 60.25 3 | 92.24 1 | 77.08 9 | 69.84 2 | 75.48 7 | 75.69 7 | 76.99 54 | 93.75 3 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 75.74 5 | 82.82 4 | 67.49 11 | 77.07 7 | 82.01 7 | 77.05 9 | 57.70 11 | 86.55 5 | 55.44 15 | 90.50 2 | 82.52 3 | 60.33 19 | 72.99 14 | 72.98 15 | 77.33 47 | 92.19 6 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DPM-MVS | | | 74.63 6 | 78.53 10 | 70.07 4 | 76.10 9 | 82.56 6 | 79.30 3 | 59.89 7 | 80.49 13 | 57.75 10 | 66.98 25 | 76.16 12 | 65.95 3 | 79.35 1 | 78.47 1 | 81.45 5 | 85.71 45 |
|
APDe-MVS | | | 74.59 7 | 80.23 6 | 68.01 10 | 76.51 8 | 80.20 15 | 77.39 6 | 58.18 9 | 85.31 6 | 56.84 12 | 84.89 7 | 76.08 13 | 60.66 17 | 71.85 25 | 71.76 20 | 78.47 29 | 91.49 9 |
|
MCST-MVS | | | 74.06 8 | 77.71 13 | 69.79 5 | 78.95 5 | 81.99 8 | 76.33 10 | 62.16 3 | 75.89 21 | 52.96 25 | 64.37 31 | 73.30 21 | 65.66 4 | 77.49 2 | 77.43 3 | 82.67 1 | 93.51 4 |
|
CNVR-MVS | | | 73.87 9 | 78.60 9 | 68.35 9 | 73.32 13 | 81.97 9 | 76.19 11 | 59.29 8 | 80.12 14 | 56.70 13 | 67.09 24 | 76.48 10 | 64.26 6 | 75.88 5 | 75.75 6 | 80.32 7 | 92.93 5 |
|
SMA-MVS |  | | 73.31 10 | 79.53 7 | 66.05 13 | 71.25 20 | 80.13 16 | 74.99 12 | 56.09 14 | 84.14 7 | 54.48 18 | 73.74 16 | 80.23 4 | 61.43 11 | 74.96 8 | 74.09 11 | 78.08 36 | 89.42 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
xxxxxxxxxxxxxcwj | | | 73.17 11 | 74.44 20 | 71.69 2 | 82.90 1 | 86.54 1 | 82.08 1 | 64.58 1 | 81.67 10 | 59.82 4 | 86.26 4 | 35.82 144 | 61.11 14 | 71.81 26 | 70.75 33 | 79.63 12 | 88.22 25 |
|
CSCG | | | 72.98 12 | 76.86 15 | 68.46 8 | 78.23 6 | 81.74 10 | 77.26 7 | 60.00 5 | 75.61 24 | 59.06 6 | 62.72 33 | 77.42 8 | 56.63 45 | 74.24 10 | 77.18 4 | 79.56 14 | 89.13 18 |
|
HPM-MVS++ |  | | 72.44 13 | 78.73 8 | 65.11 14 | 71.88 19 | 77.31 32 | 71.98 20 | 55.67 16 | 83.11 9 | 53.59 22 | 75.90 12 | 78.49 6 | 61.00 16 | 73.99 11 | 73.31 14 | 76.55 57 | 88.97 19 |
|
APD-MVS |  | | 71.86 14 | 77.91 12 | 64.80 16 | 70.39 25 | 75.69 42 | 74.02 14 | 56.14 13 | 83.59 8 | 52.92 26 | 84.67 8 | 73.46 20 | 59.30 26 | 69.47 41 | 69.66 41 | 76.02 63 | 88.84 20 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 71.50 15 | 77.27 14 | 64.77 17 | 69.64 27 | 79.26 17 | 73.53 15 | 54.73 24 | 79.32 16 | 54.23 19 | 74.81 13 | 74.61 17 | 59.40 25 | 73.00 13 | 72.17 18 | 77.10 53 | 87.72 30 |
|
NCCC | | | 71.36 16 | 75.44 17 | 66.60 12 | 72.46 16 | 79.18 19 | 74.16 13 | 57.83 10 | 76.93 19 | 54.19 20 | 63.47 32 | 71.08 26 | 61.30 13 | 73.56 12 | 73.70 12 | 79.69 11 | 90.19 11 |
|
train_agg | | | 70.74 17 | 76.53 16 | 63.98 19 | 70.33 26 | 75.16 46 | 72.33 19 | 55.78 15 | 75.74 22 | 50.41 34 | 80.08 11 | 73.15 22 | 57.75 37 | 71.96 24 | 70.94 30 | 77.25 51 | 88.69 22 |
|
TSAR-MVS + MP. | | | 70.28 18 | 75.09 18 | 64.66 18 | 69.34 29 | 64.61 126 | 72.60 18 | 56.29 12 | 80.73 12 | 58.36 8 | 84.56 9 | 75.22 15 | 55.37 51 | 69.11 48 | 69.45 43 | 75.97 65 | 81.97 75 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DeepPCF-MVS | | 62.48 1 | 70.07 19 | 78.36 11 | 60.39 43 | 62.38 59 | 76.96 35 | 65.54 56 | 52.23 33 | 87.46 4 | 49.07 35 | 74.05 15 | 76.19 11 | 59.01 28 | 72.79 18 | 71.61 22 | 74.13 106 | 89.49 13 |
|
SteuartSystems-ACMMP | | | 69.78 20 | 74.76 19 | 63.98 19 | 73.45 12 | 78.56 24 | 73.13 17 | 55.24 21 | 70.68 34 | 48.93 37 | 70.43 20 | 69.10 28 | 54.00 56 | 72.78 20 | 72.98 15 | 79.14 21 | 88.74 21 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 68.75 21 | 72.84 22 | 63.98 19 | 68.87 33 | 75.09 47 | 71.87 21 | 51.22 38 | 73.50 28 | 58.17 9 | 68.05 23 | 68.67 29 | 57.79 36 | 70.49 34 | 69.23 45 | 75.98 64 | 84.84 53 |
|
SD-MVS | | | 68.30 22 | 72.58 24 | 63.31 25 | 69.24 30 | 67.85 99 | 70.81 26 | 53.65 29 | 79.64 15 | 58.52 7 | 74.31 14 | 75.37 14 | 53.52 62 | 65.63 72 | 63.56 103 | 74.13 106 | 81.73 79 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
zzz-MVS | | | 67.78 23 | 72.46 25 | 62.33 30 | 66.09 39 | 74.21 52 | 70.05 28 | 51.54 36 | 77.27 17 | 54.61 17 | 60.30 41 | 71.51 25 | 56.73 43 | 69.19 46 | 68.63 54 | 74.96 86 | 86.11 42 |
|
DELS-MVS | | | 67.36 24 | 70.34 38 | 63.89 22 | 69.12 31 | 81.55 11 | 70.82 25 | 55.02 22 | 53.38 74 | 48.83 38 | 56.45 47 | 59.35 55 | 60.05 23 | 74.93 9 | 74.78 9 | 79.51 15 | 91.95 7 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MP-MVS |  | | 67.34 25 | 73.08 21 | 60.64 40 | 66.20 38 | 76.62 37 | 69.22 32 | 50.92 40 | 70.07 35 | 48.81 39 | 69.66 21 | 70.12 27 | 53.68 59 | 68.41 53 | 69.13 47 | 74.98 85 | 87.53 32 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DeepC-MVS | | 60.65 2 | 67.33 26 | 71.52 32 | 62.44 28 | 59.79 80 | 74.84 49 | 68.89 33 | 55.56 17 | 73.91 27 | 53.50 23 | 55.00 52 | 65.63 34 | 60.08 22 | 71.99 23 | 71.33 26 | 76.85 55 | 87.94 29 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HQP-MVS | | | 67.22 27 | 72.08 27 | 61.56 35 | 66.76 36 | 73.58 59 | 71.41 22 | 52.98 31 | 69.92 37 | 43.85 58 | 70.58 19 | 58.75 57 | 56.76 42 | 72.90 16 | 71.88 19 | 77.57 43 | 86.94 36 |
|
CANet | | | 67.21 28 | 71.83 29 | 61.83 31 | 64.51 45 | 79.25 18 | 66.72 48 | 48.73 56 | 68.49 42 | 50.63 33 | 61.40 37 | 66.47 32 | 61.44 10 | 69.31 45 | 69.90 37 | 78.94 24 | 88.00 27 |
|
CDPH-MVS | | | 67.03 29 | 71.64 30 | 61.65 34 | 69.10 32 | 76.84 36 | 71.35 24 | 55.42 19 | 67.02 45 | 42.83 63 | 65.27 29 | 64.60 38 | 53.16 65 | 69.70 40 | 71.40 24 | 78.02 38 | 86.67 37 |
|
MAR-MVS | | | 66.85 30 | 69.81 39 | 63.39 24 | 73.56 11 | 80.51 14 | 69.87 29 | 51.51 37 | 67.78 44 | 46.44 44 | 51.09 65 | 61.60 50 | 60.38 18 | 72.67 21 | 73.61 13 | 78.59 26 | 81.44 83 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DeepC-MVS_fast | | 60.18 3 | 66.84 31 | 70.69 36 | 62.36 29 | 62.76 53 | 73.21 62 | 67.96 36 | 52.31 32 | 72.26 31 | 51.03 28 | 56.50 46 | 64.26 39 | 63.37 7 | 71.64 28 | 70.85 31 | 76.70 56 | 86.10 43 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 66.77 32 | 72.21 26 | 60.44 42 | 61.23 67 | 70.00 82 | 64.26 61 | 47.79 68 | 72.98 29 | 56.32 14 | 71.35 18 | 72.33 23 | 55.68 50 | 65.49 73 | 66.66 68 | 77.35 45 | 86.62 38 |
|
MVS_0304 | | | 66.31 33 | 71.61 31 | 60.14 44 | 62.59 57 | 78.98 21 | 67.13 44 | 45.75 92 | 64.35 50 | 45.23 51 | 60.69 39 | 67.67 31 | 61.73 9 | 71.09 30 | 71.03 28 | 78.41 32 | 87.44 33 |
|
ACMMPR | | | 66.20 34 | 71.51 33 | 60.00 46 | 65.34 43 | 74.04 54 | 69.39 31 | 50.92 40 | 71.97 32 | 46.04 46 | 66.79 26 | 65.68 33 | 53.07 66 | 68.93 50 | 69.12 48 | 75.21 79 | 84.05 59 |
|
3Dnovator | | 58.39 4 | 65.97 35 | 66.85 51 | 64.94 15 | 73.72 10 | 79.03 20 | 67.73 39 | 54.25 25 | 61.52 53 | 52.79 27 | 42.27 91 | 60.73 53 | 62.01 8 | 71.29 29 | 71.75 21 | 79.12 22 | 81.34 86 |
|
TSAR-MVS + ACMM | | | 65.95 36 | 72.83 23 | 57.93 55 | 69.35 28 | 65.85 118 | 73.36 16 | 39.84 145 | 76.00 20 | 48.69 40 | 82.54 10 | 75.03 16 | 49.38 93 | 65.33 75 | 63.42 105 | 66.94 165 | 81.67 80 |
|
canonicalmvs | | | 65.55 37 | 70.75 35 | 59.49 49 | 62.11 61 | 78.26 27 | 66.52 49 | 43.82 113 | 71.54 33 | 47.84 42 | 61.30 38 | 61.68 48 | 58.48 31 | 67.56 60 | 69.67 40 | 78.16 35 | 85.25 50 |
|
QAPM | | | 65.47 38 | 67.82 44 | 62.72 27 | 72.56 14 | 81.17 13 | 67.43 42 | 55.38 20 | 56.07 66 | 43.29 61 | 43.60 86 | 65.38 36 | 59.10 27 | 72.20 22 | 70.76 32 | 78.56 27 | 85.59 48 |
|
PGM-MVS | | | 65.35 39 | 70.43 37 | 59.43 50 | 65.78 41 | 73.75 56 | 69.41 30 | 48.18 64 | 68.80 41 | 45.37 50 | 65.88 28 | 64.04 40 | 52.68 72 | 68.94 49 | 68.68 53 | 75.18 80 | 82.93 66 |
|
PHI-MVS | | | 65.17 40 | 72.07 28 | 57.11 65 | 63.02 52 | 77.35 31 | 67.04 45 | 48.14 66 | 68.03 43 | 37.56 90 | 66.00 27 | 65.39 35 | 53.19 64 | 70.68 31 | 70.57 36 | 73.72 113 | 86.46 41 |
|
CLD-MVS | | | 64.69 41 | 67.25 46 | 61.69 33 | 68.22 35 | 78.33 25 | 63.09 64 | 47.59 71 | 69.64 38 | 53.98 21 | 54.87 53 | 53.94 71 | 57.87 33 | 72.79 18 | 71.34 25 | 79.40 17 | 69.87 153 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MVS_111021_HR | | | 64.66 42 | 67.11 49 | 61.80 32 | 71.04 21 | 77.91 28 | 62.75 67 | 54.78 23 | 51.43 77 | 47.54 43 | 53.77 56 | 54.85 68 | 56.84 40 | 70.59 32 | 71.50 23 | 77.86 39 | 89.70 12 |
|
EPNet | | | 64.39 43 | 70.93 34 | 56.77 67 | 60.58 74 | 75.77 39 | 59.28 88 | 50.58 44 | 69.93 36 | 40.73 79 | 68.59 22 | 61.60 50 | 53.72 57 | 68.65 51 | 68.07 56 | 75.75 70 | 83.87 61 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CP-MVS | | | 64.37 44 | 69.48 40 | 58.39 52 | 62.21 60 | 71.81 74 | 67.27 43 | 49.51 50 | 69.40 40 | 45.76 48 | 60.41 40 | 64.96 37 | 51.84 74 | 67.33 64 | 67.57 62 | 73.78 112 | 84.89 51 |
|
casdiffmvs | | | 63.87 45 | 67.08 50 | 60.12 45 | 60.90 70 | 78.29 26 | 67.91 37 | 48.01 67 | 55.89 68 | 44.97 52 | 50.45 67 | 56.94 62 | 59.54 24 | 70.17 37 | 69.81 38 | 79.41 16 | 87.99 28 |
|
MVS_Test | | | 63.75 46 | 67.24 47 | 59.68 48 | 60.01 76 | 76.99 34 | 68.13 35 | 45.17 95 | 57.45 61 | 43.74 59 | 53.07 59 | 56.16 66 | 61.33 12 | 70.27 35 | 71.11 27 | 79.72 10 | 85.63 47 |
|
X-MVS | | | 63.53 47 | 68.62 41 | 57.60 59 | 64.77 44 | 73.06 63 | 65.82 54 | 50.53 45 | 65.77 47 | 42.02 71 | 58.20 43 | 63.42 43 | 47.83 105 | 68.25 57 | 68.50 55 | 74.61 96 | 83.16 65 |
|
ACMMP |  | | 63.27 48 | 67.85 43 | 57.93 55 | 62.64 56 | 72.30 71 | 68.23 34 | 48.77 55 | 66.50 46 | 43.05 62 | 62.07 34 | 57.84 61 | 49.98 85 | 66.58 68 | 66.46 73 | 74.93 87 | 83.17 63 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
ETV-MVS | | | 62.88 49 | 68.18 42 | 56.70 68 | 58.47 88 | 74.89 48 | 60.26 81 | 43.96 110 | 58.27 60 | 42.37 69 | 61.47 36 | 56.56 63 | 57.80 34 | 68.00 58 | 68.74 51 | 77.34 46 | 89.33 17 |
|
CS-MVS | | | 62.84 50 | 67.51 45 | 57.38 62 | 60.49 75 | 75.48 45 | 62.36 69 | 43.72 115 | 53.40 73 | 41.28 76 | 57.32 45 | 58.61 59 | 57.80 34 | 69.85 39 | 69.49 42 | 78.64 25 | 88.45 23 |
|
AdaColmap |  | | 62.79 51 | 62.63 66 | 62.98 26 | 70.82 22 | 72.90 66 | 67.84 38 | 54.09 27 | 65.14 48 | 50.71 31 | 41.78 93 | 47.64 100 | 60.17 21 | 67.41 63 | 66.83 66 | 74.28 101 | 76.69 110 |
|
3Dnovator+ | | 55.76 7 | 62.70 52 | 65.10 58 | 59.90 47 | 65.89 40 | 72.15 72 | 62.94 66 | 49.82 49 | 62.77 52 | 49.06 36 | 43.62 85 | 61.47 52 | 58.60 30 | 68.51 52 | 66.75 67 | 73.08 127 | 80.40 95 |
|
OpenMVS |  | 55.62 8 | 62.57 53 | 63.76 63 | 61.19 37 | 72.13 17 | 78.84 22 | 64.42 59 | 50.51 46 | 56.44 63 | 45.67 49 | 36.88 120 | 56.51 64 | 56.66 44 | 68.28 56 | 68.96 49 | 77.73 41 | 80.44 94 |
|
PVSNet_BlendedMVS | | | 62.53 54 | 66.37 53 | 58.05 53 | 58.17 89 | 75.70 40 | 61.30 74 | 48.67 59 | 58.67 57 | 50.93 29 | 55.43 50 | 49.39 89 | 53.01 67 | 69.46 42 | 66.55 70 | 76.24 61 | 89.39 15 |
|
PVSNet_Blended | | | 62.53 54 | 66.37 53 | 58.05 53 | 58.17 89 | 75.70 40 | 61.30 74 | 48.67 59 | 58.67 57 | 50.93 29 | 55.43 50 | 49.39 89 | 53.01 67 | 69.46 42 | 66.55 70 | 76.24 61 | 89.39 15 |
|
MVSTER | | | 62.51 56 | 67.22 48 | 57.02 66 | 55.05 110 | 69.23 91 | 63.02 65 | 46.88 81 | 61.11 55 | 43.95 57 | 59.20 42 | 58.86 56 | 56.80 41 | 69.13 47 | 70.98 29 | 76.41 59 | 82.04 72 |
|
CHOSEN 1792x2688 | | | 62.48 57 | 64.06 62 | 60.64 40 | 72.50 15 | 84.18 5 | 62.43 68 | 53.77 28 | 47.90 90 | 39.85 83 | 25.15 182 | 44.76 113 | 53.72 57 | 77.29 3 | 77.61 2 | 81.60 4 | 91.53 8 |
|
CostFormer | | | 62.45 58 | 65.68 56 | 58.67 51 | 63.29 49 | 77.65 29 | 67.62 40 | 38.42 154 | 54.04 71 | 46.00 47 | 48.27 75 | 57.89 60 | 56.97 39 | 67.03 66 | 67.79 61 | 79.74 9 | 87.09 35 |
|
PCF-MVS | | 55.99 6 | 62.31 59 | 66.60 52 | 57.32 63 | 59.12 87 | 73.68 58 | 67.53 41 | 48.71 57 | 61.35 54 | 42.83 63 | 51.33 64 | 63.48 42 | 53.48 63 | 65.64 71 | 64.87 86 | 72.22 132 | 85.83 44 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
diffmvs | | | 62.30 60 | 66.05 55 | 57.92 57 | 57.08 94 | 75.60 44 | 66.90 46 | 47.06 79 | 55.45 70 | 43.37 60 | 53.45 58 | 55.60 67 | 57.21 38 | 66.57 69 | 68.00 58 | 75.89 68 | 87.70 31 |
|
DI_MVS_plusplus_trai | | | 61.86 61 | 65.26 57 | 57.90 58 | 57.93 92 | 74.51 51 | 66.30 51 | 46.49 87 | 49.96 81 | 41.62 74 | 42.69 89 | 61.77 47 | 58.74 29 | 70.25 36 | 69.32 44 | 76.31 60 | 88.30 24 |
|
MSLP-MVS++ | | | 61.81 62 | 62.19 71 | 61.37 36 | 68.33 34 | 63.08 140 | 70.75 27 | 38.89 151 | 63.96 51 | 57.51 11 | 48.59 73 | 61.66 49 | 53.67 60 | 62.04 113 | 59.92 148 | 79.03 23 | 76.08 113 |
|
OPM-MVS | | | 61.59 63 | 62.30 70 | 60.76 39 | 66.53 37 | 73.35 61 | 71.41 22 | 54.18 26 | 40.82 118 | 41.57 75 | 45.70 81 | 54.84 69 | 54.43 55 | 69.92 38 | 69.19 46 | 76.45 58 | 82.25 69 |
|
MS-PatchMatch | | | 61.41 64 | 61.88 74 | 60.85 38 | 70.57 24 | 75.98 38 | 66.29 52 | 46.91 80 | 50.56 79 | 48.28 41 | 36.30 123 | 51.64 75 | 50.95 80 | 72.89 17 | 70.65 35 | 82.13 3 | 75.17 119 |
|
EIA-MVS | | | 60.56 65 | 64.29 61 | 56.20 74 | 59.14 86 | 72.68 68 | 59.55 86 | 43.56 118 | 51.78 76 | 41.01 78 | 55.47 49 | 51.93 74 | 55.87 47 | 65.01 78 | 66.57 69 | 78.06 37 | 86.60 40 |
|
ACMP | | 56.21 5 | 59.78 66 | 61.81 76 | 57.41 61 | 61.15 68 | 68.88 93 | 65.98 53 | 48.85 54 | 58.56 59 | 44.19 55 | 48.89 71 | 46.31 106 | 48.56 98 | 63.61 95 | 64.49 95 | 75.75 70 | 81.91 76 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LGP-MVS_train | | | 59.69 67 | 62.59 67 | 56.31 72 | 61.94 62 | 68.15 98 | 66.90 46 | 48.15 65 | 59.75 56 | 38.47 86 | 50.38 68 | 48.34 97 | 46.87 110 | 65.39 74 | 64.93 85 | 75.51 75 | 81.21 88 |
|
Effi-MVS+ | | | 59.63 68 | 61.78 77 | 57.12 64 | 61.56 64 | 71.63 75 | 63.61 62 | 47.59 71 | 47.18 91 | 37.79 87 | 45.29 82 | 49.93 85 | 56.27 46 | 67.45 61 | 67.06 64 | 75.91 66 | 83.93 60 |
|
CPTT-MVS | | | 59.54 69 | 64.47 60 | 53.79 84 | 54.99 112 | 67.63 102 | 65.48 57 | 44.59 102 | 64.81 49 | 37.74 88 | 51.55 62 | 59.90 54 | 49.77 89 | 61.83 115 | 61.26 133 | 70.18 146 | 84.31 58 |
|
baseline2 | | | 59.20 70 | 61.72 78 | 56.27 73 | 59.61 82 | 74.12 53 | 58.65 91 | 49.42 51 | 48.10 88 | 40.12 82 | 49.10 70 | 44.15 115 | 51.24 77 | 66.65 67 | 67.88 60 | 78.56 27 | 82.06 71 |
|
GeoE | | | 58.97 71 | 60.94 79 | 56.67 69 | 61.27 66 | 72.71 67 | 61.35 73 | 45.69 93 | 49.19 85 | 41.22 77 | 39.55 107 | 49.58 88 | 52.79 71 | 64.79 80 | 65.89 75 | 77.73 41 | 84.87 52 |
|
baseline | | | 58.65 72 | 61.99 72 | 54.75 79 | 54.70 114 | 71.85 73 | 60.20 82 | 43.91 111 | 55.99 67 | 40.13 81 | 53.50 57 | 50.91 81 | 55.76 48 | 61.29 123 | 61.73 125 | 73.83 110 | 78.68 103 |
|
PVSNet_Blended_VisFu | | | 58.56 73 | 62.33 69 | 54.16 81 | 56.90 95 | 73.92 55 | 57.72 94 | 46.16 90 | 44.23 98 | 42.73 66 | 46.26 78 | 51.06 80 | 46.28 113 | 67.99 59 | 65.38 80 | 75.18 80 | 87.44 33 |
|
ACMM | | 53.73 9 | 57.91 74 | 58.27 93 | 57.49 60 | 63.10 50 | 66.45 112 | 65.65 55 | 49.02 53 | 53.69 72 | 42.67 67 | 36.41 122 | 46.07 109 | 50.38 83 | 64.74 82 | 64.63 91 | 74.14 105 | 75.91 114 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CANet_DTU | | | 57.87 75 | 63.63 64 | 51.15 98 | 52.18 120 | 70.20 81 | 58.14 93 | 37.32 161 | 56.49 62 | 31.06 121 | 57.38 44 | 50.05 83 | 53.67 60 | 64.98 79 | 65.04 84 | 74.57 97 | 81.29 87 |
|
ET-MVSNet_ETH3D | | | 57.84 76 | 61.91 73 | 53.09 86 | 32.91 201 | 74.53 50 | 63.51 63 | 46.80 83 | 46.52 93 | 36.14 95 | 56.00 48 | 46.20 107 | 64.41 5 | 60.75 131 | 66.99 65 | 74.79 88 | 82.35 67 |
|
tpm cat1 | | | 57.41 77 | 58.26 94 | 56.42 71 | 60.80 72 | 72.56 69 | 64.35 60 | 38.43 153 | 49.18 86 | 46.36 45 | 36.69 121 | 43.50 118 | 54.47 53 | 61.39 121 | 62.64 113 | 74.11 108 | 81.81 77 |
|
IB-MVS | | 53.15 10 | 57.33 78 | 59.02 85 | 55.37 76 | 60.83 71 | 77.11 33 | 54.51 118 | 50.10 48 | 43.22 102 | 42.82 65 | 40.50 98 | 37.61 136 | 44.67 125 | 59.27 145 | 69.81 38 | 79.29 18 | 85.59 48 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tpmrst | | | 57.23 79 | 59.08 84 | 55.06 77 | 59.91 78 | 70.65 79 | 60.71 77 | 35.38 172 | 47.91 89 | 42.58 68 | 39.78 102 | 45.45 111 | 54.44 54 | 62.19 110 | 62.82 110 | 77.37 44 | 84.73 54 |
|
baseline1 | | | 57.21 80 | 60.53 81 | 53.33 85 | 62.50 58 | 69.86 84 | 57.33 98 | 50.59 43 | 43.39 101 | 30.00 127 | 48.60 72 | 51.09 79 | 42.36 137 | 69.38 44 | 68.03 57 | 77.20 52 | 73.39 126 |
|
HyFIR lowres test | | | 57.12 81 | 59.11 83 | 54.80 78 | 61.55 65 | 77.55 30 | 59.02 89 | 45.00 97 | 41.84 115 | 33.93 107 | 22.44 189 | 49.16 92 | 51.02 79 | 68.39 54 | 68.71 52 | 78.26 34 | 85.70 46 |
|
MVS_111021_LR | | | 57.06 82 | 60.60 80 | 52.93 87 | 56.25 99 | 65.14 124 | 55.16 116 | 41.21 137 | 52.32 75 | 44.89 53 | 53.92 55 | 49.27 91 | 52.16 73 | 61.46 119 | 60.54 141 | 67.92 158 | 81.53 82 |
|
DCV-MVSNet | | | 56.80 83 | 58.96 86 | 54.28 80 | 59.96 77 | 66.74 110 | 60.37 80 | 44.87 99 | 41.01 117 | 36.81 93 | 47.57 76 | 47.87 99 | 48.23 101 | 64.41 85 | 65.17 82 | 75.45 76 | 79.95 97 |
|
test_part1 | | | 56.55 84 | 56.50 108 | 56.60 70 | 61.77 63 | 69.59 88 | 66.45 50 | 43.70 116 | 38.22 129 | 44.13 56 | 29.53 167 | 49.96 84 | 47.92 103 | 63.09 100 | 64.59 92 | 75.61 73 | 80.54 93 |
|
Anonymous20231211 | | | 56.40 85 | 57.00 103 | 55.70 75 | 59.78 81 | 72.49 70 | 61.29 76 | 46.83 82 | 40.50 119 | 40.46 80 | 22.12 191 | 49.73 86 | 51.07 78 | 64.39 86 | 65.30 81 | 74.74 90 | 84.44 57 |
|
PMMVS | | | 55.74 86 | 62.68 65 | 47.64 127 | 44.34 170 | 65.58 122 | 47.22 153 | 37.96 157 | 56.43 64 | 34.11 105 | 61.51 35 | 47.41 101 | 54.55 52 | 65.88 70 | 62.49 117 | 67.67 160 | 79.48 98 |
|
Fast-Effi-MVS+ | | | 55.73 87 | 58.26 94 | 52.76 88 | 54.33 115 | 68.19 97 | 57.05 99 | 34.66 174 | 46.92 92 | 38.96 85 | 40.53 97 | 41.55 127 | 55.69 49 | 65.31 76 | 65.99 74 | 75.90 67 | 79.34 99 |
|
FC-MVSNet-train | | | 55.68 88 | 57.00 103 | 54.13 82 | 63.37 47 | 66.16 114 | 46.77 156 | 52.14 34 | 42.36 109 | 37.67 89 | 48.50 74 | 41.42 129 | 51.28 76 | 61.58 118 | 63.22 107 | 73.56 115 | 75.76 116 |
|
FMVSNet3 | | | 55.66 89 | 59.68 82 | 50.96 100 | 50.59 134 | 66.49 111 | 57.57 95 | 46.61 84 | 49.30 82 | 28.77 132 | 39.61 103 | 51.42 76 | 43.85 130 | 68.29 55 | 68.80 50 | 78.35 33 | 73.86 121 |
|
OMC-MVS | | | 55.48 90 | 61.85 75 | 48.04 126 | 41.55 177 | 60.32 157 | 56.80 103 | 31.78 194 | 75.67 23 | 42.30 70 | 51.52 63 | 54.15 70 | 49.91 87 | 60.28 136 | 57.59 155 | 65.91 168 | 73.42 124 |
|
tpm | | | 54.94 91 | 57.86 99 | 51.54 96 | 59.48 84 | 67.04 106 | 58.34 92 | 34.60 176 | 41.93 114 | 34.41 102 | 42.40 90 | 47.14 102 | 49.07 96 | 61.46 119 | 61.67 129 | 73.31 122 | 83.39 62 |
|
GBi-Net | | | 54.66 92 | 58.42 91 | 50.26 108 | 49.36 143 | 65.81 119 | 56.80 103 | 46.61 84 | 49.30 82 | 28.77 132 | 39.61 103 | 51.42 76 | 42.71 133 | 64.25 88 | 65.54 77 | 77.32 48 | 73.03 129 |
|
test1 | | | 54.66 92 | 58.42 91 | 50.26 108 | 49.36 143 | 65.81 119 | 56.80 103 | 46.61 84 | 49.30 82 | 28.77 132 | 39.61 103 | 51.42 76 | 42.71 133 | 64.25 88 | 65.54 77 | 77.32 48 | 73.03 129 |
|
test-LLR | | | 54.62 94 | 58.66 89 | 49.89 114 | 51.68 126 | 65.89 116 | 47.88 147 | 46.35 88 | 42.51 106 | 29.84 128 | 41.41 94 | 48.87 93 | 45.20 118 | 62.91 104 | 64.43 96 | 78.43 30 | 84.62 55 |
|
TSAR-MVS + COLMAP | | | 54.37 95 | 62.43 68 | 44.98 141 | 34.33 197 | 58.94 164 | 54.11 121 | 34.15 185 | 74.06 26 | 34.57 101 | 71.63 17 | 42.03 126 | 47.88 104 | 61.26 124 | 57.33 158 | 64.83 171 | 71.74 139 |
|
EPMVS | | | 54.07 96 | 56.06 110 | 51.75 95 | 56.74 97 | 70.80 77 | 55.32 114 | 34.20 182 | 46.46 94 | 36.59 94 | 40.38 100 | 42.55 121 | 49.77 89 | 61.25 125 | 60.90 137 | 77.86 39 | 70.08 150 |
|
v2v482 | | | 54.00 97 | 55.12 116 | 52.69 90 | 51.73 125 | 69.42 90 | 60.65 78 | 45.09 96 | 34.56 151 | 33.73 110 | 35.29 126 | 35.36 147 | 49.92 86 | 64.05 92 | 65.16 83 | 75.00 84 | 81.98 74 |
|
CNLPA | | | 54.00 97 | 57.08 102 | 50.40 107 | 49.83 140 | 61.75 148 | 53.47 124 | 37.27 162 | 74.55 25 | 44.85 54 | 33.58 138 | 45.42 112 | 52.94 70 | 58.89 147 | 53.66 177 | 64.06 174 | 71.68 140 |
|
FMVSNet2 | | | 53.94 99 | 57.29 100 | 50.03 111 | 49.36 143 | 65.81 119 | 56.80 103 | 45.95 91 | 43.13 103 | 28.04 136 | 35.68 124 | 48.18 98 | 42.71 133 | 67.23 65 | 67.95 59 | 77.32 48 | 73.03 129 |
|
v8 | | | 53.77 100 | 54.82 120 | 52.54 91 | 52.12 121 | 66.95 109 | 60.56 79 | 43.23 124 | 37.17 140 | 35.35 97 | 34.96 129 | 37.50 138 | 49.51 92 | 63.67 94 | 64.59 92 | 74.48 98 | 78.91 102 |
|
GA-MVS | | | 53.77 100 | 56.41 109 | 50.70 102 | 51.63 128 | 69.96 83 | 57.55 96 | 44.39 103 | 34.31 152 | 27.15 138 | 40.99 96 | 36.40 142 | 47.65 107 | 67.45 61 | 67.16 63 | 75.83 69 | 78.60 104 |
|
Effi-MVS+-dtu | | | 53.63 102 | 54.85 119 | 52.20 93 | 59.32 85 | 61.33 151 | 56.42 109 | 40.24 143 | 43.84 100 | 34.22 104 | 39.49 108 | 46.18 108 | 53.00 69 | 58.72 151 | 57.49 157 | 69.99 149 | 76.91 109 |
|
thisisatest0530 | | | 53.61 103 | 57.22 101 | 49.40 119 | 51.30 130 | 68.22 96 | 52.72 132 | 43.34 122 | 42.72 105 | 35.31 98 | 43.57 87 | 44.14 116 | 44.37 128 | 63.00 102 | 64.86 87 | 69.34 152 | 74.00 120 |
|
v1144 | | | 53.47 104 | 54.65 121 | 52.10 94 | 51.93 123 | 69.81 85 | 59.32 87 | 44.77 101 | 33.21 158 | 32.52 113 | 33.55 139 | 34.34 155 | 49.29 94 | 64.58 83 | 64.81 89 | 74.74 90 | 82.27 68 |
|
v10 | | | 53.44 105 | 54.40 122 | 52.31 92 | 52.08 122 | 66.99 107 | 59.68 85 | 43.41 119 | 35.90 146 | 34.30 103 | 33.98 136 | 35.56 145 | 50.10 84 | 64.39 86 | 64.67 90 | 74.32 99 | 79.30 100 |
|
PatchmatchNet |  | | 53.37 106 | 55.62 114 | 50.75 101 | 55.93 106 | 70.54 80 | 51.39 137 | 36.41 165 | 44.85 96 | 37.26 91 | 39.40 110 | 42.54 122 | 47.83 105 | 60.29 135 | 60.88 139 | 75.69 72 | 70.87 144 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
IterMVS-LS | | | 53.36 107 | 55.65 113 | 50.68 104 | 55.34 108 | 59.04 162 | 55.00 117 | 39.98 144 | 38.72 127 | 33.22 111 | 44.52 84 | 47.05 103 | 49.63 91 | 61.82 116 | 61.77 124 | 70.92 141 | 76.61 112 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TESTMET0.1,1 | | | 53.30 108 | 58.66 89 | 47.04 130 | 44.94 164 | 65.89 116 | 47.88 147 | 35.95 168 | 42.51 106 | 29.84 128 | 41.41 94 | 48.87 93 | 45.20 118 | 62.91 104 | 64.43 96 | 78.43 30 | 84.62 55 |
|
tttt0517 | | | 53.05 109 | 56.73 107 | 48.76 122 | 50.35 136 | 67.51 103 | 51.96 136 | 43.34 122 | 42.00 113 | 33.88 108 | 43.19 88 | 43.49 119 | 44.37 128 | 62.58 109 | 64.86 87 | 68.67 154 | 73.46 123 |
|
MDTV_nov1_ep13 | | | 52.99 110 | 55.59 115 | 49.95 113 | 54.08 116 | 70.69 78 | 56.47 108 | 38.42 154 | 42.78 104 | 30.19 126 | 39.56 106 | 43.31 120 | 45.78 115 | 60.07 140 | 62.11 121 | 74.74 90 | 70.62 145 |
|
EPP-MVSNet | | | 52.91 111 | 58.91 87 | 45.91 135 | 54.99 112 | 68.84 94 | 49.27 143 | 42.71 131 | 37.53 134 | 20.20 166 | 46.09 79 | 56.19 65 | 36.90 148 | 61.37 122 | 60.90 137 | 71.41 136 | 81.41 84 |
|
dps | | | 52.84 112 | 52.92 133 | 52.74 89 | 59.89 79 | 69.49 89 | 54.47 119 | 37.38 160 | 42.49 108 | 39.53 84 | 35.33 125 | 32.71 160 | 51.83 75 | 60.45 132 | 61.12 134 | 73.33 121 | 68.86 159 |
|
v1192 | | | 52.69 113 | 53.86 125 | 51.31 97 | 51.22 131 | 69.76 86 | 57.37 97 | 44.39 103 | 32.21 161 | 31.39 120 | 32.41 146 | 32.44 163 | 49.19 95 | 64.25 88 | 64.17 98 | 74.31 100 | 81.81 77 |
|
V42 | | | 52.63 114 | 55.08 117 | 49.76 116 | 44.93 165 | 67.49 105 | 60.19 83 | 42.13 134 | 37.21 139 | 34.08 106 | 34.57 132 | 37.30 139 | 47.29 108 | 63.48 97 | 64.15 99 | 69.96 150 | 81.38 85 |
|
MSDG | | | 52.58 115 | 51.40 146 | 53.95 83 | 65.48 42 | 64.31 134 | 61.44 72 | 44.02 108 | 44.17 99 | 32.92 112 | 30.40 158 | 31.81 167 | 46.35 112 | 62.13 111 | 62.55 115 | 73.49 117 | 64.41 167 |
|
Fast-Effi-MVS+-dtu | | | 52.47 116 | 55.89 111 | 48.48 124 | 56.25 99 | 65.07 125 | 58.75 90 | 23.79 205 | 41.27 116 | 27.07 140 | 37.95 115 | 41.34 130 | 50.85 81 | 62.90 106 | 62.34 119 | 74.17 104 | 80.37 96 |
|
v144192 | | | 52.43 117 | 53.63 127 | 51.03 99 | 51.06 132 | 69.60 87 | 56.94 101 | 44.84 100 | 32.15 162 | 30.88 122 | 32.45 145 | 32.71 160 | 48.36 99 | 62.98 103 | 63.52 104 | 74.10 109 | 82.02 73 |
|
thres100view900 | | | 52.33 118 | 53.91 124 | 50.48 106 | 56.10 101 | 67.79 100 | 56.18 111 | 49.18 52 | 35.86 148 | 25.22 146 | 34.74 130 | 34.10 156 | 42.41 136 | 64.45 84 | 62.62 114 | 73.81 111 | 77.85 105 |
|
v1921920 | | | 51.95 119 | 53.19 129 | 50.51 105 | 50.82 133 | 69.14 92 | 55.45 113 | 44.34 107 | 31.53 166 | 30.53 124 | 31.96 148 | 31.67 168 | 48.31 100 | 63.12 99 | 63.28 106 | 73.59 114 | 81.60 81 |
|
v148 | | | 51.72 120 | 53.15 130 | 50.05 110 | 50.15 138 | 67.51 103 | 56.98 100 | 42.85 129 | 32.60 160 | 32.41 115 | 33.88 137 | 34.71 152 | 44.45 126 | 61.06 126 | 63.00 109 | 73.45 118 | 79.24 101 |
|
TAPA-MVS | | 47.92 11 | 51.66 121 | 57.88 98 | 44.40 144 | 36.46 192 | 58.42 167 | 53.82 123 | 30.83 195 | 69.51 39 | 34.97 100 | 46.90 77 | 49.67 87 | 46.99 109 | 58.00 154 | 54.64 173 | 63.33 180 | 68.00 161 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IS_MVSNet | | | 51.53 122 | 57.98 97 | 44.01 148 | 55.96 105 | 66.16 114 | 47.65 149 | 42.84 130 | 39.82 122 | 19.09 174 | 44.97 83 | 50.28 82 | 27.20 180 | 63.43 98 | 63.84 100 | 71.33 138 | 77.33 107 |
|
v1240 | | | 51.42 123 | 52.66 135 | 49.97 112 | 50.31 137 | 68.70 95 | 54.05 122 | 43.85 112 | 30.78 170 | 30.22 125 | 31.43 151 | 31.03 175 | 47.98 102 | 62.62 108 | 63.16 108 | 73.40 119 | 80.93 90 |
|
pmmvs4 | | | 51.28 124 | 52.50 137 | 49.85 115 | 49.54 142 | 63.02 141 | 52.83 131 | 43.41 119 | 44.65 97 | 35.71 96 | 34.38 133 | 32.25 164 | 45.14 121 | 60.21 139 | 60.03 145 | 72.44 131 | 72.98 132 |
|
Vis-MVSNet |  | | 51.13 125 | 58.04 96 | 43.06 154 | 47.68 150 | 67.71 101 | 49.10 144 | 39.09 150 | 37.75 132 | 22.57 157 | 51.03 66 | 48.78 95 | 32.42 165 | 62.12 112 | 61.80 123 | 67.49 162 | 77.12 108 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UGNet | | | 51.04 126 | 58.79 88 | 42.00 160 | 40.59 179 | 65.32 123 | 46.65 158 | 39.26 148 | 39.90 121 | 27.30 137 | 54.12 54 | 52.03 73 | 30.93 169 | 59.85 142 | 59.62 150 | 67.23 164 | 80.70 91 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tfpn200view9 | | | 50.91 127 | 52.45 138 | 49.11 121 | 56.10 101 | 64.53 129 | 53.06 128 | 47.31 76 | 35.86 148 | 25.22 146 | 34.74 130 | 34.10 156 | 41.08 139 | 60.84 128 | 61.37 131 | 71.90 135 | 75.70 117 |
|
SCA | | | 50.88 128 | 53.70 126 | 47.59 128 | 55.99 103 | 55.81 176 | 43.14 170 | 33.45 188 | 45.16 95 | 37.14 92 | 41.83 92 | 43.82 117 | 44.43 127 | 60.37 133 | 60.02 146 | 71.38 137 | 68.90 158 |
|
gg-mvs-nofinetune | | | 50.82 129 | 55.83 112 | 44.97 142 | 60.63 73 | 75.69 42 | 53.40 125 | 34.48 178 | 20.05 205 | 6.93 200 | 18.27 197 | 52.70 72 | 33.57 156 | 70.50 33 | 72.93 17 | 80.84 6 | 80.68 92 |
|
thres200 | | | 50.76 130 | 52.52 136 | 48.70 123 | 55.98 104 | 64.60 127 | 55.29 115 | 47.34 74 | 33.91 155 | 24.36 149 | 34.33 134 | 33.90 158 | 37.27 146 | 60.84 128 | 62.41 118 | 71.99 133 | 77.63 106 |
|
thres400 | | | 50.39 131 | 52.22 139 | 48.26 125 | 55.02 111 | 66.32 113 | 52.97 129 | 48.33 63 | 32.68 159 | 22.94 155 | 33.21 141 | 33.38 159 | 37.27 146 | 62.74 107 | 61.38 130 | 73.04 128 | 75.81 115 |
|
EG-PatchMatch MVS | | | 50.23 132 | 50.89 149 | 49.47 117 | 59.54 83 | 70.88 76 | 52.46 133 | 44.01 109 | 26.22 191 | 31.91 116 | 24.97 183 | 31.45 171 | 33.48 158 | 64.79 80 | 66.51 72 | 75.40 77 | 71.39 142 |
|
IterMVS | | | 50.23 132 | 53.27 128 | 46.68 131 | 47.59 152 | 60.58 155 | 53.10 127 | 36.62 164 | 36.07 144 | 25.89 143 | 39.42 109 | 40.05 133 | 43.65 131 | 60.22 138 | 61.35 132 | 73.23 123 | 75.23 118 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet1 | | | 50.14 134 | 52.78 134 | 47.06 129 | 45.56 161 | 63.56 137 | 54.22 120 | 43.74 114 | 34.10 154 | 25.37 145 | 29.79 164 | 42.06 125 | 38.70 142 | 64.25 88 | 65.54 77 | 74.75 89 | 70.18 149 |
|
ACMH | | 47.82 13 | 50.10 135 | 49.60 155 | 50.69 103 | 63.36 48 | 66.99 107 | 56.83 102 | 52.13 35 | 31.06 169 | 17.74 179 | 28.22 171 | 26.24 191 | 45.17 120 | 60.88 127 | 63.80 101 | 68.91 153 | 70.00 152 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EPNet_dtu | | | 49.85 136 | 56.99 105 | 41.52 163 | 52.79 118 | 57.06 170 | 41.44 175 | 43.13 125 | 56.13 65 | 19.24 173 | 52.11 60 | 48.38 96 | 22.14 187 | 58.19 153 | 58.38 153 | 70.35 144 | 68.71 160 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LS3D | | | 49.59 137 | 49.75 154 | 49.40 119 | 55.88 107 | 59.86 159 | 56.31 110 | 45.33 94 | 48.57 87 | 28.32 135 | 31.54 150 | 36.81 141 | 46.27 114 | 57.17 159 | 55.88 168 | 64.29 173 | 58.42 185 |
|
UniMVSNet_NR-MVSNet | | | 49.56 138 | 53.04 131 | 45.49 138 | 51.59 129 | 64.42 133 | 46.97 154 | 51.01 39 | 37.87 130 | 16.42 180 | 39.87 101 | 34.91 151 | 33.43 160 | 59.59 143 | 62.70 111 | 73.52 116 | 71.94 135 |
|
CDS-MVSNet | | | 49.25 139 | 53.97 123 | 43.75 150 | 47.53 153 | 64.53 129 | 48.59 145 | 42.27 133 | 33.77 156 | 26.64 141 | 40.46 99 | 42.26 124 | 30.01 172 | 61.77 117 | 61.71 126 | 67.48 163 | 73.28 128 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PLC |  | 44.22 14 | 49.14 140 | 51.75 142 | 46.10 134 | 42.78 175 | 55.60 179 | 53.11 126 | 34.46 179 | 55.69 69 | 32.47 114 | 34.16 135 | 41.45 128 | 48.91 97 | 57.13 160 | 54.09 174 | 64.84 170 | 64.10 168 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ACMH+ | | 47.85 12 | 49.13 141 | 48.86 161 | 49.44 118 | 56.75 96 | 62.01 147 | 56.62 107 | 47.55 73 | 37.49 135 | 23.98 150 | 26.68 176 | 29.46 182 | 43.12 132 | 57.45 158 | 58.85 152 | 68.62 155 | 70.05 151 |
|
NR-MVSNet | | | 48.84 142 | 51.76 141 | 45.44 139 | 57.66 93 | 60.64 153 | 47.39 150 | 47.63 69 | 37.26 136 | 13.31 184 | 37.31 117 | 29.64 181 | 33.53 157 | 63.52 96 | 62.09 122 | 73.10 126 | 71.89 138 |
|
CR-MVSNet | | | 48.82 143 | 51.85 140 | 45.29 140 | 46.74 155 | 55.95 174 | 52.06 134 | 34.21 180 | 42.17 110 | 31.74 117 | 32.92 143 | 42.53 123 | 45.00 122 | 58.80 148 | 61.11 135 | 61.99 185 | 69.47 154 |
|
thres600view7 | | | 48.44 144 | 50.23 152 | 46.35 133 | 54.05 117 | 64.60 127 | 50.18 140 | 47.34 74 | 31.73 165 | 20.74 164 | 32.28 147 | 32.62 162 | 33.79 155 | 60.84 128 | 56.11 166 | 71.99 133 | 73.40 125 |
|
test-mter | | | 48.31 145 | 55.04 118 | 40.45 167 | 34.12 198 | 59.02 163 | 41.77 174 | 28.05 199 | 38.43 128 | 22.67 156 | 39.35 111 | 44.40 114 | 41.88 138 | 60.30 134 | 61.68 128 | 74.20 102 | 82.12 70 |
|
PatchT | | | 48.11 146 | 51.27 148 | 44.43 143 | 50.13 139 | 61.58 149 | 33.59 188 | 32.92 190 | 40.38 120 | 31.74 117 | 30.60 157 | 36.93 140 | 45.00 122 | 58.80 148 | 61.11 135 | 73.19 124 | 69.47 154 |
|
TranMVSNet+NR-MVSNet | | | 48.06 147 | 51.36 147 | 44.21 146 | 50.38 135 | 62.09 146 | 47.28 151 | 50.88 42 | 36.11 143 | 13.25 185 | 37.51 116 | 31.60 170 | 30.70 170 | 59.34 144 | 62.53 116 | 72.81 129 | 70.31 147 |
|
TransMVSNet (Re) | | | 47.46 148 | 48.94 160 | 45.74 137 | 57.96 91 | 64.29 135 | 48.26 146 | 48.47 62 | 26.33 190 | 19.33 171 | 29.45 168 | 31.28 174 | 25.31 184 | 63.05 101 | 62.70 111 | 75.10 83 | 65.47 165 |
|
DU-MVS | | | 47.33 149 | 50.86 150 | 43.20 153 | 44.43 168 | 60.64 153 | 46.97 154 | 47.63 69 | 37.26 136 | 16.42 180 | 37.31 117 | 31.39 172 | 33.43 160 | 57.53 156 | 59.98 147 | 70.35 144 | 71.94 135 |
|
v7n | | | 47.22 150 | 48.38 162 | 45.87 136 | 48.20 149 | 63.58 136 | 50.69 138 | 40.93 141 | 26.60 189 | 26.44 142 | 26.52 177 | 29.65 180 | 38.19 144 | 58.22 152 | 60.23 144 | 70.79 142 | 73.83 122 |
|
UA-Net | | | 47.19 151 | 53.02 132 | 40.38 168 | 55.31 109 | 60.02 158 | 38.41 181 | 38.68 152 | 36.42 142 | 22.47 159 | 51.95 61 | 58.72 58 | 25.62 183 | 54.11 172 | 53.40 178 | 61.79 186 | 56.51 188 |
|
Baseline_NR-MVSNet | | | 47.14 152 | 50.83 151 | 42.84 156 | 44.43 168 | 63.31 139 | 44.50 166 | 50.36 47 | 37.71 133 | 11.25 190 | 30.84 154 | 32.09 165 | 30.96 168 | 57.53 156 | 63.73 102 | 75.53 74 | 70.60 146 |
|
pmmvs5 | | | 47.02 153 | 50.02 153 | 43.51 152 | 43.48 173 | 62.65 143 | 47.24 152 | 37.78 159 | 30.59 171 | 24.80 148 | 35.26 127 | 30.43 176 | 34.36 153 | 59.05 146 | 60.28 143 | 73.40 119 | 71.92 137 |
|
UniMVSNet (Re) | | | 46.89 154 | 51.65 144 | 41.34 165 | 45.60 160 | 62.71 142 | 44.05 167 | 47.10 78 | 37.24 138 | 13.55 183 | 36.90 119 | 34.54 154 | 26.76 181 | 57.56 155 | 59.90 149 | 70.98 140 | 72.69 133 |
|
thisisatest0515 | | | 46.88 155 | 49.57 156 | 43.74 151 | 45.33 163 | 60.46 156 | 46.19 160 | 41.06 140 | 30.34 172 | 29.73 130 | 32.50 144 | 31.63 169 | 35.43 151 | 58.75 150 | 61.71 126 | 64.70 172 | 71.59 141 |
|
tfpnnormal | | | 46.61 156 | 46.82 169 | 46.37 132 | 52.70 119 | 62.31 144 | 50.39 139 | 47.17 77 | 25.74 193 | 21.80 160 | 23.13 187 | 24.15 199 | 33.45 159 | 60.28 136 | 60.77 140 | 72.70 130 | 71.39 142 |
|
pm-mvs1 | | | 46.14 157 | 49.34 159 | 42.41 157 | 48.93 146 | 62.22 145 | 44.98 164 | 42.68 132 | 27.66 183 | 20.76 163 | 29.88 163 | 34.96 150 | 26.41 182 | 60.03 141 | 60.42 142 | 70.70 143 | 70.20 148 |
|
IterMVS-SCA-FT | | | 45.87 158 | 51.55 145 | 39.24 171 | 46.22 156 | 59.43 160 | 52.89 130 | 31.93 191 | 36.01 145 | 23.68 151 | 38.86 112 | 39.88 135 | 39.05 141 | 56.25 165 | 58.17 154 | 41.70 206 | 72.25 134 |
|
MIMVSNet | | | 45.62 159 | 49.56 157 | 41.02 166 | 38.17 183 | 64.43 132 | 49.48 142 | 35.43 171 | 36.53 141 | 20.06 168 | 22.58 188 | 35.16 149 | 28.75 177 | 61.97 114 | 62.20 120 | 74.20 102 | 64.07 169 |
|
gm-plane-assit | | | 45.41 160 | 48.03 164 | 42.34 158 | 56.49 98 | 40.48 204 | 24.54 208 | 34.15 185 | 14.44 211 | 6.59 201 | 17.82 198 | 35.32 148 | 49.82 88 | 72.93 15 | 74.11 10 | 82.47 2 | 81.12 89 |
|
ADS-MVSNet | | | 45.39 161 | 46.42 170 | 44.19 147 | 48.74 148 | 57.52 168 | 43.91 168 | 31.93 191 | 35.89 147 | 27.11 139 | 30.12 159 | 32.06 166 | 45.30 116 | 53.13 178 | 55.19 170 | 68.15 157 | 61.07 177 |
|
GG-mvs-BLEND | | | 44.87 162 | 64.59 59 | 21.86 204 | 0.01 220 | 73.70 57 | 55.99 112 | 0.01 217 | 50.70 78 | 0.01 221 | 49.18 69 | 63.61 41 | 0.01 216 | 63.83 93 | 64.50 94 | 75.13 82 | 86.62 38 |
|
pmmvs-eth3d | | | 44.67 163 | 45.27 175 | 43.98 149 | 42.56 176 | 55.72 178 | 44.97 165 | 40.81 142 | 31.96 164 | 29.13 131 | 26.09 179 | 25.27 196 | 36.69 149 | 55.13 169 | 56.62 163 | 69.68 151 | 66.12 164 |
|
MDTV_nov1_ep13_2view | | | 44.44 164 | 45.75 173 | 42.91 155 | 46.13 157 | 63.43 138 | 46.53 159 | 34.20 182 | 29.08 178 | 19.95 169 | 26.23 178 | 27.89 186 | 35.88 150 | 53.36 177 | 56.43 164 | 74.74 90 | 63.86 170 |
|
CMPMVS |  | 33.64 16 | 44.39 165 | 46.41 171 | 42.03 159 | 44.21 171 | 56.50 172 | 46.73 157 | 26.48 204 | 34.20 153 | 35.14 99 | 24.22 184 | 34.64 153 | 40.52 140 | 56.50 164 | 56.07 167 | 59.12 190 | 62.74 173 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Vis-MVSNet (Re-imp) | | | 44.31 166 | 51.67 143 | 35.72 181 | 51.82 124 | 55.24 180 | 34.57 187 | 41.63 135 | 39.10 125 | 8.84 197 | 45.93 80 | 46.63 105 | 14.45 197 | 54.09 173 | 57.03 160 | 63.00 181 | 63.65 171 |
|
TAMVS | | | 44.27 167 | 49.35 158 | 38.35 175 | 44.74 166 | 61.04 152 | 39.07 179 | 31.82 193 | 29.95 174 | 18.34 177 | 33.55 139 | 39.94 134 | 30.01 172 | 56.85 162 | 57.58 156 | 66.13 167 | 66.54 162 |
|
MVS-HIRNet | | | 43.98 168 | 43.63 179 | 44.39 145 | 47.66 151 | 59.31 161 | 32.66 194 | 33.88 187 | 30.15 173 | 33.75 109 | 16.82 203 | 28.39 185 | 45.25 117 | 53.92 176 | 55.00 172 | 73.16 125 | 61.80 174 |
|
UniMVSNet_ETH3D | | | 43.97 169 | 46.01 172 | 41.59 161 | 38.31 182 | 56.20 173 | 49.69 141 | 38.18 156 | 28.18 179 | 19.88 170 | 27.82 173 | 30.20 177 | 33.41 162 | 54.18 171 | 56.30 165 | 70.05 148 | 69.17 156 |
|
RPMNet | | | 43.70 170 | 48.17 163 | 38.48 174 | 45.52 162 | 55.95 174 | 37.66 182 | 26.63 203 | 42.17 110 | 25.47 144 | 29.59 166 | 37.61 136 | 33.87 154 | 50.85 183 | 52.02 182 | 61.75 187 | 69.00 157 |
|
PatchMatch-RL | | | 43.37 171 | 44.93 176 | 41.56 162 | 37.94 184 | 51.70 182 | 40.02 177 | 35.75 169 | 39.04 126 | 30.71 123 | 35.14 128 | 27.43 188 | 46.58 111 | 51.99 179 | 50.55 186 | 58.38 192 | 58.64 183 |
|
FMVSNet5 | | | 43.29 172 | 47.07 167 | 38.87 172 | 30.46 203 | 50.99 184 | 45.87 161 | 37.19 163 | 42.17 110 | 19.32 172 | 26.77 175 | 40.51 131 | 30.26 171 | 56.82 163 | 55.81 169 | 70.10 147 | 56.46 189 |
|
test0.0.03 1 | | | 43.07 173 | 46.95 168 | 38.54 173 | 51.68 126 | 58.77 165 | 35.28 183 | 46.35 88 | 32.05 163 | 12.44 186 | 28.53 170 | 35.52 146 | 14.40 198 | 57.12 161 | 56.93 161 | 71.11 139 | 59.69 179 |
|
anonymousdsp | | | 43.03 174 | 47.19 166 | 38.18 176 | 36.00 194 | 56.92 171 | 38.44 180 | 34.56 177 | 24.22 195 | 22.53 158 | 29.69 165 | 29.92 178 | 35.21 152 | 53.96 175 | 58.98 151 | 62.32 184 | 76.66 111 |
|
USDC | | | 42.80 175 | 45.57 174 | 39.58 169 | 34.55 196 | 51.13 183 | 42.61 171 | 36.21 166 | 39.59 123 | 23.65 152 | 33.13 142 | 20.87 205 | 37.86 145 | 55.35 168 | 57.16 159 | 62.61 182 | 61.75 175 |
|
pmnet_mix02 | | | 42.41 176 | 43.24 181 | 41.44 164 | 45.80 159 | 57.46 169 | 42.19 172 | 41.57 136 | 29.38 176 | 23.39 153 | 26.08 180 | 23.96 200 | 27.31 179 | 51.50 180 | 53.76 176 | 68.36 156 | 60.58 178 |
|
CHOSEN 280x420 | | | 42.39 177 | 47.40 165 | 36.54 179 | 33.56 199 | 39.66 207 | 40.67 176 | 26.88 202 | 34.66 150 | 18.03 178 | 30.09 160 | 45.59 110 | 44.82 124 | 54.46 170 | 54.00 175 | 55.28 199 | 73.32 127 |
|
pmmvs6 | | | 41.90 178 | 44.01 178 | 39.43 170 | 44.45 167 | 58.77 165 | 41.92 173 | 39.22 149 | 21.74 198 | 19.08 175 | 17.40 201 | 31.33 173 | 24.28 186 | 55.94 166 | 56.67 162 | 67.60 161 | 66.24 163 |
|
Anonymous20231206 | | | 40.63 179 | 43.29 180 | 37.53 177 | 48.88 147 | 55.81 176 | 34.99 184 | 44.98 98 | 28.16 180 | 10.16 194 | 17.26 202 | 27.50 187 | 18.28 191 | 54.00 174 | 55.07 171 | 67.85 159 | 65.23 166 |
|
CVMVSNet | | | 38.91 180 | 44.49 177 | 32.40 190 | 34.57 195 | 47.20 195 | 34.81 185 | 34.20 182 | 31.45 167 | 8.95 196 | 38.86 112 | 36.38 143 | 24.30 185 | 47.77 187 | 46.94 198 | 57.59 194 | 62.85 172 |
|
COLMAP_ROB |  | 34.79 15 | 38.65 181 | 40.72 184 | 36.23 180 | 36.41 193 | 49.22 191 | 45.51 163 | 27.60 201 | 37.81 131 | 20.54 165 | 23.37 186 | 24.25 198 | 28.11 178 | 51.02 182 | 48.55 189 | 59.22 189 | 50.82 199 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PEN-MVS | | | 38.23 182 | 41.72 183 | 34.15 183 | 40.56 180 | 50.07 187 | 33.17 191 | 44.35 106 | 27.64 185 | 5.54 207 | 30.84 154 | 26.67 189 | 14.99 195 | 45.64 190 | 52.38 181 | 66.29 166 | 58.83 182 |
|
WR-MVS | | | 37.61 183 | 42.15 182 | 32.31 192 | 43.64 172 | 51.85 181 | 29.39 200 | 43.35 121 | 27.65 184 | 4.40 209 | 29.90 162 | 29.80 179 | 10.46 202 | 46.73 189 | 51.98 183 | 62.60 183 | 57.16 186 |
|
TinyColmap | | | 37.18 184 | 37.37 197 | 36.95 178 | 31.17 202 | 45.21 198 | 39.71 178 | 34.65 175 | 29.83 175 | 20.20 166 | 18.54 196 | 13.72 213 | 38.27 143 | 50.33 184 | 51.57 184 | 57.71 193 | 52.42 196 |
|
CP-MVSNet | | | 37.09 185 | 40.62 185 | 32.99 185 | 37.56 186 | 48.25 192 | 32.75 192 | 43.05 126 | 27.88 182 | 5.93 203 | 31.27 152 | 25.82 194 | 15.09 193 | 43.37 197 | 48.82 187 | 63.54 178 | 58.90 180 |
|
DTE-MVSNet | | | 36.91 186 | 40.44 186 | 32.79 188 | 40.74 178 | 47.55 194 | 30.71 198 | 44.39 103 | 27.03 187 | 4.32 210 | 30.88 153 | 25.99 192 | 12.73 200 | 45.58 191 | 50.80 185 | 63.86 175 | 55.23 192 |
|
PS-CasMVS | | | 36.84 187 | 40.23 189 | 32.89 186 | 37.44 187 | 48.09 193 | 32.68 193 | 42.97 128 | 27.36 186 | 5.89 204 | 30.08 161 | 25.48 195 | 14.96 196 | 43.28 198 | 48.71 188 | 63.39 179 | 58.63 184 |
|
WR-MVS_H | | | 36.29 188 | 40.35 188 | 31.55 194 | 37.80 185 | 49.94 189 | 30.57 199 | 41.11 139 | 26.90 188 | 4.14 211 | 30.72 156 | 28.85 183 | 10.45 203 | 42.47 199 | 47.99 193 | 65.24 169 | 55.54 190 |
|
SixPastTwentyTwo | | | 36.11 189 | 37.80 193 | 34.13 184 | 37.13 190 | 46.72 196 | 34.58 186 | 34.96 173 | 21.20 201 | 11.66 187 | 29.15 169 | 19.88 206 | 29.77 174 | 44.93 192 | 48.34 190 | 56.67 196 | 54.41 194 |
|
test20.03 | | | 36.00 190 | 38.92 190 | 32.60 189 | 45.92 158 | 50.99 184 | 28.05 204 | 43.69 117 | 21.62 199 | 6.03 202 | 17.61 200 | 25.91 193 | 8.34 209 | 51.26 181 | 52.60 180 | 63.58 176 | 52.46 195 |
|
TDRefinement | | | 35.76 191 | 38.23 191 | 32.88 187 | 19.09 212 | 46.04 197 | 43.29 169 | 29.49 196 | 33.49 157 | 19.04 176 | 22.29 190 | 17.82 208 | 29.69 176 | 48.60 186 | 47.24 196 | 56.65 197 | 52.12 197 |
|
LTVRE_ROB | | 32.83 17 | 35.10 192 | 37.46 194 | 32.35 191 | 43.12 174 | 49.99 188 | 28.52 202 | 33.23 189 | 12.73 212 | 8.18 198 | 27.71 174 | 21.34 203 | 32.64 164 | 46.92 188 | 48.11 191 | 48.41 203 | 55.45 191 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PM-MVS | | | 34.96 193 | 38.17 192 | 31.22 195 | 22.78 207 | 40.82 203 | 33.56 189 | 23.61 206 | 29.16 177 | 21.43 162 | 28.00 172 | 21.43 202 | 31.90 166 | 44.33 195 | 42.12 201 | 54.07 201 | 61.34 176 |
|
testgi | | | 34.51 194 | 37.42 195 | 31.12 196 | 47.37 154 | 50.34 186 | 24.38 209 | 41.21 137 | 20.32 203 | 5.64 206 | 20.56 192 | 26.55 190 | 8.06 210 | 49.28 185 | 52.65 179 | 60.05 188 | 42.23 205 |
|
MDA-MVSNet-bldmvs | | | 34.31 195 | 34.11 201 | 34.54 182 | 24.73 205 | 49.66 190 | 33.42 190 | 43.03 127 | 21.59 200 | 11.10 191 | 19.81 194 | 12.68 214 | 31.41 167 | 35.59 204 | 48.05 192 | 63.56 177 | 51.39 198 |
|
N_pmnet | | | 34.09 196 | 35.74 199 | 32.17 193 | 37.25 189 | 43.17 201 | 32.26 196 | 35.57 170 | 26.22 191 | 10.60 193 | 20.44 193 | 19.38 207 | 20.20 189 | 44.59 194 | 47.00 197 | 57.13 195 | 49.35 202 |
|
RPSCF | | | 33.61 197 | 40.43 187 | 25.65 200 | 16.00 214 | 32.41 209 | 31.73 197 | 13.33 213 | 50.13 80 | 23.12 154 | 31.56 149 | 40.09 132 | 32.73 163 | 41.14 203 | 37.05 204 | 36.99 209 | 50.63 200 |
|
EU-MVSNet | | | 33.00 198 | 36.49 198 | 28.92 197 | 33.10 200 | 42.86 202 | 29.32 201 | 35.99 167 | 22.94 196 | 5.83 205 | 25.29 181 | 24.43 197 | 15.21 192 | 41.22 202 | 41.65 203 | 54.08 200 | 57.01 187 |
|
pmmvs3 | | | 31.22 199 | 33.62 202 | 28.43 198 | 22.82 206 | 40.26 206 | 26.40 205 | 22.05 208 | 16.89 209 | 10.99 192 | 14.72 205 | 16.26 209 | 29.70 175 | 44.82 193 | 47.39 195 | 58.61 191 | 54.98 193 |
|
FC-MVSNet-test | | | 30.97 200 | 37.38 196 | 23.49 203 | 37.42 188 | 33.68 208 | 19.43 211 | 39.27 147 | 31.37 168 | 1.67 217 | 38.56 114 | 28.85 183 | 6.06 213 | 41.40 200 | 43.80 200 | 37.10 208 | 44.03 204 |
|
new-patchmatchnet | | | 30.47 201 | 32.80 204 | 27.75 199 | 36.81 191 | 43.98 199 | 24.85 207 | 39.29 146 | 20.52 202 | 4.06 212 | 15.94 204 | 16.05 210 | 9.57 204 | 41.32 201 | 42.05 202 | 51.94 202 | 49.74 201 |
|
MIMVSNet1 | | | 29.60 202 | 33.37 203 | 25.20 202 | 19.52 210 | 43.94 200 | 26.29 206 | 37.92 158 | 19.95 206 | 3.79 213 | 12.64 209 | 21.99 201 | 7.70 211 | 43.83 196 | 46.32 199 | 55.97 198 | 44.92 203 |
|
FPMVS | | | 26.87 203 | 28.19 205 | 25.32 201 | 27.09 204 | 29.49 210 | 32.28 195 | 17.79 210 | 28.09 181 | 11.33 188 | 19.38 195 | 14.69 211 | 20.88 188 | 35.11 205 | 32.82 206 | 42.56 205 | 37.75 206 |
|
PMVS |  | 18.18 18 | 21.95 204 | 22.85 206 | 20.90 205 | 21.92 208 | 14.78 212 | 19.95 210 | 17.31 211 | 15.69 210 | 11.32 189 | 13.70 206 | 13.91 212 | 15.02 194 | 34.92 206 | 31.72 207 | 39.85 207 | 35.20 207 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 19.10 205 | 22.71 207 | 14.89 207 | 10.93 216 | 24.08 211 | 14.22 212 | 13.94 212 | 18.68 207 | 2.93 214 | 12.84 208 | 11.27 215 | 11.94 201 | 30.57 208 | 30.58 208 | 35.38 210 | 30.93 208 |
|
Gipuma |  | | 17.16 206 | 17.83 208 | 16.36 206 | 18.76 213 | 12.15 215 | 11.97 213 | 27.78 200 | 17.94 208 | 4.86 208 | 2.53 216 | 2.73 220 | 8.90 207 | 34.32 207 | 36.09 205 | 25.92 211 | 19.06 211 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_method | | | 13.92 207 | 17.14 209 | 10.16 210 | 1.69 219 | 6.92 218 | 11.25 214 | 5.74 214 | 22.41 197 | 8.11 199 | 10.40 210 | 20.91 204 | 13.73 199 | 22.17 209 | 13.98 211 | 20.44 212 | 23.18 209 |
|
PMMVS2 | | | 12.25 208 | 14.17 210 | 10.00 211 | 11.39 215 | 14.35 213 | 8.21 215 | 19.29 209 | 9.31 213 | 0.19 220 | 7.38 212 | 6.19 218 | 1.10 215 | 19.26 210 | 21.13 210 | 19.85 213 | 21.56 210 |
|
E-PMN | | | 10.66 209 | 8.30 212 | 13.42 208 | 19.91 209 | 7.87 216 | 4.30 218 | 29.47 197 | 8.37 216 | 1.70 216 | 3.67 213 | 1.29 223 | 9.12 206 | 8.98 214 | 13.59 212 | 16.03 214 | 14.30 214 |
|
EMVS | | | 10.15 210 | 7.67 213 | 13.05 209 | 19.22 211 | 7.77 217 | 4.48 216 | 29.34 198 | 8.65 215 | 1.67 217 | 3.55 214 | 1.36 222 | 9.15 205 | 8.15 215 | 11.79 214 | 14.44 215 | 12.43 215 |
|
MVE |  | 10.35 19 | 9.76 211 | 11.08 211 | 8.22 212 | 4.43 217 | 13.04 214 | 3.36 219 | 23.57 207 | 5.74 217 | 1.76 215 | 3.09 215 | 1.75 221 | 6.78 212 | 12.78 212 | 23.04 209 | 9.44 216 | 18.09 212 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 0.01 212 | 0.01 214 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 222 | 0.00 218 | 0.01 218 | 0.00 222 | 0.02 217 | 0.00 224 | 0.00 218 | 0.01 216 | 0.01 215 | 0.00 219 | 0.03 216 |
|
test123 | | | 0.01 212 | 0.01 214 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 222 | 0.00 218 | 0.01 218 | 0.00 222 | 0.02 217 | 0.00 224 | 0.01 216 | 0.00 217 | 0.01 215 | 0.00 219 | 0.03 216 |
|
uanet_test | | | 0.00 214 | 0.00 216 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 222 | 0.00 218 | 0.00 220 | 0.00 222 | 0.00 219 | 0.00 224 | 0.00 218 | 0.00 217 | 0.00 217 | 0.00 219 | 0.00 218 |
|
sosnet-low-res | | | 0.00 214 | 0.00 216 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 222 | 0.00 218 | 0.00 220 | 0.00 222 | 0.00 219 | 0.00 224 | 0.00 218 | 0.00 217 | 0.00 217 | 0.00 219 | 0.00 218 |
|
sosnet | | | 0.00 214 | 0.00 216 | 0.00 214 | 0.00 221 | 0.00 221 | 0.00 222 | 0.00 218 | 0.00 220 | 0.00 222 | 0.00 219 | 0.00 224 | 0.00 218 | 0.00 217 | 0.00 217 | 0.00 219 | 0.00 218 |
|
RE-MVS-def | | | | | | | | | | | 21.59 161 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 80.07 5 | | | | | |
|
SR-MVS | | | | | | 63.74 46 | | | 48.51 61 | | | | 73.80 18 | | | | | |
|
Anonymous202405211 | | | | 56.81 106 | | 60.91 69 | 73.48 60 | 59.82 84 | 48.68 58 | 39.26 124 | | 24.00 185 | 46.77 104 | 50.73 82 | 65.28 77 | 65.72 76 | 75.37 78 | 83.17 63 |
|
our_test_3 | | | | | | 49.68 141 | 61.50 150 | 45.84 162 | | | | | | | | | | |
|
ambc | | | | 35.52 200 | | 38.36 181 | 40.40 205 | 28.38 203 | | 25.20 194 | 14.87 182 | 13.22 207 | 7.54 217 | 19.34 190 | 55.63 167 | 47.79 194 | 47.91 204 | 58.89 181 |
|
MTAPA | | | | | | | | | | | 54.82 16 | | 71.98 24 | | | | | |
|
MTMP | | | | | | | | | | | 50.64 32 | | 68.31 30 | | | | | |
|
Patchmatch-RL test | | | | | | | | 0.69 221 | | | | | | | | | | |
|
tmp_tt | | | | | 4.41 213 | 2.56 218 | 1.81 220 | 2.61 220 | 0.27 216 | 20.12 204 | 9.81 195 | 17.69 199 | 9.04 216 | 1.96 214 | 12.88 211 | 12.11 213 | 9.23 217 | |
|
XVS | | | | | | 62.70 54 | 73.06 63 | 61.80 70 | | | 42.02 71 | | 63.42 43 | | | | 74.68 94 | |
|
X-MVStestdata | | | | | | 62.70 54 | 73.06 63 | 61.80 70 | | | 42.02 71 | | 63.42 43 | | | | 74.68 94 | |
|
abl_6 | | | | | 63.79 23 | 70.80 23 | 81.22 12 | 65.26 58 | 53.25 30 | 77.02 18 | 53.02 24 | 65.14 30 | 73.74 19 | 60.30 20 | | | 80.13 8 | 90.27 10 |
|
mPP-MVS | | | | | | 63.08 51 | | | | | | | 62.34 46 | | | | | |
|
NP-MVS | | | | | | | | | | 72.62 30 | | | | | | | | |
|
Patchmtry | | | | | | | 64.49 131 | 52.06 134 | 34.21 180 | | 31.74 117 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 5.87 219 | 4.32 217 | 1.74 215 | 9.04 214 | 1.30 219 | 7.97 211 | 3.16 219 | 8.56 208 | 9.74 213 | | 6.30 218 | 14.51 213 |
|