This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++.99.08 298.89 299.64 399.17 10099.23 799.69 198.88 5097.32 3199.53 999.47 897.81 399.94 398.47 1999.72 5299.74 35
FOURS199.82 198.66 2699.69 198.95 3497.46 2299.39 15
DROMVSNet98.21 5798.11 4998.49 9898.34 16897.26 10099.61 398.43 18396.78 5898.87 5098.84 11093.72 10499.01 20398.91 199.50 9299.19 137
HPM-MVScopyleft98.36 4698.10 5099.13 5799.74 897.82 7799.53 498.80 9094.63 15998.61 7098.97 9095.13 7399.77 10497.65 6799.83 999.79 12
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVSFormer97.57 8697.49 7897.84 14198.07 19195.76 16999.47 598.40 18894.98 14298.79 5498.83 11292.34 11898.41 27396.91 10099.59 7599.34 116
test_djsdf96.00 15295.69 15296.93 19895.72 32295.49 17899.47 598.40 18894.98 14294.58 21397.86 20889.16 18898.41 27396.91 10094.12 23496.88 253
HPM-MVS_fast98.38 4498.13 4799.12 6099.75 497.86 7399.44 798.82 7394.46 16698.94 4399.20 5495.16 7299.74 11097.58 7299.85 399.77 22
nrg03096.28 14395.72 14797.96 13796.90 27498.15 6199.39 898.31 20495.47 11394.42 22398.35 16192.09 12898.69 23797.50 8089.05 30697.04 236
APDe-MVS99.02 498.84 399.55 999.57 3598.96 1699.39 898.93 3897.38 2899.41 1399.54 196.66 1699.84 5698.86 299.85 399.87 1
3Dnovator+94.38 697.43 9596.78 11099.38 2097.83 20798.52 3299.37 1098.71 11797.09 5092.99 28199.13 6789.36 18299.89 3896.97 9699.57 7999.71 48
FIs96.51 13496.12 13697.67 15897.13 26097.54 8799.36 1199.22 1495.89 9394.03 24398.35 16191.98 13198.44 26496.40 12892.76 26097.01 237
FC-MVSNet-test96.42 13796.05 13897.53 16896.95 26997.27 9699.36 1199.23 1295.83 9693.93 24598.37 15992.00 13098.32 28296.02 14092.72 26197.00 238
CS-MVS-test97.90 6797.83 6298.11 12698.14 18796.49 13199.35 1398.40 18896.31 7998.27 8998.31 16894.42 9499.05 19298.07 3899.20 11398.80 174
3Dnovator94.51 597.46 9096.93 10399.07 6397.78 20997.64 8299.35 1399.06 2297.02 5293.75 25599.16 6389.25 18599.92 2497.22 8899.75 4099.64 74
GeoE96.58 13296.07 13798.10 12798.35 16395.89 16599.34 1598.12 23893.12 22696.09 18698.87 10689.71 17698.97 20592.95 23798.08 16099.43 110
canonicalmvs97.67 7797.23 9098.98 6898.70 14098.38 4099.34 1598.39 19196.76 6097.67 12597.40 24892.26 12199.49 14998.28 3296.28 20999.08 154
CP-MVS98.57 2798.36 2399.19 4699.66 2897.86 7399.34 1598.87 5795.96 9298.60 7199.13 6796.05 3599.94 397.77 5799.86 199.77 22
EPP-MVSNet97.46 9097.28 8897.99 13498.64 14695.38 18199.33 1898.31 20493.61 20797.19 14099.07 8094.05 9999.23 17096.89 10398.43 14999.37 115
XVS98.70 1098.49 1799.34 2699.70 2498.35 4899.29 1998.88 5097.40 2598.46 7699.20 5495.90 4399.89 3897.85 5299.74 4399.78 15
X-MVStestdata94.06 26892.30 28899.34 2699.70 2498.35 4899.29 1998.88 5097.40 2598.46 7643.50 36795.90 4399.89 3897.85 5299.74 4399.78 15
tttt051796.07 14895.51 15897.78 14798.41 16094.84 20699.28 2194.33 35894.26 17197.64 12998.64 13284.05 29199.47 15495.34 16297.60 17799.03 157
mPP-MVS98.51 3698.26 3899.25 4299.75 498.04 6599.28 2198.81 7996.24 8098.35 8599.23 4795.46 5499.94 397.42 8299.81 1099.77 22
MSP-MVS98.74 998.55 1199.29 3499.75 498.23 5499.26 2398.88 5097.52 1699.41 1398.78 11796.00 3799.79 9597.79 5699.59 7599.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
v7n94.19 25793.43 26896.47 23795.90 31794.38 22999.26 2398.34 20091.99 26592.76 28697.13 26288.31 21098.52 25589.48 30687.70 32196.52 300
WR-MVS_H95.05 20394.46 20796.81 20696.86 27695.82 16799.24 2599.24 1093.87 18792.53 29496.84 29590.37 16598.24 29393.24 22787.93 31996.38 312
HFP-MVS98.63 1798.40 1999.32 3199.72 1398.29 5199.23 2698.96 3296.10 8998.94 4399.17 5896.06 3399.92 2497.62 6999.78 2599.75 30
region2R98.61 1898.38 2199.29 3499.74 898.16 6099.23 2698.93 3896.15 8498.94 4399.17 5895.91 4299.94 397.55 7699.79 2199.78 15
ACMMPR98.59 2198.36 2399.29 3499.74 898.15 6199.23 2698.95 3496.10 8998.93 4799.19 5795.70 4799.94 397.62 6999.79 2199.78 15
QAPM96.29 14195.40 15998.96 7097.85 20697.60 8599.23 2698.93 3889.76 31893.11 27899.02 8389.11 19099.93 1891.99 26499.62 7099.34 116
MP-MVScopyleft98.33 5198.01 5499.28 3899.75 498.18 5899.22 3098.79 9596.13 8697.92 11299.23 4794.54 8799.94 396.74 11799.78 2599.73 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Vis-MVSNetpermissive97.42 9697.11 9498.34 10998.66 14496.23 14399.22 3099.00 2796.63 6698.04 9799.21 5088.05 21999.35 16196.01 14199.21 11299.45 108
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG97.85 7097.74 6698.20 11899.67 2795.16 18999.22 3099.32 793.04 22897.02 14998.92 10295.36 6199.91 3397.43 8199.64 6699.52 89
OpenMVScopyleft93.04 1395.83 16095.00 18298.32 11097.18 25797.32 9399.21 3398.97 3089.96 31491.14 31599.05 8286.64 24699.92 2493.38 22299.47 9597.73 218
DTE-MVSNet93.98 27093.26 27396.14 25696.06 31294.39 22899.20 3498.86 6393.06 22791.78 30997.81 21685.87 26097.58 32890.53 28686.17 33696.46 309
Vis-MVSNet (Re-imp)96.87 12196.55 12297.83 14298.73 13595.46 17999.20 3498.30 21094.96 14496.60 16898.87 10690.05 17098.59 24993.67 21698.60 13899.46 106
ZNCC-MVS98.49 3798.20 4599.35 2599.73 1298.39 3999.19 3698.86 6395.77 9898.31 8899.10 7295.46 5499.93 1897.57 7599.81 1099.74 35
IS-MVSNet97.22 10596.88 10598.25 11598.85 12896.36 13899.19 3697.97 26295.39 11797.23 13998.99 8991.11 15298.93 21494.60 18498.59 13999.47 102
PEN-MVS94.42 24493.73 25596.49 23596.28 30394.84 20699.17 3899.00 2793.51 20992.23 30397.83 21486.10 25697.90 31792.55 25086.92 33196.74 268
PS-MVSNAJss96.43 13696.26 13296.92 20195.84 32095.08 19599.16 3998.50 17195.87 9593.84 25198.34 16594.51 8898.61 24596.88 10693.45 25097.06 235
APD-MVS_3200maxsize98.53 3598.33 3399.15 5699.50 4397.92 7299.15 4098.81 7996.24 8099.20 2599.37 2495.30 6599.80 8397.73 5999.67 5899.72 44
TSAR-MVS + MP.98.78 798.62 899.24 4399.69 2698.28 5399.14 4198.66 13596.84 5699.56 699.31 3796.34 2299.70 11898.32 3099.73 4599.73 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
anonymousdsp95.42 17994.91 18796.94 19795.10 33595.90 16499.14 4198.41 18693.75 19293.16 27497.46 24287.50 23298.41 27395.63 15794.03 23696.50 305
jajsoiax95.45 17795.03 18196.73 21095.42 33394.63 21599.14 4198.52 16395.74 9993.22 27298.36 16083.87 29698.65 24396.95 9994.04 23596.91 249
PS-CasMVS94.67 22793.99 23696.71 21196.68 28695.26 18799.13 4499.03 2593.68 20292.33 30197.95 19985.35 26898.10 30193.59 21888.16 31896.79 262
abl_698.30 5498.03 5399.13 5799.56 3697.76 8099.13 4498.82 7396.14 8599.26 2199.37 2493.33 10799.93 1896.96 9899.67 5899.69 55
CPTT-MVS97.72 7597.32 8798.92 7299.64 3097.10 10599.12 4698.81 7992.34 25398.09 9399.08 7993.01 11199.92 2496.06 13899.77 2899.75 30
SR-MVS-dyc-post98.54 3398.35 2599.13 5799.49 4797.86 7399.11 4798.80 9096.49 7199.17 2899.35 3095.34 6299.82 6797.72 6099.65 6299.71 48
RE-MVS-def98.34 2999.49 4797.86 7399.11 4798.80 9096.49 7199.17 2899.35 3095.29 6697.72 6099.65 6299.71 48
CP-MVSNet94.94 21294.30 21696.83 20596.72 28495.56 17499.11 4798.95 3493.89 18592.42 30097.90 20387.19 23698.12 30094.32 19588.21 31696.82 261
SteuartSystems-ACMMP98.90 698.75 599.36 2499.22 9698.43 3899.10 5098.87 5797.38 2899.35 1799.40 1597.78 599.87 4797.77 5799.85 399.78 15
Skip Steuart: Steuart Systems R&D Blog.
test117298.56 2998.35 2599.16 5399.53 3897.94 7199.09 5198.83 7196.52 7099.05 3699.34 3395.34 6299.82 6797.86 5199.64 6699.73 40
SR-MVS98.57 2798.35 2599.24 4399.53 3898.18 5899.09 5198.82 7396.58 6799.10 3399.32 3595.39 5899.82 6797.70 6599.63 6899.72 44
GST-MVS98.43 4198.12 4899.34 2699.72 1398.38 4099.09 5198.82 7395.71 10198.73 6099.06 8195.27 6799.93 1897.07 9399.63 6899.72 44
K. test v392.55 29291.91 29494.48 31195.64 32489.24 32699.07 5494.88 35294.04 17686.78 34397.59 23377.64 33797.64 32692.08 25989.43 30196.57 290
test072699.72 1399.25 299.06 5598.88 5097.62 1199.56 699.50 497.42 9
v894.47 24293.77 25196.57 22796.36 30094.83 20899.05 5698.19 22391.92 26793.16 27496.97 28388.82 20198.48 25791.69 27187.79 32096.39 311
SF-MVS98.59 2198.32 3499.41 1999.54 3798.71 2299.04 5798.81 7995.12 13499.32 1899.39 1696.22 2399.84 5697.72 6099.73 4599.67 65
CS-MVS97.94 6497.90 6098.06 13098.04 19596.85 11599.04 5798.39 19196.17 8398.50 7598.29 17194.60 8599.02 20098.61 899.43 10198.30 202
PHI-MVS98.34 4998.06 5199.18 5099.15 10698.12 6399.04 5799.09 2093.32 21798.83 5399.10 7296.54 1999.83 5997.70 6599.76 3499.59 84
test_part194.82 21693.82 24697.82 14498.84 12997.82 7799.03 6098.81 7992.31 25792.51 29697.89 20581.96 30598.67 24194.80 17988.24 31596.98 239
TranMVSNet+NR-MVSNet95.14 19894.48 20597.11 18796.45 29796.36 13899.03 6099.03 2595.04 14093.58 25897.93 20188.27 21198.03 30894.13 20186.90 33296.95 243
ACMMPcopyleft98.23 5597.95 5799.09 6299.74 897.62 8499.03 6099.41 695.98 9197.60 13299.36 2894.45 9299.93 1897.14 9098.85 12899.70 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SED-MVS99.09 198.91 199.63 499.71 2199.24 599.02 6398.87 5797.65 999.73 199.48 697.53 799.94 398.43 2399.81 1099.70 52
OPU-MVS99.37 2399.24 9499.05 1499.02 6399.16 6397.81 399.37 16097.24 8799.73 4599.70 52
EIA-MVS97.75 7397.58 7098.27 11298.38 16196.44 13499.01 6598.60 14595.88 9497.26 13897.53 23894.97 7799.33 16397.38 8499.20 11399.05 156
Anonymous2023121194.10 26493.26 27396.61 22199.11 10994.28 23199.01 6598.88 5086.43 33992.81 28497.57 23581.66 30898.68 24094.83 17689.02 30896.88 253
mvs_tets95.41 18195.00 18296.65 21695.58 32694.42 22699.00 6798.55 15795.73 10093.21 27398.38 15883.45 30098.63 24497.09 9294.00 23796.91 249
baseline97.64 7997.44 8298.25 11598.35 16396.20 14499.00 6798.32 20296.33 7898.03 9899.17 5891.35 14699.16 17698.10 3698.29 15599.39 113
v1094.29 25193.55 26396.51 23496.39 29994.80 21098.99 6998.19 22391.35 28593.02 28096.99 28188.09 21798.41 27390.50 28788.41 31496.33 315
PGM-MVS98.49 3798.23 4399.27 4199.72 1398.08 6498.99 6999.49 595.43 11599.03 3799.32 3595.56 5099.94 396.80 11399.77 2899.78 15
LPG-MVS_test95.62 17195.34 16596.47 23797.46 23493.54 25498.99 6998.54 15994.67 15694.36 22598.77 11985.39 26699.11 18595.71 15394.15 23296.76 266
#test#98.54 3398.27 3799.32 3199.72 1398.29 5198.98 7298.96 3295.65 10598.94 4399.17 5896.06 3399.92 2497.21 8999.78 2599.75 30
DVP-MVScopyleft99.03 398.83 499.63 499.72 1399.25 298.97 7398.58 15297.62 1199.45 1199.46 1197.42 999.94 398.47 1999.81 1099.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1399.35 198.97 7398.88 5099.94 398.47 1999.81 1099.84 6
tfpnnormal93.66 27392.70 28296.55 23196.94 27095.94 15898.97 7399.19 1591.04 29791.38 31397.34 24984.94 27498.61 24585.45 33489.02 30895.11 340
V4294.78 22094.14 22696.70 21396.33 30295.22 18898.97 7398.09 24892.32 25594.31 22897.06 27388.39 20998.55 25292.90 23988.87 31096.34 313
SMA-MVScopyleft98.58 2498.25 3999.56 899.51 4199.04 1598.95 7798.80 9093.67 20499.37 1699.52 396.52 2099.89 3898.06 3999.81 1099.76 28
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pm-mvs193.94 27193.06 27596.59 22496.49 29595.16 18998.95 7798.03 25992.32 25591.08 31697.84 21184.54 28298.41 27392.16 25786.13 33896.19 320
Anonymous2024052191.18 30290.44 30393.42 32293.70 35088.47 33898.94 7997.56 28488.46 33089.56 33095.08 33877.15 34096.97 33883.92 34289.55 29894.82 345
VPA-MVSNet95.75 16395.11 17897.69 15697.24 24997.27 9698.94 7999.23 1295.13 13395.51 19497.32 25185.73 26198.91 21697.33 8689.55 29896.89 252
RRT_test8_iter0594.56 23494.19 22195.67 27597.60 22191.34 29698.93 8198.42 18594.75 15193.39 26797.87 20779.00 32598.61 24596.78 11590.99 28197.07 234
LS3D97.16 11096.66 11998.68 8298.53 15497.19 10398.93 8198.90 4592.83 23895.99 19099.37 2492.12 12799.87 4793.67 21699.57 7998.97 163
ACMM93.85 995.69 16895.38 16396.61 22197.61 22093.84 24398.91 8398.44 18095.25 12794.28 22998.47 14886.04 25999.12 18295.50 16093.95 23996.87 255
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MTAPA98.58 2498.29 3699.46 1599.76 298.64 2798.90 8498.74 10797.27 3898.02 9999.39 1694.81 8099.96 197.91 4699.79 2199.77 22
SD-MVS98.64 1598.68 698.53 9499.33 6798.36 4798.90 8498.85 6797.28 3499.72 399.39 1696.63 1897.60 32798.17 3399.85 399.64 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TransMVSNet (Re)92.67 29191.51 29696.15 25596.58 29094.65 21398.90 8496.73 33290.86 29989.46 33197.86 20885.62 26398.09 30386.45 32681.12 34795.71 330
EPNet97.28 10396.87 10698.51 9594.98 33696.14 14798.90 8497.02 31998.28 195.99 19099.11 7091.36 14599.89 3896.98 9599.19 11599.50 95
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MTMP98.89 8894.14 361
UA-Net97.96 6097.62 6898.98 6898.86 12697.47 8998.89 8899.08 2196.67 6498.72 6199.54 193.15 11099.81 7494.87 17498.83 12999.65 71
OurMVSNet-221017-094.21 25594.00 23494.85 29995.60 32589.22 32798.89 8897.43 30095.29 12492.18 30498.52 14582.86 30198.59 24993.46 22191.76 26996.74 268
thisisatest053096.01 15195.36 16497.97 13598.38 16195.52 17798.88 9194.19 36094.04 17697.64 12998.31 16883.82 29899.46 15595.29 16697.70 17498.93 167
UGNet96.78 12496.30 13098.19 12098.24 17595.89 16598.88 9198.93 3897.39 2796.81 16097.84 21182.60 30299.90 3696.53 12299.49 9398.79 175
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2024052995.10 20094.22 21997.75 15099.01 11494.26 23398.87 9398.83 7185.79 34596.64 16598.97 9078.73 32699.85 5396.27 13094.89 22399.12 148
thres100view90095.38 18294.70 19597.41 17298.98 11894.92 20498.87 9396.90 32595.38 11896.61 16796.88 29184.29 28499.56 14088.11 31596.29 20697.76 215
XXY-MVS95.20 19594.45 20997.46 16996.75 28296.56 12898.86 9598.65 13993.30 21993.27 27198.27 17584.85 27698.87 22394.82 17791.26 27796.96 241
VDDNet95.36 18594.53 20297.86 14098.10 19095.13 19398.85 9697.75 27490.46 30498.36 8499.39 1673.27 35399.64 12997.98 4296.58 19698.81 173
thres600view795.49 17494.77 19197.67 15898.98 11895.02 19698.85 9696.90 32595.38 11896.63 16696.90 29084.29 28499.59 13688.65 31496.33 20498.40 196
114514_t96.93 11896.27 13198.92 7299.50 4397.63 8398.85 9698.90 4584.80 34897.77 11799.11 7092.84 11299.66 12694.85 17599.77 2899.47 102
LFMVS95.86 15894.98 18498.47 10098.87 12596.32 14098.84 9996.02 33993.40 21498.62 6999.20 5474.99 34799.63 13297.72 6097.20 18399.46 106
testtj98.33 5197.95 5799.47 1499.49 4798.70 2398.83 10098.86 6395.48 11298.91 4999.17 5895.48 5399.93 1895.80 14899.53 8999.76 28
alignmvs97.56 8797.07 9799.01 6598.66 14498.37 4698.83 10098.06 25796.74 6198.00 10597.65 22790.80 15899.48 15398.37 2896.56 19799.19 137
DeepC-MVS95.98 397.88 6897.58 7098.77 7899.25 8896.93 11098.83 10098.75 10596.96 5496.89 15699.50 490.46 16499.87 4797.84 5499.76 3499.52 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP98.61 1898.30 3599.55 999.62 3298.95 1798.82 10398.81 7995.80 9799.16 3099.47 895.37 6099.92 2497.89 4999.75 4099.79 12
casdiffmvs97.63 8097.41 8398.28 11198.33 17096.14 14798.82 10398.32 20296.38 7697.95 10799.21 5091.23 15099.23 17098.12 3598.37 15099.48 100
GBi-Net94.49 24093.80 24896.56 22898.21 17895.00 19798.82 10398.18 22692.46 24694.09 23997.07 27081.16 30997.95 31392.08 25992.14 26496.72 271
test194.49 24093.80 24896.56 22898.21 17895.00 19798.82 10398.18 22692.46 24694.09 23997.07 27081.16 30997.95 31392.08 25992.14 26496.72 271
FMVSNet193.19 28592.07 29096.56 22897.54 22895.00 19798.82 10398.18 22690.38 30792.27 30297.07 27073.68 35297.95 31389.36 30891.30 27596.72 271
API-MVS97.41 9797.25 8997.91 13898.70 14096.80 11698.82 10398.69 12194.53 16198.11 9298.28 17294.50 9199.57 13894.12 20299.49 9397.37 228
ACMH92.88 1694.55 23593.95 23896.34 24897.63 21993.26 26798.81 10998.49 17593.43 21389.74 32798.53 14281.91 30699.08 19093.69 21393.30 25496.70 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu96.29 14196.56 12195.51 27897.89 20490.22 31598.80 11098.10 24396.57 6896.45 17996.66 30190.81 15698.91 21695.72 15197.99 16297.40 225
HQP_MVS96.14 14795.90 14396.85 20497.42 23994.60 22098.80 11098.56 15597.28 3495.34 19598.28 17287.09 23899.03 19796.07 13594.27 22696.92 244
plane_prior298.80 11097.28 34
APD-MVScopyleft98.35 4798.00 5599.42 1899.51 4198.72 2198.80 11098.82 7394.52 16399.23 2399.25 4595.54 5299.80 8396.52 12399.77 2899.74 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet (Re)95.78 16295.19 17497.58 16496.99 26897.47 8998.79 11499.18 1695.60 10693.92 24697.04 27691.68 13698.48 25795.80 14887.66 32296.79 262
FMVSNet294.47 24293.61 26197.04 19098.21 17896.43 13598.79 11498.27 21392.46 24693.50 26497.09 26781.16 30998.00 31191.09 27691.93 26796.70 275
testgi93.06 28792.45 28694.88 29896.43 29889.90 31698.75 11697.54 29095.60 10691.63 31297.91 20274.46 35097.02 33786.10 32893.67 24397.72 219
LCM-MVSNet-Re95.22 19395.32 16894.91 29698.18 18387.85 34698.75 11695.66 34595.11 13588.96 33396.85 29490.26 16997.65 32595.65 15698.44 14799.22 133
SixPastTwentyTwo93.34 27992.86 27894.75 30395.67 32389.41 32598.75 11696.67 33693.89 18590.15 32598.25 17780.87 31398.27 29290.90 28190.64 28496.57 290
UniMVSNet_ETH3D94.24 25493.33 27096.97 19597.19 25693.38 26398.74 11998.57 15391.21 29493.81 25298.58 13872.85 35498.77 23495.05 17293.93 24098.77 177
MVS_Test97.28 10397.00 10098.13 12398.33 17095.97 15598.74 11998.07 25294.27 17098.44 8098.07 18892.48 11699.26 16696.43 12798.19 15699.16 143
UniMVSNet_NR-MVSNet95.71 16595.15 17597.40 17496.84 27796.97 10898.74 11999.24 1095.16 13193.88 24897.72 22291.68 13698.31 28495.81 14687.25 32796.92 244
NR-MVSNet94.98 20894.16 22497.44 17096.53 29297.22 10298.74 11998.95 3494.96 14489.25 33297.69 22389.32 18398.18 29594.59 18687.40 32596.92 244
ETV-MVS97.96 6097.81 6398.40 10698.42 15997.27 9698.73 12398.55 15796.84 5698.38 8397.44 24595.39 5899.35 16197.62 6998.89 12498.58 191
baseline195.84 15995.12 17798.01 13398.49 15795.98 15098.73 12397.03 31795.37 12096.22 18398.19 18189.96 17299.16 17694.60 18487.48 32398.90 169
MVSTER96.06 14995.72 14797.08 18998.23 17695.93 16198.73 12398.27 21394.86 14895.07 19998.09 18788.21 21298.54 25396.59 11993.46 24896.79 262
ACMP93.49 1095.34 18794.98 18496.43 24297.67 21693.48 25898.73 12398.44 18094.94 14792.53 29498.53 14284.50 28399.14 18095.48 16194.00 23796.66 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVS++copyleft98.58 2498.25 3999.55 999.50 4399.08 1198.72 12798.66 13597.51 1798.15 9098.83 11295.70 4799.92 2497.53 7899.67 5899.66 69
9.1498.06 5199.47 5098.71 12898.82 7394.36 16899.16 3099.29 4196.05 3599.81 7497.00 9499.71 54
VPNet94.99 20694.19 22197.40 17497.16 25896.57 12798.71 12898.97 3095.67 10394.84 20598.24 17880.36 31798.67 24196.46 12487.32 32696.96 241
MSLP-MVS++98.56 2998.57 998.55 9099.26 8796.80 11698.71 12899.05 2497.28 3498.84 5199.28 4296.47 2199.40 15898.52 1799.70 5599.47 102
ACMH+92.99 1494.30 25093.77 25195.88 26897.81 20892.04 28498.71 12898.37 19593.99 18190.60 32198.47 14880.86 31499.05 19292.75 24392.40 26396.55 294
Anonymous20240521195.28 19094.49 20497.67 15899.00 11593.75 24798.70 13297.04 31690.66 30096.49 17698.80 11578.13 33199.83 5996.21 13395.36 22299.44 109
DP-MVS96.59 13095.93 14298.57 8899.34 6496.19 14698.70 13298.39 19189.45 32394.52 21599.35 3091.85 13399.85 5392.89 24198.88 12599.68 61
Fast-Effi-MVS+-dtu95.87 15795.85 14495.91 26597.74 21391.74 29098.69 13498.15 23495.56 10894.92 20397.68 22688.98 19698.79 23293.19 22997.78 17097.20 232
tfpn200view995.32 18994.62 19897.43 17198.94 12094.98 20098.68 13596.93 32395.33 12196.55 17196.53 30784.23 28799.56 14088.11 31596.29 20697.76 215
VDD-MVS95.82 16195.23 17297.61 16398.84 12993.98 23998.68 13597.40 30295.02 14197.95 10799.34 3374.37 35199.78 9998.64 496.80 18999.08 154
thres40095.38 18294.62 19897.65 16198.94 12094.98 20098.68 13596.93 32395.33 12196.55 17196.53 30784.23 28799.56 14088.11 31596.29 20698.40 196
ETH3D-3000-0.198.35 4798.00 5599.38 2099.47 5098.68 2598.67 13898.84 6894.66 15899.11 3299.25 4595.46 5499.81 7496.80 11399.73 4599.63 77
pmmvs691.77 29790.63 30195.17 28994.69 34291.24 30198.67 13897.92 26786.14 34189.62 32897.56 23775.79 34498.34 28090.75 28484.56 34095.94 326
v2v48294.69 22294.03 23096.65 21696.17 30794.79 21198.67 13898.08 25092.72 23994.00 24497.16 26187.69 22998.45 26292.91 23888.87 31096.72 271
DU-MVS95.42 17994.76 19297.40 17496.53 29296.97 10898.66 14198.99 2995.43 11593.88 24897.69 22388.57 20498.31 28495.81 14687.25 32796.92 244
MAR-MVS96.91 11996.40 12798.45 10198.69 14296.90 11298.66 14198.68 12492.40 25297.07 14697.96 19891.54 14299.75 10893.68 21498.92 12298.69 181
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
hse-mvs396.17 14695.62 15597.81 14599.03 11394.45 22498.64 14398.75 10597.48 1998.67 6398.72 12489.76 17499.86 5297.95 4381.59 34699.11 149
VNet97.79 7297.40 8498.96 7098.88 12497.55 8698.63 14498.93 3896.74 6199.02 3898.84 11090.33 16799.83 5998.53 1196.66 19399.50 95
PVSNet_Blended_VisFu97.70 7697.46 8098.44 10299.27 8595.91 16398.63 14499.16 1794.48 16597.67 12598.88 10592.80 11399.91 3397.11 9199.12 11799.50 95
PAPM_NR97.46 9097.11 9498.50 9699.50 4396.41 13698.63 14498.60 14595.18 13097.06 14798.06 18994.26 9799.57 13893.80 21298.87 12799.52 89
Baseline_NR-MVSNet94.35 24793.81 24795.96 26396.20 30594.05 23898.61 14796.67 33691.44 28193.85 25097.60 23288.57 20498.14 29894.39 19186.93 33095.68 331
v114494.59 23293.92 23996.60 22396.21 30494.78 21298.59 14898.14 23691.86 27094.21 23497.02 27887.97 22098.41 27391.72 27089.57 29696.61 285
AllTest95.24 19294.65 19796.99 19299.25 8893.21 26998.59 14898.18 22691.36 28393.52 26198.77 11984.67 27999.72 11289.70 30197.87 16698.02 210
Fast-Effi-MVS+96.28 14395.70 15198.03 13298.29 17495.97 15598.58 15098.25 21891.74 27195.29 19897.23 25791.03 15599.15 17992.90 23997.96 16398.97 163
Anonymous2023120691.66 29891.10 29893.33 32594.02 34987.35 34898.58 15097.26 30990.48 30390.16 32496.31 31383.83 29796.53 34879.36 35489.90 29296.12 321
v14419294.39 24693.70 25796.48 23696.06 31294.35 23098.58 15098.16 23391.45 28094.33 22797.02 27887.50 23298.45 26291.08 27789.11 30596.63 283
v14894.29 25193.76 25395.91 26596.10 31092.93 27498.58 15097.97 26292.59 24493.47 26596.95 28788.53 20798.32 28292.56 24987.06 32996.49 306
COLMAP_ROBcopyleft93.27 1295.33 18894.87 18996.71 21199.29 8093.24 26898.58 15098.11 24189.92 31593.57 25999.10 7286.37 25299.79 9590.78 28398.10 15997.09 233
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RRT_MVS96.04 15095.53 15697.56 16697.07 26497.32 9398.57 15598.09 24895.15 13295.02 20198.44 15088.20 21398.58 25196.17 13493.09 25796.79 262
mvs-test196.60 12896.68 11896.37 24597.89 20491.81 28698.56 15698.10 24396.57 6896.52 17597.94 20090.81 15699.45 15695.72 15198.01 16197.86 214
FMVSNet394.97 20994.26 21897.11 18798.18 18396.62 12298.56 15698.26 21793.67 20494.09 23997.10 26384.25 28698.01 30992.08 25992.14 26496.70 275
zzz-MVS98.55 3198.25 3999.46 1599.76 298.64 2798.55 15898.74 10797.27 3898.02 9999.39 1694.81 8099.96 197.91 4699.79 2199.77 22
F-COLMAP97.09 11496.80 10797.97 13599.45 5794.95 20398.55 15898.62 14493.02 22996.17 18598.58 13894.01 10099.81 7493.95 20798.90 12399.14 146
v192192094.20 25693.47 26796.40 24495.98 31594.08 23798.52 16098.15 23491.33 28694.25 23197.20 26086.41 25198.42 26690.04 29589.39 30296.69 280
EU-MVSNet93.66 27394.14 22692.25 33395.96 31683.38 35698.52 16098.12 23894.69 15492.61 29198.13 18587.36 23596.39 35091.82 26790.00 29196.98 239
TAMVS97.02 11596.79 10997.70 15598.06 19395.31 18698.52 16098.31 20493.95 18397.05 14898.61 13393.49 10698.52 25595.33 16397.81 16899.29 127
LTVRE_ROB92.95 1594.60 23093.90 24196.68 21597.41 24294.42 22698.52 16098.59 14791.69 27491.21 31498.35 16184.87 27599.04 19691.06 27893.44 25196.60 286
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement91.06 30489.68 30995.21 28785.35 36591.49 29598.51 16497.07 31491.47 27988.83 33697.84 21177.31 33899.09 18992.79 24277.98 35395.04 342
v119294.32 24993.58 26296.53 23296.10 31094.45 22498.50 16598.17 23191.54 27894.19 23597.06 27386.95 24298.43 26590.14 29089.57 29696.70 275
test_040291.32 30090.27 30594.48 31196.60 28991.12 30298.50 16597.22 31086.10 34288.30 33896.98 28277.65 33697.99 31278.13 35892.94 25994.34 347
DeepC-MVS_fast96.70 198.55 3198.34 2999.18 5099.25 8898.04 6598.50 16598.78 9897.72 698.92 4899.28 4295.27 6799.82 6797.55 7699.77 2899.69 55
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNVR-MVS98.78 798.56 1099.45 1799.32 7098.87 1998.47 16898.81 7997.72 698.76 5799.16 6397.05 1399.78 9998.06 3999.66 6199.69 55
test_yl97.22 10596.78 11098.54 9298.73 13596.60 12598.45 16998.31 20494.70 15298.02 9998.42 15390.80 15899.70 11896.81 11196.79 19099.34 116
DCV-MVSNet97.22 10596.78 11098.54 9298.73 13596.60 12598.45 16998.31 20494.70 15298.02 9998.42 15390.80 15899.70 11896.81 11196.79 19099.34 116
NCCC98.61 1898.35 2599.38 2099.28 8498.61 2998.45 16998.76 10297.82 598.45 7998.93 10096.65 1799.83 5997.38 8499.41 10399.71 48
v124094.06 26893.29 27296.34 24896.03 31493.90 24198.44 17298.17 23191.18 29594.13 23897.01 28086.05 25798.42 26689.13 31189.50 30096.70 275
plane_prior94.60 22098.44 17296.74 6194.22 228
MP-MVS-pluss98.31 5397.92 5999.49 1299.72 1398.88 1898.43 17498.78 9894.10 17497.69 12499.42 1495.25 6999.92 2498.09 3799.80 1799.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS95.69 16895.33 16796.76 20896.16 30994.63 21598.43 17498.39 19196.64 6595.02 20198.78 11785.15 27199.05 19295.21 17094.20 22996.60 286
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DPE-MVScopyleft98.92 598.67 799.65 299.58 3499.20 998.42 17698.91 4497.58 1499.54 899.46 1197.10 1299.94 397.64 6899.84 899.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MCST-MVS98.65 1498.37 2299.48 1399.60 3398.87 1998.41 17798.68 12497.04 5198.52 7498.80 11596.78 1599.83 5997.93 4599.61 7199.74 35
Regformer-398.59 2198.50 1598.86 7699.43 5997.05 10698.40 17898.68 12497.43 2499.06 3599.31 3795.80 4699.77 10498.62 699.76 3499.78 15
Regformer-498.64 1598.53 1298.99 6699.43 5997.37 9298.40 17898.79 9597.46 2299.09 3499.31 3795.86 4599.80 8398.64 499.76 3499.79 12
Regformer-198.66 1398.51 1499.12 6099.35 6297.81 7998.37 18098.76 10297.49 1899.20 2599.21 5096.08 3299.79 9598.42 2599.73 4599.75 30
Regformer-298.69 1298.52 1399.19 4699.35 6298.01 6798.37 18098.81 7997.48 1999.21 2499.21 5096.13 3099.80 8398.40 2799.73 4599.75 30
hse-mvs295.71 16595.30 17096.93 19898.50 15593.53 25698.36 18298.10 24397.48 1998.67 6397.99 19589.76 17499.02 20097.95 4380.91 35098.22 204
CANet98.05 5897.76 6598.90 7498.73 13597.27 9698.35 18398.78 9897.37 3097.72 12298.96 9691.53 14399.92 2498.79 399.65 6299.51 93
AUN-MVS94.53 23793.73 25596.92 20198.50 15593.52 25798.34 18498.10 24393.83 19095.94 19297.98 19785.59 26499.03 19794.35 19380.94 34998.22 204
DWT-MVSNet_test94.82 21694.36 21496.20 25497.35 24490.79 30798.34 18496.57 33892.91 23495.33 19796.44 31182.00 30499.12 18294.52 18895.78 22098.70 180
ETH3D cwj APD-0.1697.96 6097.52 7599.29 3499.05 11098.52 3298.33 18698.68 12493.18 22298.68 6299.13 6794.62 8499.83 5996.45 12599.55 8799.52 89
test20.0390.89 30690.38 30492.43 33193.48 35188.14 34398.33 18697.56 28493.40 21487.96 33996.71 30080.69 31694.13 36079.15 35586.17 33695.01 344
DP-MVS Recon97.86 6997.46 8099.06 6499.53 3898.35 4898.33 18698.89 4792.62 24298.05 9598.94 9995.34 6299.65 12796.04 13999.42 10299.19 137
RPSCF94.87 21595.40 15993.26 32798.89 12382.06 36098.33 18698.06 25790.30 30996.56 16999.26 4487.09 23899.49 14993.82 21196.32 20598.24 203
TAPA-MVS93.98 795.35 18694.56 20197.74 15199.13 10794.83 20898.33 18698.64 14086.62 33796.29 18298.61 13394.00 10199.29 16580.00 35299.41 10399.09 151
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IterMVS-LS95.46 17595.21 17396.22 25398.12 18893.72 25098.32 19198.13 23793.71 19794.26 23097.31 25292.24 12298.10 30194.63 18190.12 28996.84 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous96.70 12696.53 12497.18 18298.19 18193.78 24498.31 19298.19 22394.01 17994.47 21798.27 17592.08 12998.46 26197.39 8397.91 16499.31 122
WTY-MVS97.37 10096.92 10498.72 8098.86 12696.89 11498.31 19298.71 11795.26 12697.67 12598.56 14192.21 12499.78 9995.89 14396.85 18899.48 100
D2MVS95.18 19695.08 17995.48 27997.10 26292.07 28298.30 19499.13 1994.02 17892.90 28296.73 29889.48 17998.73 23694.48 19093.60 24795.65 332
EI-MVSNet-Vis-set98.47 3998.39 2098.69 8199.46 5396.49 13198.30 19498.69 12197.21 4198.84 5199.36 2895.41 5799.78 9998.62 699.65 6299.80 11
DSMNet-mixed92.52 29392.58 28492.33 33294.15 34582.65 35898.30 19494.26 35989.08 32792.65 29095.73 32785.01 27395.76 35286.24 32797.76 17198.59 189
EI-MVSNet-UG-set98.41 4298.34 2998.61 8699.45 5796.32 14098.28 19798.68 12497.17 4498.74 5899.37 2495.25 6999.79 9598.57 999.54 8899.73 40
OMC-MVS97.55 8897.34 8698.20 11899.33 6795.92 16298.28 19798.59 14795.52 11197.97 10699.10 7293.28 10999.49 14995.09 17198.88 12599.19 137
baseline295.11 19994.52 20396.87 20396.65 28893.56 25398.27 19994.10 36293.45 21292.02 30897.43 24687.45 23499.19 17493.88 20997.41 18197.87 213
PVSNet_BlendedMVS96.73 12596.60 12097.12 18699.25 8895.35 18498.26 20099.26 894.28 16997.94 10997.46 24292.74 11499.81 7496.88 10693.32 25396.20 319
BH-untuned95.95 15495.72 14796.65 21698.55 15392.26 27998.23 20197.79 27293.73 19594.62 21298.01 19388.97 19799.00 20493.04 23498.51 14398.68 182
sss97.39 9896.98 10298.61 8698.60 15096.61 12498.22 20298.93 3893.97 18298.01 10398.48 14791.98 13199.85 5396.45 12598.15 15799.39 113
xxxxxxxxxxxxxcwj98.70 1098.50 1599.30 3399.46 5398.38 4098.21 20398.52 16397.95 399.32 1899.39 1696.22 2399.84 5697.72 6099.73 4599.67 65
save fliter99.46 5398.38 4098.21 20398.71 11797.95 3
WR-MVS95.15 19794.46 20797.22 17996.67 28796.45 13398.21 20398.81 7994.15 17293.16 27497.69 22387.51 23098.30 28695.29 16688.62 31296.90 251
ETH3 D test640097.59 8497.01 9999.34 2699.40 6198.56 3098.20 20698.81 7991.63 27698.44 8098.85 10893.98 10299.82 6794.11 20399.69 5699.64 74
pmmvs593.65 27592.97 27795.68 27495.49 32992.37 27898.20 20697.28 30789.66 32092.58 29297.26 25482.14 30398.09 30393.18 23090.95 28296.58 288
thres20095.25 19194.57 20097.28 17798.81 13194.92 20498.20 20697.11 31295.24 12996.54 17396.22 31984.58 28199.53 14687.93 31996.50 20097.39 226
CDS-MVSNet96.99 11696.69 11697.90 13998.05 19495.98 15098.20 20698.33 20193.67 20496.95 15098.49 14693.54 10598.42 26695.24 16997.74 17299.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131496.25 14595.73 14697.79 14697.13 26095.55 17698.19 21098.59 14793.47 21192.03 30797.82 21591.33 14799.49 14994.62 18398.44 14798.32 201
112197.37 10096.77 11499.16 5399.34 6497.99 7098.19 21098.68 12490.14 31298.01 10398.97 9094.80 8299.87 4793.36 22499.46 9899.61 79
MVS94.67 22793.54 26498.08 12896.88 27596.56 12898.19 21098.50 17178.05 35792.69 28998.02 19191.07 15499.63 13290.09 29198.36 15298.04 209
BH-RMVSNet95.92 15695.32 16897.69 15698.32 17294.64 21498.19 21097.45 29894.56 16096.03 18898.61 13385.02 27299.12 18290.68 28599.06 11899.30 125
1112_ss96.63 12796.00 14198.50 9698.56 15196.37 13798.18 21498.10 24392.92 23394.84 20598.43 15192.14 12699.58 13794.35 19396.51 19999.56 88
MVS_030492.81 28992.01 29195.23 28697.46 23491.33 29898.17 21598.81 7991.13 29693.80 25395.68 33266.08 36098.06 30690.79 28296.13 21596.32 316
EPNet_dtu95.21 19494.95 18695.99 26096.17 30790.45 31398.16 21697.27 30896.77 5993.14 27798.33 16690.34 16698.42 26685.57 33298.81 13199.09 151
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HY-MVS93.96 896.82 12396.23 13498.57 8898.46 15897.00 10798.14 21798.21 22093.95 18396.72 16397.99 19591.58 13899.76 10694.51 18996.54 19898.95 166
PLCcopyleft95.07 497.20 10896.78 11098.44 10299.29 8096.31 14298.14 21798.76 10292.41 25196.39 18098.31 16894.92 7999.78 9994.06 20598.77 13299.23 132
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EG-PatchMatch MVS91.13 30390.12 30694.17 31894.73 34189.00 33198.13 21997.81 27189.22 32685.32 35096.46 30967.71 35798.42 26687.89 32093.82 24295.08 341
EI-MVSNet95.96 15395.83 14596.36 24697.93 20193.70 25198.12 22098.27 21393.70 19995.07 19999.02 8392.23 12398.54 25394.68 18093.46 24896.84 258
CVMVSNet95.43 17896.04 13993.57 32197.93 20183.62 35598.12 22098.59 14795.68 10296.56 16999.02 8387.51 23097.51 33193.56 22097.44 17999.60 82
TSAR-MVS + GP.98.38 4498.24 4298.81 7799.22 9697.25 10198.11 22298.29 21297.19 4398.99 4299.02 8396.22 2399.67 12598.52 1798.56 14199.51 93
XVG-ACMP-BASELINE94.54 23694.14 22695.75 27396.55 29191.65 29298.11 22298.44 18094.96 14494.22 23397.90 20379.18 32499.11 18594.05 20693.85 24196.48 307
CNLPA97.45 9397.03 9898.73 7999.05 11097.44 9198.07 22498.53 16195.32 12396.80 16198.53 14293.32 10899.72 11294.31 19699.31 11099.02 158
diffmvs97.58 8597.40 8498.13 12398.32 17295.81 16898.06 22598.37 19596.20 8298.74 5898.89 10491.31 14899.25 16798.16 3498.52 14299.34 116
CHOSEN 1792x268897.12 11296.80 10798.08 12899.30 7794.56 22298.05 22699.71 193.57 20897.09 14398.91 10388.17 21499.89 3896.87 10999.56 8499.81 10
HQP-NCC97.20 25398.05 22696.43 7394.45 218
ACMP_Plane97.20 25398.05 22696.43 7394.45 218
HQP-MVS95.72 16495.40 15996.69 21497.20 25394.25 23498.05 22698.46 17696.43 7394.45 21897.73 22086.75 24498.96 20995.30 16494.18 23096.86 257
MIMVSNet189.67 31588.28 31993.82 31992.81 35591.08 30398.01 23097.45 29887.95 33287.90 34095.87 32567.63 35894.56 35978.73 35788.18 31795.83 328
AdaColmapbinary97.15 11196.70 11598.48 9999.16 10496.69 12198.01 23098.89 4794.44 16796.83 15798.68 12790.69 16199.76 10694.36 19299.29 11198.98 162
FMVSNet591.81 29690.92 29994.49 31097.21 25292.09 28198.00 23297.55 28989.31 32590.86 31895.61 33374.48 34995.32 35585.57 33289.70 29496.07 323
CANet_DTU96.96 11796.55 12298.21 11798.17 18596.07 14997.98 23398.21 22097.24 4097.13 14298.93 10086.88 24399.91 3395.00 17399.37 10798.66 185
MVP-Stereo94.28 25393.92 23995.35 28494.95 33792.60 27797.97 23497.65 27891.61 27790.68 32097.09 26786.32 25398.42 26689.70 30199.34 10895.02 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DIV-MVS_2432*160090.38 30989.38 31293.40 32492.85 35488.94 33297.95 23597.94 26590.35 30890.25 32393.96 34679.82 31995.94 35184.62 34176.69 35595.33 335
MVS_111021_LR98.34 4998.23 4398.67 8399.27 8596.90 11297.95 23599.58 397.14 4698.44 8099.01 8795.03 7699.62 13497.91 4699.75 4099.50 95
TEST999.31 7298.50 3497.92 23798.73 11192.63 24197.74 12098.68 12796.20 2699.80 83
train_agg97.97 5997.52 7599.33 3099.31 7298.50 3497.92 23798.73 11192.98 23097.74 12098.68 12796.20 2699.80 8396.59 11999.57 7999.68 61
CDPH-MVS97.94 6497.49 7899.28 3899.47 5098.44 3697.91 23998.67 13292.57 24598.77 5698.85 10895.93 4199.72 11295.56 15899.69 5699.68 61
MVS_111021_HR98.47 3998.34 2998.88 7599.22 9697.32 9397.91 23999.58 397.20 4298.33 8699.00 8895.99 3899.64 12998.05 4199.76 3499.69 55
PatchMatch-RL96.59 13096.03 14098.27 11299.31 7296.51 13097.91 23999.06 2293.72 19696.92 15498.06 18988.50 20899.65 12791.77 26999.00 12098.66 185
OpenMVS_ROBcopyleft86.42 2089.00 31987.43 32493.69 32093.08 35389.42 32497.91 23996.89 32778.58 35685.86 34794.69 34069.48 35698.29 28977.13 35993.29 25593.36 356
test_899.29 8098.44 3697.89 24398.72 11392.98 23097.70 12398.66 13096.20 2699.80 83
ab-mvs96.42 13795.71 15098.55 9098.63 14796.75 11997.88 24498.74 10793.84 18896.54 17398.18 18285.34 26999.75 10895.93 14296.35 20399.15 144
jason97.32 10297.08 9698.06 13097.45 23895.59 17297.87 24597.91 26894.79 15098.55 7398.83 11291.12 15199.23 17097.58 7299.60 7299.34 116
jason: jason.
xiu_mvs_v1_base_debu97.60 8197.56 7297.72 15298.35 16395.98 15097.86 24698.51 16697.13 4799.01 3998.40 15591.56 13999.80 8398.53 1198.68 13397.37 228
xiu_mvs_v1_base97.60 8197.56 7297.72 15298.35 16395.98 15097.86 24698.51 16697.13 4799.01 3998.40 15591.56 13999.80 8398.53 1198.68 13397.37 228
xiu_mvs_v1_base_debi97.60 8197.56 7297.72 15298.35 16395.98 15097.86 24698.51 16697.13 4799.01 3998.40 15591.56 13999.80 8398.53 1198.68 13397.37 228
test_prior498.01 6797.86 246
agg_prior197.95 6397.51 7799.28 3899.30 7798.38 4097.81 25098.72 11393.16 22497.57 13398.66 13096.14 2999.81 7496.63 11899.56 8499.66 69
test_prior398.22 5697.90 6099.19 4699.31 7298.22 5597.80 25198.84 6896.12 8797.89 11498.69 12595.96 3999.70 11896.89 10399.60 7299.65 71
test_prior297.80 25196.12 8797.89 11498.69 12595.96 3996.89 10399.60 72
XVG-OURS-SEG-HR96.51 13496.34 12897.02 19198.77 13393.76 24597.79 25398.50 17195.45 11496.94 15199.09 7787.87 22499.55 14596.76 11695.83 21997.74 217
MS-PatchMatch93.84 27293.63 26094.46 31396.18 30689.45 32397.76 25498.27 21392.23 25992.13 30597.49 24079.50 32198.69 23789.75 29999.38 10695.25 336
DELS-MVS98.40 4398.20 4598.99 6699.00 11597.66 8197.75 25598.89 4797.71 898.33 8698.97 9094.97 7799.88 4698.42 2599.76 3499.42 112
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MG-MVS97.81 7197.60 6998.44 10299.12 10895.97 15597.75 25598.78 9896.89 5598.46 7699.22 4993.90 10399.68 12494.81 17899.52 9199.67 65
Test_1112_low_res96.34 14095.66 15498.36 10898.56 15195.94 15897.71 25798.07 25292.10 26394.79 20997.29 25391.75 13599.56 14094.17 20096.50 20099.58 86
BH-w/o95.38 18295.08 17996.26 25298.34 16891.79 28797.70 25897.43 30092.87 23694.24 23297.22 25888.66 20298.84 22691.55 27397.70 17498.16 207
lupinMVS97.44 9497.22 9198.12 12598.07 19195.76 16997.68 25997.76 27394.50 16498.79 5498.61 13392.34 11899.30 16497.58 7299.59 7599.31 122
原ACMM297.67 260
LF4IMVS93.14 28692.79 28094.20 31695.88 31888.67 33597.66 26197.07 31493.81 19191.71 31097.65 22777.96 33398.81 23091.47 27491.92 26895.12 339
新几何297.64 262
MDA-MVSNet-bldmvs89.97 31388.35 31894.83 30195.21 33491.34 29697.64 26297.51 29288.36 33171.17 36396.13 32179.22 32396.63 34783.65 34386.27 33596.52 300
pmmvs-eth3d90.36 31089.05 31594.32 31591.10 35992.12 28097.63 26496.95 32288.86 32884.91 35193.13 34978.32 32896.74 34288.70 31381.81 34594.09 351
TR-MVS94.94 21294.20 22097.17 18397.75 21094.14 23697.59 26597.02 31992.28 25895.75 19397.64 22983.88 29598.96 20989.77 29896.15 21498.40 196
无先验97.58 26698.72 11391.38 28299.87 4793.36 22499.60 82
旧先验297.57 26791.30 28898.67 6399.80 8395.70 155
CostFormer94.95 21094.73 19495.60 27797.28 24789.06 32997.53 26896.89 32789.66 32096.82 15996.72 29986.05 25798.95 21395.53 15996.13 21598.79 175
XVG-OURS96.55 13396.41 12696.99 19298.75 13493.76 24597.50 26998.52 16395.67 10396.83 15799.30 4088.95 19899.53 14695.88 14496.26 21097.69 220
xiu_mvs_v2_base97.66 7897.70 6797.56 16698.61 14995.46 17997.44 27098.46 17697.15 4598.65 6898.15 18394.33 9599.80 8397.84 5498.66 13797.41 224
tpm94.13 26193.80 24895.12 29096.50 29487.91 34597.44 27095.89 34492.62 24296.37 18196.30 31484.13 29098.30 28693.24 22791.66 27199.14 146
DeepPCF-MVS96.37 297.93 6698.48 1896.30 25099.00 11589.54 32297.43 27298.87 5798.16 299.26 2199.38 2396.12 3199.64 12998.30 3199.77 2899.72 44
test22299.23 9597.17 10497.40 27398.66 13588.68 32998.05 9598.96 9694.14 9899.53 8999.61 79
pmmvs494.69 22293.99 23696.81 20695.74 32195.94 15897.40 27397.67 27790.42 30693.37 26897.59 23389.08 19198.20 29492.97 23691.67 27096.30 317
test0.0.03 194.08 26693.51 26595.80 27095.53 32892.89 27597.38 27595.97 34195.11 13592.51 29696.66 30187.71 22696.94 33987.03 32393.67 24397.57 222
HyFIR lowres test96.90 12096.49 12598.14 12199.33 6795.56 17497.38 27599.65 292.34 25397.61 13198.20 18089.29 18499.10 18896.97 9697.60 17799.77 22
Effi-MVS+97.12 11296.69 11698.39 10798.19 18196.72 12097.37 27798.43 18393.71 19797.65 12898.02 19192.20 12599.25 16796.87 10997.79 16999.19 137
N_pmnet87.12 32387.77 32285.17 34295.46 33061.92 36997.37 27770.66 37585.83 34488.73 33796.04 32385.33 27097.76 32480.02 35190.48 28595.84 327
PAPR96.84 12296.24 13398.65 8498.72 13996.92 11197.36 27998.57 15393.33 21696.67 16497.57 23594.30 9699.56 14091.05 28098.59 13999.47 102
PMMVS96.60 12896.33 12997.41 17297.90 20393.93 24097.35 28098.41 18692.84 23797.76 11897.45 24491.10 15399.20 17396.26 13197.91 16499.11 149
PS-MVSNAJ97.73 7497.77 6497.62 16298.68 14395.58 17397.34 28198.51 16697.29 3398.66 6797.88 20694.51 8899.90 3697.87 5099.17 11697.39 226
SCA95.46 17595.13 17696.46 24097.67 21691.29 30097.33 28297.60 28294.68 15596.92 15497.10 26383.97 29398.89 22092.59 24798.32 15499.20 134
testdata197.32 28396.34 77
ET-MVSNet_ETH3D94.13 26192.98 27697.58 16498.22 17796.20 14497.31 28495.37 34794.53 16179.56 35797.63 23186.51 24797.53 33096.91 10090.74 28399.02 158
tpm294.19 25793.76 25395.46 28197.23 25089.04 33097.31 28496.85 33187.08 33696.21 18496.79 29783.75 29998.74 23592.43 25596.23 21298.59 189
PVSNet_Blended97.38 9997.12 9398.14 12199.25 8895.35 18497.28 28699.26 893.13 22597.94 10998.21 17992.74 11499.81 7496.88 10699.40 10599.27 129
CLD-MVS95.62 17195.34 16596.46 24097.52 23193.75 24797.27 28798.46 17695.53 10994.42 22398.00 19486.21 25498.97 20596.25 13294.37 22496.66 281
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPMVS94.99 20694.48 20596.52 23397.22 25191.75 28997.23 28891.66 36694.11 17397.28 13796.81 29685.70 26298.84 22693.04 23497.28 18298.97 163
miper_lstm_enhance94.33 24894.07 22995.11 29197.75 21090.97 30497.22 28998.03 25991.67 27592.76 28696.97 28390.03 17197.78 32392.51 25289.64 29596.56 292
YYNet190.70 30889.39 31194.62 30794.79 34090.65 31097.20 29097.46 29687.54 33472.54 36195.74 32686.51 24796.66 34686.00 32986.76 33496.54 295
MDA-MVSNet_test_wron90.71 30789.38 31294.68 30594.83 33990.78 30897.19 29197.46 29687.60 33372.41 36295.72 32986.51 24796.71 34585.92 33086.80 33396.56 292
IterMVS-SCA-FT94.11 26393.87 24394.85 29997.98 20090.56 31297.18 29298.11 24193.75 19292.58 29297.48 24183.97 29397.41 33292.48 25491.30 27596.58 288
IterMVS94.09 26593.85 24594.80 30297.99 19890.35 31497.18 29298.12 23893.68 20292.46 29997.34 24984.05 29197.41 33292.51 25291.33 27496.62 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DPM-MVS97.55 8896.99 10199.23 4599.04 11298.55 3197.17 29498.35 19894.85 14997.93 11198.58 13895.07 7599.71 11792.60 24599.34 10899.43 110
cl_fuxian94.79 21994.43 21195.89 26797.75 21093.12 27297.16 29598.03 25992.23 25993.46 26697.05 27591.39 14498.01 30993.58 21989.21 30496.53 297
new-patchmatchnet88.50 32087.45 32391.67 33590.31 36185.89 35297.16 29597.33 30489.47 32283.63 35392.77 35076.38 34195.06 35782.70 34577.29 35494.06 352
UnsupCasMVSNet_eth90.99 30589.92 30894.19 31794.08 34689.83 31797.13 29798.67 13293.69 20085.83 34896.19 32075.15 34696.74 34289.14 31079.41 35196.00 324
IB-MVS91.98 1793.27 28191.97 29297.19 18197.47 23393.41 26197.09 29895.99 34093.32 21792.47 29895.73 32778.06 33299.53 14694.59 18682.98 34198.62 188
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl-mvsnet____94.51 23994.01 23396.02 25997.58 22393.40 26297.05 29997.96 26491.73 27392.76 28697.08 26989.06 19298.13 29992.61 24490.29 28896.52 300
cl-mvsnet194.52 23894.03 23095.99 26097.57 22793.38 26397.05 29997.94 26591.74 27192.81 28497.10 26389.12 18998.07 30592.60 24590.30 28796.53 297
miper_ehance_all_eth95.01 20494.69 19695.97 26297.70 21593.31 26597.02 30198.07 25292.23 25993.51 26396.96 28591.85 13398.15 29793.68 21491.16 27896.44 310
CMPMVSbinary66.06 2189.70 31489.67 31089.78 33793.19 35276.56 36297.00 30298.35 19880.97 35481.57 35597.75 21974.75 34898.61 24589.85 29793.63 24594.17 349
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpmrst95.63 17095.69 15295.44 28297.54 22888.54 33796.97 30397.56 28493.50 21097.52 13596.93 28989.49 17899.16 17695.25 16896.42 20298.64 187
dp94.15 26093.90 24194.90 29797.31 24686.82 35196.97 30397.19 31191.22 29396.02 18996.61 30685.51 26599.02 20090.00 29694.30 22598.85 170
cl-mvsnet294.68 22494.19 22196.13 25798.11 18993.60 25296.94 30598.31 20492.43 25093.32 27096.87 29386.51 24798.28 29194.10 20491.16 27896.51 303
PM-MVS87.77 32186.55 32591.40 33691.03 36083.36 35796.92 30695.18 35091.28 29086.48 34693.42 34853.27 36496.74 34289.43 30781.97 34494.11 350
TinyColmap92.31 29491.53 29594.65 30696.92 27189.75 31896.92 30696.68 33590.45 30589.62 32897.85 21076.06 34398.81 23086.74 32492.51 26295.41 334
our_test_393.65 27593.30 27194.69 30495.45 33189.68 32196.91 30897.65 27891.97 26691.66 31196.88 29189.67 17797.93 31688.02 31891.49 27296.48 307
test-LLR95.10 20094.87 18995.80 27096.77 27989.70 31996.91 30895.21 34895.11 13594.83 20795.72 32987.71 22698.97 20593.06 23298.50 14498.72 178
TESTMET0.1,194.18 25993.69 25895.63 27696.92 27189.12 32896.91 30894.78 35393.17 22394.88 20496.45 31078.52 32798.92 21593.09 23198.50 14498.85 170
test-mter94.08 26693.51 26595.80 27096.77 27989.70 31996.91 30895.21 34892.89 23594.83 20795.72 32977.69 33498.97 20593.06 23298.50 14498.72 178
USDC93.33 28092.71 28195.21 28796.83 27890.83 30696.91 30897.50 29393.84 18890.72 31998.14 18477.69 33498.82 22989.51 30593.21 25695.97 325
MDTV_nov1_ep13_2view84.26 35496.89 31390.97 29897.90 11389.89 17393.91 20899.18 142
ppachtmachnet_test93.22 28392.63 28394.97 29595.45 33190.84 30596.88 31497.88 26990.60 30192.08 30697.26 25488.08 21897.86 32285.12 33690.33 28696.22 318
tpmvs94.60 23094.36 21495.33 28597.46 23488.60 33696.88 31497.68 27691.29 28993.80 25396.42 31288.58 20399.24 16991.06 27896.04 21798.17 206
MDTV_nov1_ep1395.40 15997.48 23288.34 34096.85 31697.29 30693.74 19497.48 13697.26 25489.18 18799.05 19291.92 26697.43 180
PatchmatchNetpermissive95.71 16595.52 15796.29 25197.58 22390.72 30996.84 31797.52 29194.06 17597.08 14496.96 28589.24 18698.90 21992.03 26398.37 15099.26 130
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MSDG95.93 15595.30 17097.83 14298.90 12295.36 18296.83 31898.37 19591.32 28794.43 22298.73 12390.27 16899.60 13590.05 29498.82 13098.52 192
thisisatest051595.61 17394.89 18897.76 14998.15 18695.15 19196.77 31994.41 35692.95 23297.18 14197.43 24684.78 27799.45 15694.63 18197.73 17398.68 182
GA-MVS94.81 21894.03 23097.14 18497.15 25993.86 24296.76 32097.58 28394.00 18094.76 21097.04 27680.91 31298.48 25791.79 26896.25 21199.09 151
tpm cat193.36 27792.80 27995.07 29397.58 22387.97 34496.76 32097.86 27082.17 35393.53 26096.04 32386.13 25599.13 18189.24 30995.87 21898.10 208
eth_miper_zixun_eth94.68 22494.41 21295.47 28097.64 21891.71 29196.73 32298.07 25292.71 24093.64 25697.21 25990.54 16398.17 29693.38 22289.76 29396.54 295
test_post196.68 32330.43 37187.85 22598.69 23792.59 247
pmmvs386.67 32484.86 32792.11 33488.16 36287.19 35096.63 32494.75 35479.88 35587.22 34292.75 35166.56 35995.20 35681.24 34976.56 35693.96 353
miper_enhance_ethall95.10 20094.75 19396.12 25897.53 23093.73 24996.61 32598.08 25092.20 26293.89 24796.65 30392.44 11798.30 28694.21 19991.16 27896.34 313
testmvs21.48 33824.95 34111.09 35414.89 3766.47 37896.56 3269.87 3777.55 37117.93 37139.02 3689.43 3775.90 37316.56 37112.72 37020.91 368
test12320.95 33923.72 34212.64 35313.54 3778.19 37796.55 3276.13 3787.48 37216.74 37237.98 36912.97 3746.05 37216.69 3705.43 37123.68 367
CL-MVSNet_2432*160090.11 31189.14 31493.02 32991.86 35788.23 34296.51 32898.07 25290.49 30290.49 32294.41 34184.75 27895.34 35480.79 35074.95 35795.50 333
GG-mvs-BLEND96.59 22496.34 30194.98 20096.51 32888.58 37093.10 27994.34 34580.34 31898.05 30789.53 30496.99 18696.74 268
new_pmnet90.06 31289.00 31693.22 32894.18 34488.32 34196.42 33096.89 32786.19 34085.67 34993.62 34777.18 33997.10 33681.61 34889.29 30394.23 348
PVSNet91.96 1896.35 13996.15 13596.96 19699.17 10092.05 28396.08 33198.68 12493.69 20097.75 11997.80 21788.86 19999.69 12394.26 19899.01 11999.15 144
ADS-MVSNet294.58 23394.40 21395.11 29198.00 19688.74 33496.04 33297.30 30590.15 31096.47 17796.64 30487.89 22297.56 32990.08 29297.06 18499.02 158
ADS-MVSNet95.00 20594.45 20996.63 21998.00 19691.91 28596.04 33297.74 27590.15 31096.47 17796.64 30487.89 22298.96 20990.08 29297.06 18499.02 158
PAPM94.95 21094.00 23497.78 14797.04 26595.65 17196.03 33498.25 21891.23 29294.19 23597.80 21791.27 14998.86 22582.61 34697.61 17698.84 172
cascas94.63 22993.86 24496.93 19896.91 27394.27 23296.00 33598.51 16685.55 34694.54 21496.23 31784.20 28998.87 22395.80 14896.98 18797.66 221
gg-mvs-nofinetune92.21 29590.58 30297.13 18596.75 28295.09 19495.85 33689.40 36985.43 34794.50 21681.98 36180.80 31598.40 27992.16 25798.33 15397.88 212
FPMVS77.62 32977.14 32979.05 34679.25 36960.97 37095.79 33795.94 34265.96 36167.93 36494.40 34237.73 36988.88 36568.83 36288.46 31387.29 359
CHOSEN 280x42097.18 10997.18 9297.20 18098.81 13193.27 26695.78 33899.15 1895.25 12796.79 16298.11 18692.29 12099.07 19198.56 1099.85 399.25 131
bset_n11_16_dypcd94.89 21494.27 21796.76 20894.41 34395.15 19195.67 33995.64 34695.53 10994.65 21197.52 23987.10 23798.29 28996.58 12191.35 27396.83 260
MIMVSNet93.26 28292.21 28996.41 24397.73 21493.13 27195.65 34097.03 31791.27 29194.04 24296.06 32275.33 34597.19 33586.56 32596.23 21298.92 168
KD-MVS_2432*160089.61 31687.96 32094.54 30894.06 34791.59 29395.59 34197.63 28089.87 31688.95 33494.38 34378.28 32996.82 34084.83 33768.05 36195.21 337
miper_refine_blended89.61 31687.96 32094.54 30894.06 34791.59 29395.59 34197.63 28089.87 31688.95 33494.38 34378.28 32996.82 34084.83 33768.05 36195.21 337
PCF-MVS93.45 1194.68 22493.43 26898.42 10598.62 14896.77 11895.48 34398.20 22284.63 34993.34 26998.32 16788.55 20699.81 7484.80 33998.96 12198.68 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
JIA-IIPM93.35 27892.49 28595.92 26496.48 29690.65 31095.01 34496.96 32185.93 34396.08 18787.33 35887.70 22898.78 23391.35 27595.58 22198.34 199
CR-MVSNet94.76 22194.15 22596.59 22497.00 26693.43 25994.96 34597.56 28492.46 24696.93 15296.24 31588.15 21597.88 32187.38 32196.65 19498.46 194
RPMNet92.81 28991.34 29797.24 17897.00 26693.43 25994.96 34598.80 9082.27 35296.93 15292.12 35486.98 24199.82 6776.32 36096.65 19498.46 194
UnsupCasMVSNet_bld87.17 32285.12 32693.31 32691.94 35688.77 33394.92 34798.30 21084.30 35082.30 35490.04 35563.96 36297.25 33485.85 33174.47 35993.93 354
PVSNet_088.72 1991.28 30190.03 30795.00 29497.99 19887.29 34994.84 34898.50 17192.06 26489.86 32695.19 33579.81 32099.39 15992.27 25669.79 36098.33 200
Patchmatch-test94.42 24493.68 25996.63 21997.60 22191.76 28894.83 34997.49 29589.45 32394.14 23797.10 26388.99 19398.83 22885.37 33598.13 15899.29 127
Patchmtry93.22 28392.35 28795.84 26996.77 27993.09 27394.66 35097.56 28487.37 33592.90 28296.24 31588.15 21597.90 31787.37 32290.10 29096.53 297
PatchT93.06 28791.97 29296.35 24796.69 28592.67 27694.48 35197.08 31386.62 33797.08 14492.23 35387.94 22197.90 31778.89 35696.69 19298.49 193
LCM-MVSNet78.70 32676.24 33186.08 34077.26 37171.99 36694.34 35296.72 33361.62 36376.53 35889.33 35633.91 37192.78 36281.85 34774.60 35893.46 355
PMMVS277.95 32875.44 33285.46 34182.54 36674.95 36494.23 35393.08 36472.80 36074.68 35987.38 35736.36 37091.56 36373.95 36163.94 36389.87 358
MVS-HIRNet89.46 31888.40 31792.64 33097.58 22382.15 35994.16 35493.05 36575.73 35990.90 31782.52 36079.42 32298.33 28183.53 34498.68 13397.43 223
Patchmatch-RL test91.49 29990.85 30093.41 32391.37 35884.40 35392.81 35595.93 34391.87 26987.25 34194.87 33988.99 19396.53 34892.54 25182.00 34399.30 125
ambc89.49 33886.66 36375.78 36392.66 35696.72 33386.55 34592.50 35246.01 36597.90 31790.32 28882.09 34294.80 346
EMVS64.07 33463.26 33766.53 35181.73 36858.81 37391.85 35784.75 37251.93 36759.09 36775.13 36543.32 36779.09 36942.03 36839.47 36661.69 365
E-PMN64.94 33364.25 33567.02 35082.28 36759.36 37291.83 35885.63 37152.69 36560.22 36677.28 36441.06 36880.12 36846.15 36741.14 36561.57 366
ANet_high69.08 33065.37 33480.22 34565.99 37371.96 36790.91 35990.09 36882.62 35149.93 36978.39 36329.36 37281.75 36662.49 36438.52 36786.95 361
tmp_tt68.90 33166.97 33374.68 34850.78 37559.95 37187.13 36083.47 37338.80 36962.21 36596.23 31764.70 36176.91 37088.91 31230.49 36887.19 360
MVEpermissive62.14 2263.28 33559.38 33874.99 34774.33 37265.47 36885.55 36180.50 37452.02 36651.10 36875.00 36610.91 37680.50 36751.60 36653.40 36478.99 362
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 33263.57 33673.09 34957.90 37451.22 37585.05 36293.93 36354.45 36444.32 37083.57 35913.22 37389.15 36458.68 36581.00 34878.91 363
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method79.03 32578.17 32881.63 34486.06 36454.40 37482.75 36396.89 32739.54 36880.98 35695.57 33458.37 36394.73 35884.74 34078.61 35295.75 329
Gipumacopyleft78.40 32776.75 33083.38 34395.54 32780.43 36179.42 36497.40 30264.67 36273.46 36080.82 36245.65 36693.14 36166.32 36387.43 32476.56 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d30.17 33630.18 34030.16 35278.61 37043.29 37666.79 36514.21 37617.31 37014.82 37311.93 37211.55 37541.43 37137.08 36919.30 3695.76 369
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k23.98 33731.98 3390.00 3550.00 3780.00 3790.00 36698.59 1470.00 3730.00 37498.61 13390.60 1620.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.88 34110.50 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37394.51 880.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.20 34010.94 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37498.43 1510.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
MSC_two_6792asdad99.62 699.17 10099.08 1198.63 14299.94 398.53 1199.80 1799.86 2
PC_three_145295.08 13999.60 599.16 6397.86 298.47 26097.52 7999.72 5299.74 35
No_MVS99.62 699.17 10099.08 1198.63 14299.94 398.53 1199.80 1799.86 2
test_one_060199.66 2899.25 298.86 6397.55 1599.20 2599.47 897.57 6
eth-test20.00 378
eth-test0.00 378
ZD-MVS99.46 5398.70 2398.79 9593.21 22198.67 6398.97 9095.70 4799.83 5996.07 13599.58 78
IU-MVS99.71 2199.23 798.64 14095.28 12599.63 498.35 2999.81 1099.83 7
test_241102_TWO98.87 5797.65 999.53 999.48 697.34 1199.94 398.43 2399.80 1799.83 7
test_241102_ONE99.71 2199.24 598.87 5797.62 1199.73 199.39 1697.53 799.74 110
test_0728_THIRD97.32 3199.45 1199.46 1197.88 199.94 398.47 1999.86 199.85 4
GSMVS99.20 134
test_part299.63 3199.18 1099.27 20
sam_mvs189.45 18099.20 134
sam_mvs88.99 193
MTGPAbinary98.74 107
test_post31.83 37088.83 20098.91 216
patchmatchnet-post95.10 33789.42 18198.89 220
gm-plane-assit95.88 31887.47 34789.74 31996.94 28899.19 17493.32 226
test9_res96.39 12999.57 7999.69 55
agg_prior295.87 14599.57 7999.68 61
agg_prior99.30 7798.38 4098.72 11397.57 13399.81 74
TestCases96.99 19299.25 8893.21 26998.18 22691.36 28393.52 26198.77 11984.67 27999.72 11289.70 30197.87 16698.02 210
test_prior99.19 4699.31 7298.22 5598.84 6899.70 11899.65 71
新几何199.16 5399.34 6498.01 6798.69 12190.06 31398.13 9198.95 9894.60 8599.89 3891.97 26599.47 9599.59 84
旧先验199.29 8097.48 8898.70 12099.09 7795.56 5099.47 9599.61 79
原ACMM198.65 8499.32 7096.62 12298.67 13293.27 22097.81 11698.97 9095.18 7199.83 5993.84 21099.46 9899.50 95
testdata299.89 3891.65 272
segment_acmp96.85 14
testdata98.26 11499.20 9995.36 18298.68 12491.89 26898.60 7199.10 7294.44 9399.82 6794.27 19799.44 10099.58 86
test1299.18 5099.16 10498.19 5798.53 16198.07 9495.13 7399.72 11299.56 8499.63 77
plane_prior797.42 23994.63 215
plane_prior697.35 24494.61 21887.09 238
plane_prior598.56 15599.03 19796.07 13594.27 22696.92 244
plane_prior498.28 172
plane_prior394.61 21897.02 5295.34 195
plane_prior197.37 243
n20.00 379
nn0.00 379
door-mid94.37 357
lessismore_v094.45 31494.93 33888.44 33991.03 36786.77 34497.64 22976.23 34298.42 26690.31 28985.64 33996.51 303
LGP-MVS_train96.47 23797.46 23493.54 25498.54 15994.67 15694.36 22598.77 11985.39 26699.11 18595.71 15394.15 23296.76 266
test1198.66 135
door94.64 355
HQP5-MVS94.25 234
BP-MVS95.30 164
HQP4-MVS94.45 21898.96 20996.87 255
HQP3-MVS98.46 17694.18 230
HQP2-MVS86.75 244
NP-MVS97.28 24794.51 22397.73 220
ACMMP++_ref92.97 258
ACMMP++93.61 246
Test By Simon94.64 83
ITE_SJBPF95.44 28297.42 23991.32 29997.50 29395.09 13893.59 25798.35 16181.70 30798.88 22289.71 30093.39 25296.12 321
DeepMVS_CXcopyleft86.78 33997.09 26372.30 36595.17 35175.92 35884.34 35295.19 33570.58 35595.35 35379.98 35389.04 30792.68 357