SED-MVS | | | 97.92 1 | 98.27 2 | 97.52 1 | 98.88 12 | 99.60 1 | 98.80 5 | 95.08 7 | 98.57 2 | 95.63 2 | 96.98 9 | 99.73 1 | 97.67 2 | 97.26 10 | 95.86 22 | 99.04 15 | 99.89 5 |
|
MSP-MVS | | | 97.74 2 | 98.32 1 | 97.06 7 | 98.66 15 | 99.35 8 | 98.66 8 | 94.75 13 | 98.22 5 | 93.60 6 | 97.99 1 | 98.58 8 | 97.41 5 | 98.24 2 | 95.95 18 | 99.27 4 | 99.91 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 97.71 3 | 98.01 6 | 97.37 2 | 98.98 6 | 99.58 3 | 98.79 6 | 95.06 8 | 98.24 4 | 94.66 3 | 96.35 15 | 99.20 4 | 97.63 3 | 97.20 12 | 95.68 23 | 99.08 13 | 99.84 7 |
|
DPE-MVS |  | | 97.69 4 | 98.16 3 | 97.14 5 | 99.01 5 | 99.52 5 | 99.12 3 | 95.38 2 | 98.00 8 | 93.31 9 | 97.71 2 | 99.61 3 | 96.94 6 | 96.99 16 | 95.45 27 | 99.09 12 | 99.81 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
DVP-MVS |  | | 97.61 5 | 97.87 7 | 97.30 3 | 98.94 11 | 99.60 1 | 98.21 13 | 95.11 4 | 98.39 3 | 95.83 1 | 94.40 29 | 99.70 2 | 96.79 7 | 97.16 13 | 95.95 18 | 98.92 26 | 99.90 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 97.60 6 | 98.08 4 | 97.03 8 | 99.14 2 | 99.55 4 | 98.67 7 | 95.32 3 | 97.91 9 | 92.55 11 | 97.11 6 | 97.23 14 | 97.49 4 | 98.16 3 | 97.05 5 | 99.04 15 | 99.55 19 |
|
APDe-MVS | | | 97.31 7 | 97.51 12 | 97.08 6 | 98.95 10 | 99.29 13 | 98.58 10 | 95.11 4 | 97.69 14 | 94.16 4 | 96.91 10 | 96.81 18 | 96.57 10 | 96.71 20 | 95.39 29 | 99.08 13 | 99.79 10 |
|
SF-MVS | | | 97.17 8 | 97.18 15 | 97.17 4 | 99.11 3 | 99.20 15 | 99.05 4 | 95.55 1 | 97.39 17 | 93.56 7 | 97.48 4 | 96.71 20 | 96.75 8 | 95.73 32 | 94.40 44 | 98.98 20 | 99.33 24 |
|
NCCC | | | 97.01 9 | 97.74 8 | 96.16 11 | 99.02 4 | 99.35 8 | 98.63 9 | 95.04 9 | 97.84 11 | 88.95 24 | 96.83 12 | 97.02 17 | 96.39 15 | 97.44 7 | 96.51 9 | 98.90 28 | 99.16 40 |
|
SMA-MVS |  | | 96.96 10 | 97.65 11 | 96.15 12 | 98.98 6 | 99.31 12 | 97.91 18 | 94.68 15 | 97.52 15 | 90.59 18 | 94.54 28 | 99.20 4 | 96.54 12 | 97.29 9 | 96.48 10 | 98.22 64 | 99.19 36 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MCST-MVS | | | 96.93 11 | 98.07 5 | 95.61 18 | 98.98 6 | 99.44 6 | 98.04 14 | 95.04 9 | 98.10 6 | 86.55 30 | 97.65 3 | 97.56 11 | 95.60 23 | 97.67 6 | 96.45 11 | 99.43 1 | 99.61 18 |
|
HPM-MVS++ |  | | 96.91 12 | 97.70 9 | 96.00 13 | 98.97 9 | 99.16 17 | 97.82 20 | 94.81 12 | 98.04 7 | 89.61 21 | 96.56 14 | 98.60 7 | 96.39 15 | 97.09 14 | 95.22 31 | 98.39 58 | 99.22 32 |
|
SD-MVS | | | 96.87 13 | 97.69 10 | 95.92 14 | 96.38 47 | 99.25 14 | 97.76 21 | 94.75 13 | 97.72 12 | 92.46 13 | 95.94 16 | 99.09 6 | 96.48 14 | 96.01 29 | 96.08 16 | 97.68 95 | 99.73 13 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS |  | | 96.79 14 | 96.99 18 | 96.56 9 | 98.76 14 | 98.87 26 | 98.42 11 | 94.93 11 | 97.70 13 | 91.83 14 | 95.52 19 | 95.94 25 | 96.63 9 | 95.94 30 | 95.47 26 | 98.80 34 | 99.47 22 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + MP. | | | 96.50 15 | 97.08 16 | 95.82 16 | 96.12 51 | 98.97 23 | 98.00 15 | 94.13 20 | 97.89 10 | 91.49 15 | 95.11 24 | 97.52 12 | 96.26 19 | 96.27 27 | 94.07 54 | 98.91 27 | 99.74 12 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SteuartSystems-ACMMP | | | 96.20 16 | 97.22 14 | 95.01 22 | 98.40 22 | 99.11 18 | 97.93 17 | 93.62 23 | 96.28 29 | 87.45 27 | 97.05 8 | 96.00 24 | 94.23 31 | 96.83 19 | 95.97 17 | 98.40 57 | 99.27 29 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 96.09 17 | 96.41 23 | 95.72 17 | 98.58 17 | 98.84 27 | 97.95 16 | 93.08 27 | 96.96 22 | 90.24 19 | 96.60 13 | 94.40 31 | 96.52 13 | 95.13 42 | 94.33 45 | 97.93 85 | 98.59 65 |
|
ACMMP_NAP | | | 95.81 18 | 96.50 22 | 95.01 22 | 98.79 13 | 99.17 16 | 97.52 26 | 94.20 19 | 96.19 30 | 85.71 35 | 93.80 32 | 96.20 23 | 95.89 20 | 96.62 22 | 94.98 37 | 97.93 85 | 98.52 68 |
|
train_agg | | | 95.72 19 | 97.37 13 | 93.80 28 | 97.82 31 | 98.92 24 | 97.84 19 | 93.50 24 | 96.86 24 | 81.35 54 | 97.10 7 | 97.71 9 | 94.19 32 | 96.02 28 | 95.37 30 | 98.07 72 | 99.64 16 |
|
ACMMPR | | | 95.59 20 | 95.89 25 | 95.25 20 | 98.41 21 | 98.74 29 | 97.69 24 | 92.73 31 | 96.88 23 | 88.95 24 | 95.33 21 | 92.91 38 | 95.79 21 | 94.73 52 | 94.33 45 | 97.92 87 | 98.32 77 |
|
DeepC-MVS_fast | | 91.53 1 | 95.57 21 | 95.67 28 | 95.45 19 | 98.57 18 | 99.00 22 | 97.76 21 | 94.41 17 | 97.06 19 | 86.84 29 | 86.39 45 | 92.27 43 | 96.38 17 | 97.89 5 | 98.06 3 | 98.73 39 | 99.01 48 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSLP-MVS++ | | | 95.49 22 | 94.84 33 | 96.25 10 | 98.64 16 | 98.63 32 | 98.35 12 | 92.37 33 | 95.04 48 | 92.62 10 | 87.12 44 | 93.79 32 | 96.55 11 | 93.53 72 | 96.78 6 | 98.98 20 | 98.99 49 |
|
CP-MVS | | | 95.43 23 | 95.67 28 | 95.14 21 | 98.24 27 | 98.60 33 | 97.45 27 | 92.80 29 | 95.98 33 | 89.21 23 | 95.22 22 | 93.60 33 | 95.43 24 | 94.37 59 | 93.22 73 | 97.68 95 | 98.72 56 |
|
DPM-MVS | | | 95.36 24 | 95.84 26 | 94.82 24 | 96.70 43 | 98.49 43 | 99.27 1 | 95.09 6 | 96.71 25 | 83.87 43 | 86.34 47 | 96.44 22 | 95.06 26 | 98.35 1 | 98.82 1 | 98.89 29 | 95.69 131 |
|
MP-MVS |  | | 95.24 25 | 95.96 24 | 94.40 26 | 98.32 24 | 98.38 48 | 97.12 29 | 92.87 28 | 95.17 46 | 85.50 36 | 95.68 17 | 94.91 29 | 94.58 28 | 95.11 43 | 93.76 59 | 98.05 75 | 98.68 58 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
TSAR-MVS + ACMM | | | 94.99 26 | 97.02 17 | 92.61 38 | 97.19 37 | 98.71 31 | 97.74 23 | 93.21 26 | 96.97 21 | 79.27 70 | 94.09 30 | 97.14 15 | 90.84 65 | 96.64 21 | 95.94 20 | 97.42 110 | 99.67 15 |
|
X-MVS | | | 94.70 27 | 95.71 27 | 93.52 32 | 98.38 23 | 98.56 35 | 96.99 30 | 92.62 32 | 95.58 37 | 81.00 61 | 94.57 27 | 93.49 34 | 94.16 34 | 94.82 48 | 94.29 48 | 97.99 81 | 98.68 58 |
|
PGM-MVS | | | 94.64 28 | 95.49 30 | 93.66 30 | 98.55 19 | 98.51 41 | 97.63 25 | 87.77 46 | 94.45 52 | 84.92 39 | 97.23 5 | 91.90 45 | 95.22 25 | 94.56 55 | 93.80 58 | 97.87 91 | 97.97 88 |
|
TSAR-MVS + GP. | | | 94.59 29 | 96.60 21 | 92.25 39 | 90.25 92 | 98.17 55 | 96.22 36 | 86.53 52 | 97.49 16 | 87.26 28 | 95.21 23 | 97.06 16 | 94.07 36 | 94.34 61 | 94.20 50 | 99.18 5 | 99.71 14 |
|
PHI-MVS | | | 94.49 30 | 96.72 20 | 91.88 41 | 97.06 38 | 98.88 25 | 94.99 47 | 89.13 41 | 96.15 31 | 79.70 66 | 96.91 10 | 95.78 26 | 91.87 55 | 94.65 53 | 95.68 23 | 98.53 49 | 98.98 51 |
|
AdaColmap |  | | 94.28 31 | 92.94 45 | 95.84 15 | 98.32 24 | 98.33 50 | 96.06 38 | 94.62 16 | 96.29 28 | 91.22 16 | 89.89 38 | 85.50 74 | 96.38 17 | 91.85 101 | 90.89 88 | 98.44 53 | 97.81 91 |
|
DeepPCF-MVS | | 91.00 2 | 94.15 32 | 96.87 19 | 90.97 49 | 96.82 41 | 99.33 11 | 89.40 100 | 92.76 30 | 98.76 1 | 82.36 50 | 88.74 39 | 95.49 28 | 90.58 72 | 98.13 4 | 97.80 4 | 93.88 190 | 99.88 6 |
|
CPTT-MVS | | | 94.11 33 | 93.99 38 | 94.25 27 | 96.58 44 | 97.66 63 | 97.31 28 | 91.94 34 | 94.84 49 | 88.72 26 | 92.51 33 | 93.04 37 | 95.78 22 | 91.51 104 | 89.97 105 | 95.15 179 | 98.37 74 |
|
EPNet | | | 93.69 34 | 95.34 31 | 91.76 42 | 96.98 40 | 98.47 45 | 95.40 44 | 86.79 49 | 95.47 39 | 82.84 47 | 95.66 18 | 89.17 51 | 90.47 74 | 95.25 41 | 94.69 40 | 98.10 69 | 98.68 58 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMMP |  | | 93.32 35 | 93.59 41 | 93.00 36 | 97.03 39 | 98.24 51 | 95.27 45 | 91.66 37 | 95.20 44 | 83.25 45 | 95.39 20 | 85.52 72 | 92.80 46 | 92.60 91 | 90.21 101 | 98.01 78 | 97.99 86 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CANet | | | 93.23 36 | 93.72 40 | 92.65 37 | 95.48 54 | 99.09 20 | 96.55 34 | 86.74 50 | 95.28 42 | 85.22 37 | 77.30 73 | 91.25 47 | 92.60 48 | 97.06 15 | 96.63 7 | 99.31 2 | 99.45 23 |
|
CDPH-MVS | | | 93.22 37 | 95.08 32 | 91.04 48 | 97.57 34 | 98.49 43 | 96.74 32 | 89.35 40 | 95.19 45 | 73.57 99 | 90.26 36 | 91.59 46 | 90.68 69 | 95.09 45 | 96.15 14 | 98.31 63 | 98.81 54 |
|
CSCG | | | 93.16 38 | 92.65 47 | 93.76 29 | 98.32 24 | 99.09 20 | 96.12 37 | 89.91 39 | 93.15 61 | 89.64 20 | 83.62 55 | 88.91 54 | 92.40 50 | 91.09 109 | 93.70 60 | 96.14 162 | 98.99 49 |
|
MVS_111021_LR | | | 93.05 39 | 94.53 35 | 91.32 46 | 96.43 46 | 98.38 48 | 92.81 60 | 87.20 48 | 95.94 35 | 81.45 53 | 94.75 25 | 86.08 68 | 92.12 53 | 94.83 47 | 93.34 67 | 97.89 90 | 98.42 73 |
|
3Dnovator+ | | 86.26 7 | 92.90 40 | 92.45 49 | 93.42 33 | 97.25 36 | 98.45 47 | 95.82 39 | 85.71 58 | 93.83 56 | 89.55 22 | 72.31 103 | 92.28 42 | 94.01 38 | 95.10 44 | 95.92 21 | 98.17 65 | 99.23 31 |
|
MVS_111021_HR | | | 92.73 41 | 94.83 34 | 90.28 55 | 96.27 48 | 99.10 19 | 92.77 61 | 86.15 55 | 93.41 59 | 77.11 88 | 93.82 31 | 87.39 60 | 90.61 70 | 95.60 34 | 95.15 33 | 98.79 35 | 99.32 25 |
|
PLC |  | 89.12 3 | 92.67 42 | 90.84 59 | 94.81 25 | 97.69 32 | 96.10 91 | 95.42 43 | 91.70 35 | 95.82 36 | 92.52 12 | 81.24 59 | 86.01 69 | 94.36 29 | 92.44 95 | 90.27 98 | 97.19 119 | 93.99 159 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
3Dnovator | | 85.78 8 | 92.53 43 | 91.96 51 | 93.20 34 | 97.99 28 | 98.47 45 | 95.78 40 | 85.94 56 | 93.07 63 | 86.40 31 | 73.43 95 | 89.00 53 | 94.08 35 | 94.74 51 | 96.44 12 | 99.01 19 | 98.57 66 |
|
DeepC-MVS | | 88.77 4 | 92.39 44 | 91.74 53 | 93.14 35 | 96.21 49 | 98.55 38 | 96.30 35 | 93.84 21 | 93.06 64 | 81.09 59 | 74.69 88 | 85.20 78 | 93.48 41 | 95.41 37 | 96.13 15 | 97.92 87 | 99.18 37 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OMC-MVS | | | 92.05 45 | 91.88 52 | 92.25 39 | 96.51 45 | 97.94 57 | 93.18 57 | 88.97 43 | 96.53 26 | 84.47 41 | 80.79 61 | 87.85 56 | 93.25 44 | 92.48 94 | 91.81 81 | 97.12 120 | 95.73 130 |
|
MVSTER | | | 91.91 46 | 93.43 44 | 90.14 56 | 89.81 99 | 92.32 132 | 94.53 50 | 81.32 89 | 96.00 32 | 84.77 40 | 85.41 52 | 92.39 41 | 91.32 57 | 96.41 23 | 94.01 56 | 99.11 8 | 97.45 100 |
|
MVS_0304 | | | 91.90 47 | 92.93 46 | 90.69 53 | 93.66 64 | 98.78 28 | 96.73 33 | 85.43 62 | 93.13 62 | 78.11 82 | 77.02 76 | 89.09 52 | 91.10 61 | 96.98 17 | 96.54 8 | 99.11 8 | 98.96 52 |
|
CS-MVS-test | | | 91.76 48 | 93.47 42 | 89.76 59 | 94.64 59 | 98.22 53 | 88.13 110 | 81.58 86 | 97.02 20 | 82.47 49 | 85.49 51 | 85.41 76 | 93.28 43 | 95.33 39 | 93.61 62 | 98.45 52 | 99.22 32 |
|
QAPM | | | 91.68 49 | 91.97 50 | 91.34 45 | 97.86 30 | 98.72 30 | 95.60 42 | 85.72 57 | 90.86 77 | 77.14 87 | 76.06 77 | 90.35 48 | 92.69 47 | 94.10 64 | 94.60 41 | 99.04 15 | 99.09 42 |
|
CS-MVS | | | 91.55 50 | 92.49 48 | 90.45 54 | 94.00 62 | 97.91 59 | 91.17 81 | 81.40 88 | 95.22 43 | 83.51 44 | 82.37 57 | 82.29 84 | 94.07 36 | 96.36 26 | 94.03 55 | 98.56 46 | 99.22 32 |
|
CNLPA | | | 91.53 51 | 89.74 71 | 93.63 31 | 96.75 42 | 97.63 65 | 91.16 82 | 91.70 35 | 96.38 27 | 90.82 17 | 69.66 114 | 85.52 72 | 93.76 39 | 90.44 115 | 91.14 87 | 97.55 104 | 97.40 101 |
|
ETV-MVS | | | 91.51 52 | 94.06 37 | 88.54 69 | 89.39 105 | 97.52 66 | 89.48 97 | 80.88 92 | 97.09 18 | 79.41 68 | 87.87 40 | 86.18 67 | 92.95 45 | 95.94 30 | 94.33 45 | 99.13 7 | 99.52 21 |
|
EC-MVSNet | | | 91.25 53 | 93.45 43 | 88.68 67 | 88.90 111 | 96.18 90 | 91.66 70 | 76.70 123 | 95.57 38 | 82.00 51 | 84.18 53 | 89.28 50 | 94.17 33 | 95.64 33 | 94.19 51 | 98.68 41 | 99.14 41 |
|
DELS-MVS | | | 91.09 54 | 90.56 67 | 91.71 43 | 95.82 52 | 98.59 34 | 95.74 41 | 86.68 51 | 85.86 105 | 85.12 38 | 72.71 98 | 81.36 87 | 88.06 94 | 97.31 8 | 98.27 2 | 98.86 32 | 99.82 8 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TAPA-MVS | | 87.40 6 | 90.98 55 | 90.71 61 | 91.30 47 | 96.14 50 | 97.66 63 | 94.80 48 | 89.00 42 | 94.74 51 | 77.42 86 | 80.22 62 | 86.70 63 | 92.27 51 | 91.65 103 | 90.17 103 | 98.15 68 | 93.83 163 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PVSNet_BlendedMVS | | | 90.74 56 | 90.66 63 | 90.82 51 | 94.75 57 | 98.54 39 | 91.30 78 | 86.53 52 | 95.43 40 | 85.75 33 | 78.66 68 | 70.67 124 | 87.60 95 | 96.37 24 | 95.08 35 | 98.98 20 | 99.90 2 |
|
PVSNet_Blended | | | 90.74 56 | 90.66 63 | 90.82 51 | 94.75 57 | 98.54 39 | 91.30 78 | 86.53 52 | 95.43 40 | 85.75 33 | 78.66 68 | 70.67 124 | 87.60 95 | 96.37 24 | 95.08 35 | 98.98 20 | 99.90 2 |
|
CHOSEN 280x420 | | | 90.61 58 | 94.27 36 | 86.35 89 | 93.12 68 | 98.16 56 | 89.99 93 | 69.62 177 | 92.48 68 | 76.89 91 | 87.28 43 | 96.72 19 | 90.31 76 | 94.81 49 | 92.33 78 | 98.17 65 | 98.08 84 |
|
MAR-MVS | | | 90.44 59 | 91.17 57 | 89.59 60 | 97.48 35 | 97.92 58 | 90.96 85 | 79.80 97 | 95.07 47 | 77.03 89 | 80.83 60 | 79.10 97 | 94.68 27 | 93.16 77 | 94.46 43 | 97.59 103 | 97.63 93 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PCF-MVS | | 88.14 5 | 90.42 60 | 89.56 76 | 91.41 44 | 94.44 60 | 98.18 54 | 94.35 51 | 94.33 18 | 84.55 118 | 76.61 92 | 75.84 80 | 88.47 55 | 91.29 58 | 90.37 117 | 90.66 94 | 97.46 106 | 98.88 53 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
OpenMVS |  | 83.41 11 | 89.84 61 | 88.89 82 | 90.95 50 | 97.63 33 | 98.51 41 | 94.64 49 | 85.47 61 | 88.14 91 | 78.39 79 | 65.06 129 | 85.42 75 | 91.04 63 | 93.06 80 | 93.70 60 | 98.53 49 | 98.37 74 |
|
EIA-MVS | | | 89.82 62 | 91.48 55 | 87.89 78 | 89.16 107 | 97.31 68 | 88.99 101 | 80.92 91 | 94.29 53 | 77.65 84 | 82.16 58 | 79.77 95 | 91.90 54 | 94.61 54 | 93.03 75 | 98.70 40 | 99.21 35 |
|
canonicalmvs | | | 89.62 63 | 89.87 70 | 89.33 62 | 90.47 87 | 97.02 74 | 93.46 56 | 79.67 100 | 92.45 69 | 81.05 60 | 82.84 56 | 73.00 113 | 93.71 40 | 90.38 116 | 94.85 38 | 97.65 99 | 98.54 67 |
|
TSAR-MVS + COLMAP | | | 89.59 64 | 89.64 73 | 89.53 61 | 93.32 67 | 96.51 82 | 95.03 46 | 88.53 44 | 95.98 33 | 69.10 115 | 91.81 34 | 64.53 147 | 93.40 42 | 93.53 72 | 91.35 86 | 97.77 92 | 93.75 166 |
|
HQP-MVS | | | 89.57 65 | 90.57 66 | 88.41 71 | 92.77 69 | 94.71 107 | 94.24 52 | 87.97 45 | 93.44 58 | 68.18 118 | 91.75 35 | 71.54 123 | 89.90 79 | 92.31 98 | 91.43 84 | 97.39 111 | 98.80 55 |
|
MVS_Test | | | 89.02 66 | 90.20 68 | 87.64 80 | 89.83 98 | 97.05 73 | 92.30 64 | 77.59 119 | 92.89 65 | 75.01 97 | 77.36 72 | 76.10 107 | 92.27 51 | 95.30 40 | 95.42 28 | 98.83 33 | 97.30 105 |
|
CLD-MVS | | | 88.99 67 | 88.07 85 | 90.07 57 | 89.61 101 | 94.94 104 | 93.82 55 | 85.70 59 | 92.73 67 | 82.73 48 | 79.97 63 | 69.59 128 | 90.44 75 | 90.32 118 | 89.93 107 | 98.10 69 | 99.04 45 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
baseline | | | 88.91 68 | 89.94 69 | 87.70 79 | 89.44 104 | 96.74 80 | 91.62 72 | 77.92 116 | 93.79 57 | 78.76 74 | 77.55 71 | 78.46 100 | 89.38 85 | 92.26 99 | 92.52 77 | 99.10 10 | 98.23 78 |
|
PMMVS | | | 88.56 69 | 91.22 56 | 85.47 97 | 90.04 94 | 95.60 100 | 86.62 125 | 78.49 111 | 93.86 55 | 70.62 110 | 90.00 37 | 80.08 93 | 91.64 56 | 92.36 96 | 89.80 111 | 95.40 174 | 96.84 114 |
|
test2506 | | | 88.38 70 | 88.02 87 | 88.80 66 | 91.55 78 | 97.78 60 | 90.87 87 | 83.36 71 | 84.51 119 | 83.06 46 | 74.13 91 | 76.93 104 | 85.39 105 | 94.34 61 | 93.33 69 | 98.60 42 | 95.10 148 |
|
baseline1 | | | 88.16 71 | 88.15 84 | 88.17 75 | 90.02 95 | 94.79 106 | 91.85 69 | 83.89 65 | 87.37 97 | 75.67 95 | 73.75 93 | 79.89 94 | 88.44 93 | 94.41 56 | 93.33 69 | 99.18 5 | 93.55 168 |
|
thisisatest0530 | | | 87.99 72 | 90.76 60 | 84.75 101 | 88.36 116 | 96.82 77 | 87.65 115 | 79.67 100 | 91.77 71 | 70.93 106 | 79.94 64 | 87.65 58 | 84.21 115 | 92.98 83 | 89.07 123 | 97.66 98 | 97.13 108 |
|
tttt0517 | | | 87.93 73 | 90.71 61 | 84.68 102 | 88.33 117 | 96.76 79 | 87.42 118 | 79.67 100 | 91.74 72 | 70.83 107 | 79.91 65 | 87.61 59 | 84.21 115 | 92.88 88 | 89.07 123 | 97.62 101 | 97.03 110 |
|
CANet_DTU | | | 87.91 74 | 91.57 54 | 83.64 109 | 90.96 81 | 97.12 71 | 91.90 68 | 75.97 131 | 92.83 66 | 53.16 173 | 86.02 48 | 79.02 98 | 90.80 66 | 95.40 38 | 94.15 52 | 99.03 18 | 96.47 125 |
|
diffmvs |  | | 87.86 75 | 87.40 93 | 88.39 72 | 88.57 114 | 96.10 91 | 91.24 80 | 83.15 74 | 90.62 78 | 79.13 72 | 72.45 101 | 67.71 134 | 90.07 78 | 92.58 92 | 93.31 72 | 98.17 65 | 99.03 46 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
IS_MVSNet | | | 87.83 76 | 90.66 63 | 84.53 103 | 90.08 93 | 96.79 78 | 88.16 109 | 79.89 96 | 85.44 107 | 72.20 101 | 75.50 84 | 87.14 61 | 80.21 143 | 95.53 35 | 95.22 31 | 96.65 136 | 99.02 47 |
|
EPP-MVSNet | | | 87.72 77 | 89.74 71 | 85.37 98 | 89.11 108 | 95.57 101 | 86.31 126 | 79.44 103 | 85.83 106 | 75.73 94 | 77.23 74 | 90.05 49 | 84.78 111 | 91.22 107 | 90.25 99 | 96.83 127 | 98.04 85 |
|
casdiffmvs_mvg |  | | 87.64 78 | 86.46 100 | 89.01 65 | 89.45 103 | 96.09 93 | 92.69 62 | 83.42 70 | 84.60 117 | 80.01 65 | 68.55 117 | 70.29 126 | 90.51 73 | 93.93 67 | 93.59 63 | 97.96 82 | 98.18 79 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
ET-MVSNet_ETH3D | | | 87.63 79 | 91.08 58 | 83.59 110 | 67.96 213 | 96.30 89 | 92.06 66 | 78.47 112 | 91.95 70 | 69.87 112 | 87.57 42 | 84.14 82 | 94.34 30 | 88.58 131 | 92.10 79 | 98.88 30 | 96.93 111 |
|
DI_MVS_plusplus_trai | | | 87.63 79 | 87.13 95 | 88.22 74 | 88.61 113 | 95.92 96 | 94.09 54 | 81.41 87 | 87.00 100 | 78.38 80 | 59.70 148 | 80.52 91 | 89.08 88 | 94.37 59 | 93.34 67 | 97.73 93 | 99.05 44 |
|
casdiffmvs |  | | 87.59 81 | 86.69 99 | 88.64 68 | 89.06 109 | 96.32 88 | 90.18 90 | 83.21 73 | 87.74 95 | 80.20 64 | 67.99 119 | 68.34 132 | 90.79 67 | 93.83 68 | 94.08 53 | 98.41 56 | 98.50 70 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_Blended_VisFu | | | 87.44 82 | 88.72 83 | 85.95 93 | 92.02 73 | 97.26 69 | 86.88 123 | 82.66 81 | 83.86 125 | 79.16 71 | 66.96 123 | 84.91 79 | 77.26 160 | 94.97 46 | 93.48 64 | 97.73 93 | 99.64 16 |
|
FMVSNet3 | | | 87.19 83 | 87.32 94 | 87.04 87 | 82.82 152 | 90.21 147 | 92.88 59 | 76.53 126 | 91.69 73 | 81.31 55 | 64.81 132 | 80.64 88 | 89.79 83 | 94.80 50 | 94.76 39 | 98.88 30 | 94.32 155 |
|
LS3D | | | 87.19 83 | 85.48 107 | 89.18 63 | 94.96 56 | 95.47 102 | 92.02 67 | 93.36 25 | 88.69 89 | 67.01 119 | 70.56 110 | 72.10 118 | 92.47 49 | 89.96 121 | 89.93 107 | 95.25 176 | 91.68 177 |
|
ACMP | | 85.16 9 | 87.15 85 | 87.04 96 | 87.27 84 | 90.80 83 | 94.45 110 | 89.41 99 | 83.09 78 | 89.15 85 | 76.98 90 | 86.35 46 | 65.80 141 | 86.94 98 | 88.45 132 | 87.52 142 | 96.42 151 | 97.56 98 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
UGNet | | | 87.04 86 | 89.59 75 | 84.07 105 | 90.94 82 | 95.95 95 | 86.02 128 | 81.65 85 | 85.94 104 | 78.54 78 | 78.00 70 | 85.40 77 | 69.62 180 | 91.83 102 | 91.53 83 | 97.63 100 | 98.51 69 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LGP-MVS_train | | | 86.95 87 | 87.65 90 | 86.12 92 | 91.77 76 | 93.84 116 | 93.04 58 | 82.77 80 | 88.04 92 | 65.33 124 | 87.69 41 | 67.09 138 | 86.79 99 | 90.20 119 | 88.99 126 | 97.05 122 | 97.71 92 |
|
PatchMatch-RL | | | 86.75 88 | 85.43 108 | 88.29 73 | 94.06 61 | 96.37 87 | 86.82 124 | 82.94 79 | 88.94 87 | 79.59 67 | 79.83 66 | 59.17 160 | 89.46 84 | 91.12 108 | 88.81 130 | 96.88 126 | 93.78 164 |
|
FA-MVS(training) | | | 86.74 89 | 88.01 88 | 85.26 99 | 89.86 96 | 96.99 75 | 88.54 106 | 64.26 193 | 89.04 86 | 81.30 58 | 66.74 125 | 81.52 86 | 89.11 87 | 94.04 65 | 90.37 97 | 98.47 51 | 97.37 102 |
|
baseline2 | | | 86.51 90 | 89.35 79 | 83.19 112 | 85.70 137 | 94.88 105 | 85.75 133 | 77.13 121 | 89.87 82 | 70.65 109 | 79.03 67 | 79.14 96 | 81.51 136 | 93.70 69 | 90.22 100 | 98.38 59 | 98.60 64 |
|
thres100view900 | | | 86.48 91 | 85.08 110 | 88.12 76 | 90.54 84 | 96.90 76 | 92.39 63 | 84.82 63 | 84.16 123 | 71.65 102 | 70.86 107 | 60.49 155 | 91.23 60 | 93.65 70 | 90.19 102 | 98.10 69 | 99.32 25 |
|
ACMM | | 84.23 10 | 86.40 92 | 84.64 113 | 88.46 70 | 91.90 74 | 91.93 138 | 88.11 111 | 85.59 60 | 88.61 90 | 79.13 72 | 75.31 85 | 66.25 139 | 89.86 82 | 89.88 122 | 87.64 139 | 96.16 161 | 92.86 173 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GBi-Net | | | 86.16 93 | 86.00 103 | 86.35 89 | 81.81 158 | 89.52 156 | 91.40 74 | 76.53 126 | 91.69 73 | 81.31 55 | 64.81 132 | 80.64 88 | 88.72 89 | 90.54 112 | 90.72 90 | 98.34 60 | 94.08 156 |
|
test1 | | | 86.16 93 | 86.00 103 | 86.35 89 | 81.81 158 | 89.52 156 | 91.40 74 | 76.53 126 | 91.69 73 | 81.31 55 | 64.81 132 | 80.64 88 | 88.72 89 | 90.54 112 | 90.72 90 | 98.34 60 | 94.08 156 |
|
tfpn200view9 | | | 86.07 95 | 84.76 112 | 87.61 81 | 90.54 84 | 96.39 84 | 91.35 77 | 83.15 74 | 84.16 123 | 71.65 102 | 70.86 107 | 60.49 155 | 90.91 64 | 92.89 85 | 89.34 114 | 98.05 75 | 99.17 38 |
|
DCV-MVSNet | | | 85.90 96 | 85.88 105 | 85.93 94 | 87.86 122 | 88.37 173 | 89.45 98 | 77.46 120 | 87.33 98 | 77.51 85 | 76.06 77 | 75.76 109 | 88.48 92 | 87.40 141 | 88.89 129 | 94.80 185 | 97.37 102 |
|
Vis-MVSNet (Re-imp) | | | 85.89 97 | 89.62 74 | 81.55 123 | 89.85 97 | 96.08 94 | 87.55 116 | 79.80 97 | 84.80 114 | 66.55 121 | 73.70 94 | 86.71 62 | 68.25 187 | 94.40 57 | 94.53 42 | 97.32 114 | 97.09 109 |
|
MSDG | | | 85.81 98 | 82.29 137 | 89.93 58 | 95.52 53 | 92.61 127 | 91.51 73 | 91.46 38 | 85.12 111 | 78.56 76 | 63.25 138 | 69.01 130 | 85.31 108 | 88.45 132 | 88.23 133 | 97.21 118 | 89.33 188 |
|
thres200 | | | 85.80 99 | 84.38 114 | 87.46 82 | 90.51 86 | 96.39 84 | 91.64 71 | 83.15 74 | 81.59 134 | 71.54 104 | 70.24 111 | 60.41 157 | 89.88 80 | 92.89 85 | 89.85 110 | 98.06 73 | 99.26 30 |
|
ECVR-MVS |  | | 85.74 100 | 83.80 122 | 88.00 77 | 91.55 78 | 97.78 60 | 90.87 87 | 83.36 71 | 84.51 119 | 78.21 81 | 58.65 153 | 62.75 151 | 85.39 105 | 94.34 61 | 93.33 69 | 98.60 42 | 95.25 142 |
|
OPM-MVS | | | 85.69 101 | 82.79 130 | 89.06 64 | 93.42 65 | 94.21 114 | 94.21 53 | 87.61 47 | 72.68 159 | 70.79 108 | 71.09 105 | 67.27 137 | 90.74 68 | 91.29 106 | 89.05 125 | 97.61 102 | 93.94 161 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
thres400 | | | 85.59 102 | 84.08 117 | 87.36 83 | 90.45 88 | 96.60 81 | 90.95 86 | 83.67 68 | 80.99 137 | 71.17 105 | 69.08 116 | 60.25 158 | 89.88 80 | 93.14 78 | 89.34 114 | 98.02 77 | 99.17 38 |
|
CostFormer | | | 85.47 103 | 86.98 97 | 83.71 108 | 88.70 112 | 94.02 115 | 88.07 112 | 62.72 195 | 89.78 83 | 78.68 75 | 72.69 99 | 78.37 101 | 87.35 97 | 85.96 154 | 89.32 118 | 96.73 133 | 98.72 56 |
|
test1111 | | | 85.17 104 | 83.46 125 | 87.17 85 | 91.36 80 | 97.75 62 | 90.06 92 | 83.44 69 | 83.41 127 | 75.25 96 | 58.08 156 | 62.19 153 | 84.39 114 | 94.39 58 | 93.38 66 | 98.54 48 | 95.00 150 |
|
thres600view7 | | | 85.14 105 | 83.58 124 | 86.96 88 | 90.37 91 | 96.39 84 | 90.33 89 | 83.15 74 | 80.46 138 | 70.60 111 | 67.96 120 | 60.04 159 | 89.22 86 | 92.89 85 | 88.28 132 | 98.06 73 | 99.08 43 |
|
test-LLR | | | 85.11 106 | 89.49 77 | 80.00 132 | 85.32 141 | 94.49 108 | 82.27 163 | 74.18 140 | 87.83 93 | 56.70 151 | 75.55 82 | 86.26 64 | 82.75 129 | 93.06 80 | 90.60 95 | 98.77 36 | 98.65 62 |
|
FMVSNet2 | | | 84.89 107 | 84.02 119 | 85.91 95 | 81.81 158 | 89.52 156 | 91.40 74 | 75.79 132 | 84.45 121 | 79.39 69 | 58.75 151 | 74.35 111 | 88.72 89 | 93.51 74 | 93.46 65 | 98.34 60 | 94.08 156 |
|
FC-MVSNet-train | | | 84.88 108 | 84.08 117 | 85.82 96 | 89.21 106 | 91.74 139 | 85.87 129 | 81.20 90 | 81.71 133 | 74.66 98 | 73.38 96 | 64.99 145 | 86.60 100 | 90.75 110 | 88.08 134 | 97.36 112 | 97.90 89 |
|
EPNet_dtu | | | 84.87 109 | 89.01 80 | 80.05 131 | 95.25 55 | 92.88 125 | 88.84 103 | 84.11 64 | 91.69 73 | 49.28 189 | 85.69 49 | 78.95 99 | 65.39 192 | 92.22 100 | 91.66 82 | 97.43 109 | 89.95 184 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Effi-MVS+ | | | 84.80 110 | 85.71 106 | 83.73 107 | 87.94 121 | 95.76 97 | 90.08 91 | 73.45 147 | 85.12 111 | 62.66 133 | 72.39 102 | 64.97 146 | 90.59 71 | 92.95 84 | 90.69 93 | 97.67 97 | 98.12 81 |
|
UA-Net | | | 84.69 111 | 87.64 91 | 81.25 125 | 90.38 90 | 95.67 98 | 87.33 119 | 79.41 104 | 72.07 163 | 66.48 122 | 75.09 86 | 92.48 40 | 66.88 188 | 94.03 66 | 94.25 49 | 97.01 125 | 89.88 185 |
|
TESTMET0.1,1 | | | 84.62 112 | 89.49 77 | 78.94 141 | 82.18 155 | 94.49 108 | 82.27 163 | 70.94 167 | 87.83 93 | 56.70 151 | 75.55 82 | 86.26 64 | 82.75 129 | 93.06 80 | 90.60 95 | 98.77 36 | 98.65 62 |
|
CHOSEN 1792x2688 | | | 84.59 113 | 84.30 116 | 84.93 100 | 93.71 63 | 98.23 52 | 89.91 94 | 77.96 115 | 84.81 113 | 65.93 123 | 45.19 197 | 71.76 122 | 83.13 127 | 95.46 36 | 95.13 34 | 98.94 25 | 99.53 20 |
|
Anonymous20231211 | | | 84.23 114 | 81.71 142 | 87.17 85 | 87.38 129 | 93.59 119 | 88.95 102 | 82.14 83 | 83.82 126 | 78.56 76 | 48.09 191 | 73.89 112 | 91.25 59 | 86.38 148 | 88.06 136 | 94.74 186 | 98.14 80 |
|
MDTV_nov1_ep13 | | | 84.17 115 | 88.03 86 | 79.66 134 | 86.00 135 | 94.41 111 | 85.05 135 | 66.01 189 | 90.36 79 | 64.34 129 | 77.13 75 | 84.56 80 | 82.71 131 | 87.12 145 | 88.92 127 | 93.84 192 | 93.69 167 |
|
test-mter | | | 84.06 116 | 89.00 81 | 78.29 146 | 81.92 156 | 94.23 113 | 81.07 173 | 70.38 171 | 87.12 99 | 56.10 160 | 74.75 87 | 85.80 70 | 81.81 135 | 92.52 93 | 90.10 104 | 98.43 54 | 98.49 71 |
|
IB-MVS | | 79.58 12 | 83.83 117 | 84.81 111 | 82.68 115 | 91.85 75 | 97.35 67 | 75.75 192 | 82.57 82 | 86.55 102 | 84.01 42 | 70.90 106 | 65.43 143 | 63.18 198 | 84.19 168 | 89.92 109 | 98.74 38 | 99.31 27 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EPMVS | | | 83.71 118 | 86.76 98 | 80.16 130 | 89.72 100 | 95.64 99 | 84.68 136 | 59.73 200 | 89.61 84 | 62.67 132 | 72.65 100 | 81.80 85 | 86.22 102 | 86.23 150 | 88.03 137 | 97.96 82 | 93.35 169 |
|
HyFIR lowres test | | | 83.43 119 | 82.94 128 | 84.01 106 | 93.41 66 | 97.10 72 | 87.21 120 | 74.04 142 | 80.15 140 | 64.98 125 | 41.09 205 | 76.61 106 | 86.51 101 | 93.31 75 | 93.01 76 | 97.91 89 | 99.30 28 |
|
PatchmatchNet |  | | 83.28 120 | 87.57 92 | 78.29 146 | 87.46 127 | 94.95 103 | 83.36 145 | 59.43 203 | 90.20 81 | 58.10 146 | 74.29 90 | 86.20 66 | 84.13 117 | 85.27 160 | 87.39 143 | 97.25 117 | 94.67 153 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
SCA | | | 83.26 121 | 87.76 89 | 78.00 151 | 87.45 128 | 92.20 133 | 82.63 159 | 58.42 205 | 90.30 80 | 58.23 144 | 75.74 81 | 87.75 57 | 83.97 120 | 86.10 153 | 87.64 139 | 97.30 115 | 94.62 154 |
|
GeoE | | | 83.17 122 | 82.86 129 | 83.53 111 | 87.24 130 | 93.78 117 | 87.94 113 | 72.75 152 | 82.19 131 | 69.76 113 | 60.54 145 | 65.95 140 | 86.01 103 | 89.41 126 | 89.72 112 | 97.47 105 | 98.43 72 |
|
CDS-MVSNet | | | 83.13 123 | 83.73 123 | 82.43 121 | 84.52 146 | 92.92 124 | 88.26 108 | 77.67 118 | 72.08 162 | 69.08 116 | 66.96 123 | 74.66 110 | 78.61 149 | 90.70 111 | 91.96 80 | 96.46 150 | 96.86 113 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
RPSCF | | | 82.91 124 | 81.86 139 | 84.13 104 | 88.25 118 | 88.32 174 | 87.67 114 | 80.86 93 | 84.78 115 | 76.57 93 | 85.56 50 | 76.00 108 | 84.61 112 | 78.20 203 | 76.52 206 | 86.81 212 | 83.63 205 |
|
Vis-MVSNet |  | | 82.88 125 | 86.04 102 | 79.20 139 | 87.77 125 | 96.42 83 | 86.10 127 | 76.70 123 | 74.82 153 | 61.38 136 | 70.70 109 | 77.91 102 | 64.83 194 | 93.22 76 | 93.19 74 | 98.43 54 | 96.01 128 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
dps | | | 82.63 126 | 82.64 133 | 82.62 117 | 87.81 124 | 92.81 126 | 84.39 137 | 61.96 196 | 86.43 103 | 81.63 52 | 69.72 113 | 67.60 136 | 84.42 113 | 82.51 181 | 83.90 180 | 95.52 170 | 95.50 139 |
|
IterMVS-LS | | | 82.62 127 | 82.75 132 | 82.48 118 | 87.09 131 | 87.48 187 | 87.19 121 | 72.85 150 | 79.09 141 | 66.63 120 | 65.22 127 | 72.14 117 | 84.06 119 | 88.33 135 | 91.39 85 | 97.03 124 | 95.60 138 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Fast-Effi-MVS+ | | | 82.61 128 | 82.51 135 | 82.72 114 | 85.49 140 | 93.06 123 | 87.17 122 | 71.39 164 | 84.18 122 | 64.59 127 | 63.03 139 | 58.89 161 | 90.22 77 | 91.39 105 | 90.83 89 | 97.44 107 | 96.21 127 |
|
tpm cat1 | | | 82.39 129 | 82.32 136 | 82.47 119 | 88.13 119 | 92.42 131 | 87.43 117 | 62.79 194 | 85.30 108 | 78.05 83 | 60.14 146 | 72.10 118 | 83.20 126 | 82.26 184 | 85.67 159 | 95.23 177 | 98.35 76 |
|
dmvs_re | | | 82.31 130 | 81.55 143 | 83.19 112 | 83.15 151 | 93.17 122 | 88.68 105 | 83.72 66 | 82.73 129 | 61.70 134 | 67.43 122 | 55.43 169 | 83.35 125 | 87.51 140 | 89.27 121 | 98.56 46 | 95.31 141 |
|
MS-PatchMatch | | | 82.16 131 | 82.18 138 | 82.12 122 | 91.65 77 | 93.50 120 | 89.51 96 | 71.95 158 | 81.48 135 | 64.45 128 | 59.58 150 | 77.54 103 | 77.23 161 | 89.88 122 | 85.62 160 | 97.94 84 | 87.68 192 |
|
tpmrst | | | 81.71 132 | 83.87 121 | 79.20 139 | 89.01 110 | 93.67 118 | 84.22 138 | 60.14 198 | 87.45 96 | 59.49 140 | 64.97 130 | 71.86 121 | 85.30 109 | 84.72 164 | 86.30 151 | 97.04 123 | 98.09 83 |
|
RPMNet | | | 81.47 133 | 86.24 101 | 75.90 169 | 86.72 132 | 92.12 135 | 82.82 157 | 55.76 211 | 85.21 109 | 53.73 171 | 63.45 136 | 83.16 83 | 80.13 144 | 92.34 97 | 89.52 113 | 96.23 159 | 97.90 89 |
|
CR-MVSNet | | | 81.44 134 | 85.29 109 | 76.94 160 | 86.53 133 | 92.12 135 | 83.86 139 | 58.37 206 | 85.21 109 | 56.28 155 | 59.60 149 | 80.39 92 | 80.50 141 | 92.77 89 | 89.32 118 | 96.12 163 | 97.59 96 |
|
Effi-MVS+-dtu | | | 81.18 135 | 82.77 131 | 79.33 137 | 84.70 145 | 92.54 129 | 85.81 130 | 71.55 162 | 78.84 142 | 57.06 150 | 71.98 104 | 63.77 149 | 85.09 110 | 88.94 128 | 87.62 141 | 91.79 205 | 95.68 133 |
|
test0.0.03 1 | | | 80.99 136 | 84.37 115 | 77.05 158 | 85.32 141 | 89.79 152 | 78.43 183 | 74.18 140 | 84.78 115 | 57.98 149 | 76.06 77 | 72.88 114 | 69.14 184 | 88.02 137 | 87.70 138 | 97.27 116 | 91.37 178 |
|
Fast-Effi-MVS+-dtu | | | 80.57 137 | 83.44 126 | 77.22 156 | 83.98 149 | 91.52 141 | 85.78 132 | 64.54 192 | 80.38 139 | 50.28 185 | 74.06 92 | 62.89 150 | 82.00 134 | 89.10 127 | 88.91 128 | 96.75 131 | 97.21 107 |
|
FMVSNet5 | | | 80.56 138 | 82.53 134 | 78.26 148 | 73.80 208 | 81.52 206 | 82.26 165 | 68.36 182 | 88.85 88 | 64.21 130 | 69.09 115 | 84.38 81 | 83.49 124 | 87.13 144 | 86.76 148 | 97.44 107 | 79.95 208 |
|
ADS-MVSNet | | | 80.25 139 | 82.96 127 | 77.08 157 | 87.86 122 | 92.60 128 | 81.82 170 | 56.19 210 | 86.95 101 | 56.16 158 | 68.19 118 | 72.42 116 | 83.70 123 | 82.05 185 | 85.45 165 | 96.75 131 | 93.08 172 |
|
FMVSNet1 | | | 80.18 140 | 78.07 154 | 82.65 116 | 78.55 182 | 87.57 186 | 88.41 107 | 73.93 143 | 70.16 168 | 73.57 99 | 49.80 181 | 64.45 148 | 85.35 107 | 90.54 112 | 90.72 90 | 96.10 164 | 93.21 170 |
|
USDC | | | 80.10 141 | 79.33 150 | 81.00 127 | 86.36 134 | 91.71 140 | 88.74 104 | 75.77 133 | 81.90 132 | 54.90 165 | 67.67 121 | 52.05 174 | 83.94 121 | 88.44 134 | 86.25 152 | 96.31 154 | 87.28 196 |
|
COLMAP_ROB |  | 75.69 15 | 79.47 142 | 76.90 161 | 82.46 120 | 92.20 70 | 90.53 143 | 85.30 134 | 83.69 67 | 78.27 145 | 61.47 135 | 58.26 154 | 62.75 151 | 78.28 152 | 82.41 182 | 82.13 193 | 93.83 194 | 83.98 204 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
pmmvs4 | | | 79.32 143 | 77.78 156 | 81.11 126 | 80.18 167 | 88.96 168 | 83.39 143 | 76.07 129 | 81.27 136 | 69.35 114 | 58.66 152 | 51.19 177 | 82.01 133 | 87.16 143 | 84.39 177 | 95.66 168 | 92.82 174 |
|
PatchT | | | 79.28 144 | 83.88 120 | 73.93 178 | 85.54 139 | 90.95 142 | 66.14 209 | 56.53 209 | 83.21 128 | 56.28 155 | 56.50 158 | 76.80 105 | 80.50 141 | 92.77 89 | 89.32 118 | 98.57 45 | 97.59 96 |
|
ACMH | | 78.51 14 | 79.27 145 | 78.08 153 | 80.65 128 | 89.52 102 | 90.40 144 | 80.45 175 | 79.77 99 | 69.54 173 | 54.85 166 | 64.83 131 | 56.16 167 | 83.94 121 | 84.58 166 | 86.01 156 | 95.41 173 | 95.03 149 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TAMVS | | | 79.23 146 | 78.95 152 | 79.56 135 | 81.89 157 | 92.52 130 | 82.97 152 | 73.70 144 | 67.27 179 | 64.97 126 | 61.66 144 | 65.06 144 | 78.61 149 | 87.12 145 | 88.07 135 | 95.23 177 | 90.95 180 |
|
ACMH+ | | 79.09 13 | 79.12 147 | 77.22 160 | 81.35 124 | 88.50 115 | 90.36 145 | 82.14 167 | 79.38 106 | 72.78 158 | 58.59 141 | 62.31 143 | 56.44 166 | 84.10 118 | 82.03 186 | 84.05 178 | 95.40 174 | 92.55 175 |
|
UniMVSNet_NR-MVSNet | | | 78.89 148 | 78.04 155 | 79.88 133 | 79.40 173 | 89.70 153 | 82.92 154 | 80.17 94 | 76.37 151 | 58.56 142 | 57.10 157 | 54.92 170 | 81.44 137 | 83.51 173 | 87.12 145 | 96.76 130 | 97.60 94 |
|
tpm | | | 78.87 149 | 81.33 146 | 76.00 167 | 85.57 138 | 90.19 148 | 82.81 158 | 59.66 201 | 78.35 144 | 51.40 180 | 66.30 126 | 67.92 133 | 80.94 139 | 83.28 176 | 85.73 157 | 95.65 169 | 97.56 98 |
|
GA-MVS | | | 78.86 150 | 80.42 147 | 77.05 158 | 83.27 150 | 92.17 134 | 83.24 147 | 75.73 134 | 73.75 155 | 46.27 199 | 62.43 141 | 57.12 163 | 76.94 163 | 93.14 78 | 89.34 114 | 96.83 127 | 95.00 150 |
|
IterMVS | | | 78.85 151 | 81.36 144 | 75.93 168 | 84.27 148 | 85.74 193 | 83.83 141 | 66.35 187 | 76.82 146 | 50.48 183 | 63.48 135 | 68.82 131 | 73.99 168 | 89.68 124 | 89.34 114 | 96.63 139 | 95.67 134 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 78.71 152 | 81.34 145 | 75.64 173 | 84.31 147 | 85.67 194 | 83.51 142 | 66.14 188 | 76.67 147 | 50.38 184 | 63.45 136 | 69.02 129 | 73.23 170 | 89.66 125 | 89.22 122 | 96.24 158 | 95.67 134 |
|
UniMVSNet (Re) | | | 78.00 153 | 77.52 157 | 78.57 144 | 79.66 172 | 90.36 145 | 82.09 168 | 77.86 117 | 76.38 150 | 60.26 137 | 54.63 164 | 52.07 173 | 75.31 166 | 84.97 163 | 86.10 154 | 96.22 160 | 98.11 82 |
|
DU-MVS | | | 77.98 154 | 76.71 162 | 79.46 136 | 78.68 179 | 89.26 162 | 82.92 154 | 79.06 108 | 76.52 148 | 58.56 142 | 54.89 162 | 48.35 191 | 81.44 137 | 83.16 178 | 87.21 144 | 96.08 165 | 97.60 94 |
|
FC-MVSNet-test | | | 77.95 155 | 81.85 140 | 73.39 183 | 82.31 153 | 88.99 167 | 79.33 179 | 74.24 139 | 78.75 143 | 47.40 197 | 70.22 112 | 72.09 120 | 60.78 204 | 86.66 147 | 85.62 160 | 96.30 155 | 90.61 181 |
|
NR-MVSNet | | | 77.21 156 | 76.41 163 | 78.14 150 | 80.18 167 | 89.26 162 | 83.38 144 | 79.06 108 | 76.52 148 | 56.59 153 | 54.89 162 | 45.32 201 | 72.89 172 | 85.39 159 | 86.12 153 | 96.71 134 | 97.36 104 |
|
thisisatest0515 | | | 77.13 157 | 79.36 149 | 74.52 175 | 79.79 171 | 89.65 154 | 73.54 197 | 73.69 145 | 74.10 154 | 58.14 145 | 62.79 140 | 60.57 154 | 66.49 190 | 88.08 136 | 85.16 170 | 95.49 172 | 95.15 146 |
|
gg-mvs-nofinetune | | | 77.08 158 | 79.79 148 | 73.92 179 | 85.95 136 | 97.23 70 | 92.18 65 | 52.65 214 | 46.19 217 | 27.79 222 | 38.27 209 | 85.63 71 | 85.67 104 | 96.95 18 | 95.62 25 | 99.30 3 | 98.67 61 |
|
TranMVSNet+NR-MVSNet | | | 77.02 159 | 75.76 165 | 78.49 145 | 78.46 185 | 88.24 175 | 83.03 151 | 79.97 95 | 73.49 157 | 54.73 167 | 54.00 167 | 48.74 186 | 78.15 154 | 82.36 183 | 86.90 147 | 96.59 141 | 96.55 119 |
|
CVMVSNet | | | 76.86 160 | 79.09 151 | 74.26 176 | 85.29 143 | 89.44 159 | 79.91 178 | 78.47 112 | 68.94 176 | 44.45 204 | 62.35 142 | 69.70 127 | 64.50 195 | 85.82 155 | 87.03 146 | 92.94 200 | 90.33 182 |
|
Baseline_NR-MVSNet | | | 76.71 161 | 74.56 172 | 79.23 138 | 78.68 179 | 84.15 202 | 82.45 161 | 78.87 110 | 75.83 152 | 60.05 138 | 47.92 192 | 50.18 183 | 79.06 148 | 83.16 178 | 83.86 181 | 96.26 156 | 96.80 115 |
|
v2v482 | | | 76.25 162 | 74.78 169 | 77.96 152 | 78.50 184 | 89.14 165 | 83.05 150 | 76.02 130 | 68.78 177 | 54.11 168 | 51.36 173 | 48.59 188 | 79.49 146 | 83.53 172 | 85.60 163 | 96.59 141 | 96.49 124 |
|
V42 | | | 76.21 163 | 75.04 168 | 77.58 153 | 78.68 179 | 89.33 161 | 82.93 153 | 74.64 137 | 69.84 170 | 56.13 159 | 50.42 178 | 50.93 178 | 76.30 165 | 83.32 174 | 84.89 174 | 96.83 127 | 96.54 120 |
|
v8 | | | 75.89 164 | 74.74 170 | 77.23 155 | 79.09 175 | 88.00 178 | 83.19 148 | 71.08 166 | 70.03 169 | 56.29 154 | 50.50 176 | 50.88 179 | 77.06 162 | 83.32 174 | 84.99 172 | 96.68 135 | 95.49 140 |
|
TinyColmap | | | 75.75 165 | 73.19 183 | 78.74 143 | 84.82 144 | 87.69 182 | 81.59 171 | 74.62 138 | 71.81 164 | 54.01 169 | 55.79 161 | 44.42 206 | 82.89 128 | 84.61 165 | 83.76 182 | 94.50 187 | 84.22 203 |
|
MIMVSNet | | | 75.71 166 | 77.26 158 | 73.90 180 | 70.93 209 | 88.71 171 | 79.98 177 | 57.67 208 | 73.58 156 | 58.08 148 | 53.93 168 | 58.56 162 | 79.41 147 | 90.04 120 | 89.97 105 | 97.34 113 | 86.04 197 |
|
UniMVSNet_ETH3D | | | 75.63 167 | 71.59 192 | 80.35 129 | 81.03 162 | 89.90 151 | 83.25 146 | 76.58 125 | 60.08 200 | 64.19 131 | 42.89 204 | 45.01 202 | 82.14 132 | 80.20 196 | 86.75 149 | 94.90 182 | 96.29 126 |
|
pm-mvs1 | | | 75.61 168 | 74.19 174 | 77.26 154 | 80.16 169 | 88.79 169 | 81.49 172 | 75.49 136 | 59.49 202 | 58.09 147 | 48.32 189 | 55.53 168 | 72.35 173 | 88.61 130 | 85.48 164 | 95.99 166 | 93.12 171 |
|
v10 | | | 75.57 169 | 74.67 171 | 76.62 163 | 78.73 178 | 87.46 188 | 83.14 149 | 69.41 178 | 69.27 174 | 53.44 172 | 49.73 182 | 49.21 185 | 78.44 151 | 86.17 152 | 85.18 169 | 96.53 146 | 95.65 137 |
|
v1144 | | | 75.54 170 | 74.55 173 | 76.69 161 | 78.33 188 | 88.77 170 | 82.89 156 | 72.76 151 | 67.18 181 | 51.73 177 | 49.34 184 | 48.37 189 | 78.10 155 | 86.22 151 | 85.24 167 | 96.35 153 | 96.74 116 |
|
TDRefinement | | | 75.54 170 | 73.22 181 | 78.25 149 | 87.65 126 | 89.65 154 | 85.81 130 | 79.28 107 | 71.14 166 | 56.06 161 | 52.17 171 | 51.96 175 | 68.74 186 | 81.60 187 | 80.58 195 | 91.94 203 | 85.45 198 |
|
pmmvs5 | | | 75.46 172 | 75.12 167 | 75.87 170 | 79.39 174 | 89.44 159 | 78.12 185 | 72.27 156 | 65.98 186 | 51.54 178 | 55.83 160 | 46.23 196 | 76.80 164 | 88.77 129 | 85.73 157 | 97.07 121 | 93.84 162 |
|
tfpnnormal | | | 75.27 173 | 72.12 189 | 78.94 141 | 82.30 154 | 88.52 172 | 82.41 162 | 79.41 104 | 58.03 203 | 55.59 163 | 43.83 203 | 44.71 203 | 77.35 158 | 87.70 139 | 85.45 165 | 96.60 140 | 96.61 118 |
|
anonymousdsp | | | 75.14 174 | 77.25 159 | 72.69 186 | 76.68 198 | 89.26 162 | 75.26 194 | 68.44 181 | 65.53 189 | 46.65 198 | 58.16 155 | 56.67 165 | 73.96 169 | 87.84 138 | 86.05 155 | 95.13 180 | 97.22 106 |
|
v148 | | | 74.98 175 | 73.52 179 | 76.69 161 | 78.84 177 | 89.02 166 | 78.78 181 | 76.82 122 | 67.22 180 | 59.61 139 | 49.18 185 | 47.94 193 | 70.57 179 | 80.76 191 | 83.99 179 | 95.52 170 | 96.52 122 |
|
v1192 | | | 74.96 176 | 73.92 175 | 76.17 164 | 77.76 191 | 88.19 177 | 82.54 160 | 71.94 159 | 66.84 182 | 50.07 187 | 48.10 190 | 46.14 197 | 78.28 152 | 86.30 149 | 85.23 168 | 96.41 152 | 96.67 117 |
|
v144192 | | | 74.76 177 | 73.64 176 | 76.06 166 | 77.58 192 | 88.23 176 | 81.87 169 | 71.63 161 | 66.03 185 | 51.08 181 | 48.63 188 | 46.77 195 | 77.59 157 | 84.53 167 | 84.76 175 | 96.64 138 | 96.54 120 |
|
v1921920 | | | 74.60 178 | 73.56 178 | 75.81 171 | 77.43 194 | 87.94 179 | 82.18 166 | 71.33 165 | 66.48 184 | 49.23 191 | 47.84 193 | 45.56 199 | 78.03 156 | 85.70 157 | 84.92 173 | 96.65 136 | 96.50 123 |
|
v1240 | | | 74.04 179 | 73.04 185 | 75.20 174 | 77.19 196 | 87.69 182 | 80.93 174 | 70.72 170 | 65.08 190 | 48.47 192 | 47.31 194 | 44.71 203 | 77.33 159 | 85.50 158 | 85.07 171 | 96.59 141 | 95.94 129 |
|
testgi | | | 73.22 180 | 75.84 164 | 70.16 197 | 81.67 161 | 85.50 197 | 71.45 199 | 70.81 168 | 69.56 172 | 44.74 203 | 74.52 89 | 49.25 184 | 58.45 205 | 84.10 170 | 83.37 186 | 93.86 191 | 84.56 202 |
|
CP-MVSNet | | | 73.19 181 | 72.37 187 | 74.15 177 | 77.54 193 | 86.77 191 | 76.34 188 | 72.05 157 | 65.66 188 | 51.47 179 | 50.49 177 | 43.66 207 | 70.90 175 | 80.93 190 | 83.40 185 | 96.59 141 | 95.66 136 |
|
WR-MVS | | | 72.93 182 | 73.57 177 | 72.19 189 | 78.14 189 | 87.71 181 | 76.21 190 | 73.02 149 | 67.78 178 | 50.09 186 | 50.35 179 | 50.53 181 | 61.27 203 | 80.42 194 | 83.10 189 | 94.43 188 | 95.11 147 |
|
TransMVSNet (Re) | | | 72.90 183 | 70.51 196 | 75.69 172 | 80.88 163 | 85.26 199 | 79.25 180 | 78.43 114 | 56.13 209 | 52.81 174 | 46.81 195 | 48.20 192 | 66.77 189 | 85.18 162 | 83.70 183 | 95.98 167 | 88.28 191 |
|
WR-MVS_H | | | 72.69 184 | 72.80 186 | 72.56 188 | 77.94 190 | 87.83 180 | 75.26 194 | 71.53 163 | 64.75 191 | 52.19 176 | 49.83 180 | 48.62 187 | 61.96 201 | 81.12 189 | 82.44 191 | 96.50 147 | 95.00 150 |
|
SixPastTwentyTwo | | | 72.65 185 | 73.22 181 | 71.98 192 | 78.40 186 | 87.64 184 | 70.09 202 | 70.37 172 | 66.49 183 | 47.60 195 | 65.09 128 | 45.94 198 | 73.09 171 | 78.94 198 | 78.66 201 | 92.33 201 | 89.82 186 |
|
LTVRE_ROB | | 71.82 16 | 72.62 186 | 71.77 190 | 73.62 181 | 80.74 164 | 87.59 185 | 80.42 176 | 70.37 172 | 49.73 213 | 37.12 216 | 59.76 147 | 42.52 212 | 80.92 140 | 83.20 177 | 85.61 162 | 92.13 202 | 93.95 160 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PS-CasMVS | | | 72.37 187 | 71.47 194 | 73.43 182 | 77.32 195 | 86.43 192 | 75.99 191 | 71.94 159 | 63.37 194 | 49.24 190 | 49.07 186 | 42.42 213 | 69.60 181 | 80.59 193 | 83.18 188 | 96.48 149 | 95.23 144 |
|
MVS-HIRNet | | | 72.32 188 | 73.45 180 | 71.00 195 | 80.58 165 | 89.97 149 | 68.51 206 | 55.28 212 | 70.89 167 | 52.27 175 | 39.09 207 | 57.11 164 | 75.02 167 | 85.76 156 | 86.33 150 | 94.36 189 | 85.00 200 |
|
PEN-MVS | | | 72.24 189 | 71.30 195 | 73.33 184 | 77.08 197 | 85.57 195 | 76.75 186 | 72.52 154 | 63.89 193 | 48.12 193 | 50.79 174 | 43.09 210 | 69.03 185 | 78.54 200 | 83.46 184 | 96.50 147 | 93.76 165 |
|
v7n | | | 72.11 190 | 71.66 191 | 72.63 187 | 75.26 203 | 86.85 189 | 76.74 187 | 68.77 180 | 62.70 197 | 49.40 188 | 45.92 196 | 43.51 208 | 70.63 178 | 84.16 169 | 83.21 187 | 94.99 181 | 95.25 142 |
|
EG-PatchMatch MVS | | | 71.81 191 | 71.54 193 | 72.12 190 | 80.53 166 | 89.94 150 | 78.51 182 | 66.56 186 | 57.38 205 | 47.46 196 | 44.28 202 | 52.22 172 | 63.10 199 | 85.22 161 | 84.42 176 | 96.56 145 | 87.35 195 |
|
CMPMVS |  | 54.54 17 | 71.74 192 | 67.94 201 | 76.16 165 | 90.41 89 | 93.25 121 | 78.32 184 | 75.60 135 | 59.81 201 | 53.95 170 | 44.64 200 | 51.22 176 | 70.70 176 | 74.59 209 | 75.88 207 | 88.01 209 | 76.23 211 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MDTV_nov1_ep13_2view | | | 71.65 193 | 73.08 184 | 69.97 198 | 75.22 204 | 86.81 190 | 73.98 196 | 59.61 202 | 69.75 171 | 48.01 194 | 54.21 166 | 53.06 171 | 69.19 183 | 78.50 201 | 80.43 196 | 93.84 192 | 88.79 189 |
|
pmnet_mix02 | | | 71.64 194 | 72.36 188 | 70.81 196 | 78.39 187 | 85.57 195 | 68.64 204 | 73.65 146 | 72.13 160 | 45.07 202 | 56.01 159 | 50.61 180 | 65.34 193 | 76.21 206 | 76.60 205 | 93.75 195 | 89.35 187 |
|
gm-plane-assit | | | 71.33 195 | 75.18 166 | 66.83 201 | 79.06 176 | 75.57 213 | 48.05 220 | 60.33 197 | 48.28 214 | 34.67 220 | 44.34 201 | 67.70 135 | 79.78 145 | 97.25 11 | 96.21 13 | 99.10 10 | 96.92 112 |
|
DTE-MVSNet | | | 71.19 196 | 70.45 197 | 72.06 191 | 76.61 199 | 84.59 201 | 75.61 193 | 72.32 155 | 63.12 196 | 45.70 201 | 50.72 175 | 43.02 211 | 65.89 191 | 77.53 205 | 82.23 192 | 96.26 156 | 91.93 176 |
|
pmmvs6 | | | 70.29 197 | 67.90 202 | 73.07 185 | 76.17 200 | 85.31 198 | 76.29 189 | 70.75 169 | 47.39 216 | 55.33 164 | 37.15 213 | 50.49 182 | 69.55 182 | 82.96 180 | 80.85 194 | 90.34 208 | 91.18 179 |
|
PM-MVS | | | 70.17 198 | 69.42 199 | 71.04 194 | 70.82 210 | 81.26 208 | 71.25 200 | 67.80 183 | 69.16 175 | 51.04 182 | 53.15 170 | 34.93 217 | 72.19 174 | 80.30 195 | 76.95 204 | 93.16 199 | 90.21 183 |
|
pmmvs-eth3d | | | 69.59 199 | 67.57 204 | 71.95 193 | 70.04 211 | 80.05 209 | 71.48 198 | 70.00 176 | 62.57 198 | 55.99 162 | 44.92 198 | 35.73 216 | 70.64 177 | 81.56 188 | 79.69 197 | 93.55 196 | 88.43 190 |
|
N_pmnet | | | 68.54 200 | 67.83 203 | 69.38 199 | 75.77 201 | 81.90 205 | 66.21 208 | 72.53 153 | 65.91 187 | 46.09 200 | 44.67 199 | 45.48 200 | 63.82 197 | 74.66 208 | 77.39 203 | 91.87 204 | 84.77 201 |
|
Anonymous20231206 | | | 68.09 201 | 68.68 200 | 67.39 200 | 75.16 205 | 82.55 203 | 69.33 203 | 70.06 175 | 63.34 195 | 42.28 207 | 37.91 211 | 43.12 209 | 52.67 208 | 83.56 171 | 82.71 190 | 94.84 184 | 87.59 193 |
|
EU-MVSNet | | | 68.07 202 | 70.25 198 | 65.52 202 | 74.68 207 | 81.30 207 | 68.53 205 | 70.31 174 | 62.40 199 | 37.43 215 | 54.62 165 | 48.36 190 | 51.34 209 | 78.32 202 | 79.27 198 | 90.84 206 | 87.47 194 |
|
GG-mvs-BLEND | | | 65.67 203 | 93.78 39 | 32.89 215 | 0.47 226 | 99.35 8 | 96.92 31 | 0.22 224 | 93.28 60 | 0.51 227 | 84.07 54 | 92.50 39 | 0.62 224 | 93.59 71 | 93.86 57 | 98.59 44 | 99.79 10 |
|
test20.03 | | | 65.17 204 | 67.41 205 | 62.55 204 | 75.35 202 | 79.31 210 | 62.22 210 | 68.83 179 | 56.50 208 | 35.35 219 | 51.97 172 | 44.70 205 | 40.01 214 | 80.69 192 | 79.25 199 | 93.55 196 | 79.47 210 |
|
MDA-MVSNet-bldmvs | | | 62.23 205 | 61.13 209 | 63.52 203 | 58.94 217 | 82.44 204 | 60.71 213 | 73.28 148 | 57.22 206 | 38.42 213 | 49.63 183 | 27.64 223 | 62.83 200 | 54.98 215 | 74.16 208 | 86.96 211 | 81.83 207 |
|
new_pmnet | | | 61.60 206 | 62.68 207 | 60.35 207 | 63.02 214 | 74.93 214 | 60.97 212 | 58.86 204 | 64.21 192 | 35.38 218 | 39.51 206 | 39.89 214 | 57.37 206 | 72.78 210 | 72.56 210 | 86.49 213 | 74.85 213 |
|
new-patchmatchnet | | | 60.74 207 | 59.78 211 | 61.87 205 | 69.52 212 | 76.67 212 | 57.99 216 | 65.78 190 | 52.63 211 | 38.47 212 | 38.08 210 | 32.92 220 | 48.88 211 | 68.50 211 | 69.87 211 | 90.56 207 | 79.75 209 |
|
pmmvs3 | | | 60.52 208 | 60.87 210 | 60.12 208 | 61.38 215 | 71.62 215 | 57.42 217 | 53.94 213 | 48.09 215 | 35.95 217 | 38.62 208 | 32.19 222 | 64.12 196 | 75.33 207 | 77.99 202 | 87.89 210 | 82.28 206 |
|
MIMVSNet1 | | | 60.51 209 | 61.43 208 | 59.44 209 | 48.75 220 | 77.21 211 | 60.98 211 | 66.84 185 | 52.09 212 | 38.74 211 | 29.29 216 | 39.40 215 | 48.08 212 | 77.60 204 | 78.87 200 | 93.22 198 | 75.56 212 |
|
test_method | | | 60.40 210 | 66.30 206 | 53.52 211 | 37.48 224 | 64.10 219 | 55.56 218 | 42.45 219 | 71.79 165 | 41.87 208 | 33.74 214 | 46.80 194 | 61.71 202 | 79.18 197 | 73.33 209 | 82.01 215 | 95.17 145 |
|
FPMVS | | | 56.54 211 | 52.82 213 | 60.87 206 | 74.90 206 | 67.58 218 | 67.69 207 | 65.38 191 | 57.86 204 | 41.51 209 | 37.83 212 | 34.19 218 | 41.21 213 | 55.88 214 | 53.09 216 | 74.55 218 | 63.31 216 |
|
PMVS |  | 42.57 18 | 45.71 212 | 42.61 215 | 49.32 212 | 61.35 216 | 37.82 223 | 36.96 222 | 60.10 199 | 37.20 218 | 41.50 210 | 28.53 217 | 33.11 219 | 28.82 219 | 53.45 216 | 48.70 218 | 67.22 220 | 59.42 217 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 43.95 213 | 42.62 214 | 45.50 213 | 50.79 219 | 41.20 222 | 35.55 223 | 52.51 215 | 52.95 210 | 29.09 221 | 12.92 219 | 11.48 226 | 38.15 215 | 62.01 213 | 66.62 213 | 66.89 221 | 51.17 218 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 41.25 214 | 42.55 216 | 39.74 214 | 43.25 221 | 55.05 221 | 38.15 221 | 47.11 218 | 31.78 219 | 11.83 224 | 21.16 218 | 19.12 224 | 20.98 221 | 49.95 218 | 56.09 215 | 77.09 216 | 64.68 215 |
|
E-PMN | | | 27.87 215 | 24.36 218 | 31.97 216 | 41.27 223 | 25.56 226 | 16.62 225 | 49.16 216 | 22.00 221 | 9.90 225 | 11.75 221 | 7.86 228 | 29.57 218 | 22.22 220 | 34.70 219 | 45.27 222 | 46.41 220 |
|
MVE |  | 32.98 19 | 27.61 216 | 29.89 217 | 24.94 218 | 21.97 225 | 37.22 224 | 15.56 227 | 38.83 220 | 17.49 222 | 14.72 223 | 11.64 223 | 5.62 229 | 21.26 220 | 35.20 219 | 50.95 217 | 37.29 224 | 51.13 219 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 26.96 217 | 22.96 219 | 31.63 217 | 41.91 222 | 25.73 225 | 16.30 226 | 49.10 217 | 22.38 220 | 9.03 226 | 11.22 224 | 8.12 227 | 29.93 217 | 20.16 221 | 31.04 220 | 43.49 223 | 42.04 221 |
|
testmvs | | | 5.16 218 | 8.14 220 | 1.69 219 | 0.36 227 | 1.65 227 | 3.02 228 | 0.66 222 | 7.17 223 | 0.50 228 | 12.58 220 | 0.69 230 | 4.67 222 | 5.42 222 | 5.65 221 | 0.92 225 | 23.86 223 |
|
test123 | | | 4.39 219 | 7.11 221 | 1.21 220 | 0.11 228 | 1.16 228 | 1.67 229 | 0.35 223 | 5.91 224 | 0.16 229 | 11.65 222 | 0.16 231 | 4.45 223 | 1.72 223 | 4.92 222 | 0.51 226 | 24.28 222 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
TPM-MVS | | | | | | 99.19 1 | 99.43 7 | 99.16 2 | | | 85.97 32 | 94.75 25 | 97.40 13 | 97.76 1 | | | 98.95 24 | 95.69 131 |
|
RE-MVS-def | | | | | | | | | | | 43.17 205 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 97.59 10 | | | | | |
|
SR-MVS | | | | | | 98.52 20 | | | 93.70 22 | | | | 96.63 21 | | | | | |
|
Anonymous202405211 | | | | 81.72 141 | | 88.09 120 | 94.27 112 | 89.62 95 | 82.14 83 | 82.27 130 | | 48.83 187 | 72.58 115 | 91.08 62 | 87.40 141 | 88.70 131 | 94.90 182 | 97.99 86 |
|
our_test_3 | | | | | | 78.55 182 | 84.98 200 | 70.12 201 | | | | | | | | | | |
|
ambc | | | | 57.08 212 | | 58.68 218 | 67.71 217 | 60.07 214 | | 57.13 207 | 42.79 206 | 30.00 215 | 11.64 225 | 50.18 210 | 78.89 199 | 69.14 212 | 82.64 214 | 85.02 199 |
|
MTAPA | | | | | | | | | | | 93.37 8 | | 95.71 27 | | | | | |
|
MTMP | | | | | | | | | | | 93.84 5 | | 94.86 30 | | | | | |
|
Patchmatch-RL test | | | | | | | | 19.65 224 | | | | | | | | | | |
|
tmp_tt | | | | | 57.89 210 | 79.94 170 | 59.29 220 | 52.84 219 | 36.65 221 | 94.77 50 | 68.22 117 | 72.96 97 | 65.62 142 | 33.65 216 | 66.20 212 | 58.02 214 | 76.06 217 | |
|
XVS | | | | | | 92.16 71 | 98.56 35 | 91.04 83 | | | 81.00 61 | | 93.49 34 | | | | 98.00 79 | |
|
X-MVStestdata | | | | | | 92.16 71 | 98.56 35 | 91.04 83 | | | 81.00 61 | | 93.49 34 | | | | 98.00 79 | |
|
mPP-MVS | | | | | | 97.95 29 | | | | | | | 92.24 44 | | | | | |
|
NP-MVS | | | | | | | | | | 94.12 54 | | | | | | | | |
|
Patchmtry | | | | | | | 92.08 137 | 83.86 139 | 58.37 206 | | 56.28 155 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 70.68 216 | 59.61 215 | 67.36 184 | 72.12 161 | 38.41 214 | 53.88 169 | 32.44 221 | 55.15 207 | 50.88 217 | | 74.35 219 | 68.42 214 |
|