SED-MVS | | | 78.97 1 | 84.56 1 | 72.45 1 | 81.70 3 | 86.20 3 | 77.82 4 | 59.97 6 | 88.89 1 | 65.96 1 | 86.00 6 | 84.02 1 | 70.03 1 | 76.19 4 | 76.17 5 | 79.22 19 | 94.46 1 |
|
DVP-MVS |  | | 77.54 2 | 84.41 2 | 69.54 7 | 79.93 4 | 86.08 4 | 77.20 9 | 60.31 4 | 88.62 2 | 62.54 2 | 86.67 3 | 83.77 2 | 58.04 33 | 75.84 7 | 75.69 8 | 79.21 20 | 94.17 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SF-MVS | | | 76.41 3 | 80.45 6 | 71.69 2 | 82.90 1 | 86.54 1 | 82.08 1 | 64.58 1 | 81.67 11 | 59.82 5 | 86.26 4 | 77.90 8 | 61.11 15 | 71.81 27 | 70.75 34 | 79.63 12 | 88.22 24 |
|
MSP-MVS | | | 76.38 4 | 82.99 3 | 68.68 8 | 71.93 18 | 78.65 24 | 77.61 6 | 55.44 19 | 88.04 3 | 60.25 4 | 92.24 1 | 77.08 10 | 69.84 2 | 75.48 8 | 75.69 8 | 76.99 57 | 93.75 3 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 75.99 5 | 81.32 5 | 69.77 6 | 71.86 20 | 85.13 5 | 77.62 5 | 59.87 8 | 82.69 10 | 61.55 3 | 83.05 10 | 79.63 6 | 69.78 3 | 76.01 5 | 75.89 6 | 77.92 39 | 86.86 37 |
|
DPE-MVS |  | | 75.74 6 | 82.82 4 | 67.49 12 | 77.07 7 | 82.01 8 | 77.05 10 | 57.70 12 | 86.55 5 | 55.44 16 | 90.50 2 | 82.52 3 | 60.33 20 | 72.99 15 | 72.98 16 | 77.33 48 | 92.19 6 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DPM-MVS | | | 74.63 7 | 78.53 11 | 70.07 4 | 76.10 9 | 82.56 7 | 79.30 3 | 59.89 7 | 80.49 14 | 57.75 11 | 66.98 26 | 76.16 13 | 65.95 4 | 79.35 1 | 78.47 1 | 81.45 5 | 85.71 47 |
|
APDe-MVS | | | 74.59 8 | 80.23 7 | 68.01 11 | 76.51 8 | 80.20 16 | 77.39 7 | 58.18 10 | 85.31 6 | 56.84 13 | 84.89 7 | 76.08 14 | 60.66 18 | 71.85 26 | 71.76 21 | 78.47 29 | 91.49 9 |
|
MCST-MVS | | | 74.06 9 | 77.71 14 | 69.79 5 | 78.95 5 | 81.99 9 | 76.33 11 | 62.16 3 | 75.89 22 | 52.96 26 | 64.37 32 | 73.30 22 | 65.66 5 | 77.49 2 | 77.43 3 | 82.67 1 | 93.51 4 |
|
CNVR-MVS | | | 73.87 10 | 78.60 10 | 68.35 10 | 73.32 13 | 81.97 10 | 76.19 12 | 59.29 9 | 80.12 15 | 56.70 14 | 67.09 25 | 76.48 11 | 64.26 7 | 75.88 6 | 75.75 7 | 80.32 7 | 92.93 5 |
|
SMA-MVS |  | | 73.31 11 | 79.53 8 | 66.05 14 | 71.25 21 | 80.13 17 | 74.99 13 | 56.09 15 | 84.14 7 | 54.48 19 | 73.74 17 | 80.23 4 | 61.43 12 | 74.96 9 | 74.09 12 | 78.08 36 | 89.42 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
xxxxxxxxxxxxxcwj | | | 73.17 12 | 74.44 21 | 71.69 2 | 82.90 1 | 86.54 1 | 82.08 1 | 64.58 1 | 81.67 11 | 59.82 5 | 86.26 4 | 35.82 150 | 61.11 15 | 71.81 27 | 70.75 34 | 79.63 12 | 88.22 24 |
|
CSCG | | | 72.98 13 | 76.86 16 | 68.46 9 | 78.23 6 | 81.74 11 | 77.26 8 | 60.00 5 | 75.61 25 | 59.06 7 | 62.72 34 | 77.42 9 | 56.63 48 | 74.24 11 | 77.18 4 | 79.56 14 | 89.13 18 |
|
HPM-MVS++ |  | | 72.44 14 | 78.73 9 | 65.11 15 | 71.88 19 | 77.31 33 | 71.98 21 | 55.67 17 | 83.11 9 | 53.59 23 | 75.90 13 | 78.49 7 | 61.00 17 | 73.99 12 | 73.31 15 | 76.55 60 | 88.97 19 |
|
APD-MVS |  | | 71.86 15 | 77.91 13 | 64.80 17 | 70.39 26 | 75.69 43 | 74.02 15 | 56.14 14 | 83.59 8 | 52.92 27 | 84.67 8 | 73.46 21 | 59.30 27 | 69.47 43 | 69.66 42 | 76.02 67 | 88.84 20 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 71.50 16 | 77.27 15 | 64.77 18 | 69.64 28 | 79.26 18 | 73.53 16 | 54.73 25 | 79.32 17 | 54.23 20 | 74.81 14 | 74.61 18 | 59.40 26 | 73.00 14 | 72.17 19 | 77.10 56 | 87.72 29 |
|
NCCC | | | 71.36 17 | 75.44 18 | 66.60 13 | 72.46 16 | 79.18 20 | 74.16 14 | 57.83 11 | 76.93 20 | 54.19 21 | 63.47 33 | 71.08 27 | 61.30 14 | 73.56 13 | 73.70 13 | 79.69 11 | 90.19 11 |
|
train_agg | | | 70.74 18 | 76.53 17 | 63.98 20 | 70.33 27 | 75.16 47 | 72.33 20 | 55.78 16 | 75.74 23 | 50.41 35 | 80.08 12 | 73.15 23 | 57.75 38 | 71.96 25 | 70.94 31 | 77.25 52 | 88.69 22 |
|
TSAR-MVS + MP. | | | 70.28 19 | 75.09 19 | 64.66 19 | 69.34 30 | 64.61 132 | 72.60 19 | 56.29 13 | 80.73 13 | 58.36 9 | 84.56 9 | 75.22 16 | 55.37 54 | 69.11 50 | 69.45 43 | 75.97 69 | 81.97 78 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DeepPCF-MVS | | 62.48 1 | 70.07 20 | 78.36 12 | 60.39 44 | 62.38 61 | 76.96 36 | 65.54 59 | 52.23 34 | 87.46 4 | 49.07 36 | 74.05 16 | 76.19 12 | 59.01 29 | 72.79 19 | 71.61 23 | 74.13 112 | 89.49 13 |
|
SteuartSystems-ACMMP | | | 69.78 21 | 74.76 20 | 63.98 20 | 73.45 12 | 78.56 25 | 73.13 18 | 55.24 22 | 70.68 35 | 48.93 38 | 70.43 21 | 69.10 29 | 54.00 59 | 72.78 21 | 72.98 16 | 79.14 21 | 88.74 21 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 68.75 22 | 72.84 23 | 63.98 20 | 68.87 34 | 75.09 48 | 71.87 22 | 51.22 39 | 73.50 29 | 58.17 10 | 68.05 24 | 68.67 30 | 57.79 36 | 70.49 37 | 69.23 45 | 75.98 68 | 84.84 56 |
|
SD-MVS | | | 68.30 23 | 72.58 25 | 63.31 26 | 69.24 31 | 67.85 105 | 70.81 27 | 53.65 30 | 79.64 16 | 58.52 8 | 74.31 15 | 75.37 15 | 53.52 65 | 65.63 75 | 63.56 109 | 74.13 112 | 81.73 82 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
zzz-MVS | | | 67.78 24 | 72.46 26 | 62.33 31 | 66.09 40 | 74.21 53 | 70.05 29 | 51.54 37 | 77.27 18 | 54.61 18 | 60.30 42 | 71.51 26 | 56.73 46 | 69.19 48 | 68.63 54 | 74.96 91 | 86.11 44 |
|
DELS-MVS | | | 67.36 25 | 70.34 39 | 63.89 23 | 69.12 32 | 81.55 12 | 70.82 26 | 55.02 23 | 53.38 77 | 48.83 39 | 56.45 47 | 59.35 57 | 60.05 24 | 74.93 10 | 74.78 10 | 79.51 15 | 91.95 7 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MP-MVS |  | | 67.34 26 | 73.08 22 | 60.64 41 | 66.20 39 | 76.62 38 | 69.22 33 | 50.92 41 | 70.07 36 | 48.81 40 | 69.66 22 | 70.12 28 | 53.68 62 | 68.41 55 | 69.13 47 | 74.98 90 | 87.53 31 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DeepC-MVS | | 60.65 2 | 67.33 27 | 71.52 33 | 62.44 29 | 59.79 81 | 74.84 50 | 68.89 34 | 55.56 18 | 73.91 28 | 53.50 24 | 55.00 55 | 65.63 35 | 60.08 23 | 71.99 24 | 71.33 27 | 76.85 58 | 87.94 28 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HQP-MVS | | | 67.22 28 | 72.08 28 | 61.56 36 | 66.76 37 | 73.58 60 | 71.41 23 | 52.98 32 | 69.92 38 | 43.85 60 | 70.58 20 | 58.75 59 | 56.76 45 | 72.90 17 | 71.88 20 | 77.57 44 | 86.94 36 |
|
CANet | | | 67.21 29 | 71.83 30 | 61.83 32 | 64.51 46 | 79.25 19 | 66.72 51 | 48.73 57 | 68.49 43 | 50.63 34 | 61.40 38 | 66.47 33 | 61.44 11 | 69.31 47 | 69.90 38 | 78.94 25 | 88.00 26 |
|
CDPH-MVS | | | 67.03 30 | 71.64 31 | 61.65 35 | 69.10 33 | 76.84 37 | 71.35 25 | 55.42 20 | 67.02 46 | 42.83 65 | 65.27 30 | 64.60 39 | 53.16 68 | 69.70 42 | 71.40 25 | 78.02 38 | 86.67 39 |
|
MAR-MVS | | | 66.85 31 | 69.81 40 | 63.39 25 | 73.56 11 | 80.51 15 | 69.87 30 | 51.51 38 | 67.78 45 | 46.44 46 | 51.09 68 | 61.60 52 | 60.38 19 | 72.67 22 | 73.61 14 | 78.59 26 | 81.44 86 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DeepC-MVS_fast | | 60.18 3 | 66.84 32 | 70.69 37 | 62.36 30 | 62.76 55 | 73.21 63 | 67.96 37 | 52.31 33 | 72.26 32 | 51.03 29 | 56.50 46 | 64.26 40 | 63.37 8 | 71.64 29 | 70.85 32 | 76.70 59 | 86.10 45 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 66.77 33 | 72.21 27 | 60.44 43 | 61.23 69 | 70.00 84 | 64.26 64 | 47.79 69 | 72.98 30 | 56.32 15 | 71.35 19 | 72.33 24 | 55.68 53 | 65.49 76 | 66.66 69 | 77.35 46 | 86.62 40 |
|
MVS_0304 | | | 66.31 34 | 71.61 32 | 60.14 45 | 62.59 59 | 78.98 22 | 67.13 47 | 45.75 96 | 64.35 51 | 45.23 53 | 60.69 40 | 67.67 32 | 61.73 10 | 71.09 31 | 71.03 29 | 78.41 32 | 87.44 32 |
|
ACMMPR | | | 66.20 35 | 71.51 34 | 60.00 47 | 65.34 44 | 74.04 55 | 69.39 32 | 50.92 41 | 71.97 33 | 46.04 48 | 66.79 27 | 65.68 34 | 53.07 69 | 68.93 52 | 69.12 48 | 75.21 84 | 84.05 62 |
|
3Dnovator | | 58.39 4 | 65.97 36 | 66.85 52 | 64.94 16 | 73.72 10 | 79.03 21 | 67.73 40 | 54.25 26 | 61.52 54 | 52.79 28 | 42.27 94 | 60.73 55 | 62.01 9 | 71.29 30 | 71.75 22 | 79.12 22 | 81.34 89 |
|
TSAR-MVS + ACMM | | | 65.95 37 | 72.83 24 | 57.93 57 | 69.35 29 | 65.85 124 | 73.36 17 | 39.84 150 | 76.00 21 | 48.69 41 | 82.54 11 | 75.03 17 | 49.38 96 | 65.33 78 | 63.42 111 | 66.94 171 | 81.67 83 |
|
canonicalmvs | | | 65.55 38 | 70.75 36 | 59.49 51 | 62.11 63 | 78.26 28 | 66.52 52 | 43.82 119 | 71.54 34 | 47.84 43 | 61.30 39 | 61.68 50 | 58.48 32 | 67.56 62 | 69.67 41 | 78.16 35 | 85.25 52 |
|
QAPM | | | 65.47 39 | 67.82 46 | 62.72 28 | 72.56 14 | 81.17 14 | 67.43 43 | 55.38 21 | 56.07 69 | 43.29 63 | 43.60 89 | 65.38 37 | 59.10 28 | 72.20 23 | 70.76 33 | 78.56 27 | 85.59 50 |
|
PGM-MVS | | | 65.35 40 | 70.43 38 | 59.43 52 | 65.78 42 | 73.75 57 | 69.41 31 | 48.18 65 | 68.80 42 | 45.37 52 | 65.88 29 | 64.04 41 | 52.68 75 | 68.94 51 | 68.68 53 | 75.18 85 | 82.93 69 |
|
PHI-MVS | | | 65.17 41 | 72.07 29 | 57.11 66 | 63.02 53 | 77.35 32 | 67.04 48 | 48.14 67 | 68.03 44 | 37.56 93 | 66.00 28 | 65.39 36 | 53.19 67 | 70.68 34 | 70.57 37 | 73.72 119 | 86.46 43 |
|
CLD-MVS | | | 64.69 42 | 67.25 47 | 61.69 34 | 68.22 36 | 78.33 26 | 63.09 67 | 47.59 72 | 69.64 39 | 53.98 22 | 54.87 56 | 53.94 74 | 57.87 34 | 72.79 19 | 71.34 26 | 79.40 17 | 69.87 159 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MVS_111021_HR | | | 64.66 43 | 67.11 50 | 61.80 33 | 71.04 22 | 77.91 29 | 62.75 70 | 54.78 24 | 51.43 80 | 47.54 44 | 53.77 59 | 54.85 71 | 56.84 43 | 70.59 35 | 71.50 24 | 77.86 40 | 89.70 12 |
|
EPNet | | | 64.39 44 | 70.93 35 | 56.77 69 | 60.58 76 | 75.77 40 | 59.28 90 | 50.58 45 | 69.93 37 | 40.73 80 | 68.59 23 | 61.60 52 | 53.72 60 | 68.65 53 | 68.07 56 | 75.75 74 | 83.87 64 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CP-MVS | | | 64.37 45 | 69.48 41 | 58.39 54 | 62.21 62 | 71.81 75 | 67.27 44 | 49.51 51 | 69.40 41 | 45.76 50 | 60.41 41 | 64.96 38 | 51.84 77 | 67.33 66 | 67.57 62 | 73.78 118 | 84.89 54 |
|
DROMVSNet | | | 64.30 46 | 68.19 43 | 59.76 49 | 62.97 54 | 75.31 46 | 67.26 45 | 44.19 112 | 60.73 57 | 47.52 45 | 55.84 50 | 62.12 48 | 57.67 39 | 70.71 32 | 67.47 63 | 78.97 24 | 85.13 53 |
|
casdiffmvs | | | 63.87 47 | 67.08 51 | 60.12 46 | 60.90 72 | 78.29 27 | 67.91 38 | 48.01 68 | 55.89 71 | 44.97 54 | 50.45 70 | 56.94 64 | 59.54 25 | 70.17 40 | 69.81 39 | 79.41 16 | 87.99 27 |
|
MVS_Test | | | 63.75 48 | 67.24 48 | 59.68 50 | 60.01 77 | 76.99 35 | 68.13 36 | 45.17 99 | 57.45 63 | 43.74 61 | 53.07 62 | 56.16 69 | 61.33 13 | 70.27 38 | 71.11 28 | 79.72 10 | 85.63 49 |
|
X-MVS | | | 63.53 49 | 68.62 42 | 57.60 61 | 64.77 45 | 73.06 64 | 65.82 57 | 50.53 46 | 65.77 48 | 42.02 73 | 58.20 44 | 63.42 44 | 47.83 108 | 68.25 59 | 68.50 55 | 74.61 101 | 83.16 68 |
|
ACMMP |  | | 63.27 50 | 67.85 45 | 57.93 57 | 62.64 58 | 72.30 72 | 68.23 35 | 48.77 56 | 66.50 47 | 43.05 64 | 62.07 35 | 57.84 63 | 49.98 88 | 66.58 70 | 66.46 75 | 74.93 92 | 83.17 66 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
ETV-MVS | | | 62.88 51 | 68.18 44 | 56.70 70 | 58.47 89 | 74.89 49 | 60.26 83 | 43.96 116 | 58.27 62 | 42.37 71 | 61.47 37 | 56.56 66 | 57.80 35 | 68.00 60 | 68.74 51 | 77.34 47 | 89.33 17 |
|
AdaColmap |  | | 62.79 52 | 62.63 69 | 62.98 27 | 70.82 23 | 72.90 67 | 67.84 39 | 54.09 28 | 65.14 49 | 50.71 32 | 41.78 96 | 47.64 103 | 60.17 22 | 67.41 65 | 66.83 67 | 74.28 107 | 76.69 114 |
|
3Dnovator+ | | 55.76 7 | 62.70 53 | 65.10 61 | 59.90 48 | 65.89 41 | 72.15 73 | 62.94 69 | 49.82 50 | 62.77 53 | 49.06 37 | 43.62 88 | 61.47 54 | 58.60 31 | 68.51 54 | 66.75 68 | 73.08 133 | 80.40 98 |
|
OpenMVS |  | 55.62 8 | 62.57 54 | 63.76 66 | 61.19 38 | 72.13 17 | 78.84 23 | 64.42 62 | 50.51 47 | 56.44 65 | 45.67 51 | 36.88 124 | 56.51 67 | 56.66 47 | 68.28 58 | 68.96 49 | 77.73 42 | 80.44 97 |
|
PVSNet_BlendedMVS | | | 62.53 55 | 66.37 54 | 58.05 55 | 58.17 90 | 75.70 41 | 61.30 76 | 48.67 60 | 58.67 59 | 50.93 30 | 55.43 52 | 49.39 92 | 53.01 70 | 69.46 44 | 66.55 72 | 76.24 65 | 89.39 15 |
|
PVSNet_Blended | | | 62.53 55 | 66.37 54 | 58.05 55 | 58.17 90 | 75.70 41 | 61.30 76 | 48.67 60 | 58.67 59 | 50.93 30 | 55.43 52 | 49.39 92 | 53.01 70 | 69.46 44 | 66.55 72 | 76.24 65 | 89.39 15 |
|
MVSTER | | | 62.51 57 | 67.22 49 | 57.02 67 | 55.05 114 | 69.23 94 | 63.02 68 | 46.88 83 | 61.11 56 | 43.95 59 | 59.20 43 | 58.86 58 | 56.80 44 | 69.13 49 | 70.98 30 | 76.41 62 | 82.04 75 |
|
CHOSEN 1792x2688 | | | 62.48 58 | 64.06 65 | 60.64 41 | 72.50 15 | 84.18 6 | 62.43 71 | 53.77 29 | 47.90 93 | 39.85 84 | 25.15 188 | 44.76 116 | 53.72 60 | 77.29 3 | 77.61 2 | 81.60 4 | 91.53 8 |
|
CostFormer | | | 62.45 59 | 65.68 58 | 58.67 53 | 63.29 50 | 77.65 30 | 67.62 41 | 38.42 159 | 54.04 75 | 46.00 49 | 48.27 78 | 57.89 62 | 56.97 42 | 67.03 68 | 67.79 61 | 79.74 9 | 87.09 35 |
|
PCF-MVS | | 55.99 6 | 62.31 60 | 66.60 53 | 57.32 64 | 59.12 88 | 73.68 59 | 67.53 42 | 48.71 58 | 61.35 55 | 42.83 65 | 51.33 67 | 63.48 43 | 53.48 66 | 65.64 74 | 64.87 92 | 72.22 138 | 85.83 46 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
diffmvs | | | 62.30 61 | 66.05 57 | 57.92 59 | 57.08 95 | 75.60 45 | 66.90 49 | 47.06 81 | 55.45 74 | 43.37 62 | 53.45 61 | 55.60 70 | 57.21 41 | 66.57 71 | 68.00 58 | 75.89 72 | 87.70 30 |
|
DI_MVS_plusplus_trai | | | 61.86 62 | 65.26 60 | 57.90 60 | 57.93 93 | 74.51 52 | 66.30 54 | 46.49 89 | 49.96 84 | 41.62 76 | 42.69 92 | 61.77 49 | 58.74 30 | 70.25 39 | 69.32 44 | 76.31 63 | 88.30 23 |
|
CS-MVS-test | | | 61.85 63 | 66.20 56 | 56.78 68 | 56.23 102 | 71.71 76 | 67.26 45 | 44.19 112 | 56.42 67 | 39.08 87 | 55.14 54 | 56.92 65 | 57.67 39 | 70.71 32 | 65.78 81 | 76.25 64 | 86.68 38 |
|
MSLP-MVS++ | | | 61.81 64 | 62.19 74 | 61.37 37 | 68.33 35 | 63.08 146 | 70.75 28 | 38.89 156 | 63.96 52 | 57.51 12 | 48.59 76 | 61.66 51 | 53.67 63 | 62.04 119 | 59.92 154 | 79.03 23 | 76.08 117 |
|
OPM-MVS | | | 61.59 65 | 62.30 73 | 60.76 40 | 66.53 38 | 73.35 62 | 71.41 23 | 54.18 27 | 40.82 123 | 41.57 77 | 45.70 84 | 54.84 72 | 54.43 58 | 69.92 41 | 69.19 46 | 76.45 61 | 82.25 72 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MS-PatchMatch | | | 61.41 66 | 61.88 77 | 60.85 39 | 70.57 25 | 75.98 39 | 66.29 55 | 46.91 82 | 50.56 82 | 48.28 42 | 36.30 127 | 51.64 78 | 50.95 83 | 72.89 18 | 70.65 36 | 82.13 3 | 75.17 124 |
|
EIA-MVS | | | 60.56 67 | 64.29 64 | 56.20 76 | 59.14 87 | 72.68 69 | 59.55 88 | 43.56 123 | 51.78 79 | 41.01 79 | 55.47 51 | 51.93 77 | 55.87 50 | 65.01 81 | 66.57 71 | 78.06 37 | 86.60 42 |
|
CS-MVS | | | 60.05 68 | 65.62 59 | 53.56 87 | 54.05 121 | 69.76 88 | 56.82 105 | 37.47 165 | 55.69 72 | 39.74 85 | 55.87 49 | 58.72 60 | 57.78 37 | 65.95 72 | 66.11 76 | 75.52 79 | 87.22 34 |
|
ACMP | | 56.21 5 | 59.78 69 | 61.81 79 | 57.41 63 | 61.15 70 | 68.88 96 | 65.98 56 | 48.85 55 | 58.56 61 | 44.19 57 | 48.89 74 | 46.31 109 | 48.56 101 | 63.61 101 | 64.49 101 | 75.75 74 | 81.91 79 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LGP-MVS_train | | | 59.69 70 | 62.59 70 | 56.31 74 | 61.94 64 | 68.15 102 | 66.90 49 | 48.15 66 | 59.75 58 | 38.47 89 | 50.38 71 | 48.34 100 | 46.87 113 | 65.39 77 | 64.93 91 | 75.51 80 | 81.21 91 |
|
Effi-MVS+ | | | 59.63 71 | 61.78 80 | 57.12 65 | 61.56 66 | 71.63 77 | 63.61 65 | 47.59 72 | 47.18 94 | 37.79 90 | 45.29 85 | 49.93 88 | 56.27 49 | 67.45 63 | 67.06 65 | 75.91 70 | 83.93 63 |
|
CPTT-MVS | | | 59.54 72 | 64.47 63 | 53.79 86 | 54.99 116 | 67.63 108 | 65.48 60 | 44.59 106 | 64.81 50 | 37.74 91 | 51.55 65 | 59.90 56 | 49.77 92 | 61.83 121 | 61.26 139 | 70.18 152 | 84.31 61 |
|
baseline2 | | | 59.20 73 | 61.72 81 | 56.27 75 | 59.61 83 | 74.12 54 | 58.65 93 | 49.42 52 | 48.10 91 | 40.12 83 | 49.10 73 | 44.15 118 | 51.24 80 | 66.65 69 | 67.88 60 | 78.56 27 | 82.06 74 |
|
GeoE | | | 58.97 74 | 60.94 82 | 56.67 71 | 61.27 68 | 72.71 68 | 61.35 75 | 45.69 97 | 49.19 88 | 41.22 78 | 39.55 111 | 49.58 91 | 52.79 74 | 64.79 83 | 65.89 80 | 77.73 42 | 84.87 55 |
|
baseline | | | 58.65 75 | 61.99 75 | 54.75 81 | 54.70 118 | 71.85 74 | 60.20 84 | 43.91 117 | 55.99 70 | 40.13 82 | 53.50 60 | 50.91 84 | 55.76 51 | 61.29 129 | 61.73 131 | 73.83 116 | 78.68 106 |
|
PVSNet_Blended_VisFu | | | 58.56 76 | 62.33 72 | 54.16 83 | 56.90 96 | 73.92 56 | 57.72 96 | 46.16 94 | 44.23 101 | 42.73 68 | 46.26 81 | 51.06 83 | 46.28 116 | 67.99 61 | 65.38 86 | 75.18 85 | 87.44 32 |
|
ACMM | | 53.73 9 | 57.91 77 | 58.27 96 | 57.49 62 | 63.10 51 | 66.45 118 | 65.65 58 | 49.02 54 | 53.69 76 | 42.67 69 | 36.41 126 | 46.07 112 | 50.38 86 | 64.74 85 | 64.63 97 | 74.14 111 | 75.91 118 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CANet_DTU | | | 57.87 78 | 63.63 67 | 51.15 101 | 52.18 126 | 70.20 83 | 58.14 95 | 37.32 167 | 56.49 64 | 31.06 124 | 57.38 45 | 50.05 86 | 53.67 63 | 64.98 82 | 65.04 90 | 74.57 102 | 81.29 90 |
|
ET-MVSNet_ETH3D | | | 57.84 79 | 61.91 76 | 53.09 89 | 32.91 207 | 74.53 51 | 63.51 66 | 46.80 85 | 46.52 96 | 36.14 98 | 56.00 48 | 46.20 110 | 64.41 6 | 60.75 137 | 66.99 66 | 74.79 93 | 82.35 70 |
|
tpm cat1 | | | 57.41 80 | 58.26 97 | 56.42 73 | 60.80 74 | 72.56 70 | 64.35 63 | 38.43 158 | 49.18 89 | 46.36 47 | 36.69 125 | 43.50 122 | 54.47 56 | 61.39 127 | 62.64 119 | 74.11 114 | 81.81 80 |
|
IB-MVS | | 53.15 10 | 57.33 81 | 59.02 88 | 55.37 78 | 60.83 73 | 77.11 34 | 54.51 121 | 50.10 49 | 43.22 107 | 42.82 67 | 40.50 101 | 37.61 142 | 44.67 128 | 59.27 151 | 69.81 39 | 79.29 18 | 85.59 50 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tpmrst | | | 57.23 82 | 59.08 87 | 55.06 79 | 59.91 79 | 70.65 81 | 60.71 79 | 35.38 178 | 47.91 92 | 42.58 70 | 39.78 106 | 45.45 114 | 54.44 57 | 62.19 116 | 62.82 116 | 77.37 45 | 84.73 57 |
|
baseline1 | | | 57.21 83 | 60.53 84 | 53.33 88 | 62.50 60 | 69.86 86 | 57.33 100 | 50.59 44 | 43.39 106 | 30.00 130 | 48.60 75 | 51.09 82 | 42.36 140 | 69.38 46 | 68.03 57 | 77.20 53 | 73.39 132 |
|
HyFIR lowres test | | | 57.12 84 | 59.11 86 | 54.80 80 | 61.55 67 | 77.55 31 | 59.02 91 | 45.00 101 | 41.84 120 | 33.93 110 | 22.44 195 | 49.16 95 | 51.02 82 | 68.39 56 | 68.71 52 | 78.26 34 | 85.70 48 |
|
MVS_111021_LR | | | 57.06 85 | 60.60 83 | 52.93 90 | 56.25 100 | 65.14 130 | 55.16 119 | 41.21 142 | 52.32 78 | 44.89 55 | 53.92 58 | 49.27 94 | 52.16 76 | 61.46 125 | 60.54 147 | 67.92 164 | 81.53 85 |
|
DCV-MVSNet | | | 56.80 86 | 58.96 89 | 54.28 82 | 59.96 78 | 66.74 116 | 60.37 82 | 44.87 103 | 41.01 122 | 36.81 96 | 47.57 79 | 47.87 102 | 48.23 104 | 64.41 88 | 65.17 88 | 75.45 81 | 79.95 100 |
|
test_part1 | | | 56.55 87 | 56.50 112 | 56.60 72 | 61.77 65 | 69.59 91 | 66.45 53 | 43.70 121 | 38.22 135 | 44.13 58 | 29.53 173 | 49.96 87 | 47.92 106 | 63.09 106 | 64.59 98 | 75.61 77 | 80.54 96 |
|
Anonymous20231211 | | | 56.40 88 | 57.00 107 | 55.70 77 | 59.78 82 | 72.49 71 | 61.29 78 | 46.83 84 | 40.50 125 | 40.46 81 | 22.12 197 | 49.73 89 | 51.07 81 | 64.39 89 | 65.30 87 | 74.74 95 | 84.44 60 |
|
PMMVS | | | 55.74 89 | 62.68 68 | 47.64 132 | 44.34 176 | 65.58 128 | 47.22 159 | 37.96 162 | 56.43 66 | 34.11 108 | 61.51 36 | 47.41 104 | 54.55 55 | 65.88 73 | 62.49 123 | 67.67 166 | 79.48 101 |
|
Fast-Effi-MVS+ | | | 55.73 90 | 58.26 97 | 52.76 91 | 54.33 119 | 68.19 101 | 57.05 101 | 34.66 180 | 46.92 95 | 38.96 88 | 40.53 100 | 41.55 131 | 55.69 52 | 65.31 79 | 65.99 77 | 75.90 71 | 79.34 102 |
|
FC-MVSNet-train | | | 55.68 91 | 57.00 107 | 54.13 84 | 63.37 48 | 66.16 120 | 46.77 162 | 52.14 35 | 42.36 114 | 37.67 92 | 48.50 77 | 41.42 133 | 51.28 79 | 61.58 124 | 63.22 113 | 73.56 121 | 75.76 121 |
|
FMVSNet3 | | | 55.66 92 | 59.68 85 | 50.96 103 | 50.59 140 | 66.49 117 | 57.57 97 | 46.61 86 | 49.30 85 | 28.77 135 | 39.61 107 | 51.42 79 | 43.85 133 | 68.29 57 | 68.80 50 | 78.35 33 | 73.86 127 |
|
OMC-MVS | | | 55.48 93 | 61.85 78 | 48.04 131 | 41.55 183 | 60.32 163 | 56.80 106 | 31.78 200 | 75.67 24 | 42.30 72 | 51.52 66 | 54.15 73 | 49.91 90 | 60.28 142 | 57.59 161 | 65.91 174 | 73.42 130 |
|
tpm | | | 54.94 94 | 57.86 102 | 51.54 99 | 59.48 85 | 67.04 112 | 58.34 94 | 34.60 182 | 41.93 119 | 34.41 105 | 42.40 93 | 47.14 105 | 49.07 99 | 61.46 125 | 61.67 135 | 73.31 128 | 83.39 65 |
|
GBi-Net | | | 54.66 95 | 58.42 94 | 50.26 111 | 49.36 149 | 65.81 125 | 56.80 106 | 46.61 86 | 49.30 85 | 28.77 135 | 39.61 107 | 51.42 79 | 42.71 136 | 64.25 92 | 65.54 83 | 77.32 49 | 73.03 135 |
|
test1 | | | 54.66 95 | 58.42 94 | 50.26 111 | 49.36 149 | 65.81 125 | 56.80 106 | 46.61 86 | 49.30 85 | 28.77 135 | 39.61 107 | 51.42 79 | 42.71 136 | 64.25 92 | 65.54 83 | 77.32 49 | 73.03 135 |
|
test-LLR | | | 54.62 97 | 58.66 92 | 49.89 117 | 51.68 132 | 65.89 122 | 47.88 153 | 46.35 90 | 42.51 111 | 29.84 131 | 41.41 97 | 48.87 96 | 45.20 121 | 62.91 110 | 64.43 102 | 78.43 30 | 84.62 58 |
|
TSAR-MVS + COLMAP | | | 54.37 98 | 62.43 71 | 44.98 147 | 34.33 203 | 58.94 170 | 54.11 126 | 34.15 191 | 74.06 27 | 34.57 104 | 71.63 18 | 42.03 130 | 47.88 107 | 61.26 130 | 57.33 164 | 64.83 177 | 71.74 145 |
|
EPMVS | | | 54.07 99 | 56.06 114 | 51.75 98 | 56.74 98 | 70.80 79 | 55.32 117 | 34.20 188 | 46.46 97 | 36.59 97 | 40.38 103 | 42.55 125 | 49.77 92 | 61.25 131 | 60.90 143 | 77.86 40 | 70.08 156 |
|
v2v482 | | | 54.00 100 | 55.12 121 | 52.69 93 | 51.73 131 | 69.42 93 | 60.65 80 | 45.09 100 | 34.56 157 | 33.73 113 | 35.29 130 | 35.36 153 | 49.92 89 | 64.05 98 | 65.16 89 | 75.00 89 | 81.98 77 |
|
CNLPA | | | 54.00 100 | 57.08 106 | 50.40 110 | 49.83 146 | 61.75 154 | 53.47 129 | 37.27 168 | 74.55 26 | 44.85 56 | 33.58 142 | 45.42 115 | 52.94 73 | 58.89 153 | 53.66 183 | 64.06 180 | 71.68 146 |
|
FMVSNet2 | | | 53.94 102 | 57.29 104 | 50.03 114 | 49.36 149 | 65.81 125 | 56.80 106 | 45.95 95 | 43.13 108 | 28.04 139 | 35.68 128 | 48.18 101 | 42.71 136 | 67.23 67 | 67.95 59 | 77.32 49 | 73.03 135 |
|
v8 | | | 53.77 103 | 54.82 126 | 52.54 94 | 52.12 127 | 66.95 115 | 60.56 81 | 43.23 129 | 37.17 146 | 35.35 100 | 34.96 133 | 37.50 144 | 49.51 95 | 63.67 100 | 64.59 98 | 74.48 104 | 78.91 105 |
|
GA-MVS | | | 53.77 103 | 56.41 113 | 50.70 105 | 51.63 134 | 69.96 85 | 57.55 98 | 44.39 107 | 34.31 158 | 27.15 141 | 40.99 99 | 36.40 148 | 47.65 110 | 67.45 63 | 67.16 64 | 75.83 73 | 78.60 107 |
|
Effi-MVS+-dtu | | | 53.63 105 | 54.85 125 | 52.20 96 | 59.32 86 | 61.33 157 | 56.42 112 | 40.24 148 | 43.84 103 | 34.22 107 | 39.49 112 | 46.18 111 | 53.00 72 | 58.72 157 | 57.49 163 | 69.99 155 | 76.91 112 |
|
thisisatest0530 | | | 53.61 106 | 57.22 105 | 49.40 122 | 51.30 136 | 68.22 100 | 52.72 137 | 43.34 127 | 42.72 110 | 35.31 101 | 43.57 90 | 44.14 119 | 44.37 131 | 63.00 108 | 64.86 93 | 69.34 158 | 74.00 126 |
|
v1144 | | | 53.47 107 | 54.65 127 | 52.10 97 | 51.93 129 | 69.81 87 | 59.32 89 | 44.77 105 | 33.21 164 | 32.52 116 | 33.55 143 | 34.34 161 | 49.29 97 | 64.58 86 | 64.81 95 | 74.74 95 | 82.27 71 |
|
v10 | | | 53.44 108 | 54.40 128 | 52.31 95 | 52.08 128 | 66.99 113 | 59.68 87 | 43.41 124 | 35.90 152 | 34.30 106 | 33.98 140 | 35.56 151 | 50.10 87 | 64.39 89 | 64.67 96 | 74.32 105 | 79.30 103 |
|
PatchmatchNet |  | | 53.37 109 | 55.62 119 | 50.75 104 | 55.93 108 | 70.54 82 | 51.39 142 | 36.41 171 | 44.85 99 | 37.26 94 | 39.40 114 | 42.54 126 | 47.83 108 | 60.29 141 | 60.88 145 | 75.69 76 | 70.87 150 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
test2506 | | | 53.36 110 | 57.36 103 | 48.68 127 | 55.53 110 | 68.11 103 | 54.31 123 | 46.25 92 | 43.54 104 | 22.21 163 | 40.19 104 | 43.69 121 | 36.56 153 | 64.15 96 | 65.94 78 | 77.20 53 | 75.91 118 |
|
IterMVS-LS | | | 53.36 110 | 55.65 118 | 50.68 107 | 55.34 112 | 59.04 168 | 55.00 120 | 39.98 149 | 38.72 133 | 33.22 114 | 44.52 87 | 47.05 106 | 49.63 94 | 61.82 122 | 61.77 130 | 70.92 147 | 76.61 116 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TESTMET0.1,1 | | | 53.30 112 | 58.66 92 | 47.04 135 | 44.94 170 | 65.89 122 | 47.88 153 | 35.95 174 | 42.51 111 | 29.84 131 | 41.41 97 | 48.87 96 | 45.20 121 | 62.91 110 | 64.43 102 | 78.43 30 | 84.62 58 |
|
tttt0517 | | | 53.05 113 | 56.73 111 | 48.76 125 | 50.35 142 | 67.51 109 | 51.96 141 | 43.34 127 | 42.00 118 | 33.88 111 | 43.19 91 | 43.49 123 | 44.37 131 | 62.58 115 | 64.86 93 | 68.67 160 | 73.46 129 |
|
MDTV_nov1_ep13 | | | 52.99 114 | 55.59 120 | 49.95 116 | 54.08 120 | 70.69 80 | 56.47 111 | 38.42 159 | 42.78 109 | 30.19 129 | 39.56 110 | 43.31 124 | 45.78 118 | 60.07 146 | 62.11 127 | 74.74 95 | 70.62 151 |
|
EPP-MVSNet | | | 52.91 115 | 58.91 90 | 45.91 140 | 54.99 116 | 68.84 97 | 49.27 148 | 42.71 136 | 37.53 140 | 20.20 171 | 46.09 82 | 56.19 68 | 36.90 151 | 61.37 128 | 60.90 143 | 71.41 142 | 81.41 87 |
|
dps | | | 52.84 116 | 52.92 139 | 52.74 92 | 59.89 80 | 69.49 92 | 54.47 122 | 37.38 166 | 42.49 113 | 39.53 86 | 35.33 129 | 32.71 166 | 51.83 78 | 60.45 138 | 61.12 140 | 73.33 127 | 68.86 165 |
|
v1192 | | | 52.69 117 | 53.86 131 | 51.31 100 | 51.22 137 | 69.76 88 | 57.37 99 | 44.39 107 | 32.21 167 | 31.39 123 | 32.41 151 | 32.44 169 | 49.19 98 | 64.25 92 | 64.17 104 | 74.31 106 | 81.81 80 |
|
V42 | | | 52.63 118 | 55.08 122 | 49.76 119 | 44.93 171 | 67.49 111 | 60.19 85 | 42.13 139 | 37.21 145 | 34.08 109 | 34.57 136 | 37.30 145 | 47.29 111 | 63.48 103 | 64.15 105 | 69.96 156 | 81.38 88 |
|
MSDG | | | 52.58 119 | 51.40 152 | 53.95 85 | 65.48 43 | 64.31 140 | 61.44 74 | 44.02 114 | 44.17 102 | 32.92 115 | 30.40 164 | 31.81 173 | 46.35 115 | 62.13 117 | 62.55 121 | 73.49 123 | 64.41 173 |
|
ECVR-MVS |  | | 52.52 120 | 55.88 116 | 48.60 128 | 55.53 110 | 68.11 103 | 54.31 123 | 46.25 92 | 43.54 104 | 21.75 165 | 32.76 148 | 39.83 140 | 36.56 153 | 64.15 96 | 65.94 78 | 77.20 53 | 76.81 113 |
|
Fast-Effi-MVS+-dtu | | | 52.47 121 | 55.89 115 | 48.48 129 | 56.25 100 | 65.07 131 | 58.75 92 | 23.79 211 | 41.27 121 | 27.07 143 | 37.95 119 | 41.34 134 | 50.85 84 | 62.90 112 | 62.34 125 | 74.17 110 | 80.37 99 |
|
v144192 | | | 52.43 122 | 53.63 133 | 51.03 102 | 51.06 138 | 69.60 90 | 56.94 103 | 44.84 104 | 32.15 168 | 30.88 125 | 32.45 150 | 32.71 166 | 48.36 102 | 62.98 109 | 63.52 110 | 74.10 115 | 82.02 76 |
|
thres100view900 | | | 52.33 123 | 53.91 130 | 50.48 109 | 56.10 103 | 67.79 106 | 56.18 114 | 49.18 53 | 35.86 154 | 25.22 149 | 34.74 134 | 34.10 162 | 42.41 139 | 64.45 87 | 62.62 120 | 73.81 117 | 77.85 108 |
|
v1921920 | | | 51.95 124 | 53.19 135 | 50.51 108 | 50.82 139 | 69.14 95 | 55.45 116 | 44.34 111 | 31.53 172 | 30.53 127 | 31.96 153 | 31.67 174 | 48.31 103 | 63.12 105 | 63.28 112 | 73.59 120 | 81.60 84 |
|
v148 | | | 51.72 125 | 53.15 136 | 50.05 113 | 50.15 144 | 67.51 109 | 56.98 102 | 42.85 134 | 32.60 166 | 32.41 118 | 33.88 141 | 34.71 158 | 44.45 129 | 61.06 132 | 63.00 115 | 73.45 124 | 79.24 104 |
|
TAPA-MVS | | 47.92 11 | 51.66 126 | 57.88 101 | 44.40 150 | 36.46 198 | 58.42 173 | 53.82 128 | 30.83 201 | 69.51 40 | 34.97 103 | 46.90 80 | 49.67 90 | 46.99 112 | 58.00 160 | 54.64 179 | 63.33 186 | 68.00 167 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IS_MVSNet | | | 51.53 127 | 57.98 100 | 44.01 154 | 55.96 107 | 66.16 120 | 47.65 155 | 42.84 135 | 39.82 128 | 19.09 179 | 44.97 86 | 50.28 85 | 27.20 186 | 63.43 104 | 63.84 106 | 71.33 144 | 77.33 110 |
|
v1240 | | | 51.42 128 | 52.66 141 | 49.97 115 | 50.31 143 | 68.70 98 | 54.05 127 | 43.85 118 | 30.78 176 | 30.22 128 | 31.43 157 | 31.03 181 | 47.98 105 | 62.62 114 | 63.16 114 | 73.40 125 | 80.93 93 |
|
pmmvs4 | | | 51.28 129 | 52.50 143 | 49.85 118 | 49.54 148 | 63.02 147 | 52.83 136 | 43.41 124 | 44.65 100 | 35.71 99 | 34.38 137 | 32.25 170 | 45.14 124 | 60.21 145 | 60.03 151 | 72.44 137 | 72.98 138 |
|
Vis-MVSNet |  | | 51.13 130 | 58.04 99 | 43.06 160 | 47.68 156 | 67.71 107 | 49.10 149 | 39.09 155 | 37.75 138 | 22.57 160 | 51.03 69 | 48.78 98 | 32.42 171 | 62.12 118 | 61.80 129 | 67.49 168 | 77.12 111 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UGNet | | | 51.04 131 | 58.79 91 | 42.00 166 | 40.59 185 | 65.32 129 | 46.65 164 | 39.26 153 | 39.90 127 | 27.30 140 | 54.12 57 | 52.03 76 | 30.93 175 | 59.85 148 | 59.62 156 | 67.23 170 | 80.70 94 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tfpn200view9 | | | 50.91 132 | 52.45 144 | 49.11 124 | 56.10 103 | 64.53 135 | 53.06 133 | 47.31 77 | 35.86 154 | 25.22 149 | 34.74 134 | 34.10 162 | 41.08 142 | 60.84 134 | 61.37 137 | 71.90 141 | 75.70 122 |
|
SCA | | | 50.88 133 | 53.70 132 | 47.59 133 | 55.99 105 | 55.81 182 | 43.14 176 | 33.45 194 | 45.16 98 | 37.14 95 | 41.83 95 | 43.82 120 | 44.43 130 | 60.37 139 | 60.02 152 | 71.38 143 | 68.90 164 |
|
gg-mvs-nofinetune | | | 50.82 134 | 55.83 117 | 44.97 148 | 60.63 75 | 75.69 43 | 53.40 130 | 34.48 184 | 20.05 211 | 6.93 206 | 18.27 203 | 52.70 75 | 33.57 161 | 70.50 36 | 72.93 18 | 80.84 6 | 80.68 95 |
|
thres200 | | | 50.76 135 | 52.52 142 | 48.70 126 | 55.98 106 | 64.60 133 | 55.29 118 | 47.34 75 | 33.91 161 | 24.36 152 | 34.33 138 | 33.90 164 | 37.27 149 | 60.84 134 | 62.41 124 | 71.99 139 | 77.63 109 |
|
test1111 | | | 50.62 136 | 54.98 124 | 45.55 143 | 53.84 123 | 68.48 99 | 48.99 150 | 47.25 78 | 40.60 124 | 15.64 187 | 31.51 156 | 38.32 141 | 33.01 168 | 64.34 91 | 66.62 70 | 74.55 103 | 74.95 125 |
|
thres400 | | | 50.39 137 | 52.22 145 | 48.26 130 | 55.02 115 | 66.32 119 | 52.97 134 | 48.33 64 | 32.68 165 | 22.94 158 | 33.21 145 | 33.38 165 | 37.27 149 | 62.74 113 | 61.38 136 | 73.04 134 | 75.81 120 |
|
EG-PatchMatch MVS | | | 50.23 138 | 50.89 155 | 49.47 120 | 59.54 84 | 70.88 78 | 52.46 138 | 44.01 115 | 26.22 197 | 31.91 119 | 24.97 189 | 31.45 177 | 33.48 163 | 64.79 83 | 66.51 74 | 75.40 82 | 71.39 148 |
|
IterMVS | | | 50.23 138 | 53.27 134 | 46.68 136 | 47.59 158 | 60.58 161 | 53.10 132 | 36.62 170 | 36.07 150 | 25.89 146 | 39.42 113 | 40.05 137 | 43.65 134 | 60.22 144 | 61.35 138 | 73.23 129 | 75.23 123 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet1 | | | 50.14 140 | 52.78 140 | 47.06 134 | 45.56 167 | 63.56 143 | 54.22 125 | 43.74 120 | 34.10 160 | 25.37 148 | 29.79 170 | 42.06 129 | 38.70 145 | 64.25 92 | 65.54 83 | 74.75 94 | 70.18 155 |
|
ACMH | | 47.82 13 | 50.10 141 | 49.60 161 | 50.69 106 | 63.36 49 | 66.99 113 | 56.83 104 | 52.13 36 | 31.06 175 | 17.74 184 | 28.22 177 | 26.24 197 | 45.17 123 | 60.88 133 | 63.80 107 | 68.91 159 | 70.00 158 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EPNet_dtu | | | 49.85 142 | 56.99 109 | 41.52 169 | 52.79 124 | 57.06 176 | 41.44 181 | 43.13 130 | 56.13 68 | 19.24 178 | 52.11 63 | 48.38 99 | 22.14 193 | 58.19 159 | 58.38 159 | 70.35 150 | 68.71 166 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LS3D | | | 49.59 143 | 49.75 160 | 49.40 122 | 55.88 109 | 59.86 165 | 56.31 113 | 45.33 98 | 48.57 90 | 28.32 138 | 31.54 155 | 36.81 147 | 46.27 117 | 57.17 165 | 55.88 174 | 64.29 179 | 58.42 191 |
|
UniMVSNet_NR-MVSNet | | | 49.56 144 | 53.04 137 | 45.49 144 | 51.59 135 | 64.42 139 | 46.97 160 | 51.01 40 | 37.87 136 | 16.42 185 | 39.87 105 | 34.91 157 | 33.43 165 | 59.59 149 | 62.70 117 | 73.52 122 | 71.94 141 |
|
CDS-MVSNet | | | 49.25 145 | 53.97 129 | 43.75 156 | 47.53 159 | 64.53 135 | 48.59 151 | 42.27 138 | 33.77 162 | 26.64 144 | 40.46 102 | 42.26 128 | 30.01 178 | 61.77 123 | 61.71 132 | 67.48 169 | 73.28 134 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PLC |  | 44.22 14 | 49.14 146 | 51.75 148 | 46.10 139 | 42.78 181 | 55.60 185 | 53.11 131 | 34.46 185 | 55.69 72 | 32.47 117 | 34.16 139 | 41.45 132 | 48.91 100 | 57.13 166 | 54.09 180 | 64.84 176 | 64.10 174 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ACMH+ | | 47.85 12 | 49.13 147 | 48.86 167 | 49.44 121 | 56.75 97 | 62.01 153 | 56.62 110 | 47.55 74 | 37.49 141 | 23.98 153 | 26.68 182 | 29.46 188 | 43.12 135 | 57.45 164 | 58.85 158 | 68.62 161 | 70.05 157 |
|
NR-MVSNet | | | 48.84 148 | 51.76 147 | 45.44 145 | 57.66 94 | 60.64 159 | 47.39 156 | 47.63 70 | 37.26 142 | 13.31 190 | 37.31 121 | 29.64 187 | 33.53 162 | 63.52 102 | 62.09 128 | 73.10 132 | 71.89 144 |
|
CR-MVSNet | | | 48.82 149 | 51.85 146 | 45.29 146 | 46.74 161 | 55.95 180 | 52.06 139 | 34.21 186 | 42.17 115 | 31.74 120 | 32.92 147 | 42.53 127 | 45.00 125 | 58.80 154 | 61.11 141 | 61.99 191 | 69.47 160 |
|
thres600view7 | | | 48.44 150 | 50.23 158 | 46.35 138 | 54.05 121 | 64.60 133 | 50.18 145 | 47.34 75 | 31.73 171 | 20.74 169 | 32.28 152 | 32.62 168 | 33.79 160 | 60.84 134 | 56.11 172 | 71.99 139 | 73.40 131 |
|
test-mter | | | 48.31 151 | 55.04 123 | 40.45 173 | 34.12 204 | 59.02 169 | 41.77 180 | 28.05 205 | 38.43 134 | 22.67 159 | 39.35 115 | 44.40 117 | 41.88 141 | 60.30 140 | 61.68 134 | 74.20 108 | 82.12 73 |
|
PatchT | | | 48.11 152 | 51.27 154 | 44.43 149 | 50.13 145 | 61.58 155 | 33.59 194 | 32.92 196 | 40.38 126 | 31.74 120 | 30.60 163 | 36.93 146 | 45.00 125 | 58.80 154 | 61.11 141 | 73.19 130 | 69.47 160 |
|
TranMVSNet+NR-MVSNet | | | 48.06 153 | 51.36 153 | 44.21 152 | 50.38 141 | 62.09 152 | 47.28 157 | 50.88 43 | 36.11 149 | 13.25 191 | 37.51 120 | 31.60 176 | 30.70 176 | 59.34 150 | 62.53 122 | 72.81 135 | 70.31 153 |
|
TransMVSNet (Re) | | | 47.46 154 | 48.94 166 | 45.74 142 | 57.96 92 | 64.29 141 | 48.26 152 | 48.47 63 | 26.33 196 | 19.33 176 | 29.45 174 | 31.28 180 | 25.31 190 | 63.05 107 | 62.70 117 | 75.10 88 | 65.47 171 |
|
DU-MVS | | | 47.33 155 | 50.86 156 | 43.20 159 | 44.43 174 | 60.64 159 | 46.97 160 | 47.63 70 | 37.26 142 | 16.42 185 | 37.31 121 | 31.39 178 | 33.43 165 | 57.53 162 | 59.98 153 | 70.35 150 | 71.94 141 |
|
v7n | | | 47.22 156 | 48.38 168 | 45.87 141 | 48.20 155 | 63.58 142 | 50.69 143 | 40.93 146 | 26.60 195 | 26.44 145 | 26.52 183 | 29.65 186 | 38.19 147 | 58.22 158 | 60.23 150 | 70.79 148 | 73.83 128 |
|
UA-Net | | | 47.19 157 | 53.02 138 | 40.38 174 | 55.31 113 | 60.02 164 | 38.41 187 | 38.68 157 | 36.42 148 | 22.47 162 | 51.95 64 | 58.72 60 | 25.62 189 | 54.11 178 | 53.40 184 | 61.79 192 | 56.51 194 |
|
Baseline_NR-MVSNet | | | 47.14 158 | 50.83 157 | 42.84 162 | 44.43 174 | 63.31 145 | 44.50 172 | 50.36 48 | 37.71 139 | 11.25 196 | 30.84 160 | 32.09 171 | 30.96 174 | 57.53 162 | 63.73 108 | 75.53 78 | 70.60 152 |
|
pmmvs5 | | | 47.02 159 | 50.02 159 | 43.51 158 | 43.48 179 | 62.65 149 | 47.24 158 | 37.78 164 | 30.59 177 | 24.80 151 | 35.26 131 | 30.43 182 | 34.36 158 | 59.05 152 | 60.28 149 | 73.40 125 | 71.92 143 |
|
UniMVSNet (Re) | | | 46.89 160 | 51.65 150 | 41.34 171 | 45.60 166 | 62.71 148 | 44.05 173 | 47.10 80 | 37.24 144 | 13.55 189 | 36.90 123 | 34.54 160 | 26.76 187 | 57.56 161 | 59.90 155 | 70.98 146 | 72.69 139 |
|
thisisatest0515 | | | 46.88 161 | 49.57 162 | 43.74 157 | 45.33 169 | 60.46 162 | 46.19 166 | 41.06 145 | 30.34 178 | 29.73 133 | 32.50 149 | 31.63 175 | 35.43 156 | 58.75 156 | 61.71 132 | 64.70 178 | 71.59 147 |
|
tfpnnormal | | | 46.61 162 | 46.82 175 | 46.37 137 | 52.70 125 | 62.31 150 | 50.39 144 | 47.17 79 | 25.74 199 | 21.80 164 | 23.13 193 | 24.15 205 | 33.45 164 | 60.28 142 | 60.77 146 | 72.70 136 | 71.39 148 |
|
pm-mvs1 | | | 46.14 163 | 49.34 165 | 42.41 163 | 48.93 152 | 62.22 151 | 44.98 170 | 42.68 137 | 27.66 189 | 20.76 168 | 29.88 169 | 34.96 156 | 26.41 188 | 60.03 147 | 60.42 148 | 70.70 149 | 70.20 154 |
|
IterMVS-SCA-FT | | | 45.87 164 | 51.55 151 | 39.24 177 | 46.22 162 | 59.43 166 | 52.89 135 | 31.93 197 | 36.01 151 | 23.68 154 | 38.86 116 | 39.88 139 | 39.05 144 | 56.25 171 | 58.17 160 | 41.70 212 | 72.25 140 |
|
MIMVSNet | | | 45.62 165 | 49.56 163 | 41.02 172 | 38.17 189 | 64.43 138 | 49.48 147 | 35.43 177 | 36.53 147 | 20.06 173 | 22.58 194 | 35.16 155 | 28.75 183 | 61.97 120 | 62.20 126 | 74.20 108 | 64.07 175 |
|
gm-plane-assit | | | 45.41 166 | 48.03 170 | 42.34 164 | 56.49 99 | 40.48 210 | 24.54 214 | 34.15 191 | 14.44 217 | 6.59 207 | 17.82 204 | 35.32 154 | 49.82 91 | 72.93 16 | 74.11 11 | 82.47 2 | 81.12 92 |
|
ADS-MVSNet | | | 45.39 167 | 46.42 176 | 44.19 153 | 48.74 154 | 57.52 174 | 43.91 174 | 31.93 197 | 35.89 153 | 27.11 142 | 30.12 165 | 32.06 172 | 45.30 119 | 53.13 184 | 55.19 176 | 68.15 163 | 61.07 183 |
|
GG-mvs-BLEND | | | 44.87 168 | 64.59 62 | 21.86 210 | 0.01 226 | 73.70 58 | 55.99 115 | 0.01 223 | 50.70 81 | 0.01 227 | 49.18 72 | 63.61 42 | 0.01 222 | 63.83 99 | 64.50 100 | 75.13 87 | 86.62 40 |
|
pmmvs-eth3d | | | 44.67 169 | 45.27 181 | 43.98 155 | 42.56 182 | 55.72 184 | 44.97 171 | 40.81 147 | 31.96 170 | 29.13 134 | 26.09 185 | 25.27 202 | 36.69 152 | 55.13 175 | 56.62 169 | 69.68 157 | 66.12 170 |
|
MDTV_nov1_ep13_2view | | | 44.44 170 | 45.75 179 | 42.91 161 | 46.13 163 | 63.43 144 | 46.53 165 | 34.20 188 | 29.08 184 | 19.95 174 | 26.23 184 | 27.89 192 | 35.88 155 | 53.36 183 | 56.43 170 | 74.74 95 | 63.86 176 |
|
CMPMVS |  | 33.64 16 | 44.39 171 | 46.41 177 | 42.03 165 | 44.21 177 | 56.50 178 | 46.73 163 | 26.48 210 | 34.20 159 | 35.14 102 | 24.22 190 | 34.64 159 | 40.52 143 | 56.50 170 | 56.07 173 | 59.12 196 | 62.74 179 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Vis-MVSNet (Re-imp) | | | 44.31 172 | 51.67 149 | 35.72 187 | 51.82 130 | 55.24 186 | 34.57 193 | 41.63 140 | 39.10 131 | 8.84 203 | 45.93 83 | 46.63 108 | 14.45 203 | 54.09 179 | 57.03 166 | 63.00 187 | 63.65 177 |
|
TAMVS | | | 44.27 173 | 49.35 164 | 38.35 181 | 44.74 172 | 61.04 158 | 39.07 185 | 31.82 199 | 29.95 180 | 18.34 182 | 33.55 143 | 39.94 138 | 30.01 178 | 56.85 168 | 57.58 162 | 66.13 173 | 66.54 168 |
|
MVS-HIRNet | | | 43.98 174 | 43.63 185 | 44.39 151 | 47.66 157 | 59.31 167 | 32.66 200 | 33.88 193 | 30.15 179 | 33.75 112 | 16.82 209 | 28.39 191 | 45.25 120 | 53.92 182 | 55.00 178 | 73.16 131 | 61.80 180 |
|
UniMVSNet_ETH3D | | | 43.97 175 | 46.01 178 | 41.59 167 | 38.31 188 | 56.20 179 | 49.69 146 | 38.18 161 | 28.18 185 | 19.88 175 | 27.82 179 | 30.20 183 | 33.41 167 | 54.18 177 | 56.30 171 | 70.05 154 | 69.17 162 |
|
RPMNet | | | 43.70 176 | 48.17 169 | 38.48 180 | 45.52 168 | 55.95 180 | 37.66 188 | 26.63 209 | 42.17 115 | 25.47 147 | 29.59 172 | 37.61 142 | 33.87 159 | 50.85 189 | 52.02 188 | 61.75 193 | 69.00 163 |
|
PatchMatch-RL | | | 43.37 177 | 44.93 182 | 41.56 168 | 37.94 190 | 51.70 188 | 40.02 183 | 35.75 175 | 39.04 132 | 30.71 126 | 35.14 132 | 27.43 194 | 46.58 114 | 51.99 185 | 50.55 192 | 58.38 198 | 58.64 189 |
|
FMVSNet5 | | | 43.29 178 | 47.07 173 | 38.87 178 | 30.46 209 | 50.99 190 | 45.87 167 | 37.19 169 | 42.17 115 | 19.32 177 | 26.77 181 | 40.51 135 | 30.26 177 | 56.82 169 | 55.81 175 | 70.10 153 | 56.46 195 |
|
test0.0.03 1 | | | 43.07 179 | 46.95 174 | 38.54 179 | 51.68 132 | 58.77 171 | 35.28 189 | 46.35 90 | 32.05 169 | 12.44 192 | 28.53 176 | 35.52 152 | 14.40 204 | 57.12 167 | 56.93 167 | 71.11 145 | 59.69 185 |
|
anonymousdsp | | | 43.03 180 | 47.19 172 | 38.18 182 | 36.00 200 | 56.92 177 | 38.44 186 | 34.56 183 | 24.22 201 | 22.53 161 | 29.69 171 | 29.92 184 | 35.21 157 | 53.96 181 | 58.98 157 | 62.32 190 | 76.66 115 |
|
USDC | | | 42.80 181 | 45.57 180 | 39.58 175 | 34.55 202 | 51.13 189 | 42.61 177 | 36.21 172 | 39.59 129 | 23.65 155 | 33.13 146 | 20.87 211 | 37.86 148 | 55.35 174 | 57.16 165 | 62.61 188 | 61.75 181 |
|
pmnet_mix02 | | | 42.41 182 | 43.24 187 | 41.44 170 | 45.80 165 | 57.46 175 | 42.19 178 | 41.57 141 | 29.38 182 | 23.39 156 | 26.08 186 | 23.96 206 | 27.31 185 | 51.50 186 | 53.76 182 | 68.36 162 | 60.58 184 |
|
CHOSEN 280x420 | | | 42.39 183 | 47.40 171 | 36.54 185 | 33.56 205 | 39.66 213 | 40.67 182 | 26.88 208 | 34.66 156 | 18.03 183 | 30.09 166 | 45.59 113 | 44.82 127 | 54.46 176 | 54.00 181 | 55.28 205 | 73.32 133 |
|
pmmvs6 | | | 41.90 184 | 44.01 184 | 39.43 176 | 44.45 173 | 58.77 171 | 41.92 179 | 39.22 154 | 21.74 204 | 19.08 180 | 17.40 207 | 31.33 179 | 24.28 192 | 55.94 172 | 56.67 168 | 67.60 167 | 66.24 169 |
|
Anonymous20231206 | | | 40.63 185 | 43.29 186 | 37.53 183 | 48.88 153 | 55.81 182 | 34.99 190 | 44.98 102 | 28.16 186 | 10.16 200 | 17.26 208 | 27.50 193 | 18.28 197 | 54.00 180 | 55.07 177 | 67.85 165 | 65.23 172 |
|
CVMVSNet | | | 38.91 186 | 44.49 183 | 32.40 196 | 34.57 201 | 47.20 201 | 34.81 191 | 34.20 188 | 31.45 173 | 8.95 202 | 38.86 116 | 36.38 149 | 24.30 191 | 47.77 193 | 46.94 204 | 57.59 200 | 62.85 178 |
|
COLMAP_ROB |  | 34.79 15 | 38.65 187 | 40.72 190 | 36.23 186 | 36.41 199 | 49.22 197 | 45.51 169 | 27.60 207 | 37.81 137 | 20.54 170 | 23.37 192 | 24.25 204 | 28.11 184 | 51.02 188 | 48.55 195 | 59.22 195 | 50.82 205 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PEN-MVS | | | 38.23 188 | 41.72 189 | 34.15 189 | 40.56 186 | 50.07 193 | 33.17 197 | 44.35 110 | 27.64 191 | 5.54 213 | 30.84 160 | 26.67 195 | 14.99 201 | 45.64 196 | 52.38 187 | 66.29 172 | 58.83 188 |
|
WR-MVS | | | 37.61 189 | 42.15 188 | 32.31 198 | 43.64 178 | 51.85 187 | 29.39 206 | 43.35 126 | 27.65 190 | 4.40 215 | 29.90 168 | 29.80 185 | 10.46 208 | 46.73 195 | 51.98 189 | 62.60 189 | 57.16 192 |
|
TinyColmap | | | 37.18 190 | 37.37 203 | 36.95 184 | 31.17 208 | 45.21 204 | 39.71 184 | 34.65 181 | 29.83 181 | 20.20 171 | 18.54 202 | 13.72 219 | 38.27 146 | 50.33 190 | 51.57 190 | 57.71 199 | 52.42 202 |
|
CP-MVSNet | | | 37.09 191 | 40.62 191 | 32.99 191 | 37.56 192 | 48.25 198 | 32.75 198 | 43.05 131 | 27.88 188 | 5.93 209 | 31.27 158 | 25.82 200 | 15.09 199 | 43.37 203 | 48.82 193 | 63.54 184 | 58.90 186 |
|
DTE-MVSNet | | | 36.91 192 | 40.44 192 | 32.79 194 | 40.74 184 | 47.55 200 | 30.71 204 | 44.39 107 | 27.03 193 | 4.32 216 | 30.88 159 | 25.99 198 | 12.73 206 | 45.58 197 | 50.80 191 | 63.86 181 | 55.23 198 |
|
PS-CasMVS | | | 36.84 193 | 40.23 195 | 32.89 192 | 37.44 193 | 48.09 199 | 32.68 199 | 42.97 133 | 27.36 192 | 5.89 210 | 30.08 167 | 25.48 201 | 14.96 202 | 43.28 204 | 48.71 194 | 63.39 185 | 58.63 190 |
|
WR-MVS_H | | | 36.29 194 | 40.35 194 | 31.55 200 | 37.80 191 | 49.94 195 | 30.57 205 | 41.11 144 | 26.90 194 | 4.14 217 | 30.72 162 | 28.85 189 | 10.45 209 | 42.47 205 | 47.99 199 | 65.24 175 | 55.54 196 |
|
SixPastTwentyTwo | | | 36.11 195 | 37.80 199 | 34.13 190 | 37.13 196 | 46.72 202 | 34.58 192 | 34.96 179 | 21.20 207 | 11.66 193 | 29.15 175 | 19.88 212 | 29.77 180 | 44.93 198 | 48.34 196 | 56.67 202 | 54.41 200 |
|
test20.03 | | | 36.00 196 | 38.92 196 | 32.60 195 | 45.92 164 | 50.99 190 | 28.05 210 | 43.69 122 | 21.62 205 | 6.03 208 | 17.61 206 | 25.91 199 | 8.34 215 | 51.26 187 | 52.60 186 | 63.58 182 | 52.46 201 |
|
TDRefinement | | | 35.76 197 | 38.23 197 | 32.88 193 | 19.09 218 | 46.04 203 | 43.29 175 | 29.49 202 | 33.49 163 | 19.04 181 | 22.29 196 | 17.82 214 | 29.69 182 | 48.60 192 | 47.24 202 | 56.65 203 | 52.12 203 |
|
LTVRE_ROB | | 32.83 17 | 35.10 198 | 37.46 200 | 32.35 197 | 43.12 180 | 49.99 194 | 28.52 208 | 33.23 195 | 12.73 218 | 8.18 204 | 27.71 180 | 21.34 209 | 32.64 170 | 46.92 194 | 48.11 197 | 48.41 209 | 55.45 197 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PM-MVS | | | 34.96 199 | 38.17 198 | 31.22 201 | 22.78 213 | 40.82 209 | 33.56 195 | 23.61 212 | 29.16 183 | 21.43 167 | 28.00 178 | 21.43 208 | 31.90 172 | 44.33 201 | 42.12 207 | 54.07 207 | 61.34 182 |
|
testgi | | | 34.51 200 | 37.42 201 | 31.12 202 | 47.37 160 | 50.34 192 | 24.38 215 | 41.21 142 | 20.32 209 | 5.64 212 | 20.56 198 | 26.55 196 | 8.06 216 | 49.28 191 | 52.65 185 | 60.05 194 | 42.23 211 |
|
MDA-MVSNet-bldmvs | | | 34.31 201 | 34.11 207 | 34.54 188 | 24.73 211 | 49.66 196 | 33.42 196 | 43.03 132 | 21.59 206 | 11.10 197 | 19.81 200 | 12.68 220 | 31.41 173 | 35.59 210 | 48.05 198 | 63.56 183 | 51.39 204 |
|
N_pmnet | | | 34.09 202 | 35.74 205 | 32.17 199 | 37.25 195 | 43.17 207 | 32.26 202 | 35.57 176 | 26.22 197 | 10.60 199 | 20.44 199 | 19.38 213 | 20.20 195 | 44.59 200 | 47.00 203 | 57.13 201 | 49.35 208 |
|
RPSCF | | | 33.61 203 | 40.43 193 | 25.65 206 | 16.00 220 | 32.41 215 | 31.73 203 | 13.33 219 | 50.13 83 | 23.12 157 | 31.56 154 | 40.09 136 | 32.73 169 | 41.14 209 | 37.05 210 | 36.99 215 | 50.63 206 |
|
EU-MVSNet | | | 33.00 204 | 36.49 204 | 28.92 203 | 33.10 206 | 42.86 208 | 29.32 207 | 35.99 173 | 22.94 202 | 5.83 211 | 25.29 187 | 24.43 203 | 15.21 198 | 41.22 208 | 41.65 209 | 54.08 206 | 57.01 193 |
|
pmmvs3 | | | 31.22 205 | 33.62 208 | 28.43 204 | 22.82 212 | 40.26 212 | 26.40 211 | 22.05 214 | 16.89 215 | 10.99 198 | 14.72 211 | 16.26 215 | 29.70 181 | 44.82 199 | 47.39 201 | 58.61 197 | 54.98 199 |
|
FC-MVSNet-test | | | 30.97 206 | 37.38 202 | 23.49 209 | 37.42 194 | 33.68 214 | 19.43 217 | 39.27 152 | 31.37 174 | 1.67 223 | 38.56 118 | 28.85 189 | 6.06 219 | 41.40 206 | 43.80 206 | 37.10 214 | 44.03 210 |
|
new-patchmatchnet | | | 30.47 207 | 32.80 210 | 27.75 205 | 36.81 197 | 43.98 205 | 24.85 213 | 39.29 151 | 20.52 208 | 4.06 218 | 15.94 210 | 16.05 216 | 9.57 210 | 41.32 207 | 42.05 208 | 51.94 208 | 49.74 207 |
|
MIMVSNet1 | | | 29.60 208 | 33.37 209 | 25.20 208 | 19.52 216 | 43.94 206 | 26.29 212 | 37.92 163 | 19.95 212 | 3.79 219 | 12.64 215 | 21.99 207 | 7.70 217 | 43.83 202 | 46.32 205 | 55.97 204 | 44.92 209 |
|
FPMVS | | | 26.87 209 | 28.19 211 | 25.32 207 | 27.09 210 | 29.49 216 | 32.28 201 | 17.79 216 | 28.09 187 | 11.33 194 | 19.38 201 | 14.69 217 | 20.88 194 | 35.11 211 | 32.82 212 | 42.56 211 | 37.75 212 |
|
PMVS |  | 18.18 18 | 21.95 210 | 22.85 212 | 20.90 211 | 21.92 214 | 14.78 218 | 19.95 216 | 17.31 217 | 15.69 216 | 11.32 195 | 13.70 212 | 13.91 218 | 15.02 200 | 34.92 212 | 31.72 213 | 39.85 213 | 35.20 213 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 19.10 211 | 22.71 213 | 14.89 213 | 10.93 222 | 24.08 217 | 14.22 218 | 13.94 218 | 18.68 213 | 2.93 220 | 12.84 214 | 11.27 221 | 11.94 207 | 30.57 214 | 30.58 214 | 35.38 216 | 30.93 214 |
|
Gipuma |  | | 17.16 212 | 17.83 214 | 16.36 212 | 18.76 219 | 12.15 221 | 11.97 219 | 27.78 206 | 17.94 214 | 4.86 214 | 2.53 222 | 2.73 226 | 8.90 213 | 34.32 213 | 36.09 211 | 25.92 217 | 19.06 217 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_method | | | 13.92 213 | 17.14 215 | 10.16 216 | 1.69 225 | 6.92 224 | 11.25 220 | 5.74 220 | 22.41 203 | 8.11 205 | 10.40 216 | 20.91 210 | 13.73 205 | 22.17 215 | 13.98 217 | 20.44 218 | 23.18 215 |
|
PMMVS2 | | | 12.25 214 | 14.17 216 | 10.00 217 | 11.39 221 | 14.35 219 | 8.21 221 | 19.29 215 | 9.31 219 | 0.19 226 | 7.38 218 | 6.19 224 | 1.10 221 | 19.26 216 | 21.13 216 | 19.85 219 | 21.56 216 |
|
E-PMN | | | 10.66 215 | 8.30 218 | 13.42 214 | 19.91 215 | 7.87 222 | 4.30 224 | 29.47 203 | 8.37 222 | 1.70 222 | 3.67 219 | 1.29 229 | 9.12 212 | 8.98 220 | 13.59 218 | 16.03 220 | 14.30 220 |
|
EMVS | | | 10.15 216 | 7.67 219 | 13.05 215 | 19.22 217 | 7.77 223 | 4.48 222 | 29.34 204 | 8.65 221 | 1.67 223 | 3.55 220 | 1.36 228 | 9.15 211 | 8.15 221 | 11.79 220 | 14.44 221 | 12.43 221 |
|
MVE |  | 10.35 19 | 9.76 217 | 11.08 217 | 8.22 218 | 4.43 223 | 13.04 220 | 3.36 225 | 23.57 213 | 5.74 223 | 1.76 221 | 3.09 221 | 1.75 227 | 6.78 218 | 12.78 218 | 23.04 215 | 9.44 222 | 18.09 218 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 0.01 218 | 0.01 220 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.01 224 | 0.00 228 | 0.02 223 | 0.00 230 | 0.00 224 | 0.01 222 | 0.01 221 | 0.00 225 | 0.03 222 |
|
test123 | | | 0.01 218 | 0.01 220 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.01 224 | 0.00 228 | 0.02 223 | 0.00 230 | 0.01 222 | 0.00 223 | 0.01 221 | 0.00 225 | 0.03 222 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 226 | 0.00 228 | 0.00 225 | 0.00 230 | 0.00 224 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 226 | 0.00 228 | 0.00 225 | 0.00 230 | 0.00 224 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 224 | 0.00 226 | 0.00 228 | 0.00 225 | 0.00 230 | 0.00 224 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 224 |
|
RE-MVS-def | | | | | | | | | | | 21.59 166 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 80.07 5 | | | | | |
|
SR-MVS | | | | | | 63.74 47 | | | 48.51 62 | | | | 73.80 19 | | | | | |
|
Anonymous202405211 | | | | 56.81 110 | | 60.91 71 | 73.48 61 | 59.82 86 | 48.68 59 | 39.26 130 | | 24.00 191 | 46.77 107 | 50.73 85 | 65.28 80 | 65.72 82 | 75.37 83 | 83.17 66 |
|
our_test_3 | | | | | | 49.68 147 | 61.50 156 | 45.84 168 | | | | | | | | | | |
|
ambc | | | | 35.52 206 | | 38.36 187 | 40.40 211 | 28.38 209 | | 25.20 200 | 14.87 188 | 13.22 213 | 7.54 223 | 19.34 196 | 55.63 173 | 47.79 200 | 47.91 210 | 58.89 187 |
|
MTAPA | | | | | | | | | | | 54.82 17 | | 71.98 25 | | | | | |
|
MTMP | | | | | | | | | | | 50.64 33 | | 68.31 31 | | | | | |
|
Patchmatch-RL test | | | | | | | | 0.69 227 | | | | | | | | | | |
|
tmp_tt | | | | | 4.41 219 | 2.56 224 | 1.81 226 | 2.61 226 | 0.27 222 | 20.12 210 | 9.81 201 | 17.69 205 | 9.04 222 | 1.96 220 | 12.88 217 | 12.11 219 | 9.23 223 | |
|
XVS | | | | | | 62.70 56 | 73.06 64 | 61.80 72 | | | 42.02 73 | | 63.42 44 | | | | 74.68 99 | |
|
X-MVStestdata | | | | | | 62.70 56 | 73.06 64 | 61.80 72 | | | 42.02 73 | | 63.42 44 | | | | 74.68 99 | |
|
abl_6 | | | | | 63.79 24 | 70.80 24 | 81.22 13 | 65.26 61 | 53.25 31 | 77.02 19 | 53.02 25 | 65.14 31 | 73.74 20 | 60.30 21 | | | 80.13 8 | 90.27 10 |
|
mPP-MVS | | | | | | 63.08 52 | | | | | | | 62.34 47 | | | | | |
|
NP-MVS | | | | | | | | | | 72.62 31 | | | | | | | | |
|
Patchmtry | | | | | | | 64.49 137 | 52.06 139 | 34.21 186 | | 31.74 120 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 5.87 225 | 4.32 223 | 1.74 221 | 9.04 220 | 1.30 225 | 7.97 217 | 3.16 225 | 8.56 214 | 9.74 219 | | 6.30 224 | 14.51 219 |
|