This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
MSP-MVS87.87 490.57 384.73 589.38 2791.60 1788.24 874.15 1293.55 382.28 494.99 183.21 1285.96 387.67 484.67 1888.32 3198.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft87.60 590.44 484.29 792.09 993.44 688.69 475.11 993.06 580.80 694.23 286.70 381.44 784.84 1883.52 2787.64 4897.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS87.30 688.71 685.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 383.29 1179.75 983.52 2682.72 3288.75 1995.37 23
APDe-MVS86.37 788.41 884.00 991.43 1591.83 1588.34 674.67 1091.19 781.76 591.13 481.94 1980.07 883.38 2782.58 3487.69 4696.78 10
SED-MVS88.94 190.98 186.56 192.53 795.09 188.55 576.83 694.16 186.57 190.85 587.07 186.18 186.36 785.08 1288.67 2098.21 3
train_agg83.35 1886.93 1579.17 2689.70 2488.41 4285.60 2072.89 2186.31 1966.58 4090.48 682.24 1673.06 4083.10 3182.64 3387.21 6595.30 24
DVP-MVScopyleft88.07 290.73 284.97 491.98 1095.01 287.86 1076.88 593.90 285.15 290.11 786.90 279.46 1286.26 1084.67 1888.50 2798.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft84.83 1387.00 1282.30 1389.61 2589.21 3586.51 1573.64 1690.98 877.99 1289.89 880.04 2479.18 1482.00 4881.37 4986.88 7095.49 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.84.39 1486.58 1781.83 1488.09 3886.47 6785.63 1973.62 1790.13 1179.24 989.67 982.99 1377.72 1881.22 5380.92 5886.68 7494.66 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DVP-MVS++87.98 389.76 585.89 292.57 694.57 388.34 676.61 792.40 683.40 389.26 1085.57 586.04 286.24 1184.89 1588.39 3095.42 20
TSAR-MVS + ACMM81.59 2585.84 2076.63 3789.82 2386.53 6686.32 1666.72 5085.96 2065.43 4288.98 1182.29 1567.57 8182.06 4681.33 5083.93 14293.75 41
SD-MVS84.31 1586.96 1481.22 1688.98 3188.68 3985.65 1873.85 1589.09 1379.63 887.34 1284.84 673.71 3482.66 3581.60 4685.48 10794.51 29
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft85.64 1088.43 782.39 1292.65 490.24 2685.83 1774.21 1190.68 975.63 1786.77 1384.15 878.68 1686.33 885.26 987.32 5795.60 17
SteuartSystems-ACMMP82.51 2185.35 2279.20 2590.25 1889.39 3384.79 2270.95 2582.86 2768.32 3786.44 1477.19 2773.07 3983.63 2583.64 2487.82 4294.34 31
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + GP.82.27 2385.98 1977.94 3180.72 7088.25 4581.12 4367.71 4387.10 1673.31 2185.23 1583.68 976.64 2280.43 6181.47 4888.15 3795.66 16
HFP-MVS82.48 2284.12 2480.56 1990.15 1987.55 5384.28 2469.67 3285.22 2277.95 1384.69 1675.94 3075.04 2781.85 4981.17 5386.30 8292.40 55
ACMMP_NAP83.54 1786.37 1880.25 2189.57 2690.10 2885.27 2171.66 2387.38 1573.08 2284.23 1780.16 2375.31 2584.85 1783.64 2486.57 7594.21 35
SMA-MVScopyleft85.24 1288.27 981.72 1591.74 1290.71 2086.71 1373.16 1990.56 1074.33 1983.07 1885.88 477.16 2086.28 985.58 687.23 6195.77 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMPR80.62 2882.98 2777.87 3288.41 3387.05 5883.02 2969.18 3583.91 2468.35 3682.89 1973.64 3572.16 4780.78 5981.13 5486.10 8791.43 62
TPM-MVS94.34 293.91 589.34 375.49 1882.52 2083.34 1083.53 489.62 790.78 72
MP-MVScopyleft80.94 2683.49 2677.96 3088.48 3288.16 4682.82 3269.34 3480.79 3769.67 3382.35 2177.13 2871.60 5280.97 5880.96 5785.87 9394.06 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + COLMAP73.09 6776.86 5668.71 8774.97 11782.49 10174.51 8661.83 9283.16 2649.31 10582.22 2251.62 13068.94 7378.76 7675.52 11282.67 15984.23 136
PGM-MVS79.42 3481.84 3376.60 3888.38 3586.69 6282.97 3165.75 5680.39 3864.94 4381.95 2372.11 4371.41 5480.45 6080.55 6386.18 8490.76 75
DeepPCF-MVS76.94 183.08 1987.77 1077.60 3390.11 2090.96 1978.48 5572.63 2293.10 465.84 4180.67 2481.55 2074.80 2985.94 1385.39 883.75 14496.77 11
HQP-MVS78.26 3980.91 3675.17 4885.67 4984.33 8883.01 3069.38 3379.88 4055.83 7879.85 2564.90 6670.81 5682.46 3781.78 4186.30 8293.18 47
CNVR-MVS85.96 887.58 1184.06 892.58 592.40 1187.62 1177.77 488.44 1475.93 1679.49 2681.97 1881.65 687.04 686.58 488.79 1797.18 7
ACMMPcopyleft77.61 4379.59 4175.30 4785.87 4885.58 7781.42 3967.38 4679.38 4262.61 5278.53 2765.79 6268.80 7478.56 7778.50 8185.75 9490.80 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS79.43 3284.06 2574.04 5586.15 4791.57 1880.85 4668.90 3882.22 3051.81 9378.10 2874.28 3370.39 6084.01 2484.00 2286.14 8694.24 33
CDPH-MVS79.39 3582.13 3176.19 4189.22 3088.34 4384.20 2571.00 2479.67 4156.97 7777.77 2972.24 4268.50 7581.33 5282.74 3087.23 6192.84 51
CP-MVS79.44 3181.51 3477.02 3686.95 4285.96 7682.00 3468.44 4081.82 3267.39 3877.43 3073.68 3471.62 5179.56 7079.58 7085.73 9792.51 54
EPNet79.28 3682.25 2975.83 4388.31 3690.14 2779.43 5368.07 4181.76 3361.26 6077.26 3170.08 5070.06 6182.43 3982.00 3887.82 4292.09 57
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC84.16 1685.46 2182.64 1192.34 890.57 2386.57 1476.51 886.85 1872.91 2377.20 3278.69 2679.09 1584.64 2084.88 1688.44 2895.41 21
MCST-MVS85.75 986.99 1384.31 694.07 392.80 888.15 979.10 285.66 2170.72 2976.50 3380.45 2282.17 588.35 287.49 391.63 297.65 4
X-MVS78.16 4080.55 3775.38 4687.99 3986.27 7181.05 4468.98 3678.33 4361.07 6275.25 3472.27 3967.52 8280.03 6380.52 6485.66 10491.20 66
DPM-MVS85.41 1186.72 1683.89 1091.66 1391.92 1490.49 278.09 386.90 1773.95 2074.52 3582.01 1779.29 1390.24 190.65 189.86 690.78 72
ETV-MVS76.25 5180.22 3871.63 7178.23 8787.95 5172.75 9360.27 11077.50 4857.73 7371.53 3666.60 5973.16 3880.99 5781.23 5287.63 4995.73 14
CSCG82.90 2084.52 2381.02 1891.85 1193.43 787.14 1274.01 1481.96 3176.14 1470.84 3782.49 1469.71 6382.32 4185.18 1187.26 6095.40 22
PMMVS70.37 8475.06 6764.90 11371.46 13281.88 10264.10 15355.64 14771.31 6046.69 11270.69 3858.56 9369.53 6679.03 7375.63 10881.96 16888.32 103
MVS_111021_LR74.26 6375.95 6372.27 6679.43 7685.04 8072.71 9465.27 6170.92 6163.58 4869.32 3960.31 8869.43 6877.01 9177.15 9183.22 15191.93 60
CPTT-MVS75.43 5777.13 5573.44 5781.43 6482.55 10080.96 4564.35 6477.95 4661.39 5969.20 4070.94 4769.38 7073.89 12373.32 13783.14 15492.06 58
canonicalmvs77.65 4279.59 4175.39 4581.52 6389.83 3281.32 4160.74 10580.05 3966.72 3968.43 4165.09 6374.72 3178.87 7482.73 3187.32 5792.16 56
CS-MVS-test75.09 6077.84 4971.87 7079.27 7886.92 5970.53 11960.36 10875.13 5363.13 4967.92 4265.08 6471.43 5378.15 8278.51 8086.53 7793.16 48
MVSTER76.92 4879.92 3973.42 5874.98 11682.97 9678.15 5863.41 7378.02 4464.41 4567.54 4372.80 3771.05 5583.29 3083.73 2388.53 2691.12 67
CANet_DTU72.84 6976.63 5968.43 9276.81 10286.62 6575.54 7454.71 16072.06 5943.54 12867.11 4458.46 9672.40 4581.13 5680.82 6087.57 5090.21 81
CANet80.90 2782.93 2878.53 2986.83 4492.26 1281.19 4266.95 4781.60 3469.90 3266.93 4574.80 3276.79 2184.68 1984.77 1789.50 1095.50 18
DeepC-MVS_fast75.41 281.69 2482.10 3281.20 1791.04 1787.81 5283.42 2774.04 1383.77 2571.09 2766.88 4672.44 3879.48 1185.08 1584.97 1488.12 3893.78 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ET-MVSNet_ETH3D71.38 7874.70 6967.51 9851.61 20888.06 4977.29 6560.95 10463.61 8348.36 10866.60 4760.67 8579.55 1073.56 12780.58 6287.30 5989.80 85
MVS_030479.43 3282.20 3076.20 4084.22 5291.79 1681.82 3763.81 6976.83 4961.71 5766.37 4875.52 3176.38 2385.54 1485.03 1389.28 1294.32 32
CS-MVS75.84 5478.61 4472.61 6579.03 8086.74 6174.43 8960.27 11074.15 5762.78 5166.26 4964.25 6872.81 4283.36 2881.69 4586.32 8093.85 39
MVS_111021_HR77.42 4578.40 4776.28 3986.95 4290.68 2177.41 6470.56 3066.21 7562.48 5466.17 5063.98 6972.08 4882.87 3383.15 2888.24 3495.71 15
LGP-MVS_train72.02 7473.18 7670.67 7682.13 6080.26 12279.58 5263.04 7670.09 6351.98 9165.06 5155.62 11362.49 10575.97 10176.32 10184.80 12688.93 95
EIA-MVS73.48 6676.05 6170.47 7778.12 8887.21 5671.78 10160.63 10669.66 6655.56 8264.86 5260.69 8469.53 6677.35 8978.59 7787.22 6394.01 37
EC-MVSNet76.05 5378.87 4372.77 6278.87 8386.63 6377.50 6357.04 13575.34 5261.68 5864.20 5369.56 5273.96 3382.12 4480.65 6187.57 5093.57 43
ACMP68.86 772.15 7372.25 7872.03 6780.96 6680.87 11677.93 6064.13 6669.29 6760.79 6564.04 5453.54 12563.91 9573.74 12675.27 11384.45 13488.98 94
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPNet_dtu66.17 11270.13 9661.54 14281.04 6577.39 14868.87 12962.50 8769.78 6433.51 17963.77 5556.22 10837.65 19272.20 14272.18 15285.69 10079.38 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_BlendedMVS76.84 4978.47 4574.95 5082.37 5789.90 3075.45 7565.45 5974.99 5470.66 3063.07 5658.27 9967.60 7984.24 2281.70 4388.18 3597.10 8
PVSNet_Blended76.84 4978.47 4574.95 5082.37 5789.90 3075.45 7565.45 5974.99 5470.66 3063.07 5658.27 9967.60 7984.24 2281.70 4388.18 3597.10 8
DeepC-MVS74.46 380.30 2981.05 3579.42 2387.42 4088.50 4183.23 2873.27 1882.78 2871.01 2862.86 5869.93 5174.80 2984.30 2184.20 2186.79 7394.77 26
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CLD-MVS77.36 4677.29 5377.45 3582.21 5988.11 4781.92 3568.96 3777.97 4569.62 3462.08 5959.44 9273.57 3681.75 5081.27 5188.41 2990.39 79
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UGNet67.57 10471.69 8462.76 13369.88 14182.58 9966.43 14658.64 11554.71 12651.87 9261.74 6062.01 7745.46 17874.78 11274.99 11484.24 13791.02 68
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MSLP-MVS++78.57 3777.33 5280.02 2288.39 3484.79 8284.62 2366.17 5475.96 5178.40 1061.59 6171.47 4573.54 3778.43 7878.88 7688.97 1590.18 82
OMC-MVS74.03 6475.82 6471.95 6879.56 7480.98 11475.35 7763.21 7484.48 2361.83 5661.54 6266.89 5869.41 6976.60 9474.07 12782.34 16486.15 119
DELS-MVS79.49 3079.84 4079.08 2788.26 3792.49 984.12 2670.63 2765.27 8169.60 3561.29 6366.50 6072.75 4388.07 388.03 289.13 1397.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TAPA-MVS67.10 971.45 7773.47 7569.10 8577.04 10080.78 11773.81 9062.10 8880.80 3651.28 9460.91 6463.80 7167.98 7674.59 11372.42 14982.37 16380.97 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UA-Net64.62 12268.23 10960.42 14777.53 9581.38 10960.08 17557.47 13047.01 14944.75 12260.68 6571.32 4641.84 18673.27 12972.25 15180.83 17871.68 188
baseline72.89 6874.46 7071.07 7275.99 10987.50 5474.57 8160.49 10770.72 6257.60 7460.63 6660.97 8370.79 5775.27 10776.33 10086.94 6989.79 86
PCF-MVS70.85 475.73 5576.55 6074.78 5383.67 5388.04 5081.47 3870.62 2969.24 6957.52 7560.59 6769.18 5370.65 5877.11 9077.65 8884.75 12794.01 37
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GG-mvs-BLEND54.54 18277.58 5027.67 2100.03 22590.09 2977.20 660.02 22166.83 730.05 22659.90 6873.33 360.04 22178.40 7979.30 7388.65 2195.20 25
diffmvspermissive74.32 6275.42 6673.04 6075.60 11387.27 5578.20 5762.96 7868.66 7061.89 5559.79 6959.84 9071.80 4978.30 8179.87 6687.80 4494.23 34
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test75.22 5876.69 5873.51 5679.30 7788.82 3880.06 5058.74 11469.77 6557.50 7659.78 7061.35 8075.31 2582.07 4583.60 2690.13 591.41 64
MAR-MVS77.19 4778.37 4875.81 4489.87 2290.58 2279.33 5465.56 5877.62 4758.33 7159.24 7167.98 5574.83 2882.37 4083.12 2986.95 6887.67 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNetpermissive65.53 11769.83 9760.52 14670.80 13984.59 8366.37 14855.47 15148.40 14540.62 14657.67 7258.43 9745.37 17977.49 8576.24 10284.47 13385.99 122
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
casdiffmvs_mvgpermissive75.57 5676.04 6275.02 4980.48 7289.31 3480.79 4764.04 6766.95 7263.87 4657.52 7361.33 8272.90 4182.01 4781.99 3988.03 3993.16 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline271.22 8073.01 7769.13 8475.76 11186.34 7071.23 10962.78 8462.62 8552.85 8957.32 7454.31 12063.27 10079.74 6879.31 7288.89 1691.43 62
FC-MVSNet-train68.83 9368.29 10769.47 8178.35 8679.94 12364.72 15066.38 5154.96 12254.51 8756.75 7547.91 14066.91 8375.57 10675.75 10685.92 9087.12 110
EPP-MVSNet67.58 10371.10 8863.48 12675.71 11283.35 9466.85 14257.83 12553.02 13041.15 14255.82 7667.89 5656.01 14474.40 11672.92 14583.33 14990.30 80
DCV-MVSNet69.13 9069.07 10069.21 8377.65 9377.52 14674.68 8057.85 12454.92 12355.34 8555.74 7755.56 11466.35 8475.05 10876.56 9783.35 14888.13 105
casdiffmvspermissive75.20 5975.69 6574.63 5479.26 7989.07 3678.47 5663.59 7267.05 7163.79 4755.72 7860.32 8773.58 3582.16 4381.78 4189.08 1493.72 42
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline171.47 7672.02 7970.82 7480.56 7184.51 8476.61 6866.93 4856.22 11348.66 10655.40 7960.43 8662.55 10483.35 2980.99 5589.60 883.28 144
AdaColmapbinary76.23 5273.55 7379.35 2489.38 2785.00 8179.99 5173.04 2076.60 5071.17 2655.18 8057.99 10177.87 1776.82 9376.82 9484.67 12986.45 115
QAPM77.50 4477.43 5177.59 3491.52 1492.00 1381.41 4070.63 2766.22 7458.05 7254.70 8171.79 4474.49 3282.46 3782.04 3689.46 1192.79 53
thisisatest053068.38 9770.98 8965.35 10972.61 12684.42 8568.21 13257.98 12059.77 9650.80 9854.63 8258.48 9557.92 13576.99 9277.47 8984.60 13085.07 129
Vis-MVSNet (Re-imp)62.25 14268.74 10354.68 17873.70 12078.74 13356.51 18457.49 12955.22 12026.86 19254.56 8361.35 8031.06 19473.10 13174.90 11582.49 16183.31 142
IS_MVSNet67.29 10771.98 8061.82 14076.92 10184.32 8965.90 14958.22 11755.75 11739.22 15154.51 8462.47 7345.99 17678.83 7578.52 7984.70 12889.47 89
tttt051767.99 10070.61 9264.94 11271.94 13183.96 9167.62 13657.98 12059.30 9849.90 10354.50 8557.98 10257.92 13576.48 9577.47 8984.24 13784.58 132
RPSCF55.07 17858.06 17351.57 18548.87 21158.95 20853.68 18941.26 20762.42 8645.88 11454.38 8654.26 12153.75 15257.15 19953.53 20966.01 20965.75 201
CostFormer72.18 7273.90 7270.18 7979.47 7586.19 7476.94 6748.62 18066.07 7760.40 6754.14 8765.82 6167.98 7675.84 10276.41 9987.67 4792.83 52
OPM-MVS72.74 7070.93 9074.85 5285.30 5084.34 8782.82 3269.79 3149.96 13855.39 8454.09 8860.14 8970.04 6280.38 6279.43 7185.74 9688.20 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PVSNet_Blended_VisFu71.76 7573.54 7469.69 8079.01 8187.16 5772.05 9861.80 9356.46 11159.66 6853.88 8962.48 7259.08 12781.17 5478.90 7586.53 7794.74 27
test-LLR68.23 9871.61 8564.28 12071.37 13381.32 11163.98 15661.03 9958.62 10042.96 13352.74 9061.65 7857.74 13875.64 10478.09 8688.61 2393.21 45
TESTMET0.1,167.38 10671.61 8562.45 13666.05 16681.32 11163.98 15655.36 15258.62 10042.96 13352.74 9061.65 7857.74 13875.64 10478.09 8688.61 2393.21 45
Effi-MVS+70.42 8171.23 8769.47 8178.04 8985.24 7975.57 7358.88 11359.56 9748.47 10752.73 9254.94 11669.69 6478.34 8077.06 9286.18 8490.73 76
3Dnovator+70.16 677.87 4177.29 5378.55 2889.25 2988.32 4480.09 4967.95 4274.89 5671.83 2552.05 9370.68 4876.27 2482.27 4282.04 3685.92 9090.77 74
SCA63.90 12966.67 11760.66 14573.75 11971.78 18059.87 17643.66 19661.13 9145.03 12051.64 9459.45 9157.92 13570.96 15370.80 16483.71 14580.92 159
test-mter64.06 12869.24 9958.01 16159.07 19577.40 14759.13 17848.11 18355.64 11839.18 15251.56 9558.54 9455.38 14773.52 12876.00 10487.22 6392.05 59
test250669.26 8770.79 9167.48 9978.64 8486.40 6872.22 9662.75 8558.05 10345.24 11850.76 9654.93 11758.05 13379.82 6679.70 6787.96 4085.90 123
FC-MVSNet-test47.24 20154.37 18438.93 20659.49 19458.25 21034.48 21453.36 16745.66 1576.66 22050.62 9742.02 15116.62 21458.39 19561.21 19962.99 21164.40 203
IterMVS-LS66.08 11366.56 12065.51 10773.67 12174.88 16570.89 11653.55 16650.42 13648.32 10950.59 9855.66 11261.83 10773.93 12274.42 12384.82 12586.01 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDTV_nov1_ep1365.21 11967.28 11562.79 13170.91 13781.72 10369.28 12749.50 17858.08 10243.94 12750.50 9956.02 10958.86 12870.72 15573.37 13584.24 13780.52 160
3Dnovator70.49 578.42 3876.77 5780.35 2091.43 1590.27 2581.84 3670.79 2672.10 5871.95 2450.02 10067.86 5777.47 1982.89 3284.24 2088.61 2389.99 83
ACMM66.70 1070.42 8168.49 10572.67 6382.85 5477.76 14477.70 6264.76 6364.61 8260.74 6649.29 10153.97 12365.86 8674.97 10975.57 11084.13 14183.29 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchmatchNetpermissive65.43 11867.71 11262.78 13273.49 12382.83 9766.42 14745.40 19060.40 9445.27 11749.22 10257.60 10360.01 11970.61 15671.38 16086.08 8881.91 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS66.21 11167.49 11464.73 11475.81 11084.20 9068.94 12844.37 19561.55 8948.07 11049.21 10354.87 11862.88 10171.82 14671.40 15988.28 3379.37 164
FA-MVS(training)70.24 8671.77 8368.45 9177.52 9686.03 7573.33 9249.12 17963.55 8455.77 7948.91 10456.26 10767.78 7877.60 8479.62 6987.19 6690.40 78
USDC59.69 16060.03 16559.28 15664.04 17671.84 17863.15 16555.36 15254.90 12435.02 17348.34 10529.79 20558.16 13070.60 15771.33 16179.99 18273.42 182
CDS-MVSNet64.22 12665.89 12662.28 13870.05 14080.59 11869.91 12257.98 12043.53 16446.58 11348.22 10650.76 13246.45 17375.68 10376.08 10382.70 15886.34 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DI_MVS_plusplus_trai73.94 6574.85 6872.88 6176.57 10586.80 6080.41 4861.47 9662.35 8759.44 6947.91 10768.12 5472.24 4682.84 3481.50 4787.15 6794.42 30
IB-MVS64.48 1169.02 9168.97 10269.09 8681.75 6289.01 3764.50 15164.91 6256.65 10962.59 5347.89 10845.23 14651.99 15569.18 17081.88 4088.77 1892.93 50
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42062.23 14466.57 11957.17 16959.88 19268.92 18961.20 17242.28 20254.17 12739.57 14747.78 10964.97 6562.68 10273.85 12469.52 17377.43 19386.75 112
tpm64.85 12166.02 12563.48 12674.52 11878.38 13770.98 11544.99 19351.61 13343.28 13247.66 11053.18 12660.57 11470.58 15871.30 16286.54 7689.45 90
Effi-MVS+-dtu64.58 12364.08 13365.16 11073.04 12575.17 16470.68 11856.23 14154.12 12844.71 12347.42 11151.10 13163.82 9668.08 17366.32 18482.47 16286.38 116
GBi-Net69.21 8870.40 9367.81 9569.49 14378.65 13474.54 8260.97 10165.32 7851.06 9547.37 11262.05 7463.43 9777.49 8578.22 8387.37 5483.73 138
test169.21 8870.40 9367.81 9569.49 14378.65 13474.54 8260.97 10165.32 7851.06 9547.37 11262.05 7463.43 9777.49 8578.22 8387.37 5483.73 138
FMVSNet370.41 8371.89 8268.68 8870.89 13879.42 12975.63 7160.97 10165.32 7851.06 9547.37 11262.05 7464.90 9082.49 3682.27 3588.64 2284.34 135
PLCcopyleft64.00 1268.54 9466.66 11870.74 7580.28 7374.88 16572.64 9563.70 7169.26 6855.71 8047.24 11555.31 11570.42 5972.05 14570.67 16681.66 17177.19 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CVMVSNet54.92 18158.16 17251.13 18862.61 18468.44 19055.45 18652.38 17242.28 16821.45 20047.10 11646.10 14437.96 19164.42 18763.81 19176.92 19575.01 175
IterMVS61.87 14863.55 13559.90 14967.29 15972.20 17767.34 14048.56 18147.48 14837.86 16047.07 11748.27 13654.08 15172.12 14373.71 13084.30 13683.99 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchMatch-RL62.22 14560.69 15964.01 12168.74 14875.75 16059.27 17760.35 10956.09 11453.80 8847.06 11836.45 17864.80 9168.22 17267.22 17977.10 19474.02 178
GA-MVS64.55 12465.76 12763.12 12869.68 14281.56 10769.59 12458.16 11845.23 15935.58 17147.01 11941.82 15259.41 12379.62 6978.54 7886.32 8086.56 114
tpmrst67.15 10868.12 11066.03 10676.21 10780.98 11471.27 10845.05 19160.69 9350.63 9946.95 12054.15 12265.30 8771.80 14771.77 15387.72 4590.48 77
IterMVS-SCA-FT60.21 15862.97 14057.00 17066.64 16371.84 17867.53 13746.93 18847.56 14736.77 16546.85 12148.21 13752.51 15470.36 16172.40 15071.63 20783.53 141
Fast-Effi-MVS+67.59 10267.56 11367.62 9773.67 12181.14 11371.12 11254.79 15958.88 9950.61 10046.70 12247.05 14269.12 7276.06 10076.44 9886.43 7986.65 113
Fast-Effi-MVS+-dtu63.05 13564.72 13161.11 14371.21 13676.81 15270.72 11743.13 20052.51 13235.34 17246.55 12346.36 14361.40 11171.57 15071.44 15784.84 12287.79 107
OpenMVScopyleft67.62 874.92 6173.91 7176.09 4290.10 2190.38 2478.01 5966.35 5266.09 7662.80 5046.33 12464.55 6771.77 5079.92 6580.88 5987.52 5289.20 92
GeoE68.96 9269.32 9868.54 8976.61 10483.12 9571.78 10156.87 13760.21 9554.86 8645.95 12554.79 11964.27 9374.59 11375.54 11186.84 7291.01 69
UniMVSNet_NR-MVSNet62.30 14163.51 13660.89 14469.48 14677.83 14264.07 15463.94 6850.03 13731.17 18444.82 12641.12 15651.37 15871.02 15274.81 11785.30 10984.95 130
dps64.08 12763.22 13765.08 11175.27 11579.65 12666.68 14446.63 18956.94 10755.67 8143.96 12743.63 15064.00 9469.50 16969.82 17082.25 16579.02 165
thres100view90067.14 10966.09 12468.38 9377.70 9183.84 9274.52 8566.33 5349.16 14243.40 13043.24 12841.34 15362.59 10379.31 7175.92 10585.73 9789.81 84
tfpn200view965.90 11464.96 12867.00 10377.70 9181.58 10671.71 10462.94 8149.16 14243.40 13043.24 12841.34 15361.42 11076.24 9774.63 11984.84 12288.52 101
thres20065.58 11564.74 13066.56 10477.52 9681.61 10473.44 9162.95 7946.23 15442.45 13742.76 13041.18 15558.12 13176.24 9775.59 10984.89 12089.58 87
DU-MVS60.87 15461.82 15159.76 15166.69 16175.87 15764.07 15461.96 8949.31 14031.17 18442.76 13036.95 17551.37 15869.67 16773.20 14283.30 15084.95 130
NR-MVSNet61.08 15362.09 15059.90 14971.96 13075.87 15763.60 16061.96 8949.31 14027.95 18942.76 13033.85 19348.82 16574.35 11874.05 12885.13 11284.45 133
UniMVSNet (Re)60.62 15562.93 14257.92 16267.64 15677.90 14161.75 16961.24 9849.83 13929.80 18842.57 13340.62 16243.36 18270.49 16073.27 13983.76 14385.81 124
TranMVSNet+NR-MVSNet60.38 15761.30 15559.30 15568.34 15075.57 16363.38 16363.78 7046.74 15127.73 19042.56 13436.84 17647.66 16870.36 16174.59 12084.91 11982.46 150
tpm cat167.47 10567.05 11667.98 9476.63 10381.51 10874.49 8747.65 18561.18 9061.12 6142.51 13553.02 12864.74 9270.11 16471.50 15583.22 15189.49 88
CNLPA71.37 7970.27 9572.66 6480.79 6981.33 11071.07 11465.75 5682.36 2964.80 4442.46 13656.49 10672.70 4473.00 13470.52 16880.84 17785.76 125
LS3D64.54 12562.14 14967.34 10180.85 6775.79 15969.99 12065.87 5560.77 9244.35 12442.43 13745.95 14565.01 8869.88 16568.69 17577.97 19271.43 190
TAMVS58.86 16560.91 15856.47 17362.38 18577.57 14558.97 17952.98 16938.76 18336.17 16742.26 13847.94 13946.45 17370.23 16370.79 16581.86 16978.82 166
FMVSNet268.06 9968.57 10467.45 10069.49 14378.65 13474.54 8260.23 11256.29 11249.64 10442.13 13957.08 10463.43 9781.15 5580.99 5587.37 5483.73 138
thres40065.18 12064.44 13266.04 10576.40 10682.63 9871.52 10664.27 6544.93 16040.69 14541.86 14040.79 15958.12 13177.67 8374.64 11885.26 11088.56 100
test0.0.03 157.35 17459.89 16654.38 18171.37 13373.45 17352.71 19061.03 9946.11 15526.33 19341.73 14144.08 14829.72 19671.43 15170.90 16385.10 11371.56 189
RPMNet58.63 16862.80 14453.76 18367.59 15771.29 18354.60 18738.13 21055.83 11535.70 17041.58 14253.04 12747.89 16766.10 17767.38 17778.65 19184.40 134
MS-PatchMatch70.34 8569.00 10171.91 6985.20 5185.35 7877.84 6161.77 9458.01 10555.40 8341.26 14358.34 9861.69 10881.70 5178.29 8289.56 980.02 161
thres600view763.77 13063.14 13864.51 11675.49 11481.61 10469.59 12462.95 7943.96 16338.90 15341.09 14440.24 16455.25 14876.24 9771.54 15484.89 12087.30 109
CR-MVSNet62.31 14064.75 12959.47 15368.63 14971.29 18367.53 13743.18 19855.83 11541.40 13941.04 14555.85 11057.29 14172.76 13773.27 13978.77 18983.23 145
SixPastTwentyTwo49.11 19849.22 20148.99 19058.54 19964.14 20247.18 19947.75 18431.15 20324.42 19541.01 14626.55 21044.04 18154.76 20658.70 20371.99 20668.21 195
ECVR-MVScopyleft67.93 10168.49 10567.28 10278.64 8486.40 6872.22 9662.75 8558.05 10344.06 12640.92 14748.20 13858.05 13379.82 6679.70 6787.96 4086.32 118
pmmvs463.14 13462.46 14663.94 12366.03 16776.40 15466.82 14357.60 12756.74 10850.26 10240.81 14837.51 17259.26 12571.75 14871.48 15683.68 14682.53 149
pmmvs559.72 15960.24 16359.11 15762.77 18377.33 14963.17 16454.00 16340.21 17837.23 16140.41 14935.99 18251.75 15672.55 14172.74 14785.72 9982.45 151
thisisatest051559.37 16260.68 16057.84 16464.39 17575.65 16258.56 18053.86 16441.55 17242.12 13840.40 15039.59 16547.09 17171.69 14973.79 12981.02 17682.08 154
tmp_tt16.09 21613.07 2228.12 22513.61 2222.08 22055.09 12130.10 18740.26 15122.83 2145.35 21929.91 21525.25 21732.33 219
test111166.72 11067.80 11165.45 10877.42 9886.63 6369.69 12362.98 7755.29 11939.47 14840.12 15247.11 14155.70 14579.96 6480.00 6587.47 5385.49 128
ADS-MVSNet58.40 16959.16 17057.52 16665.80 17074.57 16960.26 17340.17 20950.51 13538.01 15840.11 15344.72 14759.36 12464.91 18266.55 18281.53 17272.72 186
v2v48263.68 13162.85 14364.65 11568.01 15280.46 12071.90 9957.60 12744.26 16142.82 13539.80 15438.62 16961.56 10973.06 13274.86 11686.03 8988.90 97
v863.44 13362.58 14564.43 11768.28 15178.07 13971.82 10054.85 15746.70 15245.20 11939.40 15540.91 15860.54 11572.85 13674.39 12485.92 9085.76 125
V4262.86 13862.97 14062.74 13460.84 18978.99 13271.46 10757.13 13446.85 15044.28 12538.87 15640.73 16157.63 14072.60 14074.14 12585.09 11588.63 99
v1063.00 13662.22 14863.90 12467.88 15477.78 14371.59 10554.34 16145.37 15842.76 13638.53 15738.93 16761.05 11374.39 11774.52 12285.75 9486.04 120
MSDG65.57 11661.57 15370.24 7882.02 6176.47 15374.46 8868.73 3956.52 11050.33 10138.47 15841.10 15762.42 10672.12 14372.94 14483.47 14773.37 183
anonymousdsp54.99 17957.24 17652.36 18453.82 20571.75 18151.49 19148.14 18233.74 19733.66 17838.34 15936.13 18147.54 16964.53 18670.60 16779.53 18685.59 127
ACMH59.42 1461.59 15059.22 16964.36 11978.92 8278.26 13867.65 13567.48 4539.81 17930.98 18638.25 16034.59 18961.37 11270.55 15973.47 13379.74 18479.59 162
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14862.00 14761.19 15662.96 12967.46 15879.49 12867.87 13357.66 12642.30 16745.02 12138.20 16138.89 16854.77 14969.83 16672.60 14884.96 11687.01 111
v114463.00 13662.39 14763.70 12567.72 15580.27 12171.23 10956.40 13842.51 16640.81 14438.12 16237.73 17060.42 11774.46 11574.55 12185.64 10589.12 93
PatchT60.46 15663.85 13456.51 17265.95 16875.68 16147.34 19841.39 20553.89 12941.40 13937.84 16350.30 13457.29 14172.76 13773.27 13985.67 10183.23 145
WR-MVS51.02 19154.56 18346.90 19763.84 17769.23 18844.78 20556.38 13938.19 18414.19 21037.38 16436.82 17722.39 20660.14 19466.20 18679.81 18373.95 180
v14419262.05 14661.46 15462.73 13566.59 16479.87 12469.30 12655.88 14341.50 17339.41 15037.23 16536.45 17859.62 12172.69 13973.51 13285.61 10688.93 95
CP-MVSNet50.57 19252.60 19348.21 19458.77 19765.82 19748.17 19656.29 14037.41 18516.59 20537.14 16631.95 19729.21 19756.60 20163.71 19280.22 18075.56 173
v119262.25 14261.64 15262.96 12966.88 16079.72 12569.96 12155.77 14541.58 17139.42 14937.05 16735.96 18360.50 11674.30 12074.09 12685.24 11188.76 98
PEN-MVS51.04 19052.94 18948.82 19161.45 18866.00 19648.68 19557.20 13236.87 18615.36 20836.98 16832.72 19528.77 20057.63 19866.37 18381.44 17374.00 179
DTE-MVSNet49.82 19551.92 19547.37 19661.75 18764.38 20145.89 20457.33 13136.11 19212.79 21536.87 16931.93 19825.73 20358.01 19665.22 18880.75 17970.93 193
EU-MVSNet44.84 20347.85 20341.32 20549.26 21056.59 21143.07 20747.64 18633.03 19813.82 21136.78 17030.99 20224.37 20453.80 20755.57 20769.78 20868.21 195
WR-MVS_H49.62 19652.63 19246.11 20058.80 19667.58 19246.14 20354.94 15436.51 18913.63 21336.75 17135.67 18522.10 20756.43 20262.76 19681.06 17572.73 185
LTVRE_ROB47.26 1649.41 19749.91 20048.82 19164.76 17369.79 18649.05 19447.12 18720.36 21716.52 20636.65 17226.96 20950.76 16160.47 19363.16 19564.73 21072.00 187
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v192192061.66 14961.10 15762.31 13766.32 16579.57 12768.41 13155.49 15041.03 17438.69 15436.64 17335.27 18659.60 12273.23 13073.41 13485.37 10888.51 102
FMVSNet558.86 16560.24 16357.25 16852.66 20766.25 19563.77 15952.86 17157.85 10637.92 15936.12 17452.22 12951.37 15870.88 15471.43 15884.92 11766.91 199
v124061.09 15260.55 16161.72 14165.92 16979.28 13067.16 14154.91 15639.79 18038.10 15736.08 17534.64 18859.15 12672.86 13573.36 13685.10 11387.84 106
ACMH+60.36 1361.16 15158.38 17164.42 11877.37 9974.35 17068.45 13062.81 8345.86 15638.48 15535.71 17637.35 17359.81 12067.24 17569.80 17279.58 18578.32 167
PS-CasMVS50.17 19352.02 19448.02 19558.60 19865.54 19848.04 19756.19 14236.42 19016.42 20735.68 17731.33 20128.85 19956.42 20363.54 19480.01 18175.18 174
pm-mvs159.21 16359.58 16858.77 15967.97 15377.07 15164.12 15257.20 13234.73 19636.86 16235.34 17840.54 16343.34 18374.32 11973.30 13883.13 15581.77 156
PM-MVS50.11 19450.38 19849.80 18947.23 21362.08 20650.91 19344.84 19441.90 16936.10 16835.22 17926.05 21246.83 17257.64 19755.42 20872.90 20474.32 177
Baseline_NR-MVSNet59.47 16160.28 16258.54 16066.69 16173.90 17161.63 17062.90 8249.15 14426.87 19135.18 18037.62 17148.20 16669.67 16773.61 13184.92 11782.82 148
FMVSNet163.48 13263.07 13963.97 12265.31 17176.37 15571.77 10357.90 12343.32 16545.66 11535.06 18149.43 13558.57 12977.49 8578.22 8384.59 13181.60 157
pmnet_mix0253.92 18553.30 18754.65 18061.89 18671.33 18254.54 18854.17 16240.38 17634.65 17434.76 18230.68 20440.44 18860.97 19263.71 19282.19 16671.24 191
TransMVSNet (Re)57.83 17056.90 17758.91 15872.26 12874.69 16863.57 16161.42 9732.30 20132.65 18033.97 18335.96 18339.17 19073.84 12572.84 14684.37 13574.69 176
MDTV_nov1_ep13_2view54.47 18354.61 18254.30 18260.50 19073.82 17257.92 18143.38 19739.43 18232.51 18133.23 18434.05 19147.26 17062.36 19066.21 18584.24 13773.19 184
UniMVSNet_ETH3D57.83 17056.46 18059.43 15463.24 18073.22 17467.70 13455.58 14836.17 19136.84 16332.64 18535.14 18751.50 15765.81 17869.81 17181.73 17082.44 152
TinyColmap52.66 18850.09 19955.65 17459.72 19364.02 20357.15 18352.96 17040.28 17732.51 18132.42 18620.97 21656.65 14363.95 18865.15 18974.91 20063.87 204
v7n57.04 17556.64 17857.52 16662.85 18274.75 16761.76 16851.80 17435.58 19536.02 16932.33 18733.61 19450.16 16367.73 17470.34 16982.51 16082.12 153
testgi48.51 19950.53 19746.16 19964.78 17267.15 19441.54 20854.81 15829.12 20617.03 20432.07 18831.98 19620.15 21065.26 18167.00 18178.67 19061.10 210
COLMAP_ROBcopyleft51.17 1555.13 17752.90 19057.73 16573.47 12467.21 19362.13 16755.82 14447.83 14634.39 17531.60 18934.24 19044.90 18063.88 18962.52 19775.67 19763.02 206
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous20240521166.35 12278.00 9084.41 8674.85 7963.18 7551.00 13431.37 19053.73 12469.67 6576.28 9676.84 9383.21 15390.85 70
pmmvs-eth3d55.20 17653.95 18556.65 17157.34 20167.77 19157.54 18253.74 16540.93 17541.09 14331.19 19129.10 20749.07 16465.54 17967.28 17881.14 17475.81 171
CMPMVSbinary43.63 1757.67 17355.43 18160.28 14872.01 12979.00 13162.77 16653.23 16841.77 17045.42 11630.74 19239.03 16653.01 15364.81 18464.65 19075.26 19968.03 197
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CHOSEN 1792x268872.55 7171.98 8073.22 5986.57 4592.41 1075.63 7166.77 4962.08 8852.32 9030.27 19350.74 13366.14 8586.22 1285.41 791.90 196.75 12
TDRefinement52.70 18751.02 19654.66 17957.41 20065.06 19961.47 17154.94 15444.03 16233.93 17730.13 19427.57 20846.17 17561.86 19162.48 19874.01 20366.06 200
Anonymous2023121168.44 9566.37 12170.86 7377.58 9483.49 9375.15 7861.89 9152.54 13158.50 7028.89 19556.78 10569.29 7174.96 11176.61 9582.73 15791.36 65
EG-PatchMatch MVS58.73 16758.03 17459.55 15272.32 12780.49 11963.44 16255.55 14932.49 20038.31 15628.87 19637.22 17442.84 18474.30 12075.70 10784.84 12277.14 170
MIMVSNet57.78 17259.71 16755.53 17554.79 20377.10 15063.89 15845.02 19246.59 15336.79 16428.36 19740.77 16045.84 17774.97 10976.58 9686.87 7173.60 181
tfpnnormal58.97 16456.48 17961.89 13971.27 13576.21 15666.65 14561.76 9532.90 19936.41 16627.83 19829.14 20650.64 16273.06 13273.05 14384.58 13283.15 147
HyFIR lowres test68.39 9668.28 10868.52 9080.85 6788.11 4771.08 11358.09 11954.87 12547.80 11127.55 19955.80 11164.97 8979.11 7279.14 7488.31 3293.35 44
MDA-MVSNet-bldmvs44.15 20442.27 20946.34 19838.34 21562.31 20546.28 20155.74 14629.83 20420.98 20127.11 20016.45 22141.98 18541.11 21357.47 20474.72 20161.65 209
N_pmnet47.67 20047.00 20448.45 19354.72 20462.78 20446.95 20051.25 17536.01 19326.09 19426.59 20125.93 21335.50 19355.67 20559.01 20176.22 19663.04 205
test20.0347.23 20248.69 20245.53 20163.28 17964.39 20041.01 20956.93 13629.16 20515.21 20923.90 20230.76 20317.51 21364.63 18565.26 18779.21 18862.71 207
gm-plane-assit54.99 17957.99 17551.49 18769.27 14754.42 21232.32 21542.59 20121.18 21513.71 21223.61 20343.84 14960.21 11887.09 586.55 590.81 489.28 91
FPMVS39.11 20836.39 21042.28 20255.97 20245.94 21546.23 20241.57 20435.73 19422.61 19723.46 20419.82 21828.32 20143.57 21040.67 21258.96 21345.54 213
pmmvs654.20 18453.54 18654.97 17663.22 18172.98 17560.17 17452.32 17326.77 21034.30 17623.29 20536.23 18040.33 18968.77 17168.76 17479.47 18778.00 168
gg-mvs-nofinetune62.34 13966.19 12357.86 16376.15 10888.61 4071.18 11141.24 20825.74 21113.16 21422.91 20663.97 7054.52 15085.06 1685.25 1090.92 391.78 61
new-patchmatchnet42.21 20542.97 20641.33 20453.05 20659.89 20739.38 21049.61 17728.26 20812.10 21622.17 20721.54 21519.22 21150.96 20856.04 20674.61 20261.92 208
Anonymous2023120652.23 18952.80 19151.56 18664.70 17469.41 18751.01 19258.60 11636.63 18822.44 19921.80 20831.42 20030.52 19566.79 17667.83 17682.10 16775.73 172
MVS-HIRNet53.86 18653.02 18854.85 17760.30 19172.36 17644.63 20642.20 20339.45 18143.47 12921.66 20934.00 19255.47 14665.42 18067.16 18083.02 15671.08 192
pmmvs341.86 20642.29 20841.36 20339.80 21452.66 21338.93 21235.85 21423.40 21420.22 20219.30 21020.84 21740.56 18755.98 20458.79 20272.80 20565.03 202
new_pmnet33.19 20935.52 21130.47 20927.55 22045.31 21629.29 21630.92 21529.00 2079.88 21918.77 21117.64 22026.77 20244.07 20945.98 21158.41 21447.87 212
ambc42.30 20750.36 20949.51 21435.47 21332.04 20223.53 19617.36 2128.95 22329.06 19864.88 18356.26 20561.29 21267.12 198
DeepMVS_CXcopyleft19.81 22217.01 22010.02 21923.61 2135.85 22117.21 2138.03 22421.13 20822.60 21721.42 22230.01 216
PMVScopyleft27.44 1832.08 21029.07 21335.60 20848.33 21224.79 21826.97 21741.34 20620.45 21622.50 19817.11 21418.64 21920.44 20941.99 21238.06 21354.02 21542.44 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MIMVSNet140.84 20743.46 20537.79 20732.14 21658.92 20939.24 21150.83 17627.00 20911.29 21716.76 21526.53 21117.75 21257.14 20061.12 20075.46 19856.78 211
test_method28.15 21134.48 21220.76 2126.76 22421.18 22021.03 21818.41 21836.77 18717.52 20315.67 21631.63 19924.05 20541.03 21426.69 21636.82 21868.38 194
PMMVS220.45 21322.31 21518.27 21520.52 22126.73 21714.85 22128.43 21713.69 2180.79 22510.35 2179.10 2223.83 22027.64 21632.87 21441.17 21635.81 215
E-PMN15.08 21411.65 21719.08 21328.73 21812.31 2236.95 22436.87 21310.71 2203.63 2235.13 2182.22 22813.81 21711.34 21918.50 21824.49 22021.32 219
EMVS14.40 21510.71 21818.70 21428.15 21912.09 2247.06 22336.89 21211.00 2193.56 2244.95 2192.27 22713.91 21610.13 22016.06 21922.63 22118.51 220
MVEpermissive15.98 1914.37 21616.36 21612.04 2177.72 22320.24 2215.90 22529.05 2168.28 2213.92 2224.72 2202.42 2269.57 21818.89 21831.46 21516.07 22328.53 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft24.91 21224.61 21425.26 21131.47 21721.59 21918.06 21937.53 21125.43 21210.03 2184.18 2214.25 22514.85 21543.20 21147.03 21039.62 21726.55 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test1230.05 2170.08 2190.01 2180.00 2260.01 2260.01 2280.00 2230.05 2220.00 2270.16 2220.00 2300.04 2210.02 2220.05 2200.00 2250.26 221
testmvs0.05 2170.08 2190.01 2180.00 2260.01 2260.03 2270.01 2220.05 2220.00 2270.14 2230.01 2290.03 2230.05 2210.05 2200.01 2240.24 222
uanet_test0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
sosnet-low-res0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
sosnet0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
RE-MVS-def31.47 183
9.1484.47 7
SR-MVS86.33 4667.54 4480.78 21
our_test_363.32 17871.07 18555.90 185
MTAPA78.32 1179.42 25
MTMP76.04 1576.65 29
Patchmatch-RL test2.17 226
XVS82.43 5586.27 7175.70 6961.07 6272.27 3985.67 101
X-MVStestdata82.43 5586.27 7175.70 6961.07 6272.27 3985.67 101
mPP-MVS86.96 4170.61 49
NP-MVS81.60 34
Patchmtry78.06 14067.53 13743.18 19841.40 139