This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9697.02 33798.96 199.17 4199.47 2091.97 13199.94 899.85 499.69 5799.91 2
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 10995.32 37698.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5599.90 3
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23597.15 9598.84 12398.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2699.89 5
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12697.25 9098.82 12799.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 2099.93 1
test_fmvsm_n_192098.87 1099.01 398.45 9599.42 5596.43 12798.96 9099.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4298.94 176
test_fmvsmconf0.01_n97.86 6997.54 7898.83 6995.48 35896.83 10698.95 9198.60 14198.58 698.93 5799.55 688.57 20899.91 3999.54 1199.61 7399.77 27
test_fmvsmvis_n_192098.44 4198.51 1898.23 11598.33 17996.15 14298.97 8599.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6298.57 212
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10499.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4699.90 3
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 10999.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2099.89 5
EPNet97.28 10796.87 11198.51 8894.98 36696.14 14398.90 10097.02 33798.28 1095.99 20599.11 8491.36 14599.89 4796.98 11899.19 12099.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS96.37 297.93 6798.48 2396.30 26999.00 11489.54 34497.43 30598.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3299.72 45
test_vis1_n_192096.71 13196.84 11296.31 26899.11 10489.74 33999.05 6598.58 14998.08 1299.87 199.37 3878.48 34599.93 2599.29 1499.69 5799.27 129
save fliter99.46 4998.38 3598.21 22598.71 11697.95 13
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12499.30 6895.25 19098.85 11999.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9399.25 133
patch_mono-298.36 5098.87 696.82 21999.53 3690.68 32598.64 17099.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19798.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10799.41 10799.71 49
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19698.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5999.66 6299.69 56
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19398.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9899.77 3299.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28398.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3899.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_cas_vis1_n_192097.38 10397.36 8997.45 17598.95 12193.25 27999.00 7998.53 15997.70 2099.77 799.35 4484.71 28999.85 6398.57 2799.66 6299.26 131
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 10999.09 10695.41 18098.86 11799.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10599.49 96
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7598.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1399.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 2099.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8598.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1399.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20498.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8899.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2998.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7799.59 7799.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15598.66 13197.51 3098.15 10198.83 12595.70 4599.92 3197.53 10099.67 6099.66 68
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 12898.54 16095.24 19198.87 11499.24 1797.50 3199.70 1399.67 191.33 14799.89 4799.47 1299.54 9099.21 138
h-mvs3396.17 15595.62 17097.81 14899.03 11094.45 23098.64 17098.75 10697.48 3298.67 7398.72 13989.76 17699.86 6297.95 6481.59 37999.11 155
hse-mvs295.71 18095.30 18496.93 21198.50 16293.53 26598.36 20698.10 24797.48 3298.67 7397.99 21289.76 17699.02 22197.95 6480.91 38398.22 227
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
CS-MVS-test98.49 3598.50 2098.46 9499.20 9297.05 9799.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19998.83 2299.56 8799.20 139
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2498.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7399.74 4699.78 21
X-MVStestdata94.06 29192.30 31499.34 2399.70 2298.35 4299.29 2498.88 6297.40 3698.46 8643.50 40595.90 4199.89 4797.85 7399.74 4699.78 21
UGNet96.78 12996.30 13798.19 12098.24 18795.89 16298.88 10998.93 5097.39 3896.81 17497.84 22682.60 31699.90 4596.53 14299.49 9798.79 186
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5998.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7899.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
CANet98.05 6297.76 6798.90 6798.73 13897.27 8598.35 20798.78 10097.37 4197.72 13498.96 11091.53 14399.92 3198.79 2399.65 6599.51 89
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5299.74 37
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
PS-MVSNAJ97.73 7597.77 6697.62 16898.68 14795.58 17297.34 31598.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7299.17 12197.39 252
SD-MVS98.64 1698.68 1198.53 8799.33 5998.36 4198.90 10098.85 7897.28 4599.72 1299.39 3296.63 2097.60 35298.17 5499.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++98.56 2998.57 1598.55 8399.26 8096.80 10798.71 15699.05 3697.28 4598.84 6299.28 5496.47 2399.40 17398.52 3699.70 5599.47 100
HQP_MVS96.14 15795.90 15296.85 21797.42 26294.60 22698.80 13698.56 15397.28 4595.34 21798.28 18787.09 24299.03 21896.07 15494.27 25096.92 270
plane_prior298.80 13697.28 45
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 10098.74 10897.27 4998.02 11299.39 3294.81 7799.96 497.91 6899.79 2699.77 27
fmvsm_s_conf0.1_n_a98.08 6098.04 6098.21 11697.66 24195.39 18198.89 10499.17 2697.24 5099.76 899.67 191.13 15299.88 5699.39 1399.41 10799.35 115
CANet_DTU96.96 12196.55 12798.21 11698.17 20096.07 14597.98 25798.21 22297.24 5097.13 15698.93 11486.88 24799.91 3995.00 19399.37 11398.66 203
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12498.30 21698.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6599.80 18
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8397.91 26499.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 6199.76 3899.69 56
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9098.11 24298.29 21397.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 15099.51 89
CS-MVS98.44 4198.49 2198.31 10799.08 10796.73 11199.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 20298.71 2499.49 9799.09 157
EI-MVSNet-UG-set98.41 4598.34 3598.61 7999.45 5296.32 13598.28 21998.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 9099.73 42
xiu_mvs_v2_base97.66 8297.70 6997.56 17298.61 15595.46 17897.44 30398.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7598.66 14597.41 250
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10397.95 25999.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6899.75 4299.50 91
xiu_mvs_v1_base_debu97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
xiu_mvs_v1_base97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
xiu_mvs_v1_base_debi97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
3Dnovator+94.38 697.43 9996.78 11699.38 1897.83 22698.52 2899.37 1498.71 11697.09 6292.99 30899.13 8289.36 18599.89 4796.97 11999.57 8199.71 49
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20598.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6699.61 7399.74 37
plane_prior394.61 22497.02 6495.34 217
3Dnovator94.51 597.46 9496.93 10899.07 5397.78 22997.64 7199.35 1799.06 3497.02 6493.75 28199.16 7789.25 18999.92 3197.22 11299.75 4299.64 71
test111195.94 16795.78 15696.41 26198.99 11890.12 33499.04 6892.45 39896.99 6698.03 11099.27 5681.40 32199.48 16496.87 13199.04 12499.63 73
test250694.44 26393.91 26096.04 27799.02 11188.99 35499.06 6379.47 41296.96 6798.36 9499.26 5777.21 35799.52 15696.78 13799.04 12499.59 79
ECVR-MVScopyleft95.95 16595.71 16396.65 22999.02 11190.86 32099.03 7291.80 39996.96 6798.10 10499.26 5781.31 32299.51 15796.90 12599.04 12499.59 79
DeepC-MVS95.98 397.88 6897.58 7398.77 7199.25 8196.93 10198.83 12598.75 10696.96 6796.89 17099.50 1590.46 16699.87 5897.84 7599.76 3899.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.81 7297.60 7298.44 9799.12 10295.97 15297.75 28398.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19999.52 9399.67 65
ETV-MVS97.96 6497.81 6598.40 10298.42 16697.27 8598.73 15198.55 15596.84 7198.38 9397.44 26195.39 5499.35 17897.62 8998.89 13298.58 211
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5198.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4999.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
dcpmvs_298.08 6098.59 1496.56 24399.57 3390.34 33299.15 4998.38 19496.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
EC-MVSNet98.21 5898.11 5698.49 9198.34 17797.26 8999.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 22398.91 2099.50 9599.19 143
EPNet_dtu95.21 21194.95 20295.99 27996.17 33490.45 32998.16 23697.27 32096.77 7593.14 30498.33 18290.34 16898.42 28985.57 36298.81 13999.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sasdasda97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13797.40 26592.26 11799.49 15998.28 5096.28 22799.08 161
canonicalmvs97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13797.40 26592.26 11799.49 15998.28 5096.28 22799.08 161
alignmvs97.56 9197.07 10399.01 5698.66 14998.37 4098.83 12598.06 25996.74 7898.00 11697.65 24490.80 16099.48 16498.37 4696.56 21399.19 143
VNet97.79 7397.40 8798.96 6298.88 12697.55 7598.63 17398.93 5096.74 7899.02 4898.84 12390.33 16999.83 6998.53 3096.66 20999.50 91
plane_prior94.60 22698.44 20096.74 7894.22 252
MGCFI-Net97.62 8597.19 9798.92 6498.66 14998.20 4999.32 2398.38 19496.69 8197.58 14697.42 26492.10 12599.50 15898.28 5096.25 23099.08 161
UA-Net97.96 6497.62 7198.98 5998.86 12997.47 8098.89 10499.08 3296.67 8298.72 7299.54 893.15 10499.81 8194.87 19598.83 13799.65 69
OPM-MVS95.69 18395.33 18196.76 22296.16 33694.63 22198.43 20298.39 19096.64 8395.02 22698.78 13085.15 27999.05 21495.21 18994.20 25396.60 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive97.42 10097.11 10098.34 10598.66 14996.23 13899.22 3799.00 3996.63 8498.04 10999.21 6588.05 22499.35 17896.01 16099.21 11899.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n95.47 19195.13 19096.49 25297.77 23090.41 33099.27 2898.11 24496.58 8599.66 1599.18 7367.00 38999.62 13799.21 1599.40 11099.44 107
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6098.82 8196.58 8599.10 4699.32 4995.39 5499.82 7697.70 8599.63 7099.72 45
Effi-MVS+-dtu96.29 14996.56 12695.51 29997.89 22490.22 33398.80 13698.10 24796.57 8796.45 19396.66 32390.81 15998.91 23895.72 17097.99 17297.40 251
bld_raw_dy_0_6495.72 17894.98 19997.97 13798.29 18495.68 16999.04 6896.34 36296.51 8895.86 21098.44 16678.73 34199.44 16997.58 9293.99 26398.78 189
iter_conf05_1196.28 15195.69 16698.03 13398.29 18495.88 16497.43 30596.24 36596.50 8998.26 10098.30 18678.78 34099.44 16997.58 9299.84 1098.78 189
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5698.80 9396.49 9099.17 4199.35 4495.34 5899.82 7697.72 8199.65 6599.71 49
RE-MVS-def98.34 3599.49 4597.86 6499.11 5698.80 9396.49 9099.17 4199.35 4495.29 6197.72 8199.65 6599.71 49
mvsmamba96.57 13896.32 13697.32 18596.60 31496.43 12799.54 797.98 26496.49 9095.20 22298.64 14690.82 15898.55 27497.97 6393.65 27296.98 265
HQP-NCC97.20 27798.05 24996.43 9394.45 241
ACMP_Plane97.20 27798.05 24996.43 9394.45 241
HQP-MVS95.72 17895.40 17396.69 22797.20 27794.25 24198.05 24998.46 17696.43 9394.45 24197.73 23586.75 24898.96 22995.30 18394.18 25496.86 283
test_fmvs1_n95.90 17095.99 14995.63 29598.67 14888.32 36699.26 2998.22 22196.40 9699.67 1499.26 5773.91 37699.70 11999.02 1899.50 9598.87 180
test_fmvs196.42 14396.67 12395.66 29498.82 13388.53 36298.80 13698.20 22496.39 9799.64 1799.20 6780.35 33299.67 12699.04 1799.57 8198.78 189
casdiffmvspermissive97.63 8497.41 8698.28 10898.33 17996.14 14398.82 12798.32 20396.38 9897.95 11899.21 6591.23 15199.23 18998.12 5698.37 16099.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testdata197.32 31796.34 99
baseline97.64 8397.44 8598.25 11398.35 17296.20 13999.00 7998.32 20396.33 10098.03 11099.17 7491.35 14699.16 19698.10 5798.29 16699.39 112
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 4998.81 8696.24 10199.20 3899.37 3895.30 6099.80 8897.73 8099.67 6099.72 45
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2698.81 8696.24 10198.35 9699.23 6295.46 5199.94 897.42 10599.81 1399.77 27
diffmvspermissive97.58 8997.40 8798.13 12498.32 18295.81 16698.06 24898.37 19696.20 10398.74 6998.89 11891.31 14999.25 18698.16 5598.52 15199.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive97.72 7697.48 8298.44 9798.42 16696.59 11998.92 9898.44 18096.20 10397.76 12899.20 6791.66 13799.23 18998.27 5398.41 15999.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10598.94 5399.17 7495.91 3999.94 897.55 9899.79 2699.78 21
MP-MVScopyleft98.33 5598.01 6199.28 3299.75 398.18 5199.22 3798.79 9896.13 10697.92 12399.23 6294.54 8099.94 896.74 13999.78 3099.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_prior297.80 27996.12 10797.89 12598.69 14195.96 3796.89 12699.60 75
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10898.94 5399.17 7496.06 3299.92 3197.62 8999.78 3099.75 35
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10898.93 5799.19 7295.70 4599.94 897.62 8999.79 2699.78 21
ACMMPcopyleft98.23 5797.95 6399.09 5299.74 797.62 7399.03 7299.41 695.98 11097.60 14599.36 4294.45 8599.93 2597.14 11398.85 13699.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1898.87 6995.96 11198.60 8199.13 8296.05 3399.94 897.77 7899.86 199.77 27
SDMVSNet96.85 12696.42 13198.14 12199.30 6896.38 13199.21 4099.23 2095.92 11295.96 20798.76 13685.88 26499.44 16997.93 6695.59 24298.60 207
sd_testset96.17 15595.76 15897.42 17899.30 6894.34 23798.82 12799.08 3295.92 11295.96 20798.76 13682.83 31599.32 18195.56 17695.59 24298.60 207
iter_conf0596.13 15895.79 15597.15 19598.16 20195.99 14698.88 10997.98 26495.91 11495.58 21498.46 16585.53 27098.59 27197.88 7193.75 26896.86 283
FIs96.51 14096.12 14397.67 16397.13 28497.54 7699.36 1599.22 2395.89 11594.03 26798.35 17791.98 12998.44 28796.40 14792.76 29097.01 263
RRT_MVS95.98 16395.78 15696.56 24396.48 32294.22 24399.57 697.92 27195.89 11593.95 27098.70 14089.27 18898.42 28997.23 11193.02 28597.04 261
EIA-MVS97.75 7497.58 7398.27 10998.38 16996.44 12699.01 7798.60 14195.88 11797.26 15297.53 25594.97 7499.33 18097.38 10799.20 11999.05 165
PS-MVSNAJss96.43 14296.26 13996.92 21495.84 34895.08 19999.16 4898.50 16995.87 11893.84 27798.34 18194.51 8198.61 26896.88 12893.45 27897.06 260
FC-MVSNet-test96.42 14396.05 14597.53 17396.95 29397.27 8599.36 1599.23 2095.83 11993.93 27198.37 17592.00 12898.32 30696.02 15992.72 29197.00 264
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12798.81 8695.80 12099.16 4499.47 2095.37 5699.92 3197.89 7099.75 4299.79 19
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 12198.31 9999.10 8695.46 5199.93 2597.57 9799.81 1399.74 37
test_fmvs293.43 30093.58 28392.95 35596.97 29283.91 38299.19 4497.24 32295.74 12295.20 22298.27 19069.65 38298.72 26096.26 15093.73 26996.24 343
jajsoiax95.45 19495.03 19696.73 22395.42 36294.63 22199.14 5198.52 16295.74 12293.22 29998.36 17683.87 30998.65 26696.95 12194.04 25996.91 275
mvs_tets95.41 19895.00 19796.65 22995.58 35494.42 23299.00 7998.55 15595.73 12493.21 30098.38 17483.45 31398.63 26797.09 11594.00 26196.91 275
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 6098.82 8195.71 12598.73 7199.06 9695.27 6299.93 2597.07 11699.63 7099.72 45
CVMVSNet95.43 19596.04 14693.57 34597.93 22183.62 38398.12 24098.59 14495.68 12696.56 18499.02 9887.51 23597.51 35793.56 24297.44 19199.60 77
VPNet94.99 22494.19 23897.40 18197.16 28296.57 12098.71 15698.97 4295.67 12794.84 22998.24 19480.36 33198.67 26596.46 14487.32 35696.96 267
XVG-OURS96.55 13996.41 13296.99 20598.75 13793.76 25497.50 30298.52 16295.67 12796.83 17199.30 5288.95 20299.53 15395.88 16396.26 22997.69 243
testgi93.06 31292.45 31294.88 32196.43 32589.90 33698.75 14497.54 29895.60 12991.63 33897.91 21874.46 37497.02 36486.10 35893.67 27097.72 242
UniMVSNet (Re)95.78 17695.19 18897.58 17096.99 29197.47 8098.79 14199.18 2595.60 12993.92 27297.04 29691.68 13598.48 28095.80 16787.66 35196.79 288
Fast-Effi-MVS+-dtu95.87 17195.85 15395.91 28497.74 23491.74 30598.69 16298.15 23795.56 13194.92 22797.68 24388.98 20098.79 25593.19 25097.78 18197.20 258
CLD-MVS95.62 18695.34 17996.46 25897.52 25493.75 25697.27 32198.46 17695.53 13294.42 24698.00 21186.21 25898.97 22596.25 15294.37 24896.66 306
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
mvsany_test197.69 7997.70 6997.66 16698.24 18794.18 24497.53 29997.53 29995.52 13399.66 1599.51 1394.30 8999.56 14598.38 4598.62 14699.23 135
OMC-MVS97.55 9297.34 9098.20 11899.33 5995.92 15998.28 21998.59 14495.52 13397.97 11799.10 8693.28 10399.49 15995.09 19098.88 13399.19 143
nrg03096.28 15195.72 16097.96 14096.90 29898.15 5499.39 1298.31 20595.47 13594.42 24698.35 17792.09 12698.69 26197.50 10289.05 33697.04 261
XVG-OURS-SEG-HR96.51 14096.34 13497.02 20498.77 13693.76 25497.79 28198.50 16995.45 13696.94 16599.09 9287.87 22999.55 15296.76 13895.83 24197.74 240
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8299.49 595.43 13799.03 4799.32 4995.56 4899.94 896.80 13699.77 3299.78 21
DU-MVS95.42 19694.76 20997.40 18196.53 31896.97 9998.66 16898.99 4195.43 13793.88 27497.69 24088.57 20898.31 30895.81 16587.25 35796.92 270
IS-MVSNet97.22 10996.88 11098.25 11398.85 13196.36 13399.19 4497.97 26695.39 13997.23 15398.99 10491.11 15498.93 23594.60 20698.59 14899.47 100
thres100view90095.38 19994.70 21297.41 17998.98 11994.92 20898.87 11496.90 34495.38 14096.61 18296.88 31284.29 29699.56 14588.11 34596.29 22497.76 238
thres600view795.49 19094.77 20897.67 16398.98 11995.02 20098.85 11996.90 34495.38 14096.63 18096.90 31184.29 29699.59 14088.65 34296.33 22098.40 218
baseline195.84 17395.12 19298.01 13598.49 16495.98 14798.73 15197.03 33595.37 14296.22 19898.19 19789.96 17499.16 19694.60 20687.48 35298.90 179
tfpn200view995.32 20694.62 21597.43 17798.94 12294.98 20498.68 16396.93 34295.33 14396.55 18696.53 32984.23 30099.56 14588.11 34596.29 22497.76 238
thres40095.38 19994.62 21597.65 16798.94 12294.98 20498.68 16396.93 34295.33 14396.55 18696.53 32984.23 30099.56 14588.11 34596.29 22498.40 218
CNLPA97.45 9797.03 10498.73 7299.05 10897.44 8298.07 24798.53 15995.32 14596.80 17598.53 15793.32 10199.72 11394.31 21799.31 11699.02 167
OurMVSNet-221017-094.21 27694.00 25394.85 32295.60 35389.22 34998.89 10497.43 31195.29 14692.18 33098.52 16082.86 31498.59 27193.46 24391.76 29996.74 293
IU-MVS99.71 1999.23 798.64 13695.28 14799.63 1898.35 4799.81 1399.83 13
WTY-MVS97.37 10596.92 10998.72 7398.86 12996.89 10598.31 21498.71 11695.26 14897.67 13798.56 15692.21 12199.78 10195.89 16296.85 20499.48 98
CHOSEN 280x42097.18 11397.18 9897.20 18998.81 13493.27 27795.78 37599.15 2895.25 14996.79 17698.11 20292.29 11699.07 21398.56 2999.85 599.25 133
ACMM93.85 995.69 18395.38 17796.61 23697.61 24493.84 25298.91 9998.44 18095.25 14994.28 25398.47 16386.04 26399.12 20495.50 17993.95 26496.87 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres20095.25 20894.57 21797.28 18698.81 13494.92 20898.20 22797.11 32795.24 15196.54 18896.22 34084.58 29399.53 15387.93 34996.50 21697.39 252
PAPM_NR97.46 9497.11 10098.50 8999.50 4196.41 13098.63 17398.60 14195.18 15297.06 16198.06 20594.26 9199.57 14293.80 23498.87 13599.52 86
UniMVSNet_NR-MVSNet95.71 18095.15 18997.40 18196.84 30196.97 9998.74 14799.24 1795.16 15393.88 27497.72 23791.68 13598.31 30895.81 16587.25 35796.92 270
VPA-MVSNet95.75 17795.11 19397.69 16097.24 27397.27 8598.94 9499.23 2095.13 15495.51 21597.32 26985.73 26698.91 23897.33 10989.55 32896.89 278
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15599.32 3399.39 3296.22 2699.84 6797.72 8199.73 4999.67 65
test-LLR95.10 21794.87 20695.80 28996.77 30489.70 34096.91 34595.21 37795.11 15694.83 23195.72 35687.71 23198.97 22593.06 25398.50 15398.72 194
test0.0.03 194.08 28993.51 28795.80 28995.53 35692.89 28997.38 30995.97 36895.11 15692.51 32396.66 32387.71 23196.94 36687.03 35393.67 27097.57 248
LCM-MVSNet-Re95.22 21095.32 18294.91 31898.18 19787.85 37298.75 14495.66 37395.11 15688.96 35996.85 31590.26 17197.65 35095.65 17498.44 15699.22 137
ITE_SJBPF95.44 30397.42 26291.32 31297.50 30295.09 15993.59 28398.35 17781.70 31998.88 24489.71 32693.39 28096.12 347
PC_three_145295.08 16099.60 1999.16 7797.86 298.47 28397.52 10199.72 5299.74 37
TranMVSNet+NR-MVSNet95.14 21594.48 22297.11 19996.45 32496.36 13399.03 7299.03 3795.04 16193.58 28497.93 21788.27 21698.03 33094.13 22286.90 36296.95 269
VDD-MVS95.82 17595.23 18697.61 16998.84 13293.98 24898.68 16397.40 31395.02 16297.95 11899.34 4874.37 37599.78 10198.64 2596.80 20599.08 161
testing9194.98 22694.25 23597.20 18997.94 21993.41 27098.00 25597.58 28994.99 16395.45 21696.04 34577.20 35899.42 17294.97 19496.02 23798.78 189
MVSFormer97.57 9097.49 8097.84 14498.07 20695.76 16799.47 998.40 18894.98 16498.79 6598.83 12592.34 11498.41 29796.91 12299.59 7799.34 116
test_djsdf96.00 16295.69 16696.93 21195.72 35095.49 17799.47 998.40 18894.98 16494.58 23697.86 22389.16 19298.41 29796.91 12294.12 25896.88 279
NR-MVSNet94.98 22694.16 24197.44 17696.53 31897.22 9298.74 14798.95 4694.96 16689.25 35897.69 24089.32 18698.18 31894.59 20887.40 35496.92 270
XVG-ACMP-BASELINE94.54 25294.14 24395.75 29296.55 31791.65 30798.11 24298.44 18094.96 16694.22 25797.90 21979.18 33999.11 20694.05 22793.85 26696.48 333
Vis-MVSNet (Re-imp)96.87 12596.55 12797.83 14598.73 13895.46 17899.20 4298.30 21194.96 16696.60 18398.87 12090.05 17298.59 27193.67 23898.60 14799.46 104
testing1195.00 22294.28 23397.16 19497.96 21893.36 27598.09 24597.06 33394.94 16995.33 22096.15 34276.89 36199.40 17395.77 16996.30 22398.72 194
ACMP93.49 1095.34 20494.98 19996.43 26097.67 23993.48 26798.73 15198.44 18094.94 16992.53 32198.53 15784.50 29599.14 20195.48 18094.00 26196.66 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testing9994.83 23494.08 24697.07 20297.94 21993.13 28398.10 24497.17 32594.86 17195.34 21796.00 34876.31 36499.40 17395.08 19195.90 23898.68 199
MVSTER96.06 16095.72 16097.08 20198.23 18995.93 15898.73 15198.27 21494.86 17195.07 22498.09 20388.21 21798.54 27696.59 14093.46 27696.79 288
DPM-MVS97.55 9296.99 10699.23 3899.04 10998.55 2797.17 33098.35 19994.85 17397.93 12298.58 15395.07 7299.71 11892.60 26699.34 11499.43 109
jason97.32 10697.08 10298.06 13297.45 26095.59 17197.87 27297.91 27394.79 17498.55 8398.83 12591.12 15399.23 18997.58 9299.60 7599.34 116
jason: jason.
test_yl97.22 10996.78 11698.54 8598.73 13896.60 11798.45 19798.31 20594.70 17598.02 11298.42 16990.80 16099.70 11996.81 13496.79 20699.34 116
DCV-MVSNet97.22 10996.78 11698.54 8598.73 13896.60 11798.45 19798.31 20594.70 17598.02 11298.42 16990.80 16099.70 11996.81 13496.79 20699.34 116
EU-MVSNet93.66 29694.14 24392.25 36195.96 34483.38 38598.52 18898.12 24194.69 17792.61 31898.13 20187.36 24096.39 37791.82 28990.00 32196.98 265
SCA95.46 19295.13 19096.46 25897.67 23991.29 31397.33 31697.60 28894.68 17896.92 16897.10 28283.97 30698.89 24292.59 26898.32 16599.20 139
LPG-MVS_test95.62 18695.34 17996.47 25597.46 25793.54 26398.99 8298.54 15794.67 17994.36 24998.77 13285.39 27299.11 20695.71 17194.15 25696.76 291
LGP-MVS_train96.47 25597.46 25793.54 26398.54 15794.67 17994.36 24998.77 13285.39 27299.11 20695.71 17194.15 25696.76 291
testing22294.12 28593.03 29997.37 18498.02 21194.66 21897.94 26196.65 35794.63 18195.78 21195.76 35171.49 38098.92 23691.17 30095.88 23998.52 213
HPM-MVScopyleft98.36 5098.10 5799.13 4899.74 797.82 6899.53 898.80 9394.63 18198.61 8098.97 10595.13 7099.77 10697.65 8799.83 1299.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
dmvs_re94.48 26094.18 24095.37 30597.68 23890.11 33598.54 18797.08 32994.56 18394.42 24697.24 27584.25 29897.76 34891.02 30792.83 28998.24 225
BH-RMVSNet95.92 16995.32 18297.69 16098.32 18294.64 22098.19 23097.45 30994.56 18396.03 20398.61 14885.02 28099.12 20490.68 31199.06 12399.30 125
ET-MVSNet_ETH3D94.13 28392.98 30097.58 17098.22 19096.20 13997.31 31895.37 37594.53 18579.56 39197.63 24886.51 25197.53 35696.91 12290.74 31299.02 167
API-MVS97.41 10197.25 9397.91 14198.70 14396.80 10798.82 12798.69 12094.53 18598.11 10398.28 18794.50 8499.57 14294.12 22399.49 9797.37 254
APD-MVScopyleft98.35 5298.00 6299.42 1699.51 3998.72 2198.80 13698.82 8194.52 18799.23 3799.25 6195.54 5099.80 8896.52 14399.77 3299.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
lupinMVS97.44 9897.22 9698.12 12798.07 20695.76 16797.68 28897.76 27994.50 18898.79 6598.61 14892.34 11499.30 18297.58 9299.59 7799.31 122
PVSNet_Blended_VisFu97.70 7897.46 8398.44 9799.27 7895.91 16098.63 17399.16 2794.48 18997.67 13798.88 11992.80 10799.91 3997.11 11499.12 12299.50 91
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6499.44 1198.82 8194.46 19098.94 5399.20 6795.16 6899.74 11197.58 9299.85 599.77 27
UWE-MVS94.30 27093.89 26395.53 29897.83 22688.95 35597.52 30193.25 39394.44 19196.63 18097.07 28978.70 34399.28 18491.99 28597.56 19098.36 221
AdaColmapbinary97.15 11596.70 12098.48 9299.16 9896.69 11398.01 25398.89 5994.44 19196.83 17198.68 14290.69 16399.76 10794.36 21399.29 11798.98 171
9.1498.06 5899.47 4798.71 15698.82 8194.36 19399.16 4499.29 5396.05 3399.81 8197.00 11799.71 54
PVSNet_BlendedMVS96.73 13096.60 12597.12 19899.25 8195.35 18598.26 22299.26 1594.28 19497.94 12097.46 25892.74 10899.81 8196.88 12893.32 28196.20 345
MVS_Test97.28 10797.00 10598.13 12498.33 17995.97 15298.74 14798.07 25494.27 19598.44 9198.07 20492.48 11199.26 18596.43 14698.19 16799.16 149
tttt051796.07 15995.51 17297.78 15098.41 16894.84 21199.28 2694.33 38794.26 19697.64 14298.64 14684.05 30499.47 16695.34 18197.60 18899.03 166
WR-MVS95.15 21494.46 22497.22 18896.67 31296.45 12598.21 22598.81 8694.15 19793.16 30197.69 24087.51 23598.30 31095.29 18588.62 34296.90 277
EPMVS94.99 22494.48 22296.52 25097.22 27591.75 30497.23 32291.66 40094.11 19897.28 15196.81 31785.70 26798.84 24893.04 25597.28 19498.97 172
MP-MVS-pluss98.31 5697.92 6499.49 1299.72 1298.88 1898.43 20298.78 10094.10 19997.69 13699.42 2995.25 6499.92 3198.09 5899.80 2099.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PatchmatchNetpermissive95.71 18095.52 17196.29 27097.58 24690.72 32496.84 35497.52 30094.06 20097.08 15896.96 30689.24 19098.90 24192.03 28498.37 16099.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053096.01 16195.36 17897.97 13798.38 16995.52 17698.88 10994.19 38994.04 20197.64 14298.31 18483.82 31199.46 16795.29 18597.70 18598.93 177
K. test v392.55 31791.91 32094.48 33595.64 35289.24 34899.07 6294.88 38194.04 20186.78 37297.59 25077.64 35597.64 35192.08 28089.43 33196.57 315
D2MVS95.18 21395.08 19495.48 30097.10 28692.07 29898.30 21699.13 3094.02 20392.90 30996.73 32089.48 18198.73 25994.48 21193.60 27595.65 358
mvs_anonymous96.70 13296.53 12997.18 19298.19 19593.78 25398.31 21498.19 22694.01 20494.47 24098.27 19092.08 12798.46 28497.39 10697.91 17599.31 122
GA-MVS94.81 23594.03 24997.14 19697.15 28393.86 25196.76 35797.58 28994.00 20594.76 23497.04 29680.91 32698.48 28091.79 29096.25 23099.09 157
ACMH+92.99 1494.30 27093.77 27295.88 28797.81 22892.04 30098.71 15698.37 19693.99 20690.60 34798.47 16380.86 32899.05 21492.75 26492.40 29396.55 319
sss97.39 10296.98 10798.61 7998.60 15696.61 11698.22 22498.93 5093.97 20798.01 11598.48 16291.98 12999.85 6396.45 14598.15 16899.39 112
HY-MVS93.96 896.82 12896.23 14198.57 8198.46 16597.00 9898.14 23798.21 22293.95 20896.72 17797.99 21291.58 13899.76 10794.51 21096.54 21498.95 175
TAMVS97.02 11996.79 11597.70 15998.06 20995.31 18898.52 18898.31 20593.95 20897.05 16298.61 14893.49 10098.52 27895.33 18297.81 17999.29 127
testing393.19 30992.48 31195.30 30898.07 20692.27 29398.64 17097.17 32593.94 21093.98 26997.04 29667.97 38696.01 38188.40 34397.14 19697.63 245
CP-MVSNet94.94 23194.30 23296.83 21896.72 30995.56 17399.11 5698.95 4693.89 21192.42 32697.90 21987.19 24198.12 32394.32 21688.21 34596.82 287
SixPastTwentyTwo93.34 30392.86 30294.75 32695.67 35189.41 34798.75 14496.67 35593.89 21190.15 35198.25 19380.87 32798.27 31590.90 30890.64 31396.57 315
WR-MVS_H95.05 22094.46 22496.81 22096.86 30095.82 16599.24 3299.24 1793.87 21392.53 32196.84 31690.37 16798.24 31693.24 24887.93 34896.38 338
ab-mvs96.42 14395.71 16398.55 8398.63 15396.75 11097.88 27198.74 10893.84 21496.54 18898.18 19885.34 27599.75 10995.93 16196.35 21999.15 150
USDC93.33 30492.71 30595.21 30996.83 30290.83 32296.91 34597.50 30293.84 21490.72 34598.14 20077.69 35298.82 25289.51 33193.21 28495.97 351
AUN-MVS94.53 25493.73 27696.92 21498.50 16293.52 26698.34 20898.10 24793.83 21695.94 20997.98 21485.59 26999.03 21894.35 21480.94 38298.22 227
mvsany_test388.80 34788.04 34891.09 36589.78 39381.57 39097.83 27895.49 37493.81 21787.53 36893.95 37856.14 39697.43 35894.68 20183.13 37394.26 374
LF4IMVS93.14 31192.79 30494.20 34095.88 34688.67 35997.66 29097.07 33193.81 21791.71 33697.65 24477.96 35198.81 25391.47 29691.92 29895.12 365
IterMVS-SCA-FT94.11 28693.87 26494.85 32297.98 21690.56 32897.18 32898.11 24493.75 21992.58 31997.48 25783.97 30697.41 35992.48 27591.30 30596.58 313
anonymousdsp95.42 19694.91 20396.94 21095.10 36595.90 16199.14 5198.41 18693.75 21993.16 30197.46 25887.50 23798.41 29795.63 17594.03 26096.50 330
MDTV_nov1_ep1395.40 17397.48 25588.34 36596.85 35397.29 31893.74 22197.48 14997.26 27289.18 19199.05 21491.92 28897.43 192
ETVMVS94.50 25793.44 29097.68 16298.18 19795.35 18598.19 23097.11 32793.73 22296.40 19495.39 36174.53 37298.84 24891.10 30196.31 22298.84 183
BH-untuned95.95 16595.72 16096.65 22998.55 15992.26 29498.23 22397.79 27893.73 22294.62 23598.01 21088.97 20199.00 22493.04 25598.51 15298.68 199
PatchMatch-RL96.59 13596.03 14798.27 10999.31 6496.51 12397.91 26499.06 3493.72 22496.92 16898.06 20588.50 21399.65 12991.77 29199.00 12898.66 203
Effi-MVS+97.12 11696.69 12198.39 10398.19 19596.72 11297.37 31198.43 18493.71 22597.65 14198.02 20892.20 12299.25 18696.87 13197.79 18099.19 143
IterMVS-LS95.46 19295.21 18796.22 27298.12 20393.72 25998.32 21398.13 24093.71 22594.26 25497.31 27092.24 11998.10 32494.63 20390.12 31996.84 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 16495.83 15496.36 26497.93 22193.70 26098.12 24098.27 21493.70 22795.07 22499.02 9892.23 12098.54 27694.68 20193.46 27696.84 285
UnsupCasMVSNet_eth90.99 33289.92 33594.19 34194.08 37689.83 33797.13 33498.67 12893.69 22885.83 37896.19 34175.15 36996.74 36989.14 33679.41 38796.00 350
PVSNet91.96 1896.35 14796.15 14296.96 20999.17 9492.05 29996.08 36898.68 12393.69 22897.75 13097.80 23288.86 20399.69 12494.26 21999.01 12799.15 150
PS-CasMVS94.67 24493.99 25596.71 22496.68 31195.26 18999.13 5499.03 3793.68 23092.33 32797.95 21685.35 27498.10 32493.59 24088.16 34796.79 288
IterMVS94.09 28893.85 26694.80 32597.99 21490.35 33197.18 32898.12 24193.68 23092.46 32597.34 26784.05 30497.41 35992.51 27391.33 30496.62 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tt080594.54 25293.85 26696.63 23397.98 21693.06 28798.77 14397.84 27693.67 23293.80 27998.04 20776.88 36298.96 22994.79 20092.86 28897.86 237
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9198.80 9393.67 23299.37 3199.52 1196.52 2299.89 4798.06 5999.81 1399.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FMVSNet394.97 22894.26 23497.11 19998.18 19796.62 11498.56 18598.26 21893.67 23294.09 26397.10 28284.25 29898.01 33192.08 28092.14 29496.70 300
CDS-MVSNet96.99 12096.69 12197.90 14298.05 21095.98 14798.20 22798.33 20293.67 23296.95 16498.49 16193.54 9998.42 28995.24 18897.74 18399.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EPP-MVSNet97.46 9497.28 9297.99 13698.64 15295.38 18299.33 2298.31 20593.61 23697.19 15499.07 9594.05 9499.23 18996.89 12698.43 15899.37 114
CHOSEN 1792x268897.12 11696.80 11398.08 13099.30 6894.56 22898.05 24999.71 193.57 23797.09 15798.91 11788.17 21899.89 4796.87 13199.56 8799.81 17
PEN-MVS94.42 26493.73 27696.49 25296.28 33094.84 21199.17 4799.00 3993.51 23892.23 32997.83 22986.10 26097.90 34092.55 27186.92 36196.74 293
WB-MVSnew94.19 27894.04 24894.66 32996.82 30392.14 29597.86 27395.96 36993.50 23995.64 21396.77 31988.06 22397.99 33484.87 36796.86 20393.85 384
tpmrst95.63 18595.69 16695.44 30397.54 25188.54 36196.97 34097.56 29293.50 23997.52 14896.93 31089.49 18099.16 19695.25 18796.42 21898.64 205
131496.25 15495.73 15997.79 14997.13 28495.55 17598.19 23098.59 14493.47 24192.03 33397.82 23091.33 14799.49 15994.62 20598.44 15698.32 224
baseline295.11 21694.52 22096.87 21696.65 31393.56 26298.27 22194.10 39193.45 24292.02 33497.43 26287.45 23999.19 19493.88 23197.41 19397.87 236
ACMH92.88 1694.55 25193.95 25796.34 26697.63 24393.26 27898.81 13598.49 17493.43 24389.74 35398.53 15781.91 31899.08 21293.69 23593.30 28296.70 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LFMVS95.86 17294.98 19998.47 9398.87 12896.32 13598.84 12396.02 36693.40 24498.62 7999.20 6774.99 37099.63 13497.72 8197.20 19599.46 104
test20.0390.89 33390.38 33192.43 35793.48 38188.14 36998.33 20997.56 29293.40 24487.96 36696.71 32280.69 33094.13 39279.15 38786.17 36695.01 370
PAPR96.84 12796.24 14098.65 7798.72 14296.92 10297.36 31398.57 15193.33 24696.67 17897.57 25294.30 8999.56 14591.05 30698.59 14899.47 100
IB-MVS91.98 1793.27 30591.97 31897.19 19197.47 25693.41 27097.09 33595.99 36793.32 24792.47 32495.73 35478.06 35099.53 15394.59 20882.98 37498.62 206
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PHI-MVS98.34 5398.06 5899.18 4299.15 10098.12 5799.04 6899.09 3193.32 24798.83 6499.10 8696.54 2199.83 6997.70 8599.76 3899.59 79
test_vis1_rt91.29 32790.65 32793.19 35397.45 26086.25 37898.57 18490.90 40393.30 24986.94 37193.59 38062.07 39399.11 20697.48 10395.58 24494.22 376
XXY-MVS95.20 21294.45 22697.46 17496.75 30796.56 12198.86 11798.65 13593.30 24993.27 29898.27 19084.85 28498.87 24594.82 19891.26 30796.96 267
原ACMM198.65 7799.32 6296.62 11498.67 12893.27 25197.81 12698.97 10595.18 6799.83 6993.84 23299.46 10399.50 91
FA-MVS(test-final)96.41 14695.94 15097.82 14798.21 19195.20 19397.80 27997.58 28993.21 25297.36 15097.70 23889.47 18299.56 14594.12 22397.99 17298.71 197
ZD-MVS99.46 4998.70 2398.79 9893.21 25298.67 7398.97 10595.70 4599.83 6996.07 15499.58 80
TESTMET0.1,194.18 28193.69 27995.63 29596.92 29589.12 35096.91 34594.78 38293.17 25494.88 22896.45 33278.52 34498.92 23693.09 25298.50 15398.85 181
Syy-MVS92.55 31792.61 30892.38 35897.39 26683.41 38497.91 26497.46 30593.16 25593.42 29395.37 36284.75 28796.12 37977.00 39296.99 19997.60 246
myMVS_eth3d92.73 31592.01 31794.89 32097.39 26690.94 31897.91 26497.46 30593.16 25593.42 29395.37 36268.09 38596.12 37988.34 34496.99 19997.60 246
PVSNet_Blended97.38 10397.12 9998.14 12199.25 8195.35 18597.28 32099.26 1593.13 25797.94 12098.21 19592.74 10899.81 8196.88 12899.40 11099.27 129
GeoE96.58 13796.07 14498.10 12998.35 17295.89 16299.34 1898.12 24193.12 25896.09 20198.87 12089.71 17898.97 22592.95 25898.08 17199.43 109
dmvs_testset87.64 35188.93 34483.79 37695.25 36363.36 40797.20 32591.17 40193.07 25985.64 38095.98 34985.30 27891.52 39969.42 39887.33 35596.49 331
DTE-MVSNet93.98 29393.26 29696.14 27496.06 33994.39 23499.20 4298.86 7593.06 26091.78 33597.81 23185.87 26597.58 35490.53 31286.17 36696.46 335
CSCG97.85 7197.74 6898.20 11899.67 2595.16 19499.22 3799.32 1193.04 26197.02 16398.92 11695.36 5799.91 3997.43 10499.64 6999.52 86
F-COLMAP97.09 11896.80 11397.97 13799.45 5294.95 20798.55 18698.62 14093.02 26296.17 20098.58 15394.01 9599.81 8193.95 22898.90 13199.14 152
train_agg97.97 6397.52 7999.33 2699.31 6498.50 2997.92 26298.73 11192.98 26397.74 13198.68 14296.20 2899.80 8896.59 14099.57 8199.68 61
test_899.29 7398.44 3197.89 27098.72 11392.98 26397.70 13598.66 14596.20 2899.80 88
thisisatest051595.61 18994.89 20597.76 15398.15 20295.15 19696.77 35694.41 38592.95 26597.18 15597.43 26284.78 28699.45 16894.63 20397.73 18498.68 199
1112_ss96.63 13396.00 14898.50 8998.56 15796.37 13298.18 23598.10 24792.92 26694.84 22998.43 16792.14 12399.58 14194.35 21496.51 21599.56 85
test-mter94.08 28993.51 28795.80 28996.77 30489.70 34096.91 34595.21 37792.89 26794.83 23195.72 35677.69 35298.97 22593.06 25398.50 15398.72 194
BH-w/o95.38 19995.08 19496.26 27198.34 17791.79 30297.70 28797.43 31192.87 26894.24 25697.22 27788.66 20698.84 24891.55 29597.70 18598.16 230
PMMVS96.60 13496.33 13597.41 17997.90 22393.93 24997.35 31498.41 18692.84 26997.76 12897.45 26091.10 15599.20 19396.26 15097.91 17599.11 155
LS3D97.16 11496.66 12498.68 7598.53 16197.19 9398.93 9698.90 5792.83 27095.99 20599.37 3892.12 12499.87 5893.67 23899.57 8198.97 172
test_fmvs387.17 35287.06 35587.50 37091.21 38975.66 39499.05 6596.61 35892.79 27188.85 36292.78 38543.72 40093.49 39393.95 22884.56 37093.34 387
v2v48294.69 23994.03 24996.65 22996.17 33494.79 21698.67 16698.08 25292.72 27294.00 26897.16 28087.69 23498.45 28592.91 25988.87 34096.72 296
eth_miper_zixun_eth94.68 24194.41 22995.47 30197.64 24291.71 30696.73 35998.07 25492.71 27393.64 28297.21 27890.54 16598.17 31993.38 24489.76 32396.54 320
TEST999.31 6498.50 2997.92 26298.73 11192.63 27497.74 13198.68 14296.20 2899.80 88
tpm94.13 28393.80 26995.12 31296.50 32087.91 37197.44 30395.89 37292.62 27596.37 19696.30 33584.13 30398.30 31093.24 24891.66 30299.14 152
DP-MVS Recon97.86 6997.46 8399.06 5499.53 3698.35 4298.33 20998.89 5992.62 27598.05 10798.94 11395.34 5899.65 12996.04 15899.42 10699.19 143
v14894.29 27293.76 27495.91 28496.10 33792.93 28898.58 17997.97 26692.59 27793.47 29196.95 30888.53 21298.32 30692.56 27087.06 35996.49 331
CDPH-MVS97.94 6697.49 8099.28 3299.47 4798.44 3197.91 26498.67 12892.57 27898.77 6798.85 12295.93 3899.72 11395.56 17699.69 5799.68 61
CR-MVSNet94.76 23894.15 24296.59 23997.00 28993.43 26894.96 38197.56 29292.46 27996.93 16696.24 33688.15 21997.88 34487.38 35196.65 21098.46 216
GBi-Net94.49 25893.80 26996.56 24398.21 19195.00 20198.82 12798.18 22992.46 27994.09 26397.07 28981.16 32397.95 33692.08 28092.14 29496.72 296
test194.49 25893.80 26996.56 24398.21 19195.00 20198.82 12798.18 22992.46 27994.09 26397.07 28981.16 32397.95 33692.08 28092.14 29496.72 296
FMVSNet294.47 26193.61 28297.04 20398.21 19196.43 12798.79 14198.27 21492.46 27993.50 29097.09 28681.16 32398.00 33391.09 30291.93 29796.70 300
cl2294.68 24194.19 23896.13 27598.11 20493.60 26196.94 34298.31 20592.43 28393.32 29796.87 31486.51 25198.28 31494.10 22591.16 30896.51 328
PLCcopyleft95.07 497.20 11296.78 11698.44 9799.29 7396.31 13798.14 23798.76 10492.41 28496.39 19598.31 18494.92 7699.78 10194.06 22698.77 14099.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS96.91 12396.40 13398.45 9598.69 14696.90 10398.66 16898.68 12392.40 28597.07 16097.96 21591.54 14299.75 10993.68 23698.92 13098.69 198
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CPTT-MVS97.72 7697.32 9198.92 6499.64 2897.10 9699.12 5598.81 8692.34 28698.09 10599.08 9493.01 10599.92 3196.06 15799.77 3299.75 35
HyFIR lowres test96.90 12496.49 13098.14 12199.33 5995.56 17397.38 30999.65 292.34 28697.61 14498.20 19689.29 18799.10 21096.97 11997.60 18899.77 27
pm-mvs193.94 29493.06 29896.59 23996.49 32195.16 19498.95 9198.03 26192.32 28891.08 34297.84 22684.54 29498.41 29792.16 27886.13 36896.19 346
V4294.78 23794.14 24396.70 22696.33 32995.22 19298.97 8598.09 25192.32 28894.31 25297.06 29388.39 21498.55 27492.90 26088.87 34096.34 339
TR-MVS94.94 23194.20 23797.17 19397.75 23194.14 24597.59 29697.02 33792.28 29095.75 21297.64 24683.88 30898.96 22989.77 32496.15 23498.40 218
miper_ehance_all_eth95.01 22194.69 21395.97 28197.70 23793.31 27697.02 33898.07 25492.23 29193.51 28996.96 30691.85 13298.15 32093.68 23691.16 30896.44 336
c3_l94.79 23694.43 22895.89 28697.75 23193.12 28597.16 33298.03 26192.23 29193.46 29297.05 29591.39 14498.01 33193.58 24189.21 33496.53 322
MS-PatchMatch93.84 29593.63 28194.46 33796.18 33389.45 34597.76 28298.27 21492.23 29192.13 33197.49 25679.50 33698.69 26189.75 32599.38 11295.25 362
miper_enhance_ethall95.10 21794.75 21096.12 27697.53 25393.73 25896.61 36298.08 25292.20 29493.89 27396.65 32592.44 11298.30 31094.21 22091.16 30896.34 339
Test_1112_low_res96.34 14895.66 16998.36 10498.56 15795.94 15597.71 28698.07 25492.10 29594.79 23397.29 27191.75 13499.56 14594.17 22196.50 21699.58 83
PVSNet_088.72 1991.28 32890.03 33495.00 31697.99 21487.29 37594.84 38498.50 16992.06 29689.86 35295.19 36479.81 33599.39 17692.27 27769.79 39898.33 223
v7n94.19 27893.43 29196.47 25595.90 34594.38 23599.26 2998.34 20191.99 29792.76 31397.13 28188.31 21598.52 27889.48 33287.70 35096.52 325
our_test_393.65 29893.30 29494.69 32795.45 36089.68 34296.91 34597.65 28491.97 29891.66 33796.88 31289.67 17997.93 33988.02 34891.49 30396.48 333
v894.47 26193.77 27296.57 24296.36 32794.83 21399.05 6598.19 22691.92 29993.16 30196.97 30488.82 20598.48 28091.69 29387.79 34996.39 337
testdata98.26 11299.20 9295.36 18398.68 12391.89 30098.60 8199.10 8694.44 8699.82 7694.27 21899.44 10499.58 83
Patchmatch-RL test91.49 32590.85 32693.41 34791.37 38884.40 38092.81 39395.93 37191.87 30187.25 36994.87 36888.99 19796.53 37592.54 27282.00 37699.30 125
v114494.59 24993.92 25896.60 23896.21 33194.78 21798.59 17798.14 23991.86 30294.21 25897.02 29987.97 22598.41 29791.72 29289.57 32696.61 310
DIV-MVS_self_test94.52 25594.03 24995.99 27997.57 25093.38 27397.05 33697.94 26991.74 30392.81 31197.10 28289.12 19398.07 32892.60 26690.30 31696.53 322
Fast-Effi-MVS+96.28 15195.70 16598.03 13398.29 18495.97 15298.58 17998.25 21991.74 30395.29 22197.23 27691.03 15799.15 19992.90 26097.96 17498.97 172
cl____94.51 25694.01 25296.02 27897.58 24693.40 27297.05 33697.96 26891.73 30592.76 31397.08 28889.06 19698.13 32292.61 26590.29 31796.52 325
LTVRE_ROB92.95 1594.60 24793.90 26196.68 22897.41 26594.42 23298.52 18898.59 14491.69 30691.21 34098.35 17784.87 28399.04 21791.06 30493.44 27996.60 311
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance94.33 26894.07 24795.11 31397.75 23190.97 31797.22 32398.03 26191.67 30792.76 31396.97 30490.03 17397.78 34792.51 27389.64 32596.56 317
MVP-Stereo94.28 27493.92 25895.35 30694.95 36792.60 29197.97 25897.65 28491.61 30890.68 34697.09 28686.32 25798.42 28989.70 32799.34 11495.02 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119294.32 26993.58 28396.53 24996.10 33794.45 23098.50 19398.17 23491.54 30994.19 25997.06 29386.95 24698.43 28890.14 31689.57 32696.70 300
TDRefinement91.06 33189.68 33695.21 30985.35 40391.49 31098.51 19297.07 33191.47 31088.83 36397.84 22677.31 35699.09 21192.79 26377.98 39195.04 368
v14419294.39 26693.70 27896.48 25496.06 33994.35 23698.58 17998.16 23691.45 31194.33 25197.02 29987.50 23798.45 28591.08 30389.11 33596.63 308
Baseline_NR-MVSNet94.35 26793.81 26895.96 28296.20 33294.05 24798.61 17696.67 35591.44 31293.85 27697.60 24988.57 20898.14 32194.39 21286.93 36095.68 357
无先验97.58 29798.72 11391.38 31399.87 5893.36 24699.60 77
AllTest95.24 20994.65 21496.99 20599.25 8193.21 28198.59 17798.18 22991.36 31493.52 28798.77 13284.67 29099.72 11389.70 32797.87 17798.02 233
TestCases96.99 20599.25 8193.21 28198.18 22991.36 31493.52 28798.77 13284.67 29099.72 11389.70 32797.87 17798.02 233
v1094.29 27293.55 28596.51 25196.39 32694.80 21598.99 8298.19 22691.35 31693.02 30796.99 30288.09 22198.41 29790.50 31388.41 34496.33 341
v192192094.20 27793.47 28996.40 26395.98 34294.08 24698.52 18898.15 23791.33 31794.25 25597.20 27986.41 25598.42 28990.04 32189.39 33296.69 305
MSDG95.93 16895.30 18497.83 14598.90 12495.36 18396.83 35598.37 19691.32 31894.43 24598.73 13890.27 17099.60 13990.05 32098.82 13898.52 213
旧先验297.57 29891.30 31998.67 7399.80 8895.70 173
tpmvs94.60 24794.36 23195.33 30797.46 25788.60 36096.88 35197.68 28291.29 32093.80 27996.42 33388.58 20799.24 18891.06 30496.04 23698.17 229
PM-MVS87.77 35086.55 35691.40 36491.03 39183.36 38696.92 34395.18 37991.28 32186.48 37693.42 38153.27 39796.74 36989.43 33381.97 37794.11 378
MIMVSNet93.26 30692.21 31596.41 26197.73 23593.13 28395.65 37697.03 33591.27 32294.04 26696.06 34475.33 36897.19 36286.56 35596.23 23298.92 178
PAPM94.95 22994.00 25397.78 15097.04 28895.65 17096.03 37198.25 21991.23 32394.19 25997.80 23291.27 15098.86 24782.61 37897.61 18798.84 183
dp94.15 28293.90 26194.90 31997.31 27086.82 37796.97 34097.19 32491.22 32496.02 20496.61 32885.51 27199.02 22190.00 32294.30 24998.85 181
UniMVSNet_ETH3D94.24 27593.33 29396.97 20897.19 28093.38 27398.74 14798.57 15191.21 32593.81 27898.58 15372.85 37998.77 25795.05 19293.93 26598.77 193
v124094.06 29193.29 29596.34 26696.03 34193.90 25098.44 20098.17 23491.18 32694.13 26297.01 30186.05 26198.42 28989.13 33789.50 33096.70 300
tfpnnormal93.66 29692.70 30696.55 24896.94 29495.94 15598.97 8599.19 2491.04 32791.38 33997.34 26784.94 28298.61 26885.45 36489.02 33895.11 366
MDTV_nov1_ep13_2view84.26 38196.89 35090.97 32897.90 12489.89 17593.91 23099.18 148
FE-MVS95.62 18694.90 20497.78 15098.37 17194.92 20897.17 33097.38 31590.95 32997.73 13397.70 23885.32 27799.63 13491.18 29998.33 16398.79 186
TransMVSNet (Re)92.67 31691.51 32296.15 27396.58 31694.65 21998.90 10096.73 35190.86 33089.46 35797.86 22385.62 26898.09 32686.45 35681.12 38095.71 356
Anonymous20240521195.28 20794.49 22197.67 16399.00 11493.75 25698.70 16097.04 33490.66 33196.49 19098.80 12878.13 34999.83 6996.21 15395.36 24699.44 107
ppachtmachnet_test93.22 30792.63 30794.97 31795.45 36090.84 32196.88 35197.88 27490.60 33292.08 33297.26 27288.08 22297.86 34585.12 36690.33 31596.22 344
CL-MVSNet_self_test90.11 33889.14 34193.02 35491.86 38788.23 36896.51 36598.07 25490.49 33390.49 34894.41 37284.75 28795.34 38680.79 38274.95 39595.50 359
Anonymous2023120691.66 32491.10 32493.33 34994.02 37987.35 37498.58 17997.26 32190.48 33490.16 35096.31 33483.83 31096.53 37579.36 38689.90 32296.12 347
VDDNet95.36 20294.53 21997.86 14398.10 20595.13 19798.85 11997.75 28090.46 33598.36 9499.39 3273.27 37899.64 13197.98 6296.58 21298.81 185
TinyColmap92.31 32091.53 32194.65 33096.92 29589.75 33896.92 34396.68 35490.45 33689.62 35497.85 22576.06 36698.81 25386.74 35492.51 29295.41 360
pmmvs494.69 23993.99 25596.81 22095.74 34995.94 15597.40 30797.67 28390.42 33793.37 29597.59 25089.08 19598.20 31792.97 25791.67 30196.30 342
FMVSNet193.19 30992.07 31696.56 24397.54 25195.00 20198.82 12798.18 22990.38 33892.27 32897.07 28973.68 37797.95 33689.36 33491.30 30596.72 296
KD-MVS_self_test90.38 33689.38 33993.40 34892.85 38488.94 35697.95 25997.94 26990.35 33990.25 34993.96 37779.82 33495.94 38284.62 37276.69 39395.33 361
RPSCF94.87 23395.40 17393.26 35198.89 12582.06 38998.33 20998.06 25990.30 34096.56 18499.26 5787.09 24299.49 15993.82 23396.32 22198.24 225
ADS-MVSNet294.58 25094.40 23095.11 31398.00 21288.74 35896.04 36997.30 31790.15 34196.47 19196.64 32687.89 22797.56 35590.08 31897.06 19799.02 167
ADS-MVSNet95.00 22294.45 22696.63 23398.00 21291.91 30196.04 36997.74 28190.15 34196.47 19196.64 32687.89 22798.96 22990.08 31897.06 19799.02 167
新几何199.16 4599.34 5798.01 6198.69 12090.06 34398.13 10298.95 11294.60 7999.89 4791.97 28799.47 10099.59 79
OpenMVScopyleft93.04 1395.83 17495.00 19798.32 10697.18 28197.32 8399.21 4098.97 4289.96 34491.14 34199.05 9786.64 25099.92 3193.38 24499.47 10097.73 241
COLMAP_ROBcopyleft93.27 1295.33 20594.87 20696.71 22499.29 7393.24 28098.58 17998.11 24489.92 34593.57 28599.10 8686.37 25699.79 9890.78 30998.10 17097.09 259
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
KD-MVS_2432*160089.61 34387.96 35094.54 33294.06 37791.59 30895.59 37797.63 28689.87 34688.95 36094.38 37478.28 34796.82 36784.83 36868.05 39995.21 363
miper_refine_blended89.61 34387.96 35094.54 33294.06 37791.59 30895.59 37797.63 28689.87 34688.95 36094.38 37478.28 34796.82 36784.83 36868.05 39995.21 363
QAPM96.29 14995.40 17398.96 6297.85 22597.60 7499.23 3398.93 5089.76 34893.11 30599.02 9889.11 19499.93 2591.99 28599.62 7299.34 116
gm-plane-assit95.88 34687.47 37389.74 34996.94 30999.19 19493.32 247
pmmvs593.65 29892.97 30195.68 29395.49 35792.37 29298.20 22797.28 31989.66 35092.58 31997.26 27282.14 31798.09 32693.18 25190.95 31196.58 313
CostFormer94.95 22994.73 21195.60 29797.28 27189.06 35197.53 29996.89 34689.66 35096.82 17396.72 32186.05 26198.95 23495.53 17896.13 23598.79 186
WB-MVS84.86 35785.33 35883.46 37789.48 39469.56 40298.19 23096.42 36189.55 35281.79 38794.67 37084.80 28590.12 40052.44 40380.64 38490.69 391
new-patchmatchnet88.50 34887.45 35391.67 36390.31 39285.89 37997.16 33297.33 31689.47 35383.63 38592.77 38676.38 36395.06 38982.70 37777.29 39294.06 381
Patchmatch-test94.42 26493.68 28096.63 23397.60 24591.76 30394.83 38597.49 30489.45 35494.14 26197.10 28288.99 19798.83 25185.37 36598.13 16999.29 127
DP-MVS96.59 13595.93 15198.57 8199.34 5796.19 14198.70 16098.39 19089.45 35494.52 23899.35 4491.85 13299.85 6392.89 26298.88 13399.68 61
test_f86.07 35685.39 35788.10 36989.28 39575.57 39597.73 28596.33 36389.41 35685.35 38191.56 39143.31 40295.53 38491.32 29884.23 37293.21 388
FMVSNet591.81 32290.92 32594.49 33497.21 27692.09 29798.00 25597.55 29789.31 35790.86 34495.61 35974.48 37395.32 38785.57 36289.70 32496.07 349
EG-PatchMatch MVS91.13 33090.12 33394.17 34294.73 37289.00 35398.13 23997.81 27789.22 35885.32 38296.46 33167.71 38798.42 28987.89 35093.82 26795.08 367
DSMNet-mixed92.52 31992.58 30992.33 35994.15 37582.65 38798.30 21694.26 38889.08 35992.65 31795.73 35485.01 28195.76 38386.24 35797.76 18298.59 209
SSC-MVS84.27 35884.71 36182.96 38189.19 39668.83 40398.08 24696.30 36489.04 36081.37 38994.47 37184.60 29289.89 40149.80 40579.52 38690.15 392
pmmvs-eth3d90.36 33789.05 34294.32 33991.10 39092.12 29697.63 29596.95 34188.86 36184.91 38393.13 38478.32 34696.74 36988.70 34081.81 37894.09 379
test22299.23 8897.17 9497.40 30798.66 13188.68 36298.05 10798.96 11094.14 9399.53 9299.61 75
Anonymous2024052191.18 32990.44 33093.42 34693.70 38088.47 36398.94 9497.56 29288.46 36389.56 35695.08 36777.15 36096.97 36583.92 37389.55 32894.82 371
MDA-MVSNet-bldmvs89.97 34088.35 34694.83 32495.21 36491.34 31197.64 29297.51 30188.36 36471.17 39996.13 34379.22 33896.63 37483.65 37486.27 36596.52 325
MIMVSNet189.67 34288.28 34793.82 34392.81 38591.08 31698.01 25397.45 30987.95 36587.90 36795.87 35067.63 38894.56 39178.73 38988.18 34695.83 354
MDA-MVSNet_test_wron90.71 33489.38 33994.68 32894.83 36990.78 32397.19 32797.46 30587.60 36672.41 39895.72 35686.51 25196.71 37285.92 36086.80 36396.56 317
YYNet190.70 33589.39 33894.62 33194.79 37190.65 32697.20 32597.46 30587.54 36772.54 39795.74 35286.51 25196.66 37386.00 35986.76 36496.54 320
Patchmtry93.22 30792.35 31395.84 28896.77 30493.09 28694.66 38897.56 29287.37 36892.90 30996.24 33688.15 21997.90 34087.37 35290.10 32096.53 322
tpm294.19 27893.76 27495.46 30297.23 27489.04 35297.31 31896.85 35087.08 36996.21 19996.79 31883.75 31298.74 25892.43 27696.23 23298.59 209
PatchT93.06 31291.97 31896.35 26596.69 31092.67 29094.48 38997.08 32986.62 37097.08 15892.23 38987.94 22697.90 34078.89 38896.69 20898.49 215
TAPA-MVS93.98 795.35 20394.56 21897.74 15599.13 10194.83 21398.33 20998.64 13686.62 37096.29 19798.61 14894.00 9699.29 18380.00 38499.41 10799.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous2023121194.10 28793.26 29696.61 23699.11 10494.28 23899.01 7798.88 6286.43 37292.81 31197.57 25281.66 32098.68 26494.83 19789.02 33896.88 279
new_pmnet90.06 33989.00 34393.22 35294.18 37488.32 36696.42 36796.89 34686.19 37385.67 37993.62 37977.18 35997.10 36381.61 38089.29 33394.23 375
pmmvs691.77 32390.63 32895.17 31194.69 37391.24 31498.67 16697.92 27186.14 37489.62 35497.56 25475.79 36798.34 30490.75 31084.56 37095.94 352
test_040291.32 32690.27 33294.48 33596.60 31491.12 31598.50 19397.22 32386.10 37588.30 36596.98 30377.65 35497.99 33478.13 39092.94 28794.34 373
JIA-IIPM93.35 30292.49 31095.92 28396.48 32290.65 32695.01 38096.96 34085.93 37696.08 20287.33 39587.70 23398.78 25691.35 29795.58 24498.34 222
N_pmnet87.12 35487.77 35285.17 37495.46 35961.92 40897.37 31170.66 41385.83 37788.73 36496.04 34585.33 27697.76 34880.02 38390.48 31495.84 353
Anonymous2024052995.10 21794.22 23697.75 15499.01 11394.26 24098.87 11498.83 8085.79 37896.64 17998.97 10578.73 34199.85 6396.27 14994.89 24799.12 154
cascas94.63 24693.86 26596.93 21196.91 29794.27 23996.00 37298.51 16485.55 37994.54 23796.23 33884.20 30298.87 24595.80 16796.98 20297.66 244
gg-mvs-nofinetune92.21 32190.58 32997.13 19796.75 30795.09 19895.85 37389.40 40585.43 38094.50 23981.98 39880.80 32998.40 30392.16 27898.33 16397.88 235
test_vis3_rt79.22 35977.40 36584.67 37586.44 40174.85 39797.66 29081.43 41084.98 38167.12 40181.91 39928.09 41097.60 35288.96 33880.04 38581.55 399
114514_t96.93 12296.27 13898.92 6499.50 4197.63 7298.85 11998.90 5784.80 38297.77 12799.11 8492.84 10699.66 12894.85 19699.77 3299.47 100
PCF-MVS93.45 1194.68 24193.43 29198.42 10198.62 15496.77 10995.48 37998.20 22484.63 38393.34 29698.32 18388.55 21199.81 8184.80 37098.96 12998.68 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UnsupCasMVSNet_bld87.17 35285.12 35993.31 35091.94 38688.77 35794.92 38398.30 21184.30 38482.30 38690.04 39263.96 39297.25 36185.85 36174.47 39793.93 383
APD_test188.22 34988.01 34988.86 36895.98 34274.66 39897.21 32496.44 36083.96 38586.66 37497.90 21960.95 39497.84 34682.73 37690.23 31894.09 379
ANet_high69.08 36865.37 37280.22 38365.99 41171.96 40190.91 39790.09 40482.62 38649.93 40678.39 40129.36 40981.75 40462.49 40138.52 40586.95 398
RPMNet92.81 31491.34 32397.24 18797.00 28993.43 26894.96 38198.80 9382.27 38796.93 16692.12 39086.98 24599.82 7676.32 39396.65 21098.46 216
tpm cat193.36 30192.80 30395.07 31597.58 24687.97 37096.76 35797.86 27582.17 38893.53 28696.04 34586.13 25999.13 20289.24 33595.87 24098.10 231
CMPMVSbinary66.06 2189.70 34189.67 33789.78 36693.19 38276.56 39297.00 33998.35 19980.97 38981.57 38897.75 23474.75 37198.61 26889.85 32393.63 27394.17 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs386.67 35584.86 36092.11 36288.16 39787.19 37696.63 36194.75 38379.88 39087.22 37092.75 38766.56 39095.20 38881.24 38176.56 39493.96 382
OpenMVS_ROBcopyleft86.42 2089.00 34687.43 35493.69 34493.08 38389.42 34697.91 26496.89 34678.58 39185.86 37794.69 36969.48 38398.29 31377.13 39193.29 28393.36 386
MVS94.67 24493.54 28698.08 13096.88 29996.56 12198.19 23098.50 16978.05 39292.69 31698.02 20891.07 15699.63 13490.09 31798.36 16298.04 232
DeepMVS_CXcopyleft86.78 37197.09 28772.30 39995.17 38075.92 39384.34 38495.19 36470.58 38195.35 38579.98 38589.04 33792.68 389
MVS-HIRNet89.46 34588.40 34592.64 35697.58 24682.15 38894.16 39293.05 39775.73 39490.90 34382.52 39779.42 33798.33 30583.53 37598.68 14197.43 249
PMMVS277.95 36575.44 36985.46 37382.54 40474.95 39694.23 39193.08 39672.80 39574.68 39387.38 39436.36 40591.56 39873.95 39463.94 40189.87 393
testf179.02 36177.70 36382.99 37988.10 39866.90 40494.67 38693.11 39471.08 39674.02 39493.41 38234.15 40693.25 39472.25 39678.50 38988.82 394
APD_test279.02 36177.70 36382.99 37988.10 39866.90 40494.67 38693.11 39471.08 39674.02 39493.41 38234.15 40693.25 39472.25 39678.50 38988.82 394
FPMVS77.62 36677.14 36679.05 38479.25 40760.97 40995.79 37495.94 37065.96 39867.93 40094.40 37337.73 40488.88 40368.83 39988.46 34387.29 396
Gipumacopyleft78.40 36476.75 36783.38 37895.54 35580.43 39179.42 40297.40 31364.67 39973.46 39680.82 40045.65 39993.14 39666.32 40087.43 35376.56 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet78.70 36376.24 36886.08 37277.26 40971.99 40094.34 39096.72 35261.62 40076.53 39289.33 39333.91 40892.78 39781.85 37974.60 39693.46 385
PMVScopyleft61.03 2365.95 37063.57 37473.09 38757.90 41251.22 41485.05 40093.93 39254.45 40144.32 40783.57 39613.22 41189.15 40258.68 40281.00 38178.91 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 37164.25 37367.02 38882.28 40559.36 41191.83 39685.63 40752.69 40260.22 40377.28 40241.06 40380.12 40646.15 40641.14 40361.57 404
MVEpermissive62.14 2263.28 37359.38 37674.99 38574.33 41065.47 40685.55 39980.50 41152.02 40351.10 40575.00 40410.91 41480.50 40551.60 40453.40 40278.99 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS64.07 37263.26 37566.53 38981.73 40658.81 41291.85 39584.75 40851.93 40459.09 40475.13 40343.32 40179.09 40742.03 40739.47 40461.69 403
test_method79.03 36078.17 36281.63 38286.06 40254.40 41382.75 40196.89 34639.54 40580.98 39095.57 36058.37 39594.73 39084.74 37178.61 38895.75 355
tmp_tt68.90 36966.97 37174.68 38650.78 41359.95 41087.13 39883.47 40938.80 40662.21 40296.23 33864.70 39176.91 40888.91 33930.49 40687.19 397
wuyk23d30.17 37430.18 37830.16 39078.61 40843.29 41566.79 40314.21 41417.31 40714.82 41011.93 41011.55 41341.43 40937.08 40819.30 4075.76 407
testmvs21.48 37624.95 37911.09 39214.89 4146.47 41796.56 3639.87 4157.55 40817.93 40839.02 4069.43 4155.90 41116.56 41012.72 40820.91 406
test12320.95 37723.72 38012.64 39113.54 4158.19 41696.55 3646.13 4167.48 40916.74 40937.98 40712.97 4126.05 41016.69 4095.43 40923.68 405
EGC-MVSNET75.22 36769.54 37092.28 36094.81 37089.58 34397.64 29296.50 3591.82 4105.57 41195.74 35268.21 38496.26 37873.80 39591.71 30090.99 390
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.98 37531.98 3770.00 3930.00 4160.00 4180.00 40498.59 1440.00 4110.00 41298.61 14890.60 1640.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.88 37910.50 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41194.51 810.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.20 37810.94 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41298.43 1670.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS90.94 31888.66 341
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 2099.86 8
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 2099.86 8
eth-test20.00 416
eth-test0.00 416
OPU-MVS99.37 2099.24 8799.05 1499.02 7599.16 7797.81 399.37 17797.24 11099.73 4999.70 53
test_0728_SECOND99.71 199.72 1299.35 198.97 8598.88 6299.94 898.47 3899.81 1399.84 12
GSMVS99.20 139
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18399.20 139
sam_mvs88.99 197
ambc89.49 36786.66 40075.78 39392.66 39496.72 35286.55 37592.50 38846.01 39897.90 34090.32 31482.09 37594.80 372
MTGPAbinary98.74 108
test_post196.68 36030.43 40987.85 23098.69 26192.59 268
test_post31.83 40888.83 20498.91 238
patchmatchnet-post95.10 36689.42 18498.89 242
GG-mvs-BLEND96.59 23996.34 32894.98 20496.51 36588.58 40693.10 30694.34 37680.34 33398.05 32989.53 33096.99 19996.74 293
MTMP98.89 10494.14 390
test9_res96.39 14899.57 8199.69 56
agg_prior295.87 16499.57 8199.68 61
agg_prior99.30 6898.38 3598.72 11397.57 14799.81 81
test_prior498.01 6197.86 273
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
新几何297.64 292
旧先验199.29 7397.48 7898.70 11999.09 9295.56 4899.47 10099.61 75
原ACMM297.67 289
testdata299.89 4791.65 294
segment_acmp96.85 14
test1299.18 4299.16 9898.19 5098.53 15998.07 10695.13 7099.72 11399.56 8799.63 73
plane_prior797.42 26294.63 221
plane_prior697.35 26994.61 22487.09 242
plane_prior598.56 15399.03 21896.07 15494.27 25096.92 270
plane_prior498.28 187
plane_prior197.37 268
n20.00 417
nn0.00 417
door-mid94.37 386
lessismore_v094.45 33894.93 36888.44 36491.03 40286.77 37397.64 24676.23 36598.42 28990.31 31585.64 36996.51 328
test1198.66 131
door94.64 384
HQP5-MVS94.25 241
BP-MVS95.30 183
HQP4-MVS94.45 24198.96 22996.87 281
HQP3-MVS98.46 17694.18 254
HQP2-MVS86.75 248
NP-MVS97.28 27194.51 22997.73 235
ACMMP++_ref92.97 286
ACMMP++93.61 274
Test By Simon94.64 78