This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS97.92 198.27 297.52 198.88 1299.60 198.80 595.08 898.57 295.63 296.98 1099.73 197.67 197.26 1095.86 2299.04 1599.89 5
MSP-MVS97.74 298.32 197.06 898.66 1599.35 798.66 894.75 1498.22 593.60 697.99 198.58 897.41 498.24 295.95 1899.27 499.91 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++97.71 398.01 697.37 298.98 699.58 398.79 695.06 998.24 494.66 396.35 1699.20 497.63 297.20 1295.68 2399.08 1399.84 7
DPE-MVScopyleft97.69 498.16 397.14 699.01 599.52 599.12 295.38 398.00 893.31 1097.71 299.61 396.94 596.99 1695.45 2799.09 1299.81 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft97.61 597.87 797.30 398.94 1199.60 198.21 1395.11 598.39 395.83 194.40 2999.70 296.79 697.16 1395.95 1898.92 2699.90 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CNVR-MVS97.60 698.08 497.03 999.14 199.55 498.67 795.32 497.91 992.55 1397.11 797.23 1397.49 398.16 397.05 599.04 1599.55 19
APDe-MVS97.31 797.51 1297.08 798.95 1099.29 1298.58 1095.11 597.69 1594.16 496.91 1196.81 1796.57 1096.71 2095.39 2999.08 1399.79 10
SF-MVS97.17 897.18 1597.17 499.11 299.20 1499.05 395.55 197.39 1893.56 797.48 496.71 1996.75 795.73 3294.40 4598.98 2099.33 26
NCCC97.01 997.74 896.16 1299.02 499.35 798.63 995.04 1097.84 1288.95 2696.83 1397.02 1696.39 1597.44 796.51 998.90 2899.16 42
SMA-MVScopyleft96.96 1097.65 1196.15 1398.98 699.31 1197.91 1894.68 1697.52 1690.59 2094.54 2899.20 496.54 1297.29 996.48 1098.22 6399.19 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS96.93 1198.07 595.61 2098.98 699.44 698.04 1495.04 1098.10 686.55 3397.65 397.56 1195.60 2497.67 696.45 1199.43 199.61 18
HPM-MVS++copyleft96.91 1297.70 996.00 1598.97 999.16 1797.82 2194.81 1398.04 789.61 2396.56 1598.60 796.39 1597.09 1495.22 3198.39 5699.22 36
SD-MVS96.87 1397.69 1095.92 1696.38 4999.25 1397.76 2294.75 1497.72 1392.46 1595.94 1799.09 696.48 1496.01 2896.08 1697.68 9499.73 13
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft96.79 1496.99 1896.56 1098.76 1498.87 2698.42 1194.93 1297.70 1491.83 1695.52 2095.94 2496.63 995.94 2995.47 2698.80 3499.47 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.96.50 1597.08 1695.82 1896.12 5398.97 2398.00 1594.13 2197.89 1091.49 1795.11 2597.52 1296.26 1996.27 2694.07 5698.91 2799.74 12
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP96.20 1697.22 1495.01 2498.40 2399.11 1897.93 1793.62 2596.28 3087.45 2997.05 996.00 2394.23 3396.83 1995.97 1798.40 5599.27 32
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.09 1796.41 2395.72 1998.58 1898.84 2797.95 1693.08 2996.96 2390.24 2196.60 1494.40 3296.52 1395.13 4494.33 4797.93 8498.59 67
zzz-MVS95.87 1895.63 3096.15 1398.60 1798.83 2897.89 1993.65 2496.24 3193.08 1191.13 3695.46 2995.72 2395.64 3493.67 6397.97 8198.46 74
ACMMP_NAP95.81 1996.50 2295.01 2498.79 1399.17 1697.52 2794.20 2096.19 3285.71 3793.80 3296.20 2295.89 2096.62 2294.98 3797.93 8498.52 70
train_agg95.72 2097.37 1393.80 3097.82 3298.92 2497.84 2093.50 2696.86 2581.35 5497.10 897.71 994.19 3496.02 2795.37 3098.07 7199.64 16
ACMMPR95.59 2195.89 2595.25 2298.41 2298.74 3097.69 2592.73 3396.88 2488.95 2695.33 2292.91 3995.79 2194.73 5494.33 4797.92 8698.32 80
DeepC-MVS_fast91.53 195.57 2295.67 2895.45 2198.57 1999.00 2297.76 2294.41 1897.06 2186.84 3286.39 4792.27 4496.38 1797.89 598.06 398.73 4099.01 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++95.49 2394.84 3496.25 1198.64 1698.63 3498.35 1292.37 3595.04 4992.62 1287.12 4693.79 3396.55 1193.53 7296.78 698.98 2098.99 51
CP-MVS95.43 2495.67 2895.14 2398.24 2898.60 3597.45 2892.80 3195.98 3589.21 2595.22 2393.60 3495.43 2594.37 6193.22 7497.68 9498.72 58
DPM-MVS95.36 2595.84 2694.82 2696.70 4598.49 4599.27 195.09 796.71 2683.87 4586.34 4996.44 2195.06 2798.35 198.82 198.89 2995.69 133
MP-MVScopyleft95.24 2695.96 2494.40 2898.32 2598.38 5097.12 3092.87 3095.17 4785.50 3895.68 1894.91 3094.58 2995.11 4593.76 6098.05 7498.68 60
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + ACMM94.99 2797.02 1792.61 4197.19 3898.71 3297.74 2493.21 2896.97 2279.27 6894.09 3097.14 1490.84 6796.64 2195.94 2097.42 10999.67 15
X-MVS94.70 2895.71 2793.52 3498.38 2498.56 3796.99 3192.62 3495.58 3981.00 6094.57 2793.49 3594.16 3894.82 5094.29 5097.99 8098.68 60
PGM-MVS94.64 2995.49 3193.66 3298.55 2098.51 4397.63 2687.77 4994.45 5484.92 4197.23 691.90 4695.22 2694.56 5793.80 5997.87 9097.97 90
TSAR-MVS + GP.94.59 3096.60 2192.25 4290.25 9298.17 5696.22 3786.53 5597.49 1787.26 3095.21 2497.06 1594.07 4094.34 6394.20 5299.18 599.71 14
xxxxxxxxxxxxxcwj94.57 3192.34 5097.17 499.11 299.20 1499.05 395.55 197.39 1893.56 797.48 462.85 15196.75 795.73 3294.40 4598.98 2099.33 26
PHI-MVS94.49 3296.72 2091.88 4497.06 4098.88 2594.99 4889.13 4396.15 3379.70 6496.91 1195.78 2691.87 5794.65 5595.68 2398.53 4998.98 53
AdaColmapbinary94.28 3392.94 4595.84 1798.32 2598.33 5296.06 3994.62 1796.29 2991.22 1889.89 4085.50 7696.38 1791.85 10190.89 8998.44 5197.81 93
DeepPCF-MVS91.00 294.15 3496.87 1990.97 5296.82 4399.33 1089.40 10192.76 3298.76 182.36 5088.74 4195.49 2890.58 7498.13 497.80 493.88 18999.88 6
CPTT-MVS94.11 3593.99 3994.25 2996.58 4697.66 6397.31 2991.94 3694.84 5088.72 2892.51 3393.04 3895.78 2291.51 10489.97 10595.15 17898.37 77
EPNet93.69 3695.34 3291.76 4596.98 4298.47 4795.40 4586.79 5295.47 4182.84 4895.66 1989.17 5290.47 7595.25 4394.69 4098.10 6898.68 60
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft93.32 3793.59 4293.00 3997.03 4198.24 5395.27 4691.66 3995.20 4583.25 4695.39 2185.52 7492.80 4892.60 9190.21 10198.01 7797.99 88
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet93.23 3893.72 4192.65 4095.48 5699.09 2096.55 3586.74 5395.28 4485.22 3977.30 7591.25 4892.60 5097.06 1596.63 799.31 299.45 23
CDPH-MVS93.22 3995.08 3391.04 5197.57 3598.49 4596.74 3389.35 4295.19 4673.57 10090.26 3891.59 4790.68 7195.09 4796.15 1498.31 6198.81 56
CSCG93.16 4092.65 4793.76 3198.32 2599.09 2096.12 3889.91 4193.15 6489.64 2283.62 5688.91 5592.40 5291.09 10993.70 6196.14 16198.99 51
MVS_111021_LR93.05 4194.53 3691.32 4996.43 4898.38 5092.81 6287.20 5195.94 3781.45 5394.75 2686.08 6992.12 5594.83 4993.34 6797.89 8998.42 76
3Dnovator+86.26 792.90 4292.45 4993.42 3597.25 3798.45 4995.82 4085.71 6193.83 5889.55 2472.31 10592.28 4394.01 4195.10 4695.92 2198.17 6499.23 35
MVS_111021_HR92.73 4394.83 3590.28 5796.27 5099.10 1992.77 6386.15 5893.41 6277.11 8893.82 3187.39 6190.61 7295.60 3795.15 3398.79 3599.32 28
PLCcopyleft89.12 392.67 4490.84 6194.81 2797.69 3396.10 9195.42 4491.70 3795.82 3892.52 1481.24 6086.01 7094.36 3192.44 9590.27 9897.19 11893.99 159
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator85.78 892.53 4591.96 5393.20 3797.99 2998.47 4795.78 4185.94 5993.07 6686.40 3473.43 9789.00 5494.08 3994.74 5396.44 1299.01 1998.57 68
DeepC-MVS88.77 492.39 4691.74 5593.14 3896.21 5198.55 4096.30 3693.84 2293.06 6781.09 5874.69 9085.20 7993.48 4495.41 4096.13 1597.92 8699.18 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OMC-MVS92.05 4791.88 5492.25 4296.51 4797.94 5893.18 5988.97 4596.53 2784.47 4380.79 6387.85 5793.25 4692.48 9491.81 8297.12 11995.73 132
MVSTER91.91 4893.43 4490.14 5889.81 9892.32 13194.53 5181.32 8896.00 3484.77 4285.41 5392.39 4291.32 5996.41 2394.01 5799.11 897.45 102
MVS_030491.90 4992.93 4690.69 5693.66 6498.78 2996.73 3485.43 6593.13 6578.11 8177.02 7889.09 5391.10 6396.98 1796.54 899.11 898.96 54
QAPM91.68 5091.97 5291.34 4897.86 3198.72 3195.60 4385.72 6090.86 8077.14 8776.06 7990.35 4992.69 4994.10 6694.60 4199.04 1599.09 44
CNLPA91.53 5189.74 7393.63 3396.75 4497.63 6591.16 8391.70 3796.38 2890.82 1969.66 11685.52 7493.76 4290.44 11591.14 8897.55 10397.40 103
ETV-MVS91.51 5294.06 3888.54 6989.39 10397.52 6689.48 9880.88 9197.09 2079.41 6687.87 4286.18 6892.95 4795.94 2994.33 4799.13 799.52 21
DROMVSNet91.25 5393.45 4388.68 6788.90 10996.18 9091.66 7176.70 12395.57 4082.00 5184.18 5489.28 5194.17 3695.64 3494.19 5398.68 4299.14 43
DELS-MVS91.09 5490.56 6991.71 4695.82 5498.59 3695.74 4286.68 5485.86 10785.12 4072.71 10081.36 8788.06 9497.31 898.27 298.86 3299.82 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TAPA-MVS87.40 690.98 5590.71 6391.30 5096.14 5297.66 6394.80 4989.00 4494.74 5377.42 8680.22 6486.70 6492.27 5391.65 10390.17 10398.15 6793.83 163
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet_BlendedMVS90.74 5690.66 6590.82 5494.75 5998.54 4191.30 8086.53 5595.43 4285.75 3578.66 7070.67 12487.60 9596.37 2495.08 3598.98 2099.90 2
PVSNet_Blended90.74 5690.66 6590.82 5494.75 5998.54 4191.30 8086.53 5595.43 4285.75 3578.66 7070.67 12487.60 9596.37 2495.08 3598.98 2099.90 2
CHOSEN 280x42090.61 5894.27 3786.35 9193.12 6898.16 5789.99 9469.62 17992.48 7176.89 9187.28 4596.72 1890.31 7794.81 5192.33 7998.17 6498.08 86
MAR-MVS90.44 5991.17 5989.59 6197.48 3697.92 5990.96 8679.80 9695.07 4877.03 8980.83 6279.10 9794.68 2893.16 7794.46 4397.59 10297.63 95
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PCF-MVS88.14 590.42 6089.56 7891.41 4794.44 6198.18 5594.35 5394.33 1984.55 11976.61 9275.84 8288.47 5691.29 6090.37 11790.66 9597.46 10598.88 55
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CS-MVS90.22 6192.57 4887.47 8388.74 11096.62 8088.44 10679.14 10794.83 5175.49 9681.07 6185.81 7194.39 3095.85 3194.45 4498.62 4399.38 24
CS-MVS-test90.11 6292.10 5187.78 7988.28 11794.21 11391.66 7176.70 12393.75 6077.56 8483.50 5785.05 8094.17 3695.64 3493.28 7398.31 6199.26 33
OpenMVScopyleft83.41 1189.84 6388.89 8490.95 5397.63 3498.51 4394.64 5085.47 6488.14 9378.39 7865.06 12885.42 7791.04 6593.06 8093.70 6198.53 4998.37 77
EIA-MVS89.82 6491.48 5787.89 7889.16 10597.31 6888.99 10280.92 9094.29 5577.65 8382.16 5979.77 9591.90 5694.61 5693.03 7698.70 4199.21 37
canonicalmvs89.62 6589.87 7289.33 6390.47 8797.02 7493.46 5879.67 9992.45 7281.05 5982.84 5873.00 11393.71 4390.38 11694.85 3897.65 9898.54 69
TSAR-MVS + COLMAP89.59 6689.64 7589.53 6293.32 6796.51 8295.03 4788.53 4695.98 3569.10 11691.81 3464.53 14793.40 4593.53 7291.35 8797.77 9193.75 166
HQP-MVS89.57 6790.57 6888.41 7192.77 6994.71 10694.24 5487.97 4793.44 6168.18 11991.75 3571.54 12389.90 8092.31 9891.43 8597.39 11098.80 57
MVS_Test89.02 6890.20 7087.64 8189.83 9797.05 7392.30 6577.59 11992.89 6875.01 9877.36 7476.10 10792.27 5395.30 4295.42 2898.83 3397.30 106
CLD-MVS88.99 6988.07 8790.07 5989.61 10094.94 10393.82 5785.70 6292.73 7082.73 4979.97 6569.59 12790.44 7690.32 11889.93 10798.10 6899.04 47
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline88.91 7089.94 7187.70 8089.44 10296.74 7991.62 7477.92 11693.79 5978.76 7377.55 7378.46 10089.38 8692.26 9992.52 7899.10 1098.23 81
PMMVS88.56 7191.22 5885.47 9990.04 9495.60 9986.62 12578.49 11193.86 5770.62 11190.00 3980.08 9391.64 5892.36 9689.80 11195.40 17396.84 115
test250688.38 7288.02 8988.80 6691.55 7897.78 6090.87 8883.36 7284.51 12083.06 4774.13 9376.93 10485.39 10594.34 6393.33 6998.60 4495.10 148
baseline188.16 7388.15 8688.17 7590.02 9594.79 10591.85 7083.89 6887.37 9975.67 9573.75 9579.89 9488.44 9394.41 5893.33 6999.18 593.55 168
thisisatest053087.99 7490.76 6284.75 10288.36 11596.82 7687.65 11579.67 9991.77 7470.93 10779.94 6687.65 5984.21 11592.98 8389.07 12297.66 9797.13 109
tttt051787.93 7590.71 6384.68 10388.33 11696.76 7887.42 11879.67 9991.74 7570.83 10879.91 6787.61 6084.21 11592.88 8889.07 12297.62 10097.03 111
CANet_DTU87.91 7691.57 5683.64 11190.96 8197.12 7191.90 6975.97 13292.83 6953.16 17386.02 5079.02 9890.80 6895.40 4194.15 5499.03 1896.47 126
diffmvs87.86 7787.40 9488.39 7288.57 11396.10 9191.24 8283.15 7590.62 8179.13 7072.45 10367.71 13390.07 7992.58 9293.31 7298.17 6499.03 48
IS_MVSNet87.83 7890.66 6584.53 10490.08 9396.79 7788.16 10979.89 9585.44 10972.20 10275.50 8687.14 6280.21 14395.53 3895.22 3196.65 13599.02 49
EPP-MVSNet87.72 7989.74 7385.37 10089.11 10695.57 10086.31 12679.44 10285.83 10875.73 9477.23 7690.05 5084.78 11191.22 10790.25 9996.83 12698.04 87
ET-MVSNet_ETH3D87.63 8091.08 6083.59 11267.96 21396.30 8992.06 6778.47 11291.95 7369.87 11387.57 4484.14 8494.34 3288.58 13192.10 8098.88 3096.93 112
DI_MVS_plusplus_trai87.63 8087.13 9688.22 7488.61 11295.92 9594.09 5681.41 8787.00 10278.38 7959.70 14780.52 9189.08 8894.37 6193.34 6797.73 9299.05 46
casdiffmvs87.59 8286.69 10088.64 6889.06 10796.32 8890.18 9183.21 7487.74 9780.20 6367.99 12068.34 13190.79 6993.83 6894.08 5598.41 5498.50 72
PVSNet_Blended_VisFu87.44 8388.72 8585.95 9592.02 7397.26 6986.88 12382.66 8283.86 12679.16 6966.96 12384.91 8177.26 16094.97 4893.48 6497.73 9299.64 16
FMVSNet387.19 8487.32 9587.04 8982.82 15290.21 14692.88 6176.53 12791.69 7681.31 5564.81 13180.64 8889.79 8494.80 5294.76 3998.88 3094.32 155
LS3D87.19 8485.48 10789.18 6494.96 5895.47 10192.02 6893.36 2788.69 9167.01 12070.56 11272.10 11892.47 5189.96 12189.93 10795.25 17591.68 177
ACMP85.16 987.15 8687.04 9787.27 8690.80 8394.45 10989.41 10083.09 7989.15 8876.98 9086.35 4865.80 14086.94 9888.45 13287.52 14196.42 15097.56 100
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
UGNet87.04 8789.59 7784.07 10690.94 8295.95 9486.02 12881.65 8685.94 10678.54 7778.00 7285.40 7869.62 18091.83 10291.53 8497.63 9998.51 71
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LGP-MVS_train86.95 8887.65 9186.12 9491.77 7693.84 11693.04 6082.77 8188.04 9465.33 12587.69 4367.09 13786.79 9990.20 11988.99 12597.05 12197.71 94
PatchMatch-RL86.75 8985.43 10888.29 7394.06 6296.37 8786.82 12482.94 8088.94 8979.59 6579.83 6859.17 16189.46 8591.12 10888.81 12996.88 12593.78 164
baseline286.51 9089.35 8183.19 11485.70 13894.88 10485.75 13377.13 12189.87 8570.65 11079.03 6979.14 9681.51 13693.70 6990.22 10098.38 5798.60 66
thres100view90086.48 9185.08 11088.12 7690.54 8496.90 7592.39 6484.82 6684.16 12471.65 10370.86 10960.49 15691.23 6293.65 7090.19 10298.10 6899.32 28
ACMM84.23 1086.40 9284.64 11388.46 7091.90 7491.93 13788.11 11085.59 6388.61 9279.13 7075.31 8766.25 13889.86 8389.88 12287.64 13896.16 16092.86 173
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net86.16 9386.00 10386.35 9181.81 15889.52 15591.40 7676.53 12791.69 7681.31 5564.81 13180.64 8888.72 8990.54 11290.72 9198.34 5894.08 156
test186.16 9386.00 10386.35 9181.81 15889.52 15591.40 7676.53 12791.69 7681.31 5564.81 13180.64 8888.72 8990.54 11290.72 9198.34 5894.08 156
tfpn200view986.07 9584.76 11287.61 8290.54 8496.39 8491.35 7983.15 7584.16 12471.65 10370.86 10960.49 15690.91 6692.89 8589.34 11498.05 7499.17 40
DCV-MVSNet85.90 9685.88 10585.93 9687.86 12288.37 17289.45 9977.46 12087.33 10077.51 8576.06 7975.76 10988.48 9287.40 14088.89 12894.80 18497.37 104
Vis-MVSNet (Re-imp)85.89 9789.62 7681.55 12489.85 9696.08 9387.55 11679.80 9684.80 11666.55 12273.70 9686.71 6368.25 18794.40 5994.53 4297.32 11397.09 110
MSDG85.81 9882.29 13789.93 6095.52 5592.61 12691.51 7591.46 4085.12 11378.56 7563.25 13769.01 12985.31 10888.45 13288.23 13297.21 11789.33 188
thres20085.80 9984.38 11487.46 8490.51 8696.39 8491.64 7383.15 7581.59 13471.54 10570.24 11360.41 15889.88 8192.89 8589.85 11098.06 7299.26 33
ECVR-MVScopyleft85.74 10083.80 12288.00 7791.55 7897.78 6090.87 8883.36 7284.51 12078.21 8058.65 15262.75 15285.39 10594.34 6393.33 6998.60 4495.25 142
OPM-MVS85.69 10182.79 13089.06 6593.42 6594.21 11394.21 5587.61 5072.68 15970.79 10971.09 10767.27 13690.74 7091.29 10689.05 12497.61 10193.94 161
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
thres40085.59 10284.08 11787.36 8590.45 8896.60 8190.95 8783.67 7080.99 13771.17 10669.08 11860.25 15989.88 8193.14 7889.34 11498.02 7699.17 40
CostFormer85.47 10386.98 9883.71 10988.70 11194.02 11588.07 11162.72 19689.78 8678.68 7472.69 10178.37 10187.35 9785.96 15389.32 11896.73 13298.72 58
test111185.17 10483.46 12587.17 8791.36 8097.75 6290.06 9383.44 7183.41 12875.25 9758.08 15562.19 15484.39 11494.39 6093.38 6698.54 4895.00 150
thres600view785.14 10583.58 12486.96 9090.37 9196.39 8490.33 9083.15 7580.46 13870.60 11267.96 12160.04 16089.22 8792.89 8588.28 13198.06 7299.08 45
test-LLR85.11 10689.49 7980.00 13385.32 14294.49 10782.27 16374.18 14287.83 9556.70 15175.55 8486.26 6582.75 12893.06 8090.60 9698.77 3798.65 64
FMVSNet284.89 10784.02 11985.91 9781.81 15889.52 15591.40 7675.79 13384.45 12279.39 6758.75 15074.35 11188.72 8993.51 7493.46 6598.34 5894.08 156
FC-MVSNet-train84.88 10884.08 11785.82 9889.21 10491.74 13885.87 12981.20 8981.71 13374.66 9973.38 9864.99 14486.60 10090.75 11088.08 13397.36 11197.90 91
EPNet_dtu84.87 10989.01 8280.05 13295.25 5792.88 12488.84 10484.11 6791.69 7649.28 18985.69 5178.95 9965.39 19292.22 10091.66 8397.43 10889.95 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+84.80 11085.71 10683.73 10887.94 12195.76 9690.08 9273.45 14985.12 11362.66 13472.39 10464.97 14590.59 7392.95 8490.69 9497.67 9698.12 83
UA-Net84.69 11187.64 9281.25 12690.38 9095.67 9787.33 11979.41 10372.07 16366.48 12375.09 8892.48 4166.88 18894.03 6794.25 5197.01 12489.88 185
TESTMET0.1,184.62 11289.49 7978.94 14282.18 15594.49 10782.27 16370.94 16987.83 9556.70 15175.55 8486.26 6582.75 12893.06 8090.60 9698.77 3798.65 64
CHOSEN 1792x268884.59 11384.30 11684.93 10193.71 6398.23 5489.91 9577.96 11584.81 11565.93 12445.19 19771.76 12283.13 12695.46 3995.13 3498.94 2599.53 20
Anonymous2023121184.23 11481.71 14287.17 8787.38 12993.59 11988.95 10382.14 8483.82 12778.56 7548.09 19073.89 11291.25 6186.38 14788.06 13594.74 18598.14 82
MDTV_nov1_ep1384.17 11588.03 8879.66 13586.00 13694.41 11085.05 13566.01 19190.36 8264.34 13077.13 7784.56 8282.71 13087.12 14488.92 12693.84 19193.69 167
test-mter84.06 11689.00 8378.29 14781.92 15694.23 11281.07 17370.38 17387.12 10156.10 16074.75 8985.80 7281.81 13592.52 9390.10 10498.43 5298.49 73
IB-MVS79.58 1283.83 11784.81 11182.68 11691.85 7597.35 6775.75 19282.57 8386.55 10484.01 4470.90 10865.43 14263.18 19884.19 16789.92 10998.74 3999.31 30
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPMVS83.71 11886.76 9980.16 13189.72 9995.64 9884.68 13659.73 20189.61 8762.67 13372.65 10281.80 8686.22 10286.23 14988.03 13697.96 8293.35 169
HyFIR lowres test83.43 11982.94 12884.01 10793.41 6697.10 7287.21 12074.04 14480.15 14064.98 12641.09 20576.61 10686.51 10193.31 7593.01 7797.91 8899.30 31
PatchmatchNetpermissive83.28 12087.57 9378.29 14787.46 12794.95 10283.36 14559.43 20490.20 8458.10 14674.29 9286.20 6784.13 11785.27 15987.39 14297.25 11694.67 153
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA83.26 12187.76 9078.00 15287.45 12892.20 13282.63 15958.42 20690.30 8358.23 14475.74 8387.75 5883.97 12086.10 15287.64 13897.30 11494.62 154
GeoE83.17 12282.86 12983.53 11387.24 13093.78 11787.94 11272.75 15482.19 13169.76 11460.54 14465.95 13986.01 10389.41 12689.72 11297.47 10498.43 75
CDS-MVSNet83.13 12383.73 12382.43 12284.52 14792.92 12388.26 10877.67 11872.08 16269.08 11766.96 12374.66 11078.61 14990.70 11191.96 8196.46 14996.86 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RPSCF82.91 12481.86 13984.13 10588.25 11888.32 17387.67 11480.86 9284.78 11776.57 9385.56 5276.00 10884.61 11278.20 20376.52 20686.81 21283.63 205
Vis-MVSNetpermissive82.88 12586.04 10279.20 14087.77 12596.42 8386.10 12776.70 12374.82 15361.38 13670.70 11177.91 10264.83 19493.22 7693.19 7598.43 5296.01 129
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dps82.63 12682.64 13382.62 11887.81 12492.81 12584.39 13761.96 19786.43 10581.63 5269.72 11567.60 13584.42 11382.51 18183.90 18095.52 16995.50 140
IterMVS-LS82.62 12782.75 13282.48 11987.09 13187.48 18787.19 12172.85 15279.09 14166.63 12165.22 12672.14 11784.06 11988.33 13591.39 8697.03 12395.60 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+82.61 12882.51 13582.72 11585.49 14193.06 12287.17 12271.39 16684.18 12364.59 12863.03 13858.89 16290.22 7891.39 10590.83 9097.44 10696.21 128
tpm cat182.39 12982.32 13682.47 12088.13 11992.42 13087.43 11762.79 19585.30 11078.05 8260.14 14572.10 11883.20 12582.26 18485.67 15995.23 17698.35 79
MS-PatchMatch82.16 13082.18 13882.12 12391.65 7793.50 12089.51 9771.95 16081.48 13564.45 12959.58 14977.54 10377.23 16189.88 12285.62 16097.94 8387.68 192
tpmrst81.71 13183.87 12179.20 14089.01 10893.67 11884.22 13860.14 19987.45 9859.49 14064.97 12971.86 12185.30 10984.72 16386.30 15097.04 12298.09 85
RPMNet81.47 13286.24 10175.90 17086.72 13292.12 13482.82 15755.76 21285.21 11153.73 17163.45 13583.16 8580.13 14492.34 9789.52 11396.23 15897.90 91
CR-MVSNet81.44 13385.29 10976.94 16186.53 13392.12 13483.86 13958.37 20785.21 11156.28 15559.60 14880.39 9280.50 14192.77 8989.32 11896.12 16297.59 98
Effi-MVS+-dtu81.18 13482.77 13179.33 13884.70 14692.54 12885.81 13071.55 16478.84 14257.06 15071.98 10663.77 14985.09 11088.94 12887.62 14091.79 20495.68 134
test0.0.03 180.99 13584.37 11577.05 15985.32 14289.79 15178.43 18374.18 14284.78 11757.98 14976.06 7972.88 11469.14 18488.02 13787.70 13797.27 11591.37 178
Fast-Effi-MVS+-dtu80.57 13683.44 12677.22 15783.98 15091.52 14085.78 13264.54 19480.38 13950.28 18574.06 9462.89 15082.00 13489.10 12788.91 12796.75 13097.21 108
FMVSNet580.56 13782.53 13478.26 14973.80 20881.52 20682.26 16568.36 18488.85 9064.21 13169.09 11784.38 8383.49 12487.13 14386.76 14797.44 10679.95 208
ADS-MVSNet80.25 13882.96 12777.08 15887.86 12292.60 12781.82 17056.19 21186.95 10356.16 15868.19 11972.42 11683.70 12382.05 18585.45 16596.75 13093.08 172
FMVSNet180.18 13978.07 15382.65 11778.55 18287.57 18688.41 10773.93 14570.16 16873.57 10049.80 18064.45 14885.35 10790.54 11290.72 9196.10 16393.21 170
USDC80.10 14079.33 14981.00 12886.36 13491.71 13988.74 10575.77 13481.90 13254.90 16567.67 12252.05 17483.94 12188.44 13486.25 15196.31 15387.28 196
COLMAP_ROBcopyleft75.69 1579.47 14176.90 16082.46 12192.20 7090.53 14285.30 13483.69 6978.27 14561.47 13558.26 15362.75 15278.28 15282.41 18282.13 19393.83 19383.98 204
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_part179.37 14275.64 16583.71 10986.18 13587.74 18087.84 11375.69 13666.33 18578.93 7245.92 19564.85 14682.44 13183.08 17985.69 15891.17 20595.90 131
pmmvs479.32 14377.78 15581.11 12780.18 16788.96 16783.39 14376.07 13081.27 13669.35 11558.66 15151.19 17782.01 13387.16 14284.39 17795.66 16792.82 174
PatchT79.28 14483.88 12073.93 17985.54 14090.95 14166.14 20956.53 21083.21 12956.28 15556.50 15776.80 10580.50 14192.77 8989.32 11898.57 4797.59 98
ACMH78.51 1479.27 14578.08 15280.65 12989.52 10190.40 14380.45 17579.77 9869.54 17354.85 16664.83 13056.16 16883.94 12184.58 16586.01 15595.41 17295.03 149
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS79.23 14678.95 15179.56 13681.89 15792.52 12982.97 15273.70 14667.27 17964.97 12761.66 14365.06 14378.61 14987.12 14488.07 13495.23 17690.95 180
ACMH+79.09 1379.12 14777.22 15981.35 12588.50 11490.36 14482.14 16779.38 10572.78 15858.59 14162.31 14256.44 16784.10 11882.03 18684.05 17895.40 17392.55 175
UniMVSNet_NR-MVSNet78.89 14878.04 15479.88 13479.40 17389.70 15282.92 15480.17 9376.37 15158.56 14257.10 15654.92 17081.44 13783.51 17287.12 14496.76 12997.60 96
tpm78.87 14981.33 14576.00 16885.57 13990.19 14782.81 15859.66 20278.35 14451.40 18066.30 12567.92 13280.94 13983.28 17585.73 15695.65 16897.56 100
GA-MVS78.86 15080.42 14677.05 15983.27 15192.17 13383.24 14775.73 13573.75 15546.27 19962.43 14057.12 16476.94 16393.14 7889.34 11496.83 12695.00 150
IterMVS78.85 15181.36 14375.93 16984.27 14985.74 19383.83 14166.35 18976.82 14650.48 18363.48 13468.82 13073.99 16889.68 12489.34 11496.63 13895.67 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT78.71 15281.34 14475.64 17484.31 14885.67 19483.51 14266.14 19076.67 14750.38 18463.45 13569.02 12873.23 17089.66 12589.22 12196.24 15795.67 135
UniMVSNet (Re)78.00 15377.52 15678.57 14579.66 17290.36 14482.09 16877.86 11776.38 15060.26 13754.63 16352.07 17375.31 16684.97 16286.10 15396.22 15998.11 84
DU-MVS77.98 15476.71 16179.46 13778.68 17989.26 16182.92 15479.06 10876.52 14858.56 14254.89 16148.35 19181.44 13783.16 17787.21 14396.08 16497.60 96
FC-MVSNet-test77.95 15581.85 14073.39 18482.31 15388.99 16679.33 17974.24 14178.75 14347.40 19770.22 11472.09 12060.78 20486.66 14685.62 16096.30 15490.61 181
NR-MVSNet77.21 15676.41 16278.14 15180.18 16789.26 16183.38 14479.06 10876.52 14856.59 15354.89 16145.32 20172.89 17285.39 15886.12 15296.71 13397.36 105
thisisatest051577.13 15779.36 14874.52 17679.79 17189.65 15373.54 19773.69 14774.10 15458.14 14562.79 13960.57 15566.49 19088.08 13685.16 17095.49 17195.15 146
gg-mvs-nofinetune77.08 15879.79 14773.92 18085.95 13797.23 7092.18 6652.65 21546.19 21827.79 22238.27 20985.63 7385.67 10496.95 1895.62 2599.30 398.67 63
TranMVSNet+NR-MVSNet77.02 15975.76 16478.49 14678.46 18588.24 17483.03 15179.97 9473.49 15754.73 16754.00 16648.74 18678.15 15482.36 18386.90 14696.59 14096.55 120
CVMVSNet76.86 16079.09 15074.26 17785.29 14489.44 15879.91 17878.47 11268.94 17644.45 20462.35 14169.70 12664.50 19585.82 15487.03 14592.94 19990.33 182
Baseline_NR-MVSNet76.71 16174.56 17279.23 13978.68 17984.15 20282.45 16178.87 11075.83 15260.05 13847.92 19150.18 18379.06 14883.16 17783.86 18196.26 15596.80 116
v2v48276.25 16274.78 16977.96 15378.50 18489.14 16483.05 15076.02 13168.78 17754.11 16851.36 17248.59 18879.49 14683.53 17185.60 16396.59 14096.49 125
V4276.21 16375.04 16877.58 15478.68 17989.33 16082.93 15374.64 13969.84 17056.13 15950.42 17750.93 17876.30 16583.32 17384.89 17496.83 12696.54 121
v875.89 16474.74 17077.23 15679.09 17588.00 17783.19 14871.08 16870.03 16956.29 15450.50 17550.88 17977.06 16283.32 17384.99 17296.68 13495.49 141
TinyColmap75.75 16573.19 18378.74 14484.82 14587.69 18281.59 17174.62 14071.81 16454.01 16955.79 16044.42 20682.89 12784.61 16483.76 18294.50 18684.22 203
MIMVSNet75.71 16677.26 15773.90 18170.93 20988.71 17079.98 17757.67 20973.58 15658.08 14853.93 16758.56 16379.41 14790.04 12089.97 10597.34 11286.04 197
UniMVSNet_ETH3D75.63 16771.59 19280.35 13081.03 16289.90 15083.25 14676.58 12660.08 20164.19 13242.89 20445.01 20282.14 13280.20 19686.75 14894.90 18196.29 127
pm-mvs175.61 16874.19 17477.26 15580.16 16988.79 16881.49 17275.49 13859.49 20358.09 14748.32 18855.53 16972.35 17388.61 13085.48 16495.99 16593.12 171
v1075.57 16974.67 17176.62 16478.73 17887.46 18883.14 14969.41 18069.27 17453.44 17249.73 18149.21 18578.44 15186.17 15185.18 16996.53 14595.65 138
v114475.54 17074.55 17376.69 16278.33 18888.77 16982.89 15672.76 15367.18 18151.73 17749.34 18348.37 18978.10 15586.22 15085.24 16796.35 15296.74 117
TDRefinement75.54 17073.22 18178.25 15087.65 12689.65 15385.81 13079.28 10671.14 16656.06 16152.17 17051.96 17568.74 18681.60 18780.58 19591.94 20285.45 198
pmmvs575.46 17275.12 16775.87 17179.39 17489.44 15878.12 18572.27 15865.98 18751.54 17855.83 15946.23 19676.80 16488.77 12985.73 15697.07 12093.84 162
tfpnnormal75.27 17372.12 18978.94 14282.30 15488.52 17182.41 16279.41 10358.03 20455.59 16343.83 20344.71 20377.35 15887.70 13985.45 16596.60 13996.61 119
anonymousdsp75.14 17477.25 15872.69 18776.68 19889.26 16175.26 19468.44 18365.53 19046.65 19858.16 15456.67 16673.96 16987.84 13886.05 15495.13 17997.22 107
v14874.98 17573.52 17976.69 16278.84 17789.02 16578.78 18176.82 12267.22 18059.61 13949.18 18447.94 19370.57 17980.76 19183.99 17995.52 16996.52 123
v119274.96 17673.92 17576.17 16577.76 19188.19 17682.54 16071.94 16166.84 18250.07 18748.10 18946.14 19778.28 15286.30 14885.23 16896.41 15196.67 118
v14419274.76 17773.64 17676.06 16777.58 19288.23 17581.87 16971.63 16366.03 18651.08 18148.63 18746.77 19577.59 15784.53 16684.76 17596.64 13796.54 121
v192192074.60 17873.56 17875.81 17277.43 19487.94 17882.18 16671.33 16766.48 18449.23 19147.84 19245.56 19978.03 15685.70 15684.92 17396.65 13596.50 124
v124074.04 17973.04 18575.20 17577.19 19687.69 18280.93 17470.72 17265.08 19148.47 19247.31 19344.71 20377.33 15985.50 15785.07 17196.59 14095.94 130
testgi73.22 18075.84 16370.16 19881.67 16185.50 19771.45 19970.81 17069.56 17244.74 20374.52 9149.25 18458.45 20584.10 16983.37 18693.86 19084.56 202
CP-MVSNet73.19 18172.37 18774.15 17877.54 19386.77 19176.34 18872.05 15965.66 18951.47 17950.49 17643.66 20770.90 17580.93 19083.40 18596.59 14095.66 137
WR-MVS72.93 18273.57 17772.19 19078.14 18987.71 18176.21 19073.02 15167.78 17850.09 18650.35 17850.53 18161.27 20380.42 19483.10 18994.43 18795.11 147
TransMVSNet (Re)72.90 18370.51 19675.69 17380.88 16385.26 19979.25 18078.43 11456.13 21052.81 17446.81 19448.20 19266.77 18985.18 16183.70 18395.98 16688.28 191
WR-MVS_H72.69 18472.80 18672.56 18977.94 19087.83 17975.26 19471.53 16564.75 19252.19 17649.83 17948.62 18761.96 20181.12 18982.44 19196.50 14695.00 150
SixPastTwentyTwo72.65 18573.22 18171.98 19378.40 18687.64 18470.09 20270.37 17466.49 18347.60 19565.09 12745.94 19873.09 17178.94 19878.66 20192.33 20089.82 186
LTVRE_ROB71.82 1672.62 18671.77 19073.62 18280.74 16487.59 18580.42 17670.37 17449.73 21437.12 21659.76 14642.52 21280.92 14083.20 17685.61 16292.13 20193.95 160
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-CasMVS72.37 18771.47 19473.43 18377.32 19586.43 19275.99 19171.94 16163.37 19549.24 19049.07 18542.42 21369.60 18180.59 19383.18 18896.48 14895.23 144
MVS-HIRNet72.32 18873.45 18071.00 19680.58 16589.97 14868.51 20655.28 21370.89 16752.27 17539.09 20757.11 16575.02 16785.76 15586.33 14994.36 18885.00 200
PEN-MVS72.24 18971.30 19573.33 18577.08 19785.57 19576.75 18672.52 15663.89 19448.12 19350.79 17343.09 21069.03 18578.54 20083.46 18496.50 14693.76 165
v7n72.11 19071.66 19172.63 18875.26 20386.85 18976.74 18768.77 18262.70 19849.40 18845.92 19543.51 20870.63 17884.16 16883.21 18794.99 18095.25 142
EG-PatchMatch MVS71.81 19171.54 19372.12 19180.53 16689.94 14978.51 18266.56 18857.38 20647.46 19644.28 20252.22 17263.10 19985.22 16084.42 17696.56 14487.35 195
CMPMVSbinary54.54 1771.74 19267.94 20176.16 16690.41 8993.25 12178.32 18475.60 13759.81 20253.95 17044.64 20051.22 17670.70 17674.59 20975.88 20788.01 20976.23 211
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep13_2view71.65 19373.08 18469.97 19975.22 20486.81 19073.98 19659.61 20369.75 17148.01 19454.21 16553.06 17169.19 18378.50 20180.43 19693.84 19188.79 189
pmnet_mix0271.64 19472.36 18870.81 19778.39 18785.57 19568.64 20473.65 14872.13 16045.07 20256.01 15850.61 18065.34 19376.21 20676.60 20593.75 19489.35 187
gm-plane-assit71.33 19575.18 16666.83 20279.06 17675.57 21348.05 22060.33 19848.28 21534.67 22044.34 20167.70 13479.78 14597.25 1196.21 1399.10 1096.92 113
DTE-MVSNet71.19 19670.45 19772.06 19276.61 19984.59 20175.61 19372.32 15763.12 19745.70 20150.72 17443.02 21165.89 19177.53 20582.23 19296.26 15591.93 176
pmmvs670.29 19767.90 20273.07 18676.17 20085.31 19876.29 18970.75 17147.39 21755.33 16437.15 21350.49 18269.55 18282.96 18080.85 19490.34 20891.18 179
PM-MVS70.17 19869.42 19971.04 19570.82 21081.26 20871.25 20067.80 18569.16 17551.04 18253.15 16934.93 21772.19 17480.30 19576.95 20493.16 19890.21 183
pmmvs-eth3d69.59 19967.57 20471.95 19470.04 21180.05 20971.48 19870.00 17862.57 19955.99 16244.92 19835.73 21670.64 17781.56 18879.69 19793.55 19588.43 190
N_pmnet68.54 20067.83 20369.38 20075.77 20181.90 20566.21 20872.53 15565.91 18846.09 20044.67 19945.48 20063.82 19774.66 20877.39 20391.87 20384.77 201
Anonymous2023120668.09 20168.68 20067.39 20175.16 20582.55 20369.33 20370.06 17763.34 19642.28 20737.91 21143.12 20952.67 20883.56 17082.71 19094.84 18387.59 193
EU-MVSNet68.07 20270.25 19865.52 20374.68 20781.30 20768.53 20570.31 17662.40 20037.43 21554.62 16448.36 19051.34 20978.32 20279.27 19890.84 20687.47 194
GG-mvs-BLEND65.67 20393.78 4032.89 2160.47 22699.35 796.92 320.22 22593.28 630.51 22784.07 5592.50 400.62 22493.59 7193.86 5898.59 4699.79 10
test20.0365.17 20467.41 20562.55 20575.35 20279.31 21062.22 21068.83 18156.50 20935.35 21951.97 17144.70 20540.01 21480.69 19279.25 19993.55 19579.47 210
MDA-MVSNet-bldmvs62.23 20561.13 20963.52 20458.94 21782.44 20460.71 21373.28 15057.22 20738.42 21349.63 18227.64 22362.83 20054.98 21574.16 20886.96 21181.83 207
new_pmnet61.60 20662.68 20760.35 20863.02 21474.93 21460.97 21258.86 20564.21 19335.38 21839.51 20639.89 21457.37 20672.78 21072.56 21086.49 21374.85 213
new-patchmatchnet60.74 20759.78 21161.87 20669.52 21276.67 21257.99 21665.78 19252.63 21238.47 21238.08 21032.92 22048.88 21168.50 21169.87 21190.56 20779.75 209
pmmvs360.52 20860.87 21060.12 20961.38 21571.62 21557.42 21753.94 21448.09 21635.95 21738.62 20832.19 22264.12 19675.33 20777.99 20287.89 21082.28 206
MIMVSNet160.51 20961.43 20859.44 21048.75 22077.21 21160.98 21166.84 18752.09 21338.74 21129.29 21639.40 21548.08 21277.60 20478.87 20093.22 19775.56 212
test_method60.40 21066.30 20653.52 21237.48 22464.10 21955.56 21842.45 22071.79 16541.87 20833.74 21446.80 19461.71 20279.18 19773.33 20982.01 21595.17 145
FPMVS56.54 21152.82 21360.87 20774.90 20667.58 21867.69 20765.38 19357.86 20541.51 20937.83 21234.19 21841.21 21355.88 21453.09 21674.55 21863.31 216
PMVScopyleft42.57 1845.71 21242.61 21549.32 21361.35 21637.82 22336.96 22260.10 20037.20 21941.50 21028.53 21733.11 21928.82 21953.45 21648.70 21867.22 22059.42 217
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft43.95 21342.62 21445.50 21450.79 21941.20 22235.55 22352.51 21652.95 21129.09 22112.92 21911.48 22638.15 21562.01 21366.62 21366.89 22151.17 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS241.25 21442.55 21639.74 21543.25 22155.05 22138.15 22147.11 21931.78 22011.83 22421.16 21819.12 22420.98 22149.95 21856.09 21577.09 21664.68 215
E-PMN27.87 21524.36 21831.97 21741.27 22325.56 22616.62 22549.16 21722.00 2229.90 22511.75 2217.86 22829.57 21822.22 22034.70 21945.27 22246.41 220
MVEpermissive32.98 1927.61 21629.89 21724.94 21921.97 22537.22 22415.56 22738.83 22117.49 22314.72 22311.64 2235.62 22921.26 22035.20 21950.95 21737.29 22451.13 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS26.96 21722.96 21931.63 21841.91 22225.73 22516.30 22649.10 21822.38 2219.03 22611.22 2248.12 22729.93 21720.16 22131.04 22043.49 22342.04 221
testmvs5.16 2188.14 2201.69 2200.36 2271.65 2273.02 2280.66 2237.17 2240.50 22812.58 2200.69 2304.67 2225.42 2225.65 2210.92 22523.86 223
test1234.39 2197.11 2211.21 2210.11 2281.16 2281.67 2290.35 2245.91 2250.16 22911.65 2220.16 2314.45 2231.72 2234.92 2220.51 22624.28 222
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def43.17 205
9.1497.59 10
SR-MVS98.52 2193.70 2396.63 20
Anonymous20240521181.72 14188.09 12094.27 11189.62 9682.14 8482.27 13048.83 18672.58 11591.08 6487.40 14088.70 13094.90 18197.99 88
our_test_378.55 18284.98 20070.12 201
ambc57.08 21258.68 21867.71 21760.07 21457.13 20842.79 20630.00 21511.64 22550.18 21078.89 19969.14 21282.64 21485.02 199
MTAPA93.37 995.71 27
MTMP93.84 594.86 31
Patchmatch-RL test19.65 224
tmp_tt57.89 21179.94 17059.29 22052.84 21936.65 22294.77 5268.22 11872.96 9965.62 14133.65 21666.20 21258.02 21476.06 217
XVS92.16 7198.56 3791.04 8481.00 6093.49 3598.00 78
X-MVStestdata92.16 7198.56 3791.04 8481.00 6093.49 3598.00 78
abl_693.25 3697.12 3998.71 3294.40 5287.81 4897.86 1187.19 3191.07 3795.80 2594.18 3598.78 3699.36 25
mPP-MVS97.95 3092.24 45
NP-MVS94.12 56
Patchmtry92.08 13683.86 13958.37 20756.28 155
DeepMVS_CXcopyleft70.68 21659.61 21567.36 18672.12 16138.41 21453.88 16832.44 22155.15 20750.88 21774.35 21968.42 214