DVP-MVS++. | | | 99.08 2 | 98.89 2 | 99.64 3 | 99.17 100 | 99.23 7 | 99.69 1 | 98.88 50 | 97.32 31 | 99.53 9 | 99.47 8 | 97.81 3 | 99.94 3 | 98.47 19 | 99.72 52 | 99.74 35 |
|
FOURS1 | | | | | | 99.82 1 | 98.66 26 | 99.69 1 | 98.95 34 | 97.46 22 | 99.39 15 | | | | | | |
|
DROMVSNet | | | 98.21 57 | 98.11 49 | 98.49 98 | 98.34 168 | 97.26 100 | 99.61 3 | 98.43 183 | 96.78 58 | 98.87 50 | 98.84 110 | 93.72 104 | 99.01 203 | 98.91 1 | 99.50 92 | 99.19 137 |
|
HPM-MVS |  | | 98.36 46 | 98.10 50 | 99.13 57 | 99.74 8 | 97.82 77 | 99.53 4 | 98.80 90 | 94.63 159 | 98.61 70 | 98.97 90 | 95.13 73 | 99.77 104 | 97.65 67 | 99.83 9 | 99.79 12 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MVSFormer | | | 97.57 86 | 97.49 78 | 97.84 141 | 98.07 191 | 95.76 169 | 99.47 5 | 98.40 188 | 94.98 142 | 98.79 54 | 98.83 112 | 92.34 118 | 98.41 273 | 96.91 100 | 99.59 75 | 99.34 116 |
|
test_djsdf | | | 96.00 152 | 95.69 152 | 96.93 198 | 95.72 322 | 95.49 178 | 99.47 5 | 98.40 188 | 94.98 142 | 94.58 213 | 97.86 208 | 89.16 188 | 98.41 273 | 96.91 100 | 94.12 234 | 96.88 253 |
|
HPM-MVS_fast | | | 98.38 44 | 98.13 47 | 99.12 60 | 99.75 4 | 97.86 73 | 99.44 7 | 98.82 73 | 94.46 166 | 98.94 43 | 99.20 54 | 95.16 72 | 99.74 110 | 97.58 72 | 99.85 3 | 99.77 22 |
|
nrg030 | | | 96.28 143 | 95.72 147 | 97.96 137 | 96.90 274 | 98.15 61 | 99.39 8 | 98.31 204 | 95.47 113 | 94.42 223 | 98.35 161 | 92.09 128 | 98.69 237 | 97.50 80 | 89.05 306 | 97.04 236 |
|
APDe-MVS | | | 99.02 4 | 98.84 3 | 99.55 9 | 99.57 35 | 98.96 16 | 99.39 8 | 98.93 38 | 97.38 28 | 99.41 13 | 99.54 1 | 96.66 16 | 99.84 56 | 98.86 2 | 99.85 3 | 99.87 1 |
|
3Dnovator+ | | 94.38 6 | 97.43 95 | 96.78 110 | 99.38 20 | 97.83 207 | 98.52 32 | 99.37 10 | 98.71 117 | 97.09 50 | 92.99 281 | 99.13 67 | 89.36 182 | 99.89 38 | 96.97 96 | 99.57 79 | 99.71 48 |
|
FIs | | | 96.51 134 | 96.12 136 | 97.67 158 | 97.13 260 | 97.54 87 | 99.36 11 | 99.22 14 | 95.89 93 | 94.03 243 | 98.35 161 | 91.98 131 | 98.44 264 | 96.40 128 | 92.76 260 | 97.01 237 |
|
FC-MVSNet-test | | | 96.42 137 | 96.05 138 | 97.53 168 | 96.95 269 | 97.27 96 | 99.36 11 | 99.23 12 | 95.83 96 | 93.93 245 | 98.37 159 | 92.00 130 | 98.32 282 | 96.02 140 | 92.72 261 | 97.00 238 |
|
CS-MVS-test | | | 97.90 67 | 97.83 62 | 98.11 126 | 98.14 187 | 96.49 131 | 99.35 13 | 98.40 188 | 96.31 79 | 98.27 89 | 98.31 168 | 94.42 94 | 99.05 192 | 98.07 38 | 99.20 113 | 98.80 174 |
|
3Dnovator | | 94.51 5 | 97.46 90 | 96.93 103 | 99.07 63 | 97.78 209 | 97.64 82 | 99.35 13 | 99.06 22 | 97.02 52 | 93.75 255 | 99.16 63 | 89.25 185 | 99.92 24 | 97.22 88 | 99.75 40 | 99.64 74 |
|
GeoE | | | 96.58 132 | 96.07 137 | 98.10 127 | 98.35 163 | 95.89 165 | 99.34 15 | 98.12 238 | 93.12 226 | 96.09 186 | 98.87 106 | 89.71 176 | 98.97 205 | 92.95 237 | 98.08 160 | 99.43 110 |
|
canonicalmvs | | | 97.67 77 | 97.23 90 | 98.98 68 | 98.70 140 | 98.38 40 | 99.34 15 | 98.39 191 | 96.76 60 | 97.67 125 | 97.40 248 | 92.26 121 | 99.49 149 | 98.28 32 | 96.28 209 | 99.08 154 |
|
CP-MVS | | | 98.57 27 | 98.36 23 | 99.19 46 | 99.66 28 | 97.86 73 | 99.34 15 | 98.87 57 | 95.96 92 | 98.60 71 | 99.13 67 | 96.05 35 | 99.94 3 | 97.77 57 | 99.86 1 | 99.77 22 |
|
EPP-MVSNet | | | 97.46 90 | 97.28 88 | 97.99 134 | 98.64 146 | 95.38 181 | 99.33 18 | 98.31 204 | 93.61 207 | 97.19 140 | 99.07 80 | 94.05 99 | 99.23 170 | 96.89 103 | 98.43 149 | 99.37 115 |
|
XVS | | | 98.70 10 | 98.49 17 | 99.34 26 | 99.70 24 | 98.35 48 | 99.29 19 | 98.88 50 | 97.40 25 | 98.46 76 | 99.20 54 | 95.90 43 | 99.89 38 | 97.85 52 | 99.74 43 | 99.78 15 |
|
X-MVStestdata | | | 94.06 268 | 92.30 288 | 99.34 26 | 99.70 24 | 98.35 48 | 99.29 19 | 98.88 50 | 97.40 25 | 98.46 76 | 43.50 367 | 95.90 43 | 99.89 38 | 97.85 52 | 99.74 43 | 99.78 15 |
|
tttt0517 | | | 96.07 148 | 95.51 158 | 97.78 147 | 98.41 160 | 94.84 206 | 99.28 21 | 94.33 358 | 94.26 171 | 97.64 129 | 98.64 132 | 84.05 291 | 99.47 154 | 95.34 162 | 97.60 177 | 99.03 157 |
|
mPP-MVS | | | 98.51 36 | 98.26 38 | 99.25 42 | 99.75 4 | 98.04 65 | 99.28 21 | 98.81 79 | 96.24 80 | 98.35 85 | 99.23 47 | 95.46 54 | 99.94 3 | 97.42 82 | 99.81 10 | 99.77 22 |
|
MSP-MVS | | | 98.74 9 | 98.55 11 | 99.29 34 | 99.75 4 | 98.23 54 | 99.26 23 | 98.88 50 | 97.52 16 | 99.41 13 | 98.78 117 | 96.00 37 | 99.79 95 | 97.79 56 | 99.59 75 | 99.85 4 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
v7n | | | 94.19 257 | 93.43 268 | 96.47 237 | 95.90 317 | 94.38 229 | 99.26 23 | 98.34 200 | 91.99 265 | 92.76 286 | 97.13 262 | 88.31 210 | 98.52 255 | 89.48 306 | 87.70 321 | 96.52 300 |
|
WR-MVS_H | | | 95.05 203 | 94.46 207 | 96.81 206 | 96.86 276 | 95.82 167 | 99.24 25 | 99.24 10 | 93.87 187 | 92.53 294 | 96.84 295 | 90.37 165 | 98.24 293 | 93.24 227 | 87.93 319 | 96.38 312 |
|
HFP-MVS | | | 98.63 17 | 98.40 19 | 99.32 31 | 99.72 13 | 98.29 51 | 99.23 26 | 98.96 32 | 96.10 89 | 98.94 43 | 99.17 58 | 96.06 33 | 99.92 24 | 97.62 69 | 99.78 25 | 99.75 30 |
|
region2R | | | 98.61 18 | 98.38 21 | 99.29 34 | 99.74 8 | 98.16 60 | 99.23 26 | 98.93 38 | 96.15 84 | 98.94 43 | 99.17 58 | 95.91 42 | 99.94 3 | 97.55 76 | 99.79 21 | 99.78 15 |
|
ACMMPR | | | 98.59 21 | 98.36 23 | 99.29 34 | 99.74 8 | 98.15 61 | 99.23 26 | 98.95 34 | 96.10 89 | 98.93 47 | 99.19 57 | 95.70 47 | 99.94 3 | 97.62 69 | 99.79 21 | 99.78 15 |
|
QAPM | | | 96.29 141 | 95.40 159 | 98.96 70 | 97.85 206 | 97.60 85 | 99.23 26 | 98.93 38 | 89.76 318 | 93.11 278 | 99.02 83 | 89.11 190 | 99.93 18 | 91.99 264 | 99.62 70 | 99.34 116 |
|
MP-MVS |  | | 98.33 51 | 98.01 54 | 99.28 38 | 99.75 4 | 98.18 58 | 99.22 30 | 98.79 95 | 96.13 86 | 97.92 112 | 99.23 47 | 94.54 87 | 99.94 3 | 96.74 117 | 99.78 25 | 99.73 40 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
Vis-MVSNet |  | | 97.42 96 | 97.11 94 | 98.34 109 | 98.66 144 | 96.23 143 | 99.22 30 | 99.00 27 | 96.63 66 | 98.04 97 | 99.21 50 | 88.05 219 | 99.35 161 | 96.01 141 | 99.21 112 | 99.45 108 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CSCG | | | 97.85 70 | 97.74 66 | 98.20 118 | 99.67 27 | 95.16 189 | 99.22 30 | 99.32 7 | 93.04 228 | 97.02 149 | 98.92 102 | 95.36 61 | 99.91 33 | 97.43 81 | 99.64 66 | 99.52 89 |
|
OpenMVS |  | 93.04 13 | 95.83 160 | 95.00 182 | 98.32 110 | 97.18 257 | 97.32 93 | 99.21 33 | 98.97 30 | 89.96 314 | 91.14 315 | 99.05 82 | 86.64 246 | 99.92 24 | 93.38 222 | 99.47 95 | 97.73 218 |
|
DTE-MVSNet | | | 93.98 270 | 93.26 273 | 96.14 256 | 96.06 312 | 94.39 228 | 99.20 34 | 98.86 63 | 93.06 227 | 91.78 309 | 97.81 216 | 85.87 260 | 97.58 328 | 90.53 286 | 86.17 336 | 96.46 309 |
|
Vis-MVSNet (Re-imp) | | | 96.87 121 | 96.55 122 | 97.83 142 | 98.73 135 | 95.46 179 | 99.20 34 | 98.30 210 | 94.96 144 | 96.60 168 | 98.87 106 | 90.05 170 | 98.59 249 | 93.67 216 | 98.60 138 | 99.46 106 |
|
ZNCC-MVS | | | 98.49 37 | 98.20 45 | 99.35 25 | 99.73 12 | 98.39 39 | 99.19 36 | 98.86 63 | 95.77 98 | 98.31 88 | 99.10 72 | 95.46 54 | 99.93 18 | 97.57 75 | 99.81 10 | 99.74 35 |
|
IS-MVSNet | | | 97.22 105 | 96.88 105 | 98.25 115 | 98.85 128 | 96.36 138 | 99.19 36 | 97.97 262 | 95.39 117 | 97.23 139 | 98.99 89 | 91.11 152 | 98.93 214 | 94.60 184 | 98.59 139 | 99.47 102 |
|
PEN-MVS | | | 94.42 244 | 93.73 255 | 96.49 235 | 96.28 303 | 94.84 206 | 99.17 38 | 99.00 27 | 93.51 209 | 92.23 303 | 97.83 214 | 86.10 256 | 97.90 317 | 92.55 250 | 86.92 331 | 96.74 268 |
|
PS-MVSNAJss | | | 96.43 136 | 96.26 132 | 96.92 201 | 95.84 320 | 95.08 195 | 99.16 39 | 98.50 171 | 95.87 95 | 93.84 251 | 98.34 165 | 94.51 88 | 98.61 245 | 96.88 106 | 93.45 250 | 97.06 235 |
|
APD-MVS_3200maxsize | | | 98.53 35 | 98.33 33 | 99.15 56 | 99.50 43 | 97.92 72 | 99.15 40 | 98.81 79 | 96.24 80 | 99.20 25 | 99.37 24 | 95.30 65 | 99.80 83 | 97.73 59 | 99.67 58 | 99.72 44 |
|
TSAR-MVS + MP. | | | 98.78 7 | 98.62 8 | 99.24 43 | 99.69 26 | 98.28 53 | 99.14 41 | 98.66 135 | 96.84 56 | 99.56 6 | 99.31 37 | 96.34 22 | 99.70 118 | 98.32 30 | 99.73 45 | 99.73 40 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
anonymousdsp | | | 95.42 179 | 94.91 187 | 96.94 197 | 95.10 335 | 95.90 164 | 99.14 41 | 98.41 186 | 93.75 192 | 93.16 274 | 97.46 242 | 87.50 232 | 98.41 273 | 95.63 157 | 94.03 236 | 96.50 305 |
|
jajsoiax | | | 95.45 177 | 95.03 181 | 96.73 210 | 95.42 333 | 94.63 215 | 99.14 41 | 98.52 163 | 95.74 99 | 93.22 272 | 98.36 160 | 83.87 296 | 98.65 243 | 96.95 99 | 94.04 235 | 96.91 249 |
|
PS-CasMVS | | | 94.67 227 | 93.99 236 | 96.71 211 | 96.68 286 | 95.26 187 | 99.13 44 | 99.03 25 | 93.68 202 | 92.33 301 | 97.95 199 | 85.35 268 | 98.10 301 | 93.59 218 | 88.16 318 | 96.79 262 |
|
abl_6 | | | 98.30 54 | 98.03 53 | 99.13 57 | 99.56 36 | 97.76 80 | 99.13 44 | 98.82 73 | 96.14 85 | 99.26 21 | 99.37 24 | 93.33 107 | 99.93 18 | 96.96 98 | 99.67 58 | 99.69 55 |
|
CPTT-MVS | | | 97.72 75 | 97.32 87 | 98.92 72 | 99.64 30 | 97.10 105 | 99.12 46 | 98.81 79 | 92.34 253 | 98.09 93 | 99.08 79 | 93.01 111 | 99.92 24 | 96.06 138 | 99.77 28 | 99.75 30 |
|
SR-MVS-dyc-post | | | 98.54 33 | 98.35 25 | 99.13 57 | 99.49 47 | 97.86 73 | 99.11 47 | 98.80 90 | 96.49 71 | 99.17 28 | 99.35 30 | 95.34 62 | 99.82 67 | 97.72 60 | 99.65 62 | 99.71 48 |
|
RE-MVS-def | | | | 98.34 29 | | 99.49 47 | 97.86 73 | 99.11 47 | 98.80 90 | 96.49 71 | 99.17 28 | 99.35 30 | 95.29 66 | | 97.72 60 | 99.65 62 | 99.71 48 |
|
CP-MVSNet | | | 94.94 212 | 94.30 216 | 96.83 205 | 96.72 284 | 95.56 174 | 99.11 47 | 98.95 34 | 93.89 185 | 92.42 300 | 97.90 203 | 87.19 236 | 98.12 300 | 94.32 195 | 88.21 316 | 96.82 261 |
|
SteuartSystems-ACMMP | | | 98.90 6 | 98.75 5 | 99.36 24 | 99.22 96 | 98.43 38 | 99.10 50 | 98.87 57 | 97.38 28 | 99.35 17 | 99.40 15 | 97.78 5 | 99.87 47 | 97.77 57 | 99.85 3 | 99.78 15 |
Skip Steuart: Steuart Systems R&D Blog. |
test1172 | | | 98.56 29 | 98.35 25 | 99.16 53 | 99.53 38 | 97.94 71 | 99.09 51 | 98.83 71 | 96.52 70 | 99.05 36 | 99.34 33 | 95.34 62 | 99.82 67 | 97.86 51 | 99.64 66 | 99.73 40 |
|
SR-MVS | | | 98.57 27 | 98.35 25 | 99.24 43 | 99.53 38 | 98.18 58 | 99.09 51 | 98.82 73 | 96.58 67 | 99.10 33 | 99.32 35 | 95.39 58 | 99.82 67 | 97.70 65 | 99.63 68 | 99.72 44 |
|
GST-MVS | | | 98.43 41 | 98.12 48 | 99.34 26 | 99.72 13 | 98.38 40 | 99.09 51 | 98.82 73 | 95.71 101 | 98.73 60 | 99.06 81 | 95.27 67 | 99.93 18 | 97.07 93 | 99.63 68 | 99.72 44 |
|
K. test v3 | | | 92.55 292 | 91.91 294 | 94.48 311 | 95.64 324 | 89.24 326 | 99.07 54 | 94.88 352 | 94.04 176 | 86.78 343 | 97.59 233 | 77.64 337 | 97.64 326 | 92.08 259 | 89.43 301 | 96.57 290 |
|
test0726 | | | | | | 99.72 13 | 99.25 2 | 99.06 55 | 98.88 50 | 97.62 11 | 99.56 6 | 99.50 4 | 97.42 9 | | | | |
|
v8 | | | 94.47 242 | 93.77 251 | 96.57 227 | 96.36 300 | 94.83 208 | 99.05 56 | 98.19 223 | 91.92 267 | 93.16 274 | 96.97 283 | 88.82 201 | 98.48 257 | 91.69 271 | 87.79 320 | 96.39 311 |
|
SF-MVS | | | 98.59 21 | 98.32 34 | 99.41 19 | 99.54 37 | 98.71 22 | 99.04 57 | 98.81 79 | 95.12 134 | 99.32 18 | 99.39 16 | 96.22 23 | 99.84 56 | 97.72 60 | 99.73 45 | 99.67 65 |
|
CS-MVS | | | 97.94 64 | 97.90 60 | 98.06 130 | 98.04 195 | 96.85 115 | 99.04 57 | 98.39 191 | 96.17 83 | 98.50 75 | 98.29 171 | 94.60 85 | 99.02 200 | 98.61 8 | 99.43 101 | 98.30 202 |
|
PHI-MVS | | | 98.34 49 | 98.06 51 | 99.18 50 | 99.15 106 | 98.12 63 | 99.04 57 | 99.09 20 | 93.32 217 | 98.83 53 | 99.10 72 | 96.54 19 | 99.83 59 | 97.70 65 | 99.76 34 | 99.59 84 |
|
test_part1 | | | 94.82 216 | 93.82 246 | 97.82 144 | 98.84 129 | 97.82 77 | 99.03 60 | 98.81 79 | 92.31 257 | 92.51 296 | 97.89 205 | 81.96 305 | 98.67 241 | 94.80 179 | 88.24 315 | 96.98 239 |
|
TranMVSNet+NR-MVSNet | | | 95.14 198 | 94.48 205 | 97.11 187 | 96.45 297 | 96.36 138 | 99.03 60 | 99.03 25 | 95.04 140 | 93.58 258 | 97.93 201 | 88.27 211 | 98.03 308 | 94.13 201 | 86.90 332 | 96.95 243 |
|
ACMMP |  | | 98.23 55 | 97.95 57 | 99.09 62 | 99.74 8 | 97.62 84 | 99.03 60 | 99.41 6 | 95.98 91 | 97.60 132 | 99.36 28 | 94.45 92 | 99.93 18 | 97.14 90 | 98.85 128 | 99.70 52 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SED-MVS | | | 99.09 1 | 98.91 1 | 99.63 4 | 99.71 21 | 99.24 5 | 99.02 63 | 98.87 57 | 97.65 9 | 99.73 1 | 99.48 6 | 97.53 7 | 99.94 3 | 98.43 23 | 99.81 10 | 99.70 52 |
|
OPU-MVS | | | | | 99.37 23 | 99.24 94 | 99.05 14 | 99.02 63 | | | | 99.16 63 | 97.81 3 | 99.37 160 | 97.24 87 | 99.73 45 | 99.70 52 |
|
EIA-MVS | | | 97.75 73 | 97.58 70 | 98.27 112 | 98.38 161 | 96.44 134 | 99.01 65 | 98.60 145 | 95.88 94 | 97.26 138 | 97.53 238 | 94.97 77 | 99.33 163 | 97.38 84 | 99.20 113 | 99.05 156 |
|
Anonymous20231211 | | | 94.10 264 | 93.26 273 | 96.61 221 | 99.11 109 | 94.28 231 | 99.01 65 | 98.88 50 | 86.43 339 | 92.81 284 | 97.57 235 | 81.66 308 | 98.68 240 | 94.83 176 | 89.02 308 | 96.88 253 |
|
mvs_tets | | | 95.41 181 | 95.00 182 | 96.65 216 | 95.58 326 | 94.42 226 | 99.00 67 | 98.55 157 | 95.73 100 | 93.21 273 | 98.38 158 | 83.45 300 | 98.63 244 | 97.09 92 | 94.00 237 | 96.91 249 |
|
baseline | | | 97.64 79 | 97.44 82 | 98.25 115 | 98.35 163 | 96.20 144 | 99.00 67 | 98.32 202 | 96.33 78 | 98.03 98 | 99.17 58 | 91.35 146 | 99.16 176 | 98.10 36 | 98.29 155 | 99.39 113 |
|
v10 | | | 94.29 251 | 93.55 263 | 96.51 234 | 96.39 299 | 94.80 210 | 98.99 69 | 98.19 223 | 91.35 285 | 93.02 280 | 96.99 281 | 88.09 217 | 98.41 273 | 90.50 287 | 88.41 314 | 96.33 315 |
|
PGM-MVS | | | 98.49 37 | 98.23 43 | 99.27 41 | 99.72 13 | 98.08 64 | 98.99 69 | 99.49 5 | 95.43 115 | 99.03 37 | 99.32 35 | 95.56 50 | 99.94 3 | 96.80 113 | 99.77 28 | 99.78 15 |
|
LPG-MVS_test | | | 95.62 171 | 95.34 165 | 96.47 237 | 97.46 234 | 93.54 254 | 98.99 69 | 98.54 159 | 94.67 156 | 94.36 225 | 98.77 119 | 85.39 266 | 99.11 185 | 95.71 153 | 94.15 232 | 96.76 266 |
|
#test# | | | 98.54 33 | 98.27 37 | 99.32 31 | 99.72 13 | 98.29 51 | 98.98 72 | 98.96 32 | 95.65 105 | 98.94 43 | 99.17 58 | 96.06 33 | 99.92 24 | 97.21 89 | 99.78 25 | 99.75 30 |
|
DVP-MVS |  | | 99.03 3 | 98.83 4 | 99.63 4 | 99.72 13 | 99.25 2 | 98.97 73 | 98.58 152 | 97.62 11 | 99.45 11 | 99.46 11 | 97.42 9 | 99.94 3 | 98.47 19 | 99.81 10 | 99.69 55 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 99.71 1 | 99.72 13 | 99.35 1 | 98.97 73 | 98.88 50 | | | | | 99.94 3 | 98.47 19 | 99.81 10 | 99.84 6 |
|
tfpnnormal | | | 93.66 273 | 92.70 282 | 96.55 231 | 96.94 270 | 95.94 158 | 98.97 73 | 99.19 15 | 91.04 297 | 91.38 313 | 97.34 249 | 84.94 274 | 98.61 245 | 85.45 334 | 89.02 308 | 95.11 340 |
|
V42 | | | 94.78 220 | 94.14 226 | 96.70 213 | 96.33 302 | 95.22 188 | 98.97 73 | 98.09 248 | 92.32 255 | 94.31 228 | 97.06 273 | 88.39 209 | 98.55 252 | 92.90 239 | 88.87 310 | 96.34 313 |
|
SMA-MVS |  | | 98.58 24 | 98.25 39 | 99.56 8 | 99.51 41 | 99.04 15 | 98.95 77 | 98.80 90 | 93.67 204 | 99.37 16 | 99.52 3 | 96.52 20 | 99.89 38 | 98.06 39 | 99.81 10 | 99.76 28 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
pm-mvs1 | | | 93.94 271 | 93.06 275 | 96.59 224 | 96.49 295 | 95.16 189 | 98.95 77 | 98.03 259 | 92.32 255 | 91.08 316 | 97.84 211 | 84.54 282 | 98.41 273 | 92.16 257 | 86.13 338 | 96.19 320 |
|
Anonymous20240521 | | | 91.18 302 | 90.44 303 | 93.42 322 | 93.70 350 | 88.47 338 | 98.94 79 | 97.56 284 | 88.46 330 | 89.56 330 | 95.08 338 | 77.15 340 | 96.97 338 | 83.92 342 | 89.55 298 | 94.82 345 |
|
VPA-MVSNet | | | 95.75 163 | 95.11 178 | 97.69 156 | 97.24 249 | 97.27 96 | 98.94 79 | 99.23 12 | 95.13 133 | 95.51 194 | 97.32 251 | 85.73 261 | 98.91 216 | 97.33 86 | 89.55 298 | 96.89 252 |
|
RRT_test8_iter05 | | | 94.56 234 | 94.19 221 | 95.67 275 | 97.60 221 | 91.34 296 | 98.93 81 | 98.42 185 | 94.75 151 | 93.39 267 | 97.87 207 | 79.00 325 | 98.61 245 | 96.78 115 | 90.99 281 | 97.07 234 |
|
LS3D | | | 97.16 110 | 96.66 119 | 98.68 82 | 98.53 154 | 97.19 103 | 98.93 81 | 98.90 45 | 92.83 238 | 95.99 190 | 99.37 24 | 92.12 127 | 99.87 47 | 93.67 216 | 99.57 79 | 98.97 163 |
|
ACMM | | 93.85 9 | 95.69 168 | 95.38 163 | 96.61 221 | 97.61 220 | 93.84 243 | 98.91 83 | 98.44 180 | 95.25 127 | 94.28 229 | 98.47 148 | 86.04 259 | 99.12 182 | 95.50 160 | 93.95 239 | 96.87 255 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MTAPA | | | 98.58 24 | 98.29 36 | 99.46 15 | 99.76 2 | 98.64 27 | 98.90 84 | 98.74 107 | 97.27 38 | 98.02 99 | 99.39 16 | 94.81 80 | 99.96 1 | 97.91 46 | 99.79 21 | 99.77 22 |
|
SD-MVS | | | 98.64 15 | 98.68 6 | 98.53 94 | 99.33 67 | 98.36 47 | 98.90 84 | 98.85 67 | 97.28 34 | 99.72 3 | 99.39 16 | 96.63 18 | 97.60 327 | 98.17 33 | 99.85 3 | 99.64 74 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TransMVSNet (Re) | | | 92.67 291 | 91.51 296 | 96.15 255 | 96.58 290 | 94.65 213 | 98.90 84 | 96.73 332 | 90.86 299 | 89.46 331 | 97.86 208 | 85.62 263 | 98.09 303 | 86.45 326 | 81.12 347 | 95.71 330 |
|
EPNet | | | 97.28 103 | 96.87 106 | 98.51 95 | 94.98 336 | 96.14 147 | 98.90 84 | 97.02 319 | 98.28 1 | 95.99 190 | 99.11 70 | 91.36 145 | 99.89 38 | 96.98 95 | 99.19 115 | 99.50 95 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MTMP | | | | | | | | 98.89 88 | 94.14 361 | | | | | | | | |
|
UA-Net | | | 97.96 60 | 97.62 68 | 98.98 68 | 98.86 126 | 97.47 89 | 98.89 88 | 99.08 21 | 96.67 64 | 98.72 61 | 99.54 1 | 93.15 110 | 99.81 74 | 94.87 174 | 98.83 129 | 99.65 71 |
|
OurMVSNet-221017-0 | | | 94.21 255 | 94.00 234 | 94.85 299 | 95.60 325 | 89.22 327 | 98.89 88 | 97.43 300 | 95.29 124 | 92.18 304 | 98.52 145 | 82.86 301 | 98.59 249 | 93.46 221 | 91.76 269 | 96.74 268 |
|
thisisatest0530 | | | 96.01 151 | 95.36 164 | 97.97 135 | 98.38 161 | 95.52 177 | 98.88 91 | 94.19 360 | 94.04 176 | 97.64 129 | 98.31 168 | 83.82 298 | 99.46 155 | 95.29 166 | 97.70 174 | 98.93 167 |
|
UGNet | | | 96.78 124 | 96.30 130 | 98.19 120 | 98.24 175 | 95.89 165 | 98.88 91 | 98.93 38 | 97.39 27 | 96.81 160 | 97.84 211 | 82.60 302 | 99.90 36 | 96.53 122 | 99.49 93 | 98.79 175 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous20240529 | | | 95.10 200 | 94.22 219 | 97.75 150 | 99.01 114 | 94.26 233 | 98.87 93 | 98.83 71 | 85.79 345 | 96.64 165 | 98.97 90 | 78.73 326 | 99.85 53 | 96.27 130 | 94.89 223 | 99.12 148 |
|
thres100view900 | | | 95.38 182 | 94.70 195 | 97.41 172 | 98.98 118 | 94.92 204 | 98.87 93 | 96.90 325 | 95.38 118 | 96.61 167 | 96.88 291 | 84.29 284 | 99.56 140 | 88.11 315 | 96.29 206 | 97.76 215 |
|
XXY-MVS | | | 95.20 195 | 94.45 209 | 97.46 169 | 96.75 282 | 96.56 128 | 98.86 95 | 98.65 139 | 93.30 219 | 93.27 271 | 98.27 175 | 84.85 276 | 98.87 223 | 94.82 177 | 91.26 277 | 96.96 241 |
|
VDDNet | | | 95.36 185 | 94.53 202 | 97.86 140 | 98.10 190 | 95.13 193 | 98.85 96 | 97.75 274 | 90.46 304 | 98.36 84 | 99.39 16 | 73.27 353 | 99.64 129 | 97.98 42 | 96.58 196 | 98.81 173 |
|
thres600view7 | | | 95.49 174 | 94.77 191 | 97.67 158 | 98.98 118 | 95.02 196 | 98.85 96 | 96.90 325 | 95.38 118 | 96.63 166 | 96.90 290 | 84.29 284 | 99.59 136 | 88.65 314 | 96.33 204 | 98.40 196 |
|
114514_t | | | 96.93 118 | 96.27 131 | 98.92 72 | 99.50 43 | 97.63 83 | 98.85 96 | 98.90 45 | 84.80 348 | 97.77 117 | 99.11 70 | 92.84 112 | 99.66 126 | 94.85 175 | 99.77 28 | 99.47 102 |
|
LFMVS | | | 95.86 158 | 94.98 184 | 98.47 100 | 98.87 125 | 96.32 140 | 98.84 99 | 96.02 339 | 93.40 214 | 98.62 69 | 99.20 54 | 74.99 347 | 99.63 132 | 97.72 60 | 97.20 183 | 99.46 106 |
|
testtj | | | 98.33 51 | 97.95 57 | 99.47 14 | 99.49 47 | 98.70 23 | 98.83 100 | 98.86 63 | 95.48 112 | 98.91 49 | 99.17 58 | 95.48 53 | 99.93 18 | 95.80 148 | 99.53 89 | 99.76 28 |
|
alignmvs | | | 97.56 87 | 97.07 97 | 99.01 65 | 98.66 144 | 98.37 46 | 98.83 100 | 98.06 257 | 96.74 61 | 98.00 105 | 97.65 227 | 90.80 158 | 99.48 153 | 98.37 28 | 96.56 197 | 99.19 137 |
|
DeepC-MVS | | 95.98 3 | 97.88 68 | 97.58 70 | 98.77 78 | 99.25 88 | 96.93 110 | 98.83 100 | 98.75 105 | 96.96 54 | 96.89 156 | 99.50 4 | 90.46 164 | 99.87 47 | 97.84 54 | 99.76 34 | 99.52 89 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ACMMP_NAP | | | 98.61 18 | 98.30 35 | 99.55 9 | 99.62 32 | 98.95 17 | 98.82 103 | 98.81 79 | 95.80 97 | 99.16 30 | 99.47 8 | 95.37 60 | 99.92 24 | 97.89 49 | 99.75 40 | 99.79 12 |
|
casdiffmvs | | | 97.63 80 | 97.41 83 | 98.28 111 | 98.33 170 | 96.14 147 | 98.82 103 | 98.32 202 | 96.38 76 | 97.95 107 | 99.21 50 | 91.23 150 | 99.23 170 | 98.12 35 | 98.37 150 | 99.48 100 |
|
GBi-Net | | | 94.49 240 | 93.80 248 | 96.56 228 | 98.21 178 | 95.00 197 | 98.82 103 | 98.18 226 | 92.46 246 | 94.09 239 | 97.07 270 | 81.16 309 | 97.95 313 | 92.08 259 | 92.14 264 | 96.72 271 |
|
test1 | | | 94.49 240 | 93.80 248 | 96.56 228 | 98.21 178 | 95.00 197 | 98.82 103 | 98.18 226 | 92.46 246 | 94.09 239 | 97.07 270 | 81.16 309 | 97.95 313 | 92.08 259 | 92.14 264 | 96.72 271 |
|
FMVSNet1 | | | 93.19 285 | 92.07 290 | 96.56 228 | 97.54 228 | 95.00 197 | 98.82 103 | 98.18 226 | 90.38 307 | 92.27 302 | 97.07 270 | 73.68 352 | 97.95 313 | 89.36 308 | 91.30 275 | 96.72 271 |
|
API-MVS | | | 97.41 97 | 97.25 89 | 97.91 138 | 98.70 140 | 96.80 116 | 98.82 103 | 98.69 121 | 94.53 161 | 98.11 92 | 98.28 172 | 94.50 91 | 99.57 138 | 94.12 202 | 99.49 93 | 97.37 228 |
|
ACMH | | 92.88 16 | 94.55 235 | 93.95 238 | 96.34 248 | 97.63 219 | 93.26 267 | 98.81 109 | 98.49 175 | 93.43 213 | 89.74 327 | 98.53 142 | 81.91 306 | 99.08 190 | 93.69 213 | 93.30 254 | 96.70 275 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Effi-MVS+-dtu | | | 96.29 141 | 96.56 121 | 95.51 278 | 97.89 204 | 90.22 315 | 98.80 110 | 98.10 243 | 96.57 68 | 96.45 179 | 96.66 301 | 90.81 156 | 98.91 216 | 95.72 151 | 97.99 162 | 97.40 225 |
|
HQP_MVS | | | 96.14 147 | 95.90 143 | 96.85 204 | 97.42 239 | 94.60 220 | 98.80 110 | 98.56 155 | 97.28 34 | 95.34 195 | 98.28 172 | 87.09 238 | 99.03 197 | 96.07 135 | 94.27 226 | 96.92 244 |
|
plane_prior2 | | | | | | | | 98.80 110 | | 97.28 34 | | | | | | | |
|
APD-MVS |  | | 98.35 47 | 98.00 55 | 99.42 18 | 99.51 41 | 98.72 21 | 98.80 110 | 98.82 73 | 94.52 163 | 99.23 23 | 99.25 45 | 95.54 52 | 99.80 83 | 96.52 123 | 99.77 28 | 99.74 35 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
UniMVSNet (Re) | | | 95.78 162 | 95.19 174 | 97.58 164 | 96.99 268 | 97.47 89 | 98.79 114 | 99.18 16 | 95.60 106 | 93.92 246 | 97.04 276 | 91.68 136 | 98.48 257 | 95.80 148 | 87.66 322 | 96.79 262 |
|
FMVSNet2 | | | 94.47 242 | 93.61 261 | 97.04 190 | 98.21 178 | 96.43 135 | 98.79 114 | 98.27 213 | 92.46 246 | 93.50 264 | 97.09 267 | 81.16 309 | 98.00 311 | 91.09 276 | 91.93 267 | 96.70 275 |
|
testgi | | | 93.06 287 | 92.45 286 | 94.88 298 | 96.43 298 | 89.90 316 | 98.75 116 | 97.54 290 | 95.60 106 | 91.63 312 | 97.91 202 | 74.46 350 | 97.02 337 | 86.10 328 | 93.67 243 | 97.72 219 |
|
LCM-MVSNet-Re | | | 95.22 193 | 95.32 168 | 94.91 296 | 98.18 183 | 87.85 346 | 98.75 116 | 95.66 345 | 95.11 135 | 88.96 333 | 96.85 294 | 90.26 169 | 97.65 325 | 95.65 156 | 98.44 147 | 99.22 133 |
|
SixPastTwentyTwo | | | 93.34 279 | 92.86 278 | 94.75 303 | 95.67 323 | 89.41 325 | 98.75 116 | 96.67 336 | 93.89 185 | 90.15 325 | 98.25 177 | 80.87 313 | 98.27 292 | 90.90 281 | 90.64 284 | 96.57 290 |
|
UniMVSNet_ETH3D | | | 94.24 254 | 93.33 270 | 96.97 195 | 97.19 256 | 93.38 263 | 98.74 119 | 98.57 153 | 91.21 294 | 93.81 252 | 98.58 138 | 72.85 354 | 98.77 234 | 95.05 172 | 93.93 240 | 98.77 177 |
|
MVS_Test | | | 97.28 103 | 97.00 100 | 98.13 123 | 98.33 170 | 95.97 155 | 98.74 119 | 98.07 252 | 94.27 170 | 98.44 80 | 98.07 188 | 92.48 116 | 99.26 166 | 96.43 127 | 98.19 156 | 99.16 143 |
|
UniMVSNet_NR-MVSNet | | | 95.71 165 | 95.15 175 | 97.40 174 | 96.84 277 | 96.97 108 | 98.74 119 | 99.24 10 | 95.16 131 | 93.88 248 | 97.72 222 | 91.68 136 | 98.31 284 | 95.81 146 | 87.25 327 | 96.92 244 |
|
NR-MVSNet | | | 94.98 208 | 94.16 224 | 97.44 170 | 96.53 292 | 97.22 102 | 98.74 119 | 98.95 34 | 94.96 144 | 89.25 332 | 97.69 223 | 89.32 183 | 98.18 295 | 94.59 186 | 87.40 325 | 96.92 244 |
|
ETV-MVS | | | 97.96 60 | 97.81 63 | 98.40 106 | 98.42 159 | 97.27 96 | 98.73 123 | 98.55 157 | 96.84 56 | 98.38 83 | 97.44 245 | 95.39 58 | 99.35 161 | 97.62 69 | 98.89 124 | 98.58 191 |
|
baseline1 | | | 95.84 159 | 95.12 177 | 98.01 133 | 98.49 157 | 95.98 150 | 98.73 123 | 97.03 317 | 95.37 120 | 96.22 183 | 98.19 181 | 89.96 172 | 99.16 176 | 94.60 184 | 87.48 323 | 98.90 169 |
|
MVSTER | | | 96.06 149 | 95.72 147 | 97.08 189 | 98.23 176 | 95.93 161 | 98.73 123 | 98.27 213 | 94.86 148 | 95.07 199 | 98.09 187 | 88.21 212 | 98.54 253 | 96.59 119 | 93.46 248 | 96.79 262 |
|
ACMP | | 93.49 10 | 95.34 187 | 94.98 184 | 96.43 242 | 97.67 216 | 93.48 258 | 98.73 123 | 98.44 180 | 94.94 147 | 92.53 294 | 98.53 142 | 84.50 283 | 99.14 180 | 95.48 161 | 94.00 237 | 96.66 281 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
HPM-MVS++ |  | | 98.58 24 | 98.25 39 | 99.55 9 | 99.50 43 | 99.08 11 | 98.72 127 | 98.66 135 | 97.51 17 | 98.15 90 | 98.83 112 | 95.70 47 | 99.92 24 | 97.53 78 | 99.67 58 | 99.66 69 |
|
9.14 | | | | 98.06 51 | | 99.47 50 | | 98.71 128 | 98.82 73 | 94.36 168 | 99.16 30 | 99.29 41 | 96.05 35 | 99.81 74 | 97.00 94 | 99.71 54 | |
|
VPNet | | | 94.99 206 | 94.19 221 | 97.40 174 | 97.16 258 | 96.57 127 | 98.71 128 | 98.97 30 | 95.67 103 | 94.84 205 | 98.24 178 | 80.36 317 | 98.67 241 | 96.46 124 | 87.32 326 | 96.96 241 |
|
MSLP-MVS++ | | | 98.56 29 | 98.57 9 | 98.55 90 | 99.26 87 | 96.80 116 | 98.71 128 | 99.05 24 | 97.28 34 | 98.84 51 | 99.28 42 | 96.47 21 | 99.40 158 | 98.52 17 | 99.70 55 | 99.47 102 |
|
ACMH+ | | 92.99 14 | 94.30 250 | 93.77 251 | 95.88 268 | 97.81 208 | 92.04 284 | 98.71 128 | 98.37 195 | 93.99 181 | 90.60 321 | 98.47 148 | 80.86 314 | 99.05 192 | 92.75 243 | 92.40 263 | 96.55 294 |
|
Anonymous202405211 | | | 95.28 190 | 94.49 204 | 97.67 158 | 99.00 115 | 93.75 247 | 98.70 132 | 97.04 316 | 90.66 300 | 96.49 176 | 98.80 115 | 78.13 331 | 99.83 59 | 96.21 133 | 95.36 222 | 99.44 109 |
|
DP-MVS | | | 96.59 130 | 95.93 142 | 98.57 88 | 99.34 64 | 96.19 146 | 98.70 132 | 98.39 191 | 89.45 323 | 94.52 215 | 99.35 30 | 91.85 133 | 99.85 53 | 92.89 241 | 98.88 125 | 99.68 61 |
|
Fast-Effi-MVS+-dtu | | | 95.87 157 | 95.85 144 | 95.91 265 | 97.74 213 | 91.74 290 | 98.69 134 | 98.15 234 | 95.56 108 | 94.92 203 | 97.68 226 | 88.98 196 | 98.79 232 | 93.19 229 | 97.78 170 | 97.20 232 |
|
tfpn200view9 | | | 95.32 189 | 94.62 198 | 97.43 171 | 98.94 120 | 94.98 200 | 98.68 135 | 96.93 323 | 95.33 121 | 96.55 171 | 96.53 307 | 84.23 287 | 99.56 140 | 88.11 315 | 96.29 206 | 97.76 215 |
|
VDD-MVS | | | 95.82 161 | 95.23 172 | 97.61 163 | 98.84 129 | 93.98 239 | 98.68 135 | 97.40 302 | 95.02 141 | 97.95 107 | 99.34 33 | 74.37 351 | 99.78 99 | 98.64 4 | 96.80 189 | 99.08 154 |
|
thres400 | | | 95.38 182 | 94.62 198 | 97.65 161 | 98.94 120 | 94.98 200 | 98.68 135 | 96.93 323 | 95.33 121 | 96.55 171 | 96.53 307 | 84.23 287 | 99.56 140 | 88.11 315 | 96.29 206 | 98.40 196 |
|
ETH3D-3000-0.1 | | | 98.35 47 | 98.00 55 | 99.38 20 | 99.47 50 | 98.68 25 | 98.67 138 | 98.84 68 | 94.66 158 | 99.11 32 | 99.25 45 | 95.46 54 | 99.81 74 | 96.80 113 | 99.73 45 | 99.63 77 |
|
pmmvs6 | | | 91.77 297 | 90.63 301 | 95.17 289 | 94.69 342 | 91.24 301 | 98.67 138 | 97.92 267 | 86.14 341 | 89.62 328 | 97.56 237 | 75.79 344 | 98.34 280 | 90.75 284 | 84.56 340 | 95.94 326 |
|
v2v482 | | | 94.69 222 | 94.03 230 | 96.65 216 | 96.17 307 | 94.79 211 | 98.67 138 | 98.08 250 | 92.72 239 | 94.00 244 | 97.16 261 | 87.69 229 | 98.45 262 | 92.91 238 | 88.87 310 | 96.72 271 |
|
DU-MVS | | | 95.42 179 | 94.76 192 | 97.40 174 | 96.53 292 | 96.97 108 | 98.66 141 | 98.99 29 | 95.43 115 | 93.88 248 | 97.69 223 | 88.57 204 | 98.31 284 | 95.81 146 | 87.25 327 | 96.92 244 |
|
MAR-MVS | | | 96.91 119 | 96.40 127 | 98.45 101 | 98.69 142 | 96.90 112 | 98.66 141 | 98.68 124 | 92.40 252 | 97.07 146 | 97.96 198 | 91.54 142 | 99.75 108 | 93.68 214 | 98.92 122 | 98.69 181 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
hse-mvs3 | | | 96.17 146 | 95.62 155 | 97.81 145 | 99.03 113 | 94.45 224 | 98.64 143 | 98.75 105 | 97.48 19 | 98.67 63 | 98.72 124 | 89.76 174 | 99.86 52 | 97.95 43 | 81.59 346 | 99.11 149 |
|
VNet | | | 97.79 72 | 97.40 84 | 98.96 70 | 98.88 124 | 97.55 86 | 98.63 144 | 98.93 38 | 96.74 61 | 99.02 38 | 98.84 110 | 90.33 167 | 99.83 59 | 98.53 11 | 96.66 193 | 99.50 95 |
|
PVSNet_Blended_VisFu | | | 97.70 76 | 97.46 80 | 98.44 102 | 99.27 85 | 95.91 163 | 98.63 144 | 99.16 17 | 94.48 165 | 97.67 125 | 98.88 105 | 92.80 113 | 99.91 33 | 97.11 91 | 99.12 117 | 99.50 95 |
|
PAPM_NR | | | 97.46 90 | 97.11 94 | 98.50 96 | 99.50 43 | 96.41 136 | 98.63 144 | 98.60 145 | 95.18 130 | 97.06 147 | 98.06 189 | 94.26 97 | 99.57 138 | 93.80 212 | 98.87 127 | 99.52 89 |
|
Baseline_NR-MVSNet | | | 94.35 247 | 93.81 247 | 95.96 263 | 96.20 305 | 94.05 238 | 98.61 147 | 96.67 336 | 91.44 281 | 93.85 250 | 97.60 232 | 88.57 204 | 98.14 298 | 94.39 191 | 86.93 330 | 95.68 331 |
|
v1144 | | | 94.59 232 | 93.92 239 | 96.60 223 | 96.21 304 | 94.78 212 | 98.59 148 | 98.14 236 | 91.86 270 | 94.21 234 | 97.02 278 | 87.97 220 | 98.41 273 | 91.72 270 | 89.57 296 | 96.61 285 |
|
AllTest | | | 95.24 192 | 94.65 197 | 96.99 192 | 99.25 88 | 93.21 269 | 98.59 148 | 98.18 226 | 91.36 283 | 93.52 261 | 98.77 119 | 84.67 279 | 99.72 112 | 89.70 301 | 97.87 166 | 98.02 210 |
|
Fast-Effi-MVS+ | | | 96.28 143 | 95.70 151 | 98.03 132 | 98.29 174 | 95.97 155 | 98.58 150 | 98.25 218 | 91.74 271 | 95.29 198 | 97.23 257 | 91.03 155 | 99.15 179 | 92.90 239 | 97.96 163 | 98.97 163 |
|
Anonymous20231206 | | | 91.66 298 | 91.10 298 | 93.33 325 | 94.02 349 | 87.35 348 | 98.58 150 | 97.26 309 | 90.48 303 | 90.16 324 | 96.31 313 | 83.83 297 | 96.53 348 | 79.36 354 | 89.90 292 | 96.12 321 |
|
v144192 | | | 94.39 246 | 93.70 257 | 96.48 236 | 96.06 312 | 94.35 230 | 98.58 150 | 98.16 233 | 91.45 280 | 94.33 227 | 97.02 278 | 87.50 232 | 98.45 262 | 91.08 277 | 89.11 305 | 96.63 283 |
|
v148 | | | 94.29 251 | 93.76 253 | 95.91 265 | 96.10 310 | 92.93 274 | 98.58 150 | 97.97 262 | 92.59 244 | 93.47 265 | 96.95 287 | 88.53 207 | 98.32 282 | 92.56 249 | 87.06 329 | 96.49 306 |
|
COLMAP_ROB |  | 93.27 12 | 95.33 188 | 94.87 189 | 96.71 211 | 99.29 80 | 93.24 268 | 98.58 150 | 98.11 241 | 89.92 315 | 93.57 259 | 99.10 72 | 86.37 252 | 99.79 95 | 90.78 283 | 98.10 159 | 97.09 233 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
RRT_MVS | | | 96.04 150 | 95.53 156 | 97.56 166 | 97.07 264 | 97.32 93 | 98.57 155 | 98.09 248 | 95.15 132 | 95.02 201 | 98.44 150 | 88.20 213 | 98.58 251 | 96.17 134 | 93.09 257 | 96.79 262 |
|
mvs-test1 | | | 96.60 128 | 96.68 118 | 96.37 245 | 97.89 204 | 91.81 286 | 98.56 156 | 98.10 243 | 96.57 68 | 96.52 175 | 97.94 200 | 90.81 156 | 99.45 156 | 95.72 151 | 98.01 161 | 97.86 214 |
|
FMVSNet3 | | | 94.97 209 | 94.26 218 | 97.11 187 | 98.18 183 | 96.62 122 | 98.56 156 | 98.26 217 | 93.67 204 | 94.09 239 | 97.10 263 | 84.25 286 | 98.01 309 | 92.08 259 | 92.14 264 | 96.70 275 |
|
zzz-MVS | | | 98.55 31 | 98.25 39 | 99.46 15 | 99.76 2 | 98.64 27 | 98.55 158 | 98.74 107 | 97.27 38 | 98.02 99 | 99.39 16 | 94.81 80 | 99.96 1 | 97.91 46 | 99.79 21 | 99.77 22 |
|
F-COLMAP | | | 97.09 114 | 96.80 107 | 97.97 135 | 99.45 57 | 94.95 203 | 98.55 158 | 98.62 144 | 93.02 229 | 96.17 185 | 98.58 138 | 94.01 100 | 99.81 74 | 93.95 207 | 98.90 123 | 99.14 146 |
|
v1921920 | | | 94.20 256 | 93.47 267 | 96.40 244 | 95.98 315 | 94.08 237 | 98.52 160 | 98.15 234 | 91.33 286 | 94.25 231 | 97.20 260 | 86.41 251 | 98.42 266 | 90.04 295 | 89.39 302 | 96.69 280 |
|
EU-MVSNet | | | 93.66 273 | 94.14 226 | 92.25 333 | 95.96 316 | 83.38 356 | 98.52 160 | 98.12 238 | 94.69 154 | 92.61 291 | 98.13 185 | 87.36 235 | 96.39 350 | 91.82 267 | 90.00 291 | 96.98 239 |
|
TAMVS | | | 97.02 115 | 96.79 109 | 97.70 155 | 98.06 193 | 95.31 186 | 98.52 160 | 98.31 204 | 93.95 183 | 97.05 148 | 98.61 133 | 93.49 106 | 98.52 255 | 95.33 163 | 97.81 168 | 99.29 127 |
|
LTVRE_ROB | | 92.95 15 | 94.60 230 | 93.90 241 | 96.68 215 | 97.41 242 | 94.42 226 | 98.52 160 | 98.59 147 | 91.69 274 | 91.21 314 | 98.35 161 | 84.87 275 | 99.04 196 | 91.06 278 | 93.44 251 | 96.60 286 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 91.06 304 | 89.68 309 | 95.21 287 | 85.35 365 | 91.49 295 | 98.51 164 | 97.07 314 | 91.47 279 | 88.83 336 | 97.84 211 | 77.31 338 | 99.09 189 | 92.79 242 | 77.98 353 | 95.04 342 |
|
v1192 | | | 94.32 249 | 93.58 262 | 96.53 232 | 96.10 310 | 94.45 224 | 98.50 165 | 98.17 231 | 91.54 278 | 94.19 235 | 97.06 273 | 86.95 242 | 98.43 265 | 90.14 290 | 89.57 296 | 96.70 275 |
|
test_0402 | | | 91.32 300 | 90.27 305 | 94.48 311 | 96.60 289 | 91.12 302 | 98.50 165 | 97.22 310 | 86.10 342 | 88.30 338 | 96.98 282 | 77.65 336 | 97.99 312 | 78.13 358 | 92.94 259 | 94.34 347 |
|
DeepC-MVS_fast | | 96.70 1 | 98.55 31 | 98.34 29 | 99.18 50 | 99.25 88 | 98.04 65 | 98.50 165 | 98.78 98 | 97.72 6 | 98.92 48 | 99.28 42 | 95.27 67 | 99.82 67 | 97.55 76 | 99.77 28 | 99.69 55 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CNVR-MVS | | | 98.78 7 | 98.56 10 | 99.45 17 | 99.32 70 | 98.87 19 | 98.47 168 | 98.81 79 | 97.72 6 | 98.76 57 | 99.16 63 | 97.05 13 | 99.78 99 | 98.06 39 | 99.66 61 | 99.69 55 |
|
test_yl | | | 97.22 105 | 96.78 110 | 98.54 92 | 98.73 135 | 96.60 125 | 98.45 169 | 98.31 204 | 94.70 152 | 98.02 99 | 98.42 153 | 90.80 158 | 99.70 118 | 96.81 111 | 96.79 190 | 99.34 116 |
|
DCV-MVSNet | | | 97.22 105 | 96.78 110 | 98.54 92 | 98.73 135 | 96.60 125 | 98.45 169 | 98.31 204 | 94.70 152 | 98.02 99 | 98.42 153 | 90.80 158 | 99.70 118 | 96.81 111 | 96.79 190 | 99.34 116 |
|
NCCC | | | 98.61 18 | 98.35 25 | 99.38 20 | 99.28 84 | 98.61 29 | 98.45 169 | 98.76 102 | 97.82 5 | 98.45 79 | 98.93 100 | 96.65 17 | 99.83 59 | 97.38 84 | 99.41 103 | 99.71 48 |
|
v1240 | | | 94.06 268 | 93.29 272 | 96.34 248 | 96.03 314 | 93.90 241 | 98.44 172 | 98.17 231 | 91.18 295 | 94.13 238 | 97.01 280 | 86.05 257 | 98.42 266 | 89.13 311 | 89.50 300 | 96.70 275 |
|
plane_prior | | | | | | | 94.60 220 | 98.44 172 | | 96.74 61 | | | | | | 94.22 228 | |
|
MP-MVS-pluss | | | 98.31 53 | 97.92 59 | 99.49 12 | 99.72 13 | 98.88 18 | 98.43 174 | 98.78 98 | 94.10 174 | 97.69 124 | 99.42 14 | 95.25 69 | 99.92 24 | 98.09 37 | 99.80 17 | 99.67 65 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
OPM-MVS | | | 95.69 168 | 95.33 167 | 96.76 208 | 96.16 309 | 94.63 215 | 98.43 174 | 98.39 191 | 96.64 65 | 95.02 201 | 98.78 117 | 85.15 271 | 99.05 192 | 95.21 170 | 94.20 229 | 96.60 286 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
DPE-MVS |  | | 98.92 5 | 98.67 7 | 99.65 2 | 99.58 34 | 99.20 9 | 98.42 176 | 98.91 44 | 97.58 14 | 99.54 8 | 99.46 11 | 97.10 12 | 99.94 3 | 97.64 68 | 99.84 8 | 99.83 7 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MCST-MVS | | | 98.65 14 | 98.37 22 | 99.48 13 | 99.60 33 | 98.87 19 | 98.41 177 | 98.68 124 | 97.04 51 | 98.52 74 | 98.80 115 | 96.78 15 | 99.83 59 | 97.93 45 | 99.61 71 | 99.74 35 |
|
Regformer-3 | | | 98.59 21 | 98.50 15 | 98.86 76 | 99.43 59 | 97.05 106 | 98.40 178 | 98.68 124 | 97.43 24 | 99.06 35 | 99.31 37 | 95.80 46 | 99.77 104 | 98.62 6 | 99.76 34 | 99.78 15 |
|
Regformer-4 | | | 98.64 15 | 98.53 12 | 98.99 66 | 99.43 59 | 97.37 92 | 98.40 178 | 98.79 95 | 97.46 22 | 99.09 34 | 99.31 37 | 95.86 45 | 99.80 83 | 98.64 4 | 99.76 34 | 99.79 12 |
|
Regformer-1 | | | 98.66 13 | 98.51 14 | 99.12 60 | 99.35 62 | 97.81 79 | 98.37 180 | 98.76 102 | 97.49 18 | 99.20 25 | 99.21 50 | 96.08 32 | 99.79 95 | 98.42 25 | 99.73 45 | 99.75 30 |
|
Regformer-2 | | | 98.69 12 | 98.52 13 | 99.19 46 | 99.35 62 | 98.01 67 | 98.37 180 | 98.81 79 | 97.48 19 | 99.21 24 | 99.21 50 | 96.13 30 | 99.80 83 | 98.40 27 | 99.73 45 | 99.75 30 |
|
hse-mvs2 | | | 95.71 165 | 95.30 170 | 96.93 198 | 98.50 155 | 93.53 256 | 98.36 182 | 98.10 243 | 97.48 19 | 98.67 63 | 97.99 195 | 89.76 174 | 99.02 200 | 97.95 43 | 80.91 350 | 98.22 204 |
|
CANet | | | 98.05 58 | 97.76 65 | 98.90 74 | 98.73 135 | 97.27 96 | 98.35 183 | 98.78 98 | 97.37 30 | 97.72 122 | 98.96 96 | 91.53 143 | 99.92 24 | 98.79 3 | 99.65 62 | 99.51 93 |
|
AUN-MVS | | | 94.53 237 | 93.73 255 | 96.92 201 | 98.50 155 | 93.52 257 | 98.34 184 | 98.10 243 | 93.83 190 | 95.94 192 | 97.98 197 | 85.59 264 | 99.03 197 | 94.35 193 | 80.94 349 | 98.22 204 |
|
DWT-MVSNet_test | | | 94.82 216 | 94.36 214 | 96.20 254 | 97.35 244 | 90.79 307 | 98.34 184 | 96.57 338 | 92.91 234 | 95.33 197 | 96.44 311 | 82.00 304 | 99.12 182 | 94.52 188 | 95.78 220 | 98.70 180 |
|
ETH3D cwj APD-0.16 | | | 97.96 60 | 97.52 75 | 99.29 34 | 99.05 110 | 98.52 32 | 98.33 186 | 98.68 124 | 93.18 222 | 98.68 62 | 99.13 67 | 94.62 84 | 99.83 59 | 96.45 125 | 99.55 87 | 99.52 89 |
|
test20.03 | | | 90.89 306 | 90.38 304 | 92.43 331 | 93.48 351 | 88.14 343 | 98.33 186 | 97.56 284 | 93.40 214 | 87.96 339 | 96.71 300 | 80.69 316 | 94.13 360 | 79.15 355 | 86.17 336 | 95.01 344 |
|
DP-MVS Recon | | | 97.86 69 | 97.46 80 | 99.06 64 | 99.53 38 | 98.35 48 | 98.33 186 | 98.89 47 | 92.62 242 | 98.05 95 | 98.94 99 | 95.34 62 | 99.65 127 | 96.04 139 | 99.42 102 | 99.19 137 |
|
RPSCF | | | 94.87 215 | 95.40 159 | 93.26 327 | 98.89 123 | 82.06 360 | 98.33 186 | 98.06 257 | 90.30 309 | 96.56 169 | 99.26 44 | 87.09 238 | 99.49 149 | 93.82 211 | 96.32 205 | 98.24 203 |
|
TAPA-MVS | | 93.98 7 | 95.35 186 | 94.56 201 | 97.74 151 | 99.13 107 | 94.83 208 | 98.33 186 | 98.64 140 | 86.62 337 | 96.29 182 | 98.61 133 | 94.00 101 | 99.29 165 | 80.00 352 | 99.41 103 | 99.09 151 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
IterMVS-LS | | | 95.46 175 | 95.21 173 | 96.22 253 | 98.12 188 | 93.72 250 | 98.32 191 | 98.13 237 | 93.71 197 | 94.26 230 | 97.31 252 | 92.24 122 | 98.10 301 | 94.63 181 | 90.12 289 | 96.84 258 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
mvs_anonymous | | | 96.70 126 | 96.53 124 | 97.18 182 | 98.19 181 | 93.78 244 | 98.31 192 | 98.19 223 | 94.01 179 | 94.47 217 | 98.27 175 | 92.08 129 | 98.46 261 | 97.39 83 | 97.91 164 | 99.31 122 |
|
WTY-MVS | | | 97.37 100 | 96.92 104 | 98.72 80 | 98.86 126 | 96.89 114 | 98.31 192 | 98.71 117 | 95.26 126 | 97.67 125 | 98.56 141 | 92.21 124 | 99.78 99 | 95.89 143 | 96.85 188 | 99.48 100 |
|
D2MVS | | | 95.18 196 | 95.08 179 | 95.48 279 | 97.10 262 | 92.07 282 | 98.30 194 | 99.13 19 | 94.02 178 | 92.90 282 | 96.73 298 | 89.48 179 | 98.73 236 | 94.48 190 | 93.60 247 | 95.65 332 |
|
EI-MVSNet-Vis-set | | | 98.47 39 | 98.39 20 | 98.69 81 | 99.46 53 | 96.49 131 | 98.30 194 | 98.69 121 | 97.21 41 | 98.84 51 | 99.36 28 | 95.41 57 | 99.78 99 | 98.62 6 | 99.65 62 | 99.80 11 |
|
DSMNet-mixed | | | 92.52 293 | 92.58 284 | 92.33 332 | 94.15 345 | 82.65 358 | 98.30 194 | 94.26 359 | 89.08 327 | 92.65 290 | 95.73 327 | 85.01 273 | 95.76 352 | 86.24 327 | 97.76 171 | 98.59 189 |
|
EI-MVSNet-UG-set | | | 98.41 42 | 98.34 29 | 98.61 86 | 99.45 57 | 96.32 140 | 98.28 197 | 98.68 124 | 97.17 44 | 98.74 58 | 99.37 24 | 95.25 69 | 99.79 95 | 98.57 9 | 99.54 88 | 99.73 40 |
|
OMC-MVS | | | 97.55 88 | 97.34 86 | 98.20 118 | 99.33 67 | 95.92 162 | 98.28 197 | 98.59 147 | 95.52 111 | 97.97 106 | 99.10 72 | 93.28 109 | 99.49 149 | 95.09 171 | 98.88 125 | 99.19 137 |
|
baseline2 | | | 95.11 199 | 94.52 203 | 96.87 203 | 96.65 288 | 93.56 253 | 98.27 199 | 94.10 362 | 93.45 212 | 92.02 308 | 97.43 246 | 87.45 234 | 99.19 174 | 93.88 209 | 97.41 181 | 97.87 213 |
|
PVSNet_BlendedMVS | | | 96.73 125 | 96.60 120 | 97.12 186 | 99.25 88 | 95.35 184 | 98.26 200 | 99.26 8 | 94.28 169 | 97.94 109 | 97.46 242 | 92.74 114 | 99.81 74 | 96.88 106 | 93.32 253 | 96.20 319 |
|
BH-untuned | | | 95.95 154 | 95.72 147 | 96.65 216 | 98.55 153 | 92.26 279 | 98.23 201 | 97.79 272 | 93.73 195 | 94.62 212 | 98.01 193 | 88.97 197 | 99.00 204 | 93.04 234 | 98.51 143 | 98.68 182 |
|
sss | | | 97.39 98 | 96.98 102 | 98.61 86 | 98.60 150 | 96.61 124 | 98.22 202 | 98.93 38 | 93.97 182 | 98.01 103 | 98.48 147 | 91.98 131 | 99.85 53 | 96.45 125 | 98.15 157 | 99.39 113 |
|
xxxxxxxxxxxxxcwj | | | 98.70 10 | 98.50 15 | 99.30 33 | 99.46 53 | 98.38 40 | 98.21 203 | 98.52 163 | 97.95 3 | 99.32 18 | 99.39 16 | 96.22 23 | 99.84 56 | 97.72 60 | 99.73 45 | 99.67 65 |
|
save fliter | | | | | | 99.46 53 | 98.38 40 | 98.21 203 | 98.71 117 | 97.95 3 | | | | | | | |
|
WR-MVS | | | 95.15 197 | 94.46 207 | 97.22 179 | 96.67 287 | 96.45 133 | 98.21 203 | 98.81 79 | 94.15 172 | 93.16 274 | 97.69 223 | 87.51 230 | 98.30 286 | 95.29 166 | 88.62 312 | 96.90 251 |
|
ETH3 D test6400 | | | 97.59 84 | 97.01 99 | 99.34 26 | 99.40 61 | 98.56 30 | 98.20 206 | 98.81 79 | 91.63 276 | 98.44 80 | 98.85 108 | 93.98 102 | 99.82 67 | 94.11 203 | 99.69 56 | 99.64 74 |
|
pmmvs5 | | | 93.65 275 | 92.97 277 | 95.68 274 | 95.49 329 | 92.37 278 | 98.20 206 | 97.28 307 | 89.66 320 | 92.58 292 | 97.26 254 | 82.14 303 | 98.09 303 | 93.18 230 | 90.95 282 | 96.58 288 |
|
thres200 | | | 95.25 191 | 94.57 200 | 97.28 177 | 98.81 131 | 94.92 204 | 98.20 206 | 97.11 312 | 95.24 129 | 96.54 173 | 96.22 319 | 84.58 281 | 99.53 146 | 87.93 319 | 96.50 200 | 97.39 226 |
|
CDS-MVSNet | | | 96.99 116 | 96.69 116 | 97.90 139 | 98.05 194 | 95.98 150 | 98.20 206 | 98.33 201 | 93.67 204 | 96.95 150 | 98.49 146 | 93.54 105 | 98.42 266 | 95.24 169 | 97.74 172 | 99.31 122 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
1314 | | | 96.25 145 | 95.73 146 | 97.79 146 | 97.13 260 | 95.55 176 | 98.19 210 | 98.59 147 | 93.47 211 | 92.03 307 | 97.82 215 | 91.33 147 | 99.49 149 | 94.62 183 | 98.44 147 | 98.32 201 |
|
1121 | | | 97.37 100 | 96.77 114 | 99.16 53 | 99.34 64 | 97.99 70 | 98.19 210 | 98.68 124 | 90.14 312 | 98.01 103 | 98.97 90 | 94.80 82 | 99.87 47 | 93.36 224 | 99.46 98 | 99.61 79 |
|
MVS | | | 94.67 227 | 93.54 264 | 98.08 128 | 96.88 275 | 96.56 128 | 98.19 210 | 98.50 171 | 78.05 357 | 92.69 289 | 98.02 191 | 91.07 154 | 99.63 132 | 90.09 291 | 98.36 152 | 98.04 209 |
|
BH-RMVSNet | | | 95.92 156 | 95.32 168 | 97.69 156 | 98.32 172 | 94.64 214 | 98.19 210 | 97.45 298 | 94.56 160 | 96.03 188 | 98.61 133 | 85.02 272 | 99.12 182 | 90.68 285 | 99.06 118 | 99.30 125 |
|
1112_ss | | | 96.63 127 | 96.00 141 | 98.50 96 | 98.56 151 | 96.37 137 | 98.18 214 | 98.10 243 | 92.92 233 | 94.84 205 | 98.43 151 | 92.14 126 | 99.58 137 | 94.35 193 | 96.51 199 | 99.56 88 |
|
MVS_0304 | | | 92.81 289 | 92.01 291 | 95.23 286 | 97.46 234 | 91.33 298 | 98.17 215 | 98.81 79 | 91.13 296 | 93.80 253 | 95.68 332 | 66.08 360 | 98.06 306 | 90.79 282 | 96.13 215 | 96.32 316 |
|
EPNet_dtu | | | 95.21 194 | 94.95 186 | 95.99 260 | 96.17 307 | 90.45 313 | 98.16 216 | 97.27 308 | 96.77 59 | 93.14 277 | 98.33 166 | 90.34 166 | 98.42 266 | 85.57 332 | 98.81 131 | 99.09 151 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
HY-MVS | | 93.96 8 | 96.82 123 | 96.23 134 | 98.57 88 | 98.46 158 | 97.00 107 | 98.14 217 | 98.21 220 | 93.95 183 | 96.72 163 | 97.99 195 | 91.58 138 | 99.76 106 | 94.51 189 | 96.54 198 | 98.95 166 |
|
PLC |  | 95.07 4 | 97.20 108 | 96.78 110 | 98.44 102 | 99.29 80 | 96.31 142 | 98.14 217 | 98.76 102 | 92.41 251 | 96.39 180 | 98.31 168 | 94.92 79 | 99.78 99 | 94.06 205 | 98.77 132 | 99.23 132 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EG-PatchMatch MVS | | | 91.13 303 | 90.12 306 | 94.17 318 | 94.73 341 | 89.00 331 | 98.13 219 | 97.81 271 | 89.22 326 | 85.32 350 | 96.46 309 | 67.71 357 | 98.42 266 | 87.89 320 | 93.82 242 | 95.08 341 |
|
EI-MVSNet | | | 95.96 153 | 95.83 145 | 96.36 246 | 97.93 201 | 93.70 251 | 98.12 220 | 98.27 213 | 93.70 199 | 95.07 199 | 99.02 83 | 92.23 123 | 98.54 253 | 94.68 180 | 93.46 248 | 96.84 258 |
|
CVMVSNet | | | 95.43 178 | 96.04 139 | 93.57 321 | 97.93 201 | 83.62 355 | 98.12 220 | 98.59 147 | 95.68 102 | 96.56 169 | 99.02 83 | 87.51 230 | 97.51 331 | 93.56 220 | 97.44 179 | 99.60 82 |
|
TSAR-MVS + GP. | | | 98.38 44 | 98.24 42 | 98.81 77 | 99.22 96 | 97.25 101 | 98.11 222 | 98.29 212 | 97.19 43 | 98.99 42 | 99.02 83 | 96.22 23 | 99.67 125 | 98.52 17 | 98.56 141 | 99.51 93 |
|
XVG-ACMP-BASELINE | | | 94.54 236 | 94.14 226 | 95.75 273 | 96.55 291 | 91.65 292 | 98.11 222 | 98.44 180 | 94.96 144 | 94.22 233 | 97.90 203 | 79.18 324 | 99.11 185 | 94.05 206 | 93.85 241 | 96.48 307 |
|
CNLPA | | | 97.45 93 | 97.03 98 | 98.73 79 | 99.05 110 | 97.44 91 | 98.07 224 | 98.53 161 | 95.32 123 | 96.80 161 | 98.53 142 | 93.32 108 | 99.72 112 | 94.31 196 | 99.31 110 | 99.02 158 |
|
diffmvs | | | 97.58 85 | 97.40 84 | 98.13 123 | 98.32 172 | 95.81 168 | 98.06 225 | 98.37 195 | 96.20 82 | 98.74 58 | 98.89 104 | 91.31 148 | 99.25 167 | 98.16 34 | 98.52 142 | 99.34 116 |
|
CHOSEN 1792x2688 | | | 97.12 112 | 96.80 107 | 98.08 128 | 99.30 77 | 94.56 222 | 98.05 226 | 99.71 1 | 93.57 208 | 97.09 143 | 98.91 103 | 88.17 214 | 99.89 38 | 96.87 109 | 99.56 84 | 99.81 10 |
|
HQP-NCC | | | | | | 97.20 253 | | 98.05 226 | | 96.43 73 | 94.45 218 | | | | | | |
|
ACMP_Plane | | | | | | 97.20 253 | | 98.05 226 | | 96.43 73 | 94.45 218 | | | | | | |
|
HQP-MVS | | | 95.72 164 | 95.40 159 | 96.69 214 | 97.20 253 | 94.25 234 | 98.05 226 | 98.46 176 | 96.43 73 | 94.45 218 | 97.73 220 | 86.75 244 | 98.96 209 | 95.30 164 | 94.18 230 | 96.86 257 |
|
MIMVSNet1 | | | 89.67 315 | 88.28 319 | 93.82 319 | 92.81 355 | 91.08 303 | 98.01 230 | 97.45 298 | 87.95 332 | 87.90 340 | 95.87 325 | 67.63 358 | 94.56 359 | 78.73 357 | 88.18 317 | 95.83 328 |
|
AdaColmap |  | | 97.15 111 | 96.70 115 | 98.48 99 | 99.16 104 | 96.69 121 | 98.01 230 | 98.89 47 | 94.44 167 | 96.83 157 | 98.68 127 | 90.69 161 | 99.76 106 | 94.36 192 | 99.29 111 | 98.98 162 |
|
FMVSNet5 | | | 91.81 296 | 90.92 299 | 94.49 310 | 97.21 252 | 92.09 281 | 98.00 232 | 97.55 289 | 89.31 325 | 90.86 318 | 95.61 333 | 74.48 349 | 95.32 355 | 85.57 332 | 89.70 294 | 96.07 323 |
|
CANet_DTU | | | 96.96 117 | 96.55 122 | 98.21 117 | 98.17 185 | 96.07 149 | 97.98 233 | 98.21 220 | 97.24 40 | 97.13 142 | 98.93 100 | 86.88 243 | 99.91 33 | 95.00 173 | 99.37 107 | 98.66 185 |
|
MVP-Stereo | | | 94.28 253 | 93.92 239 | 95.35 284 | 94.95 337 | 92.60 277 | 97.97 234 | 97.65 278 | 91.61 277 | 90.68 320 | 97.09 267 | 86.32 253 | 98.42 266 | 89.70 301 | 99.34 108 | 95.02 343 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
DIV-MVS_2432*1600 | | | 90.38 309 | 89.38 312 | 93.40 324 | 92.85 354 | 88.94 332 | 97.95 235 | 97.94 265 | 90.35 308 | 90.25 323 | 93.96 346 | 79.82 319 | 95.94 351 | 84.62 341 | 76.69 355 | 95.33 335 |
|
MVS_111021_LR | | | 98.34 49 | 98.23 43 | 98.67 83 | 99.27 85 | 96.90 112 | 97.95 235 | 99.58 3 | 97.14 46 | 98.44 80 | 99.01 87 | 95.03 76 | 99.62 134 | 97.91 46 | 99.75 40 | 99.50 95 |
|
TEST9 | | | | | | 99.31 72 | 98.50 34 | 97.92 237 | 98.73 111 | 92.63 241 | 97.74 120 | 98.68 127 | 96.20 26 | 99.80 83 | | | |
|
train_agg | | | 97.97 59 | 97.52 75 | 99.33 30 | 99.31 72 | 98.50 34 | 97.92 237 | 98.73 111 | 92.98 230 | 97.74 120 | 98.68 127 | 96.20 26 | 99.80 83 | 96.59 119 | 99.57 79 | 99.68 61 |
|
CDPH-MVS | | | 97.94 64 | 97.49 78 | 99.28 38 | 99.47 50 | 98.44 36 | 97.91 239 | 98.67 132 | 92.57 245 | 98.77 56 | 98.85 108 | 95.93 41 | 99.72 112 | 95.56 158 | 99.69 56 | 99.68 61 |
|
MVS_111021_HR | | | 98.47 39 | 98.34 29 | 98.88 75 | 99.22 96 | 97.32 93 | 97.91 239 | 99.58 3 | 97.20 42 | 98.33 86 | 99.00 88 | 95.99 38 | 99.64 129 | 98.05 41 | 99.76 34 | 99.69 55 |
|
PatchMatch-RL | | | 96.59 130 | 96.03 140 | 98.27 112 | 99.31 72 | 96.51 130 | 97.91 239 | 99.06 22 | 93.72 196 | 96.92 154 | 98.06 189 | 88.50 208 | 99.65 127 | 91.77 269 | 99.00 120 | 98.66 185 |
|
OpenMVS_ROB |  | 86.42 20 | 89.00 319 | 87.43 324 | 93.69 320 | 93.08 353 | 89.42 324 | 97.91 239 | 96.89 327 | 78.58 356 | 85.86 347 | 94.69 340 | 69.48 356 | 98.29 289 | 77.13 359 | 93.29 255 | 93.36 356 |
|
test_8 | | | | | | 99.29 80 | 98.44 36 | 97.89 243 | 98.72 113 | 92.98 230 | 97.70 123 | 98.66 130 | 96.20 26 | 99.80 83 | | | |
|
ab-mvs | | | 96.42 137 | 95.71 150 | 98.55 90 | 98.63 147 | 96.75 119 | 97.88 244 | 98.74 107 | 93.84 188 | 96.54 173 | 98.18 182 | 85.34 269 | 99.75 108 | 95.93 142 | 96.35 203 | 99.15 144 |
|
jason | | | 97.32 102 | 97.08 96 | 98.06 130 | 97.45 238 | 95.59 172 | 97.87 245 | 97.91 268 | 94.79 150 | 98.55 73 | 98.83 112 | 91.12 151 | 99.23 170 | 97.58 72 | 99.60 72 | 99.34 116 |
jason: jason. |
xiu_mvs_v1_base_debu | | | 97.60 81 | 97.56 72 | 97.72 152 | 98.35 163 | 95.98 150 | 97.86 246 | 98.51 166 | 97.13 47 | 99.01 39 | 98.40 155 | 91.56 139 | 99.80 83 | 98.53 11 | 98.68 133 | 97.37 228 |
|
xiu_mvs_v1_base | | | 97.60 81 | 97.56 72 | 97.72 152 | 98.35 163 | 95.98 150 | 97.86 246 | 98.51 166 | 97.13 47 | 99.01 39 | 98.40 155 | 91.56 139 | 99.80 83 | 98.53 11 | 98.68 133 | 97.37 228 |
|
xiu_mvs_v1_base_debi | | | 97.60 81 | 97.56 72 | 97.72 152 | 98.35 163 | 95.98 150 | 97.86 246 | 98.51 166 | 97.13 47 | 99.01 39 | 98.40 155 | 91.56 139 | 99.80 83 | 98.53 11 | 98.68 133 | 97.37 228 |
|
test_prior4 | | | | | | | 98.01 67 | 97.86 246 | | | | | | | | | |
|
agg_prior1 | | | 97.95 63 | 97.51 77 | 99.28 38 | 99.30 77 | 98.38 40 | 97.81 250 | 98.72 113 | 93.16 224 | 97.57 133 | 98.66 130 | 96.14 29 | 99.81 74 | 96.63 118 | 99.56 84 | 99.66 69 |
|
test_prior3 | | | 98.22 56 | 97.90 60 | 99.19 46 | 99.31 72 | 98.22 55 | 97.80 251 | 98.84 68 | 96.12 87 | 97.89 114 | 98.69 125 | 95.96 39 | 99.70 118 | 96.89 103 | 99.60 72 | 99.65 71 |
|
test_prior2 | | | | | | | | 97.80 251 | | 96.12 87 | 97.89 114 | 98.69 125 | 95.96 39 | | 96.89 103 | 99.60 72 | |
|
XVG-OURS-SEG-HR | | | 96.51 134 | 96.34 128 | 97.02 191 | 98.77 133 | 93.76 245 | 97.79 253 | 98.50 171 | 95.45 114 | 96.94 151 | 99.09 77 | 87.87 224 | 99.55 145 | 96.76 116 | 95.83 219 | 97.74 217 |
|
MS-PatchMatch | | | 93.84 272 | 93.63 260 | 94.46 313 | 96.18 306 | 89.45 323 | 97.76 254 | 98.27 213 | 92.23 259 | 92.13 305 | 97.49 240 | 79.50 321 | 98.69 237 | 89.75 299 | 99.38 106 | 95.25 336 |
|
DELS-MVS | | | 98.40 43 | 98.20 45 | 98.99 66 | 99.00 115 | 97.66 81 | 97.75 255 | 98.89 47 | 97.71 8 | 98.33 86 | 98.97 90 | 94.97 77 | 99.88 46 | 98.42 25 | 99.76 34 | 99.42 112 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MG-MVS | | | 97.81 71 | 97.60 69 | 98.44 102 | 99.12 108 | 95.97 155 | 97.75 255 | 98.78 98 | 96.89 55 | 98.46 76 | 99.22 49 | 93.90 103 | 99.68 124 | 94.81 178 | 99.52 91 | 99.67 65 |
|
Test_1112_low_res | | | 96.34 140 | 95.66 154 | 98.36 108 | 98.56 151 | 95.94 158 | 97.71 257 | 98.07 252 | 92.10 263 | 94.79 209 | 97.29 253 | 91.75 135 | 99.56 140 | 94.17 200 | 96.50 200 | 99.58 86 |
|
BH-w/o | | | 95.38 182 | 95.08 179 | 96.26 252 | 98.34 168 | 91.79 287 | 97.70 258 | 97.43 300 | 92.87 236 | 94.24 232 | 97.22 258 | 88.66 202 | 98.84 226 | 91.55 273 | 97.70 174 | 98.16 207 |
|
lupinMVS | | | 97.44 94 | 97.22 91 | 98.12 125 | 98.07 191 | 95.76 169 | 97.68 259 | 97.76 273 | 94.50 164 | 98.79 54 | 98.61 133 | 92.34 118 | 99.30 164 | 97.58 72 | 99.59 75 | 99.31 122 |
|
原ACMM2 | | | | | | | | 97.67 260 | | | | | | | | | |
|
LF4IMVS | | | 93.14 286 | 92.79 280 | 94.20 316 | 95.88 318 | 88.67 335 | 97.66 261 | 97.07 314 | 93.81 191 | 91.71 310 | 97.65 227 | 77.96 333 | 98.81 230 | 91.47 274 | 91.92 268 | 95.12 339 |
|
æ–°å‡ ä½•2 | | | | | | | | 97.64 262 | | | | | | | | | |
|
MDA-MVSNet-bldmvs | | | 89.97 313 | 88.35 318 | 94.83 301 | 95.21 334 | 91.34 296 | 97.64 262 | 97.51 292 | 88.36 331 | 71.17 363 | 96.13 321 | 79.22 323 | 96.63 347 | 83.65 343 | 86.27 335 | 96.52 300 |
|
pmmvs-eth3d | | | 90.36 310 | 89.05 315 | 94.32 315 | 91.10 359 | 92.12 280 | 97.63 264 | 96.95 322 | 88.86 328 | 84.91 351 | 93.13 349 | 78.32 328 | 96.74 342 | 88.70 313 | 81.81 345 | 94.09 351 |
|
TR-MVS | | | 94.94 212 | 94.20 220 | 97.17 183 | 97.75 210 | 94.14 236 | 97.59 265 | 97.02 319 | 92.28 258 | 95.75 193 | 97.64 229 | 83.88 295 | 98.96 209 | 89.77 298 | 96.15 214 | 98.40 196 |
|
æ— å…ˆéªŒ | | | | | | | | 97.58 266 | 98.72 113 | 91.38 282 | | | | 99.87 47 | 93.36 224 | | 99.60 82 |
|
旧先验2 | | | | | | | | 97.57 267 | | 91.30 288 | 98.67 63 | | | 99.80 83 | 95.70 155 | | |
|
CostFormer | | | 94.95 210 | 94.73 194 | 95.60 277 | 97.28 247 | 89.06 329 | 97.53 268 | 96.89 327 | 89.66 320 | 96.82 159 | 96.72 299 | 86.05 257 | 98.95 213 | 95.53 159 | 96.13 215 | 98.79 175 |
|
XVG-OURS | | | 96.55 133 | 96.41 126 | 96.99 192 | 98.75 134 | 93.76 245 | 97.50 269 | 98.52 163 | 95.67 103 | 96.83 157 | 99.30 40 | 88.95 198 | 99.53 146 | 95.88 144 | 96.26 210 | 97.69 220 |
|
xiu_mvs_v2_base | | | 97.66 78 | 97.70 67 | 97.56 166 | 98.61 149 | 95.46 179 | 97.44 270 | 98.46 176 | 97.15 45 | 98.65 68 | 98.15 183 | 94.33 95 | 99.80 83 | 97.84 54 | 98.66 137 | 97.41 224 |
|
tpm | | | 94.13 261 | 93.80 248 | 95.12 290 | 96.50 294 | 87.91 345 | 97.44 270 | 95.89 344 | 92.62 242 | 96.37 181 | 96.30 314 | 84.13 290 | 98.30 286 | 93.24 227 | 91.66 271 | 99.14 146 |
|
DeepPCF-MVS | | 96.37 2 | 97.93 66 | 98.48 18 | 96.30 250 | 99.00 115 | 89.54 322 | 97.43 272 | 98.87 57 | 98.16 2 | 99.26 21 | 99.38 23 | 96.12 31 | 99.64 129 | 98.30 31 | 99.77 28 | 99.72 44 |
|
test222 | | | | | | 99.23 95 | 97.17 104 | 97.40 273 | 98.66 135 | 88.68 329 | 98.05 95 | 98.96 96 | 94.14 98 | | | 99.53 89 | 99.61 79 |
|
pmmvs4 | | | 94.69 222 | 93.99 236 | 96.81 206 | 95.74 321 | 95.94 158 | 97.40 273 | 97.67 277 | 90.42 306 | 93.37 268 | 97.59 233 | 89.08 191 | 98.20 294 | 92.97 236 | 91.67 270 | 96.30 317 |
|
test0.0.03 1 | | | 94.08 266 | 93.51 265 | 95.80 270 | 95.53 328 | 92.89 275 | 97.38 275 | 95.97 341 | 95.11 135 | 92.51 296 | 96.66 301 | 87.71 226 | 96.94 339 | 87.03 323 | 93.67 243 | 97.57 222 |
|
HyFIR lowres test | | | 96.90 120 | 96.49 125 | 98.14 121 | 99.33 67 | 95.56 174 | 97.38 275 | 99.65 2 | 92.34 253 | 97.61 131 | 98.20 180 | 89.29 184 | 99.10 188 | 96.97 96 | 97.60 177 | 99.77 22 |
|
Effi-MVS+ | | | 97.12 112 | 96.69 116 | 98.39 107 | 98.19 181 | 96.72 120 | 97.37 277 | 98.43 183 | 93.71 197 | 97.65 128 | 98.02 191 | 92.20 125 | 99.25 167 | 96.87 109 | 97.79 169 | 99.19 137 |
|
N_pmnet | | | 87.12 323 | 87.77 322 | 85.17 342 | 95.46 330 | 61.92 369 | 97.37 277 | 70.66 375 | 85.83 344 | 88.73 337 | 96.04 323 | 85.33 270 | 97.76 324 | 80.02 351 | 90.48 285 | 95.84 327 |
|
PAPR | | | 96.84 122 | 96.24 133 | 98.65 84 | 98.72 139 | 96.92 111 | 97.36 279 | 98.57 153 | 93.33 216 | 96.67 164 | 97.57 235 | 94.30 96 | 99.56 140 | 91.05 280 | 98.59 139 | 99.47 102 |
|
PMMVS | | | 96.60 128 | 96.33 129 | 97.41 172 | 97.90 203 | 93.93 240 | 97.35 280 | 98.41 186 | 92.84 237 | 97.76 118 | 97.45 244 | 91.10 153 | 99.20 173 | 96.26 131 | 97.91 164 | 99.11 149 |
|
PS-MVSNAJ | | | 97.73 74 | 97.77 64 | 97.62 162 | 98.68 143 | 95.58 173 | 97.34 281 | 98.51 166 | 97.29 33 | 98.66 67 | 97.88 206 | 94.51 88 | 99.90 36 | 97.87 50 | 99.17 116 | 97.39 226 |
|
SCA | | | 95.46 175 | 95.13 176 | 96.46 240 | 97.67 216 | 91.29 300 | 97.33 282 | 97.60 282 | 94.68 155 | 96.92 154 | 97.10 263 | 83.97 293 | 98.89 220 | 92.59 247 | 98.32 154 | 99.20 134 |
|
testdata1 | | | | | | | | 97.32 283 | | 96.34 77 | | | | | | | |
|
ET-MVSNet_ETH3D | | | 94.13 261 | 92.98 276 | 97.58 164 | 98.22 177 | 96.20 144 | 97.31 284 | 95.37 347 | 94.53 161 | 79.56 357 | 97.63 231 | 86.51 247 | 97.53 330 | 96.91 100 | 90.74 283 | 99.02 158 |
|
tpm2 | | | 94.19 257 | 93.76 253 | 95.46 281 | 97.23 250 | 89.04 330 | 97.31 284 | 96.85 331 | 87.08 336 | 96.21 184 | 96.79 297 | 83.75 299 | 98.74 235 | 92.43 255 | 96.23 212 | 98.59 189 |
|
PVSNet_Blended | | | 97.38 99 | 97.12 93 | 98.14 121 | 99.25 88 | 95.35 184 | 97.28 286 | 99.26 8 | 93.13 225 | 97.94 109 | 98.21 179 | 92.74 114 | 99.81 74 | 96.88 106 | 99.40 105 | 99.27 129 |
|
CLD-MVS | | | 95.62 171 | 95.34 165 | 96.46 240 | 97.52 231 | 93.75 247 | 97.27 287 | 98.46 176 | 95.53 109 | 94.42 223 | 98.00 194 | 86.21 254 | 98.97 205 | 96.25 132 | 94.37 224 | 96.66 281 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
EPMVS | | | 94.99 206 | 94.48 205 | 96.52 233 | 97.22 251 | 91.75 289 | 97.23 288 | 91.66 366 | 94.11 173 | 97.28 137 | 96.81 296 | 85.70 262 | 98.84 226 | 93.04 234 | 97.28 182 | 98.97 163 |
|
miper_lstm_enhance | | | 94.33 248 | 94.07 229 | 95.11 291 | 97.75 210 | 90.97 304 | 97.22 289 | 98.03 259 | 91.67 275 | 92.76 286 | 96.97 283 | 90.03 171 | 97.78 323 | 92.51 252 | 89.64 295 | 96.56 292 |
|
YYNet1 | | | 90.70 308 | 89.39 311 | 94.62 307 | 94.79 340 | 90.65 310 | 97.20 290 | 97.46 296 | 87.54 334 | 72.54 361 | 95.74 326 | 86.51 247 | 96.66 346 | 86.00 329 | 86.76 334 | 96.54 295 |
|
MDA-MVSNet_test_wron | | | 90.71 307 | 89.38 312 | 94.68 305 | 94.83 339 | 90.78 308 | 97.19 291 | 97.46 296 | 87.60 333 | 72.41 362 | 95.72 329 | 86.51 247 | 96.71 345 | 85.92 330 | 86.80 333 | 96.56 292 |
|
IterMVS-SCA-FT | | | 94.11 263 | 93.87 243 | 94.85 299 | 97.98 200 | 90.56 312 | 97.18 292 | 98.11 241 | 93.75 192 | 92.58 292 | 97.48 241 | 83.97 293 | 97.41 332 | 92.48 254 | 91.30 275 | 96.58 288 |
|
IterMVS | | | 94.09 265 | 93.85 245 | 94.80 302 | 97.99 198 | 90.35 314 | 97.18 292 | 98.12 238 | 93.68 202 | 92.46 299 | 97.34 249 | 84.05 291 | 97.41 332 | 92.51 252 | 91.33 274 | 96.62 284 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DPM-MVS | | | 97.55 88 | 96.99 101 | 99.23 45 | 99.04 112 | 98.55 31 | 97.17 294 | 98.35 198 | 94.85 149 | 97.93 111 | 98.58 138 | 95.07 75 | 99.71 117 | 92.60 245 | 99.34 108 | 99.43 110 |
|
cl_fuxian | | | 94.79 219 | 94.43 211 | 95.89 267 | 97.75 210 | 93.12 272 | 97.16 295 | 98.03 259 | 92.23 259 | 93.46 266 | 97.05 275 | 91.39 144 | 98.01 309 | 93.58 219 | 89.21 304 | 96.53 297 |
|
new-patchmatchnet | | | 88.50 320 | 87.45 323 | 91.67 335 | 90.31 361 | 85.89 352 | 97.16 295 | 97.33 304 | 89.47 322 | 83.63 353 | 92.77 350 | 76.38 341 | 95.06 357 | 82.70 345 | 77.29 354 | 94.06 352 |
|
UnsupCasMVSNet_eth | | | 90.99 305 | 89.92 308 | 94.19 317 | 94.08 346 | 89.83 317 | 97.13 297 | 98.67 132 | 93.69 200 | 85.83 348 | 96.19 320 | 75.15 346 | 96.74 342 | 89.14 310 | 79.41 351 | 96.00 324 |
|
IB-MVS | | 91.98 17 | 93.27 281 | 91.97 292 | 97.19 181 | 97.47 233 | 93.41 261 | 97.09 298 | 95.99 340 | 93.32 217 | 92.47 298 | 95.73 327 | 78.06 332 | 99.53 146 | 94.59 186 | 82.98 341 | 98.62 188 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
cl-mvsnet____ | | | 94.51 239 | 94.01 233 | 96.02 259 | 97.58 223 | 93.40 262 | 97.05 299 | 97.96 264 | 91.73 273 | 92.76 286 | 97.08 269 | 89.06 192 | 98.13 299 | 92.61 244 | 90.29 288 | 96.52 300 |
|
cl-mvsnet1 | | | 94.52 238 | 94.03 230 | 95.99 260 | 97.57 227 | 93.38 263 | 97.05 299 | 97.94 265 | 91.74 271 | 92.81 284 | 97.10 263 | 89.12 189 | 98.07 305 | 92.60 245 | 90.30 287 | 96.53 297 |
|
miper_ehance_all_eth | | | 95.01 204 | 94.69 196 | 95.97 262 | 97.70 215 | 93.31 265 | 97.02 301 | 98.07 252 | 92.23 259 | 93.51 263 | 96.96 285 | 91.85 133 | 98.15 297 | 93.68 214 | 91.16 278 | 96.44 310 |
|
CMPMVS |  | 66.06 21 | 89.70 314 | 89.67 310 | 89.78 337 | 93.19 352 | 76.56 362 | 97.00 302 | 98.35 198 | 80.97 354 | 81.57 355 | 97.75 219 | 74.75 348 | 98.61 245 | 89.85 297 | 93.63 245 | 94.17 349 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
tpmrst | | | 95.63 170 | 95.69 152 | 95.44 282 | 97.54 228 | 88.54 337 | 96.97 303 | 97.56 284 | 93.50 210 | 97.52 135 | 96.93 289 | 89.49 178 | 99.16 176 | 95.25 168 | 96.42 202 | 98.64 187 |
|
dp | | | 94.15 260 | 93.90 241 | 94.90 297 | 97.31 246 | 86.82 351 | 96.97 303 | 97.19 311 | 91.22 293 | 96.02 189 | 96.61 306 | 85.51 265 | 99.02 200 | 90.00 296 | 94.30 225 | 98.85 170 |
|
cl-mvsnet2 | | | 94.68 224 | 94.19 221 | 96.13 257 | 98.11 189 | 93.60 252 | 96.94 305 | 98.31 204 | 92.43 250 | 93.32 270 | 96.87 293 | 86.51 247 | 98.28 291 | 94.10 204 | 91.16 278 | 96.51 303 |
|
PM-MVS | | | 87.77 321 | 86.55 325 | 91.40 336 | 91.03 360 | 83.36 357 | 96.92 306 | 95.18 350 | 91.28 290 | 86.48 346 | 93.42 348 | 53.27 364 | 96.74 342 | 89.43 307 | 81.97 344 | 94.11 350 |
|
TinyColmap | | | 92.31 294 | 91.53 295 | 94.65 306 | 96.92 271 | 89.75 318 | 96.92 306 | 96.68 335 | 90.45 305 | 89.62 328 | 97.85 210 | 76.06 343 | 98.81 230 | 86.74 324 | 92.51 262 | 95.41 334 |
|
our_test_3 | | | 93.65 275 | 93.30 271 | 94.69 304 | 95.45 331 | 89.68 321 | 96.91 308 | 97.65 278 | 91.97 266 | 91.66 311 | 96.88 291 | 89.67 177 | 97.93 316 | 88.02 318 | 91.49 272 | 96.48 307 |
|
test-LLR | | | 95.10 200 | 94.87 189 | 95.80 270 | 96.77 279 | 89.70 319 | 96.91 308 | 95.21 348 | 95.11 135 | 94.83 207 | 95.72 329 | 87.71 226 | 98.97 205 | 93.06 232 | 98.50 144 | 98.72 178 |
|
TESTMET0.1,1 | | | 94.18 259 | 93.69 258 | 95.63 276 | 96.92 271 | 89.12 328 | 96.91 308 | 94.78 353 | 93.17 223 | 94.88 204 | 96.45 310 | 78.52 327 | 98.92 215 | 93.09 231 | 98.50 144 | 98.85 170 |
|
test-mter | | | 94.08 266 | 93.51 265 | 95.80 270 | 96.77 279 | 89.70 319 | 96.91 308 | 95.21 348 | 92.89 235 | 94.83 207 | 95.72 329 | 77.69 334 | 98.97 205 | 93.06 232 | 98.50 144 | 98.72 178 |
|
USDC | | | 93.33 280 | 92.71 281 | 95.21 287 | 96.83 278 | 90.83 306 | 96.91 308 | 97.50 293 | 93.84 188 | 90.72 319 | 98.14 184 | 77.69 334 | 98.82 229 | 89.51 305 | 93.21 256 | 95.97 325 |
|
MDTV_nov1_ep13_2view | | | | | | | 84.26 354 | 96.89 313 | | 90.97 298 | 97.90 113 | | 89.89 173 | | 93.91 208 | | 99.18 142 |
|
ppachtmachnet_test | | | 93.22 283 | 92.63 283 | 94.97 295 | 95.45 331 | 90.84 305 | 96.88 314 | 97.88 269 | 90.60 301 | 92.08 306 | 97.26 254 | 88.08 218 | 97.86 322 | 85.12 336 | 90.33 286 | 96.22 318 |
|
tpmvs | | | 94.60 230 | 94.36 214 | 95.33 285 | 97.46 234 | 88.60 336 | 96.88 314 | 97.68 276 | 91.29 289 | 93.80 253 | 96.42 312 | 88.58 203 | 99.24 169 | 91.06 278 | 96.04 217 | 98.17 206 |
|
MDTV_nov1_ep13 | | | | 95.40 159 | | 97.48 232 | 88.34 340 | 96.85 316 | 97.29 306 | 93.74 194 | 97.48 136 | 97.26 254 | 89.18 187 | 99.05 192 | 91.92 266 | 97.43 180 | |
|
PatchmatchNet |  | | 95.71 165 | 95.52 157 | 96.29 251 | 97.58 223 | 90.72 309 | 96.84 317 | 97.52 291 | 94.06 175 | 97.08 144 | 96.96 285 | 89.24 186 | 98.90 219 | 92.03 263 | 98.37 150 | 99.26 130 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MSDG | | | 95.93 155 | 95.30 170 | 97.83 142 | 98.90 122 | 95.36 182 | 96.83 318 | 98.37 195 | 91.32 287 | 94.43 222 | 98.73 123 | 90.27 168 | 99.60 135 | 90.05 294 | 98.82 130 | 98.52 192 |
|
thisisatest0515 | | | 95.61 173 | 94.89 188 | 97.76 149 | 98.15 186 | 95.15 191 | 96.77 319 | 94.41 356 | 92.95 232 | 97.18 141 | 97.43 246 | 84.78 277 | 99.45 156 | 94.63 181 | 97.73 173 | 98.68 182 |
|
GA-MVS | | | 94.81 218 | 94.03 230 | 97.14 184 | 97.15 259 | 93.86 242 | 96.76 320 | 97.58 283 | 94.00 180 | 94.76 210 | 97.04 276 | 80.91 312 | 98.48 257 | 91.79 268 | 96.25 211 | 99.09 151 |
|
tpm cat1 | | | 93.36 277 | 92.80 279 | 95.07 293 | 97.58 223 | 87.97 344 | 96.76 320 | 97.86 270 | 82.17 353 | 93.53 260 | 96.04 323 | 86.13 255 | 99.13 181 | 89.24 309 | 95.87 218 | 98.10 208 |
|
eth_miper_zixun_eth | | | 94.68 224 | 94.41 212 | 95.47 280 | 97.64 218 | 91.71 291 | 96.73 322 | 98.07 252 | 92.71 240 | 93.64 256 | 97.21 259 | 90.54 163 | 98.17 296 | 93.38 222 | 89.76 293 | 96.54 295 |
|
test_post1 | | | | | | | | 96.68 323 | | | | 30.43 371 | 87.85 225 | 98.69 237 | 92.59 247 | | |
|
pmmvs3 | | | 86.67 324 | 84.86 327 | 92.11 334 | 88.16 362 | 87.19 350 | 96.63 324 | 94.75 354 | 79.88 355 | 87.22 342 | 92.75 351 | 66.56 359 | 95.20 356 | 81.24 349 | 76.56 356 | 93.96 353 |
|
miper_enhance_ethall | | | 95.10 200 | 94.75 193 | 96.12 258 | 97.53 230 | 93.73 249 | 96.61 325 | 98.08 250 | 92.20 262 | 93.89 247 | 96.65 303 | 92.44 117 | 98.30 286 | 94.21 199 | 91.16 278 | 96.34 313 |
|
testmvs | | | 21.48 338 | 24.95 341 | 11.09 354 | 14.89 376 | 6.47 378 | 96.56 326 | 9.87 377 | 7.55 371 | 17.93 371 | 39.02 368 | 9.43 377 | 5.90 373 | 16.56 371 | 12.72 370 | 20.91 368 |
|
test123 | | | 20.95 339 | 23.72 342 | 12.64 353 | 13.54 377 | 8.19 377 | 96.55 327 | 6.13 378 | 7.48 372 | 16.74 372 | 37.98 369 | 12.97 374 | 6.05 372 | 16.69 370 | 5.43 371 | 23.68 367 |
|
CL-MVSNet_2432*1600 | | | 90.11 311 | 89.14 314 | 93.02 329 | 91.86 357 | 88.23 342 | 96.51 328 | 98.07 252 | 90.49 302 | 90.49 322 | 94.41 341 | 84.75 278 | 95.34 354 | 80.79 350 | 74.95 357 | 95.50 333 |
|
GG-mvs-BLEND | | | | | 96.59 224 | 96.34 301 | 94.98 200 | 96.51 328 | 88.58 370 | | 93.10 279 | 94.34 345 | 80.34 318 | 98.05 307 | 89.53 304 | 96.99 186 | 96.74 268 |
|
new_pmnet | | | 90.06 312 | 89.00 316 | 93.22 328 | 94.18 344 | 88.32 341 | 96.42 330 | 96.89 327 | 86.19 340 | 85.67 349 | 93.62 347 | 77.18 339 | 97.10 336 | 81.61 348 | 89.29 303 | 94.23 348 |
|
PVSNet | | 91.96 18 | 96.35 139 | 96.15 135 | 96.96 196 | 99.17 100 | 92.05 283 | 96.08 331 | 98.68 124 | 93.69 200 | 97.75 119 | 97.80 217 | 88.86 199 | 99.69 123 | 94.26 198 | 99.01 119 | 99.15 144 |
|
ADS-MVSNet2 | | | 94.58 233 | 94.40 213 | 95.11 291 | 98.00 196 | 88.74 334 | 96.04 332 | 97.30 305 | 90.15 310 | 96.47 177 | 96.64 304 | 87.89 222 | 97.56 329 | 90.08 292 | 97.06 184 | 99.02 158 |
|
ADS-MVSNet | | | 95.00 205 | 94.45 209 | 96.63 219 | 98.00 196 | 91.91 285 | 96.04 332 | 97.74 275 | 90.15 310 | 96.47 177 | 96.64 304 | 87.89 222 | 98.96 209 | 90.08 292 | 97.06 184 | 99.02 158 |
|
PAPM | | | 94.95 210 | 94.00 234 | 97.78 147 | 97.04 265 | 95.65 171 | 96.03 334 | 98.25 218 | 91.23 292 | 94.19 235 | 97.80 217 | 91.27 149 | 98.86 225 | 82.61 346 | 97.61 176 | 98.84 172 |
|
cascas | | | 94.63 229 | 93.86 244 | 96.93 198 | 96.91 273 | 94.27 232 | 96.00 335 | 98.51 166 | 85.55 346 | 94.54 214 | 96.23 317 | 84.20 289 | 98.87 223 | 95.80 148 | 96.98 187 | 97.66 221 |
|
gg-mvs-nofinetune | | | 92.21 295 | 90.58 302 | 97.13 185 | 96.75 282 | 95.09 194 | 95.85 336 | 89.40 369 | 85.43 347 | 94.50 216 | 81.98 361 | 80.80 315 | 98.40 279 | 92.16 257 | 98.33 153 | 97.88 212 |
|
FPMVS | | | 77.62 329 | 77.14 329 | 79.05 346 | 79.25 369 | 60.97 370 | 95.79 337 | 95.94 342 | 65.96 361 | 67.93 364 | 94.40 342 | 37.73 369 | 88.88 365 | 68.83 362 | 88.46 313 | 87.29 359 |
|
CHOSEN 280x420 | | | 97.18 109 | 97.18 92 | 97.20 180 | 98.81 131 | 93.27 266 | 95.78 338 | 99.15 18 | 95.25 127 | 96.79 162 | 98.11 186 | 92.29 120 | 99.07 191 | 98.56 10 | 99.85 3 | 99.25 131 |
|
bset_n11_16_dypcd | | | 94.89 214 | 94.27 217 | 96.76 208 | 94.41 343 | 95.15 191 | 95.67 339 | 95.64 346 | 95.53 109 | 94.65 211 | 97.52 239 | 87.10 237 | 98.29 289 | 96.58 121 | 91.35 273 | 96.83 260 |
|
MIMVSNet | | | 93.26 282 | 92.21 289 | 96.41 243 | 97.73 214 | 93.13 271 | 95.65 340 | 97.03 317 | 91.27 291 | 94.04 242 | 96.06 322 | 75.33 345 | 97.19 335 | 86.56 325 | 96.23 212 | 98.92 168 |
|
KD-MVS_2432*1600 | | | 89.61 316 | 87.96 320 | 94.54 308 | 94.06 347 | 91.59 293 | 95.59 341 | 97.63 280 | 89.87 316 | 88.95 334 | 94.38 343 | 78.28 329 | 96.82 340 | 84.83 337 | 68.05 361 | 95.21 337 |
|
miper_refine_blended | | | 89.61 316 | 87.96 320 | 94.54 308 | 94.06 347 | 91.59 293 | 95.59 341 | 97.63 280 | 89.87 316 | 88.95 334 | 94.38 343 | 78.28 329 | 96.82 340 | 84.83 337 | 68.05 361 | 95.21 337 |
|
PCF-MVS | | 93.45 11 | 94.68 224 | 93.43 268 | 98.42 105 | 98.62 148 | 96.77 118 | 95.48 343 | 98.20 222 | 84.63 349 | 93.34 269 | 98.32 167 | 88.55 206 | 99.81 74 | 84.80 339 | 98.96 121 | 98.68 182 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
JIA-IIPM | | | 93.35 278 | 92.49 285 | 95.92 264 | 96.48 296 | 90.65 310 | 95.01 344 | 96.96 321 | 85.93 343 | 96.08 187 | 87.33 358 | 87.70 228 | 98.78 233 | 91.35 275 | 95.58 221 | 98.34 199 |
|
CR-MVSNet | | | 94.76 221 | 94.15 225 | 96.59 224 | 97.00 266 | 93.43 259 | 94.96 345 | 97.56 284 | 92.46 246 | 96.93 152 | 96.24 315 | 88.15 215 | 97.88 321 | 87.38 321 | 96.65 194 | 98.46 194 |
|
RPMNet | | | 92.81 289 | 91.34 297 | 97.24 178 | 97.00 266 | 93.43 259 | 94.96 345 | 98.80 90 | 82.27 352 | 96.93 152 | 92.12 354 | 86.98 241 | 99.82 67 | 76.32 360 | 96.65 194 | 98.46 194 |
|
UnsupCasMVSNet_bld | | | 87.17 322 | 85.12 326 | 93.31 326 | 91.94 356 | 88.77 333 | 94.92 347 | 98.30 210 | 84.30 350 | 82.30 354 | 90.04 355 | 63.96 362 | 97.25 334 | 85.85 331 | 74.47 359 | 93.93 354 |
|
PVSNet_0 | | 88.72 19 | 91.28 301 | 90.03 307 | 95.00 294 | 97.99 198 | 87.29 349 | 94.84 348 | 98.50 171 | 92.06 264 | 89.86 326 | 95.19 335 | 79.81 320 | 99.39 159 | 92.27 256 | 69.79 360 | 98.33 200 |
|
Patchmatch-test | | | 94.42 244 | 93.68 259 | 96.63 219 | 97.60 221 | 91.76 288 | 94.83 349 | 97.49 295 | 89.45 323 | 94.14 237 | 97.10 263 | 88.99 193 | 98.83 228 | 85.37 335 | 98.13 158 | 99.29 127 |
|
Patchmtry | | | 93.22 283 | 92.35 287 | 95.84 269 | 96.77 279 | 93.09 273 | 94.66 350 | 97.56 284 | 87.37 335 | 92.90 282 | 96.24 315 | 88.15 215 | 97.90 317 | 87.37 322 | 90.10 290 | 96.53 297 |
|
PatchT | | | 93.06 287 | 91.97 292 | 96.35 247 | 96.69 285 | 92.67 276 | 94.48 351 | 97.08 313 | 86.62 337 | 97.08 144 | 92.23 353 | 87.94 221 | 97.90 317 | 78.89 356 | 96.69 192 | 98.49 193 |
|
LCM-MVSNet | | | 78.70 326 | 76.24 331 | 86.08 340 | 77.26 371 | 71.99 366 | 94.34 352 | 96.72 333 | 61.62 363 | 76.53 358 | 89.33 356 | 33.91 371 | 92.78 362 | 81.85 347 | 74.60 358 | 93.46 355 |
|
PMMVS2 | | | 77.95 328 | 75.44 332 | 85.46 341 | 82.54 366 | 74.95 364 | 94.23 353 | 93.08 364 | 72.80 360 | 74.68 359 | 87.38 357 | 36.36 370 | 91.56 363 | 73.95 361 | 63.94 363 | 89.87 358 |
|
MVS-HIRNet | | | 89.46 318 | 88.40 317 | 92.64 330 | 97.58 223 | 82.15 359 | 94.16 354 | 93.05 365 | 75.73 359 | 90.90 317 | 82.52 360 | 79.42 322 | 98.33 281 | 83.53 344 | 98.68 133 | 97.43 223 |
|
Patchmatch-RL test | | | 91.49 299 | 90.85 300 | 93.41 323 | 91.37 358 | 84.40 353 | 92.81 355 | 95.93 343 | 91.87 269 | 87.25 341 | 94.87 339 | 88.99 193 | 96.53 348 | 92.54 251 | 82.00 343 | 99.30 125 |
|
ambc | | | | | 89.49 338 | 86.66 363 | 75.78 363 | 92.66 356 | 96.72 333 | | 86.55 345 | 92.50 352 | 46.01 365 | 97.90 317 | 90.32 288 | 82.09 342 | 94.80 346 |
|
EMVS | | | 64.07 334 | 63.26 337 | 66.53 351 | 81.73 368 | 58.81 373 | 91.85 357 | 84.75 372 | 51.93 367 | 59.09 367 | 75.13 365 | 43.32 367 | 79.09 369 | 42.03 368 | 39.47 366 | 61.69 365 |
|
E-PMN | | | 64.94 333 | 64.25 335 | 67.02 350 | 82.28 367 | 59.36 372 | 91.83 358 | 85.63 371 | 52.69 365 | 60.22 366 | 77.28 364 | 41.06 368 | 80.12 368 | 46.15 367 | 41.14 365 | 61.57 366 |
|
ANet_high | | | 69.08 330 | 65.37 334 | 80.22 345 | 65.99 373 | 71.96 367 | 90.91 359 | 90.09 368 | 82.62 351 | 49.93 369 | 78.39 363 | 29.36 372 | 81.75 366 | 62.49 364 | 38.52 367 | 86.95 361 |
|
tmp_tt | | | 68.90 331 | 66.97 333 | 74.68 348 | 50.78 375 | 59.95 371 | 87.13 360 | 83.47 373 | 38.80 369 | 62.21 365 | 96.23 317 | 64.70 361 | 76.91 370 | 88.91 312 | 30.49 368 | 87.19 360 |
|
MVE |  | 62.14 22 | 63.28 335 | 59.38 338 | 74.99 347 | 74.33 372 | 65.47 368 | 85.55 361 | 80.50 374 | 52.02 366 | 51.10 368 | 75.00 366 | 10.91 376 | 80.50 367 | 51.60 366 | 53.40 364 | 78.99 362 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS |  | 61.03 23 | 65.95 332 | 63.57 336 | 73.09 349 | 57.90 374 | 51.22 375 | 85.05 362 | 93.93 363 | 54.45 364 | 44.32 370 | 83.57 359 | 13.22 373 | 89.15 364 | 58.68 365 | 81.00 348 | 78.91 363 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test_method | | | 79.03 325 | 78.17 328 | 81.63 344 | 86.06 364 | 54.40 374 | 82.75 363 | 96.89 327 | 39.54 368 | 80.98 356 | 95.57 334 | 58.37 363 | 94.73 358 | 84.74 340 | 78.61 352 | 95.75 329 |
|
Gipuma |  | | 78.40 327 | 76.75 330 | 83.38 343 | 95.54 327 | 80.43 361 | 79.42 364 | 97.40 302 | 64.67 362 | 73.46 360 | 80.82 362 | 45.65 366 | 93.14 361 | 66.32 363 | 87.43 324 | 76.56 364 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
wuyk23d | | | 30.17 336 | 30.18 340 | 30.16 352 | 78.61 370 | 43.29 376 | 66.79 365 | 14.21 376 | 17.31 370 | 14.82 373 | 11.93 372 | 11.55 375 | 41.43 371 | 37.08 369 | 19.30 369 | 5.76 369 |
|
uanet_test | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
cdsmvs_eth3d_5k | | | 23.98 337 | 31.98 339 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 98.59 147 | 0.00 373 | 0.00 374 | 98.61 133 | 90.60 162 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
pcd_1.5k_mvsjas | | | 7.88 341 | 10.50 344 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 94.51 88 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet-low-res | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uncertanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
Regformer | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
ab-mvs-re | | | 8.20 340 | 10.94 343 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 98.43 151 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
MSC_two_6792asdad | | | | | 99.62 6 | 99.17 100 | 99.08 11 | | 98.63 142 | | | | | 99.94 3 | 98.53 11 | 99.80 17 | 99.86 2 |
|
PC_three_1452 | | | | | | | | | | 95.08 139 | 99.60 5 | 99.16 63 | 97.86 2 | 98.47 260 | 97.52 79 | 99.72 52 | 99.74 35 |
|
No_MVS | | | | | 99.62 6 | 99.17 100 | 99.08 11 | | 98.63 142 | | | | | 99.94 3 | 98.53 11 | 99.80 17 | 99.86 2 |
|
test_one_0601 | | | | | | 99.66 28 | 99.25 2 | | 98.86 63 | 97.55 15 | 99.20 25 | 99.47 8 | 97.57 6 | | | | |
|
eth-test2 | | | | | | 0.00 378 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 378 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.46 53 | 98.70 23 | | 98.79 95 | 93.21 221 | 98.67 63 | 98.97 90 | 95.70 47 | 99.83 59 | 96.07 135 | 99.58 78 | |
|
IU-MVS | | | | | | 99.71 21 | 99.23 7 | | 98.64 140 | 95.28 125 | 99.63 4 | | | | 98.35 29 | 99.81 10 | 99.83 7 |
|
test_241102_TWO | | | | | | | | | 98.87 57 | 97.65 9 | 99.53 9 | 99.48 6 | 97.34 11 | 99.94 3 | 98.43 23 | 99.80 17 | 99.83 7 |
|
test_241102_ONE | | | | | | 99.71 21 | 99.24 5 | | 98.87 57 | 97.62 11 | 99.73 1 | 99.39 16 | 97.53 7 | 99.74 110 | | | |
|
test_0728_THIRD | | | | | | | | | | 97.32 31 | 99.45 11 | 99.46 11 | 97.88 1 | 99.94 3 | 98.47 19 | 99.86 1 | 99.85 4 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.20 134 |
|
test_part2 | | | | | | 99.63 31 | 99.18 10 | | | | 99.27 20 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 89.45 180 | | | | 99.20 134 |
|
sam_mvs | | | | | | | | | | | | | 88.99 193 | | | | |
|
MTGPA |  | | | | | | | | 98.74 107 | | | | | | | | |
|
test_post | | | | | | | | | | | | 31.83 370 | 88.83 200 | 98.91 216 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 95.10 337 | 89.42 181 | 98.89 220 | | | |
|
gm-plane-assit | | | | | | 95.88 318 | 87.47 347 | | | 89.74 319 | | 96.94 288 | | 99.19 174 | 93.32 226 | | |
|
test9_res | | | | | | | | | | | | | | | 96.39 129 | 99.57 79 | 99.69 55 |
|
agg_prior2 | | | | | | | | | | | | | | | 95.87 145 | 99.57 79 | 99.68 61 |
|
agg_prior | | | | | | 99.30 77 | 98.38 40 | | 98.72 113 | | 97.57 133 | | | 99.81 74 | | | |
|
TestCases | | | | | 96.99 192 | 99.25 88 | 93.21 269 | | 98.18 226 | 91.36 283 | 93.52 261 | 98.77 119 | 84.67 279 | 99.72 112 | 89.70 301 | 97.87 166 | 98.02 210 |
|
test_prior | | | | | 99.19 46 | 99.31 72 | 98.22 55 | | 98.84 68 | | | | | 99.70 118 | | | 99.65 71 |
|
æ–°å‡ ä½•1 | | | | | 99.16 53 | 99.34 64 | 98.01 67 | | 98.69 121 | 90.06 313 | 98.13 91 | 98.95 98 | 94.60 85 | 99.89 38 | 91.97 265 | 99.47 95 | 99.59 84 |
|
旧先验1 | | | | | | 99.29 80 | 97.48 88 | | 98.70 120 | | | 99.09 77 | 95.56 50 | | | 99.47 95 | 99.61 79 |
|
原ACMM1 | | | | | 98.65 84 | 99.32 70 | 96.62 122 | | 98.67 132 | 93.27 220 | 97.81 116 | 98.97 90 | 95.18 71 | 99.83 59 | 93.84 210 | 99.46 98 | 99.50 95 |
|
testdata2 | | | | | | | | | | | | | | 99.89 38 | 91.65 272 | | |
|
segment_acmp | | | | | | | | | | | | | 96.85 14 | | | | |
|
testdata | | | | | 98.26 114 | 99.20 99 | 95.36 182 | | 98.68 124 | 91.89 268 | 98.60 71 | 99.10 72 | 94.44 93 | 99.82 67 | 94.27 197 | 99.44 100 | 99.58 86 |
|
test12 | | | | | 99.18 50 | 99.16 104 | 98.19 57 | | 98.53 161 | | 98.07 94 | | 95.13 73 | 99.72 112 | | 99.56 84 | 99.63 77 |
|
plane_prior7 | | | | | | 97.42 239 | 94.63 215 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.35 244 | 94.61 218 | | | | | | 87.09 238 | | | | |
|
plane_prior5 | | | | | | | | | 98.56 155 | | | | | 99.03 197 | 96.07 135 | 94.27 226 | 96.92 244 |
|
plane_prior4 | | | | | | | | | | | | 98.28 172 | | | | | |
|
plane_prior3 | | | | | | | 94.61 218 | | | 97.02 52 | 95.34 195 | | | | | | |
|
plane_prior1 | | | | | | 97.37 243 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 379 | | | | | | | | |
|
nn | | | | | | | | | 0.00 379 | | | | | | | | |
|
door-mid | | | | | | | | | 94.37 357 | | | | | | | | |
|
lessismore_v0 | | | | | 94.45 314 | 94.93 338 | 88.44 339 | | 91.03 367 | | 86.77 344 | 97.64 229 | 76.23 342 | 98.42 266 | 90.31 289 | 85.64 339 | 96.51 303 |
|
LGP-MVS_train | | | | | 96.47 237 | 97.46 234 | 93.54 254 | | 98.54 159 | 94.67 156 | 94.36 225 | 98.77 119 | 85.39 266 | 99.11 185 | 95.71 153 | 94.15 232 | 96.76 266 |
|
test11 | | | | | | | | | 98.66 135 | | | | | | | | |
|
door | | | | | | | | | 94.64 355 | | | | | | | | |
|
HQP5-MVS | | | | | | | 94.25 234 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 95.30 164 | | |
|
HQP4-MVS | | | | | | | | | | | 94.45 218 | | | 98.96 209 | | | 96.87 255 |
|
HQP3-MVS | | | | | | | | | 98.46 176 | | | | | | | 94.18 230 | |
|
HQP2-MVS | | | | | | | | | | | | | 86.75 244 | | | | |
|
NP-MVS | | | | | | 97.28 247 | 94.51 223 | | | | | 97.73 220 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 258 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 93.61 246 | |
|
Test By Simon | | | | | | | | | | | | | 94.64 83 | | | | |
|
ITE_SJBPF | | | | | 95.44 282 | 97.42 239 | 91.32 299 | | 97.50 293 | 95.09 138 | 93.59 257 | 98.35 161 | 81.70 307 | 98.88 222 | 89.71 300 | 93.39 252 | 96.12 321 |
|
DeepMVS_CX |  | | | | 86.78 339 | 97.09 263 | 72.30 365 | | 95.17 351 | 75.92 358 | 84.34 352 | 95.19 335 | 70.58 355 | 95.35 353 | 79.98 353 | 89.04 307 | 92.68 357 |
|