This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++99.08 398.89 599.64 399.17 9799.23 799.69 198.88 6297.32 4699.53 2399.47 2397.81 399.94 998.47 4699.72 5799.74 39
FOURS199.82 198.66 2499.69 198.95 4697.46 3899.39 30
CS-MVS98.44 4498.49 2498.31 11499.08 11096.73 11899.67 398.47 18397.17 5998.94 5899.10 8995.73 4899.13 21298.71 2999.49 10299.09 166
SPE-MVS-test98.49 3898.50 2398.46 10199.20 9597.05 10499.64 498.50 17797.45 3998.88 6599.14 8495.25 6899.15 20998.83 2699.56 9299.20 147
EC-MVSNet98.21 6398.11 6098.49 9898.34 18397.26 9699.61 598.43 19296.78 7898.87 6698.84 13093.72 10399.01 23398.91 2499.50 10099.19 151
HPM-MVScopyleft98.36 5398.10 6299.13 5199.74 797.82 7299.53 698.80 9694.63 18898.61 8798.97 11095.13 7599.77 10997.65 9699.83 1399.79 21
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVSFormer97.57 9797.49 8797.84 15098.07 21295.76 17199.47 798.40 19694.98 16998.79 7298.83 13292.34 12098.41 30696.91 12899.59 8299.34 121
test_djsdf96.00 16995.69 17396.93 21795.72 35995.49 18199.47 798.40 19694.98 16994.58 24597.86 22989.16 20098.41 30696.91 12894.12 26896.88 288
HPM-MVS_fast98.38 5098.13 5899.12 5399.75 397.86 6899.44 998.82 8494.46 19898.94 5899.20 7095.16 7399.74 11497.58 10199.85 699.77 29
nrg03096.28 16095.72 16797.96 14696.90 30998.15 5799.39 1098.31 21495.47 13994.42 25598.35 18392.09 13298.69 27297.50 10989.05 34597.04 271
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1098.93 5097.38 4399.41 2899.54 1196.66 1899.84 7098.86 2599.85 699.87 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+94.38 697.43 10696.78 12599.38 1897.83 23698.52 2899.37 1298.71 11997.09 6692.99 31899.13 8589.36 19499.89 5096.97 12599.57 8699.71 52
FIs96.51 14996.12 15297.67 17097.13 29597.54 8099.36 1399.22 2395.89 11894.03 27698.35 18391.98 13598.44 29796.40 15492.76 29697.01 272
FC-MVSNet-test96.42 15296.05 15497.53 18096.95 30497.27 9299.36 1399.23 2095.83 12293.93 27998.37 18192.00 13498.32 31696.02 16792.72 29797.00 273
3Dnovator94.51 597.46 10196.93 11799.07 5697.78 23997.64 7499.35 1599.06 3497.02 6893.75 29099.16 8089.25 19799.92 3497.22 11899.75 4799.64 74
sasdasda97.67 8697.23 10298.98 6298.70 14798.38 3599.34 1698.39 19896.76 8097.67 14797.40 27292.26 12399.49 16898.28 5896.28 23799.08 170
GeoE96.58 14796.07 15398.10 13698.35 17895.89 16799.34 1698.12 25193.12 26896.09 21298.87 12789.71 18598.97 23592.95 26898.08 18099.43 112
canonicalmvs97.67 8697.23 10298.98 6298.70 14798.38 3599.34 1698.39 19896.76 8097.67 14797.40 27292.26 12399.49 16898.28 5896.28 23799.08 170
CP-MVS98.57 3098.36 3399.19 4399.66 2697.86 6899.34 1698.87 6995.96 11598.60 8899.13 8596.05 3799.94 997.77 8599.86 299.77 29
EPP-MVSNet97.46 10197.28 9997.99 14398.64 15795.38 18699.33 2098.31 21493.61 24697.19 16499.07 9994.05 9999.23 19996.89 13298.43 16799.37 117
MGCFI-Net97.62 9297.19 10598.92 6798.66 15398.20 5299.32 2198.38 20296.69 8697.58 15697.42 27192.10 13199.50 16798.28 5896.25 24099.08 170
XVS98.70 1798.49 2499.34 2599.70 2298.35 4499.29 2298.88 6297.40 4098.46 9399.20 7095.90 4599.89 5097.85 8099.74 5199.78 23
X-MVStestdata94.06 30092.30 32499.34 2599.70 2298.35 4499.29 2298.88 6297.40 4098.46 9343.50 42095.90 4599.89 5097.85 8099.74 5199.78 23
tttt051796.07 16695.51 17897.78 15698.41 17394.84 21599.28 2494.33 40094.26 20497.64 15298.64 15484.05 31299.47 17595.34 19097.60 19799.03 176
mPP-MVS98.51 3698.26 4799.25 3899.75 398.04 6299.28 2498.81 8996.24 10598.35 10399.23 6595.46 5599.94 997.42 11299.81 1599.77 29
test_vis1_n95.47 19795.13 19796.49 25797.77 24090.41 33999.27 2698.11 25496.58 9199.66 1599.18 7667.00 40299.62 14199.21 1699.40 11599.44 110
test_fmvs1_n95.90 17695.99 15895.63 30298.67 15288.32 37899.26 2798.22 23096.40 9999.67 1499.26 5973.91 38999.70 12299.02 2199.50 10098.87 190
MSP-MVS98.74 1698.55 2099.29 3299.75 398.23 5099.26 2798.88 6297.52 3399.41 2898.78 13796.00 3999.79 10197.79 8499.59 8299.85 9
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
v7n94.19 28793.43 30096.47 26095.90 35494.38 23999.26 2798.34 21091.99 30892.76 32397.13 29088.31 22398.52 28889.48 34387.70 35996.52 334
MVSMamba_PlusPlus98.31 5998.19 5798.67 8298.96 12497.36 8899.24 3098.57 15794.81 18098.99 5698.90 12395.22 7199.59 14499.15 1799.84 1199.07 174
WR-MVS_H95.05 22794.46 23296.81 22696.86 31195.82 16999.24 3099.24 1793.87 22392.53 33196.84 32690.37 17298.24 32693.24 25887.93 35796.38 347
HFP-MVS98.63 2098.40 2999.32 3199.72 1298.29 4799.23 3298.96 4596.10 11298.94 5899.17 7796.06 3699.92 3497.62 9899.78 3499.75 37
region2R98.61 2198.38 3199.29 3299.74 798.16 5699.23 3298.93 5096.15 10998.94 5899.17 7795.91 4399.94 997.55 10599.79 3099.78 23
ACMMPR98.59 2498.36 3399.29 3299.74 798.15 5799.23 3298.95 4696.10 11298.93 6299.19 7595.70 4999.94 997.62 9899.79 3099.78 23
QAPM96.29 15895.40 18098.96 6597.85 23597.60 7799.23 3298.93 5089.76 36093.11 31599.02 10389.11 20299.93 2891.99 29599.62 7799.34 121
MP-MVScopyleft98.33 5898.01 6699.28 3599.75 398.18 5499.22 3698.79 10196.13 11097.92 13199.23 6594.54 8699.94 996.74 14699.78 3499.73 44
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Vis-MVSNetpermissive97.42 10797.11 10898.34 11298.66 15396.23 14499.22 3699.00 3996.63 9098.04 11799.21 6888.05 23299.35 18696.01 16899.21 12499.45 109
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG97.85 7697.74 7498.20 12599.67 2595.16 19899.22 3699.32 1193.04 27197.02 17398.92 12195.36 6199.91 4297.43 11199.64 7499.52 89
mmtdpeth93.12 32192.61 31794.63 33997.60 25589.68 35299.21 3997.32 32794.02 21197.72 14394.42 38577.01 37299.44 17899.05 1977.18 40794.78 385
SDMVSNet96.85 13696.42 14198.14 12899.30 7196.38 13799.21 3999.23 2095.92 11695.96 21898.76 14485.88 27399.44 17897.93 7495.59 25298.60 216
OpenMVScopyleft93.04 1395.83 18095.00 20498.32 11397.18 29297.32 9099.21 3998.97 4289.96 35691.14 35299.05 10186.64 25899.92 3493.38 25499.47 10597.73 251
DTE-MVSNet93.98 30293.26 30596.14 27996.06 34894.39 23899.20 4298.86 7593.06 27091.78 34597.81 23785.87 27497.58 36690.53 32386.17 37596.46 344
Vis-MVSNet (Re-imp)96.87 13596.55 13797.83 15198.73 14295.46 18299.20 4298.30 22094.96 17196.60 19398.87 12790.05 17898.59 28393.67 24898.60 15599.46 107
test_fmvs293.43 30993.58 29292.95 36896.97 30383.91 39499.19 4497.24 33495.74 12695.20 23298.27 19569.65 39598.72 27196.26 15893.73 27796.24 352
balanced_conf0398.45 4398.35 3598.74 7698.65 15697.55 7899.19 4498.60 14696.72 8599.35 3298.77 13995.06 7899.55 15798.95 2299.87 199.12 162
ZNCC-MVS98.49 3898.20 5599.35 2499.73 1198.39 3499.19 4498.86 7595.77 12598.31 10699.10 8995.46 5599.93 2897.57 10499.81 1599.74 39
IS-MVSNet97.22 11796.88 11998.25 12098.85 13596.36 13999.19 4497.97 27495.39 14397.23 16398.99 10991.11 16098.93 24594.60 21598.59 15699.47 103
mvsmamba97.25 11696.99 11498.02 14198.34 18395.54 17999.18 4897.47 31395.04 16598.15 10798.57 16389.46 19199.31 19197.68 9599.01 13399.22 144
PEN-MVS94.42 27393.73 28596.49 25796.28 33994.84 21599.17 4999.00 3993.51 24892.23 33997.83 23586.10 26997.90 35092.55 28186.92 37096.74 302
PS-MVSNAJss96.43 15196.26 14896.92 22095.84 35795.08 20399.16 5098.50 17795.87 12093.84 28598.34 18794.51 8798.61 28096.88 13493.45 28597.06 270
BP-MVS197.82 7797.51 8698.76 7598.25 19397.39 8799.15 5197.68 28996.69 8698.47 9299.10 8990.29 17599.51 16498.60 3499.35 11999.37 117
dcpmvs_298.08 6598.59 1796.56 24999.57 3390.34 34199.15 5198.38 20296.82 7799.29 3699.49 2095.78 4799.57 14798.94 2399.86 299.77 29
APD-MVS_3200maxsize98.53 3598.33 4399.15 4999.50 4297.92 6799.15 5198.81 8996.24 10599.20 4299.37 4095.30 6499.80 9197.73 8799.67 6499.72 48
TSAR-MVS + MP.98.78 1498.62 1699.24 3999.69 2498.28 4899.14 5498.66 13596.84 7599.56 2099.31 5396.34 2899.70 12298.32 5699.73 5499.73 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
anonymousdsp95.42 20294.91 20996.94 21695.10 37695.90 16699.14 5498.41 19493.75 22993.16 31197.46 26587.50 24598.41 30695.63 18394.03 27096.50 339
jajsoiax95.45 20095.03 20396.73 22995.42 37294.63 22599.14 5498.52 16995.74 12693.22 30898.36 18283.87 31798.65 27796.95 12794.04 26996.91 284
PS-CasMVS94.67 25293.99 26496.71 23096.68 32295.26 19399.13 5799.03 3793.68 24092.33 33797.95 22185.35 28298.10 33493.59 25088.16 35696.79 297
RRT-MVS97.03 12896.78 12597.77 15997.90 23294.34 24199.12 5898.35 20795.87 12098.06 11498.70 14886.45 26399.63 13798.04 7098.54 15999.35 119
CPTT-MVS97.72 8297.32 9898.92 6799.64 2897.10 10399.12 5898.81 8992.34 29798.09 11299.08 9893.01 11099.92 3496.06 16599.77 3699.75 37
SR-MVS-dyc-post98.54 3498.35 3599.13 5199.49 4697.86 6899.11 6098.80 9696.49 9499.17 4599.35 4695.34 6299.82 7997.72 8899.65 7099.71 52
RE-MVS-def98.34 3999.49 4697.86 6899.11 6098.80 9696.49 9499.17 4599.35 4695.29 6597.72 8899.65 7099.71 52
CP-MVSNet94.94 23894.30 24096.83 22496.72 32095.56 17699.11 6098.95 4693.89 22192.42 33697.90 22587.19 24998.12 33394.32 22688.21 35496.82 296
SteuartSystems-ACMMP98.90 1298.75 1399.36 2399.22 9298.43 3399.10 6398.87 6997.38 4399.35 3299.40 3397.78 599.87 6197.77 8599.85 699.78 23
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.57 3098.35 3599.24 3999.53 3698.18 5499.09 6498.82 8496.58 9199.10 5099.32 5195.39 5899.82 7997.70 9399.63 7599.72 48
GST-MVS98.43 4698.12 5999.34 2599.72 1298.38 3599.09 6498.82 8495.71 12998.73 7899.06 10095.27 6699.93 2897.07 12299.63 7599.72 48
K. test v392.55 32891.91 33194.48 34595.64 36189.24 36099.07 6694.88 39494.04 20986.78 38597.59 25777.64 36597.64 36392.08 29089.43 34096.57 324
test250694.44 27293.91 26996.04 28399.02 11488.99 36699.06 6779.47 42596.96 7198.36 10199.26 5977.21 36799.52 16396.78 14499.04 13099.59 82
test072699.72 1299.25 299.06 6798.88 6297.62 2799.56 2099.50 1897.42 9
GDP-MVS97.64 8997.28 9998.71 7998.30 19197.33 8999.05 6998.52 16996.34 10298.80 7199.05 10189.74 18499.51 16496.86 14098.86 14399.28 134
test_vis1_n_192096.71 14196.84 12196.31 27399.11 10789.74 34999.05 6998.58 15598.08 1299.87 199.37 4078.48 35599.93 2899.29 1499.69 6199.27 135
test_fmvs387.17 36587.06 36887.50 38391.21 40475.66 40899.05 6996.61 37292.79 28188.85 37492.78 40043.72 41593.49 40693.95 23884.56 38093.34 400
v894.47 27093.77 28196.57 24896.36 33694.83 21799.05 6998.19 23591.92 31093.16 31196.97 31488.82 21398.48 29091.69 30387.79 35896.39 346
test111195.94 17395.78 16496.41 26698.99 12090.12 34399.04 7392.45 41196.99 7098.03 11899.27 5881.40 32999.48 17396.87 13799.04 13099.63 76
SF-MVS98.59 2498.32 4499.41 1799.54 3598.71 2299.04 7398.81 8995.12 15999.32 3599.39 3496.22 3099.84 7097.72 8899.73 5499.67 68
PHI-MVS98.34 5698.06 6399.18 4599.15 10398.12 6099.04 7399.09 3193.32 25798.83 7099.10 8996.54 2199.83 7297.70 9399.76 4299.59 82
ECVR-MVScopyleft95.95 17195.71 17096.65 23599.02 11490.86 32799.03 7691.80 41296.96 7198.10 11199.26 5981.31 33099.51 16496.90 13199.04 13099.59 82
TranMVSNet+NR-MVSNet95.14 22294.48 23097.11 20596.45 33396.36 13999.03 7699.03 3795.04 16593.58 29397.93 22288.27 22498.03 34094.13 23286.90 37196.95 277
ACMMPcopyleft98.23 6197.95 6899.09 5599.74 797.62 7699.03 7699.41 695.98 11497.60 15599.36 4494.45 9199.93 2897.14 11998.85 14499.70 56
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7998.87 6997.65 2599.73 1099.48 2197.53 799.94 998.43 5099.81 1599.70 56
OPU-MVS99.37 2299.24 9099.05 1499.02 7999.16 8097.81 399.37 18597.24 11799.73 5499.70 56
EIA-MVS97.75 8097.58 7998.27 11698.38 17596.44 13399.01 8198.60 14695.88 11997.26 16297.53 26294.97 8099.33 18997.38 11499.20 12599.05 175
Anonymous2023121194.10 29693.26 30596.61 24299.11 10794.28 24399.01 8198.88 6286.43 38492.81 32197.57 25981.66 32898.68 27594.83 20689.02 34796.88 288
test_cas_vis1_n_192097.38 11097.36 9697.45 18298.95 12593.25 28499.00 8398.53 16697.70 2399.77 799.35 4684.71 29799.85 6698.57 3599.66 6799.26 138
mvs_tets95.41 20495.00 20496.65 23595.58 36394.42 23699.00 8398.55 16295.73 12893.21 30998.38 18083.45 32198.63 27897.09 12194.00 27196.91 284
baseline97.64 8997.44 9298.25 12098.35 17896.20 14599.00 8398.32 21296.33 10498.03 11899.17 7791.35 15299.16 20698.10 6598.29 17599.39 115
v1094.29 28193.55 29496.51 25696.39 33594.80 21998.99 8698.19 23591.35 32793.02 31796.99 31288.09 22998.41 30690.50 32488.41 35396.33 350
PGM-MVS98.49 3898.23 5299.27 3799.72 1298.08 6198.99 8699.49 595.43 14199.03 5199.32 5195.56 5299.94 996.80 14399.77 3699.78 23
LPG-MVS_test95.62 19195.34 18696.47 26097.46 26893.54 26798.99 8698.54 16494.67 18694.36 25898.77 13985.39 28099.11 21695.71 17994.15 26696.76 300
test_fmvsmvis_n_192098.44 4498.51 2198.23 12298.33 18696.15 14898.97 8999.15 2898.55 798.45 9699.55 994.26 9699.97 199.65 699.66 6798.57 221
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8998.58 15597.62 2799.45 2599.46 2797.42 999.94 998.47 4699.81 1599.69 59
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 8998.88 6299.94 998.47 4699.81 1599.84 11
tfpnnormal93.66 30592.70 31596.55 25396.94 30595.94 16098.97 8999.19 2491.04 33891.38 35097.34 27584.94 29098.61 28085.45 37689.02 34795.11 376
V4294.78 24494.14 25196.70 23296.33 33895.22 19698.97 8998.09 26192.32 29994.31 26197.06 30288.39 22298.55 28592.90 27088.87 34996.34 348
test_fmvsm_n_192098.87 1399.01 398.45 10299.42 5896.43 13498.96 9499.36 998.63 499.86 299.51 1695.91 4399.97 199.72 499.75 4798.94 186
test_fmvsmconf0.01_n97.86 7497.54 8498.83 7295.48 36896.83 11398.95 9598.60 14698.58 598.93 6299.55 988.57 21699.91 4299.54 1199.61 7899.77 29
SMA-MVScopyleft98.58 2698.25 4899.56 899.51 4099.04 1598.95 9598.80 9693.67 24299.37 3199.52 1496.52 2299.89 5098.06 6799.81 1599.76 36
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pm-mvs193.94 30393.06 30796.59 24596.49 33195.16 19898.95 9598.03 27192.32 29991.08 35397.84 23284.54 30298.41 30692.16 28886.13 37896.19 355
reproduce_model98.94 798.81 1099.34 2599.52 3998.26 4998.94 9898.84 7998.06 1399.35 3299.61 496.39 2799.94 998.77 2899.82 1499.83 12
Anonymous2024052191.18 34190.44 34193.42 35993.70 39388.47 37598.94 9897.56 30088.46 37589.56 36895.08 38077.15 37096.97 37783.92 38689.55 33694.82 382
VPA-MVSNet95.75 18395.11 20097.69 16797.24 28497.27 9298.94 9899.23 2095.13 15895.51 22597.32 27885.73 27598.91 24897.33 11689.55 33696.89 287
MM98.51 3698.24 5099.33 2999.12 10598.14 5998.93 10197.02 35098.96 199.17 4599.47 2391.97 13799.94 999.85 399.69 6199.91 2
LS3D97.16 12296.66 13498.68 8198.53 16697.19 10098.93 10198.90 5792.83 28095.99 21699.37 4092.12 13099.87 6193.67 24899.57 8698.97 182
MonoMVSNet95.51 19595.45 17995.68 29995.54 36490.87 32698.92 10397.37 32595.79 12495.53 22497.38 27489.58 18797.68 36196.40 15492.59 29898.49 224
casdiffmvs_mvgpermissive97.72 8297.48 8998.44 10498.42 17196.59 12698.92 10398.44 18896.20 10797.76 13799.20 7091.66 14399.23 19998.27 6198.41 16899.49 99
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM93.85 995.69 18895.38 18496.61 24297.61 25493.84 25698.91 10598.44 18895.25 15394.28 26298.47 17186.04 27299.12 21495.50 18793.95 27396.87 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MTAPA98.58 2698.29 4699.46 1499.76 298.64 2598.90 10698.74 11197.27 5398.02 12099.39 3494.81 8399.96 497.91 7699.79 3099.77 29
SD-MVS98.64 1998.68 1498.53 9499.33 6298.36 4398.90 10698.85 7897.28 4999.72 1299.39 3496.63 2097.60 36498.17 6299.85 699.64 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TransMVSNet (Re)92.67 32691.51 33396.15 27896.58 32694.65 22398.90 10696.73 36590.86 34189.46 36997.86 22985.62 27798.09 33686.45 36881.12 39395.71 365
EPNet97.28 11496.87 12098.51 9594.98 37796.14 14998.90 10697.02 35098.28 1095.99 21699.11 8791.36 15199.89 5096.98 12499.19 12699.50 94
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_l_conf0.5_n99.07 499.05 299.14 5099.41 5997.54 8098.89 11099.31 1298.49 899.86 299.42 3196.45 2499.96 499.86 199.74 5199.90 3
fmvsm_s_conf0.1_n_a98.08 6598.04 6598.21 12397.66 25195.39 18598.89 11099.17 2697.24 5499.76 899.67 191.13 15899.88 5999.39 1399.41 11299.35 119
MTMP98.89 11094.14 403
UA-Net97.96 6997.62 7798.98 6298.86 13397.47 8498.89 11099.08 3296.67 8898.72 7999.54 1193.15 10999.81 8494.87 20498.83 14599.65 72
OurMVSNet-221017-094.21 28594.00 26294.85 33095.60 36289.22 36198.89 11097.43 32095.29 15092.18 34098.52 16882.86 32298.59 28393.46 25391.76 30696.74 302
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5499.43 5797.48 8298.88 11599.30 1398.47 999.85 499.43 3096.71 1799.96 499.86 199.80 2499.89 4
thisisatest053096.01 16895.36 18597.97 14498.38 17595.52 18098.88 11594.19 40294.04 20997.64 15298.31 19083.82 31999.46 17695.29 19497.70 19498.93 187
UGNet96.78 13996.30 14698.19 12798.24 19495.89 16798.88 11598.93 5097.39 4296.81 18497.84 23282.60 32499.90 4896.53 14999.49 10298.79 196
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.1_n98.18 6498.21 5498.11 13598.54 16595.24 19598.87 11899.24 1797.50 3599.70 1399.67 191.33 15399.89 5099.47 1299.54 9599.21 146
Anonymous2024052995.10 22494.22 24497.75 16199.01 11694.26 24598.87 11898.83 8185.79 39096.64 18998.97 11078.73 35299.85 6696.27 15794.89 25799.12 162
thres100view90095.38 20594.70 21997.41 18698.98 12194.92 21298.87 11896.90 35795.38 14496.61 19296.88 32284.29 30499.56 15088.11 35696.29 23497.76 248
reproduce-ours98.93 898.78 1199.38 1899.49 4698.38 3598.86 12198.83 8198.06 1399.29 3699.58 796.40 2599.94 998.68 3099.81 1599.81 17
our_new_method98.93 898.78 1199.38 1899.49 4698.38 3598.86 12198.83 8198.06 1399.29 3699.58 796.40 2599.94 998.68 3099.81 1599.81 17
fmvsm_s_conf0.5_n_a98.38 5098.42 2898.27 11699.09 10995.41 18498.86 12199.37 897.69 2499.78 699.61 492.38 11999.91 4299.58 1099.43 11099.49 99
XXY-MVS95.20 21994.45 23497.46 18196.75 31896.56 12898.86 12198.65 13993.30 25993.27 30798.27 19584.85 29298.87 25594.82 20791.26 31496.96 275
fmvsm_s_conf0.5_n98.42 4798.51 2198.13 13199.30 7195.25 19498.85 12599.39 797.94 1799.74 999.62 392.59 11699.91 4299.65 699.52 9899.25 140
VDDNet95.36 20894.53 22797.86 14998.10 21195.13 20198.85 12597.75 28790.46 34798.36 10199.39 3473.27 39199.64 13497.98 7196.58 22298.81 195
thres600view795.49 19694.77 21497.67 17098.98 12195.02 20498.85 12596.90 35795.38 14496.63 19096.90 32184.29 30499.59 14488.65 35396.33 23098.40 228
114514_t96.93 13296.27 14798.92 6799.50 4297.63 7598.85 12598.90 5784.80 39497.77 13699.11 8792.84 11299.66 13194.85 20599.77 3699.47 103
test_fmvsmconf0.1_n98.58 2698.44 2798.99 6097.73 24597.15 10298.84 12998.97 4298.75 299.43 2799.54 1193.29 10799.93 2899.64 899.79 3099.89 4
LFMVS95.86 17894.98 20698.47 10098.87 13296.32 14198.84 12996.02 37993.40 25498.62 8699.20 7074.99 38399.63 13797.72 8897.20 20499.46 107
alignmvs97.56 9897.07 11199.01 5998.66 15398.37 4298.83 13198.06 26996.74 8298.00 12497.65 25090.80 16599.48 17398.37 5496.56 22399.19 151
DeepC-MVS95.98 397.88 7397.58 7998.77 7499.25 8496.93 10898.83 13198.75 10996.96 7196.89 18099.50 1890.46 17199.87 6197.84 8299.76 4299.52 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n98.92 1098.87 699.04 5898.88 13097.25 9798.82 13399.34 1098.75 299.80 599.61 495.16 7399.95 799.70 599.80 2499.93 1
sd_testset96.17 16395.76 16597.42 18599.30 7194.34 24198.82 13399.08 3295.92 11695.96 21898.76 14482.83 32399.32 19095.56 18495.59 25298.60 216
ACMMP_NAP98.61 2198.30 4599.55 999.62 3098.95 1798.82 13398.81 8995.80 12399.16 4899.47 2395.37 6099.92 3497.89 7899.75 4799.79 21
casdiffmvspermissive97.63 9197.41 9398.28 11598.33 18696.14 14998.82 13398.32 21296.38 10197.95 12699.21 6891.23 15799.23 19998.12 6498.37 16999.48 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GBi-Net94.49 26793.80 27896.56 24998.21 19895.00 20598.82 13398.18 23892.46 29094.09 27297.07 29881.16 33297.95 34692.08 29092.14 30196.72 305
test194.49 26793.80 27896.56 24998.21 19895.00 20598.82 13398.18 23892.46 29094.09 27297.07 29881.16 33297.95 34692.08 29092.14 30196.72 305
FMVSNet193.19 31892.07 32696.56 24997.54 26295.00 20598.82 13398.18 23890.38 35092.27 33897.07 29873.68 39097.95 34689.36 34591.30 31296.72 305
API-MVS97.41 10897.25 10197.91 14798.70 14796.80 11498.82 13398.69 12494.53 19398.11 11098.28 19294.50 9099.57 14794.12 23399.49 10297.37 264
ACMH92.88 1694.55 26093.95 26696.34 27197.63 25393.26 28298.81 14198.49 18293.43 25389.74 36598.53 16581.91 32699.08 22293.69 24593.30 28996.70 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
reproduce_monomvs94.77 24594.67 22195.08 32298.40 17489.48 35698.80 14298.64 14097.57 3193.21 30997.65 25080.57 34198.83 26197.72 8889.47 33996.93 278
test_fmvs196.42 15296.67 13395.66 30198.82 13788.53 37498.80 14298.20 23396.39 10099.64 1799.20 7080.35 34399.67 12999.04 2099.57 8698.78 199
Effi-MVS+-dtu96.29 15896.56 13695.51 30697.89 23490.22 34298.80 14298.10 25796.57 9396.45 20396.66 33490.81 16498.91 24895.72 17897.99 18197.40 261
HQP_MVS96.14 16595.90 16196.85 22397.42 27394.60 23098.80 14298.56 16097.28 4995.34 22798.28 19287.09 25099.03 22896.07 16294.27 26096.92 279
plane_prior298.80 14297.28 49
APD-MVScopyleft98.35 5598.00 6799.42 1699.51 4098.72 2198.80 14298.82 8494.52 19599.23 4199.25 6495.54 5499.80 9196.52 15099.77 3699.74 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet (Re)95.78 18295.19 19597.58 17796.99 30297.47 8498.79 14899.18 2595.60 13393.92 28097.04 30691.68 14198.48 29095.80 17587.66 36096.79 297
FMVSNet294.47 27093.61 29197.04 20998.21 19896.43 13498.79 14898.27 22392.46 29093.50 29997.09 29581.16 33298.00 34391.09 31291.93 30496.70 309
tt080594.54 26193.85 27596.63 23997.98 22593.06 29398.77 15097.84 28393.67 24293.80 28798.04 21276.88 37498.96 23994.79 20992.86 29497.86 247
testgi93.06 32292.45 32294.88 32996.43 33489.90 34598.75 15197.54 30695.60 13391.63 34997.91 22474.46 38797.02 37686.10 37093.67 27897.72 252
LCM-MVSNet-Re95.22 21795.32 18994.91 32698.18 20487.85 38498.75 15195.66 38695.11 16088.96 37196.85 32590.26 17797.65 36295.65 18298.44 16599.22 144
SixPastTwentyTwo93.34 31292.86 31194.75 33495.67 36089.41 35998.75 15196.67 36993.89 22190.15 36398.25 19880.87 33798.27 32590.90 31990.64 32196.57 324
UniMVSNet_ETH3D94.24 28493.33 30296.97 21497.19 29193.38 27798.74 15498.57 15791.21 33693.81 28698.58 16072.85 39298.77 26895.05 20193.93 27498.77 202
MVS_Test97.28 11497.00 11398.13 13198.33 18695.97 15798.74 15498.07 26494.27 20398.44 9898.07 20992.48 11799.26 19596.43 15398.19 17699.16 157
UniMVSNet_NR-MVSNet95.71 18595.15 19697.40 18896.84 31296.97 10698.74 15499.24 1795.16 15793.88 28297.72 24391.68 14198.31 31895.81 17387.25 36696.92 279
NR-MVSNet94.98 23394.16 24997.44 18396.53 32897.22 9998.74 15498.95 4694.96 17189.25 37097.69 24689.32 19598.18 32894.59 21787.40 36396.92 279
ETV-MVS97.96 6997.81 7198.40 10998.42 17197.27 9298.73 15898.55 16296.84 7598.38 10097.44 26895.39 5899.35 18697.62 9898.89 13998.58 220
baseline195.84 17995.12 19998.01 14298.49 16995.98 15298.73 15897.03 34895.37 14696.22 20898.19 20289.96 18099.16 20694.60 21587.48 36198.90 189
MVSTER96.06 16795.72 16797.08 20798.23 19695.93 16398.73 15898.27 22394.86 17795.07 23398.09 20888.21 22598.54 28696.59 14793.46 28396.79 297
ACMP93.49 1095.34 21094.98 20696.43 26597.67 24993.48 27198.73 15898.44 18894.94 17592.53 33198.53 16584.50 30399.14 21195.48 18894.00 27196.66 315
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVS++copyleft98.58 2698.25 4899.55 999.50 4299.08 1198.72 16298.66 13597.51 3498.15 10798.83 13295.70 4999.92 3497.53 10799.67 6499.66 71
9.1498.06 6399.47 5098.71 16398.82 8494.36 20199.16 4899.29 5596.05 3799.81 8497.00 12399.71 59
VPNet94.99 23194.19 24697.40 18897.16 29396.57 12798.71 16398.97 4295.67 13194.84 23898.24 19980.36 34298.67 27696.46 15187.32 36596.96 275
MSLP-MVS++98.56 3298.57 1898.55 9099.26 8396.80 11498.71 16399.05 3697.28 4998.84 6899.28 5696.47 2399.40 18198.52 4499.70 6099.47 103
ACMH+92.99 1494.30 27993.77 28195.88 29397.81 23892.04 30698.71 16398.37 20493.99 21690.60 35898.47 17180.86 33899.05 22492.75 27492.40 30096.55 328
Anonymous20240521195.28 21494.49 22997.67 17099.00 11793.75 26098.70 16797.04 34790.66 34396.49 20098.80 13578.13 35999.83 7296.21 16195.36 25699.44 110
DP-MVS96.59 14595.93 16098.57 8899.34 6096.19 14798.70 16798.39 19889.45 36694.52 24799.35 4691.85 13899.85 6692.89 27298.88 14099.68 64
Fast-Effi-MVS+-dtu95.87 17795.85 16295.91 29097.74 24491.74 31198.69 16998.15 24795.56 13594.92 23697.68 24988.98 20898.79 26693.19 26097.78 19097.20 268
tfpn200view995.32 21294.62 22397.43 18498.94 12694.98 20898.68 17096.93 35595.33 14796.55 19696.53 34084.23 30899.56 15088.11 35696.29 23497.76 248
VDD-MVS95.82 18195.23 19397.61 17698.84 13693.98 25298.68 17097.40 32295.02 16797.95 12699.34 5074.37 38899.78 10498.64 3296.80 21599.08 170
thres40095.38 20594.62 22397.65 17498.94 12694.98 20898.68 17096.93 35595.33 14796.55 19696.53 34084.23 30899.56 15088.11 35696.29 23498.40 228
pmmvs691.77 33490.63 33995.17 31894.69 38491.24 32098.67 17397.92 27986.14 38689.62 36697.56 26175.79 38098.34 31390.75 32184.56 38095.94 361
v2v48294.69 24794.03 25896.65 23596.17 34394.79 22098.67 17398.08 26292.72 28294.00 27797.16 28987.69 24298.45 29592.91 26988.87 34996.72 305
mamv497.13 12498.11 6094.17 35398.97 12383.70 39598.66 17598.71 11994.63 18897.83 13498.90 12396.25 2999.55 15799.27 1599.76 4299.27 135
DU-MVS95.42 20294.76 21597.40 18896.53 32896.97 10698.66 17598.99 4195.43 14193.88 28297.69 24688.57 21698.31 31895.81 17387.25 36696.92 279
MAR-MVS96.91 13396.40 14398.45 10298.69 15096.90 11098.66 17598.68 12792.40 29697.07 17097.96 22091.54 14899.75 11293.68 24698.92 13798.69 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing393.19 31892.48 32195.30 31598.07 21292.27 29998.64 17897.17 33893.94 22093.98 27897.04 30667.97 39996.01 39488.40 35497.14 20597.63 255
patch_mono-298.36 5398.87 696.82 22599.53 3690.68 33298.64 17899.29 1497.88 1899.19 4499.52 1496.80 1599.97 199.11 1899.86 299.82 16
h-mvs3396.17 16395.62 17697.81 15499.03 11394.45 23498.64 17898.75 10997.48 3698.67 8098.72 14789.76 18299.86 6597.95 7281.59 39199.11 164
VNet97.79 7997.40 9498.96 6598.88 13097.55 7898.63 18198.93 5096.74 8299.02 5298.84 13090.33 17499.83 7298.53 3896.66 21999.50 94
PVSNet_Blended_VisFu97.70 8497.46 9098.44 10499.27 8195.91 16598.63 18199.16 2794.48 19797.67 14798.88 12692.80 11399.91 4297.11 12099.12 12899.50 94
PAPM_NR97.46 10197.11 10898.50 9699.50 4296.41 13698.63 18198.60 14695.18 15697.06 17198.06 21094.26 9699.57 14793.80 24498.87 14299.52 89
Baseline_NR-MVSNet94.35 27693.81 27795.96 28896.20 34194.05 25198.61 18496.67 36991.44 32393.85 28497.60 25688.57 21698.14 33194.39 22286.93 36995.68 366
v114494.59 25793.92 26796.60 24496.21 34094.78 22198.59 18598.14 24991.86 31394.21 26797.02 30987.97 23398.41 30691.72 30289.57 33496.61 319
AllTest95.24 21694.65 22296.99 21199.25 8493.21 28698.59 18598.18 23891.36 32593.52 29698.77 13984.67 29899.72 11689.70 33897.87 18698.02 243
MVS_030498.23 6197.91 7099.21 4298.06 21597.96 6698.58 18795.51 38798.58 598.87 6699.26 5992.99 11199.95 799.62 999.67 6499.73 44
Fast-Effi-MVS+96.28 16095.70 17298.03 14098.29 19295.97 15798.58 18798.25 22891.74 31495.29 23197.23 28591.03 16399.15 20992.90 27097.96 18398.97 182
Anonymous2023120691.66 33591.10 33593.33 36294.02 39287.35 38698.58 18797.26 33390.48 34690.16 36296.31 34583.83 31896.53 38879.36 39989.90 33096.12 356
v14419294.39 27593.70 28796.48 25996.06 34894.35 24098.58 18798.16 24691.45 32294.33 26097.02 30987.50 24598.45 29591.08 31489.11 34496.63 317
v14894.29 28193.76 28395.91 29096.10 34692.93 29498.58 18797.97 27492.59 28893.47 30096.95 31888.53 22098.32 31692.56 28087.06 36896.49 340
COLMAP_ROBcopyleft93.27 1295.33 21194.87 21296.71 23099.29 7693.24 28598.58 18798.11 25489.92 35793.57 29499.10 8986.37 26599.79 10190.78 32098.10 17997.09 269
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_vis1_rt91.29 33890.65 33893.19 36697.45 27186.25 39098.57 19390.90 41693.30 25986.94 38493.59 39462.07 40899.11 21697.48 11095.58 25494.22 389
FMVSNet394.97 23594.26 24297.11 20598.18 20496.62 12198.56 19498.26 22793.67 24294.09 27297.10 29184.25 30698.01 34192.08 29092.14 30196.70 309
F-COLMAP97.09 12796.80 12297.97 14499.45 5594.95 21198.55 19598.62 14593.02 27296.17 21198.58 16094.01 10099.81 8493.95 23898.90 13899.14 160
dmvs_re94.48 26994.18 24895.37 31297.68 24890.11 34498.54 19697.08 34294.56 19194.42 25597.24 28484.25 30697.76 35991.02 31892.83 29598.24 235
ttmdpeth92.61 32791.96 33094.55 34194.10 38890.60 33598.52 19797.29 32992.67 28490.18 36197.92 22379.75 34797.79 35791.09 31286.15 37795.26 371
v192192094.20 28693.47 29896.40 26895.98 35194.08 25098.52 19798.15 24791.33 32894.25 26497.20 28886.41 26498.42 29990.04 33289.39 34196.69 314
EU-MVSNet93.66 30594.14 25192.25 37495.96 35383.38 39898.52 19798.12 25194.69 18492.61 32898.13 20687.36 24896.39 39091.82 29990.00 32996.98 274
TAMVS97.02 12996.79 12497.70 16698.06 21595.31 19298.52 19798.31 21493.95 21897.05 17298.61 15593.49 10598.52 28895.33 19197.81 18899.29 132
LTVRE_ROB92.95 1594.60 25593.90 27096.68 23497.41 27694.42 23698.52 19798.59 15091.69 31791.21 35198.35 18384.87 29199.04 22791.06 31593.44 28696.60 320
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement91.06 34389.68 34895.21 31685.35 41891.49 31698.51 20297.07 34491.47 32188.83 37597.84 23277.31 36699.09 22192.79 27377.98 40595.04 379
v119294.32 27893.58 29296.53 25496.10 34694.45 23498.50 20398.17 24491.54 32094.19 26897.06 30286.95 25498.43 29890.14 32789.57 33496.70 309
test_040291.32 33790.27 34394.48 34596.60 32591.12 32198.50 20397.22 33586.10 38788.30 37796.98 31377.65 36497.99 34478.13 40392.94 29394.34 386
DeepC-MVS_fast96.70 198.55 3398.34 3999.18 4599.25 8498.04 6298.50 20398.78 10397.72 2098.92 6499.28 5695.27 6699.82 7997.55 10599.77 3699.69 59
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNVR-MVS98.78 1498.56 1999.45 1599.32 6598.87 1998.47 20698.81 8997.72 2098.76 7599.16 8097.05 1399.78 10498.06 6799.66 6799.69 59
test_yl97.22 11796.78 12598.54 9298.73 14296.60 12498.45 20798.31 21494.70 18298.02 12098.42 17590.80 16599.70 12296.81 14196.79 21699.34 121
DCV-MVSNet97.22 11796.78 12598.54 9298.73 14296.60 12498.45 20798.31 21494.70 18298.02 12098.42 17590.80 16599.70 12296.81 14196.79 21699.34 121
NCCC98.61 2198.35 3599.38 1899.28 8098.61 2698.45 20798.76 10797.82 1998.45 9698.93 11996.65 1999.83 7297.38 11499.41 11299.71 52
v124094.06 30093.29 30496.34 27196.03 35093.90 25498.44 21098.17 24491.18 33794.13 27197.01 31186.05 27098.42 29989.13 34889.50 33896.70 309
plane_prior94.60 23098.44 21096.74 8294.22 262
MP-MVS-pluss98.31 5997.92 6999.49 1299.72 1298.88 1898.43 21298.78 10394.10 20797.69 14699.42 3195.25 6899.92 3498.09 6699.80 2499.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS95.69 18895.33 18896.76 22896.16 34594.63 22598.43 21298.39 19896.64 8995.02 23598.78 13785.15 28799.05 22495.21 19894.20 26396.60 320
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DPE-MVScopyleft98.92 1098.67 1599.65 299.58 3299.20 998.42 21498.91 5697.58 3099.54 2299.46 2797.10 1299.94 997.64 9799.84 1199.83 12
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MCST-MVS98.65 1898.37 3299.48 1399.60 3198.87 1998.41 21598.68 12797.04 6798.52 9198.80 13596.78 1699.83 7297.93 7499.61 7899.74 39
hse-mvs295.71 18595.30 19196.93 21798.50 16793.53 26998.36 21698.10 25797.48 3698.67 8097.99 21789.76 18299.02 23197.95 7280.91 39698.22 237
CANet98.05 6797.76 7398.90 7098.73 14297.27 9298.35 21798.78 10397.37 4597.72 14398.96 11591.53 14999.92 3498.79 2799.65 7099.51 92
AUN-MVS94.53 26393.73 28596.92 22098.50 16793.52 27098.34 21898.10 25793.83 22695.94 22097.98 21985.59 27899.03 22894.35 22480.94 39598.22 237
test20.0390.89 34590.38 34292.43 37093.48 39488.14 38198.33 21997.56 30093.40 25487.96 37896.71 33380.69 34094.13 40579.15 40086.17 37595.01 381
DP-MVS Recon97.86 7497.46 9099.06 5799.53 3698.35 4498.33 21998.89 5992.62 28698.05 11598.94 11895.34 6299.65 13296.04 16699.42 11199.19 151
RPSCF94.87 24095.40 18093.26 36498.89 12982.06 40298.33 21998.06 26990.30 35296.56 19499.26 5987.09 25099.49 16893.82 24396.32 23198.24 235
TAPA-MVS93.98 795.35 20994.56 22697.74 16299.13 10494.83 21798.33 21998.64 14086.62 38296.29 20798.61 15594.00 10199.29 19380.00 39799.41 11299.09 166
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IterMVS-LS95.46 19895.21 19496.22 27798.12 20993.72 26398.32 22398.13 25093.71 23594.26 26397.31 27992.24 12598.10 33494.63 21290.12 32796.84 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous96.70 14296.53 13997.18 19898.19 20293.78 25798.31 22498.19 23594.01 21494.47 24998.27 19592.08 13398.46 29497.39 11397.91 18499.31 127
WTY-MVS97.37 11296.92 11898.72 7898.86 13396.89 11298.31 22498.71 11995.26 15297.67 14798.56 16492.21 12799.78 10495.89 17096.85 21499.48 101
D2MVS95.18 22095.08 20195.48 30797.10 29792.07 30498.30 22699.13 3094.02 21192.90 31996.73 33189.48 18998.73 27094.48 22093.60 28295.65 367
EI-MVSNet-Vis-set98.47 4198.39 3098.69 8099.46 5296.49 13198.30 22698.69 12497.21 5698.84 6899.36 4495.41 5799.78 10498.62 3399.65 7099.80 20
DSMNet-mixed92.52 33092.58 31992.33 37294.15 38782.65 40098.30 22694.26 40189.08 37192.65 32795.73 36685.01 28995.76 39686.24 36997.76 19198.59 218
EI-MVSNet-UG-set98.41 4898.34 3998.61 8699.45 5596.32 14198.28 22998.68 12797.17 5998.74 7699.37 4095.25 6899.79 10198.57 3599.54 9599.73 44
OMC-MVS97.55 9997.34 9798.20 12599.33 6295.92 16498.28 22998.59 15095.52 13797.97 12599.10 8993.28 10899.49 16895.09 19998.88 14099.19 151
baseline295.11 22394.52 22896.87 22296.65 32493.56 26698.27 23194.10 40493.45 25292.02 34497.43 26987.45 24799.19 20493.88 24197.41 20297.87 246
PVSNet_BlendedMVS96.73 14096.60 13597.12 20499.25 8495.35 18998.26 23299.26 1594.28 20297.94 12897.46 26592.74 11499.81 8496.88 13493.32 28896.20 354
MVStest189.53 35787.99 36294.14 35594.39 38590.42 33898.25 23396.84 36482.81 39881.18 40397.33 27777.09 37196.94 37885.27 37878.79 40195.06 378
BH-untuned95.95 17195.72 16796.65 23598.55 16492.26 30098.23 23497.79 28593.73 23294.62 24498.01 21588.97 20999.00 23493.04 26598.51 16198.68 208
sss97.39 10996.98 11698.61 8698.60 16196.61 12398.22 23598.93 5093.97 21798.01 12398.48 17091.98 13599.85 6696.45 15298.15 17799.39 115
save fliter99.46 5298.38 3598.21 23698.71 11997.95 16
WR-MVS95.15 22194.46 23297.22 19496.67 32396.45 13298.21 23698.81 8994.15 20593.16 31197.69 24687.51 24398.30 32095.29 19488.62 35196.90 286
pmmvs593.65 30792.97 31095.68 29995.49 36792.37 29898.20 23897.28 33189.66 36292.58 32997.26 28182.14 32598.09 33693.18 26190.95 31996.58 322
thres20095.25 21594.57 22597.28 19298.81 13894.92 21298.20 23897.11 34095.24 15596.54 19896.22 35184.58 30199.53 16087.93 36196.50 22697.39 262
CDS-MVSNet96.99 13096.69 13197.90 14898.05 21795.98 15298.20 23898.33 21193.67 24296.95 17498.49 16993.54 10498.42 29995.24 19797.74 19299.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ETVMVS94.50 26693.44 29997.68 16998.18 20495.35 18998.19 24197.11 34093.73 23296.40 20495.39 37474.53 38598.84 25891.10 31196.31 23298.84 193
WB-MVS84.86 37085.33 37183.46 39189.48 40969.56 41798.19 24196.42 37689.55 36481.79 40094.67 38384.80 29390.12 41352.44 41780.64 39790.69 404
131496.25 16295.73 16697.79 15597.13 29595.55 17898.19 24198.59 15093.47 25192.03 34397.82 23691.33 15399.49 16894.62 21498.44 16598.32 234
MVS94.67 25293.54 29598.08 13796.88 31096.56 12898.19 24198.50 17778.05 40692.69 32698.02 21391.07 16299.63 13790.09 32898.36 17198.04 242
BH-RMVSNet95.92 17595.32 18997.69 16798.32 18994.64 22498.19 24197.45 31894.56 19196.03 21498.61 15585.02 28899.12 21490.68 32299.06 12999.30 130
1112_ss96.63 14396.00 15798.50 9698.56 16296.37 13898.18 24698.10 25792.92 27694.84 23898.43 17392.14 12999.58 14694.35 22496.51 22599.56 88
EPNet_dtu95.21 21894.95 20895.99 28596.17 34390.45 33798.16 24797.27 33296.77 7993.14 31498.33 18890.34 17398.42 29985.57 37498.81 14799.09 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HY-MVS93.96 896.82 13896.23 15098.57 8898.46 17097.00 10598.14 24898.21 23193.95 21896.72 18797.99 21791.58 14499.76 11094.51 21996.54 22498.95 185
PLCcopyleft95.07 497.20 12096.78 12598.44 10499.29 7696.31 14398.14 24898.76 10792.41 29596.39 20598.31 19094.92 8299.78 10494.06 23698.77 14899.23 142
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EG-PatchMatch MVS91.13 34290.12 34594.17 35394.73 38389.00 36598.13 25097.81 28489.22 37085.32 39596.46 34267.71 40098.42 29987.89 36293.82 27695.08 377
EI-MVSNet95.96 17095.83 16396.36 26997.93 23093.70 26498.12 25198.27 22393.70 23795.07 23399.02 10392.23 12698.54 28694.68 21093.46 28396.84 294
CVMVSNet95.43 20196.04 15593.57 35897.93 23083.62 39698.12 25198.59 15095.68 13096.56 19499.02 10387.51 24397.51 36993.56 25297.44 20099.60 80
TSAR-MVS + GP.98.38 5098.24 5098.81 7399.22 9297.25 9798.11 25398.29 22297.19 5898.99 5699.02 10396.22 3099.67 12998.52 4498.56 15899.51 92
XVG-ACMP-BASELINE94.54 26194.14 25195.75 29896.55 32791.65 31398.11 25398.44 18894.96 17194.22 26697.90 22579.18 35199.11 21694.05 23793.85 27596.48 342
testing9994.83 24194.08 25497.07 20897.94 22893.13 28898.10 25597.17 33894.86 17795.34 22796.00 36076.31 37699.40 18195.08 20095.90 24898.68 208
testing1195.00 22994.28 24197.16 20097.96 22793.36 27998.09 25697.06 34694.94 17595.33 23096.15 35376.89 37399.40 18195.77 17796.30 23398.72 203
SSC-MVS84.27 37184.71 37482.96 39589.19 41168.83 41898.08 25796.30 37889.04 37281.37 40294.47 38484.60 30089.89 41449.80 41979.52 39990.15 405
CNLPA97.45 10497.03 11298.73 7799.05 11197.44 8698.07 25898.53 16695.32 14996.80 18598.53 16593.32 10699.72 11694.31 22799.31 12299.02 177
diffmvspermissive97.58 9697.40 9498.13 13198.32 18995.81 17098.06 25998.37 20496.20 10798.74 7698.89 12591.31 15599.25 19698.16 6398.52 16099.34 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 1792x268897.12 12596.80 12298.08 13799.30 7194.56 23298.05 26099.71 193.57 24797.09 16798.91 12288.17 22699.89 5096.87 13799.56 9299.81 17
HQP-NCC97.20 28898.05 26096.43 9694.45 250
ACMP_Plane97.20 28898.05 26096.43 9694.45 250
HQP-MVS95.72 18495.40 18096.69 23397.20 28894.25 24698.05 26098.46 18496.43 9694.45 25097.73 24186.75 25698.96 23995.30 19294.18 26496.86 293
MIMVSNet189.67 35488.28 35993.82 35692.81 39891.08 32298.01 26497.45 31887.95 37787.90 37995.87 36267.63 40194.56 40478.73 40288.18 35595.83 363
AdaColmapbinary97.15 12396.70 13098.48 9999.16 10196.69 12098.01 26498.89 5994.44 19996.83 18198.68 15090.69 16899.76 11094.36 22399.29 12398.98 181
testing9194.98 23394.25 24397.20 19597.94 22893.41 27498.00 26697.58 29794.99 16895.45 22696.04 35777.20 36899.42 18094.97 20396.02 24798.78 199
FMVSNet591.81 33390.92 33694.49 34497.21 28792.09 30398.00 26697.55 30589.31 36990.86 35595.61 37274.48 38695.32 40085.57 37489.70 33296.07 358
CANet_DTU96.96 13196.55 13798.21 12398.17 20796.07 15197.98 26898.21 23197.24 5497.13 16698.93 11986.88 25599.91 4295.00 20299.37 11898.66 212
MVP-Stereo94.28 28393.92 26795.35 31394.95 37892.60 29797.97 26997.65 29291.61 31990.68 35797.09 29586.32 26698.42 29989.70 33899.34 12095.02 380
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
KD-MVS_self_test90.38 34889.38 35193.40 36192.85 39788.94 36897.95 27097.94 27790.35 35190.25 36093.96 39179.82 34595.94 39584.62 38576.69 40895.33 370
MVS_111021_LR98.34 5698.23 5298.67 8299.27 8196.90 11097.95 27099.58 397.14 6298.44 9899.01 10795.03 7999.62 14197.91 7699.75 4799.50 94
testing22294.12 29493.03 30897.37 19198.02 22094.66 22297.94 27296.65 37194.63 18895.78 22195.76 36371.49 39398.92 24691.17 31095.88 24998.52 222
TEST999.31 6798.50 2997.92 27398.73 11492.63 28597.74 14098.68 15096.20 3299.80 91
train_agg97.97 6897.52 8599.33 2999.31 6798.50 2997.92 27398.73 11492.98 27397.74 14098.68 15096.20 3299.80 9196.59 14799.57 8699.68 64
Syy-MVS92.55 32892.61 31792.38 37197.39 27783.41 39797.91 27597.46 31493.16 26593.42 30295.37 37584.75 29596.12 39277.00 40596.99 20997.60 256
myMVS_eth3d92.73 32592.01 32794.89 32897.39 27790.94 32497.91 27597.46 31493.16 26593.42 30295.37 37568.09 39896.12 39288.34 35596.99 20997.60 256
CDPH-MVS97.94 7197.49 8799.28 3599.47 5098.44 3197.91 27598.67 13292.57 28998.77 7498.85 12995.93 4299.72 11695.56 18499.69 6199.68 64
MVS_111021_HR98.47 4198.34 3998.88 7199.22 9297.32 9097.91 27599.58 397.20 5798.33 10499.00 10895.99 4099.64 13498.05 6999.76 4299.69 59
PatchMatch-RL96.59 14596.03 15698.27 11699.31 6796.51 13097.91 27599.06 3493.72 23496.92 17898.06 21088.50 22199.65 13291.77 30199.00 13598.66 212
OpenMVS_ROBcopyleft86.42 2089.00 35987.43 36793.69 35793.08 39689.42 35897.91 27596.89 35978.58 40585.86 39094.69 38269.48 39698.29 32377.13 40493.29 29093.36 399
test_899.29 7698.44 3197.89 28198.72 11692.98 27397.70 14598.66 15396.20 3299.80 91
ab-mvs96.42 15295.71 17098.55 9098.63 15896.75 11797.88 28298.74 11193.84 22496.54 19898.18 20385.34 28399.75 11295.93 16996.35 22999.15 158
UBG95.32 21294.72 21897.13 20298.05 21793.26 28297.87 28397.20 33694.96 17196.18 21095.66 37180.97 33599.35 18694.47 22197.08 20698.78 199
jason97.32 11397.08 11098.06 13997.45 27195.59 17497.87 28397.91 28094.79 18198.55 9098.83 13291.12 15999.23 19997.58 10199.60 8099.34 121
jason: jason.
WB-MVSnew94.19 28794.04 25694.66 33796.82 31492.14 30197.86 28595.96 38293.50 24995.64 22396.77 33088.06 23197.99 34484.87 38096.86 21393.85 397
xiu_mvs_v1_base_debu97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
xiu_mvs_v1_base97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
xiu_mvs_v1_base_debi97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
test_prior498.01 6497.86 285
mvsany_test388.80 36088.04 36091.09 37889.78 40881.57 40397.83 29095.49 38893.81 22787.53 38093.95 39256.14 41197.43 37094.68 21083.13 38594.26 387
WBMVS94.56 25994.04 25696.10 28298.03 21993.08 29297.82 29198.18 23894.02 21193.77 28996.82 32781.28 33198.34 31395.47 18991.00 31896.88 288
FA-MVS(test-final)96.41 15595.94 15997.82 15398.21 19895.20 19797.80 29297.58 29793.21 26297.36 16097.70 24489.47 19099.56 15094.12 23397.99 18198.71 206
test_prior297.80 29296.12 11197.89 13398.69 14995.96 4196.89 13299.60 80
XVG-OURS-SEG-HR96.51 14996.34 14497.02 21098.77 14093.76 25897.79 29498.50 17795.45 14096.94 17599.09 9687.87 23799.55 15796.76 14595.83 25197.74 250
MS-PatchMatch93.84 30493.63 29094.46 34796.18 34289.45 35797.76 29598.27 22392.23 30292.13 34197.49 26379.50 34898.69 27289.75 33699.38 11795.25 372
DELS-MVS98.40 4998.20 5598.99 6099.00 11797.66 7397.75 29698.89 5997.71 2298.33 10498.97 11094.97 8099.88 5998.42 5299.76 4299.42 114
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MG-MVS97.81 7897.60 7898.44 10499.12 10595.97 15797.75 29698.78 10396.89 7498.46 9399.22 6793.90 10299.68 12894.81 20899.52 9899.67 68
test_f86.07 36985.39 37088.10 38289.28 41075.57 40997.73 29896.33 37789.41 36885.35 39491.56 40643.31 41795.53 39791.32 30884.23 38293.21 401
Test_1112_low_res96.34 15795.66 17598.36 11198.56 16295.94 16097.71 29998.07 26492.10 30694.79 24297.29 28091.75 14099.56 15094.17 23196.50 22699.58 86
BH-w/o95.38 20595.08 20196.26 27698.34 18391.79 30897.70 30097.43 32092.87 27894.24 26597.22 28688.66 21498.84 25891.55 30597.70 19498.16 240
lupinMVS97.44 10597.22 10498.12 13498.07 21295.76 17197.68 30197.76 28694.50 19698.79 7298.61 15592.34 12099.30 19297.58 10199.59 8299.31 127
原ACMM297.67 302
test_vis3_rt79.22 37377.40 38084.67 38886.44 41674.85 41297.66 30381.43 42384.98 39367.12 41681.91 41428.09 42597.60 36488.96 34980.04 39881.55 414
LF4IMVS93.14 32092.79 31394.20 35195.88 35588.67 37197.66 30397.07 34493.81 22791.71 34697.65 25077.96 36198.81 26491.47 30691.92 30595.12 375
EGC-MVSNET75.22 38269.54 38592.28 37394.81 38189.58 35497.64 30596.50 3731.82 4255.57 42695.74 36468.21 39796.26 39173.80 40891.71 30790.99 403
新几何297.64 305
MDA-MVSNet-bldmvs89.97 35288.35 35894.83 33295.21 37491.34 31797.64 30597.51 30988.36 37671.17 41496.13 35479.22 35096.63 38783.65 38786.27 37496.52 334
pmmvs-eth3d90.36 34989.05 35494.32 35091.10 40592.12 30297.63 30896.95 35488.86 37384.91 39693.13 39978.32 35696.74 38288.70 35181.81 39094.09 392
TR-MVS94.94 23894.20 24597.17 19997.75 24194.14 24997.59 30997.02 35092.28 30195.75 22297.64 25383.88 31698.96 23989.77 33596.15 24498.40 228
无先验97.58 31098.72 11691.38 32499.87 6193.36 25699.60 80
旧先验297.57 31191.30 33098.67 8099.80 9195.70 181
mvsany_test197.69 8597.70 7597.66 17398.24 19494.18 24897.53 31297.53 30795.52 13799.66 1599.51 1694.30 9499.56 15098.38 5398.62 15499.23 142
CostFormer94.95 23694.73 21795.60 30497.28 28289.06 36397.53 31296.89 35989.66 36296.82 18396.72 33286.05 27098.95 24495.53 18696.13 24598.79 196
UWE-MVS94.30 27993.89 27295.53 30597.83 23688.95 36797.52 31493.25 40694.44 19996.63 19097.07 29878.70 35399.28 19491.99 29597.56 19998.36 231
XVG-OURS96.55 14896.41 14296.99 21198.75 14193.76 25897.50 31598.52 16995.67 13196.83 18199.30 5488.95 21099.53 16095.88 17196.26 23997.69 253
xiu_mvs_v2_base97.66 8897.70 7597.56 17998.61 16095.46 18297.44 31698.46 18497.15 6198.65 8598.15 20494.33 9399.80 9197.84 8298.66 15397.41 260
tpm94.13 29293.80 27895.12 31996.50 33087.91 38397.44 31695.89 38592.62 28696.37 20696.30 34684.13 31198.30 32093.24 25891.66 30999.14 160
DeepPCF-MVS96.37 297.93 7298.48 2696.30 27499.00 11789.54 35597.43 31898.87 6998.16 1199.26 4099.38 3996.12 3599.64 13498.30 5799.77 3699.72 48
test22299.23 9197.17 10197.40 31998.66 13588.68 37498.05 11598.96 11594.14 9899.53 9799.61 78
pmmvs494.69 24793.99 26496.81 22695.74 35895.94 16097.40 31997.67 29190.42 34993.37 30497.59 25789.08 20398.20 32792.97 26791.67 30896.30 351
test0.0.03 194.08 29893.51 29695.80 29595.53 36692.89 29597.38 32195.97 38195.11 16092.51 33396.66 33487.71 23996.94 37887.03 36593.67 27897.57 258
HyFIR lowres test96.90 13496.49 14098.14 12899.33 6295.56 17697.38 32199.65 292.34 29797.61 15498.20 20189.29 19699.10 22096.97 12597.60 19799.77 29
Effi-MVS+97.12 12596.69 13198.39 11098.19 20296.72 11997.37 32398.43 19293.71 23597.65 15198.02 21392.20 12899.25 19696.87 13797.79 18999.19 151
N_pmnet87.12 36787.77 36585.17 38795.46 36961.92 42397.37 32370.66 42885.83 38988.73 37696.04 35785.33 28497.76 35980.02 39690.48 32295.84 362
PAPR96.84 13796.24 14998.65 8498.72 14696.92 10997.36 32598.57 15793.33 25696.67 18897.57 25994.30 9499.56 15091.05 31798.59 15699.47 103
PMMVS96.60 14496.33 14597.41 18697.90 23293.93 25397.35 32698.41 19492.84 27997.76 13797.45 26791.10 16199.20 20396.26 15897.91 18499.11 164
PS-MVSNAJ97.73 8197.77 7297.62 17598.68 15195.58 17597.34 32798.51 17297.29 4898.66 8497.88 22894.51 8799.90 4897.87 7999.17 12797.39 262
SCA95.46 19895.13 19796.46 26397.67 24991.29 31997.33 32897.60 29694.68 18596.92 17897.10 29183.97 31498.89 25292.59 27898.32 17499.20 147
testdata197.32 32996.34 102
ET-MVSNet_ETH3D94.13 29292.98 30997.58 17798.22 19796.20 14597.31 33095.37 38994.53 19379.56 40697.63 25586.51 25997.53 36896.91 12890.74 32099.02 177
tpm294.19 28793.76 28395.46 30997.23 28589.04 36497.31 33096.85 36387.08 38196.21 20996.79 32983.75 32098.74 26992.43 28696.23 24298.59 218
PVSNet_Blended97.38 11097.12 10798.14 12899.25 8495.35 18997.28 33299.26 1593.13 26797.94 12898.21 20092.74 11499.81 8496.88 13499.40 11599.27 135
CLD-MVS95.62 19195.34 18696.46 26397.52 26593.75 26097.27 33398.46 18495.53 13694.42 25598.00 21686.21 26798.97 23596.25 16094.37 25896.66 315
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPMVS94.99 23194.48 23096.52 25597.22 28691.75 31097.23 33491.66 41394.11 20697.28 16196.81 32885.70 27698.84 25893.04 26597.28 20398.97 182
miper_lstm_enhance94.33 27794.07 25595.11 32097.75 24190.97 32397.22 33598.03 27191.67 31892.76 32396.97 31490.03 17997.78 35892.51 28389.64 33396.56 326
APD_test188.22 36288.01 36188.86 38195.98 35174.66 41397.21 33696.44 37583.96 39786.66 38797.90 22560.95 40997.84 35682.73 38990.23 32694.09 392
dmvs_testset87.64 36488.93 35683.79 39095.25 37363.36 42297.20 33791.17 41493.07 26985.64 39395.98 36185.30 28691.52 41269.42 41187.33 36496.49 340
YYNet190.70 34789.39 35094.62 34094.79 38290.65 33397.20 33797.46 31487.54 37972.54 41295.74 36486.51 25996.66 38686.00 37186.76 37396.54 329
MDA-MVSNet_test_wron90.71 34689.38 35194.68 33694.83 38090.78 33097.19 33997.46 31487.60 37872.41 41395.72 36886.51 25996.71 38585.92 37286.80 37296.56 326
IterMVS-SCA-FT94.11 29593.87 27394.85 33097.98 22590.56 33697.18 34098.11 25493.75 22992.58 32997.48 26483.97 31497.41 37192.48 28591.30 31296.58 322
IterMVS94.09 29793.85 27594.80 33397.99 22390.35 34097.18 34098.12 25193.68 24092.46 33597.34 27584.05 31297.41 37192.51 28391.33 31196.62 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FE-MVS95.62 19194.90 21097.78 15698.37 17794.92 21297.17 34297.38 32490.95 34097.73 14297.70 24485.32 28599.63 13791.18 30998.33 17298.79 196
DPM-MVS97.55 9996.99 11499.23 4199.04 11298.55 2797.17 34298.35 20794.85 17997.93 13098.58 16095.07 7799.71 12192.60 27699.34 12099.43 112
c3_l94.79 24394.43 23695.89 29297.75 24193.12 29097.16 34498.03 27192.23 30293.46 30197.05 30591.39 15098.01 34193.58 25189.21 34396.53 331
new-patchmatchnet88.50 36187.45 36691.67 37690.31 40785.89 39197.16 34497.33 32689.47 36583.63 39892.77 40176.38 37595.06 40282.70 39077.29 40694.06 394
UnsupCasMVSNet_eth90.99 34489.92 34794.19 35294.08 38989.83 34697.13 34698.67 13293.69 23885.83 39196.19 35275.15 38296.74 38289.14 34779.41 40096.00 359
IB-MVS91.98 1793.27 31491.97 32897.19 19797.47 26793.41 27497.09 34795.99 38093.32 25792.47 33495.73 36678.06 36099.53 16094.59 21782.98 38698.62 215
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl____94.51 26594.01 26196.02 28497.58 25793.40 27697.05 34897.96 27691.73 31692.76 32397.08 29789.06 20498.13 33292.61 27590.29 32596.52 334
DIV-MVS_self_test94.52 26494.03 25895.99 28597.57 26193.38 27797.05 34897.94 27791.74 31492.81 32197.10 29189.12 20198.07 33892.60 27690.30 32496.53 331
miper_ehance_all_eth95.01 22894.69 22095.97 28797.70 24793.31 28097.02 35098.07 26492.23 30293.51 29896.96 31691.85 13898.15 33093.68 24691.16 31596.44 345
CMPMVSbinary66.06 2189.70 35389.67 34989.78 37993.19 39576.56 40597.00 35198.35 20780.97 40381.57 40197.75 24074.75 38498.61 28089.85 33493.63 28094.17 390
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpmrst95.63 19095.69 17395.44 31097.54 26288.54 37396.97 35297.56 30093.50 24997.52 15896.93 32089.49 18899.16 20695.25 19696.42 22898.64 214
dp94.15 29193.90 27094.90 32797.31 28186.82 38996.97 35297.19 33791.22 33596.02 21596.61 33985.51 27999.02 23190.00 33394.30 25998.85 191
cl2294.68 24994.19 24696.13 28098.11 21093.60 26596.94 35498.31 21492.43 29493.32 30696.87 32486.51 25998.28 32494.10 23591.16 31596.51 337
PM-MVS87.77 36386.55 36991.40 37791.03 40683.36 39996.92 35595.18 39291.28 33286.48 38993.42 39553.27 41296.74 38289.43 34481.97 38994.11 391
TinyColmap92.31 33191.53 33294.65 33896.92 30689.75 34896.92 35596.68 36890.45 34889.62 36697.85 23176.06 37998.81 26486.74 36692.51 29995.41 369
our_test_393.65 30793.30 30394.69 33595.45 37089.68 35296.91 35797.65 29291.97 30991.66 34896.88 32289.67 18697.93 34988.02 35991.49 31096.48 342
test-LLR95.10 22494.87 21295.80 29596.77 31589.70 35096.91 35795.21 39095.11 16094.83 24095.72 36887.71 23998.97 23593.06 26398.50 16298.72 203
TESTMET0.1,194.18 29093.69 28895.63 30296.92 30689.12 36296.91 35794.78 39593.17 26494.88 23796.45 34378.52 35498.92 24693.09 26298.50 16298.85 191
test-mter94.08 29893.51 29695.80 29596.77 31589.70 35096.91 35795.21 39092.89 27794.83 24095.72 36877.69 36298.97 23593.06 26398.50 16298.72 203
USDC93.33 31392.71 31495.21 31696.83 31390.83 32996.91 35797.50 31093.84 22490.72 35698.14 20577.69 36298.82 26389.51 34293.21 29195.97 360
MDTV_nov1_ep13_2view84.26 39396.89 36290.97 33997.90 13289.89 18193.91 24099.18 156
ppachtmachnet_test93.22 31692.63 31694.97 32595.45 37090.84 32896.88 36397.88 28190.60 34492.08 34297.26 28188.08 23097.86 35585.12 37990.33 32396.22 353
tpmvs94.60 25594.36 23995.33 31497.46 26888.60 37296.88 36397.68 28991.29 33193.80 28796.42 34488.58 21599.24 19891.06 31596.04 24698.17 239
MDTV_nov1_ep1395.40 18097.48 26688.34 37796.85 36597.29 32993.74 23197.48 15997.26 28189.18 19999.05 22491.92 29897.43 201
PatchmatchNetpermissive95.71 18595.52 17796.29 27597.58 25790.72 33196.84 36697.52 30894.06 20897.08 16896.96 31689.24 19898.90 25192.03 29498.37 16999.26 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MSDG95.93 17495.30 19197.83 15198.90 12895.36 18796.83 36798.37 20491.32 32994.43 25498.73 14690.27 17699.60 14390.05 33198.82 14698.52 222
thisisatest051595.61 19494.89 21197.76 16098.15 20895.15 20096.77 36894.41 39892.95 27597.18 16597.43 26984.78 29499.45 17794.63 21297.73 19398.68 208
GA-MVS94.81 24294.03 25897.14 20197.15 29493.86 25596.76 36997.58 29794.00 21594.76 24397.04 30680.91 33698.48 29091.79 30096.25 24099.09 166
tpm cat193.36 31092.80 31295.07 32397.58 25787.97 38296.76 36997.86 28282.17 40293.53 29596.04 35786.13 26899.13 21289.24 34695.87 25098.10 241
eth_miper_zixun_eth94.68 24994.41 23795.47 30897.64 25291.71 31296.73 37198.07 26492.71 28393.64 29197.21 28790.54 17098.17 32993.38 25489.76 33196.54 329
test_post196.68 37230.43 42487.85 23898.69 27292.59 278
pmmvs386.67 36884.86 37392.11 37588.16 41287.19 38896.63 37394.75 39679.88 40487.22 38292.75 40266.56 40395.20 40181.24 39476.56 40993.96 395
miper_enhance_ethall95.10 22494.75 21696.12 28197.53 26493.73 26296.61 37498.08 26292.20 30593.89 28196.65 33692.44 11898.30 32094.21 23091.16 31596.34 348
testmvs21.48 39124.95 39411.09 40714.89 4296.47 43296.56 3759.87 4307.55 42317.93 42339.02 4219.43 4305.90 42616.56 42512.72 42320.91 421
test12320.95 39223.72 39512.64 40613.54 4308.19 43196.55 3766.13 4317.48 42416.74 42437.98 42212.97 4276.05 42516.69 4245.43 42423.68 420
CL-MVSNet_self_test90.11 35089.14 35393.02 36791.86 40288.23 38096.51 37798.07 26490.49 34590.49 35994.41 38684.75 29595.34 39980.79 39574.95 41095.50 368
GG-mvs-BLEND96.59 24596.34 33794.98 20896.51 37788.58 41993.10 31694.34 39080.34 34498.05 33989.53 34196.99 20996.74 302
new_pmnet90.06 35189.00 35593.22 36594.18 38688.32 37896.42 37996.89 35986.19 38585.67 39293.62 39377.18 36997.10 37581.61 39389.29 34294.23 388
PVSNet91.96 1896.35 15696.15 15196.96 21599.17 9792.05 30596.08 38098.68 12793.69 23897.75 13997.80 23888.86 21199.69 12794.26 22999.01 13399.15 158
ADS-MVSNet294.58 25894.40 23895.11 32098.00 22188.74 37096.04 38197.30 32890.15 35396.47 20196.64 33787.89 23597.56 36790.08 32997.06 20799.02 177
ADS-MVSNet95.00 22994.45 23496.63 23998.00 22191.91 30796.04 38197.74 28890.15 35396.47 20196.64 33787.89 23598.96 23990.08 32997.06 20799.02 177
PAPM94.95 23694.00 26297.78 15697.04 29995.65 17396.03 38398.25 22891.23 33494.19 26897.80 23891.27 15698.86 25782.61 39197.61 19698.84 193
cascas94.63 25493.86 27496.93 21796.91 30894.27 24496.00 38498.51 17285.55 39194.54 24696.23 34984.20 31098.87 25595.80 17596.98 21297.66 254
gg-mvs-nofinetune92.21 33290.58 34097.13 20296.75 31895.09 20295.85 38589.40 41885.43 39294.50 24881.98 41380.80 33998.40 31292.16 28898.33 17297.88 245
FPMVS77.62 38177.14 38179.05 39979.25 42260.97 42495.79 38695.94 38365.96 41367.93 41594.40 38737.73 41988.88 41668.83 41288.46 35287.29 410
CHOSEN 280x42097.18 12197.18 10697.20 19598.81 13893.27 28195.78 38799.15 2895.25 15396.79 18698.11 20792.29 12299.07 22398.56 3799.85 699.25 140
MIMVSNet93.26 31592.21 32596.41 26697.73 24593.13 28895.65 38897.03 34891.27 33394.04 27596.06 35675.33 38197.19 37486.56 36796.23 24298.92 188
KD-MVS_2432*160089.61 35587.96 36394.54 34294.06 39091.59 31495.59 38997.63 29489.87 35888.95 37294.38 38878.28 35796.82 38084.83 38168.05 41495.21 373
miper_refine_blended89.61 35587.96 36394.54 34294.06 39091.59 31495.59 38997.63 29489.87 35888.95 37294.38 38878.28 35796.82 38084.83 38168.05 41495.21 373
PCF-MVS93.45 1194.68 24993.43 30098.42 10898.62 15996.77 11695.48 39198.20 23384.63 39593.34 30598.32 18988.55 21999.81 8484.80 38398.96 13698.68 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mvs5depth91.23 34090.17 34494.41 34992.09 40089.79 34795.26 39296.50 37390.73 34291.69 34797.06 30276.12 37898.62 27988.02 35984.11 38394.82 382
JIA-IIPM93.35 31192.49 32095.92 28996.48 33290.65 33395.01 39396.96 35385.93 38896.08 21387.33 41087.70 24198.78 26791.35 30795.58 25498.34 232
CR-MVSNet94.76 24694.15 25096.59 24597.00 30093.43 27294.96 39497.56 30092.46 29096.93 17696.24 34788.15 22797.88 35487.38 36396.65 22098.46 226
RPMNet92.81 32491.34 33497.24 19397.00 30093.43 27294.96 39498.80 9682.27 40196.93 17692.12 40586.98 25399.82 7976.32 40696.65 22098.46 226
UnsupCasMVSNet_bld87.17 36585.12 37293.31 36391.94 40188.77 36994.92 39698.30 22084.30 39682.30 39990.04 40763.96 40697.25 37385.85 37374.47 41293.93 396
PVSNet_088.72 1991.28 33990.03 34695.00 32497.99 22387.29 38794.84 39798.50 17792.06 30789.86 36495.19 37779.81 34699.39 18492.27 28769.79 41398.33 233
Patchmatch-test94.42 27393.68 28996.63 23997.60 25591.76 30994.83 39897.49 31289.45 36694.14 27097.10 29188.99 20598.83 26185.37 37798.13 17899.29 132
testf179.02 37577.70 37782.99 39388.10 41366.90 41994.67 39993.11 40771.08 41174.02 40993.41 39634.15 42193.25 40772.25 40978.50 40388.82 407
APD_test279.02 37577.70 37782.99 39388.10 41366.90 41994.67 39993.11 40771.08 41174.02 40993.41 39634.15 42193.25 40772.25 40978.50 40388.82 407
Patchmtry93.22 31692.35 32395.84 29496.77 31593.09 29194.66 40197.56 30087.37 38092.90 31996.24 34788.15 22797.90 35087.37 36490.10 32896.53 331
kuosan78.45 37877.69 37980.72 39792.73 39975.32 41094.63 40274.51 42675.96 40780.87 40593.19 39863.23 40779.99 42142.56 42181.56 39286.85 413
dongtai82.47 37281.88 37584.22 38995.19 37576.03 40694.59 40374.14 42782.63 39987.19 38396.09 35564.10 40587.85 41758.91 41584.11 38388.78 409
PatchT93.06 32291.97 32896.35 27096.69 32192.67 29694.48 40497.08 34286.62 38297.08 16892.23 40487.94 23497.90 35078.89 40196.69 21898.49 224
LCM-MVSNet78.70 37776.24 38386.08 38577.26 42471.99 41594.34 40596.72 36661.62 41576.53 40789.33 40833.91 42392.78 41081.85 39274.60 41193.46 398
PMMVS277.95 38075.44 38485.46 38682.54 41974.95 41194.23 40693.08 40972.80 41074.68 40887.38 40936.36 42091.56 41173.95 40763.94 41689.87 406
MVS-HIRNet89.46 35888.40 35792.64 36997.58 25782.15 40194.16 40793.05 41075.73 40990.90 35482.52 41279.42 34998.33 31583.53 38898.68 14997.43 259
Patchmatch-RL test91.49 33690.85 33793.41 36091.37 40384.40 39292.81 40895.93 38491.87 31287.25 38194.87 38188.99 20596.53 38892.54 28282.00 38899.30 130
ambc89.49 38086.66 41575.78 40792.66 40996.72 36686.55 38892.50 40346.01 41397.90 35090.32 32582.09 38794.80 384
EMVS64.07 38763.26 39066.53 40481.73 42158.81 42791.85 41084.75 42151.93 41959.09 41975.13 41843.32 41679.09 42242.03 42239.47 41961.69 418
E-PMN64.94 38664.25 38867.02 40382.28 42059.36 42691.83 41185.63 42052.69 41760.22 41877.28 41741.06 41880.12 42046.15 42041.14 41861.57 419
ANet_high69.08 38365.37 38780.22 39865.99 42671.96 41690.91 41290.09 41782.62 40049.93 42178.39 41629.36 42481.75 41862.49 41438.52 42086.95 412
tmp_tt68.90 38466.97 38674.68 40150.78 42859.95 42587.13 41383.47 42238.80 42162.21 41796.23 34964.70 40476.91 42388.91 35030.49 42187.19 411
MVEpermissive62.14 2263.28 38859.38 39174.99 40074.33 42565.47 42185.55 41480.50 42452.02 41851.10 42075.00 41910.91 42980.50 41951.60 41853.40 41778.99 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 38563.57 38973.09 40257.90 42751.22 42985.05 41593.93 40554.45 41644.32 42283.57 41113.22 42689.15 41558.68 41681.00 39478.91 416
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method79.03 37478.17 37681.63 39686.06 41754.40 42882.75 41696.89 35939.54 42080.98 40495.57 37358.37 41094.73 40384.74 38478.61 40295.75 364
Gipumacopyleft78.40 37976.75 38283.38 39295.54 36480.43 40479.42 41797.40 32264.67 41473.46 41180.82 41545.65 41493.14 40966.32 41387.43 36276.56 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d30.17 38930.18 39330.16 40578.61 42343.29 43066.79 41814.21 42917.31 42214.82 42511.93 42511.55 42841.43 42437.08 42319.30 4225.76 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k23.98 39031.98 3920.00 4080.00 4310.00 4330.00 41998.59 1500.00 4260.00 42798.61 15590.60 1690.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.88 39410.50 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42694.51 870.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.20 39310.94 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42798.43 1730.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS90.94 32488.66 352
MSC_two_6792asdad99.62 699.17 9799.08 1198.63 14399.94 998.53 3899.80 2499.86 7
PC_three_145295.08 16499.60 1999.16 8097.86 298.47 29397.52 10899.72 5799.74 39
No_MVS99.62 699.17 9799.08 1198.63 14399.94 998.53 3899.80 2499.86 7
test_one_060199.66 2699.25 298.86 7597.55 3299.20 4299.47 2397.57 6
eth-test20.00 431
eth-test0.00 431
ZD-MVS99.46 5298.70 2398.79 10193.21 26298.67 8098.97 11095.70 4999.83 7296.07 16299.58 85
IU-MVS99.71 1999.23 798.64 14095.28 15199.63 1898.35 5599.81 1599.83 12
test_241102_TWO98.87 6997.65 2599.53 2399.48 2197.34 1199.94 998.43 5099.80 2499.83 12
test_241102_ONE99.71 1999.24 598.87 6997.62 2799.73 1099.39 3497.53 799.74 114
test_0728_THIRD97.32 4699.45 2599.46 2797.88 199.94 998.47 4699.86 299.85 9
GSMVS99.20 147
test_part299.63 2999.18 1099.27 39
sam_mvs189.45 19299.20 147
sam_mvs88.99 205
MTGPAbinary98.74 111
test_post31.83 42388.83 21298.91 248
patchmatchnet-post95.10 37989.42 19398.89 252
gm-plane-assit95.88 35587.47 38589.74 36196.94 31999.19 20493.32 257
test9_res96.39 15699.57 8699.69 59
agg_prior295.87 17299.57 8699.68 64
agg_prior99.30 7198.38 3598.72 11697.57 15799.81 84
TestCases96.99 21199.25 8493.21 28698.18 23891.36 32593.52 29698.77 13984.67 29899.72 11689.70 33897.87 18698.02 243
test_prior99.19 4399.31 6798.22 5198.84 7999.70 12299.65 72
新几何199.16 4899.34 6098.01 6498.69 12490.06 35598.13 10998.95 11794.60 8599.89 5091.97 29799.47 10599.59 82
旧先验199.29 7697.48 8298.70 12399.09 9695.56 5299.47 10599.61 78
原ACMM198.65 8499.32 6596.62 12198.67 13293.27 26197.81 13598.97 11095.18 7299.83 7293.84 24299.46 10899.50 94
testdata299.89 5091.65 304
segment_acmp96.85 14
testdata98.26 11999.20 9595.36 18798.68 12791.89 31198.60 8899.10 8994.44 9299.82 7994.27 22899.44 10999.58 86
test1299.18 4599.16 10198.19 5398.53 16698.07 11395.13 7599.72 11699.56 9299.63 76
plane_prior797.42 27394.63 225
plane_prior697.35 28094.61 22887.09 250
plane_prior598.56 16099.03 22896.07 16294.27 26096.92 279
plane_prior498.28 192
plane_prior394.61 22897.02 6895.34 227
plane_prior197.37 279
n20.00 432
nn0.00 432
door-mid94.37 399
lessismore_v094.45 34894.93 37988.44 37691.03 41586.77 38697.64 25376.23 37798.42 29990.31 32685.64 37996.51 337
LGP-MVS_train96.47 26097.46 26893.54 26798.54 16494.67 18694.36 25898.77 13985.39 28099.11 21695.71 17994.15 26696.76 300
test1198.66 135
door94.64 397
HQP5-MVS94.25 246
BP-MVS95.30 192
HQP4-MVS94.45 25098.96 23996.87 291
HQP3-MVS98.46 18494.18 264
HQP2-MVS86.75 256
NP-MVS97.28 28294.51 23397.73 241
ACMMP++_ref92.97 292
ACMMP++93.61 281
Test By Simon94.64 84
ITE_SJBPF95.44 31097.42 27391.32 31897.50 31095.09 16393.59 29298.35 18381.70 32798.88 25489.71 33793.39 28796.12 356
DeepMVS_CXcopyleft86.78 38497.09 29872.30 41495.17 39375.92 40884.34 39795.19 37770.58 39495.35 39879.98 39889.04 34692.68 402