SED-MVS | | | 78.97 1 | 84.56 1 | 72.45 1 | 81.70 2 | 86.20 2 | 77.82 4 | 59.97 5 | 88.89 1 | 65.96 1 | 86.00 5 | 84.02 1 | 70.03 1 | 76.19 4 | 76.17 5 | 79.22 19 | 94.46 1 |
|
DVP-MVS |  | | 77.54 2 | 84.41 2 | 69.54 6 | 79.93 3 | 86.08 3 | 77.20 9 | 60.31 3 | 88.62 2 | 62.54 2 | 86.67 3 | 83.77 2 | 58.04 33 | 75.84 7 | 75.69 8 | 79.21 20 | 94.17 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SF-MVS | | | 76.41 3 | 80.45 6 | 71.69 2 | 82.90 1 | 86.54 1 | 82.08 1 | 64.58 1 | 81.67 11 | 59.82 5 | 86.26 4 | 77.90 8 | 61.11 16 | 71.81 27 | 70.75 34 | 79.63 12 | 88.22 23 |
|
MSP-MVS | | | 76.38 4 | 82.99 3 | 68.68 7 | 71.93 18 | 78.65 23 | 77.61 6 | 55.44 18 | 88.04 3 | 60.25 4 | 92.24 1 | 77.08 11 | 69.84 2 | 75.48 8 | 75.69 8 | 76.99 58 | 93.75 3 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 75.99 5 | 81.32 5 | 69.77 5 | 71.86 20 | 85.13 4 | 77.62 5 | 59.87 7 | 82.69 10 | 61.55 3 | 83.05 9 | 79.63 6 | 69.78 3 | 76.01 5 | 75.89 6 | 77.92 40 | 86.86 35 |
|
DPE-MVS |  | | 75.74 6 | 82.82 4 | 67.49 11 | 77.07 7 | 82.01 8 | 77.05 10 | 57.70 11 | 86.55 5 | 55.44 16 | 90.50 2 | 82.52 3 | 60.33 20 | 72.99 15 | 72.98 16 | 77.33 49 | 92.19 6 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DPM-MVS | | | 74.63 7 | 78.53 11 | 70.07 3 | 76.10 9 | 82.56 7 | 79.30 2 | 59.89 6 | 80.49 13 | 57.75 11 | 66.98 26 | 76.16 14 | 65.95 5 | 79.35 1 | 78.47 1 | 81.45 5 | 85.71 44 |
|
APDe-MVS | | | 74.59 8 | 80.23 7 | 68.01 10 | 76.51 8 | 80.20 15 | 77.39 7 | 58.18 9 | 85.31 6 | 56.84 13 | 84.89 6 | 76.08 15 | 60.66 18 | 71.85 26 | 71.76 21 | 78.47 29 | 91.49 9 |
|
MCST-MVS | | | 74.06 9 | 77.71 14 | 69.79 4 | 78.95 4 | 81.99 9 | 76.33 11 | 62.16 2 | 75.89 19 | 52.96 24 | 64.37 31 | 73.30 22 | 65.66 6 | 77.49 2 | 77.43 3 | 82.67 1 | 93.51 4 |
|
CNVR-MVS | | | 73.87 10 | 78.60 10 | 68.35 9 | 73.32 13 | 81.97 10 | 76.19 12 | 59.29 8 | 80.12 14 | 56.70 14 | 67.09 25 | 76.48 12 | 64.26 8 | 75.88 6 | 75.75 7 | 80.32 8 | 92.93 5 |
|
SMA-MVS |  | | 73.31 11 | 79.53 8 | 66.05 13 | 71.25 21 | 80.13 16 | 74.99 13 | 56.09 14 | 84.14 7 | 54.48 18 | 73.74 16 | 80.23 4 | 61.43 13 | 74.96 9 | 74.09 12 | 78.08 37 | 89.42 13 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CSCG | | | 72.98 12 | 76.86 16 | 68.46 8 | 78.23 6 | 81.74 11 | 77.26 8 | 60.00 4 | 75.61 22 | 59.06 6 | 62.72 33 | 77.42 10 | 56.63 45 | 74.24 11 | 77.18 4 | 79.56 13 | 89.13 17 |
|
HPM-MVS++ |  | | 72.44 13 | 78.73 9 | 65.11 14 | 71.88 19 | 77.31 33 | 71.98 21 | 55.67 16 | 83.11 9 | 53.59 22 | 75.90 12 | 78.49 7 | 61.00 17 | 73.99 12 | 73.31 15 | 76.55 62 | 88.97 18 |
|
APD-MVS |  | | 71.86 14 | 77.91 13 | 64.80 16 | 70.39 25 | 75.69 43 | 74.02 15 | 56.14 13 | 83.59 8 | 52.92 25 | 84.67 7 | 73.46 21 | 59.30 26 | 69.47 43 | 69.66 43 | 76.02 69 | 88.84 19 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 71.50 15 | 77.27 15 | 64.77 17 | 69.64 27 | 79.26 17 | 73.53 16 | 54.73 24 | 79.32 16 | 54.23 19 | 74.81 13 | 74.61 19 | 59.40 25 | 73.00 14 | 72.17 19 | 77.10 57 | 87.72 27 |
|
NCCC | | | 71.36 16 | 75.44 18 | 66.60 12 | 72.46 16 | 79.18 19 | 74.16 14 | 57.83 10 | 76.93 17 | 54.19 20 | 63.47 32 | 71.08 26 | 61.30 15 | 73.56 13 | 73.70 13 | 79.69 11 | 90.19 10 |
|
train_agg | | | 70.74 17 | 76.53 17 | 63.98 19 | 70.33 26 | 75.16 47 | 72.33 20 | 55.78 15 | 75.74 20 | 50.41 33 | 80.08 11 | 73.15 23 | 57.75 37 | 71.96 25 | 70.94 31 | 77.25 53 | 88.69 21 |
|
TSAR-MVS + MP. | | | 70.28 18 | 75.09 19 | 64.66 18 | 69.34 29 | 64.61 131 | 72.60 19 | 56.29 12 | 80.73 12 | 58.36 9 | 84.56 8 | 75.22 17 | 55.37 52 | 69.11 49 | 69.45 44 | 75.97 71 | 81.97 77 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DeepPCF-MVS | | 62.48 1 | 70.07 19 | 78.36 12 | 60.39 41 | 62.38 59 | 76.96 36 | 65.54 57 | 52.23 32 | 87.46 4 | 49.07 34 | 74.05 15 | 76.19 13 | 59.01 28 | 72.79 19 | 71.61 23 | 74.13 111 | 89.49 12 |
|
SteuartSystems-ACMMP | | | 69.78 20 | 74.76 20 | 63.98 19 | 73.45 12 | 78.56 24 | 73.13 18 | 55.24 21 | 70.68 32 | 48.93 36 | 70.43 21 | 69.10 28 | 54.00 58 | 72.78 21 | 72.98 16 | 79.14 21 | 88.74 20 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 68.75 21 | 72.84 22 | 63.98 19 | 68.87 33 | 75.09 48 | 71.87 22 | 51.22 36 | 73.50 26 | 58.17 10 | 68.05 24 | 68.67 29 | 57.79 36 | 70.49 36 | 69.23 46 | 75.98 70 | 84.84 55 |
|
SD-MVS | | | 68.30 22 | 72.58 24 | 63.31 24 | 69.24 30 | 67.85 104 | 70.81 27 | 53.65 29 | 79.64 15 | 58.52 8 | 74.31 14 | 75.37 16 | 53.52 64 | 65.63 74 | 63.56 109 | 74.13 111 | 81.73 82 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DELS-MVS | | | 67.36 23 | 70.34 37 | 63.89 22 | 69.12 31 | 81.55 12 | 70.82 26 | 55.02 22 | 53.38 75 | 48.83 37 | 56.45 47 | 59.35 56 | 60.05 23 | 74.93 10 | 74.78 10 | 79.51 14 | 91.95 7 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MP-MVS |  | | 67.34 24 | 73.08 21 | 60.64 38 | 66.20 38 | 76.62 38 | 69.22 33 | 50.92 38 | 70.07 33 | 48.81 38 | 69.66 22 | 70.12 27 | 53.68 61 | 68.41 54 | 69.13 48 | 74.98 90 | 87.53 29 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
DeepC-MVS | | 60.65 2 | 67.33 25 | 71.52 31 | 62.44 27 | 59.79 79 | 74.84 50 | 68.89 34 | 55.56 17 | 73.91 25 | 53.50 23 | 55.00 53 | 65.63 34 | 60.08 22 | 71.99 24 | 71.33 27 | 76.85 59 | 87.94 26 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HQP-MVS | | | 67.22 26 | 72.08 26 | 61.56 33 | 66.76 36 | 73.58 59 | 71.41 23 | 52.98 30 | 69.92 35 | 43.85 60 | 70.58 20 | 58.75 58 | 56.76 43 | 72.90 17 | 71.88 20 | 77.57 45 | 86.94 34 |
|
CANet | | | 67.21 27 | 71.83 28 | 61.83 29 | 64.51 44 | 79.25 18 | 66.72 50 | 48.73 55 | 68.49 40 | 50.63 32 | 61.40 37 | 66.47 32 | 61.44 12 | 69.31 47 | 69.90 39 | 78.94 25 | 88.00 24 |
|
CDPH-MVS | | | 67.03 28 | 71.64 29 | 61.65 32 | 69.10 32 | 76.84 37 | 71.35 25 | 55.42 19 | 67.02 43 | 42.83 65 | 65.27 30 | 64.60 38 | 53.16 67 | 69.70 42 | 71.40 25 | 78.02 39 | 86.67 36 |
|
MAR-MVS | | | 66.85 29 | 69.81 38 | 63.39 23 | 73.56 11 | 80.51 14 | 69.87 29 | 51.51 35 | 67.78 42 | 46.44 46 | 51.09 67 | 61.60 51 | 60.38 19 | 72.67 22 | 73.61 14 | 78.59 26 | 81.44 86 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DeepC-MVS_fast | | 60.18 3 | 66.84 30 | 70.69 35 | 62.36 28 | 62.76 53 | 73.21 62 | 67.96 37 | 52.31 31 | 72.26 29 | 51.03 27 | 56.50 46 | 64.26 39 | 63.37 9 | 71.64 28 | 70.85 32 | 76.70 61 | 86.10 41 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 66.77 31 | 72.21 25 | 60.44 40 | 61.23 67 | 70.00 85 | 64.26 61 | 47.79 68 | 72.98 27 | 56.32 15 | 71.35 19 | 72.33 24 | 55.68 51 | 65.49 75 | 66.66 70 | 77.35 47 | 86.62 37 |
|
MVS_0304 | | | 66.31 32 | 71.61 30 | 60.14 43 | 62.59 57 | 78.98 21 | 67.13 46 | 45.75 95 | 64.35 48 | 45.23 54 | 60.69 39 | 67.67 31 | 61.73 11 | 71.09 31 | 71.03 29 | 78.41 33 | 87.44 30 |
|
ACMMPR | | | 66.20 33 | 71.51 32 | 60.00 45 | 65.34 42 | 74.04 54 | 69.39 31 | 50.92 38 | 71.97 30 | 46.04 48 | 66.79 27 | 65.68 33 | 53.07 68 | 68.93 51 | 69.12 49 | 75.21 84 | 84.05 61 |
|
3Dnovator | | 58.39 4 | 65.97 34 | 66.85 52 | 64.94 15 | 73.72 10 | 79.03 20 | 67.73 40 | 54.25 25 | 61.52 51 | 52.79 26 | 42.27 94 | 60.73 54 | 62.01 10 | 71.29 29 | 71.75 22 | 79.12 22 | 81.34 89 |
|
TSAR-MVS + ACMM | | | 65.95 35 | 72.83 23 | 57.93 55 | 69.35 28 | 65.85 123 | 73.36 17 | 39.84 149 | 76.00 18 | 48.69 39 | 82.54 10 | 75.03 18 | 49.38 96 | 65.33 77 | 63.42 111 | 66.94 171 | 81.67 83 |
|
canonicalmvs | | | 65.55 36 | 70.75 34 | 59.49 49 | 62.11 62 | 78.26 28 | 66.52 51 | 43.82 119 | 71.54 31 | 47.84 41 | 61.30 38 | 61.68 49 | 58.48 31 | 67.56 61 | 69.67 42 | 78.16 36 | 85.25 51 |
|
QAPM | | | 65.47 37 | 67.82 45 | 62.72 26 | 72.56 14 | 81.17 13 | 67.43 43 | 55.38 20 | 56.07 68 | 43.29 63 | 43.60 89 | 65.38 36 | 59.10 27 | 72.20 23 | 70.76 33 | 78.56 27 | 85.59 48 |
|
PGM-MVS | | | 65.35 38 | 70.43 36 | 59.43 50 | 65.78 40 | 73.75 56 | 69.41 30 | 48.18 64 | 68.80 39 | 45.37 52 | 65.88 29 | 64.04 40 | 52.68 75 | 68.94 50 | 68.68 54 | 75.18 85 | 82.93 68 |
|
PHI-MVS | | | 65.17 39 | 72.07 27 | 57.11 65 | 63.02 51 | 77.35 32 | 67.04 47 | 48.14 66 | 68.03 41 | 37.56 91 | 66.00 28 | 65.39 35 | 53.19 66 | 70.68 33 | 70.57 36 | 73.72 119 | 86.46 40 |
|
CLD-MVS | | | 64.69 40 | 67.25 47 | 61.69 31 | 68.22 35 | 78.33 26 | 63.09 65 | 47.59 71 | 69.64 36 | 53.98 21 | 54.87 54 | 53.94 74 | 57.87 34 | 72.79 19 | 71.34 26 | 79.40 16 | 69.87 159 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MVS_111021_HR | | | 64.66 41 | 67.11 50 | 61.80 30 | 71.04 22 | 77.91 29 | 62.75 68 | 54.78 23 | 51.43 78 | 47.54 42 | 53.77 57 | 54.85 71 | 56.84 41 | 70.59 34 | 71.50 24 | 77.86 41 | 89.70 11 |
|
EPNet | | | 64.39 42 | 70.93 33 | 56.77 67 | 60.58 74 | 75.77 40 | 59.28 89 | 50.58 42 | 69.93 34 | 40.73 80 | 68.59 23 | 61.60 51 | 53.72 59 | 68.65 52 | 68.07 56 | 75.75 76 | 83.87 63 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CP-MVS | | | 64.37 43 | 69.48 39 | 58.39 52 | 62.21 61 | 71.81 77 | 67.27 44 | 49.51 49 | 69.40 38 | 45.76 50 | 60.41 40 | 64.96 37 | 51.84 77 | 67.33 65 | 67.57 63 | 73.78 118 | 84.89 53 |
|
EC-MVSNet | | | 64.30 44 | 68.19 41 | 59.76 47 | 62.97 52 | 75.31 46 | 67.26 45 | 44.19 113 | 60.73 54 | 47.52 43 | 55.84 49 | 62.12 47 | 57.67 38 | 70.71 32 | 67.47 64 | 78.97 24 | 85.13 52 |
|
casdiffmvs_mvg |  | | 64.26 45 | 67.60 46 | 60.36 42 | 62.26 60 | 78.54 25 | 69.39 31 | 48.33 62 | 56.54 63 | 45.36 53 | 52.86 61 | 57.36 63 | 58.42 32 | 70.28 37 | 70.24 38 | 78.43 30 | 87.39 32 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
casdiffmvs |  | | 63.87 46 | 67.08 51 | 60.12 44 | 60.90 70 | 78.29 27 | 67.91 38 | 48.01 67 | 55.89 70 | 44.97 55 | 50.45 69 | 56.94 64 | 59.54 24 | 70.17 40 | 69.81 40 | 79.41 15 | 87.99 25 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MVS_Test | | | 63.75 47 | 67.24 48 | 59.68 48 | 60.01 75 | 76.99 35 | 68.13 36 | 45.17 99 | 57.45 62 | 43.74 61 | 53.07 60 | 56.16 69 | 61.33 14 | 70.27 38 | 71.11 28 | 79.72 10 | 85.63 47 |
|
X-MVS | | | 63.53 48 | 68.62 40 | 57.60 59 | 64.77 43 | 73.06 63 | 65.82 55 | 50.53 43 | 65.77 45 | 42.02 73 | 58.20 44 | 63.42 43 | 47.83 107 | 68.25 58 | 68.50 55 | 74.61 100 | 83.16 67 |
|
ACMMP |  | | 63.27 49 | 67.85 44 | 57.93 55 | 62.64 56 | 72.30 74 | 68.23 35 | 48.77 54 | 66.50 44 | 43.05 64 | 62.07 34 | 57.84 61 | 49.98 88 | 66.58 69 | 66.46 76 | 74.93 91 | 83.17 65 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CS-MVS | | | 63.16 50 | 68.01 43 | 57.49 60 | 57.39 95 | 72.73 68 | 63.38 64 | 45.16 100 | 59.37 56 | 46.49 45 | 58.93 43 | 57.68 62 | 56.31 46 | 71.12 30 | 70.37 37 | 76.23 68 | 85.88 42 |
|
ETV-MVS | | | 62.88 51 | 68.18 42 | 56.70 68 | 58.47 87 | 74.89 49 | 60.26 81 | 43.96 116 | 58.27 61 | 42.37 71 | 61.47 36 | 56.56 65 | 57.80 35 | 68.00 59 | 68.74 52 | 77.34 48 | 89.33 16 |
|
AdaColmap |  | | 62.79 52 | 62.63 68 | 62.98 25 | 70.82 23 | 72.90 66 | 67.84 39 | 54.09 27 | 65.14 46 | 50.71 30 | 41.78 96 | 47.64 102 | 60.17 21 | 67.41 64 | 66.83 68 | 74.28 106 | 76.69 113 |
|
3Dnovator+ | | 55.76 7 | 62.70 53 | 65.10 60 | 59.90 46 | 65.89 39 | 72.15 75 | 62.94 67 | 49.82 48 | 62.77 50 | 49.06 35 | 43.62 88 | 61.47 53 | 58.60 30 | 68.51 53 | 66.75 69 | 73.08 133 | 80.40 97 |
|
OpenMVS |  | 55.62 8 | 62.57 54 | 63.76 65 | 61.19 35 | 72.13 17 | 78.84 22 | 64.42 59 | 50.51 44 | 56.44 65 | 45.67 51 | 36.88 125 | 56.51 66 | 56.66 44 | 68.28 57 | 68.96 50 | 77.73 43 | 80.44 96 |
|
PVSNet_BlendedMVS | | | 62.53 55 | 66.37 54 | 58.05 53 | 58.17 88 | 75.70 41 | 61.30 74 | 48.67 58 | 58.67 57 | 50.93 28 | 55.43 51 | 49.39 91 | 53.01 70 | 69.46 44 | 66.55 73 | 76.24 66 | 89.39 14 |
|
PVSNet_Blended | | | 62.53 55 | 66.37 54 | 58.05 53 | 58.17 88 | 75.70 41 | 61.30 74 | 48.67 58 | 58.67 57 | 50.93 28 | 55.43 51 | 49.39 91 | 53.01 70 | 69.46 44 | 66.55 73 | 76.24 66 | 89.39 14 |
|
MVSTER | | | 62.51 57 | 67.22 49 | 57.02 66 | 55.05 115 | 69.23 93 | 63.02 66 | 46.88 82 | 61.11 53 | 43.95 59 | 59.20 42 | 58.86 57 | 56.80 42 | 69.13 48 | 70.98 30 | 76.41 64 | 82.04 74 |
|
CHOSEN 1792x2688 | | | 62.48 58 | 64.06 64 | 60.64 38 | 72.50 15 | 84.18 5 | 62.43 69 | 53.77 28 | 47.90 92 | 39.85 84 | 25.15 188 | 44.76 116 | 53.72 59 | 77.29 3 | 77.61 2 | 81.60 4 | 91.53 8 |
|
CostFormer | | | 62.45 59 | 65.68 58 | 58.67 51 | 63.29 48 | 77.65 30 | 67.62 41 | 38.42 159 | 54.04 73 | 46.00 49 | 48.27 77 | 57.89 60 | 56.97 40 | 67.03 67 | 67.79 62 | 79.74 9 | 87.09 33 |
|
PCF-MVS | | 55.99 6 | 62.31 60 | 66.60 53 | 57.32 63 | 59.12 86 | 73.68 58 | 67.53 42 | 48.71 56 | 61.35 52 | 42.83 65 | 51.33 66 | 63.48 42 | 53.48 65 | 65.64 73 | 64.87 93 | 72.22 138 | 85.83 43 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
diffmvs |  | | 62.30 61 | 66.05 56 | 57.92 57 | 57.08 96 | 75.60 45 | 66.90 48 | 47.06 80 | 55.45 72 | 43.37 62 | 53.45 59 | 55.60 70 | 57.21 39 | 66.57 70 | 68.00 58 | 75.89 74 | 87.70 28 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
DI_MVS_plusplus_trai | | | 61.86 62 | 65.26 59 | 57.90 58 | 57.93 92 | 74.51 52 | 66.30 52 | 46.49 88 | 49.96 82 | 41.62 76 | 42.69 92 | 61.77 48 | 58.74 29 | 70.25 39 | 69.32 45 | 76.31 65 | 88.30 22 |
|
MSLP-MVS++ | | | 61.81 63 | 62.19 73 | 61.37 34 | 68.33 34 | 63.08 145 | 70.75 28 | 38.89 155 | 63.96 49 | 57.51 12 | 48.59 75 | 61.66 50 | 53.67 62 | 62.04 119 | 59.92 154 | 79.03 23 | 76.08 116 |
|
CS-MVS-test | | | 61.68 64 | 65.97 57 | 56.67 69 | 57.77 93 | 72.59 71 | 57.63 96 | 45.54 97 | 58.53 60 | 47.11 44 | 59.45 41 | 56.34 67 | 55.15 53 | 64.52 87 | 65.03 91 | 76.80 60 | 85.34 50 |
|
OPM-MVS | | | 61.59 65 | 62.30 72 | 60.76 37 | 66.53 37 | 73.35 61 | 71.41 23 | 54.18 26 | 40.82 123 | 41.57 77 | 45.70 83 | 54.84 72 | 54.43 57 | 69.92 41 | 69.19 47 | 76.45 63 | 82.25 71 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MS-PatchMatch | | | 61.41 66 | 61.88 76 | 60.85 36 | 70.57 24 | 75.98 39 | 66.29 53 | 46.91 81 | 50.56 80 | 48.28 40 | 36.30 128 | 51.64 78 | 50.95 83 | 72.89 18 | 70.65 35 | 82.13 3 | 75.17 124 |
|
EIA-MVS | | | 60.56 67 | 64.29 63 | 56.20 74 | 59.14 85 | 72.68 70 | 59.55 87 | 43.56 122 | 51.78 77 | 41.01 79 | 55.47 50 | 51.93 77 | 55.87 48 | 65.01 81 | 66.57 72 | 78.06 38 | 86.60 39 |
|
ACMP | | 56.21 5 | 59.78 68 | 61.81 78 | 57.41 62 | 61.15 68 | 68.88 95 | 65.98 54 | 48.85 53 | 58.56 59 | 44.19 58 | 48.89 73 | 46.31 108 | 48.56 101 | 63.61 102 | 64.49 101 | 75.75 76 | 81.91 78 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LGP-MVS_train | | | 59.69 69 | 62.59 69 | 56.31 72 | 61.94 63 | 68.15 101 | 66.90 48 | 48.15 65 | 59.75 55 | 38.47 87 | 50.38 70 | 48.34 99 | 46.87 112 | 65.39 76 | 64.93 92 | 75.51 80 | 81.21 91 |
|
Effi-MVS+ | | | 59.63 70 | 61.78 79 | 57.12 64 | 61.56 64 | 71.63 78 | 63.61 62 | 47.59 71 | 47.18 93 | 37.79 88 | 45.29 84 | 49.93 87 | 56.27 47 | 67.45 62 | 67.06 66 | 75.91 72 | 83.93 62 |
|
CPTT-MVS | | | 59.54 71 | 64.47 62 | 53.79 84 | 54.99 117 | 67.63 107 | 65.48 58 | 44.59 107 | 64.81 47 | 37.74 89 | 51.55 64 | 59.90 55 | 49.77 92 | 61.83 121 | 61.26 139 | 70.18 152 | 84.31 60 |
|
baseline2 | | | 59.20 72 | 61.72 80 | 56.27 73 | 59.61 81 | 74.12 53 | 58.65 92 | 49.42 50 | 48.10 90 | 40.12 83 | 49.10 72 | 44.15 118 | 51.24 80 | 66.65 68 | 67.88 61 | 78.56 27 | 82.06 73 |
|
GeoE | | | 58.97 73 | 60.94 81 | 56.67 69 | 61.27 66 | 72.71 69 | 61.35 73 | 45.69 96 | 49.19 86 | 41.22 78 | 39.55 112 | 49.58 90 | 52.79 74 | 64.79 83 | 65.89 80 | 77.73 43 | 84.87 54 |
|
baseline | | | 58.65 74 | 61.99 74 | 54.75 79 | 54.70 119 | 71.85 76 | 60.20 82 | 43.91 117 | 55.99 69 | 40.13 82 | 53.50 58 | 50.91 84 | 55.76 49 | 61.29 129 | 61.73 131 | 73.83 115 | 78.68 105 |
|
PVSNet_Blended_VisFu | | | 58.56 75 | 62.33 71 | 54.16 81 | 56.90 97 | 73.92 55 | 57.72 95 | 46.16 93 | 44.23 101 | 42.73 68 | 46.26 80 | 51.06 83 | 46.28 115 | 67.99 60 | 65.38 86 | 75.18 85 | 87.44 30 |
|
ACMM | | 53.73 9 | 57.91 76 | 58.27 96 | 57.49 60 | 63.10 49 | 66.45 117 | 65.65 56 | 49.02 52 | 53.69 74 | 42.67 69 | 36.41 127 | 46.07 111 | 50.38 86 | 64.74 85 | 64.63 98 | 74.14 110 | 75.91 117 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CANet_DTU | | | 57.87 77 | 63.63 66 | 51.15 100 | 52.18 126 | 70.20 84 | 58.14 94 | 37.32 166 | 56.49 64 | 31.06 123 | 57.38 45 | 50.05 86 | 53.67 62 | 64.98 82 | 65.04 90 | 74.57 101 | 81.29 90 |
|
ET-MVSNet_ETH3D | | | 57.84 78 | 61.91 75 | 53.09 87 | 32.91 207 | 74.53 51 | 63.51 63 | 46.80 84 | 46.52 95 | 36.14 97 | 56.00 48 | 46.20 109 | 64.41 7 | 60.75 137 | 66.99 67 | 74.79 92 | 82.35 69 |
|
tpm cat1 | | | 57.41 79 | 58.26 97 | 56.42 71 | 60.80 72 | 72.56 72 | 64.35 60 | 38.43 158 | 49.18 87 | 46.36 47 | 36.69 126 | 43.50 122 | 54.47 55 | 61.39 127 | 62.64 119 | 74.11 113 | 81.81 79 |
|
IB-MVS | | 53.15 10 | 57.33 80 | 59.02 88 | 55.37 76 | 60.83 71 | 77.11 34 | 54.51 121 | 50.10 47 | 43.22 107 | 42.82 67 | 40.50 102 | 37.61 143 | 44.67 127 | 59.27 151 | 69.81 40 | 79.29 18 | 85.59 48 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tpmrst | | | 57.23 81 | 59.08 87 | 55.06 77 | 59.91 77 | 70.65 82 | 60.71 77 | 35.38 177 | 47.91 91 | 42.58 70 | 39.78 107 | 45.45 113 | 54.44 56 | 62.19 116 | 62.82 116 | 77.37 46 | 84.73 56 |
|
baseline1 | | | 57.21 82 | 60.53 83 | 53.33 86 | 62.50 58 | 69.86 87 | 57.33 100 | 50.59 41 | 43.39 106 | 30.00 129 | 48.60 74 | 51.09 82 | 42.36 140 | 69.38 46 | 68.03 57 | 77.20 54 | 73.39 132 |
|
FA-MVS(training) | | | 57.15 83 | 60.42 84 | 53.34 85 | 58.15 90 | 72.77 67 | 59.79 85 | 38.68 156 | 49.01 88 | 36.56 96 | 40.79 100 | 45.44 114 | 53.04 69 | 65.23 80 | 67.93 60 | 73.82 116 | 81.80 81 |
|
HyFIR lowres test | | | 57.12 84 | 59.11 86 | 54.80 78 | 61.55 65 | 77.55 31 | 59.02 90 | 45.00 102 | 41.84 120 | 33.93 109 | 22.44 195 | 49.16 94 | 51.02 82 | 68.39 55 | 68.71 53 | 78.26 35 | 85.70 46 |
|
MVS_111021_LR | | | 57.06 85 | 60.60 82 | 52.93 88 | 56.25 102 | 65.14 129 | 55.16 119 | 41.21 141 | 52.32 76 | 44.89 56 | 53.92 56 | 49.27 93 | 52.16 76 | 61.46 125 | 60.54 147 | 67.92 164 | 81.53 85 |
|
DCV-MVSNet | | | 56.80 86 | 58.96 89 | 54.28 80 | 59.96 76 | 66.74 115 | 60.37 80 | 44.87 104 | 41.01 122 | 36.81 94 | 47.57 78 | 47.87 101 | 48.23 104 | 64.41 89 | 65.17 88 | 75.45 81 | 79.95 99 |
|
Anonymous20231211 | | | 56.40 87 | 57.00 108 | 55.70 75 | 59.78 80 | 72.49 73 | 61.29 76 | 46.83 83 | 40.50 125 | 40.46 81 | 22.12 197 | 49.73 88 | 51.07 81 | 64.39 90 | 65.30 87 | 74.74 94 | 84.44 59 |
|
PMMVS | | | 55.74 88 | 62.68 67 | 47.64 131 | 44.34 176 | 65.58 127 | 47.22 159 | 37.96 162 | 56.43 66 | 34.11 107 | 61.51 35 | 47.41 103 | 54.55 54 | 65.88 72 | 62.49 123 | 67.67 166 | 79.48 100 |
|
Fast-Effi-MVS+ | | | 55.73 89 | 58.26 97 | 52.76 89 | 54.33 120 | 68.19 100 | 57.05 101 | 34.66 179 | 46.92 94 | 38.96 86 | 40.53 101 | 41.55 131 | 55.69 50 | 65.31 78 | 65.99 77 | 75.90 73 | 79.34 101 |
|
FC-MVSNet-train | | | 55.68 90 | 57.00 108 | 54.13 82 | 63.37 46 | 66.16 119 | 46.77 162 | 52.14 33 | 42.36 114 | 37.67 90 | 48.50 76 | 41.42 133 | 51.28 79 | 61.58 124 | 63.22 113 | 73.56 121 | 75.76 120 |
|
FMVSNet3 | | | 55.66 91 | 59.68 85 | 50.96 102 | 50.59 140 | 66.49 116 | 57.57 97 | 46.61 85 | 49.30 83 | 28.77 134 | 39.61 108 | 51.42 79 | 43.85 132 | 68.29 56 | 68.80 51 | 78.35 34 | 73.86 127 |
|
OMC-MVS | | | 55.48 92 | 61.85 77 | 48.04 130 | 41.55 183 | 60.32 163 | 56.80 105 | 31.78 199 | 75.67 21 | 42.30 72 | 51.52 65 | 54.15 73 | 49.91 90 | 60.28 142 | 57.59 161 | 65.91 174 | 73.42 130 |
|
tpm | | | 54.94 93 | 57.86 102 | 51.54 98 | 59.48 83 | 67.04 111 | 58.34 93 | 34.60 181 | 41.93 119 | 34.41 104 | 42.40 93 | 47.14 104 | 49.07 99 | 61.46 125 | 61.67 135 | 73.31 128 | 83.39 64 |
|
GBi-Net | | | 54.66 94 | 58.42 94 | 50.26 110 | 49.36 149 | 65.81 124 | 56.80 105 | 46.61 85 | 49.30 83 | 28.77 134 | 39.61 108 | 51.42 79 | 42.71 136 | 64.25 93 | 65.54 82 | 77.32 50 | 73.03 135 |
|
test1 | | | 54.66 94 | 58.42 94 | 50.26 110 | 49.36 149 | 65.81 124 | 56.80 105 | 46.61 85 | 49.30 83 | 28.77 134 | 39.61 108 | 51.42 79 | 42.71 136 | 64.25 93 | 65.54 82 | 77.32 50 | 73.03 135 |
|
test-LLR | | | 54.62 96 | 58.66 92 | 49.89 116 | 51.68 132 | 65.89 121 | 47.88 153 | 46.35 89 | 42.51 111 | 29.84 130 | 41.41 97 | 48.87 95 | 45.20 120 | 62.91 110 | 64.43 102 | 78.43 30 | 84.62 57 |
|
dmvs_re | | | 54.51 97 | 57.04 107 | 51.56 97 | 56.51 100 | 62.63 149 | 55.56 115 | 50.45 45 | 45.31 97 | 24.75 151 | 43.94 87 | 39.99 138 | 42.74 135 | 66.53 71 | 65.44 85 | 79.33 17 | 75.46 122 |
|
TSAR-MVS + COLMAP | | | 54.37 98 | 62.43 70 | 44.98 146 | 34.33 203 | 58.94 170 | 54.11 126 | 34.15 190 | 74.06 24 | 34.57 103 | 71.63 18 | 42.03 130 | 47.88 106 | 61.26 130 | 57.33 164 | 64.83 177 | 71.74 145 |
|
EPMVS | | | 54.07 99 | 56.06 114 | 51.75 96 | 56.74 99 | 70.80 80 | 55.32 117 | 34.20 187 | 46.46 96 | 36.59 95 | 40.38 104 | 42.55 125 | 49.77 92 | 61.25 131 | 60.90 143 | 77.86 41 | 70.08 156 |
|
v2v482 | | | 54.00 100 | 55.12 121 | 52.69 91 | 51.73 131 | 69.42 92 | 60.65 78 | 45.09 101 | 34.56 156 | 33.73 112 | 35.29 131 | 35.36 153 | 49.92 89 | 64.05 99 | 65.16 89 | 75.00 89 | 81.98 76 |
|
CNLPA | | | 54.00 100 | 57.08 106 | 50.40 109 | 49.83 146 | 61.75 154 | 53.47 129 | 37.27 167 | 74.55 23 | 44.85 57 | 33.58 143 | 45.42 115 | 52.94 73 | 58.89 153 | 53.66 183 | 64.06 180 | 71.68 146 |
|
FMVSNet2 | | | 53.94 102 | 57.29 104 | 50.03 113 | 49.36 149 | 65.81 124 | 56.80 105 | 45.95 94 | 43.13 108 | 28.04 138 | 35.68 129 | 48.18 100 | 42.71 136 | 67.23 66 | 67.95 59 | 77.32 50 | 73.03 135 |
|
v8 | | | 53.77 103 | 54.82 126 | 52.54 92 | 52.12 127 | 66.95 114 | 60.56 79 | 43.23 128 | 37.17 145 | 35.35 99 | 34.96 134 | 37.50 145 | 49.51 95 | 63.67 101 | 64.59 99 | 74.48 103 | 78.91 104 |
|
GA-MVS | | | 53.77 103 | 56.41 113 | 50.70 104 | 51.63 134 | 69.96 86 | 57.55 98 | 44.39 108 | 34.31 157 | 27.15 140 | 40.99 99 | 36.40 149 | 47.65 109 | 67.45 62 | 67.16 65 | 75.83 75 | 78.60 106 |
|
Effi-MVS+-dtu | | | 53.63 105 | 54.85 125 | 52.20 94 | 59.32 84 | 61.33 157 | 56.42 111 | 40.24 147 | 43.84 103 | 34.22 106 | 39.49 113 | 46.18 110 | 53.00 72 | 58.72 157 | 57.49 163 | 69.99 155 | 76.91 111 |
|
thisisatest0530 | | | 53.61 106 | 57.22 105 | 49.40 121 | 51.30 136 | 68.22 99 | 52.72 137 | 43.34 126 | 42.72 110 | 35.31 100 | 43.57 90 | 44.14 119 | 44.37 130 | 63.00 108 | 64.86 94 | 69.34 158 | 74.00 126 |
|
v1144 | | | 53.47 107 | 54.65 127 | 52.10 95 | 51.93 129 | 69.81 88 | 59.32 88 | 44.77 106 | 33.21 163 | 32.52 115 | 33.55 144 | 34.34 161 | 49.29 97 | 64.58 86 | 64.81 96 | 74.74 94 | 82.27 70 |
|
v10 | | | 53.44 108 | 54.40 128 | 52.31 93 | 52.08 128 | 66.99 112 | 59.68 86 | 43.41 123 | 35.90 151 | 34.30 105 | 33.98 141 | 35.56 151 | 50.10 87 | 64.39 90 | 64.67 97 | 74.32 104 | 79.30 102 |
|
PatchmatchNet |  | | 53.37 109 | 55.62 119 | 50.75 103 | 55.93 109 | 70.54 83 | 51.39 142 | 36.41 170 | 44.85 99 | 37.26 92 | 39.40 115 | 42.54 126 | 47.83 107 | 60.29 141 | 60.88 145 | 75.69 78 | 70.87 150 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
test2506 | | | 53.36 110 | 57.36 103 | 48.68 126 | 55.53 111 | 68.11 102 | 54.31 123 | 46.25 91 | 43.54 104 | 22.21 163 | 40.19 105 | 43.69 121 | 36.56 153 | 64.15 97 | 65.94 78 | 77.20 54 | 75.91 117 |
|
IterMVS-LS | | | 53.36 110 | 55.65 118 | 50.68 106 | 55.34 113 | 59.04 168 | 55.00 120 | 39.98 148 | 38.72 133 | 33.22 113 | 44.52 86 | 47.05 105 | 49.63 94 | 61.82 122 | 61.77 130 | 70.92 147 | 76.61 115 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TESTMET0.1,1 | | | 53.30 112 | 58.66 92 | 47.04 134 | 44.94 170 | 65.89 121 | 47.88 153 | 35.95 173 | 42.51 111 | 29.84 130 | 41.41 97 | 48.87 95 | 45.20 120 | 62.91 110 | 64.43 102 | 78.43 30 | 84.62 57 |
|
tttt0517 | | | 53.05 113 | 56.73 112 | 48.76 124 | 50.35 142 | 67.51 108 | 51.96 141 | 43.34 126 | 42.00 118 | 33.88 110 | 43.19 91 | 43.49 123 | 44.37 130 | 62.58 115 | 64.86 94 | 68.67 160 | 73.46 129 |
|
MDTV_nov1_ep13 | | | 52.99 114 | 55.59 120 | 49.95 115 | 54.08 121 | 70.69 81 | 56.47 110 | 38.42 159 | 42.78 109 | 30.19 128 | 39.56 111 | 43.31 124 | 45.78 117 | 60.07 146 | 62.11 127 | 74.74 94 | 70.62 151 |
|
EPP-MVSNet | | | 52.91 115 | 58.91 90 | 45.91 139 | 54.99 117 | 68.84 96 | 49.27 148 | 42.71 135 | 37.53 139 | 20.20 171 | 46.09 81 | 56.19 68 | 36.90 151 | 61.37 128 | 60.90 143 | 71.41 142 | 81.41 87 |
|
dps | | | 52.84 116 | 52.92 139 | 52.74 90 | 59.89 78 | 69.49 91 | 54.47 122 | 37.38 165 | 42.49 113 | 39.53 85 | 35.33 130 | 32.71 166 | 51.83 78 | 60.45 138 | 61.12 140 | 73.33 127 | 68.86 165 |
|
v1192 | | | 52.69 117 | 53.86 131 | 51.31 99 | 51.22 137 | 69.76 89 | 57.37 99 | 44.39 108 | 32.21 166 | 31.39 122 | 32.41 152 | 32.44 169 | 49.19 98 | 64.25 93 | 64.17 104 | 74.31 105 | 81.81 79 |
|
V42 | | | 52.63 118 | 55.08 122 | 49.76 118 | 44.93 171 | 67.49 110 | 60.19 83 | 42.13 138 | 37.21 144 | 34.08 108 | 34.57 137 | 37.30 146 | 47.29 110 | 63.48 104 | 64.15 105 | 69.96 156 | 81.38 88 |
|
MSDG | | | 52.58 119 | 51.40 152 | 53.95 83 | 65.48 41 | 64.31 139 | 61.44 72 | 44.02 114 | 44.17 102 | 32.92 114 | 30.40 165 | 31.81 173 | 46.35 114 | 62.13 117 | 62.55 121 | 73.49 123 | 64.41 173 |
|
ECVR-MVS |  | | 52.52 120 | 55.88 116 | 48.60 127 | 55.53 111 | 68.11 102 | 54.31 123 | 46.25 91 | 43.54 104 | 21.75 165 | 32.76 149 | 39.83 141 | 36.56 153 | 64.15 97 | 65.94 78 | 77.20 54 | 76.81 112 |
|
Fast-Effi-MVS+-dtu | | | 52.47 121 | 55.89 115 | 48.48 128 | 56.25 102 | 65.07 130 | 58.75 91 | 23.79 210 | 41.27 121 | 27.07 142 | 37.95 120 | 41.34 134 | 50.85 84 | 62.90 112 | 62.34 125 | 74.17 109 | 80.37 98 |
|
v144192 | | | 52.43 122 | 53.63 133 | 51.03 101 | 51.06 138 | 69.60 90 | 56.94 103 | 44.84 105 | 32.15 167 | 30.88 124 | 32.45 151 | 32.71 166 | 48.36 102 | 62.98 109 | 63.52 110 | 74.10 114 | 82.02 75 |
|
thres100view900 | | | 52.33 123 | 53.91 130 | 50.48 108 | 56.10 104 | 67.79 105 | 56.18 113 | 49.18 51 | 35.86 153 | 25.22 148 | 34.74 135 | 34.10 162 | 42.41 139 | 64.45 88 | 62.62 120 | 73.81 117 | 77.85 107 |
|
v1921920 | | | 51.95 124 | 53.19 135 | 50.51 107 | 50.82 139 | 69.14 94 | 55.45 116 | 44.34 112 | 31.53 171 | 30.53 126 | 31.96 154 | 31.67 174 | 48.31 103 | 63.12 106 | 63.28 112 | 73.59 120 | 81.60 84 |
|
v148 | | | 51.72 125 | 53.15 136 | 50.05 112 | 50.15 144 | 67.51 108 | 56.98 102 | 42.85 133 | 32.60 165 | 32.41 117 | 33.88 142 | 34.71 158 | 44.45 128 | 61.06 132 | 63.00 115 | 73.45 124 | 79.24 103 |
|
TAPA-MVS | | 47.92 11 | 51.66 126 | 57.88 101 | 44.40 149 | 36.46 198 | 58.42 173 | 53.82 128 | 30.83 200 | 69.51 37 | 34.97 102 | 46.90 79 | 49.67 89 | 46.99 111 | 58.00 160 | 54.64 179 | 63.33 186 | 68.00 167 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IS_MVSNet | | | 51.53 127 | 57.98 100 | 44.01 153 | 55.96 108 | 66.16 119 | 47.65 155 | 42.84 134 | 39.82 128 | 19.09 179 | 44.97 85 | 50.28 85 | 27.20 186 | 63.43 105 | 63.84 106 | 71.33 144 | 77.33 109 |
|
v1240 | | | 51.42 128 | 52.66 141 | 49.97 114 | 50.31 143 | 68.70 97 | 54.05 127 | 43.85 118 | 30.78 175 | 30.22 127 | 31.43 158 | 31.03 181 | 47.98 105 | 62.62 114 | 63.16 114 | 73.40 125 | 80.93 93 |
|
pmmvs4 | | | 51.28 129 | 52.50 143 | 49.85 117 | 49.54 148 | 63.02 146 | 52.83 136 | 43.41 123 | 44.65 100 | 35.71 98 | 34.38 138 | 32.25 170 | 45.14 123 | 60.21 145 | 60.03 151 | 72.44 137 | 72.98 138 |
|
Vis-MVSNet |  | | 51.13 130 | 58.04 99 | 43.06 159 | 47.68 156 | 67.71 106 | 49.10 149 | 39.09 154 | 37.75 137 | 22.57 160 | 51.03 68 | 48.78 97 | 32.42 171 | 62.12 118 | 61.80 129 | 67.49 168 | 77.12 110 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UGNet | | | 51.04 131 | 58.79 91 | 42.00 165 | 40.59 185 | 65.32 128 | 46.65 164 | 39.26 152 | 39.90 127 | 27.30 139 | 54.12 55 | 52.03 76 | 30.93 175 | 59.85 148 | 59.62 156 | 67.23 170 | 80.70 94 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
tfpn200view9 | | | 50.91 132 | 52.45 144 | 49.11 123 | 56.10 104 | 64.53 134 | 53.06 133 | 47.31 76 | 35.86 153 | 25.22 148 | 34.74 135 | 34.10 162 | 41.08 142 | 60.84 134 | 61.37 137 | 71.90 141 | 75.70 121 |
|
SCA | | | 50.88 133 | 53.70 132 | 47.59 132 | 55.99 106 | 55.81 182 | 43.14 176 | 33.45 193 | 45.16 98 | 37.14 93 | 41.83 95 | 43.82 120 | 44.43 129 | 60.37 139 | 60.02 152 | 71.38 143 | 68.90 164 |
|
gg-mvs-nofinetune | | | 50.82 134 | 55.83 117 | 44.97 147 | 60.63 73 | 75.69 43 | 53.40 130 | 34.48 183 | 20.05 210 | 6.93 206 | 18.27 203 | 52.70 75 | 33.57 161 | 70.50 35 | 72.93 18 | 80.84 6 | 80.68 95 |
|
thres200 | | | 50.76 135 | 52.52 142 | 48.70 125 | 55.98 107 | 64.60 132 | 55.29 118 | 47.34 74 | 33.91 160 | 24.36 152 | 34.33 139 | 33.90 164 | 37.27 149 | 60.84 134 | 62.41 124 | 71.99 139 | 77.63 108 |
|
test1111 | | | 50.62 136 | 54.98 124 | 45.55 142 | 53.84 123 | 68.48 98 | 48.99 150 | 47.25 77 | 40.60 124 | 15.64 187 | 31.51 157 | 38.32 142 | 33.01 168 | 64.34 92 | 66.62 71 | 74.55 102 | 74.95 125 |
|
thres400 | | | 50.39 137 | 52.22 145 | 48.26 129 | 55.02 116 | 66.32 118 | 52.97 134 | 48.33 62 | 32.68 164 | 22.94 158 | 33.21 146 | 33.38 165 | 37.27 149 | 62.74 113 | 61.38 136 | 73.04 134 | 75.81 119 |
|
EG-PatchMatch MVS | | | 50.23 138 | 50.89 155 | 49.47 119 | 59.54 82 | 70.88 79 | 52.46 138 | 44.01 115 | 26.22 196 | 31.91 118 | 24.97 189 | 31.45 177 | 33.48 163 | 64.79 83 | 66.51 75 | 75.40 82 | 71.39 148 |
|
IterMVS | | | 50.23 138 | 53.27 134 | 46.68 135 | 47.59 158 | 60.58 161 | 53.10 132 | 36.62 169 | 36.07 149 | 25.89 145 | 39.42 114 | 40.05 137 | 43.65 133 | 60.22 144 | 61.35 138 | 73.23 129 | 75.23 123 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet1 | | | 50.14 140 | 52.78 140 | 47.06 133 | 45.56 167 | 63.56 142 | 54.22 125 | 43.74 120 | 34.10 159 | 25.37 147 | 29.79 171 | 42.06 129 | 38.70 145 | 64.25 93 | 65.54 82 | 74.75 93 | 70.18 155 |
|
ACMH | | 47.82 13 | 50.10 141 | 49.60 161 | 50.69 105 | 63.36 47 | 66.99 112 | 56.83 104 | 52.13 34 | 31.06 174 | 17.74 184 | 28.22 177 | 26.24 197 | 45.17 122 | 60.88 133 | 63.80 107 | 68.91 159 | 70.00 158 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EPNet_dtu | | | 49.85 142 | 56.99 110 | 41.52 168 | 52.79 124 | 57.06 176 | 41.44 181 | 43.13 129 | 56.13 67 | 19.24 178 | 52.11 62 | 48.38 98 | 22.14 193 | 58.19 159 | 58.38 159 | 70.35 150 | 68.71 166 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
LS3D | | | 49.59 143 | 49.75 160 | 49.40 121 | 55.88 110 | 59.86 165 | 56.31 112 | 45.33 98 | 48.57 89 | 28.32 137 | 31.54 156 | 36.81 148 | 46.27 116 | 57.17 165 | 55.88 174 | 64.29 179 | 58.42 191 |
|
UniMVSNet_NR-MVSNet | | | 49.56 144 | 53.04 137 | 45.49 143 | 51.59 135 | 64.42 138 | 46.97 160 | 51.01 37 | 37.87 135 | 16.42 185 | 39.87 106 | 34.91 157 | 33.43 165 | 59.59 149 | 62.70 117 | 73.52 122 | 71.94 141 |
|
CDS-MVSNet | | | 49.25 145 | 53.97 129 | 43.75 155 | 47.53 159 | 64.53 134 | 48.59 151 | 42.27 137 | 33.77 161 | 26.64 143 | 40.46 103 | 42.26 128 | 30.01 178 | 61.77 123 | 61.71 132 | 67.48 169 | 73.28 134 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
PLC |  | 44.22 14 | 49.14 146 | 51.75 148 | 46.10 138 | 42.78 181 | 55.60 185 | 53.11 131 | 34.46 184 | 55.69 71 | 32.47 116 | 34.16 140 | 41.45 132 | 48.91 100 | 57.13 166 | 54.09 180 | 64.84 176 | 64.10 174 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ACMH+ | | 47.85 12 | 49.13 147 | 48.86 167 | 49.44 120 | 56.75 98 | 62.01 153 | 56.62 109 | 47.55 73 | 37.49 140 | 23.98 153 | 26.68 182 | 29.46 188 | 43.12 134 | 57.45 164 | 58.85 158 | 68.62 161 | 70.05 157 |
|
NR-MVSNet | | | 48.84 148 | 51.76 147 | 45.44 144 | 57.66 94 | 60.64 159 | 47.39 156 | 47.63 69 | 37.26 141 | 13.31 190 | 37.31 122 | 29.64 187 | 33.53 162 | 63.52 103 | 62.09 128 | 73.10 132 | 71.89 144 |
|
CR-MVSNet | | | 48.82 149 | 51.85 146 | 45.29 145 | 46.74 161 | 55.95 180 | 52.06 139 | 34.21 185 | 42.17 115 | 31.74 119 | 32.92 148 | 42.53 127 | 45.00 124 | 58.80 154 | 61.11 141 | 61.99 191 | 69.47 160 |
|
thres600view7 | | | 48.44 150 | 50.23 158 | 46.35 137 | 54.05 122 | 64.60 132 | 50.18 145 | 47.34 74 | 31.73 170 | 20.74 169 | 32.28 153 | 32.62 168 | 33.79 160 | 60.84 134 | 56.11 172 | 71.99 139 | 73.40 131 |
|
test-mter | | | 48.31 151 | 55.04 123 | 40.45 172 | 34.12 204 | 59.02 169 | 41.77 180 | 28.05 204 | 38.43 134 | 22.67 159 | 39.35 116 | 44.40 117 | 41.88 141 | 60.30 140 | 61.68 134 | 74.20 107 | 82.12 72 |
|
PatchT | | | 48.11 152 | 51.27 154 | 44.43 148 | 50.13 145 | 61.58 155 | 33.59 194 | 32.92 195 | 40.38 126 | 31.74 119 | 30.60 164 | 36.93 147 | 45.00 124 | 58.80 154 | 61.11 141 | 73.19 130 | 69.47 160 |
|
TranMVSNet+NR-MVSNet | | | 48.06 153 | 51.36 153 | 44.21 151 | 50.38 141 | 62.09 152 | 47.28 157 | 50.88 40 | 36.11 148 | 13.25 191 | 37.51 121 | 31.60 176 | 30.70 176 | 59.34 150 | 62.53 122 | 72.81 135 | 70.31 153 |
|
TransMVSNet (Re) | | | 47.46 154 | 48.94 166 | 45.74 141 | 57.96 91 | 64.29 140 | 48.26 152 | 48.47 61 | 26.33 195 | 19.33 176 | 29.45 174 | 31.28 180 | 25.31 190 | 63.05 107 | 62.70 117 | 75.10 88 | 65.47 171 |
|
DU-MVS | | | 47.33 155 | 50.86 156 | 43.20 158 | 44.43 174 | 60.64 159 | 46.97 160 | 47.63 69 | 37.26 141 | 16.42 185 | 37.31 122 | 31.39 178 | 33.43 165 | 57.53 162 | 59.98 153 | 70.35 150 | 71.94 141 |
|
v7n | | | 47.22 156 | 48.38 168 | 45.87 140 | 48.20 155 | 63.58 141 | 50.69 143 | 40.93 145 | 26.60 194 | 26.44 144 | 26.52 183 | 29.65 186 | 38.19 147 | 58.22 158 | 60.23 150 | 70.79 148 | 73.83 128 |
|
UA-Net | | | 47.19 157 | 53.02 138 | 40.38 173 | 55.31 114 | 60.02 164 | 38.41 187 | 38.68 156 | 36.42 147 | 22.47 162 | 51.95 63 | 58.72 59 | 25.62 189 | 54.11 178 | 53.40 184 | 61.79 192 | 56.51 194 |
|
Baseline_NR-MVSNet | | | 47.14 158 | 50.83 157 | 42.84 161 | 44.43 174 | 63.31 144 | 44.50 172 | 50.36 46 | 37.71 138 | 11.25 196 | 30.84 161 | 32.09 171 | 30.96 174 | 57.53 162 | 63.73 108 | 75.53 79 | 70.60 152 |
|
pmmvs5 | | | 47.02 159 | 50.02 159 | 43.51 157 | 43.48 179 | 62.65 148 | 47.24 158 | 37.78 164 | 30.59 176 | 24.80 150 | 35.26 132 | 30.43 182 | 34.36 158 | 59.05 152 | 60.28 149 | 73.40 125 | 71.92 143 |
|
UniMVSNet (Re) | | | 46.89 160 | 51.65 150 | 41.34 170 | 45.60 166 | 62.71 147 | 44.05 173 | 47.10 79 | 37.24 143 | 13.55 189 | 36.90 124 | 34.54 160 | 26.76 187 | 57.56 161 | 59.90 155 | 70.98 146 | 72.69 139 |
|
thisisatest0515 | | | 46.88 161 | 49.57 162 | 43.74 156 | 45.33 169 | 60.46 162 | 46.19 166 | 41.06 144 | 30.34 177 | 29.73 132 | 32.50 150 | 31.63 175 | 35.43 156 | 58.75 156 | 61.71 132 | 64.70 178 | 71.59 147 |
|
tfpnnormal | | | 46.61 162 | 46.82 175 | 46.37 136 | 52.70 125 | 62.31 150 | 50.39 144 | 47.17 78 | 25.74 198 | 21.80 164 | 23.13 193 | 24.15 205 | 33.45 164 | 60.28 142 | 60.77 146 | 72.70 136 | 71.39 148 |
|
pm-mvs1 | | | 46.14 163 | 49.34 165 | 42.41 162 | 48.93 152 | 62.22 151 | 44.98 170 | 42.68 136 | 27.66 188 | 20.76 168 | 29.88 170 | 34.96 156 | 26.41 188 | 60.03 147 | 60.42 148 | 70.70 149 | 70.20 154 |
|
IterMVS-SCA-FT | | | 45.87 164 | 51.55 151 | 39.24 176 | 46.22 162 | 59.43 166 | 52.89 135 | 31.93 196 | 36.01 150 | 23.68 154 | 38.86 117 | 39.88 140 | 39.05 144 | 56.25 171 | 58.17 160 | 41.70 212 | 72.25 140 |
|
MIMVSNet | | | 45.62 165 | 49.56 163 | 41.02 171 | 38.17 189 | 64.43 137 | 49.48 147 | 35.43 176 | 36.53 146 | 20.06 173 | 22.58 194 | 35.16 155 | 28.75 183 | 61.97 120 | 62.20 126 | 74.20 107 | 64.07 175 |
|
gm-plane-assit | | | 45.41 166 | 48.03 170 | 42.34 163 | 56.49 101 | 40.48 210 | 24.54 214 | 34.15 190 | 14.44 216 | 6.59 207 | 17.82 204 | 35.32 154 | 49.82 91 | 72.93 16 | 74.11 11 | 82.47 2 | 81.12 92 |
|
ADS-MVSNet | | | 45.39 167 | 46.42 176 | 44.19 152 | 48.74 154 | 57.52 174 | 43.91 174 | 31.93 196 | 35.89 152 | 27.11 141 | 30.12 166 | 32.06 172 | 45.30 118 | 53.13 184 | 55.19 176 | 68.15 163 | 61.07 183 |
|
GG-mvs-BLEND | | | 44.87 168 | 64.59 61 | 21.86 209 | 0.01 226 | 73.70 57 | 55.99 114 | 0.01 222 | 50.70 79 | 0.01 227 | 49.18 71 | 63.61 41 | 0.01 222 | 63.83 100 | 64.50 100 | 75.13 87 | 86.62 37 |
|
pmmvs-eth3d | | | 44.67 169 | 45.27 181 | 43.98 154 | 42.56 182 | 55.72 184 | 44.97 171 | 40.81 146 | 31.96 169 | 29.13 133 | 26.09 185 | 25.27 202 | 36.69 152 | 55.13 175 | 56.62 169 | 69.68 157 | 66.12 170 |
|
MDTV_nov1_ep13_2view | | | 44.44 170 | 45.75 179 | 42.91 160 | 46.13 163 | 63.43 143 | 46.53 165 | 34.20 187 | 29.08 183 | 19.95 174 | 26.23 184 | 27.89 192 | 35.88 155 | 53.36 183 | 56.43 170 | 74.74 94 | 63.86 176 |
|
CMPMVS |  | 33.64 16 | 44.39 171 | 46.41 177 | 42.03 164 | 44.21 177 | 56.50 178 | 46.73 163 | 26.48 209 | 34.20 158 | 35.14 101 | 24.22 190 | 34.64 159 | 40.52 143 | 56.50 170 | 56.07 173 | 59.12 196 | 62.74 179 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Vis-MVSNet (Re-imp) | | | 44.31 172 | 51.67 149 | 35.72 186 | 51.82 130 | 55.24 186 | 34.57 193 | 41.63 139 | 39.10 131 | 8.84 203 | 45.93 82 | 46.63 107 | 14.45 203 | 54.09 179 | 57.03 166 | 63.00 187 | 63.65 177 |
|
TAMVS | | | 44.27 173 | 49.35 164 | 38.35 180 | 44.74 172 | 61.04 158 | 39.07 185 | 31.82 198 | 29.95 179 | 18.34 182 | 33.55 144 | 39.94 139 | 30.01 178 | 56.85 168 | 57.58 162 | 66.13 173 | 66.54 168 |
|
MVS-HIRNet | | | 43.98 174 | 43.63 185 | 44.39 150 | 47.66 157 | 59.31 167 | 32.66 200 | 33.88 192 | 30.15 178 | 33.75 111 | 16.82 209 | 28.39 191 | 45.25 119 | 53.92 182 | 55.00 178 | 73.16 131 | 61.80 180 |
|
UniMVSNet_ETH3D | | | 43.97 175 | 46.01 178 | 41.59 166 | 38.31 188 | 56.20 179 | 49.69 146 | 38.18 161 | 28.18 184 | 19.88 175 | 27.82 179 | 30.20 183 | 33.41 167 | 54.18 177 | 56.30 171 | 70.05 154 | 69.17 162 |
|
RPMNet | | | 43.70 176 | 48.17 169 | 38.48 179 | 45.52 168 | 55.95 180 | 37.66 188 | 26.63 208 | 42.17 115 | 25.47 146 | 29.59 173 | 37.61 143 | 33.87 159 | 50.85 189 | 52.02 188 | 61.75 193 | 69.00 163 |
|
PatchMatch-RL | | | 43.37 177 | 44.93 182 | 41.56 167 | 37.94 190 | 51.70 188 | 40.02 183 | 35.75 174 | 39.04 132 | 30.71 125 | 35.14 133 | 27.43 194 | 46.58 113 | 51.99 185 | 50.55 192 | 58.38 198 | 58.64 189 |
|
FMVSNet5 | | | 43.29 178 | 47.07 173 | 38.87 177 | 30.46 209 | 50.99 190 | 45.87 167 | 37.19 168 | 42.17 115 | 19.32 177 | 26.77 181 | 40.51 135 | 30.26 177 | 56.82 169 | 55.81 175 | 70.10 153 | 56.46 195 |
|
test0.0.03 1 | | | 43.07 179 | 46.95 174 | 38.54 178 | 51.68 132 | 58.77 171 | 35.28 189 | 46.35 89 | 32.05 168 | 12.44 192 | 28.53 176 | 35.52 152 | 14.40 204 | 57.12 167 | 56.93 167 | 71.11 145 | 59.69 185 |
|
anonymousdsp | | | 43.03 180 | 47.19 172 | 38.18 181 | 36.00 200 | 56.92 177 | 38.44 186 | 34.56 182 | 24.22 200 | 22.53 161 | 29.69 172 | 29.92 184 | 35.21 157 | 53.96 181 | 58.98 157 | 62.32 190 | 76.66 114 |
|
USDC | | | 42.80 181 | 45.57 180 | 39.58 174 | 34.55 202 | 51.13 189 | 42.61 177 | 36.21 171 | 39.59 129 | 23.65 155 | 33.13 147 | 20.87 211 | 37.86 148 | 55.35 174 | 57.16 165 | 62.61 188 | 61.75 181 |
|
pmnet_mix02 | | | 42.41 182 | 43.24 187 | 41.44 169 | 45.80 165 | 57.46 175 | 42.19 178 | 41.57 140 | 29.38 181 | 23.39 156 | 26.08 186 | 23.96 206 | 27.31 185 | 51.50 186 | 53.76 182 | 68.36 162 | 60.58 184 |
|
CHOSEN 280x420 | | | 42.39 183 | 47.40 171 | 36.54 184 | 33.56 205 | 39.66 213 | 40.67 182 | 26.88 207 | 34.66 155 | 18.03 183 | 30.09 167 | 45.59 112 | 44.82 126 | 54.46 176 | 54.00 181 | 55.28 205 | 73.32 133 |
|
pmmvs6 | | | 41.90 184 | 44.01 184 | 39.43 175 | 44.45 173 | 58.77 171 | 41.92 179 | 39.22 153 | 21.74 203 | 19.08 180 | 17.40 207 | 31.33 179 | 24.28 192 | 55.94 172 | 56.67 168 | 67.60 167 | 66.24 169 |
|
Anonymous20231206 | | | 40.63 185 | 43.29 186 | 37.53 182 | 48.88 153 | 55.81 182 | 34.99 190 | 44.98 103 | 28.16 185 | 10.16 200 | 17.26 208 | 27.50 193 | 18.28 197 | 54.00 180 | 55.07 177 | 67.85 165 | 65.23 172 |
|
CVMVSNet | | | 38.91 186 | 44.49 183 | 32.40 195 | 34.57 201 | 47.20 201 | 34.81 191 | 34.20 187 | 31.45 172 | 8.95 202 | 38.86 117 | 36.38 150 | 24.30 191 | 47.77 193 | 46.94 204 | 57.59 200 | 62.85 178 |
|
COLMAP_ROB |  | 34.79 15 | 38.65 187 | 40.72 190 | 36.23 185 | 36.41 199 | 49.22 197 | 45.51 169 | 27.60 206 | 37.81 136 | 20.54 170 | 23.37 192 | 24.25 204 | 28.11 184 | 51.02 188 | 48.55 195 | 59.22 195 | 50.82 205 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PEN-MVS | | | 38.23 188 | 41.72 189 | 34.15 188 | 40.56 186 | 50.07 193 | 33.17 197 | 44.35 111 | 27.64 190 | 5.54 213 | 30.84 161 | 26.67 195 | 14.99 201 | 45.64 196 | 52.38 187 | 66.29 172 | 58.83 188 |
|
WR-MVS | | | 37.61 189 | 42.15 188 | 32.31 197 | 43.64 178 | 51.85 187 | 29.39 206 | 43.35 125 | 27.65 189 | 4.40 215 | 29.90 169 | 29.80 185 | 10.46 208 | 46.73 195 | 51.98 189 | 62.60 189 | 57.16 192 |
|
TinyColmap | | | 37.18 190 | 37.37 203 | 36.95 183 | 31.17 208 | 45.21 204 | 39.71 184 | 34.65 180 | 29.83 180 | 20.20 171 | 18.54 202 | 13.72 219 | 38.27 146 | 50.33 190 | 51.57 190 | 57.71 199 | 52.42 202 |
|
CP-MVSNet | | | 37.09 191 | 40.62 191 | 32.99 190 | 37.56 192 | 48.25 198 | 32.75 198 | 43.05 130 | 27.88 187 | 5.93 209 | 31.27 159 | 25.82 200 | 15.09 199 | 43.37 203 | 48.82 193 | 63.54 184 | 58.90 186 |
|
DTE-MVSNet | | | 36.91 192 | 40.44 192 | 32.79 193 | 40.74 184 | 47.55 200 | 30.71 204 | 44.39 108 | 27.03 192 | 4.32 216 | 30.88 160 | 25.99 198 | 12.73 206 | 45.58 197 | 50.80 191 | 63.86 181 | 55.23 198 |
|
PS-CasMVS | | | 36.84 193 | 40.23 195 | 32.89 191 | 37.44 193 | 48.09 199 | 32.68 199 | 42.97 132 | 27.36 191 | 5.89 210 | 30.08 168 | 25.48 201 | 14.96 202 | 43.28 204 | 48.71 194 | 63.39 185 | 58.63 190 |
|
WR-MVS_H | | | 36.29 194 | 40.35 194 | 31.55 199 | 37.80 191 | 49.94 195 | 30.57 205 | 41.11 143 | 26.90 193 | 4.14 217 | 30.72 163 | 28.85 189 | 10.45 209 | 42.47 205 | 47.99 199 | 65.24 175 | 55.54 196 |
|
SixPastTwentyTwo | | | 36.11 195 | 37.80 199 | 34.13 189 | 37.13 196 | 46.72 202 | 34.58 192 | 34.96 178 | 21.20 206 | 11.66 193 | 29.15 175 | 19.88 212 | 29.77 180 | 44.93 198 | 48.34 196 | 56.67 202 | 54.41 200 |
|
test20.03 | | | 36.00 196 | 38.92 196 | 32.60 194 | 45.92 164 | 50.99 190 | 28.05 210 | 43.69 121 | 21.62 204 | 6.03 208 | 17.61 206 | 25.91 199 | 8.34 215 | 51.26 187 | 52.60 186 | 63.58 182 | 52.46 201 |
|
TDRefinement | | | 35.76 197 | 38.23 197 | 32.88 192 | 19.09 218 | 46.04 203 | 43.29 175 | 29.49 201 | 33.49 162 | 19.04 181 | 22.29 196 | 17.82 214 | 29.69 182 | 48.60 192 | 47.24 202 | 56.65 203 | 52.12 203 |
|
LTVRE_ROB | | 32.83 17 | 35.10 198 | 37.46 200 | 32.35 196 | 43.12 180 | 49.99 194 | 28.52 208 | 33.23 194 | 12.73 217 | 8.18 204 | 27.71 180 | 21.34 209 | 32.64 170 | 46.92 194 | 48.11 197 | 48.41 209 | 55.45 197 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PM-MVS | | | 34.96 199 | 38.17 198 | 31.22 200 | 22.78 213 | 40.82 209 | 33.56 195 | 23.61 211 | 29.16 182 | 21.43 167 | 28.00 178 | 21.43 208 | 31.90 172 | 44.33 201 | 42.12 207 | 54.07 207 | 61.34 182 |
|
testgi | | | 34.51 200 | 37.42 201 | 31.12 201 | 47.37 160 | 50.34 192 | 24.38 215 | 41.21 141 | 20.32 208 | 5.64 212 | 20.56 198 | 26.55 196 | 8.06 216 | 49.28 191 | 52.65 185 | 60.05 194 | 42.23 211 |
|
MDA-MVSNet-bldmvs | | | 34.31 201 | 34.11 207 | 34.54 187 | 24.73 211 | 49.66 196 | 33.42 196 | 43.03 131 | 21.59 205 | 11.10 197 | 19.81 200 | 12.68 220 | 31.41 173 | 35.59 210 | 48.05 198 | 63.56 183 | 51.39 204 |
|
N_pmnet | | | 34.09 202 | 35.74 205 | 32.17 198 | 37.25 195 | 43.17 207 | 32.26 202 | 35.57 175 | 26.22 196 | 10.60 199 | 20.44 199 | 19.38 213 | 20.20 195 | 44.59 200 | 47.00 203 | 57.13 201 | 49.35 208 |
|
RPSCF | | | 33.61 203 | 40.43 193 | 25.65 205 | 16.00 220 | 32.41 215 | 31.73 203 | 13.33 218 | 50.13 81 | 23.12 157 | 31.56 155 | 40.09 136 | 32.73 169 | 41.14 209 | 37.05 210 | 36.99 215 | 50.63 206 |
|
EU-MVSNet | | | 33.00 204 | 36.49 204 | 28.92 202 | 33.10 206 | 42.86 208 | 29.32 207 | 35.99 172 | 22.94 201 | 5.83 211 | 25.29 187 | 24.43 203 | 15.21 198 | 41.22 208 | 41.65 209 | 54.08 206 | 57.01 193 |
|
pmmvs3 | | | 31.22 205 | 33.62 208 | 28.43 203 | 22.82 212 | 40.26 212 | 26.40 211 | 22.05 213 | 16.89 214 | 10.99 198 | 14.72 211 | 16.26 215 | 29.70 181 | 44.82 199 | 47.39 201 | 58.61 197 | 54.98 199 |
|
FC-MVSNet-test | | | 30.97 206 | 37.38 202 | 23.49 208 | 37.42 194 | 33.68 214 | 19.43 217 | 39.27 151 | 31.37 173 | 1.67 223 | 38.56 119 | 28.85 189 | 6.06 219 | 41.40 206 | 43.80 206 | 37.10 214 | 44.03 210 |
|
new-patchmatchnet | | | 30.47 207 | 32.80 210 | 27.75 204 | 36.81 197 | 43.98 205 | 24.85 213 | 39.29 150 | 20.52 207 | 4.06 218 | 15.94 210 | 16.05 216 | 9.57 210 | 41.32 207 | 42.05 208 | 51.94 208 | 49.74 207 |
|
MIMVSNet1 | | | 29.60 208 | 33.37 209 | 25.20 207 | 19.52 216 | 43.94 206 | 26.29 212 | 37.92 163 | 19.95 211 | 3.79 219 | 12.64 215 | 21.99 207 | 7.70 217 | 43.83 202 | 46.32 205 | 55.97 204 | 44.92 209 |
|
FPMVS | | | 26.87 209 | 28.19 211 | 25.32 206 | 27.09 210 | 29.49 216 | 32.28 201 | 17.79 215 | 28.09 186 | 11.33 194 | 19.38 201 | 14.69 217 | 20.88 194 | 35.11 211 | 32.82 212 | 42.56 211 | 37.75 212 |
|
PMVS |  | 18.18 18 | 21.95 210 | 22.85 212 | 20.90 210 | 21.92 214 | 14.78 218 | 19.95 216 | 17.31 216 | 15.69 215 | 11.32 195 | 13.70 212 | 13.91 218 | 15.02 200 | 34.92 212 | 31.72 213 | 39.85 213 | 35.20 213 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 19.10 211 | 22.71 213 | 14.89 212 | 10.93 222 | 24.08 217 | 14.22 218 | 13.94 217 | 18.68 212 | 2.93 220 | 12.84 214 | 11.27 221 | 11.94 207 | 30.57 214 | 30.58 214 | 35.38 216 | 30.93 214 |
|
Gipuma |  | | 17.16 212 | 17.83 214 | 16.36 211 | 18.76 219 | 12.15 221 | 11.97 219 | 27.78 205 | 17.94 213 | 4.86 214 | 2.53 222 | 2.73 226 | 8.90 213 | 34.32 213 | 36.09 211 | 25.92 217 | 19.06 217 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_method | | | 13.92 213 | 17.14 215 | 10.16 215 | 1.69 225 | 6.92 224 | 11.25 220 | 5.74 219 | 22.41 202 | 8.11 205 | 10.40 216 | 20.91 210 | 13.73 205 | 22.17 215 | 13.98 217 | 20.44 218 | 23.18 215 |
|
PMMVS2 | | | 12.25 214 | 14.17 216 | 10.00 216 | 11.39 221 | 14.35 219 | 8.21 221 | 19.29 214 | 9.31 218 | 0.19 226 | 7.38 218 | 6.19 224 | 1.10 221 | 19.26 216 | 21.13 216 | 19.85 219 | 21.56 216 |
|
E-PMN | | | 10.66 215 | 8.30 218 | 13.42 213 | 19.91 215 | 7.87 222 | 4.30 224 | 29.47 202 | 8.37 221 | 1.70 222 | 3.67 219 | 1.29 229 | 9.12 212 | 8.98 220 | 13.59 218 | 16.03 220 | 14.30 220 |
|
EMVS | | | 10.15 216 | 7.67 219 | 13.05 214 | 19.22 217 | 7.77 223 | 4.48 222 | 29.34 203 | 8.65 220 | 1.67 223 | 3.55 220 | 1.36 228 | 9.15 211 | 8.15 221 | 11.79 220 | 14.44 221 | 12.43 221 |
|
MVE |  | 10.35 19 | 9.76 217 | 11.08 217 | 8.22 217 | 4.43 223 | 13.04 220 | 3.36 225 | 23.57 212 | 5.74 222 | 1.76 221 | 3.09 221 | 1.75 227 | 6.78 218 | 12.78 218 | 23.04 215 | 9.44 222 | 18.09 218 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 0.01 218 | 0.01 220 | 0.00 219 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 223 | 0.01 223 | 0.00 228 | 0.02 223 | 0.00 230 | 0.00 224 | 0.01 222 | 0.01 221 | 0.00 225 | 0.03 222 |
|
test123 | | | 0.01 218 | 0.01 220 | 0.00 219 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 223 | 0.01 223 | 0.00 228 | 0.02 223 | 0.00 230 | 0.01 222 | 0.00 223 | 0.01 221 | 0.00 225 | 0.03 222 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 219 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 223 | 0.00 225 | 0.00 228 | 0.00 225 | 0.00 230 | 0.00 224 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 219 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 223 | 0.00 225 | 0.00 228 | 0.00 225 | 0.00 230 | 0.00 224 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 219 | 0.00 227 | 0.00 227 | 0.00 228 | 0.00 223 | 0.00 225 | 0.00 228 | 0.00 225 | 0.00 230 | 0.00 224 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 224 |
|
TPM-MVS | | | | | | 78.45 5 | 83.50 6 | 78.26 3 | | | 58.88 7 | 72.62 17 | 77.54 9 | 69.42 4 | | | 80.40 7 | 85.71 44 |
|
RE-MVS-def | | | | | | | | | | | 21.59 166 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 80.07 5 | | | | | |
|
SR-MVS | | | | | | 63.74 45 | | | 48.51 60 | | | | 73.80 20 | | | | | |
|
Anonymous202405211 | | | | 56.81 111 | | 60.91 69 | 73.48 60 | 59.82 84 | 48.68 57 | 39.26 130 | | 24.00 191 | 46.77 106 | 50.73 85 | 65.28 79 | 65.72 81 | 75.37 83 | 83.17 65 |
|
our_test_3 | | | | | | 49.68 147 | 61.50 156 | 45.84 168 | | | | | | | | | | |
|
ambc | | | | 35.52 206 | | 38.36 187 | 40.40 211 | 28.38 209 | | 25.20 199 | 14.87 188 | 13.22 213 | 7.54 223 | 19.34 196 | 55.63 173 | 47.79 200 | 47.91 210 | 58.89 187 |
|
MTAPA | | | | | | | | | | | 54.82 17 | | 71.98 25 | | | | | |
|
MTMP | | | | | | | | | | | 50.64 31 | | 68.31 30 | | | | | |
|
Patchmatch-RL test | | | | | | | | 0.69 227 | | | | | | | | | | |
|
tmp_tt | | | | | 4.41 218 | 2.56 224 | 1.81 226 | 2.61 226 | 0.27 221 | 20.12 209 | 9.81 201 | 17.69 205 | 9.04 222 | 1.96 220 | 12.88 217 | 12.11 219 | 9.23 223 | |
|
XVS | | | | | | 62.70 54 | 73.06 63 | 61.80 70 | | | 42.02 73 | | 63.42 43 | | | | 74.68 98 | |
|
X-MVStestdata | | | | | | 62.70 54 | 73.06 63 | 61.80 70 | | | 42.02 73 | | 63.42 43 | | | | 74.68 98 | |
|
mPP-MVS | | | | | | 63.08 50 | | | | | | | 62.34 46 | | | | | |
|
NP-MVS | | | | | | | | | | 72.62 28 | | | | | | | | |
|
Patchmtry | | | | | | | 64.49 136 | 52.06 139 | 34.21 185 | | 31.74 119 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 5.87 225 | 4.32 223 | 1.74 220 | 9.04 219 | 1.30 225 | 7.97 217 | 3.16 225 | 8.56 214 | 9.74 219 | | 6.30 224 | 14.51 219 |
|