This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 795.09 188.55 576.83 694.16 186.57 190.85 587.07 186.18 186.36 785.08 1288.67 2098.21 3
DVP-MVScopyleft88.07 290.73 284.97 491.98 1095.01 287.86 1076.88 593.90 285.15 290.11 786.90 279.46 1286.26 1084.67 1888.50 2798.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS87.87 490.57 384.73 589.38 2791.60 1788.24 874.15 1293.55 382.28 494.99 183.21 1285.96 387.67 484.67 1888.32 3198.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS76.94 183.08 1987.77 1077.60 3390.11 2090.96 1978.48 5572.63 2293.10 465.84 4180.67 2481.55 2074.80 2985.94 1385.39 883.75 14496.77 11
DPE-MVScopyleft87.60 590.44 484.29 792.09 993.44 688.69 475.11 993.06 580.80 694.23 286.70 381.44 784.84 1883.52 2787.64 4897.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++87.98 389.76 585.89 292.57 694.57 388.34 676.61 792.40 683.40 389.26 1085.57 586.04 286.24 1184.89 1588.39 3095.42 20
APDe-MVS86.37 788.41 884.00 991.43 1591.83 1588.34 674.67 1091.19 781.76 591.13 481.94 1980.07 883.38 2782.58 3487.69 4696.78 10
APD-MVScopyleft84.83 1387.00 1282.30 1389.61 2589.21 3586.51 1573.64 1690.98 877.99 1289.89 880.04 2479.18 1482.00 4881.37 4986.88 7095.49 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft85.64 1088.43 782.39 1292.65 490.24 2685.83 1774.21 1190.68 975.63 1786.77 1384.15 878.68 1686.33 885.26 987.32 5795.60 17
SMA-MVScopyleft85.24 1288.27 981.72 1591.74 1290.71 2086.71 1373.16 1990.56 1074.33 1983.07 1885.88 477.16 2086.28 985.58 687.23 6195.77 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.84.39 1486.58 1781.83 1488.09 3886.47 6785.63 1973.62 1790.13 1179.24 989.67 982.99 1377.72 1881.22 5380.92 5886.68 7494.66 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS87.30 688.71 685.64 394.57 194.55 491.01 179.94 189.15 1279.85 792.37 383.29 1179.75 983.52 2682.72 3288.75 1995.37 23
SD-MVS84.31 1586.96 1481.22 1688.98 3188.68 3985.65 1873.85 1589.09 1379.63 887.34 1284.84 673.71 3482.66 3581.60 4685.48 10794.51 29
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS85.96 887.58 1184.06 892.58 592.40 1187.62 1177.77 488.44 1475.93 1679.49 2681.97 1881.65 687.04 686.58 488.79 1797.18 7
ACMMP_NAP83.54 1786.37 1880.25 2189.57 2690.10 2885.27 2171.66 2387.38 1573.08 2284.23 1780.16 2375.31 2584.85 1783.64 2486.57 7594.21 35
TSAR-MVS + GP.82.27 2385.98 1977.94 3180.72 7088.25 4581.12 4367.71 4387.10 1673.31 2185.23 1583.68 976.64 2280.43 6181.47 4888.15 3795.66 16
DPM-MVS85.41 1186.72 1683.89 1091.66 1391.92 1490.49 278.09 386.90 1773.95 2074.52 3582.01 1779.29 1390.24 190.65 189.86 690.78 72
NCCC84.16 1685.46 2182.64 1192.34 890.57 2386.57 1476.51 886.85 1872.91 2377.20 3278.69 2679.09 1584.64 2084.88 1688.44 2895.41 21
train_agg83.35 1886.93 1579.17 2689.70 2488.41 4285.60 2072.89 2186.31 1966.58 4090.48 682.24 1673.06 4083.10 3182.64 3387.21 6595.30 24
TSAR-MVS + ACMM81.59 2585.84 2076.63 3789.82 2386.53 6686.32 1666.72 5085.96 2065.43 4288.98 1182.29 1567.57 8182.06 4681.33 5083.93 14293.75 41
MCST-MVS85.75 986.99 1384.31 694.07 392.80 888.15 979.10 285.66 2170.72 2976.50 3380.45 2282.17 588.35 287.49 391.63 297.65 4
HFP-MVS82.48 2284.12 2480.56 1990.15 1987.55 5384.28 2469.67 3285.22 2277.95 1384.69 1675.94 3075.04 2781.85 4981.17 5386.30 8292.40 55
OMC-MVS74.03 6475.82 6471.95 6879.56 7480.98 11475.35 7763.21 7484.48 2361.83 5661.54 6266.89 5869.41 6976.60 9474.07 12782.34 16486.15 119
ACMMPR80.62 2882.98 2777.87 3288.41 3387.05 5883.02 2969.18 3583.91 2468.35 3682.89 1973.64 3572.16 4780.78 5981.13 5486.10 8791.43 62
DeepC-MVS_fast75.41 281.69 2482.10 3281.20 1791.04 1787.81 5283.42 2774.04 1383.77 2571.09 2766.88 4672.44 3879.48 1185.08 1584.97 1488.12 3893.78 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + COLMAP73.09 6776.86 5668.71 8774.97 11782.49 10174.51 8661.83 9283.16 2649.31 10582.22 2251.62 13068.94 7378.76 7675.52 11282.67 15984.23 136
SteuartSystems-ACMMP82.51 2185.35 2279.20 2590.25 1889.39 3384.79 2270.95 2582.86 2768.32 3786.44 1477.19 2773.07 3983.63 2583.64 2487.82 4294.34 31
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS74.46 380.30 2981.05 3579.42 2387.42 4088.50 4183.23 2873.27 1882.78 2871.01 2862.86 5869.93 5174.80 2984.30 2184.20 2186.79 7394.77 26
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA71.37 7970.27 9572.66 6480.79 6981.33 11071.07 11465.75 5682.36 2964.80 4442.46 13656.49 10672.70 4473.00 13470.52 16880.84 17785.76 125
PHI-MVS79.43 3284.06 2574.04 5586.15 4791.57 1880.85 4668.90 3882.22 3051.81 9378.10 2874.28 3370.39 6084.01 2484.00 2286.14 8694.24 33
CSCG82.90 2084.52 2381.02 1891.85 1193.43 787.14 1274.01 1481.96 3176.14 1470.84 3782.49 1469.71 6382.32 4185.18 1187.26 6095.40 22
CP-MVS79.44 3181.51 3477.02 3686.95 4285.96 7682.00 3468.44 4081.82 3267.39 3877.43 3073.68 3471.62 5179.56 7079.58 7085.73 9792.51 54
EPNet79.28 3682.25 2975.83 4388.31 3690.14 2779.43 5368.07 4181.76 3361.26 6077.26 3170.08 5070.06 6182.43 3982.00 3887.82 4292.09 57
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet80.90 2782.93 2878.53 2986.83 4492.26 1281.19 4266.95 4781.60 3469.90 3266.93 4574.80 3276.79 2184.68 1984.77 1789.50 1095.50 18
NP-MVS81.60 34
TAPA-MVS67.10 971.45 7773.47 7569.10 8577.04 10080.78 11773.81 9062.10 8880.80 3651.28 9460.91 6463.80 7167.98 7674.59 11372.42 14982.37 16380.97 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MP-MVScopyleft80.94 2683.49 2677.96 3088.48 3288.16 4682.82 3269.34 3480.79 3769.67 3382.35 2177.13 2871.60 5280.97 5880.96 5785.87 9394.06 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS79.42 3481.84 3376.60 3888.38 3586.69 6282.97 3165.75 5680.39 3864.94 4381.95 2372.11 4371.41 5480.45 6080.55 6386.18 8490.76 75
canonicalmvs77.65 4279.59 4175.39 4581.52 6389.83 3281.32 4160.74 10580.05 3966.72 3968.43 4165.09 6374.72 3178.87 7482.73 3187.32 5792.16 56
HQP-MVS78.26 3980.91 3675.17 4885.67 4984.33 8883.01 3069.38 3379.88 4055.83 7879.85 2564.90 6670.81 5682.46 3781.78 4186.30 8293.18 47
CDPH-MVS79.39 3582.13 3176.19 4189.22 3088.34 4384.20 2571.00 2479.67 4156.97 7777.77 2972.24 4268.50 7581.33 5282.74 3087.23 6192.84 51
ACMMPcopyleft77.61 4379.59 4175.30 4785.87 4885.58 7781.42 3967.38 4679.38 4262.61 5278.53 2765.79 6268.80 7478.56 7778.50 8185.75 9490.80 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
X-MVS78.16 4080.55 3775.38 4687.99 3986.27 7181.05 4468.98 3678.33 4361.07 6275.25 3472.27 3967.52 8280.03 6380.52 6485.66 10491.20 66
MVSTER76.92 4879.92 3973.42 5874.98 11682.97 9678.15 5863.41 7378.02 4464.41 4567.54 4372.80 3771.05 5583.29 3083.73 2388.53 2691.12 67
CLD-MVS77.36 4677.29 5377.45 3582.21 5988.11 4781.92 3568.96 3777.97 4569.62 3462.08 5959.44 9273.57 3681.75 5081.27 5188.41 2990.39 79
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CPTT-MVS75.43 5777.13 5573.44 5781.43 6482.55 10080.96 4564.35 6477.95 4661.39 5969.20 4070.94 4769.38 7073.89 12373.32 13783.14 15492.06 58
MAR-MVS77.19 4778.37 4875.81 4489.87 2290.58 2279.33 5465.56 5877.62 4758.33 7159.24 7167.98 5574.83 2882.37 4083.12 2986.95 6887.67 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS76.25 5180.22 3871.63 7178.23 8787.95 5172.75 9360.27 11077.50 4857.73 7371.53 3666.60 5973.16 3880.99 5781.23 5287.63 4995.73 14
MVS_030479.43 3282.20 3076.20 4084.22 5291.79 1681.82 3763.81 6976.83 4961.71 5766.37 4875.52 3176.38 2385.54 1485.03 1389.28 1294.32 32
AdaColmapbinary76.23 5273.55 7379.35 2489.38 2785.00 8179.99 5173.04 2076.60 5071.17 2655.18 8057.99 10177.87 1776.82 9376.82 9484.67 12986.45 115
MSLP-MVS++78.57 3777.33 5280.02 2288.39 3484.79 8284.62 2366.17 5475.96 5178.40 1061.59 6171.47 4573.54 3778.43 7878.88 7688.97 1590.18 82
EC-MVSNet76.05 5378.87 4372.77 6278.87 8386.63 6377.50 6357.04 13575.34 5261.68 5864.20 5369.56 5273.96 3382.12 4480.65 6187.57 5093.57 43
CS-MVS-test75.09 6077.84 4971.87 7079.27 7886.92 5970.53 11960.36 10875.13 5363.13 4967.92 4265.08 6471.43 5378.15 8278.51 8086.53 7793.16 48
PVSNet_BlendedMVS76.84 4978.47 4574.95 5082.37 5789.90 3075.45 7565.45 5974.99 5470.66 3063.07 5658.27 9967.60 7984.24 2281.70 4388.18 3597.10 8
PVSNet_Blended76.84 4978.47 4574.95 5082.37 5789.90 3075.45 7565.45 5974.99 5470.66 3063.07 5658.27 9967.60 7984.24 2281.70 4388.18 3597.10 8
3Dnovator+70.16 677.87 4177.29 5378.55 2889.25 2988.32 4480.09 4967.95 4274.89 5671.83 2552.05 9370.68 4876.27 2482.27 4282.04 3685.92 9090.77 74
CS-MVS75.84 5478.61 4472.61 6579.03 8086.74 6174.43 8960.27 11074.15 5762.78 5166.26 4964.25 6872.81 4283.36 2881.69 4586.32 8093.85 39
3Dnovator70.49 578.42 3876.77 5780.35 2091.43 1590.27 2581.84 3670.79 2672.10 5871.95 2450.02 10067.86 5777.47 1982.89 3284.24 2088.61 2389.99 83
CANet_DTU72.84 6976.63 5968.43 9276.81 10286.62 6575.54 7454.71 16072.06 5943.54 12867.11 4458.46 9672.40 4581.13 5680.82 6087.57 5090.21 81
PMMVS70.37 8475.06 6764.90 11371.46 13281.88 10264.10 15355.64 14771.31 6046.69 11270.69 3858.56 9369.53 6679.03 7375.63 10881.96 16888.32 103
MVS_111021_LR74.26 6375.95 6372.27 6679.43 7685.04 8072.71 9465.27 6170.92 6163.58 4869.32 3960.31 8869.43 6877.01 9177.15 9183.22 15191.93 60
baseline72.89 6874.46 7071.07 7275.99 10987.50 5474.57 8160.49 10770.72 6257.60 7460.63 6660.97 8370.79 5775.27 10776.33 10086.94 6989.79 86
LGP-MVS_train72.02 7473.18 7670.67 7682.13 6080.26 12279.58 5263.04 7670.09 6351.98 9165.06 5155.62 11362.49 10575.97 10176.32 10184.80 12688.93 95
EPNet_dtu66.17 11270.13 9661.54 14281.04 6577.39 14868.87 12962.50 8769.78 6433.51 17963.77 5556.22 10837.65 19272.20 14272.18 15285.69 10079.38 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_Test75.22 5876.69 5873.51 5679.30 7788.82 3880.06 5058.74 11469.77 6557.50 7659.78 7061.35 8075.31 2582.07 4583.60 2690.13 591.41 64
EIA-MVS73.48 6676.05 6170.47 7778.12 8887.21 5671.78 10160.63 10669.66 6655.56 8264.86 5260.69 8469.53 6677.35 8978.59 7787.22 6394.01 37
ACMP68.86 772.15 7372.25 7872.03 6780.96 6680.87 11677.93 6064.13 6669.29 6760.79 6564.04 5453.54 12563.91 9573.74 12675.27 11384.45 13488.98 94
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft64.00 1268.54 9466.66 11870.74 7580.28 7374.88 16572.64 9563.70 7169.26 6855.71 8047.24 11555.31 11570.42 5972.05 14570.67 16681.66 17177.19 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS70.85 475.73 5576.55 6074.78 5383.67 5388.04 5081.47 3870.62 2969.24 6957.52 7560.59 6769.18 5370.65 5877.11 9077.65 8884.75 12794.01 37
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
diffmvspermissive74.32 6275.42 6673.04 6075.60 11387.27 5578.20 5762.96 7868.66 7061.89 5559.79 6959.84 9071.80 4978.30 8179.87 6687.80 4494.23 34
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive75.20 5975.69 6574.63 5479.26 7989.07 3678.47 5663.59 7267.05 7163.79 4755.72 7860.32 8773.58 3582.16 4381.78 4189.08 1493.72 42
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive75.57 5676.04 6275.02 4980.48 7289.31 3480.79 4764.04 6766.95 7263.87 4657.52 7361.33 8272.90 4182.01 4781.99 3988.03 3993.16 48
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GG-mvs-BLEND54.54 18277.58 5027.67 2100.03 22590.09 2977.20 660.02 22166.83 730.05 22659.90 6873.33 360.04 22178.40 7979.30 7388.65 2195.20 25
QAPM77.50 4477.43 5177.59 3491.52 1492.00 1381.41 4070.63 2766.22 7458.05 7254.70 8171.79 4474.49 3282.46 3782.04 3689.46 1192.79 53
MVS_111021_HR77.42 4578.40 4776.28 3986.95 4290.68 2177.41 6470.56 3066.21 7562.48 5466.17 5063.98 6972.08 4882.87 3383.15 2888.24 3495.71 15
OpenMVScopyleft67.62 874.92 6173.91 7176.09 4290.10 2190.38 2478.01 5966.35 5266.09 7662.80 5046.33 12464.55 6771.77 5079.92 6580.88 5987.52 5289.20 92
CostFormer72.18 7273.90 7270.18 7979.47 7586.19 7476.94 6748.62 18066.07 7760.40 6754.14 8765.82 6167.98 7675.84 10276.41 9987.67 4792.83 52
GBi-Net69.21 8870.40 9367.81 9569.49 14378.65 13474.54 8260.97 10165.32 7851.06 9547.37 11262.05 7463.43 9777.49 8578.22 8387.37 5483.73 138
test169.21 8870.40 9367.81 9569.49 14378.65 13474.54 8260.97 10165.32 7851.06 9547.37 11262.05 7463.43 9777.49 8578.22 8387.37 5483.73 138
FMVSNet370.41 8371.89 8268.68 8870.89 13879.42 12975.63 7160.97 10165.32 7851.06 9547.37 11262.05 7464.90 9082.49 3682.27 3588.64 2284.34 135
DELS-MVS79.49 3079.84 4079.08 2788.26 3792.49 984.12 2670.63 2765.27 8169.60 3561.29 6366.50 6072.75 4388.07 388.03 289.13 1397.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMM66.70 1070.42 8168.49 10572.67 6382.85 5477.76 14477.70 6264.76 6364.61 8260.74 6649.29 10153.97 12365.86 8674.97 10975.57 11084.13 14183.29 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D71.38 7874.70 6967.51 9851.61 20888.06 4977.29 6560.95 10463.61 8348.36 10866.60 4760.67 8579.55 1073.56 12780.58 6287.30 5989.80 85
FA-MVS(training)70.24 8671.77 8368.45 9177.52 9686.03 7573.33 9249.12 17963.55 8455.77 7948.91 10456.26 10767.78 7877.60 8479.62 6987.19 6690.40 78
baseline271.22 8073.01 7769.13 8475.76 11186.34 7071.23 10962.78 8462.62 8552.85 8957.32 7454.31 12063.27 10079.74 6879.31 7288.89 1691.43 62
RPSCF55.07 17858.06 17351.57 18548.87 21158.95 20853.68 18941.26 20762.42 8645.88 11454.38 8654.26 12153.75 15257.15 19953.53 20966.01 20965.75 201
DI_MVS_plusplus_trai73.94 6574.85 6872.88 6176.57 10586.80 6080.41 4861.47 9662.35 8759.44 6947.91 10768.12 5472.24 4682.84 3481.50 4787.15 6794.42 30
CHOSEN 1792x268872.55 7171.98 8073.22 5986.57 4592.41 1075.63 7166.77 4962.08 8852.32 9030.27 19350.74 13366.14 8586.22 1285.41 791.90 196.75 12
EPMVS66.21 11167.49 11464.73 11475.81 11084.20 9068.94 12844.37 19561.55 8948.07 11049.21 10354.87 11862.88 10171.82 14671.40 15988.28 3379.37 164
tpm cat167.47 10567.05 11667.98 9476.63 10381.51 10874.49 8747.65 18561.18 9061.12 6142.51 13553.02 12864.74 9270.11 16471.50 15583.22 15189.49 88
SCA63.90 12966.67 11760.66 14573.75 11971.78 18059.87 17643.66 19661.13 9145.03 12051.64 9459.45 9157.92 13570.96 15370.80 16483.71 14580.92 159
LS3D64.54 12562.14 14967.34 10180.85 6775.79 15969.99 12065.87 5560.77 9244.35 12442.43 13745.95 14565.01 8869.88 16568.69 17577.97 19271.43 190
tpmrst67.15 10868.12 11066.03 10676.21 10780.98 11471.27 10845.05 19160.69 9350.63 9946.95 12054.15 12265.30 8771.80 14771.77 15387.72 4590.48 77
PatchmatchNetpermissive65.43 11867.71 11262.78 13273.49 12382.83 9766.42 14745.40 19060.40 9445.27 11749.22 10257.60 10360.01 11970.61 15671.38 16086.08 8881.91 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GeoE68.96 9269.32 9868.54 8976.61 10483.12 9571.78 10156.87 13760.21 9554.86 8645.95 12554.79 11964.27 9374.59 11375.54 11186.84 7291.01 69
thisisatest053068.38 9770.98 8965.35 10972.61 12684.42 8568.21 13257.98 12059.77 9650.80 9854.63 8258.48 9557.92 13576.99 9277.47 8984.60 13085.07 129
Effi-MVS+70.42 8171.23 8769.47 8178.04 8985.24 7975.57 7358.88 11359.56 9748.47 10752.73 9254.94 11669.69 6478.34 8077.06 9286.18 8490.73 76
tttt051767.99 10070.61 9264.94 11271.94 13183.96 9167.62 13657.98 12059.30 9849.90 10354.50 8557.98 10257.92 13576.48 9577.47 8984.24 13784.58 132
Fast-Effi-MVS+67.59 10267.56 11367.62 9773.67 12181.14 11371.12 11254.79 15958.88 9950.61 10046.70 12247.05 14269.12 7276.06 10076.44 9886.43 7986.65 113
test-LLR68.23 9871.61 8564.28 12071.37 13381.32 11163.98 15661.03 9958.62 10042.96 13352.74 9061.65 7857.74 13875.64 10478.09 8688.61 2393.21 45
TESTMET0.1,167.38 10671.61 8562.45 13666.05 16681.32 11163.98 15655.36 15258.62 10042.96 13352.74 9061.65 7857.74 13875.64 10478.09 8688.61 2393.21 45
MDTV_nov1_ep1365.21 11967.28 11562.79 13170.91 13781.72 10369.28 12749.50 17858.08 10243.94 12750.50 9956.02 10958.86 12870.72 15573.37 13584.24 13780.52 160
test250669.26 8770.79 9167.48 9978.64 8486.40 6872.22 9662.75 8558.05 10345.24 11850.76 9654.93 11758.05 13379.82 6679.70 6787.96 4085.90 123
ECVR-MVScopyleft67.93 10168.49 10567.28 10278.64 8486.40 6872.22 9662.75 8558.05 10344.06 12640.92 14748.20 13858.05 13379.82 6679.70 6787.96 4086.32 118
MS-PatchMatch70.34 8569.00 10171.91 6985.20 5185.35 7877.84 6161.77 9458.01 10555.40 8341.26 14358.34 9861.69 10881.70 5178.29 8289.56 980.02 161
FMVSNet558.86 16560.24 16357.25 16852.66 20766.25 19563.77 15952.86 17157.85 10637.92 15936.12 17452.22 12951.37 15870.88 15471.43 15884.92 11766.91 199
dps64.08 12763.22 13765.08 11175.27 11579.65 12666.68 14446.63 18956.94 10755.67 8143.96 12743.63 15064.00 9469.50 16969.82 17082.25 16579.02 165
pmmvs463.14 13462.46 14663.94 12366.03 16776.40 15466.82 14357.60 12756.74 10850.26 10240.81 14837.51 17259.26 12571.75 14871.48 15683.68 14682.53 149
IB-MVS64.48 1169.02 9168.97 10269.09 8681.75 6289.01 3764.50 15164.91 6256.65 10962.59 5347.89 10845.23 14651.99 15569.18 17081.88 4088.77 1892.93 50
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MSDG65.57 11661.57 15370.24 7882.02 6176.47 15374.46 8868.73 3956.52 11050.33 10138.47 15841.10 15762.42 10672.12 14372.94 14483.47 14773.37 183
PVSNet_Blended_VisFu71.76 7573.54 7469.69 8079.01 8187.16 5772.05 9861.80 9356.46 11159.66 6853.88 8962.48 7259.08 12781.17 5478.90 7586.53 7794.74 27
FMVSNet268.06 9968.57 10467.45 10069.49 14378.65 13474.54 8260.23 11256.29 11249.64 10442.13 13957.08 10463.43 9781.15 5580.99 5587.37 5483.73 138
baseline171.47 7672.02 7970.82 7480.56 7184.51 8476.61 6866.93 4856.22 11348.66 10655.40 7960.43 8662.55 10483.35 2980.99 5589.60 883.28 144
PatchMatch-RL62.22 14560.69 15964.01 12168.74 14875.75 16059.27 17760.35 10956.09 11453.80 8847.06 11836.45 17864.80 9168.22 17267.22 17977.10 19474.02 178
CR-MVSNet62.31 14064.75 12959.47 15368.63 14971.29 18367.53 13743.18 19855.83 11541.40 13941.04 14555.85 11057.29 14172.76 13773.27 13978.77 18983.23 145
RPMNet58.63 16862.80 14453.76 18367.59 15771.29 18354.60 18738.13 21055.83 11535.70 17041.58 14253.04 12747.89 16766.10 17767.38 17778.65 19184.40 134
IS_MVSNet67.29 10771.98 8061.82 14076.92 10184.32 8965.90 14958.22 11755.75 11739.22 15154.51 8462.47 7345.99 17678.83 7578.52 7984.70 12889.47 89
test-mter64.06 12869.24 9958.01 16159.07 19577.40 14759.13 17848.11 18355.64 11839.18 15251.56 9558.54 9455.38 14773.52 12876.00 10487.22 6392.05 59
test111166.72 11067.80 11165.45 10877.42 9886.63 6369.69 12362.98 7755.29 11939.47 14840.12 15247.11 14155.70 14579.96 6480.00 6587.47 5385.49 128
Vis-MVSNet (Re-imp)62.25 14268.74 10354.68 17873.70 12078.74 13356.51 18457.49 12955.22 12026.86 19254.56 8361.35 8031.06 19473.10 13174.90 11582.49 16183.31 142
tmp_tt16.09 21613.07 2228.12 22513.61 2222.08 22055.09 12130.10 18740.26 15122.83 2145.35 21929.91 21525.25 21732.33 219
FC-MVSNet-train68.83 9368.29 10769.47 8178.35 8679.94 12364.72 15066.38 5154.96 12254.51 8756.75 7547.91 14066.91 8375.57 10675.75 10685.92 9087.12 110
DCV-MVSNet69.13 9069.07 10069.21 8377.65 9377.52 14674.68 8057.85 12454.92 12355.34 8555.74 7755.56 11466.35 8475.05 10876.56 9783.35 14888.13 105
USDC59.69 16060.03 16559.28 15664.04 17671.84 17863.15 16555.36 15254.90 12435.02 17348.34 10529.79 20558.16 13070.60 15771.33 16179.99 18273.42 182
HyFIR lowres test68.39 9668.28 10868.52 9080.85 6788.11 4771.08 11358.09 11954.87 12547.80 11127.55 19955.80 11164.97 8979.11 7279.14 7488.31 3293.35 44
UGNet67.57 10471.69 8462.76 13369.88 14182.58 9966.43 14658.64 11554.71 12651.87 9261.74 6062.01 7745.46 17874.78 11274.99 11484.24 13791.02 68
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 280x42062.23 14466.57 11957.17 16959.88 19268.92 18961.20 17242.28 20254.17 12739.57 14747.78 10964.97 6562.68 10273.85 12469.52 17377.43 19386.75 112
Effi-MVS+-dtu64.58 12364.08 13365.16 11073.04 12575.17 16470.68 11856.23 14154.12 12844.71 12347.42 11151.10 13163.82 9668.08 17366.32 18482.47 16286.38 116
PatchT60.46 15663.85 13456.51 17265.95 16875.68 16147.34 19841.39 20553.89 12941.40 13937.84 16350.30 13457.29 14172.76 13773.27 13985.67 10183.23 145
EPP-MVSNet67.58 10371.10 8863.48 12675.71 11283.35 9466.85 14257.83 12553.02 13041.15 14255.82 7667.89 5656.01 14474.40 11672.92 14583.33 14990.30 80
Anonymous2023121168.44 9566.37 12170.86 7377.58 9483.49 9375.15 7861.89 9152.54 13158.50 7028.89 19556.78 10569.29 7174.96 11176.61 9582.73 15791.36 65
Fast-Effi-MVS+-dtu63.05 13564.72 13161.11 14371.21 13676.81 15270.72 11743.13 20052.51 13235.34 17246.55 12346.36 14361.40 11171.57 15071.44 15784.84 12287.79 107
tpm64.85 12166.02 12563.48 12674.52 11878.38 13770.98 11544.99 19351.61 13343.28 13247.66 11053.18 12660.57 11470.58 15871.30 16286.54 7689.45 90
Anonymous20240521166.35 12278.00 9084.41 8674.85 7963.18 7551.00 13431.37 19053.73 12469.67 6576.28 9676.84 9383.21 15390.85 70
ADS-MVSNet58.40 16959.16 17057.52 16665.80 17074.57 16960.26 17340.17 20950.51 13538.01 15840.11 15344.72 14759.36 12464.91 18266.55 18281.53 17272.72 186
IterMVS-LS66.08 11366.56 12065.51 10773.67 12174.88 16570.89 11653.55 16650.42 13648.32 10950.59 9855.66 11261.83 10773.93 12274.42 12384.82 12586.01 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet62.30 14163.51 13660.89 14469.48 14677.83 14264.07 15463.94 6850.03 13731.17 18444.82 12641.12 15651.37 15871.02 15274.81 11785.30 10984.95 130
OPM-MVS72.74 7070.93 9074.85 5285.30 5084.34 8782.82 3269.79 3149.96 13855.39 8454.09 8860.14 8970.04 6280.38 6279.43 7185.74 9688.20 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet (Re)60.62 15562.93 14257.92 16267.64 15677.90 14161.75 16961.24 9849.83 13929.80 18842.57 13340.62 16243.36 18270.49 16073.27 13983.76 14385.81 124
DU-MVS60.87 15461.82 15159.76 15166.69 16175.87 15764.07 15461.96 8949.31 14031.17 18442.76 13036.95 17551.37 15869.67 16773.20 14283.30 15084.95 130
NR-MVSNet61.08 15362.09 15059.90 14971.96 13075.87 15763.60 16061.96 8949.31 14027.95 18942.76 13033.85 19348.82 16574.35 11874.05 12885.13 11284.45 133
thres100view90067.14 10966.09 12468.38 9377.70 9183.84 9274.52 8566.33 5349.16 14243.40 13043.24 12841.34 15362.59 10379.31 7175.92 10585.73 9789.81 84
tfpn200view965.90 11464.96 12867.00 10377.70 9181.58 10671.71 10462.94 8149.16 14243.40 13043.24 12841.34 15361.42 11076.24 9774.63 11984.84 12288.52 101
Baseline_NR-MVSNet59.47 16160.28 16258.54 16066.69 16173.90 17161.63 17062.90 8249.15 14426.87 19135.18 18037.62 17148.20 16669.67 16773.61 13184.92 11782.82 148
Vis-MVSNetpermissive65.53 11769.83 9760.52 14670.80 13984.59 8366.37 14855.47 15148.40 14540.62 14657.67 7258.43 9745.37 17977.49 8576.24 10284.47 13385.99 122
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft51.17 1555.13 17752.90 19057.73 16573.47 12467.21 19362.13 16755.82 14447.83 14634.39 17531.60 18934.24 19044.90 18063.88 18962.52 19775.67 19763.02 206
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT60.21 15862.97 14057.00 17066.64 16371.84 17867.53 13746.93 18847.56 14736.77 16546.85 12148.21 13752.51 15470.36 16172.40 15071.63 20783.53 141
IterMVS61.87 14863.55 13559.90 14967.29 15972.20 17767.34 14048.56 18147.48 14837.86 16047.07 11748.27 13654.08 15172.12 14373.71 13084.30 13683.99 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UA-Net64.62 12268.23 10960.42 14777.53 9581.38 10960.08 17557.47 13047.01 14944.75 12260.68 6571.32 4641.84 18673.27 12972.25 15180.83 17871.68 188
V4262.86 13862.97 14062.74 13460.84 18978.99 13271.46 10757.13 13446.85 15044.28 12538.87 15640.73 16157.63 14072.60 14074.14 12585.09 11588.63 99
TranMVSNet+NR-MVSNet60.38 15761.30 15559.30 15568.34 15075.57 16363.38 16363.78 7046.74 15127.73 19042.56 13436.84 17647.66 16870.36 16174.59 12084.91 11982.46 150
v863.44 13362.58 14564.43 11768.28 15178.07 13971.82 10054.85 15746.70 15245.20 11939.40 15540.91 15860.54 11572.85 13674.39 12485.92 9085.76 125
MIMVSNet57.78 17259.71 16755.53 17554.79 20377.10 15063.89 15845.02 19246.59 15336.79 16428.36 19740.77 16045.84 17774.97 10976.58 9686.87 7173.60 181
thres20065.58 11564.74 13066.56 10477.52 9681.61 10473.44 9162.95 7946.23 15442.45 13742.76 13041.18 15558.12 13176.24 9775.59 10984.89 12089.58 87
test0.0.03 157.35 17459.89 16654.38 18171.37 13373.45 17352.71 19061.03 9946.11 15526.33 19341.73 14144.08 14829.72 19671.43 15170.90 16385.10 11371.56 189
ACMH+60.36 1361.16 15158.38 17164.42 11877.37 9974.35 17068.45 13062.81 8345.86 15638.48 15535.71 17637.35 17359.81 12067.24 17569.80 17279.58 18578.32 167
FC-MVSNet-test47.24 20154.37 18438.93 20659.49 19458.25 21034.48 21453.36 16745.66 1576.66 22050.62 9742.02 15116.62 21458.39 19561.21 19962.99 21164.40 203
v1063.00 13662.22 14863.90 12467.88 15477.78 14371.59 10554.34 16145.37 15842.76 13638.53 15738.93 16761.05 11374.39 11774.52 12285.75 9486.04 120
GA-MVS64.55 12465.76 12763.12 12869.68 14281.56 10769.59 12458.16 11845.23 15935.58 17147.01 11941.82 15259.41 12379.62 6978.54 7886.32 8086.56 114
thres40065.18 12064.44 13266.04 10576.40 10682.63 9871.52 10664.27 6544.93 16040.69 14541.86 14040.79 15958.12 13177.67 8374.64 11885.26 11088.56 100
v2v48263.68 13162.85 14364.65 11568.01 15280.46 12071.90 9957.60 12744.26 16142.82 13539.80 15438.62 16961.56 10973.06 13274.86 11686.03 8988.90 97
TDRefinement52.70 18751.02 19654.66 17957.41 20065.06 19961.47 17154.94 15444.03 16233.93 17730.13 19427.57 20846.17 17561.86 19162.48 19874.01 20366.06 200
thres600view763.77 13063.14 13864.51 11675.49 11481.61 10469.59 12462.95 7943.96 16338.90 15341.09 14440.24 16455.25 14876.24 9771.54 15484.89 12087.30 109
CDS-MVSNet64.22 12665.89 12662.28 13870.05 14080.59 11869.91 12257.98 12043.53 16446.58 11348.22 10650.76 13246.45 17375.68 10376.08 10382.70 15886.34 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FMVSNet163.48 13263.07 13963.97 12265.31 17176.37 15571.77 10357.90 12343.32 16545.66 11535.06 18149.43 13558.57 12977.49 8578.22 8384.59 13181.60 157
v114463.00 13662.39 14763.70 12567.72 15580.27 12171.23 10956.40 13842.51 16640.81 14438.12 16237.73 17060.42 11774.46 11574.55 12185.64 10589.12 93
v14862.00 14761.19 15662.96 12967.46 15879.49 12867.87 13357.66 12642.30 16745.02 12138.20 16138.89 16854.77 14969.83 16672.60 14884.96 11687.01 111
CVMVSNet54.92 18158.16 17251.13 18862.61 18468.44 19055.45 18652.38 17242.28 16821.45 20047.10 11646.10 14437.96 19164.42 18763.81 19176.92 19575.01 175
PM-MVS50.11 19450.38 19849.80 18947.23 21362.08 20650.91 19344.84 19441.90 16936.10 16835.22 17926.05 21246.83 17257.64 19755.42 20872.90 20474.32 177
CMPMVSbinary43.63 1757.67 17355.43 18160.28 14872.01 12979.00 13162.77 16653.23 16841.77 17045.42 11630.74 19239.03 16653.01 15364.81 18464.65 19075.26 19968.03 197
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v119262.25 14261.64 15262.96 12966.88 16079.72 12569.96 12155.77 14541.58 17139.42 14937.05 16735.96 18360.50 11674.30 12074.09 12685.24 11188.76 98
thisisatest051559.37 16260.68 16057.84 16464.39 17575.65 16258.56 18053.86 16441.55 17242.12 13840.40 15039.59 16547.09 17171.69 14973.79 12981.02 17682.08 154
v14419262.05 14661.46 15462.73 13566.59 16479.87 12469.30 12655.88 14341.50 17339.41 15037.23 16536.45 17859.62 12172.69 13973.51 13285.61 10688.93 95
v192192061.66 14961.10 15762.31 13766.32 16579.57 12768.41 13155.49 15041.03 17438.69 15436.64 17335.27 18659.60 12273.23 13073.41 13485.37 10888.51 102
pmmvs-eth3d55.20 17653.95 18556.65 17157.34 20167.77 19157.54 18253.74 16540.93 17541.09 14331.19 19129.10 20749.07 16465.54 17967.28 17881.14 17475.81 171
pmnet_mix0253.92 18553.30 18754.65 18061.89 18671.33 18254.54 18854.17 16240.38 17634.65 17434.76 18230.68 20440.44 18860.97 19263.71 19282.19 16671.24 191
TinyColmap52.66 18850.09 19955.65 17459.72 19364.02 20357.15 18352.96 17040.28 17732.51 18132.42 18620.97 21656.65 14363.95 18865.15 18974.91 20063.87 204
pmmvs559.72 15960.24 16359.11 15762.77 18377.33 14963.17 16454.00 16340.21 17837.23 16140.41 14935.99 18251.75 15672.55 14172.74 14785.72 9982.45 151
ACMH59.42 1461.59 15059.22 16964.36 11978.92 8278.26 13867.65 13567.48 4539.81 17930.98 18638.25 16034.59 18961.37 11270.55 15973.47 13379.74 18479.59 162
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v124061.09 15260.55 16161.72 14165.92 16979.28 13067.16 14154.91 15639.79 18038.10 15736.08 17534.64 18859.15 12672.86 13573.36 13685.10 11387.84 106
MVS-HIRNet53.86 18653.02 18854.85 17760.30 19172.36 17644.63 20642.20 20339.45 18143.47 12921.66 20934.00 19255.47 14665.42 18067.16 18083.02 15671.08 192
MDTV_nov1_ep13_2view54.47 18354.61 18254.30 18260.50 19073.82 17257.92 18143.38 19739.43 18232.51 18133.23 18434.05 19147.26 17062.36 19066.21 18584.24 13773.19 184
TAMVS58.86 16560.91 15856.47 17362.38 18577.57 14558.97 17952.98 16938.76 18336.17 16742.26 13847.94 13946.45 17370.23 16370.79 16581.86 16978.82 166
WR-MVS51.02 19154.56 18346.90 19763.84 17769.23 18844.78 20556.38 13938.19 18414.19 21037.38 16436.82 17722.39 20660.14 19466.20 18679.81 18373.95 180
CP-MVSNet50.57 19252.60 19348.21 19458.77 19765.82 19748.17 19656.29 14037.41 18516.59 20537.14 16631.95 19729.21 19756.60 20163.71 19280.22 18075.56 173
PEN-MVS51.04 19052.94 18948.82 19161.45 18866.00 19648.68 19557.20 13236.87 18615.36 20836.98 16832.72 19528.77 20057.63 19866.37 18381.44 17374.00 179
test_method28.15 21134.48 21220.76 2126.76 22421.18 22021.03 21818.41 21836.77 18717.52 20315.67 21631.63 19924.05 20541.03 21426.69 21636.82 21868.38 194
Anonymous2023120652.23 18952.80 19151.56 18664.70 17469.41 18751.01 19258.60 11636.63 18822.44 19921.80 20831.42 20030.52 19566.79 17667.83 17682.10 16775.73 172
WR-MVS_H49.62 19652.63 19246.11 20058.80 19667.58 19246.14 20354.94 15436.51 18913.63 21336.75 17135.67 18522.10 20756.43 20262.76 19681.06 17572.73 185
PS-CasMVS50.17 19352.02 19448.02 19558.60 19865.54 19848.04 19756.19 14236.42 19016.42 20735.68 17731.33 20128.85 19956.42 20363.54 19480.01 18175.18 174
UniMVSNet_ETH3D57.83 17056.46 18059.43 15463.24 18073.22 17467.70 13455.58 14836.17 19136.84 16332.64 18535.14 18751.50 15765.81 17869.81 17181.73 17082.44 152
DTE-MVSNet49.82 19551.92 19547.37 19661.75 18764.38 20145.89 20457.33 13136.11 19212.79 21536.87 16931.93 19825.73 20358.01 19665.22 18880.75 17970.93 193
N_pmnet47.67 20047.00 20448.45 19354.72 20462.78 20446.95 20051.25 17536.01 19326.09 19426.59 20125.93 21335.50 19355.67 20559.01 20176.22 19663.04 205
FPMVS39.11 20836.39 21042.28 20255.97 20245.94 21546.23 20241.57 20435.73 19422.61 19723.46 20419.82 21828.32 20143.57 21040.67 21258.96 21345.54 213
v7n57.04 17556.64 17857.52 16662.85 18274.75 16761.76 16851.80 17435.58 19536.02 16932.33 18733.61 19450.16 16367.73 17470.34 16982.51 16082.12 153
pm-mvs159.21 16359.58 16858.77 15967.97 15377.07 15164.12 15257.20 13234.73 19636.86 16235.34 17840.54 16343.34 18374.32 11973.30 13883.13 15581.77 156
anonymousdsp54.99 17957.24 17652.36 18453.82 20571.75 18151.49 19148.14 18233.74 19733.66 17838.34 15936.13 18147.54 16964.53 18670.60 16779.53 18685.59 127
EU-MVSNet44.84 20347.85 20341.32 20549.26 21056.59 21143.07 20747.64 18633.03 19813.82 21136.78 17030.99 20224.37 20453.80 20755.57 20769.78 20868.21 195
tfpnnormal58.97 16456.48 17961.89 13971.27 13576.21 15666.65 14561.76 9532.90 19936.41 16627.83 19829.14 20650.64 16273.06 13273.05 14384.58 13283.15 147
EG-PatchMatch MVS58.73 16758.03 17459.55 15272.32 12780.49 11963.44 16255.55 14932.49 20038.31 15628.87 19637.22 17442.84 18474.30 12075.70 10784.84 12277.14 170
TransMVSNet (Re)57.83 17056.90 17758.91 15872.26 12874.69 16863.57 16161.42 9732.30 20132.65 18033.97 18335.96 18339.17 19073.84 12572.84 14684.37 13574.69 176
ambc42.30 20750.36 20949.51 21435.47 21332.04 20223.53 19617.36 2128.95 22329.06 19864.88 18356.26 20561.29 21267.12 198
SixPastTwentyTwo49.11 19849.22 20148.99 19058.54 19964.14 20247.18 19947.75 18431.15 20324.42 19541.01 14626.55 21044.04 18154.76 20658.70 20371.99 20668.21 195
MDA-MVSNet-bldmvs44.15 20442.27 20946.34 19838.34 21562.31 20546.28 20155.74 14629.83 20420.98 20127.11 20016.45 22141.98 18541.11 21357.47 20474.72 20161.65 209
test20.0347.23 20248.69 20245.53 20163.28 17964.39 20041.01 20956.93 13629.16 20515.21 20923.90 20230.76 20317.51 21364.63 18565.26 18779.21 18862.71 207
testgi48.51 19950.53 19746.16 19964.78 17267.15 19441.54 20854.81 15829.12 20617.03 20432.07 18831.98 19620.15 21065.26 18167.00 18178.67 19061.10 210
new_pmnet33.19 20935.52 21130.47 20927.55 22045.31 21629.29 21630.92 21529.00 2079.88 21918.77 21117.64 22026.77 20244.07 20945.98 21158.41 21447.87 212
new-patchmatchnet42.21 20542.97 20641.33 20453.05 20659.89 20739.38 21049.61 17728.26 20812.10 21622.17 20721.54 21519.22 21150.96 20856.04 20674.61 20261.92 208
MIMVSNet140.84 20743.46 20537.79 20732.14 21658.92 20939.24 21150.83 17627.00 20911.29 21716.76 21526.53 21117.75 21257.14 20061.12 20075.46 19856.78 211
pmmvs654.20 18453.54 18654.97 17663.22 18172.98 17560.17 17452.32 17326.77 21034.30 17623.29 20536.23 18040.33 18968.77 17168.76 17479.47 18778.00 168
gg-mvs-nofinetune62.34 13966.19 12357.86 16376.15 10888.61 4071.18 11141.24 20825.74 21113.16 21422.91 20663.97 7054.52 15085.06 1685.25 1090.92 391.78 61
Gipumacopyleft24.91 21224.61 21425.26 21131.47 21721.59 21918.06 21937.53 21125.43 21210.03 2184.18 2214.25 22514.85 21543.20 21147.03 21039.62 21726.55 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft19.81 22217.01 22010.02 21923.61 2135.85 22117.21 2138.03 22421.13 20822.60 21721.42 22230.01 216
pmmvs341.86 20642.29 20841.36 20339.80 21452.66 21338.93 21235.85 21423.40 21420.22 20219.30 21020.84 21740.56 18755.98 20458.79 20272.80 20565.03 202
gm-plane-assit54.99 17957.99 17551.49 18769.27 14754.42 21232.32 21542.59 20121.18 21513.71 21223.61 20343.84 14960.21 11887.09 586.55 590.81 489.28 91
PMVScopyleft27.44 1832.08 21029.07 21335.60 20848.33 21224.79 21826.97 21741.34 20620.45 21622.50 19817.11 21418.64 21920.44 20941.99 21238.06 21354.02 21542.44 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LTVRE_ROB47.26 1649.41 19749.91 20048.82 19164.76 17369.79 18649.05 19447.12 18720.36 21716.52 20636.65 17226.96 20950.76 16160.47 19363.16 19564.73 21072.00 187
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PMMVS220.45 21322.31 21518.27 21520.52 22126.73 21714.85 22128.43 21713.69 2180.79 22510.35 2179.10 2223.83 22027.64 21632.87 21441.17 21635.81 215
EMVS14.40 21510.71 21818.70 21428.15 21912.09 2247.06 22336.89 21211.00 2193.56 2244.95 2192.27 22713.91 21610.13 22016.06 21922.63 22118.51 220
E-PMN15.08 21411.65 21719.08 21328.73 21812.31 2236.95 22436.87 21310.71 2203.63 2235.13 2182.22 22813.81 21711.34 21918.50 21824.49 22021.32 219
MVEpermissive15.98 1914.37 21616.36 21612.04 2177.72 22320.24 2215.90 22529.05 2168.28 2213.92 2224.72 2202.42 2269.57 21818.89 21831.46 21516.07 22328.53 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs0.05 2170.08 2190.01 2180.00 2260.01 2260.03 2270.01 2220.05 2220.00 2270.14 2230.01 2290.03 2230.05 2210.05 2200.01 2240.24 222
test1230.05 2170.08 2190.01 2180.00 2260.01 2260.01 2280.00 2230.05 2220.00 2270.16 2220.00 2300.04 2210.02 2220.05 2200.00 2250.26 221
uanet_test0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
sosnet-low-res0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
sosnet0.00 2190.00 2210.00 2200.00 2260.00 2280.00 2290.00 2230.00 2240.00 2270.00 2240.00 2300.00 2240.00 2230.00 2220.00 2250.00 223
TPM-MVS94.34 293.91 589.34 375.49 1882.52 2083.34 1083.53 489.62 790.78 72
RE-MVS-def31.47 183
9.1484.47 7
SR-MVS86.33 4667.54 4480.78 21
our_test_363.32 17871.07 18555.90 185
MTAPA78.32 1179.42 25
MTMP76.04 1576.65 29
Patchmatch-RL test2.17 226
XVS82.43 5586.27 7175.70 6961.07 6272.27 3985.67 101
X-MVStestdata82.43 5586.27 7175.70 6961.07 6272.27 3985.67 101
mPP-MVS86.96 4170.61 49
Patchmtry78.06 14067.53 13743.18 19841.40 139