SED-MVS | | | 97.92 1 | 98.27 2 | 97.52 1 | 98.88 12 | 99.60 1 | 98.80 5 | 95.08 8 | 98.57 2 | 95.63 2 | 96.98 10 | 99.73 1 | 97.67 1 | 97.26 10 | 95.86 22 | 99.04 15 | 99.89 5 |
|
MSP-MVS | | | 97.74 2 | 98.32 1 | 97.06 8 | 98.66 15 | 99.35 7 | 98.66 8 | 94.75 14 | 98.22 5 | 93.60 6 | 97.99 1 | 98.58 8 | 97.41 4 | 98.24 2 | 95.95 18 | 99.27 4 | 99.91 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 97.71 3 | 98.01 6 | 97.37 2 | 98.98 6 | 99.58 3 | 98.79 6 | 95.06 9 | 98.24 4 | 94.66 3 | 96.35 16 | 99.20 4 | 97.63 2 | 97.20 12 | 95.68 23 | 99.08 13 | 99.84 7 |
|
DPE-MVS |  | | 97.69 4 | 98.16 3 | 97.14 6 | 99.01 5 | 99.52 5 | 99.12 2 | 95.38 3 | 98.00 8 | 93.31 10 | 97.71 2 | 99.61 3 | 96.94 5 | 96.99 16 | 95.45 27 | 99.09 12 | 99.81 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS |  | | 97.61 5 | 97.87 7 | 97.30 3 | 98.94 11 | 99.60 1 | 98.21 13 | 95.11 5 | 98.39 3 | 95.83 1 | 94.40 29 | 99.70 2 | 96.79 6 | 97.16 13 | 95.95 18 | 98.92 26 | 99.90 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 97.60 6 | 98.08 4 | 97.03 9 | 99.14 1 | 99.55 4 | 98.67 7 | 95.32 4 | 97.91 9 | 92.55 13 | 97.11 7 | 97.23 13 | 97.49 3 | 98.16 3 | 97.05 5 | 99.04 15 | 99.55 19 |
|
APDe-MVS | | | 97.31 7 | 97.51 12 | 97.08 7 | 98.95 10 | 99.29 12 | 98.58 10 | 95.11 5 | 97.69 15 | 94.16 4 | 96.91 11 | 96.81 17 | 96.57 10 | 96.71 20 | 95.39 29 | 99.08 13 | 99.79 10 |
|
SF-MVS | | | 97.17 8 | 97.18 15 | 97.17 4 | 99.11 2 | 99.20 14 | 99.05 3 | 95.55 1 | 97.39 18 | 93.56 7 | 97.48 4 | 96.71 19 | 96.75 7 | 95.73 32 | 94.40 44 | 98.98 20 | 99.33 25 |
|
NCCC | | | 97.01 9 | 97.74 8 | 96.16 12 | 99.02 4 | 99.35 7 | 98.63 9 | 95.04 10 | 97.84 12 | 88.95 26 | 96.83 13 | 97.02 16 | 96.39 15 | 97.44 7 | 96.51 9 | 98.90 28 | 99.16 42 |
|
SMA-MVS |  | | 96.96 10 | 97.65 11 | 96.15 13 | 98.98 6 | 99.31 11 | 97.91 18 | 94.68 16 | 97.52 16 | 90.59 20 | 94.54 28 | 99.20 4 | 96.54 12 | 97.29 9 | 96.48 10 | 98.22 64 | 99.19 38 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MCST-MVS | | | 96.93 11 | 98.07 5 | 95.61 20 | 98.98 6 | 99.44 6 | 98.04 14 | 95.04 10 | 98.10 6 | 86.55 33 | 97.65 3 | 97.56 11 | 95.60 24 | 97.67 6 | 96.45 11 | 99.43 1 | 99.61 18 |
|
HPM-MVS++ |  | | 96.91 12 | 97.70 9 | 96.00 15 | 98.97 9 | 99.16 17 | 97.82 21 | 94.81 13 | 98.04 7 | 89.61 23 | 96.56 15 | 98.60 7 | 96.39 15 | 97.09 14 | 95.22 31 | 98.39 58 | 99.22 34 |
|
SD-MVS | | | 96.87 13 | 97.69 10 | 95.92 16 | 96.38 49 | 99.25 13 | 97.76 22 | 94.75 14 | 97.72 13 | 92.46 15 | 95.94 17 | 99.09 6 | 96.48 14 | 96.01 29 | 96.08 16 | 97.68 95 | 99.73 13 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS |  | | 96.79 14 | 96.99 18 | 96.56 10 | 98.76 14 | 98.87 26 | 98.42 11 | 94.93 12 | 97.70 14 | 91.83 16 | 95.52 20 | 95.94 24 | 96.63 9 | 95.94 30 | 95.47 26 | 98.80 34 | 99.47 22 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + MP. | | | 96.50 15 | 97.08 16 | 95.82 18 | 96.12 53 | 98.97 23 | 98.00 15 | 94.13 21 | 97.89 10 | 91.49 17 | 95.11 25 | 97.52 12 | 96.26 19 | 96.27 27 | 94.07 55 | 98.91 27 | 99.74 12 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SteuartSystems-ACMMP | | | 96.20 16 | 97.22 14 | 95.01 24 | 98.40 23 | 99.11 18 | 97.93 17 | 93.62 25 | 96.28 31 | 87.45 29 | 97.05 9 | 96.00 23 | 94.23 32 | 96.83 19 | 95.97 17 | 98.40 57 | 99.27 31 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 96.09 17 | 96.41 23 | 95.72 19 | 98.58 18 | 98.84 27 | 97.95 16 | 93.08 29 | 96.96 24 | 90.24 21 | 96.60 14 | 94.40 32 | 96.52 13 | 95.13 44 | 94.33 46 | 97.93 85 | 98.59 67 |
|
zzz-MVS | | | 95.87 18 | 95.63 30 | 96.15 13 | 98.60 17 | 98.83 28 | 97.89 19 | 93.65 24 | 96.24 32 | 93.08 11 | 91.13 36 | 95.46 29 | 95.72 23 | 95.64 34 | 93.67 63 | 97.97 82 | 98.46 74 |
|
ACMMP_NAP | | | 95.81 19 | 96.50 22 | 95.01 24 | 98.79 13 | 99.17 16 | 97.52 27 | 94.20 20 | 96.19 33 | 85.71 37 | 93.80 32 | 96.20 22 | 95.89 20 | 96.62 22 | 94.98 37 | 97.93 85 | 98.52 70 |
|
train_agg | | | 95.72 20 | 97.37 13 | 93.80 30 | 97.82 32 | 98.92 24 | 97.84 20 | 93.50 26 | 96.86 26 | 81.35 56 | 97.10 8 | 97.71 9 | 94.19 33 | 96.02 28 | 95.37 30 | 98.07 72 | 99.64 16 |
|
ACMMPR | | | 95.59 21 | 95.89 25 | 95.25 22 | 98.41 22 | 98.74 30 | 97.69 25 | 92.73 33 | 96.88 25 | 88.95 26 | 95.33 22 | 92.91 39 | 95.79 21 | 94.73 54 | 94.33 46 | 97.92 87 | 98.32 80 |
|
DeepC-MVS_fast | | 91.53 1 | 95.57 22 | 95.67 28 | 95.45 21 | 98.57 19 | 99.00 22 | 97.76 22 | 94.41 18 | 97.06 21 | 86.84 32 | 86.39 47 | 92.27 44 | 96.38 17 | 97.89 5 | 98.06 3 | 98.73 40 | 99.01 50 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSLP-MVS++ | | | 95.49 23 | 94.84 34 | 96.25 11 | 98.64 16 | 98.63 34 | 98.35 12 | 92.37 35 | 95.04 51 | 92.62 12 | 87.12 46 | 93.79 33 | 96.55 11 | 93.53 73 | 96.78 6 | 98.98 20 | 98.99 51 |
|
CP-MVS | | | 95.43 24 | 95.67 28 | 95.14 23 | 98.24 28 | 98.60 35 | 97.45 28 | 92.80 31 | 95.98 36 | 89.21 25 | 95.22 23 | 93.60 34 | 95.43 25 | 94.37 61 | 93.22 74 | 97.68 95 | 98.72 58 |
|
DPM-MVS | | | 95.36 25 | 95.84 26 | 94.82 26 | 96.70 45 | 98.49 45 | 99.27 1 | 95.09 7 | 96.71 27 | 83.87 45 | 86.34 49 | 96.44 21 | 95.06 27 | 98.35 1 | 98.82 1 | 98.89 29 | 95.69 134 |
|
MP-MVS |  | | 95.24 26 | 95.96 24 | 94.40 28 | 98.32 25 | 98.38 50 | 97.12 30 | 92.87 30 | 95.17 49 | 85.50 38 | 95.68 18 | 94.91 30 | 94.58 29 | 95.11 45 | 93.76 60 | 98.05 75 | 98.68 60 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
TSAR-MVS + ACMM | | | 94.99 27 | 97.02 17 | 92.61 41 | 97.19 38 | 98.71 32 | 97.74 24 | 93.21 28 | 96.97 23 | 79.27 71 | 94.09 30 | 97.14 14 | 90.84 67 | 96.64 21 | 95.94 20 | 97.42 110 | 99.67 15 |
|
X-MVS | | | 94.70 28 | 95.71 27 | 93.52 34 | 98.38 24 | 98.56 37 | 96.99 31 | 92.62 34 | 95.58 40 | 81.00 63 | 94.57 27 | 93.49 35 | 94.16 36 | 94.82 50 | 94.29 49 | 97.99 81 | 98.68 60 |
|
PGM-MVS | | | 94.64 29 | 95.49 31 | 93.66 32 | 98.55 20 | 98.51 43 | 97.63 26 | 87.77 49 | 94.45 55 | 84.92 41 | 97.23 6 | 91.90 46 | 95.22 26 | 94.56 57 | 93.80 59 | 97.87 91 | 97.97 90 |
|
TSAR-MVS + GP. | | | 94.59 30 | 96.60 21 | 92.25 42 | 90.25 94 | 98.17 57 | 96.22 37 | 86.53 55 | 97.49 17 | 87.26 30 | 95.21 24 | 97.06 15 | 94.07 38 | 94.34 63 | 94.20 51 | 99.18 5 | 99.71 14 |
|
xxxxxxxxxxxxxcwj | | | 94.57 31 | 92.34 51 | 97.17 4 | 99.11 2 | 99.20 14 | 99.05 3 | 95.55 1 | 97.39 18 | 93.56 7 | 97.48 4 | 62.85 152 | 96.75 7 | 95.73 32 | 94.40 44 | 98.98 20 | 99.33 25 |
|
PHI-MVS | | | 94.49 32 | 96.72 20 | 91.88 44 | 97.06 40 | 98.88 25 | 94.99 48 | 89.13 43 | 96.15 34 | 79.70 67 | 96.91 11 | 95.78 26 | 91.87 57 | 94.65 55 | 95.68 23 | 98.53 49 | 98.98 53 |
|
AdaColmap |  | | 94.28 33 | 92.94 46 | 95.84 17 | 98.32 25 | 98.33 52 | 96.06 39 | 94.62 17 | 96.29 30 | 91.22 18 | 89.89 40 | 85.50 75 | 96.38 17 | 91.85 102 | 90.89 89 | 98.44 53 | 97.81 93 |
|
DeepPCF-MVS | | 91.00 2 | 94.15 34 | 96.87 19 | 90.97 52 | 96.82 43 | 99.33 10 | 89.40 101 | 92.76 32 | 98.76 1 | 82.36 52 | 88.74 41 | 95.49 28 | 90.58 74 | 98.13 4 | 97.80 4 | 93.88 190 | 99.88 6 |
|
CPTT-MVS | | | 94.11 35 | 93.99 39 | 94.25 29 | 96.58 46 | 97.66 65 | 97.31 29 | 91.94 36 | 94.84 52 | 88.72 28 | 92.51 33 | 93.04 38 | 95.78 22 | 91.51 105 | 89.97 106 | 95.15 179 | 98.37 77 |
|
EPNet | | | 93.69 36 | 95.34 32 | 91.76 45 | 96.98 42 | 98.47 47 | 95.40 45 | 86.79 52 | 95.47 42 | 82.84 49 | 95.66 19 | 89.17 52 | 90.47 75 | 95.25 43 | 94.69 40 | 98.10 69 | 98.68 60 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMMP |  | | 93.32 37 | 93.59 42 | 93.00 39 | 97.03 41 | 98.24 53 | 95.27 46 | 91.66 39 | 95.20 47 | 83.25 47 | 95.39 21 | 85.52 73 | 92.80 48 | 92.60 92 | 90.21 102 | 98.01 78 | 97.99 88 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CANet | | | 93.23 38 | 93.72 41 | 92.65 40 | 95.48 56 | 99.09 20 | 96.55 35 | 86.74 53 | 95.28 45 | 85.22 39 | 77.30 75 | 91.25 48 | 92.60 50 | 97.06 15 | 96.63 7 | 99.31 2 | 99.45 23 |
|
CDPH-MVS | | | 93.22 39 | 95.08 33 | 91.04 51 | 97.57 35 | 98.49 45 | 96.74 33 | 89.35 42 | 95.19 48 | 73.57 101 | 90.26 38 | 91.59 47 | 90.68 71 | 95.09 47 | 96.15 14 | 98.31 63 | 98.81 56 |
|
CSCG | | | 93.16 40 | 92.65 48 | 93.76 31 | 98.32 25 | 99.09 20 | 96.12 38 | 89.91 41 | 93.15 64 | 89.64 22 | 83.62 57 | 88.91 55 | 92.40 52 | 91.09 110 | 93.70 61 | 96.14 162 | 98.99 51 |
|
MVS_111021_LR | | | 93.05 41 | 94.53 36 | 91.32 49 | 96.43 48 | 98.38 50 | 92.81 62 | 87.20 51 | 95.94 38 | 81.45 55 | 94.75 26 | 86.08 69 | 92.12 55 | 94.83 49 | 93.34 68 | 97.89 90 | 98.42 76 |
|
3Dnovator+ | | 86.26 7 | 92.90 42 | 92.45 50 | 93.42 35 | 97.25 37 | 98.45 49 | 95.82 40 | 85.71 61 | 93.83 59 | 89.55 24 | 72.31 105 | 92.28 43 | 94.01 40 | 95.10 46 | 95.92 21 | 98.17 65 | 99.23 33 |
|
MVS_111021_HR | | | 92.73 43 | 94.83 35 | 90.28 58 | 96.27 50 | 99.10 19 | 92.77 63 | 86.15 58 | 93.41 62 | 77.11 90 | 93.82 31 | 87.39 61 | 90.61 72 | 95.60 36 | 95.15 33 | 98.79 35 | 99.32 27 |
|
PLC |  | 89.12 3 | 92.67 44 | 90.84 61 | 94.81 27 | 97.69 33 | 96.10 93 | 95.42 44 | 91.70 37 | 95.82 39 | 92.52 14 | 81.24 61 | 86.01 70 | 94.36 30 | 92.44 96 | 90.27 99 | 97.19 119 | 93.99 160 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
3Dnovator | | 85.78 8 | 92.53 45 | 91.96 53 | 93.20 37 | 97.99 29 | 98.47 47 | 95.78 41 | 85.94 59 | 93.07 66 | 86.40 34 | 73.43 97 | 89.00 54 | 94.08 37 | 94.74 53 | 96.44 12 | 99.01 19 | 98.57 68 |
|
DeepC-MVS | | 88.77 4 | 92.39 46 | 91.74 55 | 93.14 38 | 96.21 51 | 98.55 40 | 96.30 36 | 93.84 22 | 93.06 67 | 81.09 61 | 74.69 90 | 85.20 79 | 93.48 43 | 95.41 39 | 96.13 15 | 97.92 87 | 99.18 39 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OMC-MVS | | | 92.05 47 | 91.88 54 | 92.25 42 | 96.51 47 | 97.94 59 | 93.18 59 | 88.97 45 | 96.53 28 | 84.47 43 | 80.79 63 | 87.85 57 | 93.25 46 | 92.48 95 | 91.81 82 | 97.12 120 | 95.73 133 |
|
MVSTER | | | 91.91 48 | 93.43 45 | 90.14 59 | 89.81 101 | 92.32 132 | 94.53 51 | 81.32 90 | 96.00 35 | 84.77 42 | 85.41 54 | 92.39 42 | 91.32 59 | 96.41 23 | 94.01 57 | 99.11 8 | 97.45 102 |
|
MVS_0304 | | | 91.90 49 | 92.93 47 | 90.69 56 | 93.66 66 | 98.78 29 | 96.73 34 | 85.43 65 | 93.13 65 | 78.11 84 | 77.02 78 | 89.09 53 | 91.10 63 | 96.98 17 | 96.54 8 | 99.11 8 | 98.96 54 |
|
CS-MVS-test | | | 91.76 50 | 93.47 43 | 89.76 62 | 94.64 61 | 98.22 55 | 88.13 110 | 81.58 87 | 97.02 22 | 82.47 51 | 85.49 53 | 85.41 77 | 93.28 45 | 95.33 41 | 93.61 64 | 98.45 52 | 99.22 34 |
|
QAPM | | | 91.68 51 | 91.97 52 | 91.34 48 | 97.86 31 | 98.72 31 | 95.60 43 | 85.72 60 | 90.86 80 | 77.14 89 | 76.06 79 | 90.35 49 | 92.69 49 | 94.10 66 | 94.60 41 | 99.04 15 | 99.09 44 |
|
CS-MVS | | | 91.55 52 | 92.49 49 | 90.45 57 | 94.00 64 | 97.91 61 | 91.17 82 | 81.40 89 | 95.22 46 | 83.51 46 | 82.37 59 | 82.29 85 | 94.07 38 | 96.36 26 | 94.03 56 | 98.56 47 | 99.22 34 |
|
CNLPA | | | 91.53 53 | 89.74 73 | 93.63 33 | 96.75 44 | 97.63 67 | 91.16 83 | 91.70 37 | 96.38 29 | 90.82 19 | 69.66 116 | 85.52 73 | 93.76 41 | 90.44 116 | 91.14 88 | 97.55 104 | 97.40 103 |
|
ETV-MVS | | | 91.51 54 | 94.06 38 | 88.54 71 | 89.39 106 | 97.52 68 | 89.48 98 | 80.88 93 | 97.09 20 | 79.41 69 | 87.87 42 | 86.18 68 | 92.95 47 | 95.94 30 | 94.33 46 | 99.13 7 | 99.52 21 |
|
DROMVSNet | | | 91.25 55 | 93.45 44 | 88.68 69 | 88.90 112 | 96.18 92 | 91.66 71 | 76.70 124 | 95.57 41 | 82.00 53 | 84.18 55 | 89.28 51 | 94.17 35 | 95.64 34 | 94.19 52 | 98.68 42 | 99.14 43 |
|
DELS-MVS | | | 91.09 56 | 90.56 69 | 91.71 46 | 95.82 54 | 98.59 36 | 95.74 42 | 86.68 54 | 85.86 108 | 85.12 40 | 72.71 100 | 81.36 88 | 88.06 95 | 97.31 8 | 98.27 2 | 98.86 32 | 99.82 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TAPA-MVS | | 87.40 6 | 90.98 57 | 90.71 63 | 91.30 50 | 96.14 52 | 97.66 65 | 94.80 49 | 89.00 44 | 94.74 54 | 77.42 88 | 80.22 64 | 86.70 64 | 92.27 53 | 91.65 104 | 90.17 104 | 98.15 68 | 93.83 164 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PVSNet_BlendedMVS | | | 90.74 58 | 90.66 65 | 90.82 54 | 94.75 59 | 98.54 41 | 91.30 79 | 86.53 55 | 95.43 43 | 85.75 35 | 78.66 70 | 70.67 125 | 87.60 96 | 96.37 24 | 95.08 35 | 98.98 20 | 99.90 2 |
|
PVSNet_Blended | | | 90.74 58 | 90.66 65 | 90.82 54 | 94.75 59 | 98.54 41 | 91.30 79 | 86.53 55 | 95.43 43 | 85.75 35 | 78.66 70 | 70.67 125 | 87.60 96 | 96.37 24 | 95.08 35 | 98.98 20 | 99.90 2 |
|
CHOSEN 280x420 | | | 90.61 60 | 94.27 37 | 86.35 91 | 93.12 70 | 98.16 58 | 89.99 94 | 69.62 179 | 92.48 71 | 76.89 93 | 87.28 45 | 96.72 18 | 90.31 77 | 94.81 51 | 92.33 79 | 98.17 65 | 98.08 86 |
|
MAR-MVS | | | 90.44 61 | 91.17 59 | 89.59 63 | 97.48 36 | 97.92 60 | 90.96 86 | 79.80 98 | 95.07 50 | 77.03 91 | 80.83 62 | 79.10 98 | 94.68 28 | 93.16 78 | 94.46 43 | 97.59 103 | 97.63 95 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 88.14 5 | 90.42 62 | 89.56 78 | 91.41 47 | 94.44 62 | 98.18 56 | 94.35 53 | 94.33 19 | 84.55 120 | 76.61 94 | 75.84 82 | 88.47 56 | 91.29 60 | 90.37 118 | 90.66 95 | 97.46 106 | 98.88 55 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
OpenMVS |  | 83.41 11 | 89.84 63 | 88.89 84 | 90.95 53 | 97.63 34 | 98.51 43 | 94.64 50 | 85.47 64 | 88.14 94 | 78.39 81 | 65.06 129 | 85.42 76 | 91.04 65 | 93.06 81 | 93.70 61 | 98.53 49 | 98.37 77 |
|
EIA-MVS | | | 89.82 64 | 91.48 57 | 87.89 80 | 89.16 108 | 97.31 70 | 88.99 102 | 80.92 92 | 94.29 56 | 77.65 86 | 82.16 60 | 79.77 96 | 91.90 56 | 94.61 56 | 93.03 76 | 98.70 41 | 99.21 37 |
|
canonicalmvs | | | 89.62 65 | 89.87 72 | 89.33 65 | 90.47 89 | 97.02 76 | 93.46 58 | 79.67 101 | 92.45 72 | 81.05 62 | 82.84 58 | 73.00 114 | 93.71 42 | 90.38 117 | 94.85 38 | 97.65 99 | 98.54 69 |
|
TSAR-MVS + COLMAP | | | 89.59 66 | 89.64 75 | 89.53 64 | 93.32 69 | 96.51 84 | 95.03 47 | 88.53 46 | 95.98 36 | 69.10 117 | 91.81 34 | 64.53 148 | 93.40 44 | 93.53 73 | 91.35 87 | 97.77 92 | 93.75 167 |
|
HQP-MVS | | | 89.57 67 | 90.57 68 | 88.41 73 | 92.77 71 | 94.71 108 | 94.24 54 | 87.97 47 | 93.44 61 | 68.18 120 | 91.75 35 | 71.54 124 | 89.90 80 | 92.31 99 | 91.43 85 | 97.39 111 | 98.80 57 |
|
MVS_Test | | | 89.02 68 | 90.20 70 | 87.64 82 | 89.83 100 | 97.05 75 | 92.30 65 | 77.59 120 | 92.89 68 | 75.01 99 | 77.36 74 | 76.10 108 | 92.27 53 | 95.30 42 | 95.42 28 | 98.83 33 | 97.30 107 |
|
CLD-MVS | | | 88.99 69 | 88.07 87 | 90.07 60 | 89.61 103 | 94.94 105 | 93.82 57 | 85.70 62 | 92.73 70 | 82.73 50 | 79.97 65 | 69.59 128 | 90.44 76 | 90.32 119 | 89.93 108 | 98.10 69 | 99.04 47 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
baseline | | | 88.91 70 | 89.94 71 | 87.70 81 | 89.44 105 | 96.74 82 | 91.62 73 | 77.92 117 | 93.79 60 | 78.76 76 | 77.55 73 | 78.46 101 | 89.38 86 | 92.26 100 | 92.52 78 | 99.10 10 | 98.23 81 |
|
PMMVS | | | 88.56 71 | 91.22 58 | 85.47 99 | 90.04 96 | 95.60 101 | 86.62 126 | 78.49 112 | 93.86 58 | 70.62 112 | 90.00 39 | 80.08 94 | 91.64 58 | 92.36 97 | 89.80 112 | 95.40 174 | 96.84 116 |
|
test2506 | | | 88.38 72 | 88.02 89 | 88.80 68 | 91.55 80 | 97.78 62 | 90.87 88 | 83.36 72 | 84.51 121 | 83.06 48 | 74.13 93 | 76.93 105 | 85.39 106 | 94.34 63 | 93.33 70 | 98.60 43 | 95.10 149 |
|
baseline1 | | | 88.16 73 | 88.15 86 | 88.17 77 | 90.02 97 | 94.79 107 | 91.85 70 | 83.89 68 | 87.37 100 | 75.67 97 | 73.75 95 | 79.89 95 | 88.44 94 | 94.41 58 | 93.33 70 | 99.18 5 | 93.55 169 |
|
thisisatest0530 | | | 87.99 74 | 90.76 62 | 84.75 103 | 88.36 117 | 96.82 79 | 87.65 116 | 79.67 101 | 91.77 74 | 70.93 108 | 79.94 66 | 87.65 59 | 84.21 116 | 92.98 84 | 89.07 123 | 97.66 98 | 97.13 110 |
|
tttt0517 | | | 87.93 75 | 90.71 63 | 84.68 104 | 88.33 118 | 96.76 81 | 87.42 119 | 79.67 101 | 91.74 75 | 70.83 109 | 79.91 67 | 87.61 60 | 84.21 116 | 92.88 89 | 89.07 123 | 97.62 101 | 97.03 112 |
|
CANet_DTU | | | 87.91 76 | 91.57 56 | 83.64 112 | 90.96 83 | 97.12 73 | 91.90 69 | 75.97 132 | 92.83 69 | 53.16 174 | 86.02 50 | 79.02 99 | 90.80 68 | 95.40 40 | 94.15 53 | 99.03 18 | 96.47 127 |
|
diffmvs | | | 87.86 77 | 87.40 95 | 88.39 74 | 88.57 115 | 96.10 93 | 91.24 81 | 83.15 75 | 90.62 81 | 79.13 73 | 72.45 103 | 67.71 134 | 90.07 79 | 92.58 93 | 93.31 73 | 98.17 65 | 99.03 48 |
|
IS_MVSNet | | | 87.83 78 | 90.66 65 | 84.53 105 | 90.08 95 | 96.79 80 | 88.16 109 | 79.89 97 | 85.44 110 | 72.20 103 | 75.50 86 | 87.14 62 | 80.21 144 | 95.53 37 | 95.22 31 | 96.65 136 | 99.02 49 |
|
EPP-MVSNet | | | 87.72 79 | 89.74 73 | 85.37 100 | 89.11 109 | 95.57 102 | 86.31 127 | 79.44 104 | 85.83 109 | 75.73 96 | 77.23 76 | 90.05 50 | 84.78 112 | 91.22 108 | 90.25 100 | 96.83 127 | 98.04 87 |
|
ET-MVSNet_ETH3D | | | 87.63 80 | 91.08 60 | 83.59 113 | 67.96 214 | 96.30 91 | 92.06 67 | 78.47 113 | 91.95 73 | 69.87 114 | 87.57 44 | 84.14 83 | 94.34 31 | 88.58 132 | 92.10 80 | 98.88 30 | 96.93 113 |
|
DI_MVS_plusplus_trai | | | 87.63 80 | 87.13 97 | 88.22 76 | 88.61 114 | 95.92 97 | 94.09 56 | 81.41 88 | 87.00 103 | 78.38 82 | 59.70 148 | 80.52 92 | 89.08 89 | 94.37 61 | 93.34 68 | 97.73 93 | 99.05 46 |
|
casdiffmvs | | | 87.59 82 | 86.69 101 | 88.64 70 | 89.06 110 | 96.32 90 | 90.18 91 | 83.21 74 | 87.74 98 | 80.20 66 | 67.99 120 | 68.34 132 | 90.79 69 | 93.83 69 | 94.08 54 | 98.41 56 | 98.50 72 |
|
PVSNet_Blended_VisFu | | | 87.44 83 | 88.72 85 | 85.95 95 | 92.02 75 | 97.26 71 | 86.88 124 | 82.66 82 | 83.86 127 | 79.16 72 | 66.96 123 | 84.91 80 | 77.26 161 | 94.97 48 | 93.48 65 | 97.73 93 | 99.64 16 |
|
FMVSNet3 | | | 87.19 84 | 87.32 96 | 87.04 89 | 82.82 153 | 90.21 147 | 92.88 61 | 76.53 127 | 91.69 76 | 81.31 57 | 64.81 132 | 80.64 89 | 89.79 84 | 94.80 52 | 94.76 39 | 98.88 30 | 94.32 156 |
|
LS3D | | | 87.19 84 | 85.48 108 | 89.18 66 | 94.96 58 | 95.47 103 | 92.02 68 | 93.36 27 | 88.69 92 | 67.01 121 | 70.56 112 | 72.10 119 | 92.47 51 | 89.96 122 | 89.93 108 | 95.25 176 | 91.68 178 |
|
ACMP | | 85.16 9 | 87.15 86 | 87.04 98 | 87.27 86 | 90.80 85 | 94.45 111 | 89.41 100 | 83.09 79 | 89.15 88 | 76.98 92 | 86.35 48 | 65.80 141 | 86.94 99 | 88.45 133 | 87.52 142 | 96.42 151 | 97.56 100 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
UGNet | | | 87.04 87 | 89.59 77 | 84.07 107 | 90.94 84 | 95.95 96 | 86.02 129 | 81.65 86 | 85.94 107 | 78.54 80 | 78.00 72 | 85.40 78 | 69.62 181 | 91.83 103 | 91.53 84 | 97.63 100 | 98.51 71 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LGP-MVS_train | | | 86.95 88 | 87.65 92 | 86.12 94 | 91.77 78 | 93.84 117 | 93.04 60 | 82.77 81 | 88.04 95 | 65.33 126 | 87.69 43 | 67.09 138 | 86.79 100 | 90.20 120 | 88.99 126 | 97.05 122 | 97.71 94 |
|
PatchMatch-RL | | | 86.75 89 | 85.43 109 | 88.29 75 | 94.06 63 | 96.37 89 | 86.82 125 | 82.94 80 | 88.94 90 | 79.59 68 | 79.83 68 | 59.17 162 | 89.46 85 | 91.12 109 | 88.81 130 | 96.88 126 | 93.78 165 |
|
FA-MVS(training) | | | 86.74 90 | 88.01 90 | 85.26 101 | 89.86 98 | 96.99 77 | 88.54 106 | 64.26 195 | 89.04 89 | 81.30 60 | 66.74 125 | 81.52 87 | 89.11 88 | 94.04 67 | 90.37 98 | 98.47 51 | 97.37 104 |
|
baseline2 | | | 86.51 91 | 89.35 81 | 83.19 115 | 85.70 139 | 94.88 106 | 85.75 134 | 77.13 122 | 89.87 85 | 70.65 111 | 79.03 69 | 79.14 97 | 81.51 137 | 93.70 70 | 90.22 101 | 98.38 59 | 98.60 66 |
|
thres100view900 | | | 86.48 92 | 85.08 111 | 88.12 78 | 90.54 86 | 96.90 78 | 92.39 64 | 84.82 66 | 84.16 125 | 71.65 104 | 70.86 109 | 60.49 157 | 91.23 62 | 93.65 71 | 90.19 103 | 98.10 69 | 99.32 27 |
|
ACMM | | 84.23 10 | 86.40 93 | 84.64 114 | 88.46 72 | 91.90 76 | 91.93 138 | 88.11 111 | 85.59 63 | 88.61 93 | 79.13 73 | 75.31 87 | 66.25 139 | 89.86 83 | 89.88 123 | 87.64 139 | 96.16 161 | 92.86 174 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GBi-Net | | | 86.16 94 | 86.00 104 | 86.35 91 | 81.81 159 | 89.52 156 | 91.40 75 | 76.53 127 | 91.69 76 | 81.31 57 | 64.81 132 | 80.64 89 | 88.72 90 | 90.54 113 | 90.72 91 | 98.34 60 | 94.08 157 |
|
test1 | | | 86.16 94 | 86.00 104 | 86.35 91 | 81.81 159 | 89.52 156 | 91.40 75 | 76.53 127 | 91.69 76 | 81.31 57 | 64.81 132 | 80.64 89 | 88.72 90 | 90.54 113 | 90.72 91 | 98.34 60 | 94.08 157 |
|
tfpn200view9 | | | 86.07 96 | 84.76 113 | 87.61 83 | 90.54 86 | 96.39 86 | 91.35 78 | 83.15 75 | 84.16 125 | 71.65 104 | 70.86 109 | 60.49 157 | 90.91 66 | 92.89 86 | 89.34 115 | 98.05 75 | 99.17 40 |
|
DCV-MVSNet | | | 85.90 97 | 85.88 106 | 85.93 96 | 87.86 123 | 88.37 173 | 89.45 99 | 77.46 121 | 87.33 101 | 77.51 87 | 76.06 79 | 75.76 110 | 88.48 93 | 87.40 141 | 88.89 129 | 94.80 185 | 97.37 104 |
|
Vis-MVSNet (Re-imp) | | | 85.89 98 | 89.62 76 | 81.55 125 | 89.85 99 | 96.08 95 | 87.55 117 | 79.80 98 | 84.80 117 | 66.55 123 | 73.70 96 | 86.71 63 | 68.25 188 | 94.40 59 | 94.53 42 | 97.32 114 | 97.09 111 |
|
MSDG | | | 85.81 99 | 82.29 138 | 89.93 61 | 95.52 55 | 92.61 127 | 91.51 74 | 91.46 40 | 85.12 114 | 78.56 78 | 63.25 138 | 69.01 130 | 85.31 109 | 88.45 133 | 88.23 133 | 97.21 118 | 89.33 189 |
|
thres200 | | | 85.80 100 | 84.38 115 | 87.46 84 | 90.51 88 | 96.39 86 | 91.64 72 | 83.15 75 | 81.59 135 | 71.54 106 | 70.24 113 | 60.41 159 | 89.88 81 | 92.89 86 | 89.85 111 | 98.06 73 | 99.26 32 |
|
ECVR-MVS |  | | 85.74 101 | 83.80 123 | 88.00 79 | 91.55 80 | 97.78 62 | 90.87 88 | 83.36 72 | 84.51 121 | 78.21 83 | 58.65 153 | 62.75 153 | 85.39 106 | 94.34 63 | 93.33 70 | 98.60 43 | 95.25 143 |
|
OPM-MVS | | | 85.69 102 | 82.79 131 | 89.06 67 | 93.42 67 | 94.21 115 | 94.21 55 | 87.61 50 | 72.68 160 | 70.79 110 | 71.09 107 | 67.27 137 | 90.74 70 | 91.29 107 | 89.05 125 | 97.61 102 | 93.94 162 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
thres400 | | | 85.59 103 | 84.08 118 | 87.36 85 | 90.45 90 | 96.60 83 | 90.95 87 | 83.67 70 | 80.99 138 | 71.17 107 | 69.08 118 | 60.25 160 | 89.88 81 | 93.14 79 | 89.34 115 | 98.02 77 | 99.17 40 |
|
CostFormer | | | 85.47 104 | 86.98 99 | 83.71 110 | 88.70 113 | 94.02 116 | 88.07 112 | 62.72 197 | 89.78 86 | 78.68 77 | 72.69 101 | 78.37 102 | 87.35 98 | 85.96 154 | 89.32 119 | 96.73 133 | 98.72 58 |
|
test1111 | | | 85.17 105 | 83.46 126 | 87.17 87 | 91.36 82 | 97.75 64 | 90.06 93 | 83.44 71 | 83.41 129 | 75.25 98 | 58.08 156 | 62.19 155 | 84.39 115 | 94.39 60 | 93.38 67 | 98.54 48 | 95.00 151 |
|
thres600view7 | | | 85.14 106 | 83.58 125 | 86.96 90 | 90.37 93 | 96.39 86 | 90.33 90 | 83.15 75 | 80.46 139 | 70.60 113 | 67.96 121 | 60.04 161 | 89.22 87 | 92.89 86 | 88.28 132 | 98.06 73 | 99.08 45 |
|
test-LLR | | | 85.11 107 | 89.49 79 | 80.00 134 | 85.32 143 | 94.49 109 | 82.27 164 | 74.18 142 | 87.83 96 | 56.70 152 | 75.55 84 | 86.26 65 | 82.75 129 | 93.06 81 | 90.60 96 | 98.77 37 | 98.65 64 |
|
FMVSNet2 | | | 84.89 108 | 84.02 120 | 85.91 97 | 81.81 159 | 89.52 156 | 91.40 75 | 75.79 133 | 84.45 123 | 79.39 70 | 58.75 151 | 74.35 112 | 88.72 90 | 93.51 75 | 93.46 66 | 98.34 60 | 94.08 157 |
|
FC-MVSNet-train | | | 84.88 109 | 84.08 118 | 85.82 98 | 89.21 107 | 91.74 139 | 85.87 130 | 81.20 91 | 81.71 134 | 74.66 100 | 73.38 98 | 64.99 145 | 86.60 101 | 90.75 111 | 88.08 134 | 97.36 112 | 97.90 91 |
|
EPNet_dtu | | | 84.87 110 | 89.01 82 | 80.05 133 | 95.25 57 | 92.88 125 | 88.84 104 | 84.11 67 | 91.69 76 | 49.28 190 | 85.69 51 | 78.95 100 | 65.39 193 | 92.22 101 | 91.66 83 | 97.43 109 | 89.95 185 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Effi-MVS+ | | | 84.80 111 | 85.71 107 | 83.73 109 | 87.94 122 | 95.76 98 | 90.08 92 | 73.45 149 | 85.12 114 | 62.66 135 | 72.39 104 | 64.97 146 | 90.59 73 | 92.95 85 | 90.69 94 | 97.67 97 | 98.12 83 |
|
UA-Net | | | 84.69 112 | 87.64 93 | 81.25 127 | 90.38 92 | 95.67 99 | 87.33 120 | 79.41 105 | 72.07 164 | 66.48 124 | 75.09 88 | 92.48 41 | 66.88 189 | 94.03 68 | 94.25 50 | 97.01 125 | 89.88 186 |
|
TESTMET0.1,1 | | | 84.62 113 | 89.49 79 | 78.94 143 | 82.18 156 | 94.49 109 | 82.27 164 | 70.94 169 | 87.83 96 | 56.70 152 | 75.55 84 | 86.26 65 | 82.75 129 | 93.06 81 | 90.60 96 | 98.77 37 | 98.65 64 |
|
CHOSEN 1792x2688 | | | 84.59 114 | 84.30 117 | 84.93 102 | 93.71 65 | 98.23 54 | 89.91 95 | 77.96 116 | 84.81 116 | 65.93 125 | 45.19 198 | 71.76 123 | 83.13 127 | 95.46 38 | 95.13 34 | 98.94 25 | 99.53 20 |
|
Anonymous20231211 | | | 84.23 115 | 81.71 143 | 87.17 87 | 87.38 130 | 93.59 120 | 88.95 103 | 82.14 84 | 83.82 128 | 78.56 78 | 48.09 191 | 73.89 113 | 91.25 61 | 86.38 148 | 88.06 136 | 94.74 186 | 98.14 82 |
|
MDTV_nov1_ep13 | | | 84.17 116 | 88.03 88 | 79.66 136 | 86.00 137 | 94.41 112 | 85.05 136 | 66.01 191 | 90.36 82 | 64.34 131 | 77.13 77 | 84.56 81 | 82.71 131 | 87.12 145 | 88.92 127 | 93.84 192 | 93.69 168 |
|
test-mter | | | 84.06 117 | 89.00 83 | 78.29 148 | 81.92 157 | 94.23 114 | 81.07 174 | 70.38 173 | 87.12 102 | 56.10 161 | 74.75 89 | 85.80 71 | 81.81 136 | 92.52 94 | 90.10 105 | 98.43 54 | 98.49 73 |
|
IB-MVS | | 79.58 12 | 83.83 118 | 84.81 112 | 82.68 117 | 91.85 77 | 97.35 69 | 75.75 193 | 82.57 83 | 86.55 105 | 84.01 44 | 70.90 108 | 65.43 143 | 63.18 199 | 84.19 168 | 89.92 110 | 98.74 39 | 99.31 29 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EPMVS | | | 83.71 119 | 86.76 100 | 80.16 132 | 89.72 102 | 95.64 100 | 84.68 137 | 59.73 202 | 89.61 87 | 62.67 134 | 72.65 102 | 81.80 86 | 86.22 103 | 86.23 150 | 88.03 137 | 97.96 83 | 93.35 170 |
|
HyFIR lowres test | | | 83.43 120 | 82.94 129 | 84.01 108 | 93.41 68 | 97.10 74 | 87.21 121 | 74.04 144 | 80.15 141 | 64.98 127 | 41.09 206 | 76.61 107 | 86.51 102 | 93.31 76 | 93.01 77 | 97.91 89 | 99.30 30 |
|
PatchmatchNet |  | | 83.28 121 | 87.57 94 | 78.29 148 | 87.46 128 | 94.95 104 | 83.36 146 | 59.43 205 | 90.20 84 | 58.10 147 | 74.29 92 | 86.20 67 | 84.13 118 | 85.27 160 | 87.39 143 | 97.25 117 | 94.67 154 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
SCA | | | 83.26 122 | 87.76 91 | 78.00 153 | 87.45 129 | 92.20 133 | 82.63 160 | 58.42 207 | 90.30 83 | 58.23 145 | 75.74 83 | 87.75 58 | 83.97 121 | 86.10 153 | 87.64 139 | 97.30 115 | 94.62 155 |
|
GeoE | | | 83.17 123 | 82.86 130 | 83.53 114 | 87.24 131 | 93.78 118 | 87.94 113 | 72.75 154 | 82.19 132 | 69.76 115 | 60.54 145 | 65.95 140 | 86.01 104 | 89.41 127 | 89.72 113 | 97.47 105 | 98.43 75 |
|
CDS-MVSNet | | | 83.13 124 | 83.73 124 | 82.43 123 | 84.52 148 | 92.92 124 | 88.26 108 | 77.67 119 | 72.08 163 | 69.08 118 | 66.96 123 | 74.66 111 | 78.61 150 | 90.70 112 | 91.96 81 | 96.46 150 | 96.86 115 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
RPSCF | | | 82.91 125 | 81.86 140 | 84.13 106 | 88.25 119 | 88.32 174 | 87.67 115 | 80.86 94 | 84.78 118 | 76.57 95 | 85.56 52 | 76.00 109 | 84.61 113 | 78.20 204 | 76.52 207 | 86.81 213 | 83.63 206 |
|
Vis-MVSNet |  | | 82.88 126 | 86.04 103 | 79.20 141 | 87.77 126 | 96.42 85 | 86.10 128 | 76.70 124 | 74.82 154 | 61.38 137 | 70.70 111 | 77.91 103 | 64.83 195 | 93.22 77 | 93.19 75 | 98.43 54 | 96.01 130 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
dps | | | 82.63 127 | 82.64 134 | 82.62 119 | 87.81 125 | 92.81 126 | 84.39 138 | 61.96 198 | 86.43 106 | 81.63 54 | 69.72 115 | 67.60 136 | 84.42 114 | 82.51 182 | 83.90 181 | 95.52 170 | 95.50 141 |
|
IterMVS-LS | | | 82.62 128 | 82.75 133 | 82.48 120 | 87.09 132 | 87.48 188 | 87.19 122 | 72.85 152 | 79.09 142 | 66.63 122 | 65.22 127 | 72.14 118 | 84.06 120 | 88.33 136 | 91.39 86 | 97.03 124 | 95.60 140 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Fast-Effi-MVS+ | | | 82.61 129 | 82.51 136 | 82.72 116 | 85.49 142 | 93.06 123 | 87.17 123 | 71.39 166 | 84.18 124 | 64.59 129 | 63.03 139 | 58.89 163 | 90.22 78 | 91.39 106 | 90.83 90 | 97.44 107 | 96.21 129 |
|
tpm cat1 | | | 82.39 130 | 82.32 137 | 82.47 121 | 88.13 120 | 92.42 131 | 87.43 118 | 62.79 196 | 85.30 111 | 78.05 85 | 60.14 146 | 72.10 119 | 83.20 126 | 82.26 185 | 85.67 160 | 95.23 177 | 98.35 79 |
|
MS-PatchMatch | | | 82.16 131 | 82.18 139 | 82.12 124 | 91.65 79 | 93.50 121 | 89.51 97 | 71.95 160 | 81.48 136 | 64.45 130 | 59.58 150 | 77.54 104 | 77.23 162 | 89.88 123 | 85.62 161 | 97.94 84 | 87.68 193 |
|
tpmrst | | | 81.71 132 | 83.87 122 | 79.20 141 | 89.01 111 | 93.67 119 | 84.22 139 | 60.14 200 | 87.45 99 | 59.49 141 | 64.97 130 | 71.86 122 | 85.30 110 | 84.72 164 | 86.30 151 | 97.04 123 | 98.09 85 |
|
RPMNet | | | 81.47 133 | 86.24 102 | 75.90 171 | 86.72 133 | 92.12 135 | 82.82 158 | 55.76 213 | 85.21 112 | 53.73 172 | 63.45 136 | 83.16 84 | 80.13 145 | 92.34 98 | 89.52 114 | 96.23 159 | 97.90 91 |
|
CR-MVSNet | | | 81.44 134 | 85.29 110 | 76.94 162 | 86.53 134 | 92.12 135 | 83.86 140 | 58.37 208 | 85.21 112 | 56.28 156 | 59.60 149 | 80.39 93 | 80.50 142 | 92.77 90 | 89.32 119 | 96.12 163 | 97.59 98 |
|
Effi-MVS+-dtu | | | 81.18 135 | 82.77 132 | 79.33 139 | 84.70 147 | 92.54 129 | 85.81 131 | 71.55 164 | 78.84 143 | 57.06 151 | 71.98 106 | 63.77 150 | 85.09 111 | 88.94 129 | 87.62 141 | 91.79 205 | 95.68 135 |
|
test0.0.03 1 | | | 80.99 136 | 84.37 116 | 77.05 160 | 85.32 143 | 89.79 152 | 78.43 184 | 74.18 142 | 84.78 118 | 57.98 150 | 76.06 79 | 72.88 115 | 69.14 185 | 88.02 138 | 87.70 138 | 97.27 116 | 91.37 179 |
|
Fast-Effi-MVS+-dtu | | | 80.57 137 | 83.44 127 | 77.22 158 | 83.98 151 | 91.52 141 | 85.78 133 | 64.54 194 | 80.38 140 | 50.28 186 | 74.06 94 | 62.89 151 | 82.00 135 | 89.10 128 | 88.91 128 | 96.75 131 | 97.21 109 |
|
FMVSNet5 | | | 80.56 138 | 82.53 135 | 78.26 150 | 73.80 209 | 81.52 207 | 82.26 166 | 68.36 184 | 88.85 91 | 64.21 132 | 69.09 117 | 84.38 82 | 83.49 125 | 87.13 144 | 86.76 148 | 97.44 107 | 79.95 209 |
|
ADS-MVSNet | | | 80.25 139 | 82.96 128 | 77.08 159 | 87.86 123 | 92.60 128 | 81.82 171 | 56.19 212 | 86.95 104 | 56.16 159 | 68.19 119 | 72.42 117 | 83.70 124 | 82.05 186 | 85.45 166 | 96.75 131 | 93.08 173 |
|
FMVSNet1 | | | 80.18 140 | 78.07 154 | 82.65 118 | 78.55 183 | 87.57 187 | 88.41 107 | 73.93 145 | 70.16 169 | 73.57 101 | 49.80 181 | 64.45 149 | 85.35 108 | 90.54 113 | 90.72 91 | 96.10 164 | 93.21 171 |
|
USDC | | | 80.10 141 | 79.33 150 | 81.00 129 | 86.36 135 | 91.71 140 | 88.74 105 | 75.77 134 | 81.90 133 | 54.90 166 | 67.67 122 | 52.05 175 | 83.94 122 | 88.44 135 | 86.25 152 | 96.31 154 | 87.28 197 |
|
COLMAP_ROB |  | 75.69 15 | 79.47 142 | 76.90 161 | 82.46 122 | 92.20 72 | 90.53 143 | 85.30 135 | 83.69 69 | 78.27 146 | 61.47 136 | 58.26 154 | 62.75 153 | 78.28 153 | 82.41 183 | 82.13 194 | 93.83 194 | 83.98 205 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
test_part1 | | | 79.37 143 | 75.64 166 | 83.71 110 | 86.18 136 | 87.74 181 | 87.84 114 | 75.69 136 | 66.33 186 | 78.93 75 | 45.92 196 | 64.85 147 | 82.44 132 | 83.08 180 | 85.69 159 | 91.17 206 | 95.90 132 |
|
pmmvs4 | | | 79.32 144 | 77.78 156 | 81.11 128 | 80.18 168 | 88.96 168 | 83.39 144 | 76.07 130 | 81.27 137 | 69.35 116 | 58.66 152 | 51.19 178 | 82.01 134 | 87.16 143 | 84.39 178 | 95.66 168 | 92.82 175 |
|
PatchT | | | 79.28 145 | 83.88 121 | 73.93 180 | 85.54 141 | 90.95 142 | 66.14 210 | 56.53 211 | 83.21 130 | 56.28 156 | 56.50 158 | 76.80 106 | 80.50 142 | 92.77 90 | 89.32 119 | 98.57 46 | 97.59 98 |
|
ACMH | | 78.51 14 | 79.27 146 | 78.08 153 | 80.65 130 | 89.52 104 | 90.40 144 | 80.45 176 | 79.77 100 | 69.54 174 | 54.85 167 | 64.83 131 | 56.16 169 | 83.94 122 | 84.58 166 | 86.01 156 | 95.41 173 | 95.03 150 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAMVS | | | 79.23 147 | 78.95 152 | 79.56 137 | 81.89 158 | 92.52 130 | 82.97 153 | 73.70 146 | 67.27 180 | 64.97 128 | 61.66 144 | 65.06 144 | 78.61 150 | 87.12 145 | 88.07 135 | 95.23 177 | 90.95 181 |
|
ACMH+ | | 79.09 13 | 79.12 148 | 77.22 160 | 81.35 126 | 88.50 116 | 90.36 145 | 82.14 168 | 79.38 107 | 72.78 159 | 58.59 142 | 62.31 143 | 56.44 168 | 84.10 119 | 82.03 187 | 84.05 179 | 95.40 174 | 92.55 176 |
|
UniMVSNet_NR-MVSNet | | | 78.89 149 | 78.04 155 | 79.88 135 | 79.40 174 | 89.70 153 | 82.92 155 | 80.17 95 | 76.37 152 | 58.56 143 | 57.10 157 | 54.92 171 | 81.44 138 | 83.51 173 | 87.12 145 | 96.76 130 | 97.60 96 |
|
tpm | | | 78.87 150 | 81.33 146 | 76.00 169 | 85.57 140 | 90.19 148 | 82.81 159 | 59.66 203 | 78.35 145 | 51.40 181 | 66.30 126 | 67.92 133 | 80.94 140 | 83.28 176 | 85.73 157 | 95.65 169 | 97.56 100 |
|
GA-MVS | | | 78.86 151 | 80.42 147 | 77.05 160 | 83.27 152 | 92.17 134 | 83.24 148 | 75.73 135 | 73.75 156 | 46.27 200 | 62.43 141 | 57.12 165 | 76.94 164 | 93.14 79 | 89.34 115 | 96.83 127 | 95.00 151 |
|
IterMVS | | | 78.85 152 | 81.36 144 | 75.93 170 | 84.27 150 | 85.74 194 | 83.83 142 | 66.35 189 | 76.82 147 | 50.48 184 | 63.48 135 | 68.82 131 | 73.99 169 | 89.68 125 | 89.34 115 | 96.63 139 | 95.67 136 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 78.71 153 | 81.34 145 | 75.64 175 | 84.31 149 | 85.67 195 | 83.51 143 | 66.14 190 | 76.67 148 | 50.38 185 | 63.45 136 | 69.02 129 | 73.23 171 | 89.66 126 | 89.22 122 | 96.24 158 | 95.67 136 |
|
UniMVSNet (Re) | | | 78.00 154 | 77.52 157 | 78.57 146 | 79.66 173 | 90.36 145 | 82.09 169 | 77.86 118 | 76.38 151 | 60.26 138 | 54.63 164 | 52.07 174 | 75.31 167 | 84.97 163 | 86.10 154 | 96.22 160 | 98.11 84 |
|
DU-MVS | | | 77.98 155 | 76.71 162 | 79.46 138 | 78.68 180 | 89.26 162 | 82.92 155 | 79.06 109 | 76.52 149 | 58.56 143 | 54.89 162 | 48.35 192 | 81.44 138 | 83.16 178 | 87.21 144 | 96.08 165 | 97.60 96 |
|
FC-MVSNet-test | | | 77.95 156 | 81.85 141 | 73.39 185 | 82.31 154 | 88.99 167 | 79.33 180 | 74.24 141 | 78.75 144 | 47.40 198 | 70.22 114 | 72.09 121 | 60.78 205 | 86.66 147 | 85.62 161 | 96.30 155 | 90.61 182 |
|
NR-MVSNet | | | 77.21 157 | 76.41 163 | 78.14 152 | 80.18 168 | 89.26 162 | 83.38 145 | 79.06 109 | 76.52 149 | 56.59 154 | 54.89 162 | 45.32 202 | 72.89 173 | 85.39 159 | 86.12 153 | 96.71 134 | 97.36 106 |
|
thisisatest0515 | | | 77.13 158 | 79.36 149 | 74.52 177 | 79.79 172 | 89.65 154 | 73.54 198 | 73.69 147 | 74.10 155 | 58.14 146 | 62.79 140 | 60.57 156 | 66.49 191 | 88.08 137 | 85.16 171 | 95.49 172 | 95.15 147 |
|
gg-mvs-nofinetune | | | 77.08 159 | 79.79 148 | 73.92 181 | 85.95 138 | 97.23 72 | 92.18 66 | 52.65 216 | 46.19 219 | 27.79 223 | 38.27 210 | 85.63 72 | 85.67 105 | 96.95 18 | 95.62 25 | 99.30 3 | 98.67 63 |
|
TranMVSNet+NR-MVSNet | | | 77.02 160 | 75.76 165 | 78.49 147 | 78.46 186 | 88.24 175 | 83.03 152 | 79.97 96 | 73.49 158 | 54.73 168 | 54.00 167 | 48.74 187 | 78.15 155 | 82.36 184 | 86.90 147 | 96.59 141 | 96.55 121 |
|
CVMVSNet | | | 76.86 161 | 79.09 151 | 74.26 178 | 85.29 145 | 89.44 159 | 79.91 179 | 78.47 113 | 68.94 177 | 44.45 205 | 62.35 142 | 69.70 127 | 64.50 196 | 85.82 155 | 87.03 146 | 92.94 200 | 90.33 183 |
|
Baseline_NR-MVSNet | | | 76.71 162 | 74.56 173 | 79.23 140 | 78.68 180 | 84.15 203 | 82.45 162 | 78.87 111 | 75.83 153 | 60.05 139 | 47.92 192 | 50.18 184 | 79.06 149 | 83.16 178 | 83.86 182 | 96.26 156 | 96.80 117 |
|
v2v482 | | | 76.25 163 | 74.78 170 | 77.96 154 | 78.50 185 | 89.14 165 | 83.05 151 | 76.02 131 | 68.78 178 | 54.11 169 | 51.36 173 | 48.59 189 | 79.49 147 | 83.53 172 | 85.60 164 | 96.59 141 | 96.49 126 |
|
V42 | | | 76.21 164 | 75.04 169 | 77.58 155 | 78.68 180 | 89.33 161 | 82.93 154 | 74.64 139 | 69.84 171 | 56.13 160 | 50.42 178 | 50.93 179 | 76.30 166 | 83.32 174 | 84.89 175 | 96.83 127 | 96.54 122 |
|
v8 | | | 75.89 165 | 74.74 171 | 77.23 157 | 79.09 176 | 88.00 178 | 83.19 149 | 71.08 168 | 70.03 170 | 56.29 155 | 50.50 176 | 50.88 180 | 77.06 163 | 83.32 174 | 84.99 173 | 96.68 135 | 95.49 142 |
|
TinyColmap | | | 75.75 166 | 73.19 184 | 78.74 145 | 84.82 146 | 87.69 183 | 81.59 172 | 74.62 140 | 71.81 165 | 54.01 170 | 55.79 161 | 44.42 207 | 82.89 128 | 84.61 165 | 83.76 183 | 94.50 187 | 84.22 204 |
|
MIMVSNet | | | 75.71 167 | 77.26 158 | 73.90 182 | 70.93 210 | 88.71 171 | 79.98 178 | 57.67 210 | 73.58 157 | 58.08 149 | 53.93 168 | 58.56 164 | 79.41 148 | 90.04 121 | 89.97 106 | 97.34 113 | 86.04 198 |
|
UniMVSNet_ETH3D | | | 75.63 168 | 71.59 193 | 80.35 131 | 81.03 163 | 89.90 151 | 83.25 147 | 76.58 126 | 60.08 202 | 64.19 133 | 42.89 205 | 45.01 203 | 82.14 133 | 80.20 197 | 86.75 149 | 94.90 182 | 96.29 128 |
|
pm-mvs1 | | | 75.61 169 | 74.19 175 | 77.26 156 | 80.16 170 | 88.79 169 | 81.49 173 | 75.49 138 | 59.49 204 | 58.09 148 | 48.32 189 | 55.53 170 | 72.35 174 | 88.61 131 | 85.48 165 | 95.99 166 | 93.12 172 |
|
v10 | | | 75.57 170 | 74.67 172 | 76.62 165 | 78.73 179 | 87.46 189 | 83.14 150 | 69.41 180 | 69.27 175 | 53.44 173 | 49.73 182 | 49.21 186 | 78.44 152 | 86.17 152 | 85.18 170 | 96.53 146 | 95.65 139 |
|
v1144 | | | 75.54 171 | 74.55 174 | 76.69 163 | 78.33 189 | 88.77 170 | 82.89 157 | 72.76 153 | 67.18 182 | 51.73 178 | 49.34 184 | 48.37 190 | 78.10 156 | 86.22 151 | 85.24 168 | 96.35 153 | 96.74 118 |
|
TDRefinement | | | 75.54 171 | 73.22 182 | 78.25 151 | 87.65 127 | 89.65 154 | 85.81 131 | 79.28 108 | 71.14 167 | 56.06 162 | 52.17 171 | 51.96 176 | 68.74 187 | 81.60 188 | 80.58 196 | 91.94 203 | 85.45 199 |
|
pmmvs5 | | | 75.46 173 | 75.12 168 | 75.87 172 | 79.39 175 | 89.44 159 | 78.12 186 | 72.27 158 | 65.98 188 | 51.54 179 | 55.83 160 | 46.23 197 | 76.80 165 | 88.77 130 | 85.73 157 | 97.07 121 | 93.84 163 |
|
tfpnnormal | | | 75.27 174 | 72.12 190 | 78.94 143 | 82.30 155 | 88.52 172 | 82.41 163 | 79.41 105 | 58.03 205 | 55.59 164 | 43.83 204 | 44.71 204 | 77.35 159 | 87.70 140 | 85.45 166 | 96.60 140 | 96.61 120 |
|
anonymousdsp | | | 75.14 175 | 77.25 159 | 72.69 188 | 76.68 199 | 89.26 162 | 75.26 195 | 68.44 183 | 65.53 191 | 46.65 199 | 58.16 155 | 56.67 167 | 73.96 170 | 87.84 139 | 86.05 155 | 95.13 180 | 97.22 108 |
|
v148 | | | 74.98 176 | 73.52 180 | 76.69 163 | 78.84 178 | 89.02 166 | 78.78 182 | 76.82 123 | 67.22 181 | 59.61 140 | 49.18 185 | 47.94 194 | 70.57 180 | 80.76 192 | 83.99 180 | 95.52 170 | 96.52 124 |
|
v1192 | | | 74.96 177 | 73.92 176 | 76.17 166 | 77.76 192 | 88.19 177 | 82.54 161 | 71.94 161 | 66.84 183 | 50.07 188 | 48.10 190 | 46.14 198 | 78.28 153 | 86.30 149 | 85.23 169 | 96.41 152 | 96.67 119 |
|
v144192 | | | 74.76 178 | 73.64 177 | 76.06 168 | 77.58 193 | 88.23 176 | 81.87 170 | 71.63 163 | 66.03 187 | 51.08 182 | 48.63 188 | 46.77 196 | 77.59 158 | 84.53 167 | 84.76 176 | 96.64 138 | 96.54 122 |
|
v1921920 | | | 74.60 179 | 73.56 179 | 75.81 173 | 77.43 195 | 87.94 179 | 82.18 167 | 71.33 167 | 66.48 185 | 49.23 192 | 47.84 193 | 45.56 200 | 78.03 157 | 85.70 157 | 84.92 174 | 96.65 136 | 96.50 125 |
|
v1240 | | | 74.04 180 | 73.04 186 | 75.20 176 | 77.19 197 | 87.69 183 | 80.93 175 | 70.72 172 | 65.08 192 | 48.47 193 | 47.31 194 | 44.71 204 | 77.33 160 | 85.50 158 | 85.07 172 | 96.59 141 | 95.94 131 |
|
testgi | | | 73.22 181 | 75.84 164 | 70.16 199 | 81.67 162 | 85.50 198 | 71.45 200 | 70.81 170 | 69.56 173 | 44.74 204 | 74.52 91 | 49.25 185 | 58.45 206 | 84.10 170 | 83.37 187 | 93.86 191 | 84.56 203 |
|
CP-MVSNet | | | 73.19 182 | 72.37 188 | 74.15 179 | 77.54 194 | 86.77 192 | 76.34 189 | 72.05 159 | 65.66 190 | 51.47 180 | 50.49 177 | 43.66 208 | 70.90 176 | 80.93 191 | 83.40 186 | 96.59 141 | 95.66 138 |
|
WR-MVS | | | 72.93 183 | 73.57 178 | 72.19 191 | 78.14 190 | 87.71 182 | 76.21 191 | 73.02 151 | 67.78 179 | 50.09 187 | 50.35 179 | 50.53 182 | 61.27 204 | 80.42 195 | 83.10 190 | 94.43 188 | 95.11 148 |
|
TransMVSNet (Re) | | | 72.90 184 | 70.51 197 | 75.69 174 | 80.88 164 | 85.26 200 | 79.25 181 | 78.43 115 | 56.13 211 | 52.81 175 | 46.81 195 | 48.20 193 | 66.77 190 | 85.18 162 | 83.70 184 | 95.98 167 | 88.28 192 |
|
WR-MVS_H | | | 72.69 185 | 72.80 187 | 72.56 190 | 77.94 191 | 87.83 180 | 75.26 195 | 71.53 165 | 64.75 193 | 52.19 177 | 49.83 180 | 48.62 188 | 61.96 202 | 81.12 190 | 82.44 192 | 96.50 147 | 95.00 151 |
|
SixPastTwentyTwo | | | 72.65 186 | 73.22 182 | 71.98 194 | 78.40 187 | 87.64 185 | 70.09 203 | 70.37 174 | 66.49 184 | 47.60 196 | 65.09 128 | 45.94 199 | 73.09 172 | 78.94 199 | 78.66 202 | 92.33 201 | 89.82 187 |
|
LTVRE_ROB | | 71.82 16 | 72.62 187 | 71.77 191 | 73.62 183 | 80.74 165 | 87.59 186 | 80.42 177 | 70.37 174 | 49.73 215 | 37.12 217 | 59.76 147 | 42.52 213 | 80.92 141 | 83.20 177 | 85.61 163 | 92.13 202 | 93.95 161 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PS-CasMVS | | | 72.37 188 | 71.47 195 | 73.43 184 | 77.32 196 | 86.43 193 | 75.99 192 | 71.94 161 | 63.37 196 | 49.24 191 | 49.07 186 | 42.42 214 | 69.60 182 | 80.59 194 | 83.18 189 | 96.48 149 | 95.23 145 |
|
MVS-HIRNet | | | 72.32 189 | 73.45 181 | 71.00 197 | 80.58 166 | 89.97 149 | 68.51 207 | 55.28 214 | 70.89 168 | 52.27 176 | 39.09 208 | 57.11 166 | 75.02 168 | 85.76 156 | 86.33 150 | 94.36 189 | 85.00 201 |
|
PEN-MVS | | | 72.24 190 | 71.30 196 | 73.33 186 | 77.08 198 | 85.57 196 | 76.75 187 | 72.52 156 | 63.89 195 | 48.12 194 | 50.79 174 | 43.09 211 | 69.03 186 | 78.54 201 | 83.46 185 | 96.50 147 | 93.76 166 |
|
v7n | | | 72.11 191 | 71.66 192 | 72.63 189 | 75.26 204 | 86.85 190 | 76.74 188 | 68.77 182 | 62.70 199 | 49.40 189 | 45.92 196 | 43.51 209 | 70.63 179 | 84.16 169 | 83.21 188 | 94.99 181 | 95.25 143 |
|
EG-PatchMatch MVS | | | 71.81 192 | 71.54 194 | 72.12 192 | 80.53 167 | 89.94 150 | 78.51 183 | 66.56 188 | 57.38 207 | 47.46 197 | 44.28 203 | 52.22 173 | 63.10 200 | 85.22 161 | 84.42 177 | 96.56 145 | 87.35 196 |
|
CMPMVS |  | 54.54 17 | 71.74 193 | 67.94 202 | 76.16 167 | 90.41 91 | 93.25 122 | 78.32 185 | 75.60 137 | 59.81 203 | 53.95 171 | 44.64 201 | 51.22 177 | 70.70 177 | 74.59 210 | 75.88 208 | 88.01 210 | 76.23 212 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MDTV_nov1_ep13_2view | | | 71.65 194 | 73.08 185 | 69.97 200 | 75.22 205 | 86.81 191 | 73.98 197 | 59.61 204 | 69.75 172 | 48.01 195 | 54.21 166 | 53.06 172 | 69.19 184 | 78.50 202 | 80.43 197 | 93.84 192 | 88.79 190 |
|
pmnet_mix02 | | | 71.64 195 | 72.36 189 | 70.81 198 | 78.39 188 | 85.57 196 | 68.64 205 | 73.65 148 | 72.13 161 | 45.07 203 | 56.01 159 | 50.61 181 | 65.34 194 | 76.21 207 | 76.60 206 | 93.75 195 | 89.35 188 |
|
gm-plane-assit | | | 71.33 196 | 75.18 167 | 66.83 203 | 79.06 177 | 75.57 214 | 48.05 221 | 60.33 199 | 48.28 216 | 34.67 221 | 44.34 202 | 67.70 135 | 79.78 146 | 97.25 11 | 96.21 13 | 99.10 10 | 96.92 114 |
|
DTE-MVSNet | | | 71.19 197 | 70.45 198 | 72.06 193 | 76.61 200 | 84.59 202 | 75.61 194 | 72.32 157 | 63.12 198 | 45.70 202 | 50.72 175 | 43.02 212 | 65.89 192 | 77.53 206 | 82.23 193 | 96.26 156 | 91.93 177 |
|
pmmvs6 | | | 70.29 198 | 67.90 203 | 73.07 187 | 76.17 201 | 85.31 199 | 76.29 190 | 70.75 171 | 47.39 218 | 55.33 165 | 37.15 214 | 50.49 183 | 69.55 183 | 82.96 181 | 80.85 195 | 90.34 209 | 91.18 180 |
|
PM-MVS | | | 70.17 199 | 69.42 200 | 71.04 196 | 70.82 211 | 81.26 209 | 71.25 201 | 67.80 185 | 69.16 176 | 51.04 183 | 53.15 170 | 34.93 218 | 72.19 175 | 80.30 196 | 76.95 205 | 93.16 199 | 90.21 184 |
|
pmmvs-eth3d | | | 69.59 200 | 67.57 205 | 71.95 195 | 70.04 212 | 80.05 210 | 71.48 199 | 70.00 178 | 62.57 200 | 55.99 163 | 44.92 199 | 35.73 217 | 70.64 178 | 81.56 189 | 79.69 198 | 93.55 196 | 88.43 191 |
|
N_pmnet | | | 68.54 201 | 67.83 204 | 69.38 201 | 75.77 202 | 81.90 206 | 66.21 209 | 72.53 155 | 65.91 189 | 46.09 201 | 44.67 200 | 45.48 201 | 63.82 198 | 74.66 209 | 77.39 204 | 91.87 204 | 84.77 202 |
|
Anonymous20231206 | | | 68.09 202 | 68.68 201 | 67.39 202 | 75.16 206 | 82.55 204 | 69.33 204 | 70.06 177 | 63.34 197 | 42.28 208 | 37.91 212 | 43.12 210 | 52.67 209 | 83.56 171 | 82.71 191 | 94.84 184 | 87.59 194 |
|
EU-MVSNet | | | 68.07 203 | 70.25 199 | 65.52 204 | 74.68 208 | 81.30 208 | 68.53 206 | 70.31 176 | 62.40 201 | 37.43 216 | 54.62 165 | 48.36 191 | 51.34 210 | 78.32 203 | 79.27 199 | 90.84 207 | 87.47 195 |
|
GG-mvs-BLEND | | | 65.67 204 | 93.78 40 | 32.89 217 | 0.47 227 | 99.35 7 | 96.92 32 | 0.22 226 | 93.28 63 | 0.51 228 | 84.07 56 | 92.50 40 | 0.62 225 | 93.59 72 | 93.86 58 | 98.59 45 | 99.79 10 |
|
test20.03 | | | 65.17 205 | 67.41 206 | 62.55 206 | 75.35 203 | 79.31 211 | 62.22 211 | 68.83 181 | 56.50 210 | 35.35 220 | 51.97 172 | 44.70 206 | 40.01 215 | 80.69 193 | 79.25 200 | 93.55 196 | 79.47 211 |
|
MDA-MVSNet-bldmvs | | | 62.23 206 | 61.13 210 | 63.52 205 | 58.94 218 | 82.44 205 | 60.71 214 | 73.28 150 | 57.22 208 | 38.42 214 | 49.63 183 | 27.64 224 | 62.83 201 | 54.98 216 | 74.16 209 | 86.96 212 | 81.83 208 |
|
new_pmnet | | | 61.60 207 | 62.68 208 | 60.35 209 | 63.02 215 | 74.93 215 | 60.97 213 | 58.86 206 | 64.21 194 | 35.38 219 | 39.51 207 | 39.89 215 | 57.37 207 | 72.78 211 | 72.56 211 | 86.49 214 | 74.85 214 |
|
new-patchmatchnet | | | 60.74 208 | 59.78 212 | 61.87 207 | 69.52 213 | 76.67 213 | 57.99 217 | 65.78 192 | 52.63 213 | 38.47 213 | 38.08 211 | 32.92 221 | 48.88 212 | 68.50 212 | 69.87 212 | 90.56 208 | 79.75 210 |
|
pmmvs3 | | | 60.52 209 | 60.87 211 | 60.12 210 | 61.38 216 | 71.62 216 | 57.42 218 | 53.94 215 | 48.09 217 | 35.95 218 | 38.62 209 | 32.19 223 | 64.12 197 | 75.33 208 | 77.99 203 | 87.89 211 | 82.28 207 |
|
MIMVSNet1 | | | 60.51 210 | 61.43 209 | 59.44 211 | 48.75 221 | 77.21 212 | 60.98 212 | 66.84 187 | 52.09 214 | 38.74 212 | 29.29 217 | 39.40 216 | 48.08 213 | 77.60 205 | 78.87 201 | 93.22 198 | 75.56 213 |
|
test_method | | | 60.40 211 | 66.30 207 | 53.52 213 | 37.48 225 | 64.10 220 | 55.56 219 | 42.45 221 | 71.79 166 | 41.87 209 | 33.74 215 | 46.80 195 | 61.71 203 | 79.18 198 | 73.33 210 | 82.01 216 | 95.17 146 |
|
FPMVS | | | 56.54 212 | 52.82 214 | 60.87 208 | 74.90 207 | 67.58 219 | 67.69 208 | 65.38 193 | 57.86 206 | 41.51 210 | 37.83 213 | 34.19 219 | 41.21 214 | 55.88 215 | 53.09 217 | 74.55 219 | 63.31 217 |
|
PMVS |  | 42.57 18 | 45.71 213 | 42.61 216 | 49.32 214 | 61.35 217 | 37.82 224 | 36.96 223 | 60.10 201 | 37.20 220 | 41.50 211 | 28.53 218 | 33.11 220 | 28.82 220 | 53.45 217 | 48.70 219 | 67.22 221 | 59.42 218 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 43.95 214 | 42.62 215 | 45.50 215 | 50.79 220 | 41.20 223 | 35.55 224 | 52.51 217 | 52.95 212 | 29.09 222 | 12.92 220 | 11.48 227 | 38.15 216 | 62.01 214 | 66.62 214 | 66.89 222 | 51.17 219 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 41.25 215 | 42.55 217 | 39.74 216 | 43.25 222 | 55.05 222 | 38.15 222 | 47.11 220 | 31.78 221 | 11.83 225 | 21.16 219 | 19.12 225 | 20.98 222 | 49.95 219 | 56.09 216 | 77.09 217 | 64.68 216 |
|
E-PMN | | | 27.87 216 | 24.36 219 | 31.97 218 | 41.27 224 | 25.56 227 | 16.62 226 | 49.16 218 | 22.00 223 | 9.90 226 | 11.75 222 | 7.86 229 | 29.57 219 | 22.22 221 | 34.70 220 | 45.27 223 | 46.41 221 |
|
MVE |  | 32.98 19 | 27.61 217 | 29.89 218 | 24.94 220 | 21.97 226 | 37.22 225 | 15.56 228 | 38.83 222 | 17.49 224 | 14.72 224 | 11.64 224 | 5.62 230 | 21.26 221 | 35.20 220 | 50.95 218 | 37.29 225 | 51.13 220 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 26.96 218 | 22.96 220 | 31.63 219 | 41.91 223 | 25.73 226 | 16.30 227 | 49.10 219 | 22.38 222 | 9.03 227 | 11.22 225 | 8.12 228 | 29.93 218 | 20.16 222 | 31.04 221 | 43.49 224 | 42.04 222 |
|
testmvs | | | 5.16 219 | 8.14 221 | 1.69 221 | 0.36 228 | 1.65 228 | 3.02 229 | 0.66 224 | 7.17 225 | 0.50 229 | 12.58 221 | 0.69 231 | 4.67 223 | 5.42 223 | 5.65 222 | 0.92 226 | 23.86 224 |
|
test123 | | | 4.39 220 | 7.11 222 | 1.21 222 | 0.11 229 | 1.16 229 | 1.67 230 | 0.35 225 | 5.91 226 | 0.16 230 | 11.65 223 | 0.16 232 | 4.45 224 | 1.72 224 | 4.92 223 | 0.51 227 | 24.28 223 |
|
uanet_test | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
sosnet-low-res | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
sosnet | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
RE-MVS-def | | | | | | | | | | | 43.17 206 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 97.59 10 | | | | | |
|
SR-MVS | | | | | | 98.52 21 | | | 93.70 23 | | | | 96.63 20 | | | | | |
|
Anonymous202405211 | | | | 81.72 142 | | 88.09 121 | 94.27 113 | 89.62 96 | 82.14 84 | 82.27 131 | | 48.83 187 | 72.58 116 | 91.08 64 | 87.40 141 | 88.70 131 | 94.90 182 | 97.99 88 |
|
our_test_3 | | | | | | 78.55 183 | 84.98 201 | 70.12 202 | | | | | | | | | | |
|
ambc | | | | 57.08 213 | | 58.68 219 | 67.71 218 | 60.07 215 | | 57.13 209 | 42.79 207 | 30.00 216 | 11.64 226 | 50.18 211 | 78.89 200 | 69.14 213 | 82.64 215 | 85.02 200 |
|
MTAPA | | | | | | | | | | | 93.37 9 | | 95.71 27 | | | | | |
|
MTMP | | | | | | | | | | | 93.84 5 | | 94.86 31 | | | | | |
|
Patchmatch-RL test | | | | | | | | 19.65 225 | | | | | | | | | | |
|
tmp_tt | | | | | 57.89 212 | 79.94 171 | 59.29 221 | 52.84 220 | 36.65 223 | 94.77 53 | 68.22 119 | 72.96 99 | 65.62 142 | 33.65 217 | 66.20 213 | 58.02 215 | 76.06 218 | |
|
XVS | | | | | | 92.16 73 | 98.56 37 | 91.04 84 | | | 81.00 63 | | 93.49 35 | | | | 98.00 79 | |
|
X-MVStestdata | | | | | | 92.16 73 | 98.56 37 | 91.04 84 | | | 81.00 63 | | 93.49 35 | | | | 98.00 79 | |
|
abl_6 | | | | | 93.25 36 | 97.12 39 | 98.71 32 | 94.40 52 | 87.81 48 | 97.86 11 | 87.19 31 | 91.07 37 | 95.80 25 | 94.18 34 | | | 98.78 36 | 99.36 24 |
|
mPP-MVS | | | | | | 97.95 30 | | | | | | | 92.24 45 | | | | | |
|
NP-MVS | | | | | | | | | | 94.12 57 | | | | | | | | |
|
Patchmtry | | | | | | | 92.08 137 | 83.86 140 | 58.37 208 | | 56.28 156 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 70.68 217 | 59.61 216 | 67.36 186 | 72.12 162 | 38.41 215 | 53.88 169 | 32.44 222 | 55.15 208 | 50.88 218 | | 74.35 220 | 68.42 215 |
|