This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS88.94 190.98 186.56 192.53 695.09 188.55 576.83 794.16 186.57 190.85 687.07 186.18 186.36 785.08 1288.67 2198.21 3
DVP-MVS88.07 290.73 284.97 491.98 995.01 287.86 976.88 693.90 285.15 290.11 886.90 279.46 1186.26 1084.67 1788.50 2898.25 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS87.87 390.57 384.73 589.38 2791.60 1788.24 774.15 1293.55 382.28 394.99 183.21 1085.96 287.67 484.67 1788.32 3198.29 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS76.94 183.08 1987.77 977.60 3590.11 1990.96 1978.48 5472.63 2293.10 465.84 4280.67 2381.55 1874.80 2985.94 1285.39 883.75 13896.77 11
DPE-MVScopyleft87.60 490.44 484.29 792.09 893.44 588.69 475.11 993.06 580.80 594.23 286.70 381.44 584.84 1783.52 2687.64 4697.28 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS86.37 688.41 784.00 991.43 1491.83 1588.34 674.67 1091.19 681.76 491.13 581.94 1780.07 683.38 2782.58 3487.69 4496.78 10
APD-MVScopyleft84.83 1287.00 1182.30 1389.61 2589.21 3486.51 1473.64 1690.98 777.99 1289.89 980.04 2379.18 1382.00 4681.37 4786.88 6595.49 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft85.64 988.43 682.39 1292.65 490.24 2685.83 1674.21 1190.68 875.63 1886.77 1384.15 778.68 1586.33 885.26 987.32 5395.60 18
SMA-MVScopyleft85.24 1188.27 881.72 1591.74 1190.71 2086.71 1273.16 1990.56 974.33 1983.07 1885.88 477.16 1986.28 985.58 687.23 5795.77 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.84.39 1386.58 1681.83 1488.09 3986.47 6485.63 1873.62 1790.13 1079.24 989.67 1082.99 1177.72 1781.22 5280.92 5886.68 6994.66 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj84.33 1483.20 2685.64 294.57 194.55 391.01 179.94 189.15 1179.85 692.37 344.71 14279.75 783.52 2582.72 3188.75 1995.37 23
SF-MVS87.30 588.71 585.64 294.57 194.55 391.01 179.94 189.15 1179.85 692.37 383.29 979.75 783.52 2582.72 3188.75 1995.37 23
SD-MVS84.31 1586.96 1381.22 1688.98 3188.68 3885.65 1773.85 1589.09 1379.63 887.34 1284.84 573.71 3482.66 3481.60 4485.48 10194.51 31
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS85.96 787.58 1084.06 892.58 592.40 1087.62 1077.77 588.44 1475.93 1779.49 2581.97 1681.65 487.04 686.58 488.79 1797.18 7
ACMMP_NAP83.54 1786.37 1780.25 2189.57 2690.10 2885.27 2071.66 2387.38 1573.08 2284.23 1780.16 2175.31 2584.85 1683.64 2386.57 7094.21 37
TSAR-MVS + GP.82.27 2385.98 1877.94 3380.72 7188.25 4481.12 4367.71 4587.10 1673.31 2185.23 1583.68 876.64 2180.43 6081.47 4688.15 3795.66 17
zzz-MVS81.65 2583.10 2779.97 2388.14 3887.62 5383.96 2669.90 3186.92 1777.67 1472.47 3678.74 2574.13 3381.59 5081.15 5386.01 8393.19 47
DPM-MVS85.41 1086.72 1583.89 1091.66 1291.92 1490.49 378.09 486.90 1873.95 2074.52 3482.01 1579.29 1290.24 190.65 189.86 690.78 71
abl_679.06 2989.68 2492.14 1277.70 6269.68 3386.87 1971.88 2574.29 3580.06 2276.56 2288.84 1695.82 13
NCCC84.16 1685.46 2082.64 1192.34 790.57 2386.57 1376.51 886.85 2072.91 2377.20 3178.69 2679.09 1484.64 1984.88 1588.44 2995.41 21
train_agg83.35 1886.93 1479.17 2789.70 2388.41 4185.60 1972.89 2186.31 2166.58 4190.48 782.24 1473.06 4083.10 3082.64 3387.21 6195.30 25
TSAR-MVS + ACMM81.59 2685.84 1976.63 3989.82 2286.53 6386.32 1566.72 5285.96 2265.43 4388.98 1182.29 1367.57 7882.06 4581.33 4883.93 13693.75 42
MCST-MVS85.75 886.99 1284.31 694.07 392.80 788.15 879.10 385.66 2370.72 3076.50 3280.45 2082.17 388.35 287.49 391.63 297.65 4
HFP-MVS82.48 2284.12 2380.56 1990.15 1887.55 5484.28 2369.67 3485.22 2477.95 1384.69 1675.94 3075.04 2781.85 4781.17 5286.30 7592.40 54
OMC-MVS74.03 6275.82 6271.95 6779.56 7480.98 10875.35 7763.21 7584.48 2561.83 5561.54 6166.89 5769.41 6776.60 8874.07 12282.34 15986.15 116
ACMMPR80.62 2982.98 2877.87 3488.41 3387.05 5983.02 2969.18 3783.91 2668.35 3782.89 1973.64 3572.16 4680.78 5881.13 5486.10 8091.43 61
DeepC-MVS_fast75.41 281.69 2482.10 3381.20 1791.04 1687.81 5183.42 2774.04 1383.77 2771.09 2866.88 4772.44 3879.48 1085.08 1484.97 1488.12 3993.78 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + COLMAP73.09 6576.86 5568.71 8774.97 11282.49 9574.51 8661.83 9083.16 2849.31 10382.22 2151.62 12668.94 7178.76 7275.52 10682.67 15384.23 131
SteuartSystems-ACMMP82.51 2185.35 2179.20 2690.25 1789.39 3384.79 2170.95 2582.86 2968.32 3886.44 1477.19 2773.07 3983.63 2483.64 2387.82 4094.34 33
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS74.46 380.30 3081.05 3679.42 2487.42 4188.50 4083.23 2873.27 1882.78 3071.01 2962.86 5769.93 5174.80 2984.30 2084.20 2086.79 6894.77 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA71.37 7770.27 9172.66 6480.79 7081.33 10471.07 11165.75 5882.36 3164.80 4542.46 13256.49 10372.70 4373.00 12870.52 16380.84 17285.76 121
PHI-MVS79.43 3384.06 2474.04 5686.15 4891.57 1880.85 4668.90 4082.22 3251.81 9178.10 2774.28 3370.39 5884.01 2384.00 2186.14 7994.24 35
CSCG82.90 2084.52 2281.02 1891.85 1093.43 687.14 1174.01 1481.96 3376.14 1570.84 3882.49 1269.71 6182.32 4185.18 1187.26 5695.40 22
CP-MVS79.44 3281.51 3577.02 3886.95 4385.96 7082.00 3468.44 4281.82 3467.39 3977.43 2973.68 3471.62 5079.56 6679.58 6585.73 9192.51 53
EPNet79.28 3782.25 3075.83 4588.31 3690.14 2779.43 5268.07 4381.76 3561.26 5877.26 3070.08 5070.06 5982.43 3982.00 3887.82 4092.09 56
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet80.90 2882.93 2978.53 3186.83 4592.26 1181.19 4266.95 4981.60 3669.90 3366.93 4674.80 3276.79 2084.68 1884.77 1689.50 995.50 19
NP-MVS81.60 36
TAPA-MVS67.10 971.45 7573.47 7369.10 8577.04 9580.78 11173.81 9062.10 8680.80 3851.28 9260.91 6363.80 6967.98 7474.59 10772.42 14482.37 15880.97 153
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MP-MVScopyleft80.94 2783.49 2577.96 3288.48 3288.16 4582.82 3269.34 3680.79 3969.67 3482.35 2077.13 2871.60 5180.97 5780.96 5785.87 8794.06 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS79.42 3581.84 3476.60 4088.38 3586.69 6182.97 3165.75 5880.39 4064.94 4481.95 2272.11 4371.41 5280.45 5980.55 6286.18 7790.76 73
canonicalmvs77.65 4379.59 4275.39 4781.52 6489.83 3281.32 4160.74 10380.05 4166.72 4068.43 4265.09 6374.72 3178.87 7082.73 3087.32 5392.16 55
HQP-MVS78.26 4080.91 3775.17 5085.67 5084.33 8283.01 3069.38 3579.88 4255.83 7679.85 2464.90 6570.81 5482.46 3781.78 4086.30 7593.18 48
CDPH-MVS79.39 3682.13 3276.19 4389.22 3088.34 4284.20 2471.00 2479.67 4356.97 7577.77 2872.24 4268.50 7381.33 5182.74 2987.23 5792.84 50
ACMMPcopyleft77.61 4479.59 4275.30 4985.87 4985.58 7181.42 3967.38 4879.38 4462.61 5078.53 2665.79 6268.80 7278.56 7378.50 7585.75 8890.80 70
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
X-MVS78.16 4180.55 3875.38 4887.99 4086.27 6681.05 4468.98 3878.33 4561.07 6075.25 3372.27 3967.52 7980.03 6280.52 6385.66 9891.20 65
MVSTER76.92 4979.92 4073.42 5974.98 11182.97 9078.15 5763.41 7478.02 4664.41 4667.54 4472.80 3771.05 5383.29 2983.73 2288.53 2791.12 66
CLD-MVS77.36 4777.29 5277.45 3782.21 6088.11 4681.92 3568.96 3977.97 4769.62 3562.08 5859.44 8973.57 3681.75 4881.27 5088.41 3090.39 76
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CPTT-MVS75.43 5577.13 5473.44 5881.43 6582.55 9480.96 4564.35 6677.95 4861.39 5769.20 4170.94 4769.38 6873.89 11773.32 13283.14 14892.06 57
MAR-MVS77.19 4878.37 4875.81 4689.87 2190.58 2279.33 5365.56 6077.62 4958.33 6959.24 7067.98 5474.83 2882.37 4083.12 2886.95 6387.67 105
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS76.25 5280.22 3971.63 6978.23 8287.95 5072.75 9260.27 10777.50 5057.73 7171.53 3766.60 5973.16 3880.99 5681.23 5187.63 4795.73 15
MVS_030479.43 3382.20 3176.20 4284.22 5391.79 1681.82 3763.81 7076.83 5161.71 5666.37 4975.52 3176.38 2385.54 1385.03 1389.28 1194.32 34
AdaColmapbinary76.23 5373.55 7179.35 2589.38 2785.00 7579.99 5073.04 2076.60 5271.17 2755.18 7857.99 9877.87 1676.82 8776.82 8884.67 12386.45 113
MSLP-MVS++78.57 3877.33 5180.02 2288.39 3484.79 7684.62 2266.17 5675.96 5378.40 1061.59 6071.47 4573.54 3778.43 7478.88 7188.97 1490.18 79
PVSNet_BlendedMVS76.84 5078.47 4574.95 5182.37 5889.90 3075.45 7565.45 6174.99 5470.66 3163.07 5558.27 9667.60 7684.24 2181.70 4288.18 3597.10 8
PVSNet_Blended76.84 5078.47 4574.95 5182.37 5889.90 3075.45 7565.45 6174.99 5470.66 3163.07 5558.27 9667.60 7684.24 2181.70 4288.18 3597.10 8
3Dnovator+70.16 677.87 4277.29 5278.55 3089.25 2988.32 4380.09 4867.95 4474.89 5671.83 2652.05 9170.68 4876.27 2482.27 4282.04 3685.92 8490.77 72
3Dnovator70.49 578.42 3976.77 5680.35 2091.43 1490.27 2581.84 3670.79 2672.10 5771.95 2450.02 9767.86 5677.47 1882.89 3184.24 1988.61 2489.99 80
CANet_DTU72.84 6776.63 5868.43 9176.81 9786.62 6275.54 7454.71 15772.06 5843.54 12467.11 4558.46 9372.40 4481.13 5580.82 6087.57 4890.21 78
PMMVS70.37 8275.06 6564.90 10971.46 12781.88 9664.10 14855.64 14471.31 5946.69 11070.69 3958.56 9069.53 6479.03 6975.63 10281.96 16388.32 100
MVS_111021_LR74.26 6175.95 6172.27 6579.43 7685.04 7472.71 9365.27 6370.92 6063.58 4869.32 4060.31 8569.43 6677.01 8577.15 8583.22 14591.93 59
baseline72.89 6674.46 6871.07 7175.99 10487.50 5574.57 8160.49 10570.72 6157.60 7260.63 6560.97 8070.79 5575.27 10176.33 9486.94 6489.79 83
LGP-MVS_train72.02 7273.18 7470.67 7582.13 6180.26 11679.58 5163.04 7770.09 6251.98 8965.06 5155.62 10962.49 10275.97 9576.32 9584.80 12088.93 92
EPNet_dtu66.17 10770.13 9261.54 13881.04 6677.39 14368.87 12462.50 8569.78 6333.51 17463.77 5456.22 10437.65 18772.20 13672.18 14785.69 9479.38 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_Test75.22 5676.69 5773.51 5779.30 7788.82 3780.06 4958.74 11169.77 6457.50 7459.78 6961.35 7875.31 2582.07 4483.60 2590.13 591.41 63
EIA-MVS73.48 6476.05 6070.47 7678.12 8387.21 5771.78 9860.63 10469.66 6555.56 8064.86 5260.69 8169.53 6477.35 8378.59 7287.22 5994.01 39
ACMP68.86 772.15 7172.25 7672.03 6680.96 6780.87 11077.93 5964.13 6869.29 6660.79 6364.04 5353.54 12163.91 9273.74 12075.27 10784.45 12888.98 91
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft64.00 1268.54 9066.66 11270.74 7480.28 7374.88 16072.64 9463.70 7269.26 6755.71 7847.24 11155.31 11170.42 5772.05 14070.67 16181.66 16677.19 164
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS70.85 475.73 5476.55 5974.78 5483.67 5488.04 4981.47 3870.62 2969.24 6857.52 7360.59 6669.18 5270.65 5677.11 8477.65 8284.75 12194.01 39
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CS-MVS75.18 5878.59 4471.20 7077.74 8687.69 5273.93 8958.81 11069.17 6955.73 7767.86 4366.89 5772.87 4182.50 3581.29 4988.15 3794.71 29
diffmvs74.32 6075.42 6473.04 6175.60 10887.27 5678.20 5662.96 7868.66 7061.89 5459.79 6859.84 8771.80 4878.30 7779.87 6487.80 4294.23 36
casdiffmvs75.20 5775.69 6374.63 5579.26 7889.07 3578.47 5563.59 7367.05 7163.79 4755.72 7660.32 8473.58 3582.16 4381.78 4089.08 1393.72 43
GG-mvs-BLEND54.54 17777.58 4927.67 2060.03 22090.09 2977.20 660.02 21766.83 720.05 22159.90 6773.33 360.04 21678.40 7579.30 6888.65 2295.20 26
QAPM77.50 4577.43 5077.59 3691.52 1392.00 1381.41 4070.63 2766.22 7358.05 7054.70 7971.79 4474.49 3282.46 3782.04 3689.46 1092.79 52
MVS_111021_HR77.42 4678.40 4776.28 4186.95 4390.68 2177.41 6470.56 3066.21 7462.48 5266.17 5063.98 6772.08 4782.87 3283.15 2788.24 3495.71 16
OpenMVScopyleft67.62 874.92 5973.91 6976.09 4490.10 2090.38 2478.01 5866.35 5466.09 7562.80 4946.33 12064.55 6671.77 4979.92 6380.88 5987.52 4989.20 89
CostFormer72.18 7073.90 7070.18 7879.47 7586.19 6976.94 6748.62 17666.07 7660.40 6554.14 8565.82 6167.98 7475.84 9676.41 9387.67 4592.83 51
GBi-Net69.21 8470.40 8967.81 9469.49 13878.65 12874.54 8260.97 9965.32 7751.06 9347.37 10862.05 7263.43 9477.49 7978.22 7787.37 5083.73 133
test169.21 8470.40 8967.81 9469.49 13878.65 12874.54 8260.97 9965.32 7751.06 9347.37 10862.05 7263.43 9477.49 7978.22 7787.37 5083.73 133
FMVSNet370.41 8171.89 8068.68 8870.89 13379.42 12375.63 7160.97 9965.32 7751.06 9347.37 10862.05 7264.90 8782.49 3682.27 3588.64 2384.34 130
DELS-MVS79.49 3179.84 4179.08 2888.26 3792.49 884.12 2570.63 2765.27 8069.60 3661.29 6266.50 6072.75 4288.07 388.03 289.13 1297.22 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMM66.70 1070.42 7968.49 10172.67 6382.85 5577.76 13977.70 6264.76 6564.61 8160.74 6449.29 9853.97 11865.86 8374.97 10375.57 10484.13 13583.29 138
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D71.38 7674.70 6767.51 9751.61 20388.06 4877.29 6560.95 10263.61 8248.36 10666.60 4860.67 8279.55 973.56 12180.58 6187.30 5589.80 82
baseline271.22 7873.01 7569.13 8475.76 10686.34 6571.23 10662.78 8462.62 8352.85 8757.32 7254.31 11563.27 9779.74 6479.31 6788.89 1591.43 61
RPSCF55.07 17358.06 16851.57 18148.87 20658.95 20353.68 18441.26 20362.42 8445.88 11254.38 8454.26 11653.75 14757.15 19453.53 20466.01 20465.75 196
DI_MVS_plusplus_trai73.94 6374.85 6672.88 6276.57 10086.80 6080.41 4761.47 9462.35 8559.44 6747.91 10368.12 5372.24 4582.84 3381.50 4587.15 6294.42 32
CHOSEN 1792x268872.55 6971.98 7873.22 6086.57 4692.41 975.63 7166.77 5162.08 8652.32 8830.27 18850.74 12966.14 8286.22 1185.41 791.90 196.75 12
EPMVS66.21 10667.49 10864.73 11075.81 10584.20 8468.94 12344.37 19161.55 8748.07 10849.21 10054.87 11362.88 9871.82 14171.40 15488.28 3379.37 159
tpm cat167.47 10067.05 11067.98 9376.63 9881.51 10274.49 8747.65 18161.18 8861.12 5942.51 13153.02 12464.74 8970.11 15971.50 15083.22 14589.49 85
SCA63.90 12466.67 11160.66 14173.75 11471.78 17559.87 17143.66 19261.13 8945.03 11751.64 9259.45 8857.92 13170.96 14870.80 15983.71 13980.92 154
LS3D64.54 12062.14 14467.34 9980.85 6875.79 15469.99 11665.87 5760.77 9044.35 12142.43 13345.95 13965.01 8569.88 16068.69 17077.97 18771.43 185
tpmrst67.15 10368.12 10566.03 10376.21 10280.98 10871.27 10545.05 18760.69 9150.63 9746.95 11654.15 11765.30 8471.80 14271.77 14887.72 4390.48 75
PatchmatchNetpermissive65.43 11367.71 10662.78 12873.49 11882.83 9166.42 14245.40 18660.40 9245.27 11549.22 9957.60 10060.01 11770.61 15171.38 15586.08 8181.91 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
GeoE68.96 8869.32 9468.54 8976.61 9983.12 8971.78 9856.87 13360.21 9354.86 8445.95 12154.79 11464.27 9074.59 10775.54 10586.84 6791.01 68
thisisatest053068.38 9370.98 8665.35 10572.61 12184.42 7968.21 12757.98 11759.77 9450.80 9654.63 8058.48 9257.92 13176.99 8677.47 8384.60 12485.07 124
Effi-MVS+70.42 7971.23 8469.47 8178.04 8485.24 7375.57 7358.88 10959.56 9548.47 10552.73 9054.94 11269.69 6278.34 7677.06 8686.18 7790.73 74
tttt051767.99 9670.61 8864.94 10871.94 12683.96 8567.62 13157.98 11759.30 9649.90 10154.50 8357.98 9957.92 13176.48 8977.47 8384.24 13184.58 127
Fast-Effi-MVS+67.59 9767.56 10767.62 9673.67 11681.14 10771.12 10954.79 15658.88 9750.61 9846.70 11847.05 13669.12 7076.06 9476.44 9286.43 7386.65 111
test-LLR68.23 9471.61 8264.28 11671.37 12881.32 10563.98 15161.03 9758.62 9842.96 12952.74 8861.65 7657.74 13475.64 9878.09 8088.61 2493.21 45
TESTMET0.1,167.38 10171.61 8262.45 13266.05 16181.32 10563.98 15155.36 14958.62 9842.96 12952.74 8861.65 7657.74 13475.64 9878.09 8088.61 2493.21 45
MDTV_nov1_ep1365.21 11467.28 10962.79 12770.91 13281.72 9769.28 12249.50 17558.08 10043.94 12350.50 9656.02 10558.86 12670.72 15073.37 13084.24 13180.52 155
MS-PatchMatch70.34 8369.00 9771.91 6885.20 5285.35 7277.84 6161.77 9258.01 10155.40 8141.26 13958.34 9561.69 10681.70 4978.29 7689.56 880.02 156
FMVSNet558.86 16060.24 15857.25 16452.66 20266.25 19063.77 15452.86 16857.85 10237.92 15436.12 16852.22 12551.37 15370.88 14971.43 15384.92 11166.91 194
dps64.08 12263.22 13265.08 10775.27 11079.65 12066.68 13946.63 18556.94 10355.67 7943.96 12343.63 14564.00 9169.50 16469.82 16582.25 16079.02 160
pmmvs463.14 12962.46 14163.94 11966.03 16276.40 14966.82 13857.60 12456.74 10450.26 10040.81 14337.51 16759.26 12371.75 14371.48 15183.68 14082.53 144
IB-MVS64.48 1169.02 8768.97 9869.09 8681.75 6389.01 3664.50 14664.91 6456.65 10562.59 5147.89 10445.23 14051.99 15069.18 16581.88 3988.77 1892.93 49
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MSDG65.57 11161.57 14870.24 7782.02 6276.47 14874.46 8868.73 4156.52 10650.33 9938.47 15241.10 15262.42 10372.12 13872.94 13983.47 14173.37 178
PVSNet_Blended_VisFu71.76 7373.54 7269.69 8079.01 7987.16 5872.05 9561.80 9156.46 10759.66 6653.88 8762.48 7059.08 12581.17 5378.90 7086.53 7294.74 28
FMVSNet268.06 9568.57 10067.45 9869.49 13878.65 12874.54 8260.23 10856.29 10849.64 10242.13 13557.08 10163.43 9481.15 5480.99 5587.37 5083.73 133
baseline171.47 7472.02 7770.82 7380.56 7284.51 7876.61 6866.93 5056.22 10948.66 10455.40 7760.43 8362.55 10183.35 2880.99 5589.60 783.28 139
PatchMatch-RL62.22 14060.69 15464.01 11768.74 14375.75 15559.27 17260.35 10656.09 11053.80 8647.06 11436.45 17364.80 8868.22 16767.22 17477.10 18974.02 173
CR-MVSNet62.31 13564.75 12359.47 14968.63 14471.29 17867.53 13243.18 19455.83 11141.40 13541.04 14155.85 10657.29 13772.76 13173.27 13478.77 18483.23 140
RPMNet58.63 16362.80 13953.76 17967.59 15271.29 17854.60 18238.13 20655.83 11135.70 16541.58 13853.04 12347.89 16266.10 17267.38 17278.65 18684.40 129
IS_MVSNet67.29 10271.98 7861.82 13676.92 9684.32 8365.90 14458.22 11455.75 11339.22 14654.51 8262.47 7145.99 17178.83 7178.52 7484.70 12289.47 86
test-mter64.06 12369.24 9558.01 15759.07 19077.40 14259.13 17348.11 17955.64 11439.18 14751.56 9358.54 9155.38 14273.52 12276.00 9887.22 5992.05 58
Vis-MVSNet (Re-imp)62.25 13768.74 9954.68 17473.70 11578.74 12756.51 17957.49 12655.22 11526.86 18754.56 8161.35 7831.06 18973.10 12574.90 10982.49 15683.31 137
tmp_tt16.09 21213.07 2178.12 22013.61 2172.08 21655.09 11630.10 18240.26 14622.83 2095.35 21429.91 21025.25 21232.33 214
FC-MVSNet-train68.83 8968.29 10269.47 8178.35 8179.94 11764.72 14566.38 5354.96 11754.51 8556.75 7347.91 13566.91 8075.57 10075.75 10085.92 8487.12 107
DCV-MVSNet69.13 8669.07 9669.21 8377.65 8977.52 14174.68 8057.85 12154.92 11855.34 8355.74 7555.56 11066.35 8175.05 10276.56 9183.35 14288.13 102
USDC59.69 15560.03 16059.28 15264.04 17171.84 17363.15 16055.36 14954.90 11935.02 16848.34 10129.79 20058.16 12870.60 15271.33 15679.99 17773.42 177
HyFIR lowres test68.39 9268.28 10368.52 9080.85 6888.11 4671.08 11058.09 11654.87 12047.80 10927.55 19455.80 10764.97 8679.11 6879.14 6988.31 3293.35 44
UGNet67.57 9971.69 8162.76 12969.88 13682.58 9366.43 14158.64 11254.71 12151.87 9061.74 5962.01 7545.46 17374.78 10674.99 10884.24 13191.02 67
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 280x42062.23 13966.57 11357.17 16559.88 18768.92 18461.20 16742.28 19854.17 12239.57 14347.78 10564.97 6462.68 9973.85 11869.52 16877.43 18886.75 110
Effi-MVS+-dtu64.58 11864.08 12765.16 10673.04 12075.17 15970.68 11556.23 13854.12 12344.71 12047.42 10751.10 12763.82 9368.08 16866.32 17982.47 15786.38 114
PatchT60.46 15163.85 12856.51 16865.95 16375.68 15647.34 19341.39 20153.89 12441.40 13537.84 15750.30 13057.29 13772.76 13173.27 13485.67 9583.23 140
EPP-MVSNet67.58 9871.10 8563.48 12275.71 10783.35 8866.85 13757.83 12253.02 12541.15 13855.82 7467.89 5556.01 14074.40 11072.92 14083.33 14390.30 77
Anonymous2023121168.44 9166.37 11570.86 7277.58 9083.49 8775.15 7861.89 8952.54 12658.50 6828.89 19056.78 10269.29 6974.96 10576.61 8982.73 15191.36 64
Fast-Effi-MVS+-dtu63.05 13064.72 12561.11 13971.21 13176.81 14770.72 11443.13 19652.51 12735.34 16746.55 11946.36 13761.40 10971.57 14571.44 15284.84 11687.79 104
tpm64.85 11666.02 11963.48 12274.52 11378.38 13170.98 11244.99 18951.61 12843.28 12847.66 10653.18 12260.57 11270.58 15371.30 15786.54 7189.45 87
Anonymous20240521166.35 11678.00 8584.41 8074.85 7963.18 7651.00 12931.37 18553.73 12069.67 6376.28 9076.84 8783.21 14790.85 69
ADS-MVSNet58.40 16459.16 16557.52 16265.80 16574.57 16460.26 16840.17 20550.51 13038.01 15340.11 14744.72 14159.36 12264.91 17766.55 17781.53 16772.72 181
IterMVS-LS66.08 10866.56 11465.51 10473.67 11674.88 16070.89 11353.55 16350.42 13148.32 10750.59 9555.66 10861.83 10573.93 11674.42 11884.82 11986.01 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet62.30 13663.51 13060.89 14069.48 14177.83 13764.07 14963.94 6950.03 13231.17 17944.82 12241.12 15151.37 15371.02 14774.81 11185.30 10384.95 125
OPM-MVS72.74 6870.93 8774.85 5385.30 5184.34 8182.82 3269.79 3249.96 13355.39 8254.09 8660.14 8670.04 6080.38 6179.43 6685.74 9088.20 101
UniMVSNet (Re)60.62 15062.93 13757.92 15867.64 15177.90 13661.75 16461.24 9649.83 13429.80 18342.57 12940.62 15743.36 17770.49 15573.27 13483.76 13785.81 120
DU-MVS60.87 14961.82 14659.76 14766.69 15675.87 15264.07 14961.96 8749.31 13531.17 17942.76 12636.95 17051.37 15369.67 16273.20 13783.30 14484.95 125
NR-MVSNet61.08 14862.09 14559.90 14571.96 12575.87 15263.60 15561.96 8749.31 13527.95 18442.76 12633.85 18848.82 16074.35 11274.05 12385.13 10684.45 128
thres100view90067.14 10466.09 11868.38 9277.70 8783.84 8674.52 8566.33 5549.16 13743.40 12643.24 12441.34 14862.59 10079.31 6775.92 9985.73 9189.81 81
tfpn200view965.90 10964.96 12267.00 10077.70 8781.58 10071.71 10162.94 8149.16 13743.40 12643.24 12441.34 14861.42 10876.24 9174.63 11484.84 11688.52 98
Baseline_NR-MVSNet59.47 15660.28 15758.54 15666.69 15673.90 16661.63 16562.90 8249.15 13926.87 18635.18 17437.62 16648.20 16169.67 16273.61 12684.92 11182.82 143
Vis-MVSNetpermissive65.53 11269.83 9360.52 14270.80 13484.59 7766.37 14355.47 14848.40 14040.62 14257.67 7158.43 9445.37 17477.49 7976.24 9684.47 12785.99 119
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft51.17 1555.13 17252.90 18557.73 16173.47 11967.21 18862.13 16255.82 14147.83 14134.39 17031.60 18434.24 18544.90 17563.88 18462.52 19275.67 19263.02 201
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT60.21 15362.97 13557.00 16666.64 15871.84 17367.53 13246.93 18447.56 14236.77 16046.85 11748.21 13352.51 14970.36 15672.40 14571.63 20283.53 136
IterMVS61.87 14363.55 12959.90 14567.29 15472.20 17267.34 13548.56 17747.48 14337.86 15547.07 11348.27 13254.08 14672.12 13873.71 12584.30 13083.99 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UA-Net64.62 11768.23 10460.42 14377.53 9181.38 10360.08 17057.47 12747.01 14444.75 11960.68 6471.32 4641.84 18173.27 12372.25 14680.83 17371.68 183
V4262.86 13362.97 13562.74 13060.84 18478.99 12671.46 10457.13 13146.85 14544.28 12238.87 15040.73 15657.63 13672.60 13474.14 12085.09 10988.63 96
TranMVSNet+NR-MVSNet60.38 15261.30 15059.30 15168.34 14575.57 15863.38 15863.78 7146.74 14627.73 18542.56 13036.84 17147.66 16370.36 15674.59 11584.91 11382.46 145
v863.44 12862.58 14064.43 11368.28 14678.07 13471.82 9754.85 15446.70 14745.20 11639.40 14940.91 15360.54 11372.85 13074.39 11985.92 8485.76 121
MIMVSNet57.78 16759.71 16255.53 17154.79 19877.10 14563.89 15345.02 18846.59 14836.79 15928.36 19240.77 15545.84 17274.97 10376.58 9086.87 6673.60 176
thres20065.58 11064.74 12466.56 10177.52 9281.61 9873.44 9162.95 7946.23 14942.45 13342.76 12641.18 15058.12 12976.24 9175.59 10384.89 11489.58 84
test0.0.03 157.35 16959.89 16154.38 17771.37 12873.45 16852.71 18561.03 9746.11 15026.33 18841.73 13744.08 14329.72 19171.43 14670.90 15885.10 10771.56 184
ACMH+60.36 1361.16 14658.38 16664.42 11477.37 9474.35 16568.45 12562.81 8345.86 15138.48 15035.71 17037.35 16859.81 11867.24 17069.80 16779.58 18078.32 162
FC-MVSNet-test47.24 19654.37 17938.93 20259.49 18958.25 20534.48 20953.36 16445.66 1526.66 21550.62 9442.02 14616.62 20958.39 19061.21 19462.99 20664.40 198
v1063.00 13162.22 14363.90 12067.88 14977.78 13871.59 10254.34 15845.37 15342.76 13238.53 15138.93 16261.05 11174.39 11174.52 11785.75 8886.04 117
GA-MVS64.55 11965.76 12163.12 12469.68 13781.56 10169.59 11958.16 11545.23 15435.58 16647.01 11541.82 14759.41 12179.62 6578.54 7386.32 7486.56 112
thres40065.18 11564.44 12666.04 10276.40 10182.63 9271.52 10364.27 6744.93 15540.69 14141.86 13640.79 15458.12 12977.67 7874.64 11385.26 10488.56 97
test_part166.32 10563.35 13169.77 7977.40 9378.35 13277.85 6056.25 13744.52 15662.15 5333.05 17953.91 11962.38 10472.19 13774.65 11282.59 15486.81 109
v2v48263.68 12662.85 13864.65 11168.01 14780.46 11471.90 9657.60 12444.26 15742.82 13139.80 14838.62 16461.56 10773.06 12674.86 11086.03 8288.90 94
TDRefinement52.70 18251.02 19154.66 17557.41 19565.06 19461.47 16654.94 15144.03 15833.93 17230.13 18927.57 20346.17 17061.86 18662.48 19374.01 19866.06 195
thres600view763.77 12563.14 13364.51 11275.49 10981.61 9869.59 11962.95 7943.96 15938.90 14841.09 14040.24 15955.25 14376.24 9171.54 14984.89 11487.30 106
CDS-MVSNet64.22 12165.89 12062.28 13470.05 13580.59 11269.91 11857.98 11743.53 16046.58 11148.22 10250.76 12846.45 16875.68 9776.08 9782.70 15286.34 115
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FMVSNet163.48 12763.07 13463.97 11865.31 16676.37 15071.77 10057.90 12043.32 16145.66 11335.06 17549.43 13158.57 12777.49 7978.22 7784.59 12581.60 152
v114463.00 13162.39 14263.70 12167.72 15080.27 11571.23 10656.40 13442.51 16240.81 14038.12 15637.73 16560.42 11574.46 10974.55 11685.64 9989.12 90
v14862.00 14261.19 15162.96 12567.46 15379.49 12267.87 12857.66 12342.30 16345.02 11838.20 15538.89 16354.77 14469.83 16172.60 14384.96 11087.01 108
CVMVSNet54.92 17658.16 16751.13 18462.61 17968.44 18555.45 18152.38 16942.28 16421.45 19547.10 11246.10 13837.96 18664.42 18263.81 18676.92 19075.01 170
PM-MVS50.11 18950.38 19349.80 18547.23 20862.08 20150.91 18844.84 19041.90 16536.10 16335.22 17326.05 20746.83 16757.64 19255.42 20372.90 19974.32 172
CMPMVSbinary43.63 1757.67 16855.43 17660.28 14472.01 12479.00 12562.77 16153.23 16541.77 16645.42 11430.74 18739.03 16153.01 14864.81 17964.65 18575.26 19468.03 192
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v119262.25 13761.64 14762.96 12566.88 15579.72 11969.96 11755.77 14241.58 16739.42 14437.05 16135.96 17860.50 11474.30 11474.09 12185.24 10588.76 95
thisisatest051559.37 15760.68 15557.84 16064.39 17075.65 15758.56 17553.86 16141.55 16842.12 13440.40 14539.59 16047.09 16671.69 14473.79 12481.02 17182.08 149
v14419262.05 14161.46 14962.73 13166.59 15979.87 11869.30 12155.88 14041.50 16939.41 14537.23 15936.45 17359.62 11972.69 13373.51 12785.61 10088.93 92
v192192061.66 14461.10 15262.31 13366.32 16079.57 12168.41 12655.49 14741.03 17038.69 14936.64 16735.27 18159.60 12073.23 12473.41 12985.37 10288.51 99
pmmvs-eth3d55.20 17153.95 18056.65 16757.34 19667.77 18657.54 17753.74 16240.93 17141.09 13931.19 18629.10 20249.07 15965.54 17467.28 17381.14 16975.81 166
pmnet_mix0253.92 18053.30 18254.65 17661.89 18171.33 17754.54 18354.17 15940.38 17234.65 16934.76 17630.68 19940.44 18360.97 18763.71 18782.19 16171.24 186
TinyColmap52.66 18350.09 19455.65 17059.72 18864.02 19857.15 17852.96 16740.28 17332.51 17632.42 18120.97 21156.65 13963.95 18365.15 18474.91 19563.87 199
pmmvs559.72 15460.24 15859.11 15362.77 17877.33 14463.17 15954.00 16040.21 17437.23 15640.41 14435.99 17751.75 15172.55 13572.74 14285.72 9382.45 146
ACMH59.42 1461.59 14559.22 16464.36 11578.92 8078.26 13367.65 13067.48 4739.81 17530.98 18138.25 15434.59 18461.37 11070.55 15473.47 12879.74 17979.59 157
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v124061.09 14760.55 15661.72 13765.92 16479.28 12467.16 13654.91 15339.79 17638.10 15236.08 16934.64 18359.15 12472.86 12973.36 13185.10 10787.84 103
MVS-HIRNet53.86 18153.02 18354.85 17360.30 18672.36 17144.63 20142.20 19939.45 17743.47 12521.66 20434.00 18755.47 14165.42 17567.16 17583.02 15071.08 187
MDTV_nov1_ep13_2view54.47 17854.61 17754.30 17860.50 18573.82 16757.92 17643.38 19339.43 17832.51 17633.23 17834.05 18647.26 16562.36 18566.21 18084.24 13173.19 179
TAMVS58.86 16060.91 15356.47 16962.38 18077.57 14058.97 17452.98 16638.76 17936.17 16242.26 13447.94 13446.45 16870.23 15870.79 16081.86 16478.82 161
WR-MVS51.02 18654.56 17846.90 19363.84 17269.23 18344.78 20056.38 13538.19 18014.19 20537.38 15836.82 17222.39 20160.14 18966.20 18179.81 17873.95 175
CP-MVSNet50.57 18752.60 18848.21 19058.77 19265.82 19248.17 19156.29 13637.41 18116.59 20037.14 16031.95 19229.21 19256.60 19663.71 18780.22 17575.56 168
PEN-MVS51.04 18552.94 18448.82 18761.45 18366.00 19148.68 19057.20 12936.87 18215.36 20336.98 16232.72 19028.77 19557.63 19366.37 17881.44 16874.00 174
test_method28.15 20634.48 20720.76 2086.76 21921.18 21521.03 21318.41 21436.77 18317.52 19815.67 21131.63 19424.05 20041.03 20926.69 21136.82 21368.38 189
Anonymous2023120652.23 18452.80 18651.56 18264.70 16969.41 18251.01 18758.60 11336.63 18422.44 19421.80 20331.42 19530.52 19066.79 17167.83 17182.10 16275.73 167
WR-MVS_H49.62 19152.63 18746.11 19658.80 19167.58 18746.14 19854.94 15136.51 18513.63 20836.75 16535.67 18022.10 20256.43 19762.76 19181.06 17072.73 180
PS-CasMVS50.17 18852.02 18948.02 19158.60 19365.54 19348.04 19256.19 13936.42 18616.42 20235.68 17131.33 19628.85 19456.42 19863.54 18980.01 17675.18 169
UniMVSNet_ETH3D57.83 16556.46 17559.43 15063.24 17573.22 16967.70 12955.58 14536.17 18736.84 15832.64 18035.14 18251.50 15265.81 17369.81 16681.73 16582.44 147
DTE-MVSNet49.82 19051.92 19047.37 19261.75 18264.38 19645.89 19957.33 12836.11 18812.79 21036.87 16331.93 19325.73 19858.01 19165.22 18380.75 17470.93 188
N_pmnet47.67 19547.00 19948.45 18954.72 19962.78 19946.95 19551.25 17236.01 18926.09 18926.59 19625.93 20835.50 18855.67 20059.01 19676.22 19163.04 200
FPMVS39.11 20336.39 20542.28 19855.97 19745.94 21046.23 19741.57 20035.73 19022.61 19223.46 19919.82 21328.32 19643.57 20540.67 20758.96 20845.54 208
v7n57.04 17056.64 17357.52 16262.85 17774.75 16261.76 16351.80 17135.58 19136.02 16432.33 18233.61 18950.16 15867.73 16970.34 16482.51 15582.12 148
pm-mvs159.21 15859.58 16358.77 15567.97 14877.07 14664.12 14757.20 12934.73 19236.86 15735.34 17240.54 15843.34 17874.32 11373.30 13383.13 14981.77 151
anonymousdsp54.99 17457.24 17152.36 18053.82 20071.75 17651.49 18648.14 17833.74 19333.66 17338.34 15336.13 17647.54 16464.53 18170.60 16279.53 18185.59 123
EU-MVSNet44.84 19847.85 19841.32 20149.26 20556.59 20643.07 20247.64 18233.03 19413.82 20636.78 16430.99 19724.37 19953.80 20255.57 20269.78 20368.21 190
tfpnnormal58.97 15956.48 17461.89 13571.27 13076.21 15166.65 14061.76 9332.90 19536.41 16127.83 19329.14 20150.64 15773.06 12673.05 13884.58 12683.15 142
EG-PatchMatch MVS58.73 16258.03 16959.55 14872.32 12280.49 11363.44 15755.55 14632.49 19638.31 15128.87 19137.22 16942.84 17974.30 11475.70 10184.84 11677.14 165
TransMVSNet (Re)57.83 16556.90 17258.91 15472.26 12374.69 16363.57 15661.42 9532.30 19732.65 17533.97 17735.96 17839.17 18573.84 11972.84 14184.37 12974.69 171
ambc42.30 20250.36 20449.51 20935.47 20832.04 19823.53 19117.36 2078.95 21829.06 19364.88 17856.26 20061.29 20767.12 193
SixPastTwentyTwo49.11 19349.22 19648.99 18658.54 19464.14 19747.18 19447.75 18031.15 19924.42 19041.01 14226.55 20544.04 17654.76 20158.70 19871.99 20168.21 190
MDA-MVSNet-bldmvs44.15 19942.27 20446.34 19438.34 21062.31 20046.28 19655.74 14329.83 20020.98 19627.11 19516.45 21641.98 18041.11 20857.47 19974.72 19661.65 204
test20.0347.23 19748.69 19745.53 19763.28 17464.39 19541.01 20456.93 13229.16 20115.21 20423.90 19730.76 19817.51 20864.63 18065.26 18279.21 18362.71 202
testgi48.51 19450.53 19246.16 19564.78 16767.15 18941.54 20354.81 15529.12 20217.03 19932.07 18331.98 19120.15 20565.26 17667.00 17678.67 18561.10 205
new_pmnet33.19 20435.52 20630.47 20527.55 21545.31 21129.29 21130.92 21129.00 2039.88 21418.77 20617.64 21526.77 19744.07 20445.98 20658.41 20947.87 207
new-patchmatchnet42.21 20042.97 20141.33 20053.05 20159.89 20239.38 20549.61 17428.26 20412.10 21122.17 20221.54 21019.22 20650.96 20356.04 20174.61 19761.92 203
MIMVSNet140.84 20243.46 20037.79 20332.14 21158.92 20439.24 20650.83 17327.00 20511.29 21216.76 21026.53 20617.75 20757.14 19561.12 19575.46 19356.78 206
pmmvs654.20 17953.54 18154.97 17263.22 17672.98 17060.17 16952.32 17026.77 20634.30 17123.29 20036.23 17540.33 18468.77 16668.76 16979.47 18278.00 163
gg-mvs-nofinetune62.34 13466.19 11757.86 15976.15 10388.61 3971.18 10841.24 20425.74 20713.16 20922.91 20163.97 6854.52 14585.06 1585.25 1090.92 391.78 60
Gipumacopyleft24.91 20724.61 20925.26 20731.47 21221.59 21418.06 21437.53 20725.43 20810.03 2134.18 2164.25 22014.85 21043.20 20647.03 20539.62 21226.55 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft19.81 21717.01 21510.02 21523.61 2095.85 21617.21 2088.03 21921.13 20322.60 21221.42 21730.01 211
pmmvs341.86 20142.29 20341.36 19939.80 20952.66 20838.93 20735.85 21023.40 21020.22 19719.30 20520.84 21240.56 18255.98 19958.79 19772.80 20065.03 197
gm-plane-assit54.99 17457.99 17051.49 18369.27 14254.42 20732.32 21042.59 19721.18 21113.71 20723.61 19843.84 14460.21 11687.09 586.55 590.81 489.28 88
PMVScopyleft27.44 1832.08 20529.07 20835.60 20448.33 20724.79 21326.97 21241.34 20220.45 21222.50 19317.11 20918.64 21420.44 20441.99 20738.06 20854.02 21042.44 209
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LTVRE_ROB47.26 1649.41 19249.91 19548.82 18764.76 16869.79 18149.05 18947.12 18320.36 21316.52 20136.65 16626.96 20450.76 15660.47 18863.16 19064.73 20572.00 182
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PMMVS220.45 20822.31 21018.27 21120.52 21626.73 21214.85 21628.43 21313.69 2140.79 22010.35 2129.10 2173.83 21527.64 21132.87 20941.17 21135.81 210
EMVS14.40 21010.71 21318.70 21028.15 21412.09 2197.06 21836.89 20811.00 2153.56 2194.95 2142.27 22213.91 21110.13 21516.06 21422.63 21618.51 215
E-PMN15.08 20911.65 21219.08 20928.73 21312.31 2186.95 21936.87 20910.71 2163.63 2185.13 2132.22 22313.81 21211.34 21418.50 21324.49 21521.32 214
MVEpermissive15.98 1914.37 21116.36 21112.04 2137.72 21820.24 2165.90 22029.05 2128.28 2173.92 2174.72 2152.42 2219.57 21318.89 21331.46 21016.07 21828.53 212
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs0.05 2120.08 2140.01 2140.00 2210.01 2210.03 2220.01 2180.05 2180.00 2220.14 2180.01 2240.03 2180.05 2160.05 2150.01 2190.24 217
test1230.05 2120.08 2140.01 2140.00 2210.01 2210.01 2230.00 2190.05 2180.00 2220.16 2170.00 2250.04 2160.02 2170.05 2150.00 2200.26 216
uanet_test0.00 2140.00 2160.00 2160.00 2210.00 2230.00 2240.00 2190.00 2200.00 2220.00 2190.00 2250.00 2190.00 2180.00 2170.00 2200.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2210.00 2230.00 2240.00 2190.00 2200.00 2220.00 2190.00 2250.00 2190.00 2180.00 2170.00 2200.00 218
sosnet0.00 2140.00 2160.00 2160.00 2210.00 2230.00 2240.00 2190.00 2200.00 2220.00 2190.00 2250.00 2190.00 2180.00 2170.00 2200.00 218
RE-MVS-def31.47 178
9.1484.47 6
SR-MVS86.33 4767.54 4680.78 19
our_test_363.32 17371.07 18055.90 180
MTAPA78.32 1179.42 24
MTMP76.04 1676.65 29
Patchmatch-RL test2.17 221
XVS82.43 5686.27 6675.70 6961.07 6072.27 3985.67 95
X-MVStestdata82.43 5686.27 6675.70 6961.07 6072.27 3985.67 95
mPP-MVS86.96 4270.61 49
Patchmtry78.06 13567.53 13243.18 19441.40 135