This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5199.74 37
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
CS-MVS98.44 4098.49 2198.31 10599.08 10696.73 10999.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 19498.71 2499.49 9699.09 157
CS-MVS-test98.49 3498.50 2098.46 9299.20 9297.05 9599.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19198.83 2299.56 8699.20 139
EC-MVSNet98.21 5798.11 5598.49 8998.34 17597.26 8799.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 21598.91 2099.50 9499.19 143
RRT_MVS95.98 16095.78 15496.56 23696.48 31194.22 23999.57 697.92 27095.89 11393.95 26198.70 14089.27 18698.42 28197.23 10893.02 27697.04 251
mvsmamba96.57 13596.32 13397.32 18096.60 30396.43 12699.54 797.98 26396.49 8695.20 21298.64 14690.82 15698.55 26597.97 6193.65 26296.98 255
HPM-MVScopyleft98.36 4998.10 5699.13 4899.74 797.82 6699.53 898.80 9394.63 17698.61 8098.97 10595.13 7099.77 10697.65 8699.83 1199.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVSFormer97.57 8797.49 7997.84 14098.07 20195.76 16599.47 998.40 18894.98 16198.79 6598.83 12592.34 11498.41 28996.91 11999.59 7699.34 116
test_djsdf96.00 15995.69 16496.93 20495.72 34095.49 17599.47 998.40 18894.98 16194.58 22797.86 22389.16 19098.41 28996.91 11994.12 24896.88 269
HPM-MVS_fast98.38 4698.13 5399.12 5099.75 397.86 6299.44 1198.82 8194.46 18498.94 5399.20 6795.16 6899.74 11197.58 9199.85 599.77 27
nrg03096.28 14995.72 15897.96 13696.90 28898.15 5299.39 1298.31 20395.47 13394.42 23798.35 17892.09 12498.69 25197.50 9989.05 32797.04 251
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+94.38 697.43 9696.78 11399.38 1897.83 21798.52 2899.37 1498.71 11697.09 6292.99 29999.13 8289.36 18399.89 4796.97 11699.57 8099.71 49
FIs96.51 13796.12 14097.67 15897.13 27497.54 7499.36 1599.22 2395.89 11394.03 25898.35 17891.98 12798.44 27996.40 14592.76 28197.01 253
FC-MVSNet-test96.42 14096.05 14397.53 16896.95 28397.27 8399.36 1599.23 2095.83 11793.93 26298.37 17692.00 12698.32 29896.02 15792.72 28297.00 254
3Dnovator94.51 597.46 9196.93 10599.07 5397.78 21997.64 6999.35 1799.06 3497.02 6493.75 27299.16 7789.25 18799.92 3197.22 10999.75 4199.64 71
GeoE96.58 13496.07 14298.10 12798.35 17095.89 16199.34 1898.12 23993.12 24996.09 19698.87 12089.71 17698.97 21792.95 25398.08 17099.43 109
canonicalmvs97.67 7997.23 9398.98 5998.70 14298.38 3599.34 1898.39 19096.76 7697.67 13697.40 26492.26 11799.49 15898.28 5096.28 22299.08 161
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6299.34 1898.87 6995.96 10998.60 8199.13 8296.05 3399.94 897.77 7799.86 199.77 27
EPP-MVSNet97.46 9197.28 9197.99 13398.64 14995.38 18099.33 2198.31 20393.61 22897.19 15199.07 9594.05 9499.23 18196.89 12398.43 15799.37 114
XVS98.70 1498.49 2199.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7199.74 4599.78 21
X-MVStestdata94.06 28192.30 30499.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8643.50 39695.90 4199.89 4797.85 7199.74 4599.78 21
tttt051796.07 15695.51 16997.78 14698.41 16694.84 20899.28 2494.33 37994.26 18997.64 14098.64 14684.05 30399.47 16495.34 17897.60 18799.03 164
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5799.28 2498.81 8696.24 9798.35 9699.23 6295.46 5199.94 897.42 10299.81 1299.77 27
test_vis1_n95.47 18895.13 18896.49 24597.77 22090.41 32299.27 2698.11 24296.58 8399.66 1599.18 7367.00 38099.62 13799.21 1599.40 10999.44 107
test_fmvs1_n95.90 16795.99 14795.63 28898.67 14688.32 35799.26 2798.22 21996.40 9299.67 1499.26 5773.91 36899.70 11999.02 1899.50 9498.87 178
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4699.26 2798.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7699.59 7699.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
v7n94.19 27093.43 28296.47 24895.90 33594.38 23199.26 2798.34 19991.99 28892.76 30497.13 27988.31 21398.52 26989.48 32487.70 34196.52 317
WR-MVS_H95.05 21794.46 22196.81 21396.86 29095.82 16399.24 3099.24 1793.87 20692.53 31296.84 31390.37 16598.24 30893.24 24387.93 33996.38 330
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4499.23 3198.96 4596.10 10498.94 5399.17 7496.06 3299.92 3197.62 8899.78 2999.75 35
region2R98.61 1898.38 2899.29 2999.74 798.16 5199.23 3198.93 5096.15 10198.94 5399.17 7495.91 3999.94 897.55 9599.79 2599.78 21
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5299.23 3198.95 4696.10 10498.93 5799.19 7295.70 4599.94 897.62 8899.79 2599.78 21
QAPM96.29 14795.40 17098.96 6197.85 21697.60 7299.23 3198.93 5089.76 33993.11 29699.02 9889.11 19299.93 2591.99 28099.62 7199.34 116
MP-MVScopyleft98.33 5498.01 6099.28 3299.75 398.18 4999.22 3598.79 9896.13 10297.92 12299.23 6294.54 8099.94 896.74 13699.78 2999.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Vis-MVSNetpermissive97.42 9797.11 9798.34 10398.66 14796.23 13799.22 3599.00 3996.63 8298.04 10899.21 6588.05 22199.35 17196.01 15899.21 11799.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG97.85 7097.74 6798.20 11699.67 2595.16 19199.22 3599.32 1193.04 25297.02 16098.92 11695.36 5799.91 3997.43 10199.64 6899.52 86
SDMVSNet96.85 12396.42 12898.14 11999.30 6896.38 13099.21 3899.23 2095.92 11095.96 20298.76 13685.88 26299.44 16797.93 6495.59 23298.60 199
OpenMVScopyleft93.04 1395.83 17195.00 19598.32 10497.18 27197.32 8199.21 3898.97 4289.96 33591.14 33299.05 9786.64 24899.92 3193.38 23999.47 9997.73 231
DTE-MVSNet93.98 28393.26 28796.14 26796.06 32994.39 23099.20 4098.86 7593.06 25191.78 32697.81 23185.87 26397.58 34590.53 30486.17 35796.46 327
Vis-MVSNet (Re-imp)96.87 12296.55 12497.83 14198.73 13795.46 17699.20 4098.30 20994.96 16396.60 17998.87 12090.05 17098.59 26193.67 23398.60 14699.46 104
test_fmvs293.43 29093.58 27592.95 34696.97 28283.91 37399.19 4297.24 32195.74 12095.20 21298.27 19069.65 37398.72 25096.26 14893.73 25996.24 335
ZNCC-MVS98.49 3498.20 5199.35 2299.73 1198.39 3499.19 4298.86 7595.77 11998.31 9999.10 8695.46 5199.93 2597.57 9499.81 1299.74 37
IS-MVSNet97.22 10696.88 10798.25 11198.85 13096.36 13299.19 4297.97 26595.39 13797.23 15098.99 10491.11 15298.93 22794.60 20198.59 14799.47 100
PEN-MVS94.42 25793.73 26896.49 24596.28 32094.84 20899.17 4599.00 3993.51 23092.23 32097.83 22986.10 25897.90 33192.55 26686.92 35296.74 285
PS-MVSNAJss96.43 13996.26 13696.92 20795.84 33895.08 19699.16 4698.50 16995.87 11693.84 26898.34 18294.51 8198.61 25896.88 12593.45 26997.06 250
dcpmvs_298.08 5998.59 1496.56 23699.57 3390.34 32499.15 4798.38 19396.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6199.15 4798.81 8696.24 9799.20 3899.37 3895.30 6099.80 8897.73 7999.67 5999.72 45
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4599.14 4998.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4899.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
anonymousdsp95.42 19394.91 20096.94 20395.10 35595.90 16099.14 4998.41 18693.75 21293.16 29297.46 25887.50 23598.41 28995.63 17294.03 25096.50 322
jajsoiax95.45 19195.03 19496.73 21695.42 35294.63 21799.14 4998.52 16295.74 12093.22 29098.36 17783.87 30898.65 25696.95 11894.04 24996.91 265
PS-CasMVS94.67 23893.99 24896.71 21796.68 30095.26 18699.13 5299.03 3793.68 22292.33 31897.95 21685.35 27398.10 31693.59 23588.16 33896.79 280
bld_raw_dy_0_6495.74 17595.31 18197.03 19696.35 31795.76 16599.12 5397.37 31495.97 10894.70 22598.48 16285.80 26498.49 27196.55 13993.48 26696.84 276
CPTT-MVS97.72 7597.32 9098.92 6399.64 2897.10 9499.12 5398.81 8692.34 27798.09 10499.08 9493.01 10599.92 3196.06 15599.77 3199.75 35
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.34 5899.82 7697.72 8099.65 6499.71 49
RE-MVS-def98.34 3599.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.29 6197.72 8099.65 6499.71 49
CP-MVSNet94.94 22694.30 22996.83 21196.72 29895.56 17199.11 5598.95 4693.89 20492.42 31797.90 21987.19 23998.12 31594.32 21188.21 33696.82 279
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5898.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7799.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 4999.09 5998.82 8196.58 8399.10 4699.32 4995.39 5499.82 7697.70 8499.63 6999.72 45
GST-MVS98.43 4298.12 5499.34 2399.72 1298.38 3599.09 5998.82 8195.71 12398.73 7199.06 9695.27 6299.93 2597.07 11399.63 6999.72 45
iter_conf_final96.42 14096.12 14097.34 17998.46 16296.55 12199.08 6198.06 25796.03 10695.63 20698.46 16687.72 22898.59 26197.84 7393.80 25796.87 271
K. test v392.55 30791.91 31094.48 32695.64 34289.24 34099.07 6294.88 37394.04 19486.78 36397.59 25077.64 35197.64 34292.08 27589.43 32296.57 307
test250694.44 25693.91 25396.04 27099.02 11088.99 34699.06 6379.47 40396.96 6798.36 9499.26 5777.21 35399.52 15696.78 13499.04 12399.59 79
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
test_vis1_n_192096.71 12896.84 10996.31 26199.11 10389.74 33199.05 6598.58 14998.08 1299.87 199.37 3878.48 34199.93 2599.29 1499.69 5699.27 129
test_fmvs387.17 34287.06 34587.50 36191.21 37975.66 38599.05 6596.61 35392.79 26288.85 35392.78 37643.72 39193.49 38493.95 22384.56 36193.34 378
v894.47 25493.77 26496.57 23596.36 31694.83 21099.05 6598.19 22491.92 29093.16 29296.97 30188.82 20398.48 27291.69 28787.79 34096.39 329
test111195.94 16495.78 15496.41 25498.99 11790.12 32699.04 6892.45 38996.99 6698.03 10999.27 5681.40 32099.48 16296.87 12899.04 12399.63 73
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2699.84 6797.72 8099.73 4899.67 65
PHI-MVS98.34 5298.06 5799.18 4299.15 10098.12 5599.04 6899.09 3193.32 23898.83 6499.10 8696.54 2199.83 6997.70 8499.76 3799.59 79
ECVR-MVScopyleft95.95 16295.71 16196.65 22299.02 11090.86 31299.03 7191.80 39096.96 6798.10 10399.26 5781.31 32199.51 15796.90 12299.04 12399.59 79
TranMVSNet+NR-MVSNet95.14 21294.48 21997.11 19296.45 31396.36 13299.03 7199.03 3795.04 15993.58 27597.93 21788.27 21498.03 32294.13 21786.90 35396.95 259
ACMMPcopyleft98.23 5697.95 6299.09 5299.74 797.62 7199.03 7199.41 695.98 10797.60 14399.36 4294.45 8599.93 2597.14 11098.85 13599.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1299.70 53
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 17097.24 10799.73 4899.70 53
EIA-MVS97.75 7397.58 7298.27 10798.38 16796.44 12599.01 7698.60 14195.88 11597.26 14997.53 25594.97 7499.33 17397.38 10499.20 11899.05 163
Anonymous2023121194.10 27793.26 28796.61 22999.11 10394.28 23499.01 7698.88 6286.43 36392.81 30297.57 25281.66 31998.68 25494.83 19289.02 32996.88 269
test_cas_vis1_n_192097.38 10097.36 8897.45 17098.95 12093.25 27399.00 7898.53 15997.70 2099.77 799.35 4484.71 28899.85 6398.57 2799.66 6199.26 131
mvs_tets95.41 19595.00 19596.65 22295.58 34494.42 22899.00 7898.55 15595.73 12293.21 29198.38 17583.45 31298.63 25797.09 11294.00 25196.91 265
baseline97.64 8197.44 8498.25 11198.35 17096.20 13899.00 7898.32 20196.33 9698.03 10999.17 7491.35 14499.16 18898.10 5598.29 16599.39 112
v1094.29 26493.55 27796.51 24496.39 31594.80 21298.99 8198.19 22491.35 30793.02 29896.99 29988.09 21998.41 28990.50 30588.41 33596.33 333
PGM-MVS98.49 3498.23 4799.27 3499.72 1298.08 5698.99 8199.49 595.43 13599.03 4799.32 4995.56 4899.94 896.80 13399.77 3199.78 21
LPG-MVS_test95.62 18395.34 17696.47 24897.46 24793.54 25998.99 8198.54 15794.67 17494.36 24098.77 13285.39 27199.11 19895.71 16894.15 24696.76 283
test_fmvsmvis_n_192098.44 4098.51 1898.23 11398.33 17796.15 14198.97 8499.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6198.57 204
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1299.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 3899.81 1299.84 12
tfpnnormal93.66 28692.70 29696.55 24196.94 28495.94 15498.97 8499.19 2491.04 31891.38 33097.34 26584.94 28198.61 25885.45 35689.02 32995.11 358
V4294.78 23194.14 23896.70 21996.33 31995.22 18998.97 8498.09 24992.32 27994.31 24397.06 29088.39 21298.55 26592.90 25588.87 33196.34 331
test_fmvsm_n_192098.87 1099.01 398.45 9399.42 5596.43 12698.96 8999.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4198.94 174
test_fmvsmconf0.01_n97.86 6897.54 7798.83 6795.48 34896.83 10498.95 9098.60 14198.58 698.93 5799.55 688.57 20699.91 3999.54 1199.61 7299.77 27
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 22499.37 3199.52 1196.52 2299.89 4798.06 5799.81 1299.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pm-mvs193.94 28493.06 28996.59 23296.49 31095.16 19198.95 9098.03 26092.32 27991.08 33397.84 22684.54 29398.41 28992.16 27386.13 35996.19 338
Anonymous2024052191.18 31990.44 32093.42 33793.70 37088.47 35498.94 9397.56 29088.46 35489.56 34795.08 35877.15 35596.97 35683.92 36489.55 31994.82 363
VPA-MVSNet95.75 17495.11 19197.69 15697.24 26397.27 8398.94 9399.23 2095.13 15295.51 20897.32 26785.73 26598.91 22997.33 10689.55 31996.89 268
MM99.33 2698.14 5498.93 9597.02 33398.96 199.17 4199.47 2091.97 12999.94 899.85 499.69 5699.91 2
LS3D97.16 11196.66 12198.68 7398.53 15897.19 9198.93 9598.90 5792.83 26195.99 20099.37 3892.12 12399.87 5893.67 23399.57 8098.97 170
casdiffmvs_mvgpermissive97.72 7597.48 8198.44 9598.42 16496.59 11798.92 9798.44 18096.20 9997.76 12799.20 6791.66 13599.23 18198.27 5198.41 15899.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM93.85 995.69 18095.38 17496.61 22997.61 23493.84 24898.91 9898.44 18095.25 14794.28 24498.47 16486.04 26199.12 19695.50 17693.95 25396.87 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11199.39 3294.81 7799.96 497.91 6699.79 2599.77 27
SD-MVS98.64 1698.68 1198.53 8599.33 5998.36 4098.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 34398.17 5299.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TransMVSNet (Re)92.67 30691.51 31296.15 26696.58 30594.65 21598.90 9996.73 34790.86 32189.46 34897.86 22385.62 26798.09 31886.45 34881.12 37195.71 348
EPNet97.28 10496.87 10898.51 8694.98 35696.14 14298.90 9997.02 33398.28 1095.99 20099.11 8491.36 14399.89 4796.98 11599.19 11999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7498.89 10399.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4599.90 3
fmvsm_s_conf0.1_n_a98.08 5998.04 5998.21 11497.66 23195.39 17998.89 10399.17 2697.24 5099.76 899.67 191.13 15099.88 5699.39 1399.41 10699.35 115
MTMP98.89 10394.14 382
UA-Net97.96 6397.62 7098.98 5998.86 12897.47 7898.89 10399.08 3296.67 8098.72 7299.54 893.15 10499.81 8194.87 19098.83 13699.65 69
OurMVSNet-221017-094.21 26894.00 24694.85 31495.60 34389.22 34198.89 10397.43 30995.29 14492.18 32198.52 16082.86 31398.59 26193.46 23891.76 29096.74 285
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7698.88 10899.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 1999.89 5
thisisatest053096.01 15895.36 17597.97 13498.38 16795.52 17498.88 10894.19 38194.04 19497.64 14098.31 18583.82 31099.46 16595.29 18297.70 18498.93 175
MVS_030498.47 3798.22 4999.21 3999.00 11397.80 6798.88 10895.32 36898.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5499.90 3
iter_conf0596.13 15595.79 15397.15 18898.16 19695.99 14598.88 10897.98 26395.91 11295.58 20798.46 16685.53 26998.59 26197.88 6993.75 25896.86 274
UGNet96.78 12696.30 13498.19 11898.24 18395.89 16198.88 10898.93 5097.39 3896.81 17197.84 22682.60 31599.90 4596.53 14099.49 9698.79 183
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.1_n98.18 5898.21 5098.11 12698.54 15795.24 18898.87 11399.24 1797.50 3199.70 1399.67 191.33 14599.89 4799.47 1299.54 8999.21 138
Anonymous2024052995.10 21494.22 23197.75 15099.01 11294.26 23698.87 11398.83 8085.79 36996.64 17698.97 10578.73 33999.85 6396.27 14794.89 23799.12 154
thres100view90095.38 19694.70 20997.41 17498.98 11894.92 20598.87 11396.90 34095.38 13896.61 17896.88 30984.29 29599.56 14588.11 33796.29 21997.76 228
fmvsm_s_conf0.5_n_a98.38 4698.42 2598.27 10799.09 10595.41 17898.86 11699.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10499.49 96
XXY-MVS95.20 20994.45 22397.46 16996.75 29696.56 11998.86 11698.65 13593.30 24093.27 28998.27 19084.85 28398.87 23694.82 19391.26 29896.96 257
fmvsm_s_conf0.5_n98.42 4398.51 1898.13 12299.30 6895.25 18798.85 11899.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9299.25 133
VDDNet95.36 19994.53 21697.86 13998.10 20095.13 19498.85 11897.75 27990.46 32698.36 9499.39 3273.27 37099.64 13197.98 6096.58 20998.81 182
thres600view795.49 18794.77 20597.67 15898.98 11895.02 19798.85 11896.90 34095.38 13896.63 17796.90 30884.29 29599.59 14088.65 33496.33 21798.40 209
114514_t96.93 11996.27 13598.92 6399.50 4197.63 7098.85 11898.90 5784.80 37397.77 12699.11 8492.84 10699.66 12894.85 19199.77 3199.47 100
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 22597.15 9398.84 12298.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2599.89 5
LFMVS95.86 16994.98 19798.47 9198.87 12796.32 13498.84 12296.02 35993.40 23598.62 7999.20 6774.99 36399.63 13497.72 8097.20 19399.46 104
alignmvs97.56 8897.07 10099.01 5698.66 14798.37 3998.83 12498.06 25796.74 7798.00 11597.65 24490.80 15899.48 16298.37 4696.56 21099.19 143
DeepC-MVS95.98 397.88 6797.58 7298.77 6999.25 8196.93 9998.83 12498.75 10696.96 6796.89 16799.50 1590.46 16499.87 5897.84 7399.76 3799.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12597.25 8898.82 12699.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 1999.93 1
sd_testset96.17 15295.76 15697.42 17399.30 6894.34 23398.82 12699.08 3295.92 11095.96 20298.76 13682.83 31499.32 17495.56 17395.59 23298.60 199
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5699.92 3197.89 6899.75 4199.79 19
casdiffmvspermissive97.63 8297.41 8598.28 10698.33 17796.14 14298.82 12698.32 20196.38 9497.95 11799.21 6591.23 14999.23 18198.12 5498.37 15999.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GBi-Net94.49 25193.80 26196.56 23698.21 18795.00 19898.82 12698.18 22792.46 27094.09 25497.07 28781.16 32297.95 32792.08 27592.14 28596.72 288
test194.49 25193.80 26196.56 23698.21 18795.00 19898.82 12698.18 22792.46 27094.09 25497.07 28781.16 32297.95 32792.08 27592.14 28596.72 288
FMVSNet193.19 29992.07 30696.56 23697.54 24195.00 19898.82 12698.18 22790.38 32992.27 31997.07 28773.68 36997.95 32789.36 32691.30 29696.72 288
API-MVS97.41 9897.25 9297.91 13798.70 14296.80 10598.82 12698.69 12094.53 17998.11 10298.28 18794.50 8499.57 14294.12 21899.49 9697.37 244
ACMH92.88 1694.55 24593.95 25096.34 25997.63 23393.26 27298.81 13498.49 17493.43 23489.74 34498.53 15781.91 31799.08 20493.69 23093.30 27396.70 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs196.42 14096.67 12095.66 28798.82 13288.53 35398.80 13598.20 22296.39 9399.64 1799.20 6780.35 33199.67 12699.04 1799.57 8098.78 186
Effi-MVS+-dtu96.29 14796.56 12395.51 29197.89 21590.22 32598.80 13598.10 24596.57 8596.45 18996.66 31990.81 15798.91 22995.72 16797.99 17197.40 241
HQP_MVS96.14 15495.90 15096.85 21097.42 25294.60 22298.80 13598.56 15397.28 4595.34 20998.28 18787.09 24099.03 21096.07 15294.27 24096.92 260
plane_prior298.80 13597.28 45
APD-MVScopyleft98.35 5198.00 6199.42 1699.51 3998.72 2198.80 13598.82 8194.52 18199.23 3799.25 6195.54 5099.80 8896.52 14199.77 3199.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet (Re)95.78 17395.19 18697.58 16596.99 28197.47 7898.79 14099.18 2595.60 12793.92 26397.04 29391.68 13398.48 27295.80 16587.66 34296.79 280
FMVSNet294.47 25493.61 27497.04 19598.21 18796.43 12698.79 14098.27 21292.46 27093.50 28197.09 28481.16 32298.00 32591.09 29491.93 28896.70 292
tt080594.54 24693.85 25896.63 22697.98 21093.06 28098.77 14297.84 27593.67 22493.80 27098.04 20776.88 35698.96 22194.79 19592.86 27997.86 227
testgi93.06 30292.45 30294.88 31396.43 31489.90 32898.75 14397.54 29695.60 12791.63 32997.91 21874.46 36697.02 35586.10 35093.67 26097.72 232
LCM-MVSNet-Re95.22 20795.32 17994.91 31098.18 19387.85 36398.75 14395.66 36595.11 15488.96 35096.85 31290.26 16997.65 34195.65 17198.44 15599.22 137
SixPastTwentyTwo93.34 29392.86 29294.75 31895.67 34189.41 33998.75 14396.67 35193.89 20490.15 34298.25 19380.87 32698.27 30790.90 30090.64 30496.57 307
UniMVSNet_ETH3D94.24 26793.33 28496.97 20197.19 27093.38 26898.74 14698.57 15191.21 31693.81 26998.58 15372.85 37198.77 24795.05 18893.93 25498.77 187
MVS_Test97.28 10497.00 10298.13 12298.33 17795.97 15198.74 14698.07 25294.27 18898.44 9198.07 20492.48 11199.26 17796.43 14498.19 16699.16 149
UniMVSNet_NR-MVSNet95.71 17795.15 18797.40 17696.84 29196.97 9798.74 14699.24 1795.16 15193.88 26597.72 23791.68 13398.31 30095.81 16387.25 34896.92 260
NR-MVSNet94.98 22294.16 23697.44 17196.53 30797.22 9098.74 14698.95 4694.96 16389.25 34997.69 24089.32 18498.18 31094.59 20387.40 34596.92 260
ETV-MVS97.96 6397.81 6498.40 10098.42 16497.27 8398.73 15098.55 15596.84 7198.38 9397.44 26195.39 5499.35 17197.62 8898.89 13198.58 203
baseline195.84 17095.12 19098.01 13298.49 16195.98 14698.73 15097.03 33195.37 14096.22 19398.19 19789.96 17299.16 18894.60 20187.48 34398.90 177
MVSTER96.06 15795.72 15897.08 19498.23 18595.93 15798.73 15098.27 21294.86 16795.07 21498.09 20388.21 21598.54 26796.59 13793.46 26796.79 280
ACMP93.49 1095.34 20194.98 19796.43 25397.67 22993.48 26398.73 15098.44 18094.94 16692.53 31298.53 15784.50 29499.14 19395.48 17794.00 25196.66 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15498.66 13197.51 3098.15 10098.83 12595.70 4599.92 3197.53 9799.67 5999.66 68
9.1498.06 5799.47 4798.71 15598.82 8194.36 18699.16 4499.29 5396.05 3399.81 8197.00 11499.71 53
VPNet94.99 22094.19 23397.40 17697.16 27296.57 11898.71 15598.97 4295.67 12594.84 21998.24 19480.36 33098.67 25596.46 14287.32 34796.96 257
MSLP-MVS++98.56 2998.57 1598.55 8199.26 8096.80 10598.71 15599.05 3697.28 4598.84 6299.28 5496.47 2399.40 16898.52 3699.70 5499.47 100
ACMH+92.99 1494.30 26393.77 26495.88 28097.81 21892.04 29298.71 15598.37 19493.99 19990.60 33898.47 16480.86 32799.05 20692.75 25992.40 28496.55 311
Anonymous20240521195.28 20494.49 21897.67 15899.00 11393.75 25298.70 15997.04 33090.66 32296.49 18698.80 12878.13 34599.83 6996.21 15195.36 23699.44 107
DP-MVS96.59 13295.93 14998.57 7999.34 5796.19 14098.70 15998.39 19089.45 34594.52 22999.35 4491.85 13099.85 6392.89 25798.88 13299.68 61
Fast-Effi-MVS+-dtu95.87 16895.85 15195.91 27797.74 22491.74 29798.69 16198.15 23595.56 12994.92 21797.68 24388.98 19898.79 24593.19 24597.78 18097.20 248
tfpn200view995.32 20394.62 21297.43 17298.94 12194.98 20198.68 16296.93 33895.33 14196.55 18296.53 32584.23 29999.56 14588.11 33796.29 21997.76 228
VDD-MVS95.82 17295.23 18497.61 16498.84 13193.98 24498.68 16297.40 31195.02 16097.95 11799.34 4874.37 36799.78 10198.64 2596.80 20299.08 161
thres40095.38 19694.62 21297.65 16298.94 12194.98 20198.68 16296.93 33895.33 14196.55 18296.53 32584.23 29999.56 14588.11 33796.29 21998.40 209
pmmvs691.77 31390.63 31895.17 30394.69 36391.24 30698.67 16597.92 27086.14 36589.62 34597.56 25475.79 36098.34 29690.75 30284.56 36195.94 344
v2v48294.69 23394.03 24296.65 22296.17 32494.79 21398.67 16598.08 25092.72 26394.00 25997.16 27887.69 23298.45 27792.91 25488.87 33196.72 288
DU-MVS95.42 19394.76 20697.40 17696.53 30796.97 9798.66 16798.99 4195.43 13593.88 26597.69 24088.57 20698.31 30095.81 16387.25 34896.92 260
MAR-MVS96.91 12096.40 13098.45 9398.69 14496.90 10198.66 16798.68 12392.40 27697.07 15797.96 21591.54 14099.75 10993.68 23198.92 12998.69 191
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing393.19 29992.48 30195.30 30098.07 20192.27 28698.64 16997.17 32493.94 20393.98 26097.04 29367.97 37796.01 37288.40 33597.14 19497.63 235
patch_mono-298.36 4998.87 696.82 21299.53 3690.68 31798.64 16999.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
h-mvs3396.17 15295.62 16797.81 14499.03 10994.45 22698.64 16998.75 10697.48 3298.67 7398.72 13989.76 17499.86 6297.95 6281.59 37099.11 155
VNet97.79 7297.40 8698.96 6198.88 12597.55 7398.63 17298.93 5096.74 7799.02 4898.84 12390.33 16799.83 6998.53 3096.66 20699.50 91
PVSNet_Blended_VisFu97.70 7797.46 8298.44 9599.27 7895.91 15998.63 17299.16 2794.48 18397.67 13698.88 11992.80 10799.91 3997.11 11199.12 12199.50 91
PAPM_NR97.46 9197.11 9798.50 8799.50 4196.41 12998.63 17298.60 14195.18 15097.06 15898.06 20594.26 9199.57 14293.80 22998.87 13499.52 86
Baseline_NR-MVSNet94.35 26093.81 26095.96 27596.20 32294.05 24398.61 17596.67 35191.44 30393.85 26797.60 24988.57 20698.14 31394.39 20786.93 35195.68 349
v114494.59 24393.92 25196.60 23196.21 32194.78 21498.59 17698.14 23791.86 29394.21 24997.02 29687.97 22298.41 28991.72 28689.57 31796.61 302
AllTest95.24 20694.65 21196.99 19899.25 8193.21 27598.59 17698.18 22791.36 30593.52 27898.77 13284.67 28999.72 11389.70 31997.87 17698.02 223
Fast-Effi-MVS+96.28 14995.70 16398.03 13198.29 18295.97 15198.58 17898.25 21791.74 29495.29 21197.23 27491.03 15599.15 19192.90 25597.96 17398.97 170
Anonymous2023120691.66 31491.10 31493.33 34094.02 36987.35 36598.58 17897.26 32090.48 32590.16 34196.31 33083.83 30996.53 36679.36 37789.90 31396.12 339
v14419294.39 25993.70 27096.48 24796.06 32994.35 23298.58 17898.16 23491.45 30294.33 24297.02 29687.50 23598.45 27791.08 29589.11 32696.63 300
v14894.29 26493.76 26695.91 27796.10 32792.93 28198.58 17897.97 26592.59 26893.47 28296.95 30588.53 21098.32 29892.56 26587.06 35096.49 323
COLMAP_ROBcopyleft93.27 1295.33 20294.87 20396.71 21799.29 7393.24 27498.58 17898.11 24289.92 33693.57 27699.10 8686.37 25499.79 9890.78 30198.10 16997.09 249
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_vis1_rt91.29 31790.65 31793.19 34497.45 25086.25 36998.57 18390.90 39493.30 24086.94 36293.59 37162.07 38499.11 19897.48 10095.58 23494.22 368
FMVSNet394.97 22394.26 23097.11 19298.18 19396.62 11298.56 18498.26 21693.67 22494.09 25497.10 28084.25 29798.01 32392.08 27592.14 28596.70 292
F-COLMAP97.09 11596.80 11097.97 13499.45 5294.95 20498.55 18598.62 14093.02 25396.17 19598.58 15394.01 9599.81 8193.95 22398.90 13099.14 152
dmvs_re94.48 25394.18 23595.37 29797.68 22890.11 32798.54 18697.08 32694.56 17794.42 23797.24 27384.25 29797.76 33991.02 29992.83 28098.24 215
v192192094.20 26993.47 28196.40 25695.98 33294.08 24298.52 18798.15 23591.33 30894.25 24697.20 27786.41 25398.42 28190.04 31389.39 32396.69 297
EU-MVSNet93.66 28694.14 23892.25 35295.96 33483.38 37698.52 18798.12 23994.69 17292.61 30998.13 20187.36 23896.39 36891.82 28390.00 31296.98 255
TAMVS97.02 11696.79 11297.70 15598.06 20495.31 18598.52 18798.31 20393.95 20197.05 15998.61 14893.49 10098.52 26995.33 17997.81 17899.29 127
LTVRE_ROB92.95 1594.60 24193.90 25496.68 22197.41 25594.42 22898.52 18798.59 14491.69 29791.21 33198.35 17884.87 28299.04 20991.06 29693.44 27096.60 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement91.06 32189.68 32695.21 30185.35 39391.49 30298.51 19197.07 32891.47 30188.83 35497.84 22677.31 35299.09 20392.79 25877.98 38295.04 360
v119294.32 26293.58 27596.53 24296.10 32794.45 22698.50 19298.17 23291.54 30094.19 25097.06 29086.95 24498.43 28090.14 30889.57 31796.70 292
test_040291.32 31690.27 32294.48 32696.60 30391.12 30798.50 19297.22 32286.10 36688.30 35696.98 30077.65 35097.99 32678.13 38192.94 27894.34 365
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5798.50 19298.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9599.77 3199.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19598.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5799.66 6199.69 56
test_yl97.22 10696.78 11398.54 8398.73 13796.60 11598.45 19698.31 20394.70 17098.02 11198.42 17090.80 15899.70 11996.81 13196.79 20399.34 116
DCV-MVSNet97.22 10696.78 11398.54 8398.73 13796.60 11598.45 19698.31 20394.70 17098.02 11198.42 17090.80 15899.70 11996.81 13196.79 20399.34 116
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19698.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10499.41 10699.71 49
v124094.06 28193.29 28696.34 25996.03 33193.90 24698.44 19998.17 23291.18 31794.13 25397.01 29886.05 25998.42 28189.13 32989.50 32196.70 292
plane_prior94.60 22298.44 19996.74 7794.22 242
MP-MVS-pluss98.31 5597.92 6399.49 1299.72 1298.88 1898.43 20198.78 10094.10 19297.69 13599.42 2995.25 6499.92 3198.09 5699.80 1999.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS95.69 18095.33 17896.76 21596.16 32694.63 21798.43 20198.39 19096.64 8195.02 21698.78 13085.15 27899.05 20695.21 18694.20 24396.60 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20398.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8799.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20498.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6499.61 7299.74 37
hse-mvs295.71 17795.30 18296.93 20498.50 15993.53 26198.36 20598.10 24597.48 3298.67 7397.99 21289.76 17499.02 21397.95 6280.91 37498.22 217
CANet98.05 6197.76 6698.90 6598.73 13797.27 8398.35 20698.78 10097.37 4197.72 13398.96 11091.53 14199.92 3198.79 2399.65 6499.51 89
AUN-MVS94.53 24893.73 26896.92 20798.50 15993.52 26298.34 20798.10 24593.83 20995.94 20497.98 21485.59 26899.03 21094.35 20980.94 37398.22 217
test20.0390.89 32390.38 32192.43 34893.48 37188.14 36098.33 20897.56 29093.40 23587.96 35796.71 31880.69 32994.13 38379.15 37886.17 35795.01 362
DP-MVS Recon97.86 6897.46 8299.06 5499.53 3698.35 4198.33 20898.89 5992.62 26698.05 10698.94 11395.34 5899.65 12996.04 15699.42 10599.19 143
RPSCF94.87 22895.40 17093.26 34298.89 12482.06 38098.33 20898.06 25790.30 33196.56 18099.26 5787.09 24099.49 15893.82 22896.32 21898.24 215
TAPA-MVS93.98 795.35 20094.56 21597.74 15199.13 10194.83 21098.33 20898.64 13686.62 36196.29 19298.61 14894.00 9699.29 17680.00 37599.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IterMVS-LS95.46 18995.21 18596.22 26598.12 19893.72 25598.32 21298.13 23893.71 21794.26 24597.31 26892.24 11898.10 31694.63 19890.12 31096.84 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous96.70 12996.53 12697.18 18698.19 19193.78 24998.31 21398.19 22494.01 19794.47 23198.27 19092.08 12598.46 27697.39 10397.91 17499.31 122
WTY-MVS97.37 10296.92 10698.72 7198.86 12896.89 10398.31 21398.71 11695.26 14697.67 13698.56 15692.21 12099.78 10195.89 16096.85 20199.48 98
D2MVS95.18 21095.08 19295.48 29297.10 27692.07 29098.30 21599.13 3094.02 19692.90 30096.73 31689.48 17998.73 24994.48 20693.60 26595.65 350
EI-MVSNet-Vis-set98.47 3798.39 2798.69 7299.46 4996.49 12398.30 21598.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6499.80 18
DSMNet-mixed92.52 30992.58 29992.33 35094.15 36582.65 37898.30 21594.26 38089.08 35092.65 30895.73 34685.01 28095.76 37486.24 34997.76 18198.59 201
EI-MVSNet-UG-set98.41 4498.34 3598.61 7799.45 5296.32 13498.28 21898.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 8999.73 42
OMC-MVS97.55 8997.34 8998.20 11699.33 5995.92 15898.28 21898.59 14495.52 13197.97 11699.10 8693.28 10399.49 15895.09 18798.88 13299.19 143
baseline295.11 21394.52 21796.87 20996.65 30293.56 25898.27 22094.10 38393.45 23392.02 32597.43 26287.45 23799.19 18693.88 22697.41 19197.87 226
PVSNet_BlendedMVS96.73 12796.60 12297.12 19199.25 8195.35 18398.26 22199.26 1594.28 18797.94 11997.46 25892.74 10899.81 8196.88 12593.32 27296.20 337
BH-untuned95.95 16295.72 15896.65 22298.55 15692.26 28798.23 22297.79 27793.73 21594.62 22698.01 21088.97 19999.00 21693.04 25098.51 15198.68 192
sss97.39 9996.98 10498.61 7798.60 15396.61 11498.22 22398.93 5093.97 20098.01 11498.48 16291.98 12799.85 6396.45 14398.15 16799.39 112
save fliter99.46 4998.38 3598.21 22498.71 11697.95 13
WR-MVS95.15 21194.46 22197.22 18396.67 30196.45 12498.21 22498.81 8694.15 19093.16 29297.69 24087.51 23398.30 30295.29 18288.62 33396.90 267
pmmvs593.65 28892.97 29195.68 28695.49 34792.37 28598.20 22697.28 31889.66 34192.58 31097.26 27082.14 31698.09 31893.18 24690.95 30296.58 305
thres20095.25 20594.57 21497.28 18198.81 13394.92 20598.20 22697.11 32595.24 14996.54 18496.22 33684.58 29299.53 15387.93 34196.50 21397.39 242
CDS-MVSNet96.99 11796.69 11897.90 13898.05 20595.98 14698.20 22698.33 20093.67 22496.95 16198.49 16193.54 9998.42 28195.24 18597.74 18299.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WB-MVS84.86 34785.33 34883.46 36889.48 38469.56 39398.19 22996.42 35689.55 34381.79 37894.67 36184.80 28490.12 39152.44 39480.64 37590.69 382
131496.25 15195.73 15797.79 14597.13 27495.55 17398.19 22998.59 14493.47 23292.03 32497.82 23091.33 14599.49 15894.62 20098.44 15598.32 214
MVS94.67 23893.54 27898.08 12896.88 28996.56 11998.19 22998.50 16978.05 38392.69 30798.02 20891.07 15499.63 13490.09 30998.36 16198.04 222
BH-RMVSNet95.92 16695.32 17997.69 15698.32 18094.64 21698.19 22997.45 30794.56 17796.03 19898.61 14885.02 27999.12 19690.68 30399.06 12299.30 125
1112_ss96.63 13096.00 14698.50 8798.56 15496.37 13198.18 23398.10 24592.92 25794.84 21998.43 16892.14 12299.58 14194.35 20996.51 21299.56 85
EPNet_dtu95.21 20894.95 19995.99 27296.17 32490.45 32198.16 23497.27 31996.77 7593.14 29598.33 18390.34 16698.42 28185.57 35498.81 13899.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HY-MVS93.96 896.82 12596.23 13898.57 7998.46 16297.00 9698.14 23598.21 22093.95 20196.72 17497.99 21291.58 13699.76 10794.51 20596.54 21198.95 173
PLCcopyleft95.07 497.20 10996.78 11398.44 9599.29 7396.31 13698.14 23598.76 10492.41 27596.39 19098.31 18594.92 7699.78 10194.06 22198.77 13999.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EG-PatchMatch MVS91.13 32090.12 32394.17 33394.73 36289.00 34598.13 23797.81 27689.22 34985.32 37396.46 32767.71 37898.42 28187.89 34293.82 25695.08 359
EI-MVSNet95.96 16195.83 15296.36 25797.93 21293.70 25698.12 23898.27 21293.70 21995.07 21499.02 9892.23 11998.54 26794.68 19693.46 26796.84 276
CVMVSNet95.43 19296.04 14493.57 33697.93 21283.62 37498.12 23898.59 14495.68 12496.56 18099.02 9887.51 23397.51 34893.56 23797.44 18999.60 77
TSAR-MVS + GP.98.38 4698.24 4698.81 6899.22 8997.25 8898.11 24098.29 21197.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 14999.51 89
XVG-ACMP-BASELINE94.54 24694.14 23895.75 28596.55 30691.65 29998.11 24098.44 18094.96 16394.22 24897.90 21979.18 33899.11 19894.05 22293.85 25596.48 325
SSC-MVS84.27 34884.71 35182.96 37289.19 38668.83 39498.08 24296.30 35889.04 35181.37 38094.47 36284.60 29189.89 39249.80 39679.52 37790.15 383
CNLPA97.45 9497.03 10198.73 7099.05 10797.44 8098.07 24398.53 15995.32 14396.80 17298.53 15793.32 10199.72 11394.31 21299.31 11599.02 165
diffmvspermissive97.58 8697.40 8698.13 12298.32 18095.81 16498.06 24498.37 19496.20 9998.74 6998.89 11891.31 14799.25 17898.16 5398.52 15099.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 1792x268897.12 11396.80 11098.08 12899.30 6894.56 22498.05 24599.71 193.57 22997.09 15498.91 11788.17 21699.89 4796.87 12899.56 8699.81 17
HQP-NCC97.20 26798.05 24596.43 8994.45 232
ACMP_Plane97.20 26798.05 24596.43 8994.45 232
HQP-MVS95.72 17695.40 17096.69 22097.20 26794.25 23798.05 24598.46 17696.43 8994.45 23297.73 23586.75 24698.96 22195.30 18094.18 24496.86 274
MIMVSNet189.67 33288.28 33793.82 33492.81 37591.08 30898.01 24997.45 30787.95 35687.90 35895.87 34367.63 37994.56 38278.73 38088.18 33795.83 346
AdaColmapbinary97.15 11296.70 11798.48 9099.16 9896.69 11198.01 24998.89 5994.44 18596.83 16898.68 14290.69 16199.76 10794.36 20899.29 11698.98 169
FMVSNet591.81 31290.92 31594.49 32597.21 26692.09 28998.00 25197.55 29589.31 34890.86 33595.61 35174.48 36595.32 37885.57 35489.70 31596.07 341
CANet_DTU96.96 11896.55 12498.21 11498.17 19596.07 14497.98 25298.21 22097.24 5097.13 15398.93 11486.88 24599.91 3995.00 18999.37 11298.66 195
MVP-Stereo94.28 26693.92 25195.35 29894.95 35792.60 28497.97 25397.65 28391.61 29990.68 33797.09 28486.32 25598.42 28189.70 31999.34 11395.02 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
KD-MVS_self_test90.38 32689.38 32993.40 33992.85 37488.94 34797.95 25497.94 26890.35 33090.25 34093.96 36879.82 33395.94 37384.62 36376.69 38495.33 353
MVS_111021_LR98.34 5298.23 4798.67 7499.27 7896.90 10197.95 25499.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6699.75 4199.50 91
TEST999.31 6498.50 2997.92 25698.73 11192.63 26597.74 13098.68 14296.20 2899.80 88
train_agg97.97 6297.52 7899.33 2699.31 6498.50 2997.92 25698.73 11192.98 25497.74 13098.68 14296.20 2899.80 8896.59 13799.57 8099.68 61
Syy-MVS92.55 30792.61 29892.38 34997.39 25683.41 37597.91 25897.46 30393.16 24693.42 28495.37 35384.75 28696.12 37077.00 38396.99 19797.60 236
myMVS_eth3d92.73 30592.01 30794.89 31297.39 25690.94 31097.91 25897.46 30393.16 24693.42 28495.37 35368.09 37696.12 37088.34 33696.99 19797.60 236
CDPH-MVS97.94 6597.49 7999.28 3299.47 4798.44 3197.91 25898.67 12892.57 26998.77 6798.85 12295.93 3899.72 11395.56 17399.69 5699.68 61
MVS_111021_HR98.47 3798.34 3598.88 6699.22 8997.32 8197.91 25899.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 5999.76 3799.69 56
PatchMatch-RL96.59 13296.03 14598.27 10799.31 6496.51 12297.91 25899.06 3493.72 21696.92 16598.06 20588.50 21199.65 12991.77 28599.00 12798.66 195
OpenMVS_ROBcopyleft86.42 2089.00 33687.43 34493.69 33593.08 37389.42 33897.91 25896.89 34278.58 38285.86 36894.69 36069.48 37498.29 30577.13 38293.29 27493.36 377
test_899.29 7398.44 3197.89 26498.72 11392.98 25497.70 13498.66 14596.20 2899.80 88
ab-mvs96.42 14095.71 16198.55 8198.63 15096.75 10897.88 26598.74 10893.84 20796.54 18498.18 19885.34 27499.75 10995.93 15996.35 21699.15 150
jason97.32 10397.08 9998.06 13097.45 25095.59 16997.87 26697.91 27294.79 16998.55 8398.83 12591.12 15199.23 18197.58 9199.60 7499.34 116
jason: jason.
xiu_mvs_v1_base_debu97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
xiu_mvs_v1_base97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
xiu_mvs_v1_base_debi97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
test_prior498.01 5997.86 267
mvsany_test388.80 33788.04 33891.09 35689.78 38381.57 38197.83 27195.49 36693.81 21087.53 35993.95 36956.14 38797.43 34994.68 19683.13 36494.26 366
FA-MVS(test-final)96.41 14495.94 14897.82 14398.21 18795.20 19097.80 27297.58 28893.21 24397.36 14797.70 23889.47 18099.56 14594.12 21897.99 17198.71 190
test_prior297.80 27296.12 10397.89 12498.69 14195.96 3796.89 12399.60 74
XVG-OURS-SEG-HR96.51 13796.34 13197.02 19798.77 13593.76 25097.79 27498.50 16995.45 13496.94 16299.09 9287.87 22699.55 15296.76 13595.83 23197.74 230
MS-PatchMatch93.84 28593.63 27394.46 32896.18 32389.45 33797.76 27598.27 21292.23 28292.13 32297.49 25679.50 33598.69 25189.75 31799.38 11195.25 354
DELS-MVS98.40 4598.20 5198.99 5799.00 11397.66 6897.75 27698.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3799.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MG-MVS97.81 7197.60 7198.44 9599.12 10295.97 15197.75 27698.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19499.52 9299.67 65
test_f86.07 34685.39 34788.10 36089.28 38575.57 38697.73 27896.33 35789.41 34785.35 37291.56 38243.31 39395.53 37591.32 29284.23 36393.21 379
Test_1112_low_res96.34 14695.66 16698.36 10298.56 15495.94 15497.71 27998.07 25292.10 28694.79 22397.29 26991.75 13299.56 14594.17 21696.50 21399.58 83
BH-w/o95.38 19695.08 19296.26 26498.34 17591.79 29497.70 28097.43 30992.87 25994.24 24797.22 27588.66 20498.84 23991.55 28997.70 18498.16 220
lupinMVS97.44 9597.22 9498.12 12598.07 20195.76 16597.68 28197.76 27894.50 18298.79 6598.61 14892.34 11499.30 17597.58 9199.59 7699.31 122
原ACMM297.67 282
test_vis3_rt79.22 34977.40 35584.67 36686.44 39174.85 38897.66 28381.43 40184.98 37267.12 39281.91 39028.09 40197.60 34388.96 33080.04 37681.55 390
LF4IMVS93.14 30192.79 29494.20 33195.88 33688.67 35097.66 28397.07 32893.81 21091.71 32797.65 24477.96 34798.81 24391.47 29091.92 28995.12 357
EGC-MVSNET75.22 35769.54 36092.28 35194.81 36089.58 33597.64 28596.50 3541.82 4015.57 40295.74 34468.21 37596.26 36973.80 38691.71 29190.99 381
新几何297.64 285
MDA-MVSNet-bldmvs89.97 33088.35 33694.83 31695.21 35491.34 30397.64 28597.51 29988.36 35571.17 39096.13 33879.22 33796.63 36583.65 36586.27 35696.52 317
pmmvs-eth3d90.36 32789.05 33294.32 33091.10 38092.12 28897.63 28896.95 33788.86 35284.91 37493.13 37578.32 34296.74 36088.70 33281.81 36994.09 371
TR-MVS94.94 22694.20 23297.17 18797.75 22194.14 24197.59 28997.02 33392.28 28195.75 20597.64 24683.88 30798.96 22189.77 31696.15 22798.40 209
无先验97.58 29098.72 11391.38 30499.87 5893.36 24199.60 77
旧先验297.57 29191.30 31098.67 7399.80 8895.70 170
mvsany_test197.69 7897.70 6897.66 16198.24 18394.18 24097.53 29297.53 29795.52 13199.66 1599.51 1394.30 8999.56 14598.38 4598.62 14599.23 135
CostFormer94.95 22494.73 20895.60 29097.28 26189.06 34397.53 29296.89 34289.66 34196.82 17096.72 31786.05 25998.95 22695.53 17596.13 22898.79 183
XVG-OURS96.55 13696.41 12996.99 19898.75 13693.76 25097.50 29498.52 16295.67 12596.83 16899.30 5288.95 20099.53 15395.88 16196.26 22397.69 233
xiu_mvs_v2_base97.66 8097.70 6897.56 16798.61 15295.46 17697.44 29598.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7398.66 14497.41 240
tpm94.13 27493.80 26195.12 30496.50 30987.91 36297.44 29595.89 36492.62 26696.37 19196.30 33184.13 30298.30 30293.24 24391.66 29399.14 152
DeepPCF-MVS96.37 297.93 6698.48 2396.30 26299.00 11389.54 33697.43 29798.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3199.72 45
test22299.23 8897.17 9297.40 29898.66 13188.68 35398.05 10698.96 11094.14 9399.53 9199.61 75
pmmvs494.69 23393.99 24896.81 21395.74 33995.94 15497.40 29897.67 28290.42 32893.37 28697.59 25089.08 19398.20 30992.97 25291.67 29296.30 334
test0.0.03 194.08 27993.51 27995.80 28295.53 34692.89 28297.38 30095.97 36195.11 15492.51 31496.66 31987.71 22996.94 35787.03 34593.67 26097.57 238
HyFIR lowres test96.90 12196.49 12798.14 11999.33 5995.56 17197.38 30099.65 292.34 27797.61 14298.20 19689.29 18599.10 20296.97 11697.60 18799.77 27
Effi-MVS+97.12 11396.69 11898.39 10198.19 19196.72 11097.37 30298.43 18493.71 21797.65 13998.02 20892.20 12199.25 17896.87 12897.79 17999.19 143
N_pmnet87.12 34487.77 34285.17 36595.46 34961.92 39997.37 30270.66 40485.83 36888.73 35596.04 34085.33 27597.76 33980.02 37490.48 30595.84 345
PAPR96.84 12496.24 13798.65 7598.72 14196.92 10097.36 30498.57 15193.33 23796.67 17597.57 25294.30 8999.56 14591.05 29898.59 14799.47 100
PMMVS96.60 13196.33 13297.41 17497.90 21493.93 24597.35 30598.41 18692.84 26097.76 12797.45 26091.10 15399.20 18596.26 14897.91 17499.11 155
PS-MVSNAJ97.73 7497.77 6597.62 16398.68 14595.58 17097.34 30698.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7099.17 12097.39 242
SCA95.46 18995.13 18896.46 25197.67 22991.29 30597.33 30797.60 28794.68 17396.92 16597.10 28083.97 30598.89 23392.59 26398.32 16499.20 139
testdata197.32 30896.34 95
ET-MVSNet_ETH3D94.13 27492.98 29097.58 16598.22 18696.20 13897.31 30995.37 36794.53 17979.56 38297.63 24886.51 24997.53 34796.91 11990.74 30399.02 165
tpm294.19 27093.76 26695.46 29497.23 26489.04 34497.31 30996.85 34687.08 36096.21 19496.79 31583.75 31198.74 24892.43 27196.23 22598.59 201
PVSNet_Blended97.38 10097.12 9698.14 11999.25 8195.35 18397.28 31199.26 1593.13 24897.94 11998.21 19592.74 10899.81 8196.88 12599.40 10999.27 129
CLD-MVS95.62 18395.34 17696.46 25197.52 24493.75 25297.27 31298.46 17695.53 13094.42 23798.00 21186.21 25698.97 21796.25 15094.37 23896.66 298
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPMVS94.99 22094.48 21996.52 24397.22 26591.75 29697.23 31391.66 39194.11 19197.28 14896.81 31485.70 26698.84 23993.04 25097.28 19298.97 170
miper_lstm_enhance94.33 26194.07 24195.11 30597.75 22190.97 30997.22 31498.03 26091.67 29892.76 30496.97 30190.03 17197.78 33892.51 26889.64 31696.56 309
APD_test188.22 33988.01 33988.86 35995.98 33274.66 38997.21 31596.44 35583.96 37686.66 36597.90 21960.95 38597.84 33782.73 36790.23 30994.09 371
dmvs_testset87.64 34188.93 33483.79 36795.25 35363.36 39897.20 31691.17 39293.07 25085.64 37195.98 34285.30 27791.52 39069.42 38987.33 34696.49 323
YYNet190.70 32589.39 32894.62 32294.79 36190.65 31897.20 31697.46 30387.54 35872.54 38895.74 34486.51 24996.66 36486.00 35186.76 35596.54 312
MDA-MVSNet_test_wron90.71 32489.38 32994.68 32094.83 35990.78 31597.19 31897.46 30387.60 35772.41 38995.72 34886.51 24996.71 36385.92 35286.80 35496.56 309
IterMVS-SCA-FT94.11 27693.87 25694.85 31497.98 21090.56 32097.18 31998.11 24293.75 21292.58 31097.48 25783.97 30597.41 35092.48 27091.30 29696.58 305
IterMVS94.09 27893.85 25894.80 31797.99 20890.35 32397.18 31998.12 23993.68 22292.46 31697.34 26584.05 30397.41 35092.51 26891.33 29596.62 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FE-MVS95.62 18394.90 20197.78 14698.37 16994.92 20597.17 32197.38 31390.95 32097.73 13297.70 23885.32 27699.63 13491.18 29398.33 16298.79 183
DPM-MVS97.55 8996.99 10399.23 3899.04 10898.55 2797.17 32198.35 19794.85 16897.93 12198.58 15395.07 7299.71 11892.60 26199.34 11399.43 109
c3_l94.79 23094.43 22595.89 27997.75 22193.12 27897.16 32398.03 26092.23 28293.46 28397.05 29291.39 14298.01 32393.58 23689.21 32596.53 314
new-patchmatchnet88.50 33887.45 34391.67 35490.31 38285.89 37097.16 32397.33 31589.47 34483.63 37692.77 37776.38 35795.06 38082.70 36877.29 38394.06 373
UnsupCasMVSNet_eth90.99 32289.92 32594.19 33294.08 36689.83 32997.13 32598.67 12893.69 22085.83 36996.19 33775.15 36296.74 36089.14 32879.41 37896.00 342
IB-MVS91.98 1793.27 29591.97 30897.19 18597.47 24693.41 26697.09 32695.99 36093.32 23892.47 31595.73 34678.06 34699.53 15394.59 20382.98 36598.62 198
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl____94.51 25094.01 24596.02 27197.58 23693.40 26797.05 32797.96 26791.73 29692.76 30497.08 28689.06 19498.13 31492.61 26090.29 30896.52 317
DIV-MVS_self_test94.52 24994.03 24295.99 27297.57 24093.38 26897.05 32797.94 26891.74 29492.81 30297.10 28089.12 19198.07 32092.60 26190.30 30796.53 314
miper_ehance_all_eth95.01 21894.69 21095.97 27497.70 22793.31 27097.02 32998.07 25292.23 28293.51 28096.96 30391.85 13098.15 31293.68 23191.16 29996.44 328
CMPMVSbinary66.06 2189.70 33189.67 32789.78 35793.19 37276.56 38397.00 33098.35 19780.97 38081.57 37997.75 23474.75 36498.61 25889.85 31593.63 26394.17 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpmrst95.63 18295.69 16495.44 29597.54 24188.54 35296.97 33197.56 29093.50 23197.52 14596.93 30789.49 17899.16 18895.25 18496.42 21598.64 197
dp94.15 27393.90 25494.90 31197.31 26086.82 36896.97 33197.19 32391.22 31596.02 19996.61 32485.51 27099.02 21390.00 31494.30 23998.85 179
cl2294.68 23594.19 23396.13 26898.11 19993.60 25796.94 33398.31 20392.43 27493.32 28896.87 31186.51 24998.28 30694.10 22091.16 29996.51 320
PM-MVS87.77 34086.55 34691.40 35591.03 38183.36 37796.92 33495.18 37191.28 31286.48 36793.42 37253.27 38896.74 36089.43 32581.97 36894.11 370
TinyColmap92.31 31091.53 31194.65 32196.92 28589.75 33096.92 33496.68 35090.45 32789.62 34597.85 22576.06 35998.81 24386.74 34692.51 28395.41 352
our_test_393.65 28893.30 28594.69 31995.45 35089.68 33496.91 33697.65 28391.97 28991.66 32896.88 30989.67 17797.93 33088.02 34091.49 29496.48 325
test-LLR95.10 21494.87 20395.80 28296.77 29389.70 33296.91 33695.21 36995.11 15494.83 22195.72 34887.71 22998.97 21793.06 24898.50 15298.72 188
TESTMET0.1,194.18 27293.69 27195.63 28896.92 28589.12 34296.91 33694.78 37493.17 24594.88 21896.45 32878.52 34098.92 22893.09 24798.50 15298.85 179
test-mter94.08 27993.51 27995.80 28296.77 29389.70 33296.91 33695.21 36992.89 25894.83 22195.72 34877.69 34898.97 21793.06 24898.50 15298.72 188
USDC93.33 29492.71 29595.21 30196.83 29290.83 31496.91 33697.50 30093.84 20790.72 33698.14 20077.69 34898.82 24289.51 32393.21 27595.97 343
MDTV_nov1_ep13_2view84.26 37296.89 34190.97 31997.90 12389.89 17393.91 22599.18 148
ppachtmachnet_test93.22 29792.63 29794.97 30995.45 35090.84 31396.88 34297.88 27390.60 32392.08 32397.26 27088.08 22097.86 33685.12 35890.33 30696.22 336
tpmvs94.60 24194.36 22895.33 29997.46 24788.60 35196.88 34297.68 28191.29 31193.80 27096.42 32988.58 20599.24 18091.06 29696.04 22998.17 219
MDTV_nov1_ep1395.40 17097.48 24588.34 35696.85 34497.29 31793.74 21497.48 14697.26 27089.18 18999.05 20691.92 28297.43 190
PatchmatchNetpermissive95.71 17795.52 16896.29 26397.58 23690.72 31696.84 34597.52 29894.06 19397.08 15596.96 30389.24 18898.90 23292.03 27998.37 15999.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MSDG95.93 16595.30 18297.83 14198.90 12395.36 18196.83 34698.37 19491.32 30994.43 23698.73 13890.27 16899.60 13990.05 31298.82 13798.52 205
thisisatest051595.61 18694.89 20297.76 14998.15 19795.15 19396.77 34794.41 37792.95 25697.18 15297.43 26284.78 28599.45 16694.63 19897.73 18398.68 192
GA-MVS94.81 22994.03 24297.14 18997.15 27393.86 24796.76 34897.58 28894.00 19894.76 22497.04 29380.91 32598.48 27291.79 28496.25 22499.09 157
tpm cat193.36 29192.80 29395.07 30797.58 23687.97 36196.76 34897.86 27482.17 37993.53 27796.04 34086.13 25799.13 19489.24 32795.87 23098.10 221
eth_miper_zixun_eth94.68 23594.41 22695.47 29397.64 23291.71 29896.73 35098.07 25292.71 26493.64 27397.21 27690.54 16398.17 31193.38 23989.76 31496.54 312
test_post196.68 35130.43 40087.85 22798.69 25192.59 263
pmmvs386.67 34584.86 35092.11 35388.16 38787.19 36796.63 35294.75 37579.88 38187.22 36192.75 37866.56 38195.20 37981.24 37276.56 38593.96 374
miper_enhance_ethall95.10 21494.75 20796.12 26997.53 24393.73 25496.61 35398.08 25092.20 28593.89 26496.65 32192.44 11298.30 30294.21 21591.16 29996.34 331
testmvs21.48 36624.95 36911.09 38314.89 4046.47 40896.56 3549.87 4067.55 39917.93 39939.02 3979.43 4065.90 40216.56 40112.72 39920.91 397
test12320.95 36723.72 37012.64 38213.54 4058.19 40796.55 3556.13 4077.48 40016.74 40037.98 39812.97 4036.05 40116.69 4005.43 40023.68 396
CL-MVSNet_self_test90.11 32889.14 33193.02 34591.86 37788.23 35996.51 35698.07 25290.49 32490.49 33994.41 36384.75 28695.34 37780.79 37374.95 38695.50 351
GG-mvs-BLEND96.59 23296.34 31894.98 20196.51 35688.58 39793.10 29794.34 36780.34 33298.05 32189.53 32296.99 19796.74 285
new_pmnet90.06 32989.00 33393.22 34394.18 36488.32 35796.42 35896.89 34286.19 36485.67 37093.62 37077.18 35497.10 35481.61 37189.29 32494.23 367
PVSNet91.96 1896.35 14596.15 13996.96 20299.17 9492.05 29196.08 35998.68 12393.69 22097.75 12997.80 23288.86 20199.69 12494.26 21499.01 12699.15 150
ADS-MVSNet294.58 24494.40 22795.11 30598.00 20688.74 34996.04 36097.30 31690.15 33296.47 18796.64 32287.89 22497.56 34690.08 31097.06 19599.02 165
ADS-MVSNet95.00 21994.45 22396.63 22698.00 20691.91 29396.04 36097.74 28090.15 33296.47 18796.64 32287.89 22498.96 22190.08 31097.06 19599.02 165
PAPM94.95 22494.00 24697.78 14697.04 27895.65 16896.03 36298.25 21791.23 31494.19 25097.80 23291.27 14898.86 23882.61 36997.61 18698.84 181
cascas94.63 24093.86 25796.93 20496.91 28794.27 23596.00 36398.51 16485.55 37094.54 22896.23 33484.20 30198.87 23695.80 16596.98 20097.66 234
gg-mvs-nofinetune92.21 31190.58 31997.13 19096.75 29695.09 19595.85 36489.40 39685.43 37194.50 23081.98 38980.80 32898.40 29592.16 27398.33 16297.88 225
FPMVS77.62 35677.14 35679.05 37579.25 39760.97 40095.79 36595.94 36265.96 38967.93 39194.40 36437.73 39588.88 39468.83 39088.46 33487.29 387
CHOSEN 280x42097.18 11097.18 9597.20 18498.81 13393.27 27195.78 36699.15 2895.25 14796.79 17398.11 20292.29 11699.07 20598.56 2999.85 599.25 133
MIMVSNet93.26 29692.21 30596.41 25497.73 22593.13 27795.65 36797.03 33191.27 31394.04 25796.06 33975.33 36197.19 35386.56 34796.23 22598.92 176
KD-MVS_2432*160089.61 33387.96 34094.54 32394.06 36791.59 30095.59 36897.63 28589.87 33788.95 35194.38 36578.28 34396.82 35884.83 35968.05 39095.21 355
miper_refine_blended89.61 33387.96 34094.54 32394.06 36791.59 30095.59 36897.63 28589.87 33788.95 35194.38 36578.28 34396.82 35884.83 35968.05 39095.21 355
PCF-MVS93.45 1194.68 23593.43 28298.42 9998.62 15196.77 10795.48 37098.20 22284.63 37493.34 28798.32 18488.55 20999.81 8184.80 36198.96 12898.68 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
JIA-IIPM93.35 29292.49 30095.92 27696.48 31190.65 31895.01 37196.96 33685.93 36796.08 19787.33 38687.70 23198.78 24691.35 29195.58 23498.34 212
CR-MVSNet94.76 23294.15 23796.59 23297.00 27993.43 26494.96 37297.56 29092.46 27096.93 16396.24 33288.15 21797.88 33587.38 34396.65 20798.46 207
RPMNet92.81 30491.34 31397.24 18297.00 27993.43 26494.96 37298.80 9382.27 37896.93 16392.12 38186.98 24399.82 7676.32 38496.65 20798.46 207
UnsupCasMVSNet_bld87.17 34285.12 34993.31 34191.94 37688.77 34894.92 37498.30 20984.30 37582.30 37790.04 38363.96 38397.25 35285.85 35374.47 38893.93 375
PVSNet_088.72 1991.28 31890.03 32495.00 30897.99 20887.29 36694.84 37598.50 16992.06 28789.86 34395.19 35579.81 33499.39 16992.27 27269.79 38998.33 213
Patchmatch-test94.42 25793.68 27296.63 22697.60 23591.76 29594.83 37697.49 30289.45 34594.14 25297.10 28088.99 19598.83 24185.37 35798.13 16899.29 127
testf179.02 35177.70 35382.99 37088.10 38866.90 39594.67 37793.11 38571.08 38774.02 38593.41 37334.15 39793.25 38572.25 38778.50 38088.82 385
APD_test279.02 35177.70 35382.99 37088.10 38866.90 39594.67 37793.11 38571.08 38774.02 38593.41 37334.15 39793.25 38572.25 38778.50 38088.82 385
Patchmtry93.22 29792.35 30395.84 28196.77 29393.09 27994.66 37997.56 29087.37 35992.90 30096.24 33288.15 21797.90 33187.37 34490.10 31196.53 314
PatchT93.06 30291.97 30896.35 25896.69 29992.67 28394.48 38097.08 32686.62 36197.08 15592.23 38087.94 22397.90 33178.89 37996.69 20598.49 206
LCM-MVSNet78.70 35376.24 35886.08 36377.26 39971.99 39194.34 38196.72 34861.62 39176.53 38389.33 38433.91 39992.78 38881.85 37074.60 38793.46 376
PMMVS277.95 35575.44 35985.46 36482.54 39474.95 38794.23 38293.08 38772.80 38674.68 38487.38 38536.36 39691.56 38973.95 38563.94 39289.87 384
MVS-HIRNet89.46 33588.40 33592.64 34797.58 23682.15 37994.16 38393.05 38875.73 38590.90 33482.52 38879.42 33698.33 29783.53 36698.68 14097.43 239
Patchmatch-RL test91.49 31590.85 31693.41 33891.37 37884.40 37192.81 38495.93 36391.87 29287.25 36094.87 35988.99 19596.53 36692.54 26782.00 36799.30 125
ambc89.49 35886.66 39075.78 38492.66 38596.72 34886.55 36692.50 37946.01 38997.90 33190.32 30682.09 36694.80 364
EMVS64.07 36263.26 36566.53 38081.73 39658.81 40391.85 38684.75 39951.93 39559.09 39575.13 39443.32 39279.09 39842.03 39839.47 39561.69 394
E-PMN64.94 36164.25 36367.02 37982.28 39559.36 40291.83 38785.63 39852.69 39360.22 39477.28 39341.06 39480.12 39746.15 39741.14 39461.57 395
ANet_high69.08 35865.37 36280.22 37465.99 40171.96 39290.91 38890.09 39582.62 37749.93 39778.39 39229.36 40081.75 39562.49 39238.52 39686.95 389
tmp_tt68.90 35966.97 36174.68 37750.78 40359.95 40187.13 38983.47 40038.80 39762.21 39396.23 33464.70 38276.91 39988.91 33130.49 39787.19 388
MVEpermissive62.14 2263.28 36359.38 36674.99 37674.33 40065.47 39785.55 39080.50 40252.02 39451.10 39675.00 39510.91 40580.50 39651.60 39553.40 39378.99 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 36063.57 36473.09 37857.90 40251.22 40585.05 39193.93 38454.45 39244.32 39883.57 38713.22 40289.15 39358.68 39381.00 37278.91 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method79.03 35078.17 35281.63 37386.06 39254.40 40482.75 39296.89 34239.54 39680.98 38195.57 35258.37 38694.73 38184.74 36278.61 37995.75 347
Gipumacopyleft78.40 35476.75 35783.38 36995.54 34580.43 38279.42 39397.40 31164.67 39073.46 38780.82 39145.65 39093.14 38766.32 39187.43 34476.56 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d30.17 36430.18 36830.16 38178.61 39843.29 40666.79 39414.21 40517.31 39814.82 40111.93 40111.55 40441.43 40037.08 39919.30 3985.76 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k23.98 36531.98 3670.00 3840.00 4060.00 4090.00 39598.59 1440.00 4020.00 40398.61 14890.60 1620.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.88 36910.50 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40294.51 810.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.20 36810.94 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40398.43 1680.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS90.94 31088.66 333
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 27597.52 9899.72 5199.74 37
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 406
eth-test0.00 406
ZD-MVS99.46 4998.70 2398.79 9893.21 24398.67 7398.97 10595.70 4599.83 6996.07 15299.58 79
IU-MVS99.71 1999.23 798.64 13695.28 14599.63 1898.35 4799.81 1299.83 13
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 1999.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
GSMVS99.20 139
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18199.20 139
sam_mvs88.99 195
MTGPAbinary98.74 108
test_post31.83 39988.83 20298.91 229
patchmatchnet-post95.10 35789.42 18298.89 233
gm-plane-assit95.88 33687.47 36489.74 34096.94 30699.19 18693.32 242
test9_res96.39 14699.57 8099.69 56
agg_prior295.87 16299.57 8099.68 61
agg_prior99.30 6898.38 3598.72 11397.57 14499.81 81
TestCases96.99 19899.25 8193.21 27598.18 22791.36 30593.52 27898.77 13284.67 28999.72 11389.70 31997.87 17698.02 223
test_prior99.19 4099.31 6498.22 4798.84 7999.70 11999.65 69
新几何199.16 4599.34 5798.01 5998.69 12090.06 33498.13 10198.95 11294.60 7999.89 4791.97 28199.47 9999.59 79
旧先验199.29 7397.48 7698.70 11999.09 9295.56 4899.47 9999.61 75
原ACMM198.65 7599.32 6296.62 11298.67 12893.27 24297.81 12598.97 10595.18 6799.83 6993.84 22799.46 10299.50 91
testdata299.89 4791.65 288
segment_acmp96.85 14
testdata98.26 11099.20 9295.36 18198.68 12391.89 29198.60 8199.10 8694.44 8699.82 7694.27 21399.44 10399.58 83
test1299.18 4299.16 9898.19 4898.53 15998.07 10595.13 7099.72 11399.56 8699.63 73
plane_prior797.42 25294.63 217
plane_prior697.35 25994.61 22087.09 240
plane_prior598.56 15399.03 21096.07 15294.27 24096.92 260
plane_prior498.28 187
plane_prior394.61 22097.02 6495.34 209
plane_prior197.37 258
n20.00 408
nn0.00 408
door-mid94.37 378
lessismore_v094.45 32994.93 35888.44 35591.03 39386.77 36497.64 24676.23 35898.42 28190.31 30785.64 36096.51 320
LGP-MVS_train96.47 24897.46 24793.54 25998.54 15794.67 17494.36 24098.77 13285.39 27199.11 19895.71 16894.15 24696.76 283
test1198.66 131
door94.64 376
HQP5-MVS94.25 237
BP-MVS95.30 180
HQP4-MVS94.45 23298.96 22196.87 271
HQP3-MVS98.46 17694.18 244
HQP2-MVS86.75 246
NP-MVS97.28 26194.51 22597.73 235
ACMMP++_ref92.97 277
ACMMP++93.61 264
Test By Simon94.64 78
ITE_SJBPF95.44 29597.42 25291.32 30497.50 30095.09 15793.59 27498.35 17881.70 31898.88 23589.71 31893.39 27196.12 339
DeepMVS_CXcopyleft86.78 36297.09 27772.30 39095.17 37275.92 38484.34 37595.19 35570.58 37295.35 37679.98 37689.04 32892.68 380