SED-MVS | | | 95.53 1 | 95.79 1 | 95.23 1 | 97.60 10 | 98.92 1 | 95.99 5 | 92.05 7 | 97.14 1 | 94.19 1 | 94.71 6 | 93.25 2 | 95.08 1 | 94.32 11 | 92.59 15 | 96.49 18 | 99.58 3 |
|
DPE-MVS |  | | 95.10 2 | 95.53 2 | 94.60 5 | 97.77 8 | 98.64 5 | 96.60 4 | 92.45 5 | 96.34 6 | 91.41 6 | 96.70 2 | 92.26 6 | 93.56 6 | 93.68 18 | 91.73 30 | 95.79 39 | 99.37 7 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS |  | | 95.06 3 | 95.37 4 | 94.70 3 | 97.59 11 | 98.89 2 | 95.37 12 | 92.04 8 | 96.85 3 | 94.00 2 | 92.81 14 | 93.02 3 | 92.93 7 | 94.22 14 | 92.15 21 | 96.30 25 | 99.61 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 95.03 4 | 95.03 5 | 95.03 2 | 97.91 6 | 98.84 3 | 95.80 6 | 91.88 10 | 96.65 5 | 93.15 3 | 93.79 8 | 90.11 12 | 95.03 2 | 94.20 16 | 92.39 16 | 96.44 22 | 99.22 10 |
|
MSP-MVS | | | 95.00 5 | 95.47 3 | 94.45 6 | 96.78 19 | 98.11 10 | 95.72 8 | 90.91 14 | 96.68 4 | 91.57 5 | 96.98 1 | 89.47 14 | 94.76 3 | 95.24 3 | 92.15 21 | 96.98 7 | 99.64 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 94.53 6 | 94.85 7 | 94.15 8 | 98.03 4 | 98.59 6 | 95.56 9 | 92.91 2 | 94.86 13 | 88.46 14 | 91.32 21 | 90.83 10 | 94.03 5 | 95.20 4 | 94.16 5 | 95.89 34 | 99.01 16 |
|
SF-MVS | | | 94.40 7 | 94.15 12 | 94.70 3 | 98.25 3 | 98.24 8 | 96.86 3 | 93.46 1 | 94.87 12 | 90.26 9 | 95.96 3 | 88.42 17 | 92.76 10 | 92.29 31 | 90.84 41 | 96.62 13 | 98.44 26 |
|
APDe-MVS | | | 94.31 8 | 94.30 10 | 94.33 7 | 97.57 12 | 98.06 12 | 95.79 7 | 91.98 9 | 95.50 9 | 92.19 4 | 95.25 4 | 87.97 20 | 92.93 7 | 93.01 24 | 91.02 39 | 95.52 41 | 99.29 8 |
|
MCST-MVS | | | 94.10 9 | 94.77 8 | 93.31 10 | 98.31 2 | 98.34 7 | 95.43 10 | 92.54 4 | 94.41 16 | 83.05 31 | 91.38 19 | 90.97 9 | 92.24 14 | 95.05 6 | 94.02 6 | 98.31 1 | 99.20 11 |
|
HPM-MVS++ |  | | 94.04 10 | 94.96 6 | 92.96 12 | 97.93 5 | 97.71 18 | 94.65 15 | 91.01 13 | 95.91 7 | 87.43 16 | 93.52 11 | 92.63 5 | 92.29 13 | 94.22 14 | 92.34 18 | 94.47 63 | 98.37 27 |
|
NCCC | | | 93.59 11 | 94.00 14 | 93.10 11 | 97.90 7 | 97.93 14 | 95.40 11 | 92.39 6 | 94.47 15 | 84.94 21 | 91.21 22 | 89.32 15 | 92.53 11 | 93.90 17 | 92.98 12 | 95.44 43 | 98.22 30 |
|
SMA-MVS |  | | 93.47 12 | 94.29 11 | 92.52 14 | 97.72 9 | 97.77 17 | 94.46 18 | 90.19 17 | 94.96 11 | 87.15 17 | 90.15 26 | 90.99 8 | 91.49 17 | 94.31 12 | 93.33 10 | 94.10 69 | 98.53 24 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APD-MVS |  | | 93.47 12 | 93.44 17 | 93.50 9 | 97.06 15 | 97.09 27 | 95.27 13 | 91.47 11 | 95.71 8 | 89.57 11 | 93.66 9 | 86.28 26 | 92.81 9 | 92.06 34 | 90.70 42 | 94.83 60 | 98.60 21 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SD-MVS | | | 93.36 14 | 94.33 9 | 92.22 16 | 94.68 43 | 97.89 16 | 94.56 16 | 90.89 15 | 94.80 14 | 90.04 10 | 93.53 10 | 90.14 11 | 89.78 23 | 92.74 27 | 92.17 19 | 93.35 109 | 99.07 14 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 93.07 15 | 93.53 16 | 92.53 13 | 94.23 46 | 97.54 21 | 94.75 14 | 89.87 18 | 95.26 10 | 89.20 13 | 93.16 12 | 88.19 19 | 92.15 15 | 91.79 39 | 89.65 58 | 94.99 56 | 99.16 12 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DPM-MVS | | | 92.86 16 | 93.19 19 | 92.47 15 | 95.78 35 | 97.40 22 | 97.39 1 | 92.56 3 | 92.88 24 | 81.84 38 | 81.31 39 | 92.95 4 | 91.21 18 | 96.54 1 | 97.33 1 | 96.01 32 | 93.94 110 |
|
SteuartSystems-ACMMP | | | 92.31 17 | 93.31 18 | 91.15 22 | 96.88 17 | 97.36 23 | 93.95 22 | 89.44 20 | 92.62 25 | 83.20 28 | 94.34 7 | 85.55 28 | 88.95 30 | 93.07 23 | 91.90 26 | 94.51 62 | 98.30 28 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP_NAP | | | 92.16 18 | 92.91 22 | 91.28 21 | 96.95 16 | 97.36 23 | 93.66 23 | 89.23 22 | 93.33 19 | 83.71 26 | 90.53 23 | 86.84 23 | 90.39 20 | 93.30 22 | 91.56 32 | 93.74 81 | 97.43 46 |
|
HFP-MVS | | | 92.02 19 | 92.13 24 | 91.89 19 | 97.16 14 | 96.46 39 | 93.57 24 | 87.60 25 | 93.79 18 | 88.17 15 | 93.15 13 | 83.94 38 | 91.19 19 | 90.81 49 | 89.83 53 | 93.66 85 | 96.94 61 |
|
train_agg | | | 91.99 20 | 93.71 15 | 89.98 27 | 96.42 27 | 97.03 29 | 94.31 20 | 89.05 23 | 93.33 19 | 77.75 46 | 95.06 5 | 88.27 18 | 88.38 37 | 92.02 36 | 91.41 34 | 94.00 73 | 98.84 19 |
|
DeepC-MVS_fast | | 86.59 2 | 91.69 21 | 91.39 27 | 92.05 18 | 97.43 13 | 96.92 32 | 94.05 21 | 90.23 16 | 93.31 22 | 83.19 29 | 77.91 45 | 84.23 34 | 92.42 12 | 94.62 9 | 94.83 3 | 95.00 55 | 97.88 36 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 91.29 22 | 93.11 21 | 89.18 32 | 87.81 89 | 96.21 45 | 92.51 33 | 83.83 44 | 94.24 17 | 83.77 25 | 91.87 18 | 89.62 13 | 90.07 21 | 90.40 54 | 90.31 46 | 97.09 6 | 99.10 13 |
|
ACMMPR | | | 91.15 23 | 91.44 26 | 90.81 23 | 96.61 21 | 96.25 43 | 93.09 25 | 87.08 28 | 93.32 21 | 84.78 22 | 92.08 17 | 82.10 44 | 89.71 24 | 90.24 55 | 89.82 54 | 93.61 90 | 96.30 74 |
|
DeepPCF-MVS | | 86.71 1 | 91.00 24 | 94.05 13 | 87.43 43 | 95.58 38 | 98.17 9 | 86.22 74 | 88.59 24 | 97.01 2 | 76.77 54 | 85.11 35 | 88.90 16 | 87.29 44 | 95.02 7 | 94.69 4 | 90.15 180 | 99.48 6 |
|
TSAR-MVS + ACMM | | | 90.98 25 | 93.18 20 | 88.42 37 | 95.69 36 | 96.73 34 | 94.52 17 | 86.97 31 | 92.99 23 | 76.32 55 | 92.31 16 | 86.64 24 | 84.40 70 | 92.97 25 | 92.02 23 | 92.62 132 | 98.59 22 |
|
MP-MVS |  | | 90.81 26 | 91.45 25 | 90.06 26 | 96.59 22 | 96.33 42 | 92.46 34 | 87.19 27 | 90.27 39 | 82.54 34 | 91.38 19 | 84.88 31 | 88.27 38 | 90.58 52 | 89.30 63 | 93.30 111 | 97.44 44 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CP-MVS | | | 90.57 27 | 90.68 29 | 90.44 24 | 96.13 29 | 95.90 51 | 92.77 30 | 86.86 32 | 92.12 29 | 84.19 23 | 89.18 29 | 82.37 42 | 89.43 27 | 89.65 67 | 88.43 74 | 93.27 112 | 97.13 54 |
|
MSLP-MVS++ | | | 90.33 28 | 88.82 39 | 92.10 17 | 96.52 25 | 95.93 47 | 94.35 19 | 86.26 33 | 88.37 54 | 89.24 12 | 75.94 51 | 82.60 41 | 89.71 24 | 89.45 70 | 92.17 19 | 96.51 17 | 97.24 51 |
|
CANet | | | 89.98 29 | 90.42 33 | 89.47 31 | 94.13 47 | 98.05 13 | 91.76 39 | 83.27 47 | 90.87 36 | 81.90 37 | 72.32 59 | 84.82 32 | 88.42 35 | 94.52 10 | 93.78 8 | 97.34 4 | 98.58 23 |
|
PGM-MVS | | | 89.97 30 | 90.64 31 | 89.18 32 | 96.53 24 | 95.90 51 | 93.06 26 | 82.48 55 | 90.04 41 | 80.37 40 | 92.75 15 | 80.96 49 | 88.93 31 | 89.88 63 | 89.08 67 | 93.69 84 | 95.86 78 |
|
PHI-MVS | | | 89.88 31 | 92.75 23 | 86.52 53 | 94.97 40 | 97.57 20 | 89.99 50 | 84.56 40 | 92.52 27 | 69.72 88 | 90.35 25 | 87.11 22 | 84.89 62 | 91.82 38 | 92.37 17 | 95.02 54 | 97.51 42 |
|
CSCG | | | 89.81 32 | 89.69 34 | 89.96 28 | 96.55 23 | 97.90 15 | 92.89 28 | 87.06 29 | 88.74 51 | 86.17 18 | 78.24 44 | 86.53 25 | 84.75 65 | 87.82 91 | 90.59 43 | 92.32 137 | 98.01 33 |
|
X-MVS | | | 89.73 33 | 90.65 30 | 88.66 35 | 96.44 26 | 95.93 47 | 92.26 36 | 86.98 30 | 90.73 37 | 76.32 55 | 89.56 28 | 82.05 45 | 86.51 50 | 89.98 61 | 89.60 59 | 93.43 104 | 96.72 69 |
|
EPNet | | | 89.30 34 | 90.89 28 | 87.44 42 | 95.67 37 | 96.81 33 | 91.13 42 | 83.12 49 | 91.14 33 | 76.31 59 | 87.60 31 | 80.40 53 | 84.45 68 | 92.13 33 | 91.12 38 | 93.96 74 | 97.01 58 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepC-MVS | | 84.14 3 | 88.80 35 | 88.03 45 | 89.71 30 | 94.83 41 | 96.56 35 | 92.57 32 | 89.38 21 | 89.25 47 | 79.59 42 | 70.02 68 | 77.05 65 | 88.24 39 | 92.44 29 | 92.79 13 | 93.65 88 | 98.10 32 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CDPH-MVS | | | 88.76 36 | 90.43 32 | 86.81 49 | 96.04 31 | 96.53 38 | 92.95 27 | 85.95 35 | 90.36 38 | 67.93 94 | 85.80 34 | 80.69 50 | 83.82 73 | 90.81 49 | 91.85 29 | 94.18 67 | 96.99 59 |
|
3Dnovator+ | | 81.14 5 | 88.59 37 | 87.49 48 | 89.88 29 | 95.83 34 | 96.45 41 | 91.94 38 | 82.41 56 | 87.09 59 | 85.94 20 | 62.80 98 | 85.37 29 | 89.46 26 | 91.51 41 | 91.89 28 | 93.72 82 | 97.30 49 |
|
ACMMP |  | | 88.48 38 | 88.71 40 | 88.22 39 | 94.61 44 | 95.53 57 | 90.64 46 | 85.60 37 | 90.97 34 | 78.62 44 | 89.88 27 | 74.20 79 | 86.29 51 | 88.16 88 | 86.37 94 | 93.57 91 | 95.86 78 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
AdaColmap |  | | 88.46 39 | 85.75 62 | 91.62 20 | 96.25 28 | 95.35 61 | 90.71 44 | 91.08 12 | 90.22 40 | 86.17 18 | 74.33 55 | 73.67 82 | 92.00 16 | 86.31 107 | 85.82 103 | 93.52 94 | 94.53 97 |
|
MVS_0304 | | | 88.43 40 | 89.46 36 | 87.21 44 | 91.85 59 | 97.60 19 | 92.62 31 | 81.10 62 | 87.16 58 | 73.80 66 | 72.19 61 | 83.36 40 | 87.03 45 | 94.64 8 | 93.67 9 | 96.88 9 | 97.64 41 |
|
3Dnovator | | 80.58 8 | 88.20 41 | 86.53 54 | 90.15 25 | 96.86 18 | 96.46 39 | 91.97 37 | 83.06 50 | 85.16 64 | 83.66 27 | 62.28 101 | 82.15 43 | 88.98 29 | 90.99 46 | 92.65 14 | 96.38 24 | 96.03 75 |
|
CPTT-MVS | | | 88.17 42 | 87.84 46 | 88.55 36 | 93.33 49 | 93.75 82 | 92.33 35 | 84.75 39 | 89.87 43 | 81.72 39 | 83.93 36 | 81.12 48 | 88.45 34 | 85.42 116 | 84.07 122 | 90.72 172 | 96.72 69 |
|
MVS_111021_HR | | | 87.82 43 | 88.84 38 | 86.62 51 | 94.42 45 | 97.36 23 | 88.21 59 | 83.26 48 | 83.42 67 | 72.52 76 | 82.63 37 | 76.93 66 | 84.95 61 | 91.93 37 | 91.15 37 | 96.39 23 | 98.49 25 |
|
DELS-MVS | | | 87.75 44 | 86.92 52 | 88.71 34 | 94.69 42 | 97.34 26 | 92.78 29 | 84.50 41 | 77.87 91 | 81.94 36 | 67.17 76 | 75.49 74 | 82.84 79 | 95.38 2 | 95.93 2 | 95.55 40 | 99.27 9 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVSTER | | | 87.68 45 | 89.12 37 | 86.01 55 | 88.11 87 | 90.05 119 | 89.28 53 | 77.05 87 | 91.37 30 | 79.97 41 | 76.70 49 | 85.25 30 | 84.89 62 | 93.53 19 | 91.41 34 | 96.73 11 | 95.55 85 |
|
MVS_111021_LR | | | 87.58 46 | 88.67 41 | 86.31 54 | 92.58 53 | 95.89 53 | 86.20 75 | 82.49 54 | 89.08 49 | 77.47 50 | 86.20 33 | 74.22 78 | 85.49 56 | 90.03 60 | 88.52 72 | 93.66 85 | 96.74 67 |
|
QAPM | | | 87.06 47 | 86.46 55 | 87.75 40 | 96.63 20 | 97.09 27 | 91.71 40 | 82.62 53 | 80.58 80 | 71.28 81 | 66.04 83 | 84.24 33 | 87.01 46 | 89.93 62 | 89.91 52 | 97.26 5 | 97.44 44 |
|
PVSNet_BlendedMVS | | | 86.98 48 | 87.05 50 | 86.90 46 | 93.03 50 | 96.98 30 | 86.57 71 | 81.82 58 | 89.78 44 | 82.78 32 | 71.54 62 | 66.07 113 | 80.73 91 | 93.46 20 | 91.97 24 | 96.45 20 | 99.53 4 |
|
PVSNet_Blended | | | 86.98 48 | 87.05 50 | 86.90 46 | 93.03 50 | 96.98 30 | 86.57 71 | 81.82 58 | 89.78 44 | 82.78 32 | 71.54 62 | 66.07 113 | 80.73 91 | 93.46 20 | 91.97 24 | 96.45 20 | 99.53 4 |
|
ETV-MVS | | | 86.94 50 | 89.49 35 | 83.95 69 | 87.28 96 | 95.61 56 | 83.58 103 | 76.37 94 | 92.59 26 | 73.20 68 | 80.35 40 | 76.42 69 | 87.38 43 | 92.20 32 | 90.45 45 | 95.90 33 | 98.83 20 |
|
CS-MVS-test | | | 86.72 51 | 88.35 42 | 84.83 63 | 91.78 60 | 96.03 46 | 81.71 114 | 76.71 88 | 91.19 32 | 77.12 53 | 77.64 47 | 75.63 73 | 87.59 42 | 90.82 48 | 89.11 65 | 94.06 71 | 97.99 35 |
|
CS-MVS | | | 86.70 52 | 87.61 47 | 85.65 56 | 91.33 64 | 95.64 55 | 84.73 91 | 76.64 90 | 88.68 52 | 77.78 45 | 74.87 52 | 72.86 86 | 89.09 28 | 92.89 26 | 90.18 49 | 94.31 66 | 98.16 31 |
|
EC-MVSNet | | | 86.42 53 | 88.31 43 | 84.20 67 | 86.61 103 | 94.08 76 | 86.20 75 | 72.18 125 | 89.06 50 | 76.02 60 | 74.48 54 | 80.47 52 | 88.90 32 | 92.03 35 | 90.07 50 | 95.30 44 | 98.00 34 |
|
OMC-MVS | | | 86.38 54 | 86.21 59 | 86.57 52 | 92.30 55 | 94.35 75 | 87.60 63 | 83.51 46 | 92.32 28 | 77.37 51 | 72.27 60 | 77.83 58 | 86.59 49 | 87.62 93 | 85.95 100 | 92.08 141 | 93.11 124 |
|
HQP-MVS | | | 86.17 55 | 87.35 49 | 84.80 64 | 91.41 63 | 92.37 99 | 91.05 43 | 84.35 43 | 88.52 53 | 64.21 101 | 87.05 32 | 68.91 102 | 84.80 64 | 89.12 73 | 88.16 78 | 92.96 123 | 97.31 48 |
|
canonicalmvs | | | 85.93 56 | 86.26 58 | 85.54 57 | 88.94 77 | 95.44 58 | 89.56 51 | 76.01 96 | 87.83 55 | 77.70 47 | 76.43 50 | 68.66 104 | 87.80 41 | 87.02 96 | 91.51 33 | 93.25 113 | 96.95 60 |
|
MAR-MVS | | | 85.65 57 | 86.30 57 | 84.88 62 | 95.51 39 | 95.89 53 | 86.50 73 | 76.71 88 | 89.23 48 | 68.59 91 | 70.93 66 | 74.49 76 | 88.55 33 | 89.40 71 | 90.30 47 | 93.42 105 | 93.88 115 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 82.38 4 | 85.52 58 | 84.41 67 | 86.81 49 | 91.51 62 | 96.23 44 | 90.27 47 | 89.81 19 | 77.87 91 | 70.67 84 | 69.20 70 | 77.86 56 | 85.55 55 | 85.92 112 | 86.38 93 | 93.03 120 | 97.43 46 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CLD-MVS | | | 85.43 59 | 84.24 70 | 86.83 48 | 87.69 92 | 93.16 90 | 90.01 49 | 82.72 52 | 87.17 57 | 79.28 43 | 71.43 65 | 65.81 116 | 86.02 52 | 87.33 95 | 86.96 87 | 95.25 50 | 97.83 38 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OpenMVS |  | 77.91 11 | 85.09 60 | 83.42 74 | 87.03 45 | 96.12 30 | 96.55 37 | 89.36 52 | 81.59 60 | 79.19 87 | 75.20 62 | 55.84 129 | 79.04 55 | 84.45 68 | 88.47 82 | 89.35 62 | 95.48 42 | 95.48 86 |
|
TSAR-MVS + COLMAP | | | 84.93 61 | 85.79 61 | 83.92 70 | 90.90 66 | 93.57 86 | 89.25 54 | 82.00 57 | 91.29 31 | 61.66 110 | 88.25 30 | 59.46 136 | 86.71 48 | 89.79 64 | 87.09 84 | 93.01 121 | 91.09 146 |
|
TAPA-MVS | | 80.99 7 | 84.83 62 | 84.42 66 | 85.31 59 | 91.89 58 | 93.73 84 | 88.53 58 | 82.80 51 | 89.99 42 | 69.78 87 | 71.53 64 | 75.03 75 | 85.47 57 | 86.26 108 | 84.54 117 | 93.39 107 | 89.90 156 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PLC |  | 81.02 6 | 84.81 63 | 81.81 93 | 88.31 38 | 93.77 48 | 90.35 114 | 88.80 56 | 84.47 42 | 86.76 60 | 82.17 35 | 66.56 79 | 71.01 94 | 88.41 36 | 85.48 114 | 84.28 120 | 92.26 139 | 88.21 169 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EIA-MVS | | | 84.75 64 | 86.43 56 | 82.79 75 | 86.88 99 | 95.36 60 | 82.84 110 | 76.39 93 | 87.61 56 | 71.03 82 | 74.33 55 | 71.12 93 | 85.16 58 | 89.69 66 | 88.70 71 | 94.40 64 | 98.23 29 |
|
CNLPA | | | 84.72 65 | 82.14 87 | 87.73 41 | 92.85 52 | 93.83 81 | 84.70 92 | 85.07 38 | 90.90 35 | 83.16 30 | 56.28 125 | 71.53 90 | 88.14 40 | 84.19 121 | 84.00 126 | 92.48 134 | 94.26 104 |
|
MVS_Test | | | 84.60 66 | 85.13 65 | 83.99 68 | 88.17 85 | 95.27 65 | 88.21 59 | 73.15 116 | 84.31 66 | 70.55 85 | 68.67 74 | 68.78 103 | 86.99 47 | 91.71 40 | 91.90 26 | 96.84 10 | 95.27 91 |
|
casdiffmvs_mvg |  | | 83.97 67 | 82.62 83 | 85.54 57 | 87.71 90 | 94.38 74 | 88.93 55 | 80.11 66 | 77.34 95 | 77.57 49 | 63.01 97 | 65.95 115 | 84.96 60 | 90.69 51 | 90.23 48 | 93.95 75 | 96.74 67 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
casdiffmvs |  | | 83.84 68 | 82.65 82 | 85.22 60 | 87.25 97 | 94.62 71 | 86.01 79 | 79.62 67 | 79.48 84 | 77.59 48 | 61.92 104 | 64.34 120 | 85.57 54 | 90.55 53 | 90.51 44 | 95.26 48 | 97.14 53 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
baseline | | | 83.83 69 | 84.38 68 | 83.18 74 | 86.65 101 | 94.59 72 | 85.79 82 | 73.78 113 | 85.83 62 | 72.94 69 | 69.28 69 | 70.80 96 | 83.45 76 | 86.80 99 | 87.59 80 | 96.47 19 | 95.77 82 |
|
diffmvs |  | | 83.69 70 | 83.17 78 | 84.31 65 | 85.45 115 | 93.92 77 | 86.89 66 | 78.62 70 | 82.71 73 | 75.95 61 | 66.78 78 | 63.90 123 | 83.84 72 | 87.90 90 | 89.16 64 | 95.10 53 | 97.82 39 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
CANet_DTU | | | 83.33 71 | 86.59 53 | 79.53 99 | 88.88 78 | 94.87 68 | 86.63 70 | 68.85 148 | 85.45 63 | 50.54 156 | 77.86 46 | 69.94 99 | 85.62 53 | 92.63 28 | 90.88 40 | 96.63 12 | 94.46 98 |
|
DI_MVS_plusplus_trai | | | 83.32 72 | 82.53 85 | 84.25 66 | 86.26 109 | 93.66 85 | 90.23 48 | 77.16 86 | 77.05 99 | 74.06 65 | 53.74 138 | 74.33 77 | 83.61 75 | 91.40 43 | 89.82 54 | 94.17 68 | 97.73 40 |
|
baseline1 | | | 82.63 73 | 82.02 88 | 83.34 73 | 88.30 84 | 91.89 103 | 88.03 62 | 80.86 63 | 75.05 106 | 65.96 96 | 64.27 90 | 72.20 88 | 80.01 95 | 91.32 44 | 89.56 60 | 96.90 8 | 89.85 157 |
|
PVSNet_Blended_VisFu | | | 82.55 74 | 83.70 73 | 81.21 86 | 89.66 70 | 95.15 67 | 82.41 111 | 77.36 85 | 72.53 125 | 73.64 67 | 61.15 107 | 77.19 64 | 70.35 153 | 91.31 45 | 89.72 57 | 93.84 77 | 98.85 18 |
|
ET-MVSNet_ETH3D | | | 82.37 75 | 85.68 63 | 78.51 109 | 62.90 212 | 94.66 69 | 87.06 65 | 73.57 114 | 83.13 69 | 61.52 112 | 78.37 43 | 76.01 71 | 89.99 22 | 84.14 122 | 89.03 68 | 96.03 31 | 94.42 99 |
|
PMMVS | | | 82.26 76 | 85.48 64 | 78.51 109 | 85.92 112 | 91.92 102 | 78.30 142 | 70.77 133 | 86.30 61 | 61.11 114 | 82.46 38 | 70.88 95 | 84.70 66 | 88.05 89 | 84.78 113 | 90.24 179 | 93.98 108 |
|
ACMP | | 79.58 9 | 82.23 77 | 81.82 92 | 82.71 76 | 88.15 86 | 90.95 111 | 85.23 87 | 78.52 72 | 81.70 75 | 72.52 76 | 78.41 42 | 60.63 131 | 80.48 93 | 82.88 133 | 83.44 130 | 91.37 158 | 94.70 95 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
CHOSEN 280x420 | | | 82.15 78 | 85.87 60 | 77.80 114 | 86.54 105 | 93.42 88 | 81.74 113 | 59.96 190 | 78.99 89 | 63.99 102 | 74.50 53 | 83.95 37 | 80.99 86 | 89.53 69 | 85.01 108 | 93.56 93 | 95.71 84 |
|
LGP-MVS_train | | | 82.12 79 | 82.57 84 | 81.59 82 | 89.26 74 | 90.23 117 | 88.76 57 | 78.05 73 | 81.26 77 | 61.64 111 | 79.52 41 | 62.11 126 | 79.59 97 | 85.20 117 | 84.68 115 | 92.27 138 | 95.02 93 |
|
FMVSNet3 | | | 81.93 80 | 81.98 89 | 81.88 81 | 79.49 152 | 87.02 135 | 88.15 61 | 72.57 119 | 83.02 70 | 72.63 73 | 56.55 121 | 73.48 83 | 82.34 82 | 91.49 42 | 91.20 36 | 96.07 27 | 91.13 145 |
|
test2506 | | | 81.91 81 | 81.78 95 | 82.06 80 | 89.09 75 | 95.32 62 | 84.61 94 | 77.54 81 | 74.61 110 | 68.77 90 | 63.80 94 | 67.53 107 | 77.09 106 | 90.19 57 | 89.01 69 | 95.27 45 | 92.00 137 |
|
thisisatest0530 | | | 81.67 82 | 84.27 69 | 78.63 105 | 85.53 113 | 93.88 80 | 81.77 112 | 73.84 110 | 81.35 76 | 63.85 104 | 68.79 72 | 77.64 60 | 73.02 134 | 88.73 80 | 85.73 104 | 93.76 80 | 93.80 119 |
|
tttt0517 | | | 81.51 83 | 84.12 72 | 78.47 111 | 85.33 117 | 93.74 83 | 81.42 117 | 73.84 110 | 81.21 78 | 63.59 105 | 68.73 73 | 77.46 63 | 73.02 134 | 88.47 82 | 85.73 104 | 93.63 89 | 93.49 123 |
|
FA-MVS(training) | | | 81.41 84 | 81.98 89 | 80.76 92 | 87.58 93 | 94.59 72 | 83.09 105 | 61.18 187 | 79.80 83 | 74.74 63 | 58.46 113 | 69.76 100 | 82.12 83 | 88.90 76 | 87.00 85 | 95.83 37 | 95.33 88 |
|
OPM-MVS | | | 81.34 85 | 78.18 111 | 85.02 61 | 91.27 65 | 91.78 104 | 90.66 45 | 83.62 45 | 62.39 154 | 65.91 97 | 63.35 95 | 64.33 121 | 85.03 59 | 87.77 92 | 85.88 102 | 93.66 85 | 91.75 141 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
baseline2 | | | 81.21 86 | 83.36 77 | 78.70 103 | 83.22 130 | 92.71 92 | 80.32 123 | 74.25 109 | 80.39 81 | 63.94 103 | 68.89 71 | 68.44 105 | 74.67 120 | 89.61 68 | 86.68 91 | 95.83 37 | 96.81 66 |
|
IS_MVSNet | | | 80.92 87 | 84.14 71 | 77.16 117 | 87.43 94 | 93.90 79 | 80.44 119 | 74.64 103 | 75.05 106 | 61.10 115 | 65.59 85 | 76.89 67 | 67.39 161 | 90.88 47 | 90.05 51 | 91.95 145 | 96.62 72 |
|
ACMM | | 78.09 10 | 80.91 88 | 78.39 108 | 83.86 71 | 89.61 73 | 87.71 132 | 85.16 88 | 80.67 65 | 79.04 88 | 74.18 64 | 63.82 93 | 60.84 130 | 82.59 80 | 84.33 119 | 83.59 129 | 90.96 166 | 89.39 162 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EPP-MVSNet | | | 80.82 89 | 82.79 80 | 78.52 107 | 86.31 108 | 92.37 99 | 79.83 126 | 74.51 104 | 73.79 117 | 64.46 100 | 67.01 77 | 80.63 51 | 74.33 123 | 85.63 113 | 84.35 119 | 91.68 151 | 95.79 81 |
|
CostFormer | | | 80.72 90 | 81.81 93 | 79.44 101 | 86.50 106 | 91.65 105 | 84.31 96 | 59.84 191 | 80.86 79 | 72.69 71 | 62.46 100 | 73.74 80 | 79.93 96 | 82.58 137 | 84.50 118 | 93.37 108 | 96.90 64 |
|
GBi-Net | | | 80.72 90 | 80.49 97 | 81.00 89 | 78.18 156 | 86.19 149 | 86.73 67 | 72.57 119 | 83.02 70 | 72.63 73 | 56.55 121 | 73.48 83 | 80.99 86 | 86.57 101 | 86.83 88 | 94.89 57 | 90.77 149 |
|
test1 | | | 80.72 90 | 80.49 97 | 81.00 89 | 78.18 156 | 86.19 149 | 86.73 67 | 72.57 119 | 83.02 70 | 72.63 73 | 56.55 121 | 73.48 83 | 80.99 86 | 86.57 101 | 86.83 88 | 94.89 57 | 90.77 149 |
|
UGNet | | | 80.71 93 | 83.09 79 | 77.93 113 | 87.02 98 | 92.71 92 | 80.28 124 | 76.53 91 | 73.83 116 | 71.35 80 | 70.07 67 | 73.71 81 | 58.93 181 | 87.39 94 | 86.97 86 | 93.48 101 | 96.94 61 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CHOSEN 1792x2688 | | | 80.23 94 | 79.16 105 | 81.48 84 | 91.97 56 | 96.56 35 | 86.18 77 | 75.40 100 | 76.17 102 | 61.32 113 | 37.43 199 | 61.08 129 | 76.52 112 | 92.35 30 | 91.64 31 | 97.46 3 | 98.86 17 |
|
thres100view900 | | | 79.83 95 | 77.79 115 | 82.21 77 | 88.42 81 | 93.54 87 | 87.07 64 | 81.11 61 | 70.15 132 | 61.01 116 | 56.65 119 | 51.22 153 | 81.78 84 | 89.77 65 | 85.95 100 | 93.84 77 | 97.26 50 |
|
Effi-MVS+ | | | 79.80 96 | 80.04 99 | 79.52 100 | 85.53 113 | 93.31 89 | 85.28 85 | 70.68 135 | 74.15 112 | 58.79 125 | 62.03 103 | 60.51 132 | 83.37 77 | 88.41 84 | 86.09 99 | 93.49 100 | 95.80 80 |
|
ECVR-MVS |  | | 79.76 97 | 78.27 109 | 81.50 83 | 89.09 75 | 95.32 62 | 84.61 94 | 77.54 81 | 74.61 110 | 65.38 98 | 50.22 150 | 56.31 147 | 77.09 106 | 90.19 57 | 89.01 69 | 95.27 45 | 92.25 132 |
|
DCV-MVSNet | | | 79.76 97 | 79.17 104 | 80.44 95 | 84.65 121 | 84.51 173 | 84.20 97 | 72.36 124 | 75.17 105 | 70.81 83 | 66.21 82 | 66.56 110 | 80.99 86 | 82.89 132 | 84.56 116 | 89.65 185 | 94.30 103 |
|
FC-MVSNet-train | | | 79.54 99 | 78.20 110 | 81.09 88 | 86.55 104 | 88.63 128 | 79.96 125 | 78.53 71 | 70.90 130 | 68.24 92 | 65.87 84 | 56.45 146 | 80.29 94 | 86.20 110 | 84.08 121 | 92.97 122 | 95.31 90 |
|
test-LLR | | | 79.52 100 | 83.42 74 | 74.97 126 | 81.79 135 | 91.26 106 | 76.17 163 | 70.57 136 | 77.71 93 | 52.14 143 | 66.26 80 | 77.47 61 | 73.10 130 | 87.02 96 | 87.16 82 | 96.05 29 | 97.02 56 |
|
FMVSNet2 | | | 79.24 101 | 78.14 112 | 80.53 94 | 78.18 156 | 86.19 149 | 86.73 67 | 71.91 126 | 72.97 120 | 70.48 86 | 50.63 148 | 66.56 110 | 80.99 86 | 90.10 59 | 89.77 56 | 94.89 57 | 90.77 149 |
|
TESTMET0.1,1 | | | 79.15 102 | 83.42 74 | 74.18 132 | 79.81 150 | 91.26 106 | 76.17 163 | 67.83 161 | 77.71 93 | 52.14 143 | 66.26 80 | 77.47 61 | 73.10 130 | 87.02 96 | 87.16 82 | 96.05 29 | 97.02 56 |
|
tfpn200view9 | | | 79.05 103 | 77.21 119 | 81.18 87 | 88.42 81 | 92.55 97 | 85.12 89 | 77.94 75 | 70.15 132 | 61.01 116 | 56.65 119 | 51.22 153 | 81.11 85 | 88.23 85 | 84.80 112 | 93.50 99 | 96.90 64 |
|
test1111 | | | 78.99 104 | 77.77 116 | 80.42 96 | 88.64 79 | 95.31 64 | 83.39 104 | 77.67 79 | 72.76 123 | 61.91 108 | 49.58 153 | 55.59 149 | 75.67 117 | 90.23 56 | 89.09 66 | 95.23 51 | 91.83 140 |
|
PatchMatch-RL | | | 78.75 105 | 76.47 126 | 81.41 85 | 88.53 80 | 91.10 108 | 78.09 143 | 77.51 84 | 77.33 96 | 71.98 78 | 64.38 89 | 48.10 166 | 82.55 81 | 84.06 123 | 82.35 139 | 89.78 182 | 87.97 171 |
|
LS3D | | | 78.72 106 | 75.79 131 | 82.15 78 | 91.91 57 | 89.39 124 | 83.66 101 | 85.88 36 | 76.81 100 | 59.22 124 | 57.67 116 | 58.53 140 | 83.72 74 | 82.07 142 | 81.63 150 | 88.50 193 | 84.39 182 |
|
thres200 | | | 78.69 107 | 76.71 122 | 80.99 91 | 88.35 83 | 92.56 95 | 86.03 78 | 77.94 75 | 66.27 139 | 60.66 118 | 56.08 126 | 51.11 155 | 79.45 98 | 88.23 85 | 85.54 107 | 93.52 94 | 97.20 52 |
|
Anonymous20231211 | | | 78.61 108 | 75.57 134 | 82.15 78 | 84.43 125 | 90.26 115 | 84.08 99 | 77.68 78 | 71.09 128 | 72.90 70 | 39.24 193 | 66.21 112 | 84.23 71 | 82.15 140 | 84.04 123 | 89.61 186 | 96.03 75 |
|
IB-MVS | | 74.10 12 | 78.52 109 | 78.51 107 | 78.52 107 | 90.15 68 | 95.39 59 | 71.95 183 | 77.53 83 | 74.95 108 | 77.25 52 | 58.93 111 | 55.92 148 | 58.37 183 | 79.01 167 | 87.89 79 | 95.88 35 | 97.47 43 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EPNet_dtu | | | 78.49 110 | 81.96 91 | 74.45 131 | 92.57 54 | 88.74 127 | 82.98 106 | 78.83 69 | 83.28 68 | 44.64 187 | 77.40 48 | 67.73 106 | 53.98 192 | 85.44 115 | 84.91 109 | 93.71 83 | 86.22 177 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres400 | | | 78.39 111 | 76.39 127 | 80.73 93 | 88.02 88 | 92.94 91 | 84.77 90 | 78.88 68 | 65.20 147 | 59.70 122 | 55.20 132 | 50.85 156 | 79.45 98 | 88.81 77 | 84.81 111 | 93.57 91 | 96.91 63 |
|
UA-Net | | | 78.30 112 | 80.92 96 | 75.25 125 | 87.42 95 | 92.48 98 | 79.54 129 | 75.49 99 | 60.47 158 | 60.52 119 | 68.44 75 | 84.08 36 | 57.54 185 | 88.54 81 | 88.45 73 | 90.96 166 | 83.97 184 |
|
Vis-MVSNet (Re-imp) | | | 78.28 113 | 82.68 81 | 73.16 143 | 86.64 102 | 92.68 94 | 78.07 144 | 74.48 105 | 74.05 113 | 53.47 136 | 64.22 91 | 76.52 68 | 54.28 188 | 88.96 75 | 88.29 76 | 92.03 143 | 94.00 107 |
|
MSDG | | | 78.11 114 | 73.17 147 | 83.86 71 | 91.78 60 | 86.83 137 | 85.25 86 | 86.02 34 | 72.84 122 | 69.69 89 | 51.43 145 | 54.00 151 | 77.61 102 | 81.95 145 | 82.27 141 | 92.83 128 | 82.91 189 |
|
HyFIR lowres test | | | 78.08 115 | 76.81 120 | 79.56 98 | 90.77 67 | 94.64 70 | 82.97 107 | 69.85 141 | 69.81 134 | 59.53 123 | 33.52 204 | 64.66 117 | 78.97 100 | 88.77 79 | 88.38 75 | 95.27 45 | 97.86 37 |
|
GeoE | | | 78.04 116 | 77.52 118 | 78.65 104 | 84.51 123 | 90.84 112 | 80.94 118 | 69.24 146 | 72.86 121 | 66.06 95 | 53.45 139 | 60.46 133 | 77.37 103 | 84.20 120 | 84.85 110 | 93.78 79 | 96.00 77 |
|
test-mter | | | 77.90 117 | 82.44 86 | 72.60 148 | 78.52 154 | 90.24 116 | 73.85 176 | 65.31 175 | 76.37 101 | 51.29 147 | 65.58 86 | 75.94 72 | 71.36 144 | 85.98 111 | 86.26 95 | 95.26 48 | 96.71 71 |
|
thres600view7 | | | 77.66 118 | 75.67 132 | 79.98 97 | 87.71 90 | 92.56 95 | 83.79 100 | 77.94 75 | 64.41 149 | 58.69 126 | 54.32 137 | 50.54 157 | 78.23 101 | 88.23 85 | 83.06 133 | 93.52 94 | 96.55 73 |
|
MS-PatchMatch | | | 77.47 119 | 76.48 125 | 78.63 105 | 89.89 69 | 90.42 113 | 85.42 84 | 69.53 143 | 70.79 131 | 60.43 120 | 50.05 151 | 70.62 98 | 70.66 150 | 86.71 100 | 82.54 136 | 95.86 36 | 84.23 183 |
|
Fast-Effi-MVS+ | | | 77.37 120 | 76.68 123 | 78.17 112 | 82.84 132 | 89.94 120 | 81.47 116 | 68.01 157 | 72.99 119 | 60.26 121 | 55.07 133 | 53.20 152 | 82.99 78 | 86.47 106 | 86.12 98 | 93.46 102 | 92.98 127 |
|
dmvs_re | | | 77.25 121 | 75.86 130 | 78.86 102 | 81.08 141 | 89.36 125 | 84.15 98 | 80.73 64 | 73.02 118 | 55.58 132 | 58.33 114 | 48.97 162 | 75.32 118 | 83.92 126 | 86.25 96 | 96.29 26 | 91.20 144 |
|
Vis-MVSNet |  | | 77.24 122 | 79.99 102 | 74.02 133 | 84.62 122 | 93.92 77 | 80.33 122 | 72.55 122 | 62.58 153 | 55.25 134 | 64.45 88 | 69.49 101 | 57.00 186 | 88.78 78 | 88.21 77 | 94.36 65 | 92.54 129 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MDTV_nov1_ep13 | | | 77.20 123 | 80.04 99 | 73.90 135 | 82.22 133 | 90.14 118 | 79.25 133 | 61.52 185 | 78.63 90 | 56.98 127 | 65.52 87 | 72.80 87 | 73.05 132 | 80.93 153 | 83.20 131 | 90.36 176 | 89.05 165 |
|
EPMVS | | | 77.16 124 | 79.08 106 | 74.92 127 | 86.73 100 | 91.98 101 | 78.62 138 | 55.44 199 | 79.43 85 | 56.59 129 | 61.24 106 | 70.73 97 | 76.97 109 | 80.59 156 | 81.43 156 | 95.15 52 | 88.17 170 |
|
tpm cat1 | | | 76.93 125 | 76.19 129 | 77.79 115 | 85.08 120 | 88.58 129 | 82.96 108 | 59.33 192 | 75.72 104 | 72.64 72 | 51.25 146 | 64.41 119 | 75.74 116 | 77.90 175 | 80.10 172 | 90.97 165 | 95.35 87 |
|
PatchmatchNet |  | | 76.85 126 | 80.03 101 | 73.15 144 | 84.08 127 | 91.04 110 | 77.76 148 | 55.85 198 | 79.43 85 | 52.74 141 | 62.08 102 | 76.02 70 | 74.56 121 | 79.92 161 | 81.41 157 | 93.92 76 | 90.29 154 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
IterMVS-LS | | | 76.80 127 | 76.33 128 | 77.35 116 | 84.07 128 | 84.11 174 | 81.54 115 | 68.52 150 | 66.17 140 | 61.74 109 | 57.84 115 | 64.31 122 | 74.88 119 | 83.48 129 | 86.21 97 | 93.34 110 | 92.16 134 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CDS-MVSNet | | | 76.57 128 | 76.78 121 | 76.32 120 | 80.94 143 | 89.75 121 | 82.94 109 | 72.64 118 | 59.01 164 | 62.95 107 | 58.60 112 | 62.67 125 | 66.91 163 | 86.26 108 | 87.20 81 | 91.57 153 | 93.97 109 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
SCA | | | 76.41 129 | 79.90 103 | 72.35 152 | 84.26 126 | 85.24 164 | 75.57 170 | 54.56 201 | 79.95 82 | 52.72 142 | 64.22 91 | 77.84 57 | 73.73 127 | 80.48 157 | 81.37 158 | 93.25 113 | 90.20 155 |
|
tpmrst | | | 76.27 130 | 77.65 117 | 74.66 129 | 86.13 111 | 89.53 123 | 79.31 132 | 54.91 200 | 77.19 98 | 56.27 130 | 55.87 128 | 64.58 118 | 77.25 104 | 80.85 154 | 80.21 169 | 94.07 70 | 95.32 89 |
|
dps | | | 75.76 131 | 75.02 136 | 76.63 119 | 84.51 123 | 88.12 130 | 77.51 149 | 58.33 194 | 75.91 103 | 71.98 78 | 57.37 117 | 57.85 141 | 76.81 111 | 77.89 176 | 78.40 181 | 90.63 173 | 89.63 159 |
|
CR-MVSNet | | | 74.84 132 | 77.91 113 | 71.26 165 | 81.77 137 | 85.52 160 | 78.32 140 | 54.14 203 | 74.05 113 | 51.09 150 | 50.00 152 | 71.38 92 | 70.77 148 | 86.48 104 | 84.03 124 | 91.46 157 | 93.92 112 |
|
Effi-MVS+-dtu | | | 74.57 133 | 74.60 140 | 74.53 130 | 81.38 139 | 86.74 139 | 80.39 121 | 67.70 162 | 67.36 138 | 53.06 137 | 59.86 109 | 57.50 142 | 75.84 115 | 80.19 159 | 78.62 179 | 88.79 192 | 91.95 139 |
|
RPSCF | | | 74.27 134 | 73.24 146 | 75.48 124 | 81.01 142 | 80.18 196 | 76.24 162 | 72.37 123 | 74.84 109 | 68.24 92 | 72.47 58 | 67.39 108 | 73.89 124 | 71.05 200 | 69.38 207 | 81.14 212 | 77.37 201 |
|
FMVSNet1 | | | 74.26 135 | 71.95 152 | 76.95 118 | 74.28 188 | 83.94 176 | 83.61 102 | 69.99 139 | 57.08 170 | 65.08 99 | 42.39 182 | 57.41 143 | 76.98 108 | 86.57 101 | 86.83 88 | 91.77 150 | 89.42 160 |
|
GA-MVS | | | 73.62 136 | 74.52 141 | 72.58 149 | 79.93 148 | 89.29 126 | 78.02 145 | 71.67 129 | 60.79 157 | 42.68 191 | 54.41 136 | 49.07 161 | 70.07 154 | 89.39 72 | 86.55 92 | 93.13 118 | 92.12 135 |
|
Fast-Effi-MVS+-dtu | | | 73.56 137 | 75.32 135 | 71.50 161 | 80.35 145 | 86.83 137 | 79.72 127 | 58.07 195 | 67.64 137 | 44.83 184 | 60.28 108 | 54.07 150 | 73.59 129 | 81.90 147 | 82.30 140 | 92.46 135 | 94.18 105 |
|
tpm | | | 73.50 138 | 74.85 137 | 71.93 155 | 83.19 131 | 86.84 136 | 78.61 139 | 55.91 197 | 65.64 142 | 48.90 163 | 56.30 124 | 61.09 128 | 72.31 136 | 79.10 166 | 80.61 168 | 92.68 130 | 94.35 102 |
|
RPMNet | | | 73.46 139 | 77.85 114 | 68.34 175 | 81.71 138 | 85.52 160 | 73.83 177 | 50.54 210 | 74.05 113 | 46.10 178 | 53.03 142 | 71.91 89 | 66.31 165 | 83.55 127 | 82.18 143 | 91.55 155 | 94.71 94 |
|
USDC | | | 73.43 140 | 72.31 150 | 74.73 128 | 80.86 144 | 86.21 147 | 80.42 120 | 71.83 128 | 71.69 127 | 46.94 171 | 59.60 110 | 42.58 187 | 76.47 113 | 82.66 136 | 81.22 161 | 91.88 147 | 82.24 195 |
|
pmmvs4 | | | 73.38 141 | 71.53 155 | 75.55 123 | 75.95 174 | 85.24 164 | 77.25 153 | 71.59 130 | 71.03 129 | 63.10 106 | 49.09 158 | 44.22 177 | 73.73 127 | 82.04 143 | 80.18 170 | 91.68 151 | 88.89 167 |
|
UniMVSNet_NR-MVSNet | | | 73.11 142 | 72.59 148 | 73.71 138 | 76.90 165 | 86.58 143 | 77.01 154 | 75.82 97 | 65.59 143 | 48.82 164 | 50.97 147 | 48.42 164 | 71.61 140 | 79.19 165 | 83.03 134 | 92.11 140 | 94.37 100 |
|
FMVSNet5 | | | 72.83 143 | 73.89 144 | 71.59 159 | 67.42 206 | 76.28 204 | 75.88 167 | 63.74 179 | 77.27 97 | 54.59 135 | 53.32 140 | 71.48 91 | 73.85 125 | 81.95 145 | 81.69 148 | 94.06 71 | 75.20 205 |
|
PatchT | | | 72.66 144 | 76.58 124 | 68.09 177 | 79.02 153 | 86.09 153 | 59.81 205 | 51.78 208 | 72.00 126 | 51.09 150 | 46.84 162 | 66.70 109 | 70.77 148 | 86.48 104 | 84.03 124 | 96.07 27 | 93.92 112 |
|
ACMH | | 71.22 14 | 72.65 145 | 70.13 160 | 75.59 122 | 86.19 110 | 86.14 152 | 75.76 168 | 77.63 80 | 54.79 178 | 46.16 177 | 53.28 141 | 47.28 168 | 77.24 105 | 78.91 168 | 81.18 162 | 90.57 174 | 89.33 163 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IterMVS | | | 72.43 146 | 74.05 142 | 70.55 169 | 80.34 146 | 81.17 190 | 77.44 150 | 61.00 189 | 63.57 152 | 46.82 173 | 55.88 127 | 59.09 139 | 65.03 167 | 83.15 130 | 83.83 127 | 92.67 131 | 91.65 142 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ACMH+ | | 72.14 13 | 72.38 147 | 69.34 167 | 75.93 121 | 85.21 118 | 84.89 168 | 76.96 157 | 76.04 95 | 59.76 159 | 51.63 146 | 50.37 149 | 48.69 163 | 76.90 110 | 76.06 184 | 78.69 177 | 88.85 191 | 86.90 175 |
|
DU-MVS | | | 72.19 148 | 71.35 156 | 73.17 142 | 75.95 174 | 86.02 154 | 77.01 154 | 74.42 106 | 65.39 145 | 48.82 164 | 49.10 156 | 42.81 185 | 71.61 140 | 78.67 169 | 83.10 132 | 91.22 161 | 94.37 100 |
|
IterMVS-SCA-FT | | | 72.18 149 | 73.96 143 | 70.11 171 | 80.15 147 | 81.11 191 | 77.42 151 | 61.09 188 | 63.67 151 | 46.73 174 | 55.77 130 | 59.15 138 | 63.95 170 | 82.83 134 | 83.70 128 | 91.31 159 | 91.49 143 |
|
UniMVSNet (Re) | | | 72.12 150 | 72.28 151 | 71.93 155 | 76.77 166 | 87.38 134 | 75.73 169 | 73.51 115 | 65.76 141 | 50.24 158 | 48.65 159 | 46.49 169 | 63.85 171 | 80.10 160 | 82.47 137 | 91.49 156 | 95.13 92 |
|
ADS-MVSNet | | | 72.11 151 | 73.72 145 | 70.24 170 | 81.24 140 | 86.59 142 | 74.75 173 | 50.56 209 | 72.58 124 | 49.17 161 | 55.40 131 | 61.46 127 | 73.80 126 | 76.01 185 | 78.14 182 | 91.93 146 | 85.86 178 |
|
gg-mvs-nofinetune | | | 72.10 152 | 74.79 138 | 68.97 174 | 83.31 129 | 95.22 66 | 85.66 83 | 48.77 211 | 35.68 214 | 22.17 221 | 30.49 207 | 77.73 59 | 76.37 114 | 94.30 13 | 93.03 11 | 97.55 2 | 97.05 55 |
|
TAMVS | | | 72.06 153 | 71.76 154 | 72.41 151 | 76.68 167 | 88.12 130 | 74.82 172 | 68.09 155 | 53.52 183 | 56.91 128 | 52.94 143 | 56.93 145 | 66.91 163 | 81.37 150 | 82.44 138 | 91.07 163 | 86.99 174 |
|
v2v482 | | | 71.73 154 | 69.80 162 | 73.99 134 | 75.88 178 | 86.66 141 | 79.58 128 | 71.90 127 | 57.58 168 | 50.41 157 | 45.35 166 | 43.24 183 | 73.05 132 | 79.69 162 | 82.18 143 | 93.08 119 | 93.87 116 |
|
test0.0.03 1 | | | 71.70 155 | 74.68 139 | 68.23 176 | 81.79 135 | 83.81 177 | 68.64 187 | 70.57 136 | 68.81 136 | 43.47 188 | 62.77 99 | 60.09 135 | 51.77 199 | 82.48 138 | 81.67 149 | 93.16 116 | 83.13 187 |
|
V42 | | | 71.58 156 | 70.11 161 | 73.30 141 | 75.66 181 | 86.68 140 | 79.17 135 | 69.92 140 | 59.29 163 | 52.80 140 | 44.36 170 | 45.66 171 | 68.83 155 | 79.48 164 | 81.49 153 | 93.44 103 | 93.82 118 |
|
NR-MVSNet | | | 71.47 157 | 71.11 157 | 71.90 157 | 77.73 161 | 86.02 154 | 76.88 158 | 74.42 106 | 65.39 145 | 46.09 179 | 49.10 156 | 39.87 200 | 64.27 169 | 81.40 149 | 82.24 142 | 91.99 144 | 93.75 120 |
|
v8 | | | 71.42 158 | 69.69 163 | 73.43 140 | 76.45 170 | 85.12 167 | 79.53 130 | 67.47 165 | 59.34 162 | 52.90 139 | 44.60 168 | 45.82 170 | 71.05 146 | 79.56 163 | 81.45 155 | 93.17 115 | 91.96 138 |
|
TranMVSNet+NR-MVSNet | | | 71.12 159 | 70.24 159 | 72.15 153 | 76.01 173 | 84.80 170 | 76.55 160 | 75.65 98 | 61.99 155 | 45.29 182 | 48.42 160 | 43.07 184 | 67.55 159 | 78.28 172 | 82.83 135 | 91.85 148 | 92.29 130 |
|
v10 | | | 70.97 160 | 69.44 164 | 72.75 145 | 75.90 177 | 84.58 172 | 79.43 131 | 66.45 170 | 58.07 166 | 49.93 159 | 43.87 176 | 43.68 178 | 71.91 138 | 82.04 143 | 81.70 147 | 92.89 126 | 92.11 136 |
|
v1144 | | | 70.93 161 | 69.42 166 | 72.70 146 | 75.48 182 | 86.26 145 | 79.22 134 | 69.39 145 | 55.61 175 | 48.05 169 | 43.47 177 | 42.55 188 | 71.51 142 | 82.11 141 | 81.74 146 | 92.56 133 | 94.17 106 |
|
thisisatest0515 | | | 70.62 162 | 71.94 153 | 69.07 173 | 76.48 169 | 85.59 159 | 68.03 188 | 68.02 156 | 59.70 160 | 52.94 138 | 52.19 144 | 50.36 158 | 58.10 184 | 83.15 130 | 81.63 150 | 90.87 169 | 90.99 147 |
|
Baseline_NR-MVSNet | | | 70.61 163 | 68.87 170 | 72.65 147 | 75.95 174 | 80.49 194 | 75.92 166 | 74.75 102 | 65.10 148 | 48.78 166 | 41.28 188 | 44.28 176 | 68.45 156 | 78.67 169 | 79.64 173 | 92.04 142 | 92.62 128 |
|
v148 | | | 70.34 164 | 68.46 173 | 72.54 150 | 76.04 172 | 86.38 144 | 74.83 171 | 72.73 117 | 55.88 174 | 55.26 133 | 43.32 179 | 43.49 179 | 64.52 168 | 76.93 182 | 80.11 171 | 91.85 148 | 93.11 124 |
|
v1192 | | | 70.32 165 | 68.77 171 | 72.12 154 | 74.76 184 | 85.62 158 | 78.73 136 | 68.53 149 | 55.08 177 | 46.34 176 | 42.39 182 | 40.67 195 | 71.90 139 | 82.27 139 | 81.53 152 | 92.43 136 | 93.86 117 |
|
v144192 | | | 70.10 166 | 68.55 172 | 71.90 157 | 74.55 185 | 85.67 157 | 77.81 146 | 68.22 154 | 54.65 179 | 46.91 172 | 42.76 180 | 41.27 192 | 70.95 147 | 80.48 157 | 81.11 166 | 92.96 123 | 93.90 114 |
|
pmmvs5 | | | 70.01 167 | 69.31 168 | 70.82 168 | 75.80 180 | 86.26 145 | 72.94 178 | 67.91 158 | 53.84 182 | 47.22 170 | 47.31 161 | 41.47 191 | 67.61 158 | 83.93 125 | 81.93 145 | 93.42 105 | 90.42 153 |
|
COLMAP_ROB |  | 66.31 15 | 69.91 168 | 66.61 178 | 73.76 136 | 86.44 107 | 82.76 181 | 76.59 159 | 76.46 92 | 63.82 150 | 50.92 154 | 45.60 165 | 49.13 160 | 65.87 166 | 74.96 190 | 74.45 197 | 86.30 202 | 75.57 204 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
v1921920 | | | 69.85 169 | 68.38 174 | 71.58 160 | 74.35 186 | 85.39 162 | 77.78 147 | 67.88 160 | 54.64 180 | 45.39 181 | 42.11 185 | 39.97 199 | 71.10 145 | 81.68 148 | 81.17 164 | 92.96 123 | 93.69 122 |
|
pm-mvs1 | | | 69.62 170 | 68.07 176 | 71.44 162 | 77.21 163 | 85.32 163 | 76.11 165 | 71.05 131 | 46.55 203 | 51.17 149 | 41.83 186 | 48.20 165 | 61.81 177 | 84.00 124 | 81.14 165 | 91.28 160 | 89.42 160 |
|
UniMVSNet_ETH3D | | | 69.49 171 | 65.86 180 | 73.72 137 | 76.51 168 | 85.88 156 | 78.65 137 | 70.52 138 | 48.08 200 | 55.71 131 | 37.64 196 | 40.56 196 | 71.38 143 | 75.05 189 | 81.49 153 | 89.57 188 | 92.29 130 |
|
tfpnnormal | | | 69.29 172 | 65.58 181 | 73.62 139 | 79.87 149 | 84.82 169 | 76.97 156 | 75.12 101 | 45.29 204 | 49.03 162 | 35.57 202 | 37.20 208 | 68.02 157 | 82.70 135 | 81.24 160 | 92.69 129 | 92.20 133 |
|
v1240 | | | 69.28 173 | 67.82 177 | 71.00 167 | 74.09 190 | 85.13 166 | 76.54 161 | 67.28 167 | 53.17 184 | 44.70 185 | 41.55 187 | 39.38 201 | 70.51 152 | 81.29 151 | 81.18 162 | 92.88 127 | 93.02 126 |
|
CVMVSNet | | | 68.95 174 | 70.79 158 | 66.79 183 | 79.69 151 | 83.75 178 | 72.05 182 | 70.90 132 | 56.20 172 | 36.30 203 | 54.94 135 | 59.22 137 | 54.03 191 | 78.33 171 | 78.65 178 | 87.77 198 | 84.44 181 |
|
MIMVSNet | | | 68.66 175 | 69.43 165 | 67.76 178 | 64.92 209 | 84.68 171 | 74.16 174 | 54.10 205 | 60.85 156 | 51.27 148 | 39.47 192 | 49.48 159 | 67.48 160 | 84.86 118 | 85.57 106 | 94.63 61 | 81.10 196 |
|
TDRefinement | | | 67.82 176 | 64.91 187 | 71.22 166 | 82.08 134 | 81.45 186 | 77.42 151 | 73.79 112 | 59.62 161 | 48.35 168 | 42.35 184 | 42.40 189 | 60.87 179 | 74.69 191 | 74.64 196 | 84.83 206 | 79.20 199 |
|
anonymousdsp | | | 67.61 177 | 68.94 169 | 66.04 184 | 71.44 202 | 83.97 175 | 66.45 192 | 63.53 181 | 50.54 193 | 42.42 192 | 49.39 154 | 45.63 172 | 62.84 174 | 77.99 174 | 81.34 159 | 89.59 187 | 93.75 120 |
|
TinyColmap | | | 67.16 178 | 63.51 194 | 71.42 163 | 77.94 159 | 79.54 200 | 72.80 179 | 69.78 142 | 56.58 171 | 45.52 180 | 44.53 169 | 33.53 213 | 74.45 122 | 76.91 183 | 77.06 188 | 88.03 197 | 76.41 202 |
|
FC-MVSNet-test | | | 67.04 179 | 72.47 149 | 60.70 201 | 76.92 164 | 81.41 187 | 61.52 202 | 69.45 144 | 65.58 144 | 26.74 217 | 61.79 105 | 60.40 134 | 41.17 208 | 77.60 178 | 77.78 184 | 88.41 194 | 82.70 191 |
|
TransMVSNet (Re) | | | 66.87 180 | 64.30 189 | 69.88 172 | 78.32 155 | 81.35 189 | 73.88 175 | 74.34 108 | 43.19 208 | 45.20 183 | 40.12 190 | 42.37 190 | 55.97 187 | 80.85 154 | 79.15 174 | 91.56 154 | 83.06 188 |
|
CMPMVS |  | 50.59 17 | 66.74 181 | 62.72 198 | 71.42 163 | 85.40 116 | 89.72 122 | 72.69 180 | 70.72 134 | 51.24 189 | 51.75 145 | 38.91 194 | 44.40 174 | 63.74 172 | 70.84 201 | 71.52 201 | 84.19 207 | 72.45 209 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
v7n | | | 66.43 182 | 65.51 182 | 67.51 179 | 71.63 201 | 83.10 179 | 70.89 186 | 65.02 176 | 50.13 196 | 44.68 186 | 39.59 191 | 38.77 202 | 62.57 175 | 77.59 179 | 78.91 175 | 90.29 178 | 90.44 152 |
|
EG-PatchMatch MVS | | | 66.23 183 | 65.20 184 | 67.43 180 | 77.74 160 | 86.20 148 | 72.51 181 | 63.68 180 | 43.95 206 | 43.44 189 | 36.22 201 | 45.43 173 | 54.04 190 | 81.00 152 | 80.95 167 | 93.15 117 | 82.67 192 |
|
WR-MVS | | | 64.98 184 | 66.59 179 | 63.09 194 | 74.34 187 | 82.68 182 | 64.98 198 | 69.17 147 | 54.42 181 | 36.18 204 | 44.32 171 | 44.35 175 | 44.65 202 | 73.60 192 | 77.83 183 | 89.21 190 | 88.96 166 |
|
gm-plane-assit | | | 64.86 185 | 68.15 175 | 61.02 200 | 76.44 171 | 68.29 213 | 41.60 218 | 53.37 206 | 34.68 216 | 26.19 219 | 33.22 205 | 57.09 144 | 71.97 137 | 95.12 5 | 93.97 7 | 96.54 16 | 94.66 96 |
|
CP-MVSNet | | | 64.84 186 | 64.97 185 | 64.69 189 | 72.09 197 | 81.04 192 | 66.66 191 | 67.53 164 | 52.45 186 | 37.40 199 | 44.00 175 | 38.37 204 | 53.54 194 | 72.26 196 | 76.93 189 | 90.94 168 | 89.75 158 |
|
MDTV_nov1_ep13_2view | | | 64.72 187 | 64.94 186 | 64.46 190 | 71.14 203 | 81.94 185 | 67.53 189 | 54.54 202 | 55.92 173 | 43.29 190 | 44.02 174 | 43.27 182 | 59.87 180 | 71.85 198 | 74.77 195 | 90.36 176 | 82.82 190 |
|
MVS-HIRNet | | | 64.63 188 | 64.03 193 | 65.33 186 | 75.01 183 | 82.84 180 | 58.54 209 | 52.10 207 | 55.42 176 | 49.29 160 | 29.83 210 | 43.48 180 | 66.97 162 | 78.28 172 | 78.81 176 | 90.07 181 | 79.52 198 |
|
pmnet_mix02 | | | 64.58 189 | 64.11 192 | 65.12 187 | 74.16 189 | 80.17 197 | 63.24 200 | 67.91 158 | 57.87 167 | 41.69 193 | 45.86 164 | 40.99 194 | 53.97 193 | 69.92 204 | 71.67 200 | 89.77 183 | 82.29 194 |
|
LTVRE_ROB | | 63.07 16 | 64.49 190 | 63.16 197 | 66.04 184 | 77.47 162 | 82.64 183 | 70.98 185 | 65.02 176 | 34.01 217 | 29.61 213 | 49.12 155 | 35.58 212 | 70.57 151 | 75.10 188 | 78.45 180 | 82.60 210 | 87.24 173 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PEN-MVS | | | 64.35 191 | 64.29 190 | 64.42 191 | 72.67 193 | 79.83 198 | 66.97 190 | 68.24 153 | 51.21 190 | 35.29 206 | 44.09 172 | 38.51 203 | 52.36 197 | 71.06 199 | 77.65 185 | 90.99 164 | 87.68 172 |
|
pmmvs6 | | | 64.24 192 | 61.77 202 | 67.12 181 | 72.39 196 | 81.39 188 | 71.33 184 | 65.95 174 | 36.05 213 | 48.48 167 | 30.55 206 | 43.45 181 | 58.75 182 | 77.88 177 | 76.36 192 | 85.83 203 | 86.70 176 |
|
pmmvs-eth3d | | | 64.24 192 | 61.96 200 | 66.90 182 | 66.35 207 | 76.04 206 | 66.09 194 | 66.31 171 | 52.59 185 | 50.94 153 | 37.61 197 | 32.79 215 | 62.43 176 | 75.78 186 | 75.48 194 | 89.27 189 | 83.39 186 |
|
PS-CasMVS | | | 64.22 194 | 64.19 191 | 64.25 192 | 71.86 199 | 80.67 193 | 66.42 193 | 67.43 166 | 50.64 192 | 36.48 201 | 42.60 181 | 37.46 207 | 52.56 196 | 71.98 197 | 76.69 191 | 90.76 170 | 89.29 164 |
|
WR-MVS_H | | | 64.14 195 | 65.36 183 | 62.71 196 | 72.47 195 | 82.33 184 | 65.13 195 | 66.99 168 | 51.81 188 | 36.47 202 | 43.33 178 | 42.77 186 | 43.99 204 | 72.41 195 | 75.99 193 | 91.20 162 | 88.86 168 |
|
SixPastTwentyTwo | | | 63.75 196 | 63.42 195 | 64.13 193 | 72.91 192 | 80.34 195 | 61.29 203 | 63.90 178 | 49.58 197 | 40.42 195 | 54.99 134 | 37.13 209 | 60.90 178 | 68.46 205 | 70.80 202 | 85.37 205 | 82.65 193 |
|
PM-MVS | | | 63.52 197 | 62.51 199 | 64.70 188 | 64.79 211 | 76.08 205 | 65.07 196 | 62.08 183 | 58.13 165 | 46.56 175 | 44.98 167 | 31.31 216 | 62.89 173 | 72.58 194 | 69.93 206 | 86.81 200 | 84.55 180 |
|
DTE-MVSNet | | | 63.26 198 | 63.41 196 | 63.08 195 | 72.59 194 | 78.56 201 | 65.03 197 | 68.28 152 | 50.53 194 | 32.38 210 | 44.03 173 | 37.79 206 | 49.48 200 | 70.83 202 | 76.73 190 | 90.73 171 | 85.42 179 |
|
testgi | | | 63.11 199 | 64.88 188 | 61.05 199 | 75.83 179 | 78.51 202 | 60.42 204 | 66.20 172 | 48.77 198 | 34.56 207 | 56.96 118 | 40.35 197 | 40.95 209 | 77.46 180 | 77.22 187 | 88.37 196 | 74.86 207 |
|
GG-mvs-BLEND | | | 62.08 200 | 88.31 43 | 31.46 214 | 0.16 226 | 98.10 11 | 91.57 41 | 0.09 222 | 85.07 65 | 0.21 227 | 73.90 57 | 83.74 39 | 0.19 224 | 88.98 74 | 89.39 61 | 96.58 14 | 99.02 15 |
|
Anonymous20231206 | | | 62.05 201 | 61.83 201 | 62.30 198 | 72.09 197 | 77.84 203 | 63.10 201 | 67.62 163 | 50.20 195 | 36.68 200 | 29.59 211 | 37.05 210 | 43.90 205 | 77.33 181 | 77.31 186 | 90.41 175 | 83.49 185 |
|
N_pmnet | | | 60.52 202 | 58.83 205 | 62.50 197 | 68.97 205 | 75.61 207 | 59.72 207 | 66.47 169 | 51.90 187 | 41.26 194 | 35.42 203 | 35.63 211 | 52.25 198 | 67.07 208 | 70.08 205 | 86.35 201 | 76.10 203 |
|
EU-MVSNet | | | 58.73 203 | 60.92 203 | 56.17 204 | 66.17 208 | 72.39 210 | 58.85 208 | 61.24 186 | 48.47 199 | 27.91 215 | 46.70 163 | 40.06 198 | 39.07 210 | 68.27 206 | 70.34 204 | 83.77 208 | 80.23 197 |
|
test20.03 | | | 57.93 204 | 59.22 204 | 56.44 203 | 71.84 200 | 73.78 209 | 53.55 212 | 65.96 173 | 43.02 209 | 28.46 214 | 37.50 198 | 38.17 205 | 30.41 214 | 75.25 187 | 74.42 198 | 88.41 194 | 72.37 210 |
|
MDA-MVSNet-bldmvs | | | 54.99 205 | 52.66 209 | 57.71 202 | 52.74 217 | 74.87 208 | 55.61 210 | 68.41 151 | 43.65 207 | 32.54 208 | 37.93 195 | 22.11 222 | 54.11 189 | 48.85 215 | 67.34 208 | 82.85 209 | 73.88 208 |
|
new-patchmatchnet | | | 53.91 206 | 52.69 208 | 55.33 206 | 64.83 210 | 70.90 211 | 52.24 213 | 61.75 184 | 41.09 210 | 30.82 211 | 29.90 209 | 28.22 218 | 36.69 211 | 61.52 210 | 65.08 209 | 85.64 204 | 72.14 211 |
|
MIMVSNet1 | | | 52.76 207 | 53.95 207 | 51.38 208 | 41.96 220 | 70.79 212 | 53.56 211 | 63.03 182 | 39.36 211 | 27.83 216 | 22.73 216 | 33.07 214 | 34.47 213 | 70.49 203 | 72.69 199 | 87.41 199 | 68.51 212 |
|
pmmvs3 | | | 52.59 208 | 52.43 210 | 52.78 207 | 54.53 216 | 64.49 215 | 50.07 214 | 46.89 214 | 35.31 215 | 30.19 212 | 27.27 213 | 26.96 220 | 53.02 195 | 67.28 207 | 70.54 203 | 81.96 211 | 75.20 205 |
|
new_pmnet | | | 50.32 209 | 51.36 211 | 49.11 209 | 49.19 218 | 64.89 214 | 48.66 216 | 47.99 213 | 47.55 201 | 26.27 218 | 29.51 212 | 28.66 217 | 44.89 201 | 61.12 211 | 62.74 211 | 77.66 213 | 65.03 213 |
|
FPMVS | | | 50.25 210 | 45.67 213 | 55.58 205 | 70.48 204 | 60.12 216 | 59.78 206 | 59.33 192 | 46.66 202 | 37.94 197 | 30.22 208 | 27.51 219 | 35.94 212 | 50.98 214 | 47.90 214 | 70.02 215 | 56.31 214 |
|
test_method | | | 47.92 211 | 55.39 206 | 39.21 212 | 19.90 224 | 49.24 218 | 39.29 219 | 34.65 219 | 57.37 169 | 32.54 208 | 25.11 214 | 41.02 193 | 44.31 203 | 66.58 209 | 57.57 213 | 64.59 218 | 90.82 148 |
|
PMVS |  | 36.83 18 | 40.62 212 | 36.39 214 | 45.56 210 | 58.40 213 | 33.20 221 | 32.62 221 | 56.02 196 | 28.25 218 | 37.92 198 | 22.29 217 | 26.15 221 | 25.29 216 | 48.49 216 | 43.82 217 | 63.13 219 | 52.53 217 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 35.20 213 | 33.96 215 | 36.65 213 | 43.30 219 | 32.51 222 | 26.96 223 | 48.31 212 | 38.87 212 | 20.08 222 | 8.08 219 | 7.41 226 | 26.44 215 | 53.60 212 | 58.43 212 | 54.81 220 | 38.79 219 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 32.52 214 | 33.92 216 | 30.88 215 | 34.15 223 | 44.70 220 | 27.79 222 | 39.69 218 | 22.21 219 | 4.31 226 | 15.73 218 | 14.13 224 | 12.45 221 | 40.11 217 | 47.00 215 | 66.88 216 | 53.54 215 |
|
E-PMN | | | 21.42 215 | 17.56 218 | 25.94 216 | 36.25 222 | 19.02 225 | 11.56 224 | 43.72 216 | 15.25 221 | 6.99 224 | 8.04 220 | 4.53 228 | 21.77 218 | 16.13 220 | 26.16 219 | 35.34 222 | 33.77 220 |
|
MVE |  | 25.07 19 | 21.25 216 | 23.51 217 | 18.62 218 | 15.07 225 | 29.77 224 | 10.67 226 | 34.60 220 | 12.51 222 | 9.46 223 | 7.84 221 | 3.82 229 | 14.38 220 | 27.45 219 | 42.42 218 | 27.56 224 | 40.74 218 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 20.61 217 | 16.32 219 | 25.62 217 | 36.41 221 | 18.93 226 | 11.51 225 | 43.75 215 | 15.65 220 | 6.53 225 | 7.56 222 | 4.68 227 | 22.03 217 | 14.56 221 | 23.10 220 | 33.51 223 | 29.77 221 |
|
testmvs | | | 0.76 218 | 1.23 220 | 0.21 219 | 0.05 227 | 0.21 227 | 0.38 228 | 0.09 222 | 0.94 223 | 0.05 228 | 2.13 224 | 0.08 230 | 0.60 223 | 0.82 222 | 0.77 221 | 0.11 225 | 3.62 223 |
|
test123 | | | 0.67 219 | 1.11 221 | 0.16 220 | 0.01 228 | 0.14 228 | 0.20 229 | 0.04 224 | 0.77 224 | 0.02 229 | 2.15 223 | 0.02 231 | 0.61 222 | 0.23 223 | 0.72 222 | 0.07 226 | 3.76 222 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
TPM-MVS | | | | | | 98.35 1 | 98.66 4 | 96.92 2 | | | 83.78 24 | 90.39 24 | 94.36 1 | 94.48 4 | | | 96.58 14 | 93.94 110 |
|
RE-MVS-def | | | | | | | | | | | 39.41 196 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 91.16 7 | | | | | |
|
SR-MVS | | | | | | 96.04 31 | | | 87.51 26 | | | | 87.60 21 | | | | | |
|
Anonymous202405211 | | | | 75.59 133 | | 85.13 119 | 91.06 109 | 84.62 93 | 77.96 74 | 69.47 135 | | 40.79 189 | 63.84 124 | 84.57 67 | 83.55 127 | 84.69 114 | 89.69 184 | 95.75 83 |
|
our_test_3 | | | | | | 73.80 191 | 79.57 199 | 64.47 199 | | | | | | | | | | |
|
ambc | | | | 50.35 212 | | 55.61 215 | 59.93 217 | 48.73 215 | | 44.08 205 | 35.81 205 | 24.01 215 | 10.64 225 | 41.57 207 | 72.83 193 | 63.35 210 | 74.99 214 | 77.61 200 |
|
MTAPA | | | | | | | | | | | 91.14 7 | | 85.84 27 | | | | | |
|
MTMP | | | | | | | | | | | 90.95 8 | | 84.13 35 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.17 227 | | | | | | | | | | |
|
tmp_tt | | | | | 39.78 211 | 56.31 214 | 31.71 223 | 35.84 220 | 15.08 221 | 82.57 74 | 50.83 155 | 63.07 96 | 47.51 167 | 15.28 219 | 52.23 213 | 44.24 216 | 65.35 217 | |
|
XVS | | | | | | 89.65 71 | 95.93 47 | 85.97 80 | | | 76.32 55 | | 82.05 45 | | | | 93.51 97 | |
|
X-MVStestdata | | | | | | 89.65 71 | 95.93 47 | 85.97 80 | | | 76.32 55 | | 82.05 45 | | | | 93.51 97 | |
|
mPP-MVS | | | | | | 95.90 33 | | | | | | | 80.22 54 | | | | | |
|
NP-MVS | | | | | | | | | | 89.55 46 | | | | | | | | |
|
Patchmtry | | | | | | | 87.41 133 | 78.32 140 | 54.14 203 | | 51.09 150 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 48.96 219 | 43.77 217 | 40.58 217 | 50.93 191 | 24.67 220 | 36.95 200 | 20.18 223 | 41.60 206 | 38.92 218 | | 52.37 221 | 53.31 216 |
|