This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS97.92 198.27 297.52 198.88 1299.60 198.80 595.08 898.57 295.63 296.98 1099.73 197.67 197.26 1095.86 2299.04 1599.89 5
MSP-MVS97.74 298.32 197.06 898.66 1599.35 798.66 894.75 1498.22 593.60 697.99 198.58 897.41 498.24 295.95 1899.27 499.91 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++97.71 398.01 697.37 298.98 699.58 398.79 695.06 998.24 494.66 396.35 1699.20 497.63 297.20 1295.68 2399.08 1399.84 7
DPE-MVScopyleft97.69 498.16 397.14 699.01 599.52 599.12 295.38 398.00 893.31 1097.71 299.61 396.94 596.99 1695.45 2799.09 1299.81 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft97.61 597.87 797.30 398.94 1199.60 198.21 1395.11 598.39 395.83 194.40 2999.70 296.79 697.16 1395.95 1898.92 2699.90 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CNVR-MVS97.60 698.08 497.03 999.14 199.55 498.67 795.32 497.91 992.55 1397.11 797.23 1397.49 398.16 397.05 599.04 1599.55 19
APDe-MVS97.31 797.51 1297.08 798.95 1099.29 1298.58 1095.11 597.69 1594.16 496.91 1196.81 1796.57 1096.71 2095.39 2999.08 1399.79 10
SF-MVS97.17 897.18 1597.17 499.11 299.20 1499.05 395.55 197.39 1893.56 797.48 496.71 1996.75 795.73 3294.40 4498.98 2099.33 25
NCCC97.01 997.74 896.16 1299.02 499.35 798.63 995.04 1097.84 1288.95 2696.83 1397.02 1696.39 1597.44 796.51 998.90 2899.16 42
SMA-MVScopyleft96.96 1097.65 1196.15 1398.98 699.31 1197.91 1894.68 1697.52 1690.59 2094.54 2899.20 496.54 1297.29 996.48 1098.22 6499.19 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS96.93 1198.07 595.61 2098.98 699.44 698.04 1495.04 1098.10 686.55 3397.65 397.56 1195.60 2497.67 696.45 1199.43 199.61 18
HPM-MVS++copyleft96.91 1297.70 996.00 1598.97 999.16 1797.82 2194.81 1398.04 789.61 2396.56 1598.60 796.39 1597.09 1495.22 3198.39 5899.22 34
SD-MVS96.87 1397.69 1095.92 1696.38 4999.25 1397.76 2294.75 1497.72 1392.46 1595.94 1799.09 696.48 1496.01 2996.08 1697.68 9599.73 13
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft96.79 1496.99 1896.56 1098.76 1498.87 2698.42 1194.93 1297.70 1491.83 1695.52 2095.94 2496.63 995.94 3095.47 2698.80 3499.47 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.96.50 1597.08 1695.82 1896.12 5398.97 2398.00 1594.13 2197.89 1091.49 1795.11 2597.52 1296.26 1996.27 2794.07 5598.91 2799.74 12
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP96.20 1697.22 1495.01 2498.40 2399.11 1897.93 1793.62 2596.28 3187.45 2997.05 996.00 2394.23 3296.83 1995.97 1798.40 5799.27 31
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.09 1796.41 2395.72 1998.58 1898.84 2797.95 1693.08 2996.96 2490.24 2196.60 1494.40 3296.52 1395.13 4494.33 4697.93 8598.59 67
zzz-MVS95.87 1895.63 3096.15 1398.60 1798.83 2897.89 1993.65 2496.24 3293.08 1191.13 3695.46 2995.72 2395.64 3493.67 6397.97 8298.46 74
ACMMP_NAP95.81 1996.50 2295.01 2498.79 1399.17 1697.52 2794.20 2096.19 3385.71 3793.80 3296.20 2295.89 2096.62 2294.98 3797.93 8598.52 70
train_agg95.72 2097.37 1393.80 3097.82 3298.92 2497.84 2093.50 2696.86 2681.35 5697.10 897.71 994.19 3396.02 2895.37 3098.07 7299.64 16
ACMMPR95.59 2195.89 2595.25 2298.41 2298.74 3097.69 2592.73 3396.88 2588.95 2695.33 2292.91 3995.79 2194.73 5494.33 4697.92 8798.32 80
DeepC-MVS_fast91.53 195.57 2295.67 2895.45 2198.57 1999.00 2297.76 2294.41 1897.06 2186.84 3286.39 4792.27 4496.38 1797.89 598.06 398.73 4099.01 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++95.49 2394.84 3496.25 1198.64 1698.63 3498.35 1292.37 3595.04 5192.62 1287.12 4693.79 3396.55 1193.53 7396.78 698.98 2098.99 51
CP-MVS95.43 2495.67 2895.14 2398.24 2898.60 3597.45 2892.80 3195.98 3689.21 2595.22 2393.60 3495.43 2594.37 6193.22 7497.68 9598.72 58
DPM-MVS95.36 2595.84 2694.82 2696.70 4598.49 4599.27 195.09 796.71 2783.87 4586.34 4996.44 2195.06 2798.35 198.82 198.89 2995.69 134
MP-MVScopyleft95.24 2695.96 2494.40 2898.32 2598.38 5097.12 3092.87 3095.17 4985.50 3895.68 1894.91 3094.58 2995.11 4593.76 6098.05 7598.68 60
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + ACMM94.99 2797.02 1792.61 4197.19 3898.71 3297.74 2493.21 2896.97 2379.27 7194.09 3097.14 1490.84 6796.64 2195.94 2097.42 11099.67 15
X-MVS94.70 2895.71 2793.52 3498.38 2498.56 3796.99 3192.62 3495.58 4081.00 6394.57 2793.49 3594.16 3694.82 5094.29 4997.99 8198.68 60
PGM-MVS94.64 2995.49 3193.66 3298.55 2098.51 4397.63 2687.77 4994.45 5584.92 4197.23 691.90 4695.22 2694.56 5793.80 5997.87 9197.97 90
TSAR-MVS + GP.94.59 3096.60 2192.25 4290.25 9498.17 5796.22 3786.53 5597.49 1787.26 3095.21 2497.06 1594.07 3894.34 6394.20 5199.18 599.71 14
xxxxxxxxxxxxxcwj94.57 3192.34 5197.17 499.11 299.20 1499.05 395.55 197.39 1893.56 797.48 462.85 15296.75 795.73 3294.40 4498.98 2099.33 25
PHI-MVS94.49 3296.72 2091.88 4497.06 4098.88 2594.99 4889.13 4396.15 3479.70 6796.91 1195.78 2691.87 5794.65 5595.68 2398.53 4998.98 53
AdaColmapbinary94.28 3392.94 4695.84 1798.32 2598.33 5296.06 3994.62 1796.29 3091.22 1889.89 4085.50 7596.38 1791.85 10290.89 8998.44 5397.81 93
DeepPCF-MVS91.00 294.15 3496.87 1990.97 5296.82 4399.33 1089.40 10192.76 3298.76 182.36 5288.74 4195.49 2890.58 7498.13 497.80 493.88 19099.88 6
CPTT-MVS94.11 3593.99 3994.25 2996.58 4697.66 6597.31 2991.94 3694.84 5288.72 2892.51 3393.04 3895.78 2291.51 10589.97 10695.15 17998.37 77
EPNet93.69 3695.34 3291.76 4596.98 4298.47 4795.40 4586.79 5295.47 4282.84 4995.66 1989.17 5290.47 7595.25 4394.69 4098.10 6998.68 60
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft93.32 3793.59 4293.00 3997.03 4198.24 5395.27 4691.66 3995.20 4783.25 4795.39 2185.52 7392.80 4892.60 9290.21 10298.01 7897.99 88
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CANet93.23 3893.72 4192.65 4095.48 5699.09 2096.55 3586.74 5395.28 4585.22 3977.30 7591.25 4892.60 5097.06 1596.63 799.31 299.45 23
CDPH-MVS93.22 3995.08 3391.04 5197.57 3598.49 4596.74 3389.35 4295.19 4873.57 10190.26 3891.59 4790.68 7195.09 4796.15 1498.31 6398.81 56
CSCG93.16 4092.65 4893.76 3198.32 2599.09 2096.12 3889.91 4193.15 6489.64 2283.62 5788.91 5592.40 5291.09 11093.70 6196.14 16298.99 51
MVS_111021_LR93.05 4194.53 3691.32 4996.43 4898.38 5092.81 6287.20 5195.94 3881.45 5594.75 2686.08 6992.12 5594.83 4993.34 6897.89 9098.42 76
3Dnovator+86.26 792.90 4292.45 5093.42 3597.25 3798.45 4995.82 4085.71 6193.83 5989.55 2472.31 10592.28 4394.01 4095.10 4695.92 2198.17 6599.23 33
MVS_111021_HR92.73 4394.83 3590.28 5896.27 5099.10 1992.77 6386.15 5893.41 6277.11 9093.82 3187.39 6190.61 7295.60 3695.15 3398.79 3599.32 27
PLCcopyleft89.12 392.67 4490.84 6194.81 2797.69 3396.10 9395.42 4491.70 3795.82 3992.52 1481.24 6186.01 7094.36 3092.44 9690.27 9997.19 11993.99 160
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator85.78 892.53 4591.96 5393.20 3797.99 2998.47 4795.78 4185.94 5993.07 6686.40 3473.43 9789.00 5494.08 3794.74 5396.44 1299.01 1998.57 68
DeepC-MVS88.77 492.39 4691.74 5593.14 3896.21 5198.55 4096.30 3693.84 2293.06 6781.09 6174.69 9085.20 7993.48 4395.41 3996.13 1597.92 8799.18 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OMC-MVS92.05 4791.88 5492.25 4296.51 4797.94 5993.18 5988.97 4596.53 2884.47 4380.79 6387.85 5793.25 4692.48 9591.81 8297.12 12095.73 133
MVSTER91.91 4893.43 4590.14 5989.81 10192.32 13294.53 5181.32 9096.00 3584.77 4285.41 5492.39 4291.32 5996.41 2394.01 5799.11 897.45 102
MVS_030491.90 4992.93 4790.69 5693.66 6698.78 2996.73 3485.43 6593.13 6578.11 8477.02 7889.09 5391.10 6396.98 1796.54 899.11 898.96 54
CS-MVS-test91.76 5093.47 4389.76 6294.64 6198.22 5588.13 11081.58 8797.02 2282.47 5185.49 5385.41 7793.28 4595.33 4193.61 6498.45 5299.22 34
QAPM91.68 5191.97 5291.34 4897.86 3198.72 3195.60 4385.72 6090.86 8077.14 8976.06 7990.35 4992.69 4994.10 6694.60 4199.04 1599.09 44
CS-MVS91.55 5292.49 4990.45 5794.00 6497.91 6191.17 8281.40 8995.22 4683.51 4682.37 5982.29 8594.07 3896.36 2694.03 5698.56 4799.22 34
CNLPA91.53 5389.74 7393.63 3396.75 4497.63 6791.16 8391.70 3796.38 2990.82 1969.66 11685.52 7393.76 4190.44 11691.14 8897.55 10497.40 103
ETV-MVS91.51 5494.06 3888.54 7189.39 10697.52 6889.48 9880.88 9397.09 2079.41 6987.87 4286.18 6892.95 4795.94 3094.33 4699.13 799.52 21
DROMVSNet91.25 5593.45 4488.68 6988.90 11296.18 9291.66 7176.70 12495.57 4182.00 5384.18 5589.28 5194.17 3595.64 3494.19 5298.68 4299.14 43
DELS-MVS91.09 5690.56 6991.71 4695.82 5498.59 3695.74 4286.68 5485.86 10885.12 4072.71 10081.36 8888.06 9597.31 898.27 298.86 3299.82 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TAPA-MVS87.40 690.98 5790.71 6391.30 5096.14 5297.66 6594.80 4989.00 4494.74 5477.42 8880.22 6486.70 6492.27 5391.65 10490.17 10498.15 6893.83 164
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet_BlendedMVS90.74 5890.66 6590.82 5494.75 5998.54 4191.30 7986.53 5595.43 4385.75 3578.66 7070.67 12587.60 9696.37 2495.08 3598.98 2099.90 2
PVSNet_Blended90.74 5890.66 6590.82 5494.75 5998.54 4191.30 7986.53 5595.43 4385.75 3578.66 7070.67 12587.60 9696.37 2495.08 3598.98 2099.90 2
CHOSEN 280x42090.61 6094.27 3786.35 9193.12 7098.16 5889.99 9469.62 17992.48 7176.89 9387.28 4596.72 1890.31 7794.81 5192.33 7998.17 6598.08 86
MAR-MVS90.44 6191.17 5989.59 6397.48 3697.92 6090.96 8679.80 9895.07 5077.03 9180.83 6279.10 9894.68 2893.16 7894.46 4397.59 10397.63 95
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PCF-MVS88.14 590.42 6289.56 7891.41 4794.44 6298.18 5694.35 5394.33 1984.55 12076.61 9475.84 8288.47 5691.29 6090.37 11890.66 9597.46 10698.88 55
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft83.41 1189.84 6388.89 8490.95 5397.63 3498.51 4394.64 5085.47 6488.14 9478.39 8165.06 12985.42 7691.04 6593.06 8193.70 6198.53 4998.37 77
EIA-MVS89.82 6491.48 5787.89 8089.16 10897.31 7088.99 10280.92 9294.29 5677.65 8682.16 6079.77 9691.90 5694.61 5693.03 7698.70 4199.21 37
canonicalmvs89.62 6589.87 7289.33 6590.47 8997.02 7693.46 5879.67 10192.45 7281.05 6282.84 5873.00 11493.71 4290.38 11794.85 3897.65 9998.54 69
TSAR-MVS + COLMAP89.59 6689.64 7589.53 6493.32 6996.51 8495.03 4788.53 4695.98 3669.10 11791.81 3464.53 14893.40 4493.53 7391.35 8797.77 9293.75 167
HQP-MVS89.57 6790.57 6888.41 7392.77 7194.71 10894.24 5487.97 4793.44 6168.18 12091.75 3571.54 12489.90 8092.31 9991.43 8597.39 11198.80 57
MVS_Test89.02 6890.20 7087.64 8289.83 10097.05 7592.30 6577.59 12092.89 6875.01 9977.36 7476.10 10892.27 5395.30 4295.42 2898.83 3397.30 107
CLD-MVS88.99 6988.07 8790.07 6089.61 10394.94 10593.82 5785.70 6292.73 7082.73 5079.97 6569.59 12890.44 7690.32 11989.93 10898.10 6999.04 47
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline88.91 7089.94 7187.70 8189.44 10596.74 8291.62 7377.92 11793.79 6078.76 7677.55 7378.46 10189.38 8692.26 10092.52 7899.10 1098.23 81
PMMVS88.56 7191.22 5885.47 9990.04 9695.60 10186.62 12678.49 11293.86 5870.62 11290.00 3980.08 9491.64 5892.36 9789.80 11295.40 17496.84 116
test250688.38 7288.02 8988.80 6891.55 8097.78 6290.87 8883.36 7284.51 12183.06 4874.13 9376.93 10585.39 10694.34 6393.33 7098.60 4395.10 149
baseline188.16 7388.15 8688.17 7790.02 9794.79 10791.85 7083.89 6887.37 10075.67 9773.75 9579.89 9588.44 9494.41 5893.33 7099.18 593.55 169
thisisatest053087.99 7490.76 6284.75 10388.36 11796.82 7987.65 11679.67 10191.77 7470.93 10879.94 6687.65 5984.21 11692.98 8489.07 12397.66 9897.13 110
tttt051787.93 7590.71 6384.68 10488.33 11896.76 8187.42 11979.67 10191.74 7570.83 10979.91 6787.61 6084.21 11692.88 8989.07 12397.62 10197.03 112
CANet_DTU87.91 7691.57 5683.64 11290.96 8397.12 7391.90 6975.97 13292.83 6953.16 17486.02 5079.02 9990.80 6895.40 4094.15 5399.03 1896.47 127
diffmvs87.86 7787.40 9588.39 7488.57 11596.10 9391.24 8183.15 7590.62 8179.13 7372.45 10367.71 13490.07 7992.58 9393.31 7398.17 6599.03 48
IS_MVSNet87.83 7890.66 6584.53 10590.08 9596.79 8088.16 10979.89 9785.44 11072.20 10375.50 8687.14 6280.21 14495.53 3795.22 3196.65 13699.02 49
EPP-MVSNet87.72 7989.74 7385.37 10089.11 10995.57 10286.31 12779.44 10485.83 10975.73 9677.23 7690.05 5084.78 11291.22 10890.25 10096.83 12798.04 87
ET-MVSNet_ETH3D87.63 8091.08 6083.59 11367.96 21496.30 9192.06 6778.47 11391.95 7369.87 11487.57 4484.14 8394.34 3188.58 13292.10 8098.88 3096.93 113
DI_MVS_plusplus_trai87.63 8087.13 9788.22 7688.61 11495.92 9794.09 5681.41 8887.00 10378.38 8259.70 14880.52 9289.08 8994.37 6193.34 6897.73 9399.05 46
casdiffmvs87.59 8286.69 10188.64 7089.06 11096.32 9090.18 9183.21 7487.74 9880.20 6667.99 12068.34 13290.79 6993.83 6994.08 5498.41 5698.50 72
PVSNet_Blended_VisFu87.44 8388.72 8585.95 9592.02 7597.26 7186.88 12482.66 8283.86 12779.16 7266.96 12384.91 8077.26 16194.97 4893.48 6597.73 9399.64 16
FMVSNet387.19 8487.32 9687.04 8982.82 15390.21 14792.88 6176.53 12791.69 7681.31 5764.81 13280.64 8989.79 8494.80 5294.76 3998.88 3094.32 156
LS3D87.19 8485.48 10889.18 6694.96 5895.47 10392.02 6893.36 2788.69 9267.01 12170.56 11272.10 11992.47 5189.96 12289.93 10895.25 17691.68 178
ACMP85.16 987.15 8687.04 9887.27 8690.80 8594.45 11189.41 10083.09 7989.15 8876.98 9286.35 4865.80 14186.94 9988.45 13387.52 14296.42 15197.56 100
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
UGNet87.04 8789.59 7784.07 10790.94 8495.95 9686.02 12981.65 8685.94 10778.54 8078.00 7285.40 7869.62 18191.83 10391.53 8497.63 10098.51 71
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LGP-MVS_train86.95 8887.65 9286.12 9491.77 7893.84 11793.04 6082.77 8188.04 9565.33 12687.69 4367.09 13886.79 10090.20 12088.99 12697.05 12297.71 94
PatchMatch-RL86.75 8985.43 10988.29 7594.06 6396.37 8986.82 12582.94 8088.94 9079.59 6879.83 6859.17 16289.46 8591.12 10988.81 13096.88 12693.78 165
FA-MVS(training)86.74 9088.01 9085.26 10189.86 9896.99 7788.54 10664.26 19589.04 8981.30 6066.74 12581.52 8789.11 8894.04 6790.37 9898.47 5197.37 104
baseline286.51 9189.35 8183.19 11585.70 13994.88 10685.75 13477.13 12289.87 8570.65 11179.03 6979.14 9781.51 13793.70 7090.22 10198.38 5998.60 66
thres100view90086.48 9285.08 11188.12 7890.54 8696.90 7892.39 6484.82 6684.16 12571.65 10470.86 10960.49 15791.23 6293.65 7190.19 10398.10 6999.32 27
ACMM84.23 1086.40 9384.64 11488.46 7291.90 7691.93 13888.11 11185.59 6388.61 9379.13 7375.31 8766.25 13989.86 8389.88 12387.64 13996.16 16192.86 174
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net86.16 9486.00 10486.35 9181.81 15989.52 15691.40 7576.53 12791.69 7681.31 5764.81 13280.64 8988.72 9090.54 11390.72 9198.34 6094.08 157
test186.16 9486.00 10486.35 9181.81 15989.52 15691.40 7576.53 12791.69 7681.31 5764.81 13280.64 8988.72 9090.54 11390.72 9198.34 6094.08 157
tfpn200view986.07 9684.76 11387.61 8390.54 8696.39 8691.35 7883.15 7584.16 12571.65 10470.86 10960.49 15790.91 6692.89 8689.34 11598.05 7599.17 40
DCV-MVSNet85.90 9785.88 10685.93 9687.86 12388.37 17389.45 9977.46 12187.33 10177.51 8776.06 7975.76 11088.48 9387.40 14188.89 12994.80 18597.37 104
Vis-MVSNet (Re-imp)85.89 9889.62 7681.55 12589.85 9996.08 9587.55 11779.80 9884.80 11766.55 12373.70 9686.71 6368.25 18894.40 5994.53 4297.32 11497.09 111
MSDG85.81 9982.29 13889.93 6195.52 5592.61 12791.51 7491.46 4085.12 11478.56 7863.25 13869.01 13085.31 10988.45 13388.23 13397.21 11889.33 189
thres20085.80 10084.38 11587.46 8490.51 8896.39 8691.64 7283.15 7581.59 13571.54 10670.24 11360.41 15989.88 8192.89 8689.85 11198.06 7399.26 32
ECVR-MVScopyleft85.74 10183.80 12388.00 7991.55 8097.78 6290.87 8883.36 7284.51 12178.21 8358.65 15362.75 15385.39 10694.34 6393.33 7098.60 4395.25 143
OPM-MVS85.69 10282.79 13189.06 6793.42 6794.21 11594.21 5587.61 5072.68 16070.79 11071.09 10767.27 13790.74 7091.29 10789.05 12597.61 10293.94 162
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
thres40085.59 10384.08 11887.36 8590.45 9096.60 8390.95 8783.67 7080.99 13871.17 10769.08 11860.25 16089.88 8193.14 7989.34 11598.02 7799.17 40
CostFormer85.47 10486.98 9983.71 11088.70 11394.02 11688.07 11262.72 19789.78 8678.68 7772.69 10178.37 10287.35 9885.96 15489.32 11996.73 13398.72 58
test111185.17 10583.46 12687.17 8791.36 8297.75 6490.06 9383.44 7183.41 12975.25 9858.08 15662.19 15584.39 11594.39 6093.38 6798.54 4895.00 151
thres600view785.14 10683.58 12586.96 9090.37 9396.39 8690.33 9083.15 7580.46 13970.60 11367.96 12160.04 16189.22 8792.89 8688.28 13298.06 7399.08 45
test-LLR85.11 10789.49 7980.00 13485.32 14394.49 10982.27 16474.18 14287.83 9656.70 15275.55 8486.26 6582.75 12993.06 8190.60 9698.77 3798.65 64
FMVSNet284.89 10884.02 12085.91 9781.81 15989.52 15691.40 7575.79 13384.45 12379.39 7058.75 15174.35 11288.72 9093.51 7593.46 6698.34 6094.08 157
FC-MVSNet-train84.88 10984.08 11885.82 9889.21 10791.74 13985.87 13081.20 9181.71 13474.66 10073.38 9864.99 14586.60 10190.75 11188.08 13497.36 11297.90 91
EPNet_dtu84.87 11089.01 8280.05 13395.25 5792.88 12588.84 10484.11 6791.69 7649.28 19085.69 5178.95 10065.39 19392.22 10191.66 8397.43 10989.95 185
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+84.80 11185.71 10783.73 10987.94 12295.76 9890.08 9273.45 14985.12 11462.66 13572.39 10464.97 14690.59 7392.95 8590.69 9497.67 9798.12 83
UA-Net84.69 11287.64 9381.25 12790.38 9295.67 9987.33 12079.41 10572.07 16466.48 12475.09 8892.48 4166.88 18994.03 6894.25 5097.01 12589.88 186
TESTMET0.1,184.62 11389.49 7978.94 14382.18 15694.49 10982.27 16470.94 16987.83 9656.70 15275.55 8486.26 6582.75 12993.06 8190.60 9698.77 3798.65 64
CHOSEN 1792x268884.59 11484.30 11784.93 10293.71 6598.23 5489.91 9577.96 11684.81 11665.93 12545.19 19871.76 12383.13 12795.46 3895.13 3498.94 2599.53 20
Anonymous2023121184.23 11581.71 14387.17 8787.38 13093.59 12088.95 10382.14 8483.82 12878.56 7848.09 19173.89 11391.25 6186.38 14888.06 13694.74 18698.14 82
MDTV_nov1_ep1384.17 11688.03 8879.66 13686.00 13794.41 11285.05 13666.01 19190.36 8264.34 13177.13 7784.56 8182.71 13187.12 14588.92 12793.84 19293.69 168
test-mter84.06 11789.00 8378.29 14881.92 15794.23 11481.07 17470.38 17387.12 10256.10 16174.75 8985.80 7181.81 13692.52 9490.10 10598.43 5498.49 73
IB-MVS79.58 1283.83 11884.81 11282.68 11791.85 7797.35 6975.75 19382.57 8386.55 10584.01 4470.90 10865.43 14363.18 19984.19 16889.92 11098.74 3999.31 29
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPMVS83.71 11986.76 10080.16 13289.72 10295.64 10084.68 13759.73 20289.61 8762.67 13472.65 10281.80 8686.22 10386.23 15088.03 13797.96 8393.35 170
HyFIR lowres test83.43 12082.94 12984.01 10893.41 6897.10 7487.21 12174.04 14480.15 14164.98 12741.09 20676.61 10786.51 10293.31 7693.01 7797.91 8999.30 30
PatchmatchNetpermissive83.28 12187.57 9478.29 14887.46 12894.95 10483.36 14659.43 20590.20 8458.10 14774.29 9286.20 6784.13 11885.27 16087.39 14397.25 11794.67 154
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA83.26 12287.76 9178.00 15387.45 12992.20 13382.63 16058.42 20790.30 8358.23 14575.74 8387.75 5883.97 12186.10 15387.64 13997.30 11594.62 155
GeoE83.17 12382.86 13083.53 11487.24 13193.78 11887.94 11372.75 15482.19 13269.76 11560.54 14565.95 14086.01 10489.41 12789.72 11397.47 10598.43 75
CDS-MVSNet83.13 12483.73 12482.43 12384.52 14892.92 12488.26 10877.67 11972.08 16369.08 11866.96 12374.66 11178.61 15090.70 11291.96 8196.46 15096.86 115
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RPSCF82.91 12581.86 14084.13 10688.25 11988.32 17487.67 11580.86 9484.78 11876.57 9585.56 5276.00 10984.61 11378.20 20476.52 20786.81 21383.63 206
Vis-MVSNetpermissive82.88 12686.04 10379.20 14187.77 12696.42 8586.10 12876.70 12474.82 15461.38 13770.70 11177.91 10364.83 19593.22 7793.19 7598.43 5496.01 130
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
dps82.63 12782.64 13482.62 11987.81 12592.81 12684.39 13861.96 19886.43 10681.63 5469.72 11567.60 13684.42 11482.51 18283.90 18195.52 17095.50 141
IterMVS-LS82.62 12882.75 13382.48 12087.09 13287.48 18887.19 12272.85 15279.09 14266.63 12265.22 12772.14 11884.06 12088.33 13691.39 8697.03 12495.60 140
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+82.61 12982.51 13682.72 11685.49 14293.06 12387.17 12371.39 16684.18 12464.59 12963.03 13958.89 16390.22 7891.39 10690.83 9097.44 10796.21 129
tpm cat182.39 13082.32 13782.47 12188.13 12092.42 13187.43 11862.79 19685.30 11178.05 8560.14 14672.10 11983.20 12682.26 18585.67 16095.23 17798.35 79
MS-PatchMatch82.16 13182.18 13982.12 12491.65 7993.50 12189.51 9771.95 16081.48 13664.45 13059.58 15077.54 10477.23 16289.88 12385.62 16197.94 8487.68 193
tpmrst81.71 13283.87 12279.20 14189.01 11193.67 11984.22 13960.14 20087.45 9959.49 14164.97 13071.86 12285.30 11084.72 16486.30 15197.04 12398.09 85
RPMNet81.47 13386.24 10275.90 17186.72 13392.12 13582.82 15855.76 21385.21 11253.73 17263.45 13683.16 8480.13 14592.34 9889.52 11496.23 15997.90 91
CR-MVSNet81.44 13485.29 11076.94 16286.53 13492.12 13583.86 14058.37 20885.21 11256.28 15659.60 14980.39 9380.50 14292.77 9089.32 11996.12 16397.59 98
Effi-MVS+-dtu81.18 13582.77 13279.33 13984.70 14792.54 12985.81 13171.55 16478.84 14357.06 15171.98 10663.77 15085.09 11188.94 12987.62 14191.79 20595.68 135
test0.0.03 180.99 13684.37 11677.05 16085.32 14389.79 15278.43 18474.18 14284.78 11857.98 15076.06 7972.88 11569.14 18588.02 13887.70 13897.27 11691.37 179
Fast-Effi-MVS+-dtu80.57 13783.44 12777.22 15883.98 15191.52 14185.78 13364.54 19480.38 14050.28 18674.06 9462.89 15182.00 13589.10 12888.91 12896.75 13197.21 109
FMVSNet580.56 13882.53 13578.26 15073.80 20981.52 20782.26 16668.36 18488.85 9164.21 13269.09 11784.38 8283.49 12587.13 14486.76 14897.44 10779.95 209
ADS-MVSNet80.25 13982.96 12877.08 15987.86 12392.60 12881.82 17156.19 21286.95 10456.16 15968.19 11972.42 11783.70 12482.05 18685.45 16696.75 13193.08 173
FMVSNet180.18 14078.07 15482.65 11878.55 18387.57 18788.41 10773.93 14570.16 16973.57 10149.80 18164.45 14985.35 10890.54 11390.72 9196.10 16493.21 171
USDC80.10 14179.33 15081.00 12986.36 13591.71 14088.74 10575.77 13481.90 13354.90 16667.67 12252.05 17583.94 12288.44 13586.25 15296.31 15487.28 197
COLMAP_ROBcopyleft75.69 1579.47 14276.90 16182.46 12292.20 7290.53 14385.30 13583.69 6978.27 14661.47 13658.26 15462.75 15378.28 15382.41 18382.13 19493.83 19483.98 205
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_part179.37 14375.64 16683.71 11086.18 13687.74 18187.84 11475.69 13666.33 18678.93 7545.92 19664.85 14782.44 13283.08 18085.69 15991.17 20695.90 132
pmmvs479.32 14477.78 15681.11 12880.18 16888.96 16883.39 14476.07 13081.27 13769.35 11658.66 15251.19 17882.01 13487.16 14384.39 17895.66 16892.82 175
PatchT79.28 14583.88 12173.93 18085.54 14190.95 14266.14 21056.53 21183.21 13056.28 15656.50 15876.80 10680.50 14292.77 9089.32 11998.57 4697.59 98
ACMH78.51 1479.27 14678.08 15380.65 13089.52 10490.40 14480.45 17679.77 10069.54 17454.85 16764.83 13156.16 16983.94 12284.58 16686.01 15695.41 17395.03 150
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAMVS79.23 14778.95 15279.56 13781.89 15892.52 13082.97 15373.70 14667.27 18064.97 12861.66 14465.06 14478.61 15087.12 14588.07 13595.23 17790.95 181
ACMH+79.09 1379.12 14877.22 16081.35 12688.50 11690.36 14582.14 16879.38 10772.78 15958.59 14262.31 14356.44 16884.10 11982.03 18784.05 17995.40 17492.55 176
UniMVSNet_NR-MVSNet78.89 14978.04 15579.88 13579.40 17489.70 15382.92 15580.17 9576.37 15258.56 14357.10 15754.92 17181.44 13883.51 17387.12 14596.76 13097.60 96
tpm78.87 15081.33 14676.00 16985.57 14090.19 14882.81 15959.66 20378.35 14551.40 18166.30 12667.92 13380.94 14083.28 17685.73 15795.65 16997.56 100
GA-MVS78.86 15180.42 14777.05 16083.27 15292.17 13483.24 14875.73 13573.75 15646.27 20062.43 14157.12 16576.94 16493.14 7989.34 11596.83 12795.00 151
IterMVS78.85 15281.36 14475.93 17084.27 15085.74 19483.83 14266.35 18976.82 14750.48 18463.48 13568.82 13173.99 16989.68 12589.34 11596.63 13995.67 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT78.71 15381.34 14575.64 17584.31 14985.67 19583.51 14366.14 19076.67 14850.38 18563.45 13669.02 12973.23 17189.66 12689.22 12296.24 15895.67 136
UniMVSNet (Re)78.00 15477.52 15778.57 14679.66 17390.36 14582.09 16977.86 11876.38 15160.26 13854.63 16452.07 17475.31 16784.97 16386.10 15496.22 16098.11 84
DU-MVS77.98 15576.71 16279.46 13878.68 18089.26 16282.92 15579.06 10976.52 14958.56 14354.89 16248.35 19281.44 13883.16 17887.21 14496.08 16597.60 96
FC-MVSNet-test77.95 15681.85 14173.39 18582.31 15488.99 16779.33 18074.24 14178.75 14447.40 19870.22 11472.09 12160.78 20586.66 14785.62 16196.30 15590.61 182
NR-MVSNet77.21 15776.41 16378.14 15280.18 16889.26 16283.38 14579.06 10976.52 14956.59 15454.89 16245.32 20272.89 17385.39 15986.12 15396.71 13497.36 106
thisisatest051577.13 15879.36 14974.52 17779.79 17289.65 15473.54 19873.69 14774.10 15558.14 14662.79 14060.57 15666.49 19188.08 13785.16 17195.49 17295.15 147
gg-mvs-nofinetune77.08 15979.79 14873.92 18185.95 13897.23 7292.18 6652.65 21646.19 21927.79 22338.27 21085.63 7285.67 10596.95 1895.62 2599.30 398.67 63
TranMVSNet+NR-MVSNet77.02 16075.76 16578.49 14778.46 18688.24 17583.03 15279.97 9673.49 15854.73 16854.00 16748.74 18778.15 15582.36 18486.90 14796.59 14196.55 121
CVMVSNet76.86 16179.09 15174.26 17885.29 14589.44 15979.91 17978.47 11368.94 17744.45 20562.35 14269.70 12764.50 19685.82 15587.03 14692.94 20090.33 183
Baseline_NR-MVSNet76.71 16274.56 17379.23 14078.68 18084.15 20382.45 16278.87 11175.83 15360.05 13947.92 19250.18 18479.06 14983.16 17883.86 18296.26 15696.80 117
v2v48276.25 16374.78 17077.96 15478.50 18589.14 16583.05 15176.02 13168.78 17854.11 16951.36 17348.59 18979.49 14783.53 17285.60 16496.59 14196.49 126
V4276.21 16475.04 16977.58 15578.68 18089.33 16182.93 15474.64 13969.84 17156.13 16050.42 17850.93 17976.30 16683.32 17484.89 17596.83 12796.54 122
v875.89 16574.74 17177.23 15779.09 17688.00 17883.19 14971.08 16870.03 17056.29 15550.50 17650.88 18077.06 16383.32 17484.99 17396.68 13595.49 142
TinyColmap75.75 16673.19 18478.74 14584.82 14687.69 18381.59 17274.62 14071.81 16554.01 17055.79 16144.42 20782.89 12884.61 16583.76 18394.50 18784.22 204
MIMVSNet75.71 16777.26 15873.90 18270.93 21088.71 17179.98 17857.67 21073.58 15758.08 14953.93 16858.56 16479.41 14890.04 12189.97 10697.34 11386.04 198
UniMVSNet_ETH3D75.63 16871.59 19380.35 13181.03 16389.90 15183.25 14776.58 12660.08 20264.19 13342.89 20545.01 20382.14 13380.20 19786.75 14994.90 18296.29 128
pm-mvs175.61 16974.19 17577.26 15680.16 17088.79 16981.49 17375.49 13859.49 20458.09 14848.32 18955.53 17072.35 17488.61 13185.48 16595.99 16693.12 172
v1075.57 17074.67 17276.62 16578.73 17987.46 18983.14 15069.41 18069.27 17553.44 17349.73 18249.21 18678.44 15286.17 15285.18 17096.53 14695.65 139
v114475.54 17174.55 17476.69 16378.33 18988.77 17082.89 15772.76 15367.18 18251.73 17849.34 18448.37 19078.10 15686.22 15185.24 16896.35 15396.74 118
TDRefinement75.54 17173.22 18278.25 15187.65 12789.65 15485.81 13179.28 10871.14 16756.06 16252.17 17151.96 17668.74 18781.60 18880.58 19691.94 20385.45 199
pmmvs575.46 17375.12 16875.87 17279.39 17589.44 15978.12 18672.27 15865.98 18851.54 17955.83 16046.23 19776.80 16588.77 13085.73 15797.07 12193.84 163
tfpnnormal75.27 17472.12 19078.94 14382.30 15588.52 17282.41 16379.41 10558.03 20555.59 16443.83 20444.71 20477.35 15987.70 14085.45 16696.60 14096.61 120
anonymousdsp75.14 17577.25 15972.69 18876.68 19989.26 16275.26 19568.44 18365.53 19146.65 19958.16 15556.67 16773.96 17087.84 13986.05 15595.13 18097.22 108
v14874.98 17673.52 18076.69 16378.84 17889.02 16678.78 18276.82 12367.22 18159.61 14049.18 18547.94 19470.57 18080.76 19283.99 18095.52 17096.52 124
v119274.96 17773.92 17676.17 16677.76 19288.19 17782.54 16171.94 16166.84 18350.07 18848.10 19046.14 19878.28 15386.30 14985.23 16996.41 15296.67 119
v14419274.76 17873.64 17776.06 16877.58 19388.23 17681.87 17071.63 16366.03 18751.08 18248.63 18846.77 19677.59 15884.53 16784.76 17696.64 13896.54 122
v192192074.60 17973.56 17975.81 17377.43 19587.94 17982.18 16771.33 16766.48 18549.23 19247.84 19345.56 20078.03 15785.70 15784.92 17496.65 13696.50 125
v124074.04 18073.04 18675.20 17677.19 19787.69 18380.93 17570.72 17265.08 19248.47 19347.31 19444.71 20477.33 16085.50 15885.07 17296.59 14195.94 131
testgi73.22 18175.84 16470.16 19981.67 16285.50 19871.45 20070.81 17069.56 17344.74 20474.52 9149.25 18558.45 20684.10 17083.37 18793.86 19184.56 203
CP-MVSNet73.19 18272.37 18874.15 17977.54 19486.77 19276.34 18972.05 15965.66 19051.47 18050.49 17743.66 20870.90 17680.93 19183.40 18696.59 14195.66 138
WR-MVS72.93 18373.57 17872.19 19178.14 19087.71 18276.21 19173.02 15167.78 17950.09 18750.35 17950.53 18261.27 20480.42 19583.10 19094.43 18895.11 148
TransMVSNet (Re)72.90 18470.51 19775.69 17480.88 16485.26 20079.25 18178.43 11556.13 21152.81 17546.81 19548.20 19366.77 19085.18 16283.70 18495.98 16788.28 192
WR-MVS_H72.69 18572.80 18772.56 19077.94 19187.83 18075.26 19571.53 16564.75 19352.19 17749.83 18048.62 18861.96 20281.12 19082.44 19296.50 14795.00 151
SixPastTwentyTwo72.65 18673.22 18271.98 19478.40 18787.64 18570.09 20370.37 17466.49 18447.60 19665.09 12845.94 19973.09 17278.94 19978.66 20292.33 20189.82 187
LTVRE_ROB71.82 1672.62 18771.77 19173.62 18380.74 16587.59 18680.42 17770.37 17449.73 21537.12 21759.76 14742.52 21380.92 14183.20 17785.61 16392.13 20293.95 161
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PS-CasMVS72.37 18871.47 19573.43 18477.32 19686.43 19375.99 19271.94 16163.37 19649.24 19149.07 18642.42 21469.60 18280.59 19483.18 18996.48 14995.23 145
MVS-HIRNet72.32 18973.45 18171.00 19780.58 16689.97 14968.51 20755.28 21470.89 16852.27 17639.09 20857.11 16675.02 16885.76 15686.33 15094.36 18985.00 201
PEN-MVS72.24 19071.30 19673.33 18677.08 19885.57 19676.75 18772.52 15663.89 19548.12 19450.79 17443.09 21169.03 18678.54 20183.46 18596.50 14793.76 166
v7n72.11 19171.66 19272.63 18975.26 20486.85 19076.74 18868.77 18262.70 19949.40 18945.92 19643.51 20970.63 17984.16 16983.21 18894.99 18195.25 143
EG-PatchMatch MVS71.81 19271.54 19472.12 19280.53 16789.94 15078.51 18366.56 18857.38 20747.46 19744.28 20352.22 17363.10 20085.22 16184.42 17796.56 14587.35 196
CMPMVSbinary54.54 1771.74 19367.94 20276.16 16790.41 9193.25 12278.32 18575.60 13759.81 20353.95 17144.64 20151.22 17770.70 17774.59 21075.88 20888.01 21076.23 212
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep13_2view71.65 19473.08 18569.97 20075.22 20586.81 19173.98 19759.61 20469.75 17248.01 19554.21 16653.06 17269.19 18478.50 20280.43 19793.84 19288.79 190
pmnet_mix0271.64 19572.36 18970.81 19878.39 18885.57 19668.64 20573.65 14872.13 16145.07 20356.01 15950.61 18165.34 19476.21 20776.60 20693.75 19589.35 188
gm-plane-assit71.33 19675.18 16766.83 20379.06 17775.57 21448.05 22160.33 19948.28 21634.67 22144.34 20267.70 13579.78 14697.25 1196.21 1399.10 1096.92 114
DTE-MVSNet71.19 19770.45 19872.06 19376.61 20084.59 20275.61 19472.32 15763.12 19845.70 20250.72 17543.02 21265.89 19277.53 20682.23 19396.26 15691.93 177
pmmvs670.29 19867.90 20373.07 18776.17 20185.31 19976.29 19070.75 17147.39 21855.33 16537.15 21450.49 18369.55 18382.96 18180.85 19590.34 20991.18 180
PM-MVS70.17 19969.42 20071.04 19670.82 21181.26 20971.25 20167.80 18569.16 17651.04 18353.15 17034.93 21872.19 17580.30 19676.95 20593.16 19990.21 184
pmmvs-eth3d69.59 20067.57 20571.95 19570.04 21280.05 21071.48 19970.00 17862.57 20055.99 16344.92 19935.73 21770.64 17881.56 18979.69 19893.55 19688.43 191
N_pmnet68.54 20167.83 20469.38 20175.77 20281.90 20666.21 20972.53 15565.91 18946.09 20144.67 20045.48 20163.82 19874.66 20977.39 20491.87 20484.77 202
Anonymous2023120668.09 20268.68 20167.39 20275.16 20682.55 20469.33 20470.06 17763.34 19742.28 20837.91 21243.12 21052.67 20983.56 17182.71 19194.84 18487.59 194
EU-MVSNet68.07 20370.25 19965.52 20474.68 20881.30 20868.53 20670.31 17662.40 20137.43 21654.62 16548.36 19151.34 21078.32 20379.27 19990.84 20787.47 195
GG-mvs-BLEND65.67 20493.78 4032.89 2170.47 22799.35 796.92 320.22 22693.28 630.51 22884.07 5692.50 400.62 22593.59 7293.86 5898.59 4599.79 10
test20.0365.17 20567.41 20662.55 20675.35 20379.31 21162.22 21168.83 18156.50 21035.35 22051.97 17244.70 20640.01 21580.69 19379.25 20093.55 19679.47 211
MDA-MVSNet-bldmvs62.23 20661.13 21063.52 20558.94 21882.44 20560.71 21473.28 15057.22 20838.42 21449.63 18327.64 22462.83 20154.98 21674.16 20986.96 21281.83 208
new_pmnet61.60 20762.68 20860.35 20963.02 21574.93 21560.97 21358.86 20664.21 19435.38 21939.51 20739.89 21557.37 20772.78 21172.56 21186.49 21474.85 214
new-patchmatchnet60.74 20859.78 21261.87 20769.52 21376.67 21357.99 21765.78 19252.63 21338.47 21338.08 21132.92 22148.88 21268.50 21269.87 21290.56 20879.75 210
pmmvs360.52 20960.87 21160.12 21061.38 21671.62 21657.42 21853.94 21548.09 21735.95 21838.62 20932.19 22364.12 19775.33 20877.99 20387.89 21182.28 207
MIMVSNet160.51 21061.43 20959.44 21148.75 22177.21 21260.98 21266.84 18752.09 21438.74 21229.29 21739.40 21648.08 21377.60 20578.87 20193.22 19875.56 213
test_method60.40 21166.30 20753.52 21337.48 22564.10 22055.56 21942.45 22171.79 16641.87 20933.74 21546.80 19561.71 20379.18 19873.33 21082.01 21695.17 146
FPMVS56.54 21252.82 21460.87 20874.90 20767.58 21967.69 20865.38 19357.86 20641.51 21037.83 21334.19 21941.21 21455.88 21553.09 21774.55 21963.31 217
PMVScopyleft42.57 1845.71 21342.61 21649.32 21461.35 21737.82 22436.96 22360.10 20137.20 22041.50 21128.53 21833.11 22028.82 22053.45 21748.70 21967.22 22159.42 218
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft43.95 21442.62 21545.50 21550.79 22041.20 22335.55 22452.51 21752.95 21229.09 22212.92 22011.48 22738.15 21662.01 21466.62 21466.89 22251.17 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS241.25 21542.55 21739.74 21643.25 22255.05 22238.15 22247.11 22031.78 22111.83 22521.16 21919.12 22520.98 22249.95 21956.09 21677.09 21764.68 216
E-PMN27.87 21624.36 21931.97 21841.27 22425.56 22716.62 22649.16 21822.00 2239.90 22611.75 2227.86 22929.57 21922.22 22134.70 22045.27 22346.41 221
MVEpermissive32.98 1927.61 21729.89 21824.94 22021.97 22637.22 22515.56 22838.83 22217.49 22414.72 22411.64 2245.62 23021.26 22135.20 22050.95 21837.29 22551.13 220
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS26.96 21822.96 22031.63 21941.91 22325.73 22616.30 22749.10 21922.38 2229.03 22711.22 2258.12 22829.93 21820.16 22231.04 22143.49 22442.04 222
testmvs5.16 2198.14 2211.69 2210.36 2281.65 2283.02 2290.66 2247.17 2250.50 22912.58 2210.69 2314.67 2235.42 2235.65 2220.92 22623.86 224
test1234.39 2207.11 2221.21 2220.11 2291.16 2291.67 2300.35 2255.91 2260.16 23011.65 2230.16 2324.45 2241.72 2244.92 2230.51 22724.28 223
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def43.17 206
9.1497.59 10
SR-MVS98.52 2193.70 2396.63 20
Anonymous20240521181.72 14288.09 12194.27 11389.62 9682.14 8482.27 13148.83 18772.58 11691.08 6487.40 14188.70 13194.90 18297.99 88
our_test_378.55 18384.98 20170.12 202
ambc57.08 21358.68 21967.71 21860.07 21557.13 20942.79 20730.00 21611.64 22650.18 21178.89 20069.14 21382.64 21585.02 200
MTAPA93.37 995.71 27
MTMP93.84 594.86 31
Patchmatch-RL test19.65 225
tmp_tt57.89 21279.94 17159.29 22152.84 22036.65 22394.77 5368.22 11972.96 9965.62 14233.65 21766.20 21358.02 21576.06 218
XVS92.16 7398.56 3791.04 8481.00 6393.49 3598.00 79
X-MVStestdata92.16 7398.56 3791.04 8481.00 6393.49 3598.00 79
abl_693.25 3697.12 3998.71 3294.40 5287.81 4897.86 1187.19 3191.07 3795.80 2594.18 3498.78 3699.36 24
mPP-MVS97.95 3092.24 45
NP-MVS94.12 57
Patchmtry92.08 13783.86 14058.37 20856.28 156
DeepMVS_CXcopyleft70.68 21759.61 21667.36 18672.12 16238.41 21553.88 16932.44 22255.15 20850.88 21874.35 22068.42 215