SED-MVS | | | 99.44 1 | 99.69 21 | 99.15 1 | 99.61 13 | 99.95 14 | 99.81 6 | 96.94 7 | 99.97 9 | 98.73 2 | 99.53 29 | 100.00 1 | 99.91 4 | 99.90 8 | 98.52 57 | 99.87 30 | 100.00 1 |
|
SF-MVS | | | 99.41 2 | 99.68 23 | 99.10 3 | 99.65 6 | 99.94 20 | 99.76 10 | 96.95 4 | 99.88 43 | 98.39 5 | 99.60 23 | 100.00 1 | 99.82 14 | 99.43 28 | 98.93 37 | 99.99 5 | 100.00 1 |
|
APDe-MVS | | | 99.40 3 | 99.81 2 | 98.92 8 | 99.62 8 | 99.96 7 | 99.76 10 | 96.87 15 | 99.95 26 | 97.66 7 | 99.57 27 | 100.00 1 | 99.63 29 | 99.88 11 | 99.28 26 | 100.00 1 | 100.00 1 |
|
MSLP-MVS++ | | | 99.39 4 | 99.76 9 | 98.95 6 | 99.60 17 | 99.99 1 | 99.83 4 | 96.82 17 | 99.92 36 | 97.58 10 | 99.58 26 | 100.00 1 | 99.93 1 | 98.98 35 | 99.86 8 | 99.96 13 | 100.00 1 |
|
CNVR-MVS | | | 99.39 4 | 99.75 12 | 98.98 4 | 99.69 1 | 99.95 14 | 99.76 10 | 96.91 10 | 99.98 3 | 97.59 9 | 99.64 20 | 100.00 1 | 99.93 1 | 99.94 2 | 98.75 50 | 99.97 12 | 99.97 88 |
|
DVP-MVS |  | | 99.38 6 | 99.57 36 | 99.15 1 | 99.62 8 | 99.94 20 | 99.72 23 | 96.99 2 | 99.98 3 | 98.85 1 | 98.21 76 | 100.00 1 | 99.88 8 | 99.88 11 | 98.96 35 | 99.85 34 | 100.00 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MSP-MVS | | | 99.38 6 | 99.78 5 | 98.91 11 | 99.61 13 | 99.96 7 | 99.85 2 | 96.94 7 | 99.96 20 | 97.38 13 | 99.60 23 | 100.00 1 | 99.70 21 | 99.96 1 | 98.96 35 | 100.00 1 | 100.00 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 99.37 8 | 99.74 15 | 98.94 7 | 99.60 17 | 99.94 20 | 99.87 1 | 96.95 4 | 99.94 29 | 97.42 11 | 99.62 22 | 100.00 1 | 99.80 17 | 99.91 5 | 98.78 48 | 99.98 10 | 100.00 1 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS++ | | | 99.36 9 | 99.70 20 | 98.96 5 | 99.62 8 | 99.94 20 | 99.85 2 | 96.90 14 | 99.97 9 | 97.64 8 | 99.50 33 | 100.00 1 | 99.88 8 | 99.90 8 | 98.60 52 | 99.87 30 | 100.00 1 |
|
SMA-MVS |  | | 99.34 10 | 99.79 4 | 98.81 13 | 99.69 1 | 99.94 20 | 99.75 17 | 96.91 10 | 99.98 3 | 96.76 15 | 99.37 40 | 100.00 1 | 99.90 5 | 99.88 11 | 99.46 17 | 99.84 37 | 99.92 126 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APD-MVS |  | | 99.33 11 | 99.85 1 | 98.73 14 | 99.61 13 | 99.92 41 | 99.77 9 | 96.91 10 | 99.93 32 | 96.31 19 | 99.59 25 | 99.95 41 | 99.84 12 | 99.73 18 | 99.84 9 | 99.95 15 | 100.00 1 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
NCCC | | | 99.24 12 | 99.75 12 | 98.65 15 | 99.63 7 | 99.96 7 | 99.76 10 | 96.91 10 | 99.97 9 | 95.86 23 | 99.67 11 | 100.00 1 | 99.75 18 | 99.85 14 | 98.80 46 | 99.98 10 | 99.97 88 |
|
CNLPA | | | 99.24 12 | 99.58 33 | 98.85 12 | 99.34 33 | 99.95 14 | 99.32 36 | 96.65 27 | 99.96 20 | 98.44 4 | 98.97 55 | 100.00 1 | 99.57 31 | 98.66 44 | 99.56 15 | 99.76 85 | 99.97 88 |
|
AdaColmap |  | | 99.21 14 | 99.45 39 | 98.92 8 | 99.67 4 | 99.95 14 | 99.65 28 | 96.77 22 | 99.97 9 | 97.67 6 | 100.00 1 | 99.69 55 | 99.93 1 | 99.26 31 | 97.25 98 | 99.85 34 | 100.00 1 |
|
HFP-MVS | | | 99.19 15 | 99.77 8 | 98.51 18 | 99.55 21 | 99.94 20 | 99.76 10 | 96.84 16 | 99.88 43 | 95.27 27 | 99.67 11 | 100.00 1 | 99.85 11 | 99.56 23 | 99.36 21 | 99.79 68 | 99.97 88 |
|
PLC |  | 98.06 1 | 99.17 16 | 99.38 41 | 98.92 8 | 99.47 23 | 99.90 49 | 99.48 33 | 96.47 32 | 99.96 20 | 98.73 2 | 99.52 32 | 100.00 1 | 99.55 33 | 98.54 57 | 97.73 85 | 99.84 37 | 99.99 59 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
SD-MVS | | | 99.16 17 | 99.73 16 | 98.49 19 | 97.93 53 | 99.95 14 | 99.74 20 | 96.94 7 | 99.96 20 | 96.60 17 | 99.47 36 | 100.00 1 | 99.88 8 | 99.15 33 | 99.59 13 | 99.84 37 | 100.00 1 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CP-MVS | | | 99.14 18 | 99.67 24 | 98.53 17 | 99.45 25 | 99.94 20 | 99.63 30 | 96.62 29 | 99.82 56 | 95.92 22 | 99.65 16 | 100.00 1 | 99.71 20 | 99.76 17 | 98.56 54 | 99.83 43 | 100.00 1 |
|
ACMMPR | | | 99.12 19 | 99.76 9 | 98.36 20 | 99.45 25 | 99.94 20 | 99.75 17 | 96.70 26 | 99.93 32 | 94.65 31 | 99.65 16 | 99.96 39 | 99.84 12 | 99.51 26 | 99.35 22 | 99.79 68 | 99.96 108 |
|
MCST-MVS | | | 99.08 20 | 99.72 18 | 98.33 21 | 99.59 20 | 99.97 3 | 99.78 8 | 96.96 3 | 99.95 26 | 93.72 35 | 99.67 11 | 100.00 1 | 99.90 5 | 99.91 5 | 98.55 55 | 100.00 1 | 100.00 1 |
|
CPTT-MVS | | | 99.08 20 | 99.53 38 | 98.57 16 | 99.44 27 | 99.93 35 | 99.60 31 | 95.92 37 | 99.77 64 | 97.01 14 | 99.67 11 | 100.00 1 | 99.72 19 | 99.56 23 | 97.76 82 | 99.70 116 | 99.98 75 |
|
DeepC-MVS_fast | | 98.03 2 | 99.05 22 | 99.78 5 | 98.21 24 | 99.47 23 | 99.97 3 | 99.75 17 | 96.80 18 | 99.97 9 | 93.58 37 | 98.68 63 | 99.94 42 | 99.69 22 | 99.93 4 | 99.95 3 | 99.96 13 | 99.98 75 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + MP. | | | 98.99 23 | 99.61 30 | 98.27 22 | 97.88 54 | 99.92 41 | 99.71 25 | 96.80 18 | 99.96 20 | 95.58 25 | 98.71 62 | 100.00 1 | 99.68 24 | 99.91 5 | 98.78 48 | 99.99 5 | 100.00 1 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HPM-MVS++ |  | | 98.98 24 | 99.62 29 | 98.22 23 | 99.62 8 | 99.94 20 | 99.74 20 | 96.95 4 | 99.87 47 | 93.76 34 | 99.49 35 | 100.00 1 | 99.39 39 | 99.73 18 | 98.35 60 | 99.89 26 | 99.96 108 |
|
SteuartSystems-ACMMP | | | 98.95 25 | 99.80 3 | 97.95 27 | 99.43 28 | 99.96 7 | 99.76 10 | 96.45 33 | 99.82 56 | 93.63 36 | 99.64 20 | 100.00 1 | 98.56 77 | 99.90 8 | 99.31 24 | 99.84 37 | 100.00 1 |
Skip Steuart: Steuart Systems R&D Blog. |
PHI-MVS | | | 98.85 26 | 99.67 24 | 97.89 28 | 98.63 48 | 99.93 35 | 98.95 47 | 95.20 39 | 99.84 54 | 94.94 28 | 99.74 10 | 100.00 1 | 99.69 22 | 98.40 64 | 99.75 11 | 99.93 18 | 99.99 59 |
|
MP-MVS |  | | 98.82 27 | 99.63 27 | 97.88 29 | 99.41 29 | 99.91 48 | 99.74 20 | 96.76 23 | 99.88 43 | 91.89 47 | 99.50 33 | 99.94 42 | 99.65 27 | 99.71 21 | 98.49 58 | 99.82 47 | 99.97 88 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMMP_NAP | | | 98.68 28 | 99.58 33 | 97.62 30 | 99.62 8 | 99.92 41 | 99.72 23 | 96.78 21 | 99.71 69 | 90.13 69 | 99.66 15 | 99.99 32 | 99.64 28 | 99.78 16 | 98.14 68 | 99.82 47 | 99.89 135 |
|
train_agg | | | 98.62 29 | 99.76 9 | 97.28 32 | 99.03 41 | 99.93 35 | 99.65 28 | 96.37 34 | 99.98 3 | 89.24 80 | 99.53 29 | 99.83 47 | 99.59 30 | 99.85 14 | 99.19 29 | 99.80 61 | 100.00 1 |
|
X-MVS | | | 98.62 29 | 99.75 12 | 97.29 31 | 99.50 22 | 99.94 20 | 99.71 25 | 96.55 30 | 99.85 51 | 88.58 85 | 99.65 16 | 99.98 34 | 99.67 25 | 99.60 22 | 99.26 27 | 99.77 79 | 99.97 88 |
|
OMC-MVS | | | 98.59 31 | 99.07 46 | 98.03 26 | 99.41 29 | 99.90 49 | 99.26 39 | 94.33 41 | 99.94 29 | 96.03 20 | 96.68 90 | 99.72 54 | 99.42 36 | 98.86 38 | 98.84 43 | 99.72 113 | 99.58 171 |
|
DPM-MVS | | | 98.58 32 | 99.78 5 | 97.17 34 | 98.02 52 | 99.64 83 | 99.80 7 | 96.72 25 | 99.96 20 | 90.05 71 | 99.57 27 | 100.00 1 | 98.66 76 | 99.56 23 | 99.96 2 | 99.80 61 | 99.80 158 |
|
PGM-MVS | | | 98.47 33 | 99.73 16 | 97.00 36 | 99.68 3 | 99.94 20 | 99.76 10 | 91.74 46 | 99.84 54 | 91.17 56 | 100.00 1 | 99.69 55 | 99.81 15 | 99.38 29 | 99.30 25 | 99.82 47 | 99.95 115 |
|
TSAR-MVS + ACMM | | | 98.30 34 | 99.64 26 | 96.74 39 | 99.08 40 | 99.94 20 | 99.67 27 | 96.73 24 | 99.97 9 | 86.30 105 | 98.30 68 | 99.99 32 | 98.78 70 | 99.73 18 | 99.57 14 | 99.88 29 | 99.98 75 |
|
CSCG | | | 98.22 35 | 98.37 68 | 98.04 25 | 99.60 17 | 99.82 60 | 99.45 34 | 93.59 42 | 99.16 103 | 96.46 18 | 98.22 75 | 95.86 105 | 99.41 38 | 96.33 135 | 99.22 28 | 99.75 94 | 99.94 120 |
|
3Dnovator+ | | 95.21 7 | 98.17 36 | 99.08 45 | 97.12 35 | 99.28 36 | 99.78 71 | 98.61 54 | 89.93 60 | 99.93 32 | 95.36 26 | 95.50 99 | 100.00 1 | 99.56 32 | 98.58 52 | 99.80 10 | 99.95 15 | 99.97 88 |
|
ACMMP |  | | 98.16 37 | 99.01 47 | 97.18 33 | 98.86 43 | 99.92 41 | 98.77 52 | 95.73 38 | 99.31 99 | 91.15 57 | 100.00 1 | 99.81 49 | 98.82 68 | 98.11 84 | 95.91 133 | 99.77 79 | 99.97 88 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MVS_111021_LR | | | 98.15 38 | 99.69 21 | 96.36 44 | 99.23 38 | 99.93 35 | 97.79 66 | 91.84 45 | 99.87 47 | 90.53 65 | 100.00 1 | 99.57 60 | 98.93 62 | 99.44 27 | 99.08 32 | 99.85 34 | 99.95 115 |
|
EPNet | | | 98.11 39 | 99.63 27 | 96.34 45 | 98.44 50 | 99.88 55 | 98.55 55 | 90.25 56 | 99.93 32 | 92.60 44 | 100.00 1 | 99.73 52 | 98.41 79 | 98.87 37 | 99.02 33 | 99.82 47 | 99.97 88 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TSAR-MVS + GP. | | | 98.06 40 | 99.55 37 | 96.32 46 | 94.72 81 | 99.92 41 | 99.22 40 | 89.98 58 | 99.97 9 | 94.77 30 | 99.94 9 | 100.00 1 | 99.43 35 | 98.52 61 | 98.53 56 | 99.79 68 | 100.00 1 |
|
3Dnovator | | 95.01 8 | 97.98 41 | 98.89 52 | 96.92 38 | 99.36 31 | 99.76 74 | 98.72 53 | 89.98 58 | 99.98 3 | 93.99 33 | 94.60 112 | 99.43 65 | 99.50 34 | 98.55 54 | 99.91 5 | 99.99 5 | 99.98 75 |
|
MVS_111021_HR | | | 97.94 42 | 99.59 31 | 96.02 48 | 99.27 37 | 99.97 3 | 97.03 91 | 90.44 53 | 99.89 40 | 90.75 60 | 100.00 1 | 99.73 52 | 98.68 75 | 98.67 43 | 98.89 40 | 99.95 15 | 99.97 88 |
|
QAPM | | | 97.90 43 | 98.89 52 | 96.74 39 | 99.35 32 | 99.80 66 | 98.84 49 | 90.20 57 | 99.94 29 | 92.85 39 | 94.17 115 | 99.78 50 | 99.42 36 | 98.71 41 | 99.87 7 | 99.79 68 | 99.98 75 |
|
CDPH-MVS | | | 97.88 44 | 99.59 31 | 95.89 49 | 98.90 42 | 99.95 14 | 99.40 35 | 92.86 44 | 99.86 50 | 85.33 111 | 98.62 64 | 99.45 64 | 99.06 58 | 99.29 30 | 99.94 4 | 99.81 56 | 100.00 1 |
|
CANet | | | 97.62 45 | 98.94 50 | 96.08 47 | 97.19 58 | 99.93 35 | 99.29 38 | 90.38 54 | 99.87 47 | 91.00 58 | 95.79 98 | 99.51 61 | 98.72 74 | 98.53 58 | 99.00 34 | 99.90 24 | 99.99 59 |
|
TAPA-MVS | | 96.62 5 | 97.60 46 | 98.46 67 | 96.60 42 | 98.73 46 | 99.90 49 | 99.30 37 | 94.96 40 | 99.46 87 | 87.57 93 | 96.05 97 | 98.53 77 | 99.26 48 | 98.04 89 | 97.33 97 | 99.77 79 | 99.88 140 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DeepPCF-MVS | | 97.16 4 | 97.58 47 | 99.72 18 | 95.07 65 | 98.45 49 | 99.96 7 | 93.83 145 | 95.93 36 | 100.00 1 | 90.79 59 | 98.38 67 | 99.85 46 | 95.28 136 | 99.94 2 | 99.97 1 | 96.15 212 | 99.97 88 |
|
CS-MVS-test | | | 97.51 48 | 99.18 44 | 95.56 54 | 97.16 59 | 99.96 7 | 97.39 79 | 89.82 62 | 100.00 1 | 89.88 72 | 99.16 47 | 98.38 83 | 99.23 50 | 98.85 39 | 97.93 75 | 99.87 30 | 100.00 1 |
|
PCF-MVS | | 97.20 3 | 97.49 49 | 98.20 73 | 96.66 41 | 97.62 56 | 99.92 41 | 98.93 48 | 96.64 28 | 98.53 134 | 88.31 91 | 94.04 118 | 99.58 59 | 98.94 60 | 97.53 105 | 97.79 80 | 99.54 146 | 99.97 88 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CS-MVS | | | 97.46 50 | 98.98 48 | 95.68 53 | 96.74 63 | 99.93 35 | 97.62 72 | 89.69 63 | 99.98 3 | 91.33 53 | 98.53 66 | 97.50 92 | 98.77 71 | 98.60 51 | 98.35 60 | 99.92 21 | 100.00 1 |
|
MSDG | | | 97.29 51 | 97.55 89 | 97.00 36 | 98.66 47 | 99.71 78 | 99.03 45 | 96.15 35 | 99.59 76 | 89.67 78 | 92.77 129 | 94.86 108 | 98.75 72 | 98.22 75 | 97.94 73 | 99.72 113 | 99.76 163 |
|
CHOSEN 280x420 | | | 97.16 52 | 99.58 33 | 94.35 79 | 96.95 62 | 99.97 3 | 97.19 85 | 81.55 146 | 99.92 36 | 91.75 48 | 100.00 1 | 100.00 1 | 98.84 67 | 98.55 54 | 98.65 51 | 99.79 68 | 99.97 88 |
|
DELS-MVS | | | 97.05 53 | 98.05 78 | 95.88 51 | 97.09 60 | 99.99 1 | 98.82 50 | 90.30 55 | 98.44 140 | 91.40 51 | 92.91 126 | 96.57 98 | 97.68 107 | 98.56 53 | 99.88 6 | 100.00 1 | 100.00 1 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DeepC-MVS | | 96.33 6 | 97.05 53 | 97.59 88 | 96.42 43 | 97.37 57 | 99.92 41 | 99.10 43 | 96.54 31 | 99.34 98 | 86.64 102 | 91.93 134 | 93.15 119 | 99.11 56 | 99.11 34 | 99.68 12 | 99.73 108 | 99.97 88 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test2506 | | | 97.04 55 | 98.09 77 | 95.81 52 | 94.12 86 | 99.80 66 | 97.33 81 | 89.48 68 | 98.90 120 | 95.99 21 | 99.11 50 | 92.84 121 | 98.14 89 | 98.14 80 | 98.32 64 | 99.82 47 | 99.51 176 |
|
MVS_0304 | | | 97.04 55 | 98.72 58 | 95.08 64 | 96.32 67 | 99.90 49 | 99.15 41 | 89.61 66 | 99.89 40 | 87.22 99 | 95.47 100 | 98.22 86 | 98.22 85 | 98.63 48 | 98.90 39 | 99.93 18 | 100.00 1 |
|
MAR-MVS | | | 97.03 57 | 98.00 80 | 95.89 49 | 99.32 34 | 99.74 77 | 96.76 98 | 84.89 110 | 99.97 9 | 94.86 29 | 98.29 69 | 90.58 129 | 99.67 25 | 98.02 91 | 99.50 16 | 99.82 47 | 99.92 126 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVSTER | | | 97.00 58 | 98.85 54 | 94.83 72 | 92.71 103 | 97.43 155 | 99.03 45 | 85.52 103 | 99.82 56 | 92.74 42 | 99.15 48 | 99.94 42 | 99.19 53 | 98.66 44 | 96.99 112 | 99.79 68 | 99.98 75 |
|
EC-MVSNet | | | 96.90 59 | 99.32 42 | 94.07 80 | 91.64 133 | 99.30 106 | 98.18 62 | 85.61 102 | 99.97 9 | 89.79 73 | 99.33 41 | 99.31 68 | 99.28 46 | 98.48 63 | 98.86 41 | 99.91 22 | 100.00 1 |
|
baseline1 | | | 96.87 60 | 98.55 61 | 94.91 67 | 92.89 102 | 99.45 97 | 96.34 102 | 88.54 81 | 98.88 123 | 92.82 40 | 98.93 57 | 96.58 97 | 99.07 57 | 98.19 77 | 98.04 70 | 99.80 61 | 99.78 160 |
|
OpenMVS |  | 94.03 11 | 96.87 60 | 98.10 76 | 95.44 58 | 99.29 35 | 99.78 71 | 98.46 60 | 89.92 61 | 99.47 86 | 85.78 109 | 91.05 138 | 98.50 78 | 99.30 44 | 98.49 62 | 99.41 18 | 99.89 26 | 99.98 75 |
|
PatchMatch-RL | | | 96.84 62 | 98.03 79 | 95.47 55 | 98.84 44 | 99.81 64 | 95.61 116 | 89.20 72 | 99.65 73 | 91.28 54 | 99.39 37 | 93.46 117 | 98.18 86 | 98.05 87 | 96.28 122 | 99.69 121 | 99.55 173 |
|
ETV-MVS | | | 96.79 63 | 99.19 43 | 94.00 82 | 91.78 124 | 99.63 85 | 97.15 87 | 88.00 87 | 99.95 26 | 88.34 90 | 99.32 42 | 98.71 74 | 98.82 68 | 98.69 42 | 98.01 71 | 99.90 24 | 100.00 1 |
|
IS_MVSNet | | | 96.66 64 | 98.62 60 | 94.38 76 | 92.41 109 | 99.70 79 | 97.19 85 | 87.67 90 | 99.05 111 | 91.27 55 | 95.09 105 | 98.46 82 | 97.95 97 | 98.64 46 | 99.37 19 | 99.79 68 | 100.00 1 |
|
PMMVS | | | 96.45 65 | 98.24 72 | 94.36 78 | 92.58 104 | 99.01 118 | 97.08 90 | 87.42 96 | 99.88 43 | 90.06 70 | 99.39 37 | 94.63 109 | 99.33 42 | 97.85 97 | 96.99 112 | 99.70 116 | 99.96 108 |
|
LS3D | | | 96.44 66 | 97.31 96 | 95.41 59 | 97.06 61 | 99.87 56 | 99.51 32 | 97.48 1 | 99.57 77 | 79.00 130 | 95.39 101 | 89.19 135 | 99.81 15 | 98.55 54 | 98.84 43 | 99.62 135 | 99.78 160 |
|
EIA-MVS | | | 96.34 67 | 98.55 61 | 93.76 86 | 91.93 120 | 99.66 81 | 97.14 88 | 88.33 85 | 99.51 81 | 85.98 108 | 98.82 61 | 96.08 103 | 99.33 42 | 98.38 67 | 97.40 95 | 99.81 56 | 100.00 1 |
|
EPP-MVSNet | | | 96.29 68 | 98.34 69 | 93.90 83 | 91.77 125 | 99.38 103 | 95.45 121 | 87.25 98 | 99.38 94 | 91.36 52 | 94.86 111 | 98.49 80 | 97.83 101 | 98.01 92 | 98.23 66 | 99.75 94 | 99.99 59 |
|
UGNet | | | 96.05 69 | 98.55 61 | 93.13 95 | 94.64 82 | 99.65 82 | 94.70 133 | 87.78 88 | 99.40 93 | 89.69 77 | 98.25 72 | 99.25 70 | 92.12 168 | 96.50 127 | 97.08 107 | 99.84 37 | 99.72 165 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
COLMAP_ROB |  | 93.56 12 | 96.03 70 | 96.83 108 | 95.11 63 | 97.87 55 | 99.52 89 | 98.81 51 | 91.40 49 | 99.42 90 | 84.97 112 | 90.46 141 | 96.82 96 | 98.05 92 | 96.46 131 | 96.19 125 | 99.54 146 | 98.92 191 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PVSNet_BlendedMVS | | | 96.01 71 | 96.48 116 | 95.46 56 | 96.47 65 | 99.89 53 | 95.64 113 | 91.23 50 | 99.75 66 | 91.59 49 | 96.80 87 | 82.44 156 | 98.05 92 | 98.53 58 | 97.92 76 | 99.80 61 | 100.00 1 |
|
PVSNet_Blended | | | 96.01 71 | 96.48 116 | 95.46 56 | 96.47 65 | 99.89 53 | 95.64 113 | 91.23 50 | 99.75 66 | 91.59 49 | 96.80 87 | 82.44 156 | 98.05 92 | 98.53 58 | 97.92 76 | 99.80 61 | 100.00 1 |
|
thisisatest0530 | | | 95.89 73 | 98.32 70 | 93.06 98 | 91.76 126 | 99.75 75 | 94.94 128 | 87.60 93 | 99.91 38 | 86.66 101 | 98.28 70 | 99.98 34 | 97.72 103 | 97.10 117 | 93.24 169 | 99.65 127 | 99.95 115 |
|
tttt0517 | | | 95.88 74 | 98.31 71 | 93.04 99 | 91.75 128 | 99.75 75 | 94.90 129 | 87.60 93 | 99.91 38 | 86.63 103 | 98.28 70 | 99.98 34 | 97.72 103 | 97.10 117 | 93.24 169 | 99.65 127 | 99.95 115 |
|
thres100view900 | | | 95.86 75 | 96.62 110 | 94.97 66 | 93.10 94 | 99.83 58 | 97.76 67 | 89.15 73 | 98.62 130 | 90.69 61 | 99.00 52 | 84.86 147 | 99.30 44 | 97.57 104 | 96.48 117 | 99.81 56 | 100.00 1 |
|
RPSCF | | | 95.86 75 | 96.94 106 | 94.61 74 | 96.52 64 | 98.67 132 | 98.54 56 | 88.43 83 | 99.56 78 | 90.51 67 | 99.39 37 | 98.70 75 | 97.72 103 | 93.77 179 | 92.00 185 | 95.93 213 | 96.50 208 |
|
DCV-MVSNet | | | 95.85 77 | 97.53 90 | 93.89 84 | 93.20 93 | 97.01 161 | 97.14 88 | 84.77 111 | 99.16 103 | 90.38 68 | 98.96 56 | 93.73 114 | 98.23 84 | 96.57 126 | 97.37 96 | 99.64 131 | 99.93 122 |
|
baseline | | | 95.85 77 | 98.13 75 | 93.20 94 | 92.29 112 | 99.58 87 | 97.49 74 | 84.33 118 | 99.44 88 | 87.28 97 | 97.00 86 | 94.04 113 | 97.93 98 | 98.36 69 | 98.47 59 | 99.87 30 | 99.99 59 |
|
canonicalmvs | | | 95.80 79 | 97.02 101 | 94.37 77 | 92.96 100 | 99.47 94 | 97.49 74 | 84.58 113 | 99.44 88 | 92.05 46 | 98.54 65 | 86.65 140 | 99.37 40 | 96.18 138 | 98.93 37 | 99.77 79 | 99.92 126 |
|
tfpn200view9 | | | 95.78 80 | 96.54 113 | 94.89 69 | 93.10 94 | 99.82 60 | 97.67 68 | 88.85 76 | 98.62 130 | 90.69 61 | 99.00 52 | 84.86 147 | 99.28 46 | 97.41 111 | 96.10 126 | 99.76 85 | 99.99 59 |
|
thres200 | | | 95.77 81 | 96.55 112 | 94.86 70 | 93.09 96 | 99.82 60 | 97.63 71 | 88.85 76 | 98.49 135 | 90.66 63 | 98.99 54 | 84.86 147 | 99.20 51 | 97.41 111 | 96.28 122 | 99.76 85 | 100.00 1 |
|
MVS_Test | | | 95.74 82 | 98.18 74 | 92.90 101 | 92.16 113 | 99.49 93 | 97.36 80 | 84.30 119 | 99.79 61 | 84.94 113 | 96.65 91 | 93.63 116 | 98.85 66 | 98.61 50 | 99.10 31 | 99.81 56 | 100.00 1 |
|
thres400 | | | 95.72 83 | 96.48 116 | 94.84 71 | 93.00 99 | 99.83 58 | 97.55 73 | 88.93 74 | 98.49 135 | 90.61 64 | 98.86 58 | 84.63 151 | 99.20 51 | 97.45 107 | 96.10 126 | 99.77 79 | 99.99 59 |
|
thres600view7 | | | 95.64 84 | 96.38 120 | 94.79 73 | 92.96 100 | 99.82 60 | 97.48 78 | 88.85 76 | 98.38 141 | 90.52 66 | 98.84 60 | 84.61 152 | 99.15 54 | 97.41 111 | 95.60 138 | 99.76 85 | 99.99 59 |
|
Vis-MVSNet (Re-imp) | | | 95.60 85 | 98.52 66 | 92.19 105 | 92.37 110 | 99.56 88 | 96.37 101 | 87.41 97 | 98.95 115 | 84.77 116 | 94.88 110 | 98.48 81 | 92.44 165 | 98.63 48 | 99.37 19 | 99.76 85 | 99.77 162 |
|
FMVSNet3 | | | 95.59 86 | 97.51 92 | 93.34 92 | 89.48 149 | 96.57 168 | 97.67 68 | 84.17 120 | 99.48 83 | 89.76 74 | 95.09 105 | 94.35 110 | 99.14 55 | 98.37 68 | 98.86 41 | 99.82 47 | 99.89 135 |
|
ECVR-MVS |  | | 95.46 87 | 95.58 133 | 95.31 61 | 94.12 86 | 99.80 66 | 97.33 81 | 89.48 68 | 98.90 120 | 92.99 38 | 87.97 153 | 86.41 142 | 98.14 89 | 98.14 80 | 98.32 64 | 99.82 47 | 99.52 175 |
|
PVSNet_Blended_VisFu | | | 95.37 88 | 97.44 94 | 92.95 100 | 95.20 74 | 99.80 66 | 92.68 153 | 88.41 84 | 99.12 106 | 87.64 92 | 88.31 152 | 99.10 71 | 94.07 152 | 98.27 72 | 97.51 91 | 99.73 108 | 100.00 1 |
|
DI_MVS_plusplus_trai | | | 95.29 89 | 97.02 101 | 93.28 93 | 91.76 126 | 99.52 89 | 97.84 65 | 85.67 101 | 99.08 110 | 87.29 96 | 87.76 156 | 97.46 93 | 97.31 111 | 97.83 98 | 97.48 92 | 99.83 43 | 100.00 1 |
|
ET-MVSNet_ETH3D | | | 95.20 90 | 97.82 85 | 92.15 106 | 80.77 211 | 98.13 143 | 97.65 70 | 86.93 99 | 99.72 68 | 88.56 88 | 99.29 45 | 97.01 95 | 99.24 49 | 94.58 167 | 95.98 131 | 99.75 94 | 99.99 59 |
|
TSAR-MVS + COLMAP | | | 95.20 90 | 95.03 140 | 95.41 59 | 96.17 68 | 98.69 131 | 99.11 42 | 93.40 43 | 99.97 9 | 84.89 114 | 98.23 74 | 75.01 177 | 99.34 41 | 97.27 116 | 96.37 121 | 99.58 139 | 99.64 170 |
|
GBi-Net | | | 95.19 92 | 96.99 104 | 93.09 96 | 89.11 150 | 96.47 170 | 96.90 92 | 84.17 120 | 99.48 83 | 89.76 74 | 95.09 105 | 94.35 110 | 98.87 63 | 96.50 127 | 97.21 99 | 99.74 98 | 99.81 155 |
|
test1 | | | 95.19 92 | 96.99 104 | 93.09 96 | 89.11 150 | 96.47 170 | 96.90 92 | 84.17 120 | 99.48 83 | 89.76 74 | 95.09 105 | 94.35 110 | 98.87 63 | 96.50 127 | 97.21 99 | 99.74 98 | 99.81 155 |
|
test1111 | | | 95.15 94 | 95.18 138 | 95.12 62 | 94.07 88 | 99.80 66 | 97.20 84 | 89.53 67 | 98.80 124 | 92.22 45 | 85.44 164 | 86.24 143 | 97.89 99 | 98.12 82 | 98.34 63 | 99.80 61 | 99.51 176 |
|
test0.0.03 1 | | | 95.15 94 | 97.87 84 | 91.99 107 | 91.69 130 | 98.82 129 | 93.04 151 | 83.60 125 | 99.65 73 | 88.80 83 | 94.15 116 | 97.67 90 | 94.97 138 | 96.62 125 | 98.16 67 | 99.83 43 | 100.00 1 |
|
baseline2 | | | 95.13 96 | 98.55 61 | 91.15 113 | 90.29 145 | 99.00 119 | 94.49 137 | 82.00 140 | 99.68 71 | 84.82 115 | 96.47 92 | 99.30 69 | 95.71 130 | 98.24 74 | 97.14 105 | 99.57 141 | 100.00 1 |
|
casdiffmvs_mvg |  | | 95.10 97 | 96.45 119 | 93.53 88 | 92.05 116 | 99.42 101 | 97.25 83 | 87.66 91 | 97.17 160 | 86.09 106 | 91.79 136 | 91.27 123 | 98.31 82 | 98.06 86 | 97.42 94 | 99.81 56 | 100.00 1 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
EPNet_dtu | | | 95.10 97 | 98.81 56 | 90.78 114 | 98.38 51 | 98.47 134 | 96.54 100 | 89.36 70 | 99.78 63 | 65.65 184 | 99.31 43 | 98.24 85 | 94.79 141 | 98.28 71 | 99.35 22 | 99.93 18 | 98.27 195 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Anonymous20231211 | | | 94.96 99 | 94.99 141 | 94.91 67 | 93.01 98 | 99.44 100 | 96.85 96 | 88.49 82 | 98.78 125 | 92.61 43 | 83.94 170 | 90.25 131 | 98.94 60 | 95.87 146 | 96.77 114 | 99.58 139 | 99.89 135 |
|
UA-Net | | | 94.95 100 | 98.66 59 | 90.63 116 | 94.60 84 | 98.94 125 | 96.03 106 | 85.28 105 | 98.01 152 | 78.92 131 | 97.42 84 | 99.96 39 | 89.09 192 | 98.95 36 | 98.80 46 | 99.82 47 | 98.57 193 |
|
CANet_DTU | | | 94.90 101 | 98.98 48 | 90.13 124 | 94.74 80 | 99.81 64 | 98.53 57 | 82.23 139 | 99.97 9 | 66.76 181 | 100.00 1 | 98.50 78 | 98.74 73 | 97.52 106 | 97.19 104 | 99.76 85 | 99.88 140 |
|
FC-MVSNet-train | | | 94.61 102 | 96.27 121 | 92.68 103 | 92.35 111 | 97.14 159 | 93.45 149 | 87.73 89 | 98.93 116 | 87.31 95 | 96.42 93 | 89.35 133 | 95.67 131 | 96.06 144 | 96.01 130 | 99.56 143 | 99.98 75 |
|
diffmvs |  | | 94.60 103 | 95.63 132 | 93.41 90 | 91.98 119 | 99.30 106 | 96.86 95 | 87.62 92 | 99.30 100 | 86.07 107 | 94.12 117 | 81.63 161 | 98.16 87 | 97.43 108 | 97.60 89 | 99.76 85 | 100.00 1 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
casdiffmvs |  | | 94.54 104 | 95.56 134 | 93.36 91 | 91.84 122 | 99.46 96 | 95.92 108 | 87.54 95 | 98.45 138 | 86.57 104 | 90.51 140 | 84.72 150 | 98.49 78 | 97.97 93 | 97.80 79 | 99.77 79 | 100.00 1 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CLD-MVS | | | 94.53 105 | 94.45 149 | 94.61 74 | 93.85 90 | 98.36 136 | 98.12 63 | 89.68 64 | 99.35 97 | 89.62 79 | 95.19 103 | 77.08 168 | 96.66 121 | 95.51 150 | 95.67 136 | 99.74 98 | 100.00 1 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
FMVSNet2 | | | 94.48 106 | 95.95 126 | 92.77 102 | 89.11 150 | 96.47 170 | 96.90 92 | 83.38 128 | 99.11 107 | 88.64 84 | 87.50 161 | 92.26 122 | 98.87 63 | 97.91 95 | 98.60 52 | 99.74 98 | 99.81 155 |
|
HQP-MVS | | | 94.48 106 | 95.39 136 | 93.42 89 | 95.10 75 | 98.35 137 | 98.19 61 | 91.41 48 | 99.77 64 | 79.79 127 | 99.30 44 | 77.08 168 | 96.25 124 | 96.93 119 | 96.28 122 | 99.76 85 | 99.99 59 |
|
FA-MVS(training) | | | 94.33 108 | 97.52 91 | 90.60 118 | 92.42 108 | 99.77 73 | 96.13 105 | 68.75 196 | 99.05 111 | 88.49 89 | 91.95 132 | 99.48 62 | 98.12 91 | 98.39 65 | 94.02 161 | 99.68 123 | 99.98 75 |
|
MDTV_nov1_ep13 | | | 94.32 109 | 98.77 57 | 89.14 134 | 91.70 129 | 99.52 89 | 95.21 124 | 72.09 194 | 99.80 59 | 78.91 132 | 96.32 94 | 99.62 57 | 97.71 106 | 98.39 65 | 97.71 86 | 99.22 195 | 100.00 1 |
|
CDS-MVSNet | | | 94.32 109 | 97.00 103 | 91.19 112 | 89.82 148 | 98.71 130 | 95.51 118 | 85.14 109 | 96.85 161 | 82.33 122 | 92.48 130 | 96.40 101 | 94.71 142 | 96.86 122 | 97.76 82 | 99.63 133 | 99.92 126 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
dps | | | 94.29 111 | 97.33 95 | 90.75 115 | 92.02 117 | 99.21 110 | 94.31 139 | 66.97 201 | 99.50 82 | 95.61 24 | 96.22 96 | 98.64 76 | 96.08 126 | 93.71 181 | 94.03 160 | 99.52 150 | 99.98 75 |
|
ACMM | | 94.44 10 | 94.26 112 | 94.62 145 | 93.84 85 | 94.86 79 | 97.73 150 | 93.48 148 | 90.76 52 | 99.27 101 | 87.46 94 | 99.04 51 | 76.60 170 | 96.76 119 | 96.37 134 | 93.76 164 | 99.74 98 | 99.55 173 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 94.49 9 | 94.19 113 | 94.74 144 | 93.56 87 | 94.25 85 | 98.32 139 | 96.02 107 | 89.35 71 | 98.90 120 | 87.28 97 | 99.14 49 | 76.41 173 | 94.94 139 | 96.07 143 | 94.35 157 | 99.49 157 | 99.99 59 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
EPMVS | | | 94.08 114 | 98.54 65 | 88.87 135 | 92.51 106 | 99.47 94 | 94.18 141 | 66.53 202 | 99.68 71 | 82.40 121 | 95.24 102 | 99.40 66 | 97.86 100 | 98.12 82 | 97.99 72 | 99.75 94 | 99.88 140 |
|
test-LLR | | | 93.71 115 | 97.23 97 | 89.60 128 | 91.69 130 | 99.10 115 | 94.68 135 | 83.60 125 | 99.36 95 | 71.94 158 | 93.82 120 | 96.51 99 | 95.96 128 | 97.42 109 | 94.37 154 | 99.74 98 | 99.99 59 |
|
CHOSEN 1792x2688 | | | 93.69 116 | 94.89 143 | 92.28 104 | 96.17 68 | 99.84 57 | 95.69 112 | 83.17 131 | 98.54 133 | 82.04 123 | 77.58 198 | 91.15 125 | 96.90 114 | 98.36 69 | 98.82 45 | 99.73 108 | 99.98 75 |
|
LGP-MVS_train | | | 93.60 117 | 95.05 139 | 91.90 108 | 94.90 78 | 98.29 140 | 97.93 64 | 88.06 86 | 99.14 105 | 74.83 147 | 99.26 46 | 76.50 171 | 96.07 127 | 96.31 136 | 95.90 135 | 99.59 137 | 99.97 88 |
|
SCA | | | 93.53 118 | 98.90 51 | 87.27 152 | 92.01 118 | 99.30 106 | 93.43 150 | 65.72 206 | 99.80 59 | 75.20 146 | 97.66 82 | 99.74 51 | 97.44 109 | 98.21 76 | 97.62 88 | 99.84 37 | 100.00 1 |
|
FMVSNet5 | | | 93.53 118 | 96.09 125 | 90.56 119 | 86.74 165 | 92.84 210 | 92.64 154 | 77.50 172 | 99.41 92 | 88.97 82 | 98.02 78 | 97.81 88 | 98.00 95 | 94.85 162 | 95.43 140 | 99.50 156 | 94.25 212 |
|
OPM-MVS | | | 93.50 120 | 93.00 159 | 94.07 80 | 95.82 71 | 98.26 141 | 98.49 59 | 91.62 47 | 94.69 181 | 81.93 124 | 92.82 128 | 76.18 175 | 96.82 116 | 96.12 140 | 94.57 148 | 99.74 98 | 98.39 194 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
CostFormer | | | 93.50 120 | 96.50 115 | 90.00 125 | 91.69 130 | 98.65 133 | 93.88 144 | 67.64 199 | 98.97 113 | 89.16 81 | 97.79 80 | 88.92 136 | 97.97 96 | 95.14 159 | 96.06 128 | 99.63 133 | 100.00 1 |
|
IterMVS-LS | | | 93.50 120 | 96.22 122 | 90.33 122 | 90.93 136 | 95.50 195 | 94.83 131 | 80.54 150 | 98.92 117 | 79.11 129 | 90.64 139 | 93.70 115 | 96.79 117 | 96.93 119 | 97.85 78 | 99.78 75 | 99.99 59 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PatchmatchNet |  | | 93.48 123 | 98.84 55 | 87.22 153 | 91.93 120 | 99.39 102 | 92.55 155 | 66.06 204 | 99.71 69 | 75.61 143 | 98.24 73 | 99.59 58 | 97.35 110 | 97.87 96 | 97.64 87 | 99.83 43 | 99.43 179 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MS-PatchMatch | | | 93.46 124 | 95.91 128 | 90.61 117 | 95.48 72 | 99.31 105 | 95.62 115 | 77.23 174 | 99.42 90 | 81.88 125 | 88.92 149 | 96.06 104 | 93.80 154 | 96.45 133 | 93.11 173 | 99.65 127 | 98.10 199 |
|
dmvs_re | | | 93.34 125 | 94.59 146 | 91.88 109 | 87.97 161 | 99.14 114 | 95.29 123 | 88.61 79 | 98.09 149 | 82.71 120 | 97.34 85 | 78.96 163 | 96.98 112 | 94.62 165 | 93.98 162 | 99.73 108 | 99.98 75 |
|
tpm cat1 | | | 93.29 126 | 96.53 114 | 89.50 130 | 91.84 122 | 99.18 112 | 94.70 133 | 67.70 198 | 98.38 141 | 86.67 100 | 89.16 146 | 99.38 67 | 96.66 121 | 94.33 168 | 95.30 141 | 99.43 173 | 100.00 1 |
|
Effi-MVS+-dtu | | | 93.13 127 | 97.13 99 | 88.47 143 | 88.86 156 | 99.19 111 | 96.79 97 | 79.08 163 | 99.64 75 | 70.01 168 | 97.51 83 | 89.38 132 | 96.53 123 | 97.60 102 | 96.55 116 | 99.57 141 | 100.00 1 |
|
HyFIR lowres test | | | 93.13 127 | 94.48 148 | 91.56 110 | 96.12 70 | 99.68 80 | 93.52 147 | 79.98 154 | 97.24 158 | 81.73 126 | 72.66 207 | 95.74 106 | 98.29 83 | 98.27 72 | 97.79 80 | 99.70 116 | 100.00 1 |
|
Vis-MVSNet |  | | 93.08 129 | 96.76 109 | 88.78 139 | 91.14 135 | 99.63 85 | 94.85 130 | 83.34 129 | 97.19 159 | 74.78 148 | 91.92 135 | 93.15 119 | 88.81 195 | 97.59 103 | 98.35 60 | 99.78 75 | 99.49 178 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Effi-MVS+ | | | 93.06 130 | 95.94 127 | 89.70 127 | 90.82 137 | 99.45 97 | 95.71 111 | 78.94 164 | 98.72 126 | 74.71 149 | 97.92 79 | 80.73 162 | 98.35 80 | 97.72 100 | 97.05 110 | 99.70 116 | 100.00 1 |
|
ADS-MVSNet | | | 92.91 131 | 97.97 81 | 87.01 155 | 92.07 115 | 99.27 109 | 92.70 152 | 65.39 209 | 99.85 51 | 75.40 144 | 94.93 109 | 98.26 84 | 96.86 115 | 96.09 141 | 97.52 90 | 99.65 127 | 99.84 151 |
|
GeoE | | | 92.88 132 | 95.20 137 | 90.18 123 | 90.59 141 | 99.18 112 | 96.31 103 | 78.36 168 | 97.52 157 | 78.53 134 | 87.11 162 | 88.01 137 | 97.63 108 | 97.79 99 | 96.76 115 | 99.66 125 | 100.00 1 |
|
TESTMET0.1,1 | | | 92.87 133 | 97.23 97 | 87.79 149 | 86.96 164 | 99.10 115 | 94.68 135 | 77.46 173 | 99.36 95 | 71.94 158 | 93.82 120 | 96.51 99 | 95.96 128 | 97.42 109 | 94.37 154 | 99.74 98 | 99.99 59 |
|
FC-MVSNet-test | | | 92.78 134 | 96.19 124 | 88.80 138 | 88.00 160 | 97.54 152 | 93.60 146 | 82.36 138 | 98.16 145 | 79.71 128 | 91.55 137 | 95.41 107 | 89.65 187 | 96.09 141 | 95.23 142 | 99.49 157 | 99.31 182 |
|
Fast-Effi-MVS+-dtu | | | 92.73 135 | 97.62 87 | 87.02 154 | 88.91 154 | 98.83 128 | 95.79 109 | 73.98 188 | 99.89 40 | 68.62 173 | 97.73 81 | 93.30 118 | 95.21 137 | 97.67 101 | 95.96 132 | 99.59 137 | 100.00 1 |
|
IB-MVS | | 90.59 15 | 92.70 136 | 95.70 130 | 89.21 133 | 94.62 83 | 99.45 97 | 83.77 203 | 88.92 75 | 99.53 79 | 92.82 40 | 98.86 58 | 86.08 144 | 75.24 214 | 92.81 195 | 93.17 171 | 99.89 26 | 100.00 1 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
test-mter | | | 92.67 137 | 97.13 99 | 87.47 151 | 86.72 166 | 99.07 117 | 94.28 140 | 76.90 175 | 99.21 102 | 71.53 162 | 93.63 122 | 96.32 102 | 95.67 131 | 97.32 114 | 94.36 156 | 99.74 98 | 99.99 59 |
|
RPMNet | | | 92.64 138 | 97.88 83 | 86.53 160 | 90.79 138 | 98.95 123 | 95.13 125 | 64.44 213 | 99.09 108 | 72.36 154 | 93.58 123 | 99.01 72 | 96.74 120 | 98.05 87 | 96.45 119 | 99.71 115 | 100.00 1 |
|
FMVSNet1 | | | 92.55 139 | 93.66 154 | 91.26 111 | 87.91 162 | 96.12 177 | 94.75 132 | 81.69 145 | 97.67 155 | 85.63 110 | 80.56 183 | 87.88 139 | 98.15 88 | 96.50 127 | 97.21 99 | 99.41 178 | 99.71 166 |
|
tpmrst | | | 92.52 140 | 97.45 93 | 86.77 158 | 92.15 114 | 99.36 104 | 92.53 156 | 65.95 205 | 99.53 79 | 72.50 152 | 92.22 131 | 99.83 47 | 97.81 102 | 95.18 158 | 96.05 129 | 99.69 121 | 100.00 1 |
|
testgi | | | 92.47 141 | 95.68 131 | 88.73 140 | 90.68 139 | 98.35 137 | 91.67 163 | 79.50 159 | 98.96 114 | 77.12 139 | 95.17 104 | 85.84 145 | 93.95 153 | 95.75 148 | 96.47 118 | 99.45 168 | 99.21 185 |
|
TAMVS | | | 92.43 142 | 94.21 152 | 90.35 121 | 88.68 157 | 98.85 127 | 94.15 142 | 81.53 147 | 95.58 171 | 83.61 118 | 87.05 163 | 86.45 141 | 94.71 142 | 96.27 137 | 95.91 133 | 99.42 176 | 99.38 181 |
|
CR-MVSNet | | | 92.32 143 | 97.97 81 | 85.74 169 | 90.63 140 | 98.95 123 | 95.46 119 | 65.50 207 | 99.09 108 | 67.51 177 | 94.20 114 | 98.18 87 | 95.59 134 | 98.16 78 | 97.20 102 | 99.74 98 | 100.00 1 |
|
CVMVSNet | | | 92.13 144 | 95.40 135 | 88.32 146 | 91.29 134 | 97.29 157 | 91.85 160 | 86.42 100 | 96.71 163 | 71.84 160 | 89.56 144 | 91.18 124 | 88.98 194 | 96.17 139 | 97.76 82 | 99.51 154 | 99.14 187 |
|
Fast-Effi-MVS+ | | | 92.11 145 | 94.33 150 | 89.52 129 | 89.06 153 | 99.00 119 | 95.13 125 | 76.72 177 | 98.59 132 | 78.21 136 | 89.99 142 | 77.35 167 | 98.34 81 | 97.97 93 | 97.44 93 | 99.67 124 | 99.96 108 |
|
ACMH+ | | 92.61 13 | 91.80 146 | 93.03 157 | 90.37 120 | 93.03 97 | 98.17 142 | 94.00 143 | 84.13 123 | 98.12 147 | 77.39 138 | 91.95 132 | 74.62 178 | 94.36 149 | 94.62 165 | 93.82 163 | 99.32 187 | 99.87 145 |
|
IterMVS-SCA-FT | | | 91.75 147 | 96.87 107 | 85.78 167 | 90.34 143 | 95.93 184 | 95.06 127 | 73.85 189 | 98.91 118 | 61.01 197 | 89.21 145 | 98.87 73 | 94.66 145 | 98.09 85 | 97.12 106 | 99.76 85 | 99.99 59 |
|
IterMVS | | | 91.65 148 | 96.62 110 | 85.85 166 | 90.27 146 | 95.80 186 | 95.32 122 | 74.15 185 | 98.91 118 | 60.95 198 | 88.79 151 | 97.76 89 | 94.69 144 | 98.04 89 | 97.07 108 | 99.73 108 | 100.00 1 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ACMH | | 92.34 14 | 91.59 149 | 93.02 158 | 89.92 126 | 93.97 89 | 97.98 147 | 90.10 178 | 84.70 112 | 98.46 137 | 76.80 140 | 93.38 124 | 71.94 189 | 94.39 147 | 95.34 154 | 94.04 159 | 99.54 146 | 100.00 1 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pmmvs4 | | | 91.41 150 | 93.05 156 | 89.49 131 | 85.85 174 | 96.52 169 | 91.70 162 | 82.49 136 | 98.14 146 | 83.17 119 | 87.57 158 | 81.76 160 | 94.39 147 | 95.47 151 | 92.62 179 | 99.33 185 | 99.29 183 |
|
PatchT | | | 91.06 151 | 97.66 86 | 83.36 191 | 90.32 144 | 98.96 122 | 82.30 207 | 64.72 212 | 98.45 138 | 67.51 177 | 93.28 125 | 97.60 91 | 95.59 134 | 98.16 78 | 97.20 102 | 99.70 116 | 100.00 1 |
|
MIMVSNet | | | 91.01 152 | 96.22 122 | 84.93 177 | 85.24 178 | 98.09 144 | 90.40 173 | 64.96 211 | 97.55 156 | 72.65 150 | 96.23 95 | 90.81 127 | 96.79 117 | 96.69 123 | 97.06 109 | 99.52 150 | 97.09 205 |
|
UniMVSNet_NR-MVSNet | | | 90.50 153 | 92.31 162 | 88.38 144 | 85.04 184 | 96.34 173 | 90.94 165 | 85.32 104 | 95.87 170 | 75.69 141 | 87.68 157 | 78.49 164 | 93.78 155 | 93.21 190 | 94.60 147 | 99.53 149 | 99.97 88 |
|
UniMVSNet (Re) | | | 90.41 154 | 91.96 164 | 88.59 142 | 85.71 175 | 96.73 165 | 90.82 167 | 84.11 124 | 95.23 177 | 78.54 133 | 88.91 150 | 76.41 173 | 92.84 162 | 93.40 188 | 93.05 174 | 99.55 145 | 100.00 1 |
|
GA-MVS | | | 90.38 155 | 94.59 146 | 85.46 173 | 88.30 159 | 98.44 135 | 92.18 157 | 83.30 130 | 97.89 154 | 58.05 206 | 92.86 127 | 84.25 154 | 91.27 178 | 96.65 124 | 92.61 180 | 99.66 125 | 99.43 179 |
|
USDC | | | 90.36 156 | 91.68 165 | 88.82 137 | 92.58 104 | 98.02 145 | 96.27 104 | 79.83 155 | 98.37 143 | 70.61 167 | 89.05 147 | 67.50 205 | 94.17 150 | 95.77 147 | 94.43 152 | 99.46 165 | 98.62 192 |
|
thisisatest0515 | | | 90.28 157 | 94.32 151 | 85.57 172 | 85.23 179 | 97.23 158 | 85.44 199 | 83.09 132 | 96.80 162 | 72.41 153 | 89.82 143 | 90.87 126 | 87.93 200 | 95.27 157 | 90.39 202 | 99.33 185 | 99.88 140 |
|
TinyColmap | | | 89.94 158 | 90.88 171 | 88.84 136 | 92.43 107 | 97.91 148 | 95.59 117 | 80.10 153 | 98.12 147 | 71.33 164 | 84.56 166 | 67.46 206 | 94.15 151 | 95.57 149 | 94.27 158 | 99.43 173 | 98.26 196 |
|
pm-mvs1 | | | 89.68 159 | 92.00 163 | 86.96 156 | 86.23 170 | 96.62 167 | 90.36 174 | 83.05 133 | 93.97 189 | 72.15 157 | 81.77 178 | 82.10 158 | 90.69 184 | 95.38 153 | 94.50 150 | 99.29 191 | 99.65 168 |
|
tpm | | | 89.60 160 | 94.93 142 | 83.39 189 | 89.94 147 | 97.11 160 | 90.09 179 | 65.28 210 | 98.67 128 | 60.03 202 | 96.79 89 | 84.38 153 | 95.66 133 | 91.90 199 | 95.65 137 | 99.32 187 | 99.98 75 |
|
NR-MVSNet | | | 89.52 161 | 90.71 172 | 88.14 148 | 86.19 171 | 96.20 175 | 92.07 158 | 84.58 113 | 95.54 172 | 75.27 145 | 87.52 159 | 67.96 203 | 91.24 179 | 94.33 168 | 93.45 167 | 99.49 157 | 99.97 88 |
|
DU-MVS | | | 89.49 162 | 90.60 173 | 88.19 147 | 84.71 188 | 96.20 175 | 90.94 165 | 84.58 113 | 95.54 172 | 75.69 141 | 87.52 159 | 68.74 202 | 93.78 155 | 91.10 203 | 95.13 144 | 99.47 163 | 99.97 88 |
|
Baseline_NR-MVSNet | | | 89.13 163 | 89.53 185 | 88.66 141 | 84.71 188 | 94.43 203 | 91.79 161 | 84.49 116 | 95.54 172 | 78.28 135 | 78.52 195 | 72.46 188 | 93.29 159 | 91.10 203 | 94.82 146 | 99.42 176 | 99.86 148 |
|
tfpnnormal | | | 89.09 164 | 89.71 179 | 88.38 144 | 87.37 163 | 96.78 164 | 91.46 164 | 85.20 107 | 90.33 209 | 72.35 155 | 83.45 171 | 69.30 200 | 94.45 146 | 95.29 155 | 92.86 176 | 99.44 172 | 99.93 122 |
|
TranMVSNet+NR-MVSNet | | | 88.88 165 | 89.90 178 | 87.69 150 | 84.06 200 | 95.68 187 | 91.88 159 | 85.23 106 | 95.16 178 | 72.54 151 | 83.06 174 | 70.14 197 | 92.93 161 | 90.81 206 | 94.53 149 | 99.48 161 | 99.89 135 |
|
WR-MVS_H | | | 88.47 166 | 90.55 174 | 86.04 162 | 85.13 181 | 96.07 179 | 89.86 185 | 79.80 156 | 94.37 186 | 72.32 156 | 83.12 173 | 74.44 181 | 89.60 188 | 93.52 185 | 92.40 181 | 99.51 154 | 99.96 108 |
|
SixPastTwentyTwo | | | 88.35 167 | 91.51 167 | 84.66 179 | 85.39 177 | 96.96 162 | 86.57 195 | 79.62 158 | 96.57 164 | 63.73 191 | 87.86 155 | 75.18 176 | 93.43 158 | 94.03 172 | 90.37 203 | 99.24 194 | 99.58 171 |
|
TransMVSNet (Re) | | | 88.33 168 | 89.55 184 | 86.91 157 | 86.65 167 | 95.56 192 | 90.48 171 | 84.44 117 | 92.02 208 | 71.07 166 | 80.13 185 | 72.48 187 | 89.41 189 | 95.05 161 | 94.44 151 | 99.39 180 | 97.14 204 |
|
MVS-HIRNet | | | 88.27 169 | 94.05 153 | 81.51 197 | 88.90 155 | 98.93 126 | 83.38 205 | 60.52 220 | 98.06 150 | 63.78 190 | 80.67 182 | 90.36 130 | 92.94 160 | 97.29 115 | 96.41 120 | 99.56 143 | 96.66 207 |
|
WR-MVS | | | 88.23 170 | 90.15 176 | 86.00 164 | 84.39 195 | 95.64 188 | 89.96 182 | 81.80 142 | 94.46 184 | 71.60 161 | 82.10 176 | 74.36 182 | 88.76 196 | 92.48 196 | 92.20 183 | 99.46 165 | 99.83 153 |
|
CP-MVSNet | | | 88.09 171 | 89.57 182 | 86.36 161 | 84.63 191 | 95.46 197 | 89.48 187 | 80.53 151 | 93.42 196 | 71.26 165 | 81.25 180 | 69.90 198 | 92.78 163 | 93.30 189 | 93.69 165 | 99.47 163 | 99.96 108 |
|
pmnet_mix02 | | | 88.07 172 | 92.32 161 | 83.10 192 | 86.14 172 | 96.23 174 | 81.90 210 | 83.05 133 | 98.04 151 | 57.59 208 | 84.93 165 | 82.02 159 | 90.87 183 | 93.54 184 | 91.53 194 | 99.06 202 | 99.97 88 |
|
UniMVSNet_ETH3D | | | 88.05 173 | 87.01 203 | 89.27 132 | 88.53 158 | 97.49 153 | 90.35 175 | 83.48 127 | 94.57 182 | 77.87 137 | 70.08 211 | 61.75 217 | 96.22 125 | 90.17 207 | 95.21 143 | 99.16 199 | 99.82 154 |
|
anonymousdsp | | | 87.98 174 | 92.38 160 | 82.85 193 | 83.68 204 | 96.79 163 | 90.78 168 | 74.06 187 | 95.29 176 | 57.91 207 | 83.33 172 | 83.12 155 | 91.15 181 | 95.96 145 | 92.37 182 | 99.52 150 | 99.76 163 |
|
LTVRE_ROB | | 88.65 16 | 87.87 175 | 91.11 170 | 84.10 186 | 86.64 168 | 97.47 154 | 94.40 138 | 78.41 167 | 96.13 168 | 52.02 215 | 87.95 154 | 65.92 211 | 93.59 157 | 95.29 155 | 95.09 145 | 99.52 150 | 99.95 115 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
V42 | | | 87.84 176 | 89.42 187 | 85.99 165 | 85.16 180 | 96.01 181 | 90.52 170 | 81.78 144 | 94.43 185 | 67.59 175 | 81.32 179 | 71.87 190 | 91.48 176 | 91.25 202 | 91.16 198 | 99.43 173 | 99.92 126 |
|
TDRefinement | | | 87.79 177 | 88.76 194 | 86.66 159 | 93.54 91 | 98.02 145 | 95.76 110 | 85.18 108 | 96.57 164 | 67.90 174 | 80.51 184 | 66.51 210 | 78.37 211 | 93.20 191 | 89.73 204 | 99.22 195 | 96.75 206 |
|
MDTV_nov1_ep13_2view | | | 87.75 178 | 93.32 155 | 81.26 199 | 83.74 203 | 96.64 166 | 85.66 198 | 66.20 203 | 98.36 144 | 61.61 195 | 84.34 168 | 87.95 138 | 91.12 182 | 94.01 173 | 92.66 178 | 99.22 195 | 99.27 184 |
|
v8 | | | 87.54 179 | 89.33 188 | 85.45 174 | 85.41 176 | 95.50 195 | 90.32 176 | 78.94 164 | 94.35 187 | 66.93 180 | 81.90 177 | 70.99 194 | 91.62 174 | 91.49 201 | 91.22 197 | 99.48 161 | 99.87 145 |
|
v1144 | | | 87.49 180 | 89.64 180 | 84.97 176 | 84.73 187 | 95.84 185 | 90.17 177 | 79.30 160 | 93.96 190 | 64.65 188 | 78.83 192 | 73.38 186 | 91.51 175 | 93.77 179 | 91.77 189 | 99.45 168 | 99.93 122 |
|
v2v482 | | | 87.46 181 | 88.90 192 | 85.78 167 | 84.58 192 | 95.95 183 | 89.90 184 | 82.43 137 | 94.19 188 | 65.65 184 | 79.80 187 | 69.12 201 | 92.67 164 | 91.88 200 | 91.46 195 | 99.45 168 | 99.93 122 |
|
v10 | | | 87.40 182 | 89.62 181 | 84.80 178 | 84.93 185 | 95.07 201 | 90.44 172 | 75.63 181 | 94.51 183 | 66.52 182 | 78.87 191 | 73.47 185 | 91.86 172 | 93.69 182 | 91.87 188 | 99.45 168 | 99.86 148 |
|
pmmvs5 | | | 87.33 183 | 90.01 177 | 84.20 184 | 84.31 197 | 96.04 180 | 87.63 193 | 76.59 178 | 93.17 201 | 65.35 187 | 84.30 169 | 71.68 191 | 91.91 171 | 95.41 152 | 91.37 196 | 99.39 180 | 98.13 197 |
|
N_pmnet | | | 87.31 184 | 91.51 167 | 82.41 196 | 85.13 181 | 95.57 191 | 80.59 212 | 81.79 143 | 96.20 166 | 58.52 205 | 78.62 193 | 85.66 146 | 89.36 190 | 94.64 164 | 92.14 184 | 99.08 201 | 97.72 203 |
|
PS-CasMVS | | | 87.24 185 | 88.52 197 | 85.73 170 | 84.58 192 | 95.35 199 | 89.03 190 | 80.17 152 | 93.11 202 | 68.86 172 | 77.71 197 | 66.89 207 | 92.30 166 | 93.13 192 | 93.50 166 | 99.46 165 | 99.96 108 |
|
EU-MVSNet | | | 87.20 186 | 90.47 175 | 83.38 190 | 85.11 183 | 93.85 208 | 86.10 197 | 79.76 157 | 93.30 200 | 65.39 186 | 84.41 167 | 78.43 165 | 85.04 207 | 92.20 198 | 93.03 175 | 98.86 204 | 98.05 200 |
|
PEN-MVS | | | 87.20 186 | 88.22 198 | 86.01 163 | 84.01 202 | 94.93 202 | 90.00 181 | 81.52 149 | 93.46 195 | 69.29 170 | 79.69 188 | 65.51 212 | 91.72 173 | 91.01 205 | 93.12 172 | 99.49 157 | 99.84 151 |
|
EG-PatchMatch MVS | | | 86.96 188 | 89.56 183 | 83.93 187 | 86.29 169 | 97.61 151 | 90.75 169 | 73.31 192 | 95.43 175 | 66.08 183 | 75.88 204 | 71.31 192 | 87.55 202 | 94.79 163 | 92.74 177 | 99.61 136 | 99.13 188 |
|
v1192 | | | 86.93 189 | 89.01 190 | 84.50 180 | 84.46 194 | 95.51 194 | 89.93 183 | 78.65 166 | 93.75 191 | 62.29 193 | 77.19 199 | 70.88 195 | 92.28 167 | 93.84 176 | 91.96 186 | 99.38 182 | 99.90 132 |
|
v1921920 | | | 86.81 190 | 88.93 191 | 84.33 183 | 84.23 198 | 95.41 198 | 90.09 179 | 78.10 169 | 93.74 192 | 62.17 194 | 76.98 201 | 71.14 193 | 92.05 169 | 93.69 182 | 91.69 192 | 99.32 187 | 99.88 140 |
|
v144192 | | | 86.80 191 | 88.90 192 | 84.35 181 | 84.33 196 | 95.56 192 | 89.34 188 | 77.74 171 | 93.60 193 | 64.03 189 | 77.82 196 | 70.76 196 | 91.28 177 | 92.91 194 | 91.74 191 | 99.37 183 | 99.90 132 |
|
DTE-MVSNet | | | 86.70 192 | 87.66 202 | 85.58 171 | 83.30 205 | 94.29 204 | 89.74 186 | 81.53 147 | 92.77 204 | 68.93 171 | 80.13 185 | 64.00 215 | 90.62 185 | 89.45 208 | 93.34 168 | 99.32 187 | 99.67 167 |
|
gg-mvs-nofinetune | | | 86.69 193 | 91.30 169 | 81.30 198 | 90.42 142 | 99.64 83 | 98.50 58 | 61.68 218 | 79.23 218 | 40.35 222 | 66.58 213 | 97.14 94 | 96.92 113 | 98.64 46 | 97.94 73 | 99.91 22 | 99.97 88 |
|
v148 | | | 86.63 194 | 87.79 200 | 85.28 175 | 84.65 190 | 95.97 182 | 86.46 196 | 82.84 135 | 92.91 203 | 71.52 163 | 78.99 190 | 66.74 209 | 86.83 204 | 89.28 209 | 90.69 200 | 99.41 178 | 99.94 120 |
|
v1240 | | | 86.24 195 | 88.56 196 | 83.54 188 | 84.05 201 | 95.21 200 | 89.27 189 | 76.76 176 | 93.42 196 | 60.68 201 | 75.99 203 | 69.80 199 | 91.21 180 | 93.83 178 | 91.76 190 | 99.29 191 | 99.91 131 |
|
pmmvs6 | | | 85.75 196 | 86.97 204 | 84.34 182 | 84.88 186 | 95.59 190 | 87.41 194 | 79.19 162 | 87.81 214 | 67.56 176 | 63.05 216 | 77.76 166 | 89.15 191 | 93.45 187 | 91.90 187 | 97.83 210 | 99.21 185 |
|
v7n | | | 85.39 197 | 87.70 201 | 82.70 194 | 82.77 207 | 95.64 188 | 88.27 192 | 74.83 183 | 92.30 206 | 62.58 192 | 76.37 202 | 64.80 214 | 88.38 198 | 94.29 170 | 90.61 201 | 99.34 184 | 99.87 145 |
|
gm-plane-assit | | | 84.93 198 | 91.61 166 | 77.14 207 | 84.14 199 | 91.29 214 | 66.18 222 | 69.70 195 | 85.22 217 | 47.95 219 | 78.58 194 | 89.24 134 | 94.90 140 | 98.82 40 | 98.12 69 | 99.99 5 | 100.00 1 |
|
CMPMVS |  | 65.66 17 | 84.62 199 | 85.02 206 | 84.15 185 | 95.40 73 | 97.79 149 | 88.35 191 | 79.22 161 | 89.66 212 | 60.71 200 | 72.20 208 | 73.94 183 | 87.32 203 | 86.73 211 | 84.55 213 | 93.90 215 | 90.31 216 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test_method | | | 84.44 200 | 89.04 189 | 79.08 202 | 81.15 210 | 92.82 211 | 82.06 209 | 61.92 216 | 96.17 167 | 59.38 203 | 74.47 206 | 67.52 204 | 91.96 170 | 96.92 121 | 95.53 139 | 97.98 209 | 99.85 150 |
|
Anonymous20231206 | | | 84.28 201 | 89.53 185 | 78.17 204 | 82.31 209 | 94.16 206 | 82.57 206 | 76.51 179 | 93.38 199 | 52.98 213 | 79.47 189 | 73.74 184 | 75.45 213 | 95.07 160 | 94.41 153 | 99.18 198 | 96.46 209 |
|
new_pmnet | | | 84.12 202 | 87.89 199 | 79.72 201 | 80.43 212 | 94.14 207 | 80.26 213 | 74.14 186 | 96.01 169 | 56.30 212 | 74.94 205 | 76.45 172 | 88.59 197 | 93.11 193 | 89.31 205 | 98.59 207 | 91.27 215 |
|
test20.03 | | | 83.86 203 | 88.73 195 | 78.16 205 | 82.60 208 | 93.00 209 | 81.61 211 | 74.68 184 | 92.36 205 | 57.50 209 | 83.01 175 | 74.48 180 | 73.30 215 | 92.40 197 | 91.14 199 | 99.29 191 | 94.75 211 |
|
pmmvs-eth3d | | | 82.92 204 | 83.31 209 | 82.47 195 | 76.97 214 | 91.76 213 | 83.79 202 | 76.10 180 | 90.33 209 | 69.95 169 | 71.04 210 | 48.09 220 | 89.02 193 | 93.85 175 | 89.14 206 | 99.02 203 | 98.96 190 |
|
PM-MVS | | | 82.79 205 | 84.51 207 | 80.77 200 | 77.22 213 | 92.13 212 | 83.61 204 | 73.31 192 | 93.50 194 | 61.06 196 | 77.15 200 | 46.52 223 | 90.55 186 | 94.14 171 | 89.05 208 | 98.85 205 | 99.12 189 |
|
pmmvs3 | | | 80.91 206 | 85.62 205 | 75.42 209 | 75.01 216 | 89.09 217 | 75.31 216 | 68.70 197 | 86.99 215 | 46.74 221 | 81.18 181 | 62.91 216 | 87.95 199 | 93.84 176 | 89.06 207 | 98.80 206 | 96.23 210 |
|
MIMVSNet1 | | | 80.64 207 | 83.97 208 | 76.76 208 | 68.91 219 | 91.15 216 | 78.32 215 | 75.47 182 | 89.58 213 | 56.64 211 | 65.10 214 | 65.17 213 | 82.14 208 | 93.51 186 | 91.64 193 | 99.10 200 | 91.66 214 |
|
MDA-MVSNet-bldmvs | | | 80.30 208 | 82.83 210 | 77.34 206 | 69.16 218 | 94.29 204 | 72.16 217 | 81.97 141 | 90.14 211 | 57.32 210 | 94.01 119 | 47.97 221 | 86.81 205 | 68.74 218 | 86.82 210 | 96.63 211 | 97.86 201 |
|
new-patchmatchnet | | | 78.17 209 | 80.82 211 | 75.07 210 | 76.93 215 | 91.20 215 | 71.90 218 | 73.32 191 | 86.59 216 | 48.91 216 | 67.11 212 | 47.85 222 | 81.19 209 | 88.18 210 | 87.02 209 | 98.19 208 | 97.79 202 |
|
FPMVS | | | 73.80 210 | 74.62 212 | 72.84 211 | 83.09 206 | 84.44 219 | 83.89 201 | 73.64 190 | 92.20 207 | 48.50 217 | 72.19 209 | 59.51 218 | 63.16 217 | 69.13 217 | 66.26 221 | 84.74 220 | 78.59 222 |
|
Gipuma |  | | 71.02 211 | 72.60 215 | 69.19 212 | 71.31 217 | 75.11 222 | 66.36 221 | 61.65 219 | 94.93 179 | 47.29 220 | 38.74 221 | 38.52 224 | 75.52 212 | 86.09 212 | 85.92 212 | 93.01 216 | 88.87 218 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
GG-mvs-BLEND | | | 69.85 212 | 99.39 40 | 35.39 220 | 3.67 228 | 99.94 20 | 99.10 43 | 1.69 224 | 99.85 51 | 3.19 229 | 98.13 77 | 99.46 63 | 4.92 224 | 99.23 32 | 99.14 30 | 99.80 61 | 100.00 1 |
|
PMMVS2 | | | 65.18 213 | 68.25 216 | 61.59 213 | 61.37 222 | 79.72 221 | 59.18 225 | 61.80 217 | 64.72 221 | 37.33 223 | 53.82 218 | 35.59 225 | 54.46 222 | 73.94 216 | 80.52 214 | 95.40 214 | 89.43 217 |
|
PMVS |  | 60.14 18 | 62.67 214 | 64.05 217 | 61.06 214 | 68.32 220 | 53.27 228 | 52.23 226 | 67.63 200 | 75.07 220 | 48.30 218 | 58.27 217 | 57.43 219 | 49.99 223 | 67.20 219 | 62.42 222 | 79.87 223 | 74.68 223 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
testmvs | | | 61.76 215 | 72.90 214 | 48.76 217 | 21.21 226 | 68.61 223 | 66.11 223 | 37.38 222 | 94.83 180 | 33.06 224 | 64.31 215 | 29.72 226 | 86.08 206 | 74.44 215 | 78.71 215 | 48.74 225 | 99.65 168 |
|
E-PMN | | | 55.33 216 | 55.79 219 | 54.81 216 | 59.81 224 | 57.23 226 | 38.83 227 | 63.59 214 | 64.06 223 | 24.66 226 | 35.33 223 | 26.40 228 | 58.69 219 | 55.41 221 | 70.54 218 | 83.26 221 | 81.56 221 |
|
EMVS | | | 55.14 217 | 55.29 220 | 54.97 215 | 60.87 223 | 57.52 225 | 38.58 228 | 63.57 215 | 64.54 222 | 23.36 227 | 36.96 222 | 27.99 227 | 60.69 218 | 51.17 222 | 66.61 220 | 82.73 222 | 82.25 220 |
|
MVE |  | 58.81 19 | 52.07 218 | 55.15 221 | 48.48 218 | 42.45 225 | 62.35 224 | 36.41 229 | 54.70 221 | 49.88 224 | 27.65 225 | 29.98 224 | 18.08 229 | 54.87 221 | 65.93 220 | 77.26 216 | 74.79 224 | 82.59 219 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test123 | | | 48.14 219 | 58.11 218 | 36.51 219 | 8.71 227 | 56.81 227 | 59.55 224 | 24.08 223 | 77.50 219 | 14.41 228 | 49.20 219 | 11.94 231 | 80.98 210 | 41.62 223 | 69.81 219 | 31.32 226 | 99.90 132 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
TPM-MVS | | | | | | 99.67 4 | 99.96 7 | 99.82 5 | | | 94.63 32 | 99.65 16 | 100.00 1 | 99.90 5 | | | 99.99 5 | 99.80 158 |
|
RE-MVS-def | | | | | | | | | | | 52.74 214 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 100.00 1 | | | | | |
|
SR-MVS | | | | | | 99.61 13 | | | 96.80 18 | | | | 100.00 1 | | | | | |
|
Anonymous202405211 | | | | 95.78 129 | | 93.26 92 | 99.52 89 | 96.70 99 | 88.55 80 | 97.93 153 | | 88.99 148 | 90.68 128 | 98.99 59 | 96.46 131 | 97.02 111 | 99.64 131 | 99.89 135 |
|
our_test_3 | | | | | | 85.89 173 | 96.09 178 | 82.15 208 | | | | | | | | | | |
|
ambc | | | | 74.33 213 | | 66.84 221 | 84.26 220 | 84.17 200 | | 93.39 198 | 58.99 204 | 45.93 220 | 18.06 230 | 70.61 216 | 93.94 174 | 86.62 211 | 92.61 218 | 98.13 197 |
|
MTAPA | | | | | | | | | | | 96.61 16 | | 100.00 1 | | | | | |
|
MTMP | | | | | | | | | | | 97.42 11 | | 100.00 1 | | | | | |
|
Patchmatch-RL test | | | | | | | | 68.01 220 | | | | | | | | | | |
|
tmp_tt | | | | | 78.81 203 | 98.80 45 | 85.73 218 | 70.08 219 | 77.87 170 | 98.68 127 | 83.71 117 | 99.53 29 | 74.55 179 | 54.97 220 | 78.28 214 | 72.43 217 | 87.45 219 | |
|
XVS | | | | | | 95.09 76 | 99.94 20 | 97.49 74 | | | 88.58 85 | | 99.98 34 | | | | 99.78 75 | |
|
X-MVStestdata | | | | | | 95.09 76 | 99.94 20 | 97.49 74 | | | 88.58 85 | | 99.98 34 | | | | 99.78 75 | |
|
mPP-MVS | | | | | | 99.23 38 | | | | | | | 99.87 45 | | | | | |
|
NP-MVS | | | | | | | | | | 99.79 61 | | | | | | | | |
|
Patchmtry | | | | | | | 99.00 119 | 95.46 119 | 65.50 207 | | 67.51 177 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 97.31 156 | 79.48 214 | 89.65 65 | 98.66 129 | 60.89 199 | 94.40 113 | 66.89 207 | 87.65 201 | 81.69 213 | | 92.76 217 | 94.24 213 |
|