This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++99.08 298.89 299.64 399.17 8899.23 799.69 198.88 5097.32 2999.53 1499.47 1197.81 399.94 398.47 2499.72 4699.74 30
FOURS199.82 198.66 2499.69 198.95 3497.46 2199.39 20
CS-MVS98.44 3498.49 1598.31 9799.08 9996.73 10299.67 398.47 16297.17 4198.94 4299.10 7295.73 4199.13 17898.71 1199.49 8499.09 145
CS-MVS-test98.49 2998.50 1498.46 8599.20 8697.05 8999.64 498.50 15697.45 2298.88 4899.14 6795.25 6199.15 17598.83 999.56 7699.20 127
DROMVSNet98.21 4898.11 4598.49 8298.34 16497.26 8399.61 598.43 17196.78 6098.87 4998.84 10993.72 9299.01 19998.91 799.50 8299.19 131
RRT_MVS95.98 14595.78 14096.56 22096.48 29494.22 22499.57 697.92 25795.89 9793.95 24398.70 12489.27 17498.42 26597.23 9393.02 25897.04 231
mvsmamba96.57 12196.32 11997.32 16496.60 28696.43 11999.54 797.98 25096.49 7295.20 19698.64 13090.82 14498.55 24997.97 4793.65 24496.98 235
HPM-MVScopyleft98.36 4098.10 4699.13 4599.74 797.82 6599.53 898.80 8294.63 16098.61 6898.97 9195.13 6699.77 9297.65 7199.83 1199.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVSFormer97.57 7597.49 6797.84 12698.07 18995.76 15599.47 998.40 17594.98 14598.79 5398.83 11192.34 10598.41 27396.91 10499.59 6699.34 107
test_djsdf96.00 14495.69 14996.93 18895.72 32395.49 16599.47 998.40 17594.98 14594.58 21197.86 20789.16 17898.41 27396.91 10494.12 23096.88 249
HPM-MVS_fast98.38 3898.13 4399.12 4799.75 397.86 6199.44 1198.82 6994.46 16798.94 4299.20 5395.16 6599.74 9797.58 7699.85 599.77 21
nrg03096.28 13595.72 14397.96 12296.90 27198.15 5299.39 1298.31 19095.47 11794.42 22198.35 16292.09 11598.69 23597.50 8489.05 30897.04 231
APDe-MVS99.02 498.84 499.55 999.57 3398.96 1699.39 1298.93 3897.38 2699.41 1899.54 196.66 1799.84 5398.86 899.85 599.87 1
3Dnovator+94.38 697.43 8496.78 10099.38 1897.83 20498.52 2899.37 1498.71 10597.09 4892.99 28099.13 6889.36 17199.89 3696.97 10199.57 7099.71 42
FIs96.51 12396.12 12697.67 14497.13 25797.54 7299.36 1599.22 1595.89 9794.03 24198.35 16291.98 11898.44 26396.40 13092.76 26297.01 233
FC-MVSNet-test96.42 12696.05 12997.53 15496.95 26697.27 7999.36 1599.23 1395.83 10193.93 24498.37 16092.00 11798.32 28296.02 14292.72 26397.00 234
3Dnovator94.51 597.46 7996.93 9299.07 4997.78 20697.64 6799.35 1799.06 2397.02 5093.75 25599.16 6389.25 17599.92 2397.22 9499.75 3899.64 64
GeoE96.58 12096.07 12898.10 11398.35 15995.89 15199.34 1898.12 22693.12 22996.09 18298.87 10689.71 16498.97 20192.95 23798.08 15699.43 101
canonicalmvs97.67 6797.23 8098.98 5398.70 13298.38 3599.34 1898.39 17796.76 6297.67 12297.40 24892.26 10899.49 14498.28 3696.28 20599.08 149
CP-MVS98.57 2298.36 2299.19 3899.66 2697.86 6199.34 1898.87 5795.96 9598.60 6999.13 6896.05 3199.94 397.77 6299.86 199.77 21
EPP-MVSNet97.46 7997.28 7897.99 11998.64 13995.38 16899.33 2198.31 19093.61 21097.19 13799.07 8194.05 8899.23 16596.89 10898.43 14399.37 106
XVS98.70 1098.49 1599.34 2399.70 2298.35 4199.29 2298.88 5097.40 2398.46 7399.20 5395.90 3899.89 3697.85 5699.74 4199.78 15
X-MVStestdata94.06 26592.30 28699.34 2399.70 2298.35 4199.29 2298.88 5097.40 2398.46 7343.50 37495.90 3899.89 3697.85 5699.74 4199.78 15
tttt051796.07 14195.51 15497.78 13298.41 15594.84 19499.28 2494.33 35894.26 17297.64 12698.64 13084.05 28399.47 15095.34 16297.60 17399.03 152
mPP-MVS98.51 2898.26 3599.25 3499.75 398.04 5699.28 2498.81 7496.24 8398.35 8299.23 4895.46 4899.94 397.42 8799.81 1299.77 21
test_vis1_n95.47 17395.13 17396.49 22997.77 20790.41 30499.27 2698.11 22996.58 6999.66 699.18 5967.00 35799.62 12399.21 299.40 9599.44 99
test_fmvs1_n95.90 15295.99 13395.63 27298.67 13688.32 33899.26 2798.22 20696.40 7899.67 599.26 4373.91 34799.70 10599.02 599.50 8298.87 165
MSP-MVS98.74 998.55 1399.29 2899.75 398.23 4699.26 2798.88 5097.52 1799.41 1898.78 11696.00 3399.79 8497.79 6199.59 6699.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
v7n94.19 25493.43 26696.47 23295.90 31894.38 21799.26 2798.34 18691.99 26792.76 28597.13 26288.31 20098.52 25389.48 30887.70 32296.52 297
WR-MVS_H95.05 20294.46 20696.81 19796.86 27395.82 15399.24 3099.24 1193.87 18892.53 29396.84 29590.37 15398.24 29293.24 22787.93 32096.38 309
HFP-MVS98.63 1398.40 1899.32 2799.72 1298.29 4499.23 3198.96 3396.10 9098.94 4299.17 6096.06 3099.92 2397.62 7399.78 2699.75 28
region2R98.61 1498.38 2099.29 2899.74 798.16 5199.23 3198.93 3896.15 8798.94 4299.17 6095.91 3799.94 397.55 8099.79 2399.78 15
ACMMPR98.59 1798.36 2299.29 2899.74 798.15 5299.23 3198.95 3496.10 9098.93 4699.19 5895.70 4299.94 397.62 7399.79 2399.78 15
QAPM96.29 13395.40 15598.96 5597.85 20397.60 7099.23 3198.93 3889.76 31993.11 27799.02 8489.11 18099.93 1891.99 26499.62 6299.34 107
MP-MVScopyleft98.33 4598.01 4999.28 3199.75 398.18 4999.22 3598.79 8796.13 8897.92 10899.23 4894.54 7699.94 396.74 12199.78 2699.73 35
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Vis-MVSNetpermissive97.42 8597.11 8498.34 9598.66 13796.23 12899.22 3599.00 2896.63 6898.04 9499.21 5188.05 20899.35 15696.01 14399.21 10399.45 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG97.85 5897.74 5698.20 10599.67 2595.16 17799.22 3599.32 793.04 23197.02 14698.92 10295.36 5499.91 3197.43 8699.64 5999.52 79
OpenMVScopyleft93.04 1395.83 15695.00 18098.32 9697.18 25497.32 7799.21 3898.97 3189.96 31591.14 31399.05 8386.64 23599.92 2393.38 22399.47 8797.73 214
DTE-MVSNet93.98 26793.26 27196.14 25196.06 31294.39 21699.20 3998.86 6393.06 23091.78 30797.81 21585.87 24997.58 32990.53 28886.17 33796.46 306
Vis-MVSNet (Re-imp)96.87 10996.55 11197.83 12798.73 12795.46 16699.20 3998.30 19694.96 14796.60 16598.87 10690.05 15898.59 24593.67 21798.60 13299.46 96
test_fmvs293.43 27493.58 25992.95 32896.97 26583.91 35499.19 4197.24 30695.74 10495.20 19698.27 17469.65 35298.72 23496.26 13393.73 24196.24 315
ZNCC-MVS98.49 2998.20 4199.35 2299.73 1198.39 3499.19 4198.86 6395.77 10398.31 8599.10 7295.46 4899.93 1897.57 7999.81 1299.74 30
IS-MVSNet97.22 9396.88 9498.25 10298.85 12096.36 12399.19 4197.97 25295.39 12197.23 13698.99 9091.11 14098.93 21194.60 18598.59 13399.47 92
PEN-MVS94.42 24193.73 25296.49 22996.28 30394.84 19499.17 4499.00 2893.51 21292.23 30197.83 21386.10 24597.90 31692.55 25086.92 33296.74 265
PS-MVSNAJss96.43 12596.26 12296.92 19195.84 32195.08 18299.16 4598.50 15695.87 10093.84 25098.34 16694.51 7798.61 24296.88 11093.45 25197.06 230
dcpmvs_298.08 4998.59 1096.56 22099.57 3390.34 30699.15 4698.38 18096.82 5999.29 2499.49 895.78 4099.57 12898.94 699.86 199.77 21
APD-MVS_3200maxsize98.53 2798.33 3199.15 4499.50 4197.92 6099.15 4698.81 7496.24 8399.20 2899.37 2595.30 5799.80 7497.73 6499.67 5299.72 38
TSAR-MVS + MP.98.78 798.62 999.24 3599.69 2498.28 4599.14 4898.66 12096.84 5799.56 1199.31 3796.34 2399.70 10598.32 3499.73 4399.73 35
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
anonymousdsp95.42 17894.91 18596.94 18795.10 33695.90 15099.14 4898.41 17393.75 19493.16 27397.46 24287.50 22298.41 27395.63 15794.03 23296.50 302
jajsoiax95.45 17695.03 17996.73 20095.42 33494.63 20399.14 4898.52 14995.74 10493.22 27198.36 16183.87 28898.65 24096.95 10394.04 23196.91 245
PS-CasMVS94.67 22393.99 23296.71 20196.68 28395.26 17499.13 5199.03 2693.68 20492.33 29997.95 20085.35 25998.10 30093.59 21988.16 31996.79 260
bld_raw_dy_0_6495.74 16095.31 16697.03 18096.35 30095.76 15599.12 5297.37 29995.97 9494.70 20998.48 14685.80 25098.49 25596.55 12493.48 24896.84 256
CPTT-MVS97.72 6397.32 7798.92 5799.64 2897.10 8899.12 5298.81 7492.34 25698.09 9099.08 8093.01 9899.92 2396.06 14099.77 2899.75 28
SR-MVS-dyc-post98.54 2698.35 2499.13 4599.49 4597.86 6199.11 5498.80 8296.49 7299.17 3199.35 3195.34 5599.82 6297.72 6599.65 5599.71 42
RE-MVS-def98.34 2799.49 4597.86 6199.11 5498.80 8296.49 7299.17 3199.35 3195.29 5897.72 6599.65 5599.71 42
CP-MVSNet94.94 21194.30 21496.83 19596.72 28195.56 16199.11 5498.95 3493.89 18692.42 29897.90 20387.19 22698.12 29994.32 19588.21 31796.82 259
SteuartSystems-ACMMP98.90 698.75 699.36 2199.22 8398.43 3399.10 5798.87 5797.38 2699.35 2299.40 1897.78 599.87 4597.77 6299.85 599.78 15
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.57 2298.35 2499.24 3599.53 3698.18 4999.09 5898.82 6996.58 6999.10 3599.32 3595.39 5199.82 6297.70 6999.63 6099.72 38
GST-MVS98.43 3598.12 4499.34 2399.72 1298.38 3599.09 5898.82 6995.71 10798.73 5999.06 8295.27 5999.93 1897.07 9899.63 6099.72 38
iter_conf_final96.42 12696.12 12697.34 16398.46 15196.55 11499.08 6098.06 24496.03 9295.63 19098.46 15087.72 21598.59 24597.84 5893.80 23996.87 251
K. test v392.55 29091.91 29294.48 30895.64 32589.24 32199.07 6194.88 35294.04 17786.78 34497.59 23477.64 33097.64 32692.08 25989.43 30396.57 287
test250694.44 24093.91 23796.04 25499.02 10388.99 32799.06 6279.47 38196.96 5398.36 8099.26 4377.21 33299.52 14296.78 11999.04 10999.59 72
test072699.72 1299.25 299.06 6298.88 5097.62 1299.56 1199.50 697.42 9
test_vis1_n_192096.71 11496.84 9696.31 24599.11 9789.74 31299.05 6498.58 13798.08 399.87 199.37 2578.48 32099.93 1899.29 199.69 5099.27 120
test_fmvs387.17 32387.06 32687.50 34291.21 36075.66 36599.05 6496.61 33592.79 24188.85 33492.78 35443.72 36993.49 36593.95 20784.56 34193.34 358
v894.47 23893.77 24896.57 21996.36 29994.83 19699.05 6498.19 21191.92 26993.16 27396.97 28388.82 19198.48 25691.69 27187.79 32196.39 308
test111195.94 14995.78 14096.41 23898.99 10990.12 30899.04 6792.45 36896.99 5298.03 9599.27 4281.40 29999.48 14896.87 11399.04 10999.63 66
SF-MVS98.59 1798.32 3299.41 1799.54 3598.71 2299.04 6798.81 7495.12 13799.32 2399.39 1996.22 2499.84 5397.72 6599.73 4399.67 58
PHI-MVS98.34 4398.06 4799.18 4099.15 9498.12 5499.04 6799.09 2193.32 22098.83 5299.10 7296.54 2099.83 5597.70 6999.76 3499.59 72
ECVR-MVScopyleft95.95 14795.71 14696.65 20699.02 10390.86 29499.03 7091.80 36996.96 5398.10 8999.26 4381.31 30099.51 14396.90 10799.04 10999.59 72
TranMVSNet+NR-MVSNet95.14 19794.48 20497.11 17696.45 29696.36 12399.03 7099.03 2695.04 14393.58 25897.93 20188.27 20198.03 30794.13 20186.90 33396.95 239
ACMMPcopyleft98.23 4797.95 5199.09 4899.74 797.62 6999.03 7099.41 695.98 9397.60 12999.36 2994.45 8199.93 1897.14 9598.85 12199.70 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SED-MVS99.09 198.91 199.63 499.71 1999.24 599.02 7398.87 5797.65 1099.73 299.48 997.53 799.94 398.43 2899.81 1299.70 46
OPU-MVS99.37 2099.24 8199.05 1499.02 7399.16 6397.81 399.37 15597.24 9299.73 4399.70 46
EIA-MVS97.75 6197.58 6198.27 9998.38 15696.44 11899.01 7598.60 13095.88 9997.26 13597.53 23994.97 7099.33 15897.38 8999.20 10499.05 151
Anonymous2023121194.10 26193.26 27196.61 21399.11 9794.28 21999.01 7598.88 5086.43 34192.81 28397.57 23681.66 29898.68 23894.83 17689.02 31096.88 249
mvs_tets95.41 18095.00 18096.65 20695.58 32794.42 21499.00 7798.55 14395.73 10693.21 27298.38 15983.45 29298.63 24197.09 9794.00 23396.91 245
baseline97.64 6997.44 7298.25 10298.35 15996.20 12999.00 7798.32 18896.33 8298.03 9599.17 6091.35 13499.16 17298.10 4198.29 15199.39 104
v1094.29 24893.55 26196.51 22896.39 29894.80 19898.99 7998.19 21191.35 28693.02 27996.99 28188.09 20698.41 27390.50 28988.41 31696.33 312
PGM-MVS98.49 2998.23 3999.27 3399.72 1298.08 5598.99 7999.49 595.43 11999.03 3699.32 3595.56 4599.94 396.80 11899.77 2899.78 15
LPG-MVS_test95.62 16895.34 16196.47 23297.46 23193.54 24498.99 7998.54 14594.67 15894.36 22398.77 11885.39 25799.11 18295.71 15394.15 22896.76 263
DVP-MVScopyleft99.03 398.83 599.63 499.72 1299.25 298.97 8298.58 13797.62 1299.45 1699.46 1497.42 999.94 398.47 2499.81 1299.69 49
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 8298.88 5099.94 398.47 2499.81 1299.84 6
tfpnnormal93.66 27092.70 28096.55 22596.94 26795.94 14498.97 8299.19 1691.04 29891.38 31197.34 24984.94 26698.61 24285.45 33789.02 31095.11 338
V4294.78 21694.14 22296.70 20396.33 30295.22 17598.97 8298.09 23692.32 25894.31 22697.06 27388.39 19998.55 24992.90 23988.87 31296.34 310
SMA-MVScopyleft98.58 1998.25 3699.56 899.51 3999.04 1598.95 8698.80 8293.67 20699.37 2199.52 396.52 2199.89 3698.06 4399.81 1299.76 27
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pm-mvs193.94 26893.06 27396.59 21696.49 29395.16 17798.95 8698.03 24792.32 25891.08 31497.84 21084.54 27498.41 27392.16 25786.13 33996.19 318
Anonymous2024052191.18 30190.44 30293.42 31993.70 35188.47 33598.94 8897.56 27788.46 33289.56 32895.08 33877.15 33496.97 34083.92 34589.55 30094.82 343
VPA-MVSNet95.75 15995.11 17697.69 14297.24 24697.27 7998.94 8899.23 1395.13 13695.51 19297.32 25185.73 25198.91 21397.33 9189.55 30096.89 248
LS3D97.16 9896.66 10898.68 6698.53 14797.19 8698.93 9098.90 4592.83 24095.99 18699.37 2592.12 11499.87 4593.67 21799.57 7098.97 158
casdiffmvs_mvgpermissive97.72 6397.48 6998.44 8798.42 15396.59 11098.92 9198.44 16796.20 8597.76 11399.20 5391.66 12599.23 16598.27 3798.41 14499.49 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM93.85 995.69 16595.38 15996.61 21397.61 21893.84 23398.91 9298.44 16795.25 13194.28 22798.47 14886.04 24899.12 18095.50 16093.95 23596.87 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MTAPA98.58 1998.29 3499.46 1499.76 298.64 2598.90 9398.74 9797.27 3698.02 9799.39 1994.81 7399.96 297.91 5199.79 2399.77 21
SD-MVS98.64 1298.68 798.53 7899.33 5698.36 4098.90 9398.85 6697.28 3299.72 499.39 1996.63 1997.60 32798.17 3899.85 599.64 64
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TransMVSNet (Re)92.67 28991.51 29496.15 25096.58 28894.65 20198.90 9396.73 32990.86 30189.46 32997.86 20785.62 25398.09 30286.45 32981.12 35195.71 328
EPNet97.28 9196.87 9598.51 7994.98 33796.14 13298.90 9397.02 31698.28 195.99 18699.11 7091.36 13399.89 3696.98 10099.19 10599.50 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MTMP98.89 9794.14 361
UA-Net97.96 5297.62 5998.98 5398.86 11897.47 7498.89 9799.08 2296.67 6698.72 6099.54 193.15 9799.81 6794.87 17498.83 12299.65 62
OurMVSNet-221017-094.21 25294.00 23094.85 29695.60 32689.22 32298.89 9797.43 29495.29 12892.18 30298.52 14482.86 29398.59 24593.46 22291.76 27196.74 265
thisisatest053096.01 14395.36 16097.97 12098.38 15695.52 16498.88 10094.19 36094.04 17797.64 12698.31 16983.82 29099.46 15195.29 16697.70 17098.93 162
iter_conf0596.13 14095.79 13997.15 17298.16 18495.99 13598.88 10097.98 25095.91 9695.58 19198.46 15085.53 25598.59 24597.88 5493.75 24096.86 254
UGNet96.78 11296.30 12098.19 10798.24 17195.89 15198.88 10098.93 3897.39 2596.81 15797.84 21082.60 29499.90 3496.53 12599.49 8498.79 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2024052995.10 19994.22 21697.75 13699.01 10594.26 22198.87 10398.83 6885.79 34796.64 16298.97 9178.73 31899.85 5096.27 13294.89 21999.12 142
thres100view90095.38 18194.70 19497.41 15898.98 11094.92 19198.87 10396.90 32295.38 12296.61 16496.88 29184.29 27699.56 13188.11 31896.29 20297.76 211
XXY-MVS95.20 19494.45 20897.46 15596.75 27996.56 11298.86 10598.65 12493.30 22293.27 27098.27 17484.85 26898.87 22094.82 17791.26 27996.96 237
VDDNet95.36 18494.53 20197.86 12598.10 18895.13 18098.85 10697.75 26690.46 30698.36 8099.39 1973.27 34999.64 11797.98 4696.58 19298.81 169
thres600view795.49 17294.77 19097.67 14498.98 11095.02 18398.85 10696.90 32295.38 12296.63 16396.90 29084.29 27699.59 12688.65 31796.33 20098.40 193
114514_t96.93 10696.27 12198.92 5799.50 4197.63 6898.85 10698.90 4584.80 35197.77 11299.11 7092.84 9999.66 11494.85 17599.77 2899.47 92
LFMVS95.86 15494.98 18298.47 8498.87 11796.32 12598.84 10996.02 33993.40 21798.62 6799.20 5374.99 34299.63 12097.72 6597.20 17999.46 96
alignmvs97.56 7697.07 8799.01 5198.66 13798.37 3998.83 11098.06 24496.74 6398.00 10197.65 22890.80 14699.48 14898.37 3296.56 19399.19 131
DeepC-MVS95.98 397.88 5697.58 6198.77 6299.25 7596.93 9398.83 11098.75 9596.96 5396.89 15399.50 690.46 15299.87 4597.84 5899.76 3499.52 79
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMP_NAP98.61 1498.30 3399.55 999.62 3098.95 1798.82 11298.81 7495.80 10299.16 3399.47 1195.37 5399.92 2397.89 5399.75 3899.79 13
casdiffmvspermissive97.63 7097.41 7398.28 9898.33 16696.14 13298.82 11298.32 18896.38 8097.95 10399.21 5191.23 13899.23 16598.12 4098.37 14599.48 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GBi-Net94.49 23693.80 24596.56 22098.21 17595.00 18498.82 11298.18 21492.46 24994.09 23797.07 27081.16 30197.95 31292.08 25992.14 26696.72 268
test194.49 23693.80 24596.56 22098.21 17595.00 18498.82 11298.18 21492.46 24994.09 23797.07 27081.16 30197.95 31292.08 25992.14 26696.72 268
FMVSNet193.19 28392.07 28896.56 22097.54 22595.00 18498.82 11298.18 21490.38 30992.27 30097.07 27073.68 34897.95 31289.36 31091.30 27796.72 268
API-MVS97.41 8697.25 7997.91 12398.70 13296.80 9898.82 11298.69 10994.53 16298.11 8898.28 17194.50 8099.57 12894.12 20299.49 8497.37 224
ACMH92.88 1694.55 23093.95 23496.34 24397.63 21793.26 25798.81 11898.49 16193.43 21689.74 32598.53 14181.91 29699.08 18893.69 21493.30 25596.70 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs196.42 12696.67 10795.66 27198.82 12288.53 33498.80 11998.20 20996.39 7999.64 899.20 5380.35 31099.67 11299.04 499.57 7098.78 173
Effi-MVS+-dtu96.29 13396.56 11095.51 27597.89 20290.22 30798.80 11998.10 23296.57 7196.45 17596.66 30190.81 14598.91 21395.72 15297.99 15797.40 221
HQP_MVS96.14 13995.90 13696.85 19497.42 23794.60 20898.80 11998.56 14197.28 3295.34 19398.28 17187.09 22799.03 19496.07 13794.27 22296.92 240
plane_prior298.80 11997.28 32
APD-MVScopyleft98.35 4298.00 5099.42 1699.51 3998.72 2198.80 11998.82 6994.52 16499.23 2799.25 4795.54 4799.80 7496.52 12699.77 2899.74 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
UniMVSNet (Re)95.78 15895.19 17197.58 15196.99 26497.47 7498.79 12499.18 1795.60 11193.92 24597.04 27691.68 12398.48 25695.80 15087.66 32396.79 260
FMVSNet294.47 23893.61 25897.04 17998.21 17596.43 11998.79 12498.27 19992.46 24993.50 26497.09 26781.16 30198.00 31091.09 27891.93 26996.70 272
tt080594.54 23193.85 24296.63 21097.98 19793.06 26498.77 12697.84 26293.67 20693.80 25298.04 19176.88 33598.96 20594.79 17992.86 26197.86 210
testgi93.06 28592.45 28494.88 29596.43 29789.90 30998.75 12797.54 28395.60 11191.63 31097.91 20274.46 34597.02 33986.10 33193.67 24297.72 215
LCM-MVSNet-Re95.22 19295.32 16494.91 29398.18 18187.85 34498.75 12795.66 34595.11 13888.96 33196.85 29490.26 15797.65 32595.65 15698.44 14199.22 126
SixPastTwentyTwo93.34 27792.86 27694.75 30095.67 32489.41 32098.75 12796.67 33393.89 18690.15 32398.25 17780.87 30598.27 29190.90 28390.64 28596.57 287
UniMVSNet_ETH3D94.24 25193.33 26896.97 18597.19 25393.38 25398.74 13098.57 13991.21 29593.81 25198.58 13772.85 35098.77 23195.05 17293.93 23698.77 174
MVS_Test97.28 9197.00 8998.13 11098.33 16695.97 14198.74 13098.07 23994.27 17198.44 7798.07 18892.48 10399.26 16196.43 12998.19 15299.16 137
UniMVSNet_NR-MVSNet95.71 16295.15 17297.40 16096.84 27496.97 9198.74 13099.24 1195.16 13593.88 24797.72 22191.68 12398.31 28495.81 14887.25 32896.92 240
NR-MVSNet94.98 20794.16 22097.44 15696.53 29097.22 8598.74 13098.95 3494.96 14789.25 33097.69 22489.32 17298.18 29494.59 18787.40 32696.92 240
ETV-MVS97.96 5297.81 5398.40 9298.42 15397.27 7998.73 13498.55 14396.84 5798.38 7997.44 24595.39 5199.35 15697.62 7398.89 11798.58 188
baseline195.84 15595.12 17598.01 11898.49 15095.98 13698.73 13497.03 31495.37 12496.22 17998.19 18189.96 16099.16 17294.60 18587.48 32498.90 164
MVSTER96.06 14295.72 14397.08 17898.23 17395.93 14798.73 13498.27 19994.86 15195.07 19898.09 18788.21 20298.54 25196.59 12293.46 24996.79 260
ACMP93.49 1095.34 18694.98 18296.43 23797.67 21493.48 24898.73 13498.44 16794.94 15092.53 29398.53 14184.50 27599.14 17795.48 16194.00 23396.66 278
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVS++copyleft98.58 1998.25 3699.55 999.50 4199.08 1198.72 13898.66 12097.51 1898.15 8698.83 11195.70 4299.92 2397.53 8299.67 5299.66 61
9.1498.06 4799.47 4798.71 13998.82 6994.36 16999.16 3399.29 3996.05 3199.81 6797.00 9999.71 48
VPNet94.99 20594.19 21897.40 16097.16 25596.57 11198.71 13998.97 3195.67 10994.84 20398.24 17880.36 30998.67 23996.46 12787.32 32796.96 237
MSLP-MVS++98.56 2498.57 1198.55 7499.26 7496.80 9898.71 13999.05 2597.28 3298.84 5099.28 4096.47 2299.40 15398.52 2299.70 4999.47 92
ACMH+92.99 1494.30 24793.77 24895.88 26497.81 20592.04 27598.71 13998.37 18193.99 18290.60 31998.47 14880.86 30699.05 19092.75 24392.40 26596.55 291
Anonymous20240521195.28 18994.49 20397.67 14499.00 10693.75 23798.70 14397.04 31390.66 30296.49 17298.80 11478.13 32499.83 5596.21 13695.36 21899.44 99
DP-MVS96.59 11895.93 13598.57 7299.34 5496.19 13198.70 14398.39 17789.45 32494.52 21399.35 3191.85 12099.85 5092.89 24198.88 11899.68 54
Fast-Effi-MVS+-dtu95.87 15395.85 13795.91 26197.74 21191.74 28098.69 14598.15 22295.56 11394.92 20197.68 22788.98 18698.79 22993.19 22997.78 16697.20 228
tfpn200view995.32 18894.62 19797.43 15798.94 11294.98 18798.68 14696.93 32095.33 12596.55 16896.53 30784.23 27999.56 13188.11 31896.29 20297.76 211
VDD-MVS95.82 15795.23 16997.61 15098.84 12193.98 22998.68 14697.40 29695.02 14497.95 10399.34 3474.37 34699.78 8798.64 1296.80 18599.08 149
thres40095.38 18194.62 19797.65 14898.94 11294.98 18798.68 14696.93 32095.33 12596.55 16896.53 30784.23 27999.56 13188.11 31896.29 20298.40 193
pmmvs691.77 29590.63 30095.17 28694.69 34491.24 29098.67 14997.92 25786.14 34389.62 32697.56 23875.79 33998.34 28090.75 28684.56 34195.94 324
v2v48294.69 21894.03 22696.65 20696.17 30794.79 19998.67 14998.08 23792.72 24294.00 24297.16 26187.69 21998.45 26192.91 23888.87 31296.72 268
DU-MVS95.42 17894.76 19197.40 16096.53 29096.97 9198.66 15198.99 3095.43 11993.88 24797.69 22488.57 19498.31 28495.81 14887.25 32896.92 240
MAR-MVS96.91 10796.40 11698.45 8698.69 13496.90 9598.66 15198.68 11292.40 25597.07 14397.96 19991.54 13099.75 9593.68 21598.92 11598.69 178
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
patch_mono-298.36 4098.87 396.82 19699.53 3690.68 29998.64 15399.29 897.88 599.19 3099.52 396.80 1599.97 199.11 399.86 199.82 10
h-mvs3396.17 13895.62 15297.81 13099.03 10294.45 21298.64 15398.75 9597.48 1998.67 6198.72 12389.76 16299.86 4997.95 4881.59 35099.11 143
VNet97.79 6097.40 7498.96 5598.88 11697.55 7198.63 15598.93 3896.74 6399.02 3798.84 10990.33 15599.83 5598.53 1696.66 18999.50 84
PVSNet_Blended_VisFu97.70 6597.46 7098.44 8799.27 7295.91 14998.63 15599.16 1894.48 16697.67 12298.88 10592.80 10099.91 3197.11 9699.12 10799.50 84
PAPM_NR97.46 7997.11 8498.50 8099.50 4196.41 12198.63 15598.60 13095.18 13497.06 14498.06 18994.26 8699.57 12893.80 21398.87 12099.52 79
Baseline_NR-MVSNet94.35 24493.81 24495.96 25996.20 30594.05 22898.61 15896.67 33391.44 28293.85 24997.60 23388.57 19498.14 29794.39 19186.93 33195.68 329
v114494.59 22893.92 23596.60 21596.21 30494.78 20098.59 15998.14 22491.86 27294.21 23297.02 27887.97 20998.41 27391.72 27089.57 29896.61 282
AllTest95.24 19194.65 19696.99 18299.25 7593.21 25998.59 15998.18 21491.36 28493.52 26198.77 11884.67 27199.72 9989.70 30397.87 16298.02 206
Fast-Effi-MVS+96.28 13595.70 14898.03 11798.29 17095.97 14198.58 16198.25 20491.74 27395.29 19597.23 25791.03 14399.15 17592.90 23997.96 15998.97 158
Anonymous2023120691.66 29691.10 29693.33 32294.02 35087.35 34698.58 16197.26 30590.48 30590.16 32296.31 31283.83 28996.53 35079.36 35889.90 29496.12 319
v14419294.39 24393.70 25496.48 23196.06 31294.35 21898.58 16198.16 22191.45 28194.33 22597.02 27887.50 22298.45 26191.08 27989.11 30796.63 280
v14894.29 24893.76 25095.91 26196.10 31092.93 26598.58 16197.97 25292.59 24793.47 26596.95 28788.53 19798.32 28292.56 24987.06 33096.49 303
COLMAP_ROBcopyleft93.27 1295.33 18794.87 18896.71 20199.29 6793.24 25898.58 16198.11 22989.92 31693.57 25999.10 7286.37 24199.79 8490.78 28598.10 15597.09 229
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_vis1_rt91.29 29990.65 29993.19 32697.45 23586.25 35098.57 16690.90 37293.30 22286.94 34393.59 34962.07 36299.11 18297.48 8595.58 21694.22 348
FMVSNet394.97 20894.26 21597.11 17698.18 18196.62 10598.56 16798.26 20393.67 20694.09 23797.10 26384.25 27898.01 30892.08 25992.14 26696.70 272
F-COLMAP97.09 10296.80 9797.97 12099.45 5294.95 19098.55 16898.62 12993.02 23296.17 18198.58 13794.01 8999.81 6793.95 20798.90 11699.14 140
v192192094.20 25393.47 26596.40 24095.98 31594.08 22798.52 16998.15 22291.33 28794.25 22997.20 26086.41 24098.42 26590.04 29789.39 30496.69 277
EU-MVSNet93.66 27094.14 22292.25 33395.96 31783.38 35698.52 16998.12 22694.69 15692.61 29098.13 18587.36 22596.39 35291.82 26790.00 29396.98 235
TAMVS97.02 10396.79 9997.70 14198.06 19195.31 17398.52 16998.31 19093.95 18497.05 14598.61 13293.49 9498.52 25395.33 16397.81 16499.29 118
LTVRE_ROB92.95 1594.60 22693.90 23896.68 20597.41 24094.42 21498.52 16998.59 13291.69 27691.21 31298.35 16284.87 26799.04 19391.06 28093.44 25296.60 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement91.06 30389.68 30895.21 28485.35 37291.49 28598.51 17397.07 31191.47 28088.83 33597.84 21077.31 33199.09 18792.79 24277.98 36095.04 340
v119294.32 24693.58 25996.53 22696.10 31094.45 21298.50 17498.17 21991.54 27994.19 23397.06 27386.95 23198.43 26490.14 29289.57 29896.70 272
test_040291.32 29890.27 30494.48 30896.60 28691.12 29198.50 17497.22 30786.10 34488.30 33796.98 28277.65 32997.99 31178.13 36292.94 26094.34 345
DeepC-MVS_fast96.70 198.55 2598.34 2799.18 4099.25 7598.04 5698.50 17498.78 8997.72 798.92 4799.28 4095.27 5999.82 6297.55 8099.77 2899.69 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNVR-MVS98.78 798.56 1299.45 1599.32 5998.87 1998.47 17798.81 7497.72 798.76 5699.16 6397.05 1399.78 8798.06 4399.66 5499.69 49
test_yl97.22 9396.78 10098.54 7698.73 12796.60 10898.45 17898.31 19094.70 15498.02 9798.42 15490.80 14699.70 10596.81 11696.79 18699.34 107
DCV-MVSNet97.22 9396.78 10098.54 7698.73 12796.60 10898.45 17898.31 19094.70 15498.02 9798.42 15490.80 14699.70 10596.81 11696.79 18699.34 107
NCCC98.61 1498.35 2499.38 1899.28 7198.61 2698.45 17898.76 9397.82 698.45 7698.93 10096.65 1899.83 5597.38 8999.41 9399.71 42
v124094.06 26593.29 27096.34 24396.03 31493.90 23198.44 18198.17 21991.18 29694.13 23697.01 28086.05 24698.42 26589.13 31389.50 30296.70 272
plane_prior94.60 20898.44 18196.74 6394.22 224
MP-MVS-pluss98.31 4697.92 5299.49 1299.72 1298.88 1898.43 18398.78 8994.10 17597.69 12199.42 1795.25 6199.92 2398.09 4299.80 1999.67 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS95.69 16595.33 16396.76 19996.16 30994.63 20398.43 18398.39 17796.64 6795.02 20098.78 11685.15 26399.05 19095.21 17094.20 22596.60 283
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DPE-MVScopyleft98.92 598.67 899.65 299.58 3299.20 998.42 18598.91 4497.58 1599.54 1399.46 1497.10 1299.94 397.64 7299.84 1099.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MCST-MVS98.65 1198.37 2199.48 1399.60 3198.87 1998.41 18698.68 11297.04 4998.52 7298.80 11496.78 1699.83 5597.93 5099.61 6399.74 30
hse-mvs295.71 16295.30 16796.93 18898.50 14893.53 24698.36 18798.10 23297.48 1998.67 6197.99 19689.76 16299.02 19797.95 4880.91 35498.22 200
CANet98.05 5097.76 5598.90 5998.73 12797.27 7998.35 18898.78 8997.37 2897.72 11998.96 9691.53 13199.92 2398.79 1099.65 5599.51 82
AUN-MVS94.53 23393.73 25296.92 19198.50 14893.52 24798.34 18998.10 23293.83 19195.94 18897.98 19885.59 25499.03 19494.35 19380.94 35398.22 200
test20.0390.89 30590.38 30392.43 33093.48 35288.14 34198.33 19097.56 27793.40 21787.96 33896.71 30080.69 30894.13 36479.15 35986.17 33795.01 342
DP-MVS Recon97.86 5797.46 7099.06 5099.53 3698.35 4198.33 19098.89 4792.62 24598.05 9298.94 9995.34 5599.65 11596.04 14199.42 9299.19 131
RPSCF94.87 21395.40 15593.26 32498.89 11582.06 36098.33 19098.06 24490.30 31196.56 16699.26 4387.09 22799.49 14493.82 21296.32 20198.24 199
TAPA-MVS93.98 795.35 18594.56 20097.74 13799.13 9594.83 19698.33 19098.64 12586.62 33996.29 17898.61 13294.00 9099.29 16080.00 35699.41 9399.09 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IterMVS-LS95.46 17495.21 17096.22 24998.12 18693.72 24098.32 19498.13 22593.71 19994.26 22897.31 25292.24 10998.10 30094.63 18290.12 29196.84 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous96.70 11596.53 11397.18 17098.19 17993.78 23498.31 19598.19 21194.01 18094.47 21598.27 17492.08 11698.46 26097.39 8897.91 16099.31 113
WTY-MVS97.37 8996.92 9398.72 6498.86 11896.89 9798.31 19598.71 10595.26 13097.67 12298.56 14092.21 11199.78 8795.89 14596.85 18499.48 90
D2MVS95.18 19595.08 17795.48 27697.10 25992.07 27398.30 19799.13 2094.02 17992.90 28196.73 29889.48 16798.73 23394.48 19093.60 24795.65 330
EI-MVSNet-Vis-set98.47 3298.39 1998.69 6599.46 4996.49 11698.30 19798.69 10997.21 3898.84 5099.36 2995.41 5099.78 8798.62 1399.65 5599.80 12
DSMNet-mixed92.52 29192.58 28292.33 33194.15 34682.65 35898.30 19794.26 35989.08 32992.65 28995.73 32785.01 26595.76 35586.24 33097.76 16798.59 186
EI-MVSNet-UG-set98.41 3698.34 2798.61 7099.45 5296.32 12598.28 20098.68 11297.17 4198.74 5799.37 2595.25 6199.79 8498.57 1499.54 7999.73 35
OMC-MVS97.55 7797.34 7698.20 10599.33 5695.92 14898.28 20098.59 13295.52 11597.97 10299.10 7293.28 9699.49 14495.09 17198.88 11899.19 131
baseline295.11 19894.52 20296.87 19396.65 28593.56 24398.27 20294.10 36293.45 21592.02 30697.43 24687.45 22499.19 17093.88 21097.41 17797.87 209
PVSNet_BlendedMVS96.73 11396.60 10997.12 17599.25 7595.35 17198.26 20399.26 994.28 17097.94 10597.46 24292.74 10199.81 6796.88 11093.32 25496.20 317
BH-untuned95.95 14795.72 14396.65 20698.55 14692.26 27098.23 20497.79 26493.73 19794.62 21098.01 19488.97 18799.00 20093.04 23498.51 13798.68 179
sss97.39 8796.98 9198.61 7098.60 14396.61 10798.22 20598.93 3893.97 18398.01 10098.48 14691.98 11899.85 5096.45 12898.15 15399.39 104
save fliter99.46 4998.38 3598.21 20698.71 10597.95 4
WR-MVS95.15 19694.46 20697.22 16796.67 28496.45 11798.21 20698.81 7494.15 17393.16 27397.69 22487.51 22098.30 28695.29 16688.62 31496.90 247
pmmvs593.65 27292.97 27595.68 27095.49 33092.37 26998.20 20897.28 30389.66 32192.58 29197.26 25482.14 29598.09 30293.18 23090.95 28396.58 285
thres20095.25 19094.57 19997.28 16598.81 12394.92 19198.20 20897.11 30995.24 13396.54 17096.22 31884.58 27399.53 13987.93 32296.50 19697.39 222
CDS-MVSNet96.99 10496.69 10597.90 12498.05 19295.98 13698.20 20898.33 18793.67 20696.95 14798.49 14593.54 9398.42 26595.24 16997.74 16899.31 113
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131496.25 13795.73 14297.79 13197.13 25795.55 16398.19 21198.59 13293.47 21492.03 30597.82 21491.33 13599.49 14494.62 18498.44 14198.32 198
MVS94.67 22393.54 26298.08 11496.88 27296.56 11298.19 21198.50 15678.05 36192.69 28898.02 19291.07 14299.63 12090.09 29398.36 14798.04 205
BH-RMVSNet95.92 15195.32 16497.69 14298.32 16894.64 20298.19 21197.45 29294.56 16196.03 18498.61 13285.02 26499.12 18090.68 28799.06 10899.30 116
1112_ss96.63 11696.00 13298.50 8098.56 14496.37 12298.18 21498.10 23292.92 23694.84 20398.43 15292.14 11399.58 12794.35 19396.51 19599.56 78
MVS_030492.81 28792.01 28995.23 28397.46 23191.33 28798.17 21598.81 7491.13 29793.80 25295.68 33266.08 35998.06 30590.79 28496.13 21196.32 313
EPNet_dtu95.21 19394.95 18495.99 25696.17 30790.45 30398.16 21697.27 30496.77 6193.14 27698.33 16790.34 15498.42 26585.57 33598.81 12499.09 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HY-MVS93.96 896.82 11196.23 12498.57 7298.46 15197.00 9098.14 21798.21 20793.95 18496.72 16097.99 19691.58 12699.76 9394.51 18996.54 19498.95 161
PLCcopyleft95.07 497.20 9696.78 10098.44 8799.29 6796.31 12798.14 21798.76 9392.41 25496.39 17698.31 16994.92 7299.78 8794.06 20598.77 12599.23 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EG-PatchMatch MVS91.13 30290.12 30594.17 31594.73 34389.00 32698.13 21997.81 26389.22 32885.32 35396.46 30967.71 35598.42 26587.89 32393.82 23895.08 339
EI-MVSNet95.96 14695.83 13896.36 24197.93 19993.70 24198.12 22098.27 19993.70 20195.07 19899.02 8492.23 11098.54 25194.68 18093.46 24996.84 256
CVMVSNet95.43 17796.04 13093.57 31897.93 19983.62 35598.12 22098.59 13295.68 10896.56 16699.02 8487.51 22097.51 33293.56 22197.44 17599.60 70
TSAR-MVS + GP.98.38 3898.24 3898.81 6199.22 8397.25 8498.11 22298.29 19897.19 4098.99 4199.02 8496.22 2499.67 11298.52 2298.56 13599.51 82
XVG-ACMP-BASELINE94.54 23194.14 22295.75 26996.55 28991.65 28298.11 22298.44 16794.96 14794.22 23197.90 20379.18 31799.11 18294.05 20693.85 23796.48 304
CNLPA97.45 8297.03 8898.73 6399.05 10097.44 7698.07 22498.53 14795.32 12796.80 15898.53 14193.32 9599.72 9994.31 19699.31 10199.02 153
diffmvspermissive97.58 7497.40 7498.13 11098.32 16895.81 15498.06 22598.37 18196.20 8598.74 5798.89 10491.31 13699.25 16298.16 3998.52 13699.34 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 1792x268897.12 10096.80 9798.08 11499.30 6594.56 21098.05 22699.71 193.57 21197.09 14098.91 10388.17 20399.89 3696.87 11399.56 7699.81 11
HQP-NCC97.20 25098.05 22696.43 7594.45 216
ACMP_Plane97.20 25098.05 22696.43 7594.45 216
HQP-MVS95.72 16195.40 15596.69 20497.20 25094.25 22298.05 22698.46 16396.43 7594.45 21697.73 21986.75 23398.96 20595.30 16494.18 22696.86 254
MIMVSNet189.67 31488.28 31893.82 31692.81 35691.08 29298.01 23097.45 29287.95 33487.90 33995.87 32467.63 35694.56 36378.73 36188.18 31895.83 326
AdaColmapbinary97.15 9996.70 10498.48 8399.16 9296.69 10498.01 23098.89 4794.44 16896.83 15498.68 12690.69 14999.76 9394.36 19299.29 10298.98 157
FMVSNet591.81 29490.92 29794.49 30797.21 24992.09 27298.00 23297.55 28289.31 32790.86 31695.61 33374.48 34495.32 35985.57 33589.70 29696.07 321
CANet_DTU96.96 10596.55 11198.21 10498.17 18396.07 13497.98 23398.21 20797.24 3797.13 13998.93 10086.88 23299.91 3195.00 17399.37 9898.66 182
MVP-Stereo94.28 25093.92 23595.35 28194.95 33892.60 26897.97 23497.65 27091.61 27890.68 31897.09 26786.32 24298.42 26589.70 30399.34 9995.02 341
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
KD-MVS_self_test90.38 30889.38 31193.40 32192.85 35588.94 32897.95 23597.94 25590.35 31090.25 32193.96 34679.82 31295.94 35484.62 34476.69 36295.33 333
MVS_111021_LR98.34 4398.23 3998.67 6799.27 7296.90 9597.95 23599.58 397.14 4498.44 7799.01 8895.03 6999.62 12397.91 5199.75 3899.50 84
TEST999.31 6198.50 2997.92 23798.73 10092.63 24497.74 11698.68 12696.20 2699.80 74
train_agg97.97 5197.52 6699.33 2699.31 6198.50 2997.92 23798.73 10092.98 23397.74 11698.68 12696.20 2699.80 7496.59 12299.57 7099.68 54
CDPH-MVS97.94 5497.49 6799.28 3199.47 4798.44 3197.91 23998.67 11792.57 24898.77 5598.85 10895.93 3699.72 9995.56 15899.69 5099.68 54
MVS_111021_HR98.47 3298.34 2798.88 6099.22 8397.32 7797.91 23999.58 397.20 3998.33 8399.00 8995.99 3499.64 11798.05 4599.76 3499.69 49
PatchMatch-RL96.59 11896.03 13198.27 9999.31 6196.51 11597.91 23999.06 2393.72 19896.92 15198.06 18988.50 19899.65 11591.77 26999.00 11398.66 182
OpenMVS_ROBcopyleft86.42 2089.00 31887.43 32593.69 31793.08 35489.42 31997.91 23996.89 32478.58 36085.86 34994.69 34069.48 35398.29 28977.13 36393.29 25693.36 357
test_899.29 6798.44 3197.89 24398.72 10292.98 23397.70 12098.66 12996.20 2699.80 74
ab-mvs96.42 12695.71 14698.55 7498.63 14096.75 10197.88 24498.74 9793.84 18996.54 17098.18 18285.34 26099.75 9595.93 14496.35 19999.15 138
jason97.32 9097.08 8698.06 11697.45 23595.59 15997.87 24597.91 25994.79 15398.55 7198.83 11191.12 13999.23 16597.58 7699.60 6499.34 107
jason: jason.
xiu_mvs_v1_base_debu97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
xiu_mvs_v1_base97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
xiu_mvs_v1_base_debi97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
test_prior498.01 5897.86 246
mvsany_test388.80 31988.04 31991.09 33789.78 36481.57 36197.83 25095.49 34693.81 19287.53 34093.95 34756.14 36597.43 33394.68 18083.13 34494.26 346
FA-MVS(test-final)96.41 13095.94 13497.82 12998.21 17595.20 17697.80 25197.58 27593.21 22597.36 13397.70 22289.47 16899.56 13194.12 20297.99 15798.71 177
test_prior297.80 25196.12 8997.89 11098.69 12595.96 3596.89 10899.60 64
XVG-OURS-SEG-HR96.51 12396.34 11797.02 18198.77 12593.76 23597.79 25398.50 15695.45 11896.94 14899.09 7887.87 21399.55 13896.76 12095.83 21597.74 213
MS-PatchMatch93.84 26993.63 25794.46 31096.18 30689.45 31897.76 25498.27 19992.23 26192.13 30397.49 24079.50 31498.69 23589.75 30199.38 9795.25 334
DELS-MVS98.40 3798.20 4198.99 5299.00 10697.66 6697.75 25598.89 4797.71 998.33 8398.97 9194.97 7099.88 4498.42 3099.76 3499.42 103
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MG-MVS97.81 5997.60 6098.44 8799.12 9695.97 14197.75 25598.78 8996.89 5698.46 7399.22 5093.90 9199.68 11194.81 17899.52 8199.67 58
test_f86.07 32785.39 32888.10 34189.28 36575.57 36697.73 25796.33 33889.41 32685.35 35291.56 36043.31 37195.53 35691.32 27684.23 34393.21 359
Test_1112_low_res96.34 13295.66 15198.36 9498.56 14495.94 14497.71 25898.07 23992.10 26594.79 20797.29 25391.75 12299.56 13194.17 20096.50 19699.58 76
BH-w/o95.38 18195.08 17796.26 24898.34 16491.79 27797.70 25997.43 29492.87 23894.24 23097.22 25888.66 19298.84 22391.55 27397.70 17098.16 203
lupinMVS97.44 8397.22 8198.12 11298.07 18995.76 15597.68 26097.76 26594.50 16598.79 5398.61 13292.34 10599.30 15997.58 7699.59 6699.31 113
原ACMM297.67 261
test_vis3_rt79.22 32877.40 33484.67 34786.44 37074.85 36897.66 26281.43 37984.98 35067.12 37081.91 36828.09 37997.60 32788.96 31480.04 35581.55 368
LF4IMVS93.14 28492.79 27894.20 31395.88 31988.67 33197.66 26297.07 31193.81 19291.71 30897.65 22877.96 32698.81 22791.47 27491.92 27095.12 337
EGC-MVSNET75.22 33669.54 33992.28 33294.81 34189.58 31697.64 26496.50 3361.82 3795.57 38095.74 32568.21 35496.26 35373.80 36691.71 27290.99 361
新几何297.64 264
MDA-MVSNet-bldmvs89.97 31288.35 31794.83 29895.21 33591.34 28697.64 26497.51 28688.36 33371.17 36896.13 32079.22 31696.63 34983.65 34686.27 33696.52 297
pmmvs-eth3d90.36 30989.05 31494.32 31291.10 36192.12 27197.63 26796.95 31988.86 33084.91 35493.13 35378.32 32196.74 34488.70 31681.81 34994.09 351
TR-MVS94.94 21194.20 21797.17 17197.75 20894.14 22697.59 26897.02 31692.28 26095.75 18997.64 23083.88 28798.96 20589.77 30096.15 21098.40 193
无先验97.58 26998.72 10291.38 28399.87 4593.36 22599.60 70
旧先验297.57 27091.30 28998.67 6199.80 7495.70 155
mvsany_test197.69 6697.70 5797.66 14798.24 17194.18 22597.53 27197.53 28495.52 11599.66 699.51 594.30 8499.56 13198.38 3198.62 13199.23 124
CostFormer94.95 20994.73 19395.60 27497.28 24489.06 32497.53 27196.89 32489.66 32196.82 15696.72 29986.05 24698.95 21095.53 15996.13 21198.79 170
XVG-OURS96.55 12296.41 11596.99 18298.75 12693.76 23597.50 27398.52 14995.67 10996.83 15499.30 3888.95 18899.53 13995.88 14696.26 20697.69 216
xiu_mvs_v2_base97.66 6897.70 5797.56 15398.61 14295.46 16697.44 27498.46 16397.15 4398.65 6698.15 18394.33 8399.80 7497.84 5898.66 13097.41 220
tpm94.13 25893.80 24595.12 28796.50 29287.91 34397.44 27495.89 34492.62 24596.37 17796.30 31384.13 28298.30 28693.24 22791.66 27499.14 140
DeepPCF-MVS96.37 297.93 5598.48 1796.30 24699.00 10689.54 31797.43 27698.87 5798.16 299.26 2699.38 2496.12 2999.64 11798.30 3599.77 2899.72 38
test22299.23 8297.17 8797.40 27798.66 12088.68 33198.05 9298.96 9694.14 8799.53 8099.61 68
pmmvs494.69 21893.99 23296.81 19795.74 32295.94 14497.40 27797.67 26990.42 30893.37 26797.59 23489.08 18198.20 29392.97 23691.67 27396.30 314
test0.0.03 194.08 26393.51 26395.80 26695.53 32992.89 26697.38 27995.97 34195.11 13892.51 29596.66 30187.71 21696.94 34187.03 32693.67 24297.57 218
HyFIR lowres test96.90 10896.49 11498.14 10899.33 5695.56 16197.38 27999.65 292.34 25697.61 12898.20 18089.29 17399.10 18696.97 10197.60 17399.77 21
Effi-MVS+97.12 10096.69 10598.39 9398.19 17996.72 10397.37 28198.43 17193.71 19997.65 12598.02 19292.20 11299.25 16296.87 11397.79 16599.19 131
N_pmnet87.12 32587.77 32385.17 34695.46 33161.92 37697.37 28170.66 38285.83 34688.73 33696.04 32285.33 26197.76 32480.02 35590.48 28695.84 325
PAPR96.84 11096.24 12398.65 6898.72 13196.92 9497.36 28398.57 13993.33 21996.67 16197.57 23694.30 8499.56 13191.05 28298.59 13399.47 92
PMMVS96.60 11796.33 11897.41 15897.90 20193.93 23097.35 28498.41 17392.84 23997.76 11397.45 24491.10 14199.20 16996.26 13397.91 16099.11 143
PS-MVSNAJ97.73 6297.77 5497.62 14998.68 13595.58 16097.34 28598.51 15197.29 3198.66 6597.88 20694.51 7799.90 3497.87 5599.17 10697.39 222
SCA95.46 17495.13 17396.46 23597.67 21491.29 28997.33 28697.60 27494.68 15796.92 15197.10 26383.97 28598.89 21792.59 24798.32 15099.20 127
testdata197.32 28796.34 81
ET-MVSNet_ETH3D94.13 25892.98 27497.58 15198.22 17496.20 12997.31 28895.37 34794.53 16279.56 36097.63 23286.51 23697.53 33196.91 10490.74 28499.02 153
tpm294.19 25493.76 25095.46 27897.23 24789.04 32597.31 28896.85 32887.08 33896.21 18096.79 29783.75 29198.74 23292.43 25596.23 20898.59 186
PVSNet_Blended97.38 8897.12 8398.14 10899.25 7595.35 17197.28 29099.26 993.13 22897.94 10598.21 17992.74 10199.81 6796.88 11099.40 9599.27 120
CLD-MVS95.62 16895.34 16196.46 23597.52 22893.75 23797.27 29198.46 16395.53 11494.42 22198.00 19586.21 24398.97 20196.25 13594.37 22096.66 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPMVS94.99 20594.48 20496.52 22797.22 24891.75 27997.23 29291.66 37094.11 17497.28 13496.81 29685.70 25298.84 22393.04 23497.28 17898.97 158
miper_lstm_enhance94.33 24594.07 22595.11 28897.75 20890.97 29397.22 29398.03 24791.67 27792.76 28596.97 28390.03 15997.78 32392.51 25289.64 29796.56 289
APD_test188.22 32188.01 32088.86 34095.98 31574.66 36997.21 29496.44 33783.96 35486.66 34697.90 20360.95 36397.84 32282.73 34890.23 29094.09 351
YYNet190.70 30789.39 31094.62 30494.79 34290.65 30097.20 29597.46 29087.54 33672.54 36695.74 32586.51 23696.66 34886.00 33286.76 33596.54 292
MDA-MVSNet_test_wron90.71 30689.38 31194.68 30294.83 34090.78 29797.19 29697.46 29087.60 33572.41 36795.72 32986.51 23696.71 34785.92 33386.80 33496.56 289
IterMVS-SCA-FT94.11 26093.87 24094.85 29697.98 19790.56 30297.18 29798.11 22993.75 19492.58 29197.48 24183.97 28597.41 33492.48 25491.30 27796.58 285
IterMVS94.09 26293.85 24294.80 29997.99 19590.35 30597.18 29798.12 22693.68 20492.46 29797.34 24984.05 28397.41 33492.51 25291.33 27696.62 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FE-MVS95.62 16894.90 18697.78 13298.37 15894.92 19197.17 29997.38 29890.95 30097.73 11897.70 22285.32 26299.63 12091.18 27798.33 14898.79 170
DPM-MVS97.55 7796.99 9099.23 3799.04 10198.55 2797.17 29998.35 18494.85 15297.93 10798.58 13795.07 6899.71 10492.60 24599.34 9999.43 101
c3_l94.79 21594.43 21095.89 26397.75 20893.12 26297.16 30198.03 24792.23 26193.46 26697.05 27591.39 13298.01 30893.58 22089.21 30696.53 294
new-patchmatchnet88.50 32087.45 32491.67 33590.31 36385.89 35197.16 30197.33 30089.47 32383.63 35692.77 35576.38 33695.06 36182.70 34977.29 36194.06 353
UnsupCasMVSNet_eth90.99 30489.92 30794.19 31494.08 34789.83 31097.13 30398.67 11793.69 20285.83 35096.19 31975.15 34196.74 34489.14 31279.41 35696.00 322
IB-MVS91.98 1793.27 27991.97 29097.19 16997.47 23093.41 25197.09 30495.99 34093.32 22092.47 29695.73 32778.06 32599.53 13994.59 18782.98 34598.62 185
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl____94.51 23594.01 22996.02 25597.58 22093.40 25297.05 30597.96 25491.73 27592.76 28597.08 26989.06 18298.13 29892.61 24490.29 28996.52 297
DIV-MVS_self_test94.52 23494.03 22695.99 25697.57 22493.38 25397.05 30597.94 25591.74 27392.81 28397.10 26389.12 17998.07 30492.60 24590.30 28896.53 294
miper_ehance_all_eth95.01 20394.69 19595.97 25897.70 21393.31 25597.02 30798.07 23992.23 26193.51 26396.96 28591.85 12098.15 29693.68 21591.16 28096.44 307
CMPMVSbinary66.06 2189.70 31389.67 30989.78 33893.19 35376.56 36397.00 30898.35 18480.97 35881.57 35897.75 21874.75 34398.61 24289.85 29993.63 24594.17 349
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
tpmrst95.63 16795.69 14995.44 27997.54 22588.54 33396.97 30997.56 27793.50 21397.52 13196.93 28989.49 16699.16 17295.25 16896.42 19898.64 184
dp94.15 25793.90 23894.90 29497.31 24386.82 34996.97 30997.19 30891.22 29496.02 18596.61 30685.51 25699.02 19790.00 29894.30 22198.85 166
cl2294.68 22094.19 21896.13 25298.11 18793.60 24296.94 31198.31 19092.43 25393.32 26996.87 29386.51 23698.28 29094.10 20491.16 28096.51 300
PM-MVS87.77 32286.55 32791.40 33691.03 36283.36 35796.92 31295.18 35091.28 29186.48 34893.42 35053.27 36696.74 34489.43 30981.97 34894.11 350
TinyColmap92.31 29291.53 29394.65 30396.92 26889.75 31196.92 31296.68 33290.45 30789.62 32697.85 20976.06 33898.81 22786.74 32792.51 26495.41 332
our_test_393.65 27293.30 26994.69 30195.45 33289.68 31596.91 31497.65 27091.97 26891.66 30996.88 29189.67 16597.93 31588.02 32191.49 27596.48 304
test-LLR95.10 19994.87 18895.80 26696.77 27689.70 31396.91 31495.21 34895.11 13894.83 20595.72 32987.71 21698.97 20193.06 23298.50 13898.72 175
TESTMET0.1,194.18 25693.69 25595.63 27296.92 26889.12 32396.91 31494.78 35393.17 22794.88 20296.45 31078.52 31998.92 21293.09 23198.50 13898.85 166
test-mter94.08 26393.51 26395.80 26696.77 27689.70 31396.91 31495.21 34892.89 23794.83 20595.72 32977.69 32798.97 20193.06 23298.50 13898.72 175
USDC93.33 27892.71 27995.21 28496.83 27590.83 29696.91 31497.50 28793.84 18990.72 31798.14 18477.69 32798.82 22689.51 30793.21 25795.97 323
MDTV_nov1_ep13_2view84.26 35396.89 31990.97 29997.90 10989.89 16193.91 20999.18 136
ppachtmachnet_test93.22 28192.63 28194.97 29295.45 33290.84 29596.88 32097.88 26090.60 30392.08 30497.26 25488.08 20797.86 32185.12 33990.33 28796.22 316
tpmvs94.60 22694.36 21395.33 28297.46 23188.60 33296.88 32097.68 26891.29 29093.80 25296.42 31188.58 19399.24 16491.06 28096.04 21398.17 202
MDTV_nov1_ep1395.40 15597.48 22988.34 33796.85 32297.29 30293.74 19697.48 13297.26 25489.18 17799.05 19091.92 26697.43 176
PatchmatchNetpermissive95.71 16295.52 15396.29 24797.58 22090.72 29896.84 32397.52 28594.06 17697.08 14196.96 28589.24 17698.90 21692.03 26398.37 14599.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MSDG95.93 15095.30 16797.83 12798.90 11495.36 16996.83 32498.37 18191.32 28894.43 22098.73 12290.27 15699.60 12590.05 29698.82 12398.52 189
thisisatest051595.61 17194.89 18797.76 13598.15 18595.15 17996.77 32594.41 35692.95 23597.18 13897.43 24684.78 26999.45 15294.63 18297.73 16998.68 179
GA-MVS94.81 21494.03 22697.14 17397.15 25693.86 23296.76 32697.58 27594.00 18194.76 20897.04 27680.91 30498.48 25691.79 26896.25 20799.09 145
tpm cat193.36 27592.80 27795.07 29097.58 22087.97 34296.76 32697.86 26182.17 35793.53 26096.04 32286.13 24499.13 17889.24 31195.87 21498.10 204
eth_miper_zixun_eth94.68 22094.41 21195.47 27797.64 21691.71 28196.73 32898.07 23992.71 24393.64 25697.21 25990.54 15198.17 29593.38 22389.76 29596.54 292
test_post196.68 32930.43 37887.85 21498.69 23592.59 247
pmmvs386.67 32684.86 33092.11 33488.16 36687.19 34896.63 33094.75 35479.88 35987.22 34292.75 35666.56 35895.20 36081.24 35376.56 36393.96 354
miper_enhance_ethall95.10 19994.75 19296.12 25397.53 22793.73 23996.61 33198.08 23792.20 26493.89 24696.65 30392.44 10498.30 28694.21 19991.16 28096.34 310
testmvs21.48 34524.95 34811.09 36114.89 3836.47 38596.56 3329.87 3847.55 37717.93 37739.02 3759.43 3845.90 38016.56 37812.72 37720.91 375
test12320.95 34623.72 34912.64 36013.54 3848.19 38496.55 3336.13 3857.48 37816.74 37837.98 37612.97 3816.05 37916.69 3775.43 37823.68 374
CL-MVSNet_self_test90.11 31089.14 31393.02 32791.86 35888.23 34096.51 33498.07 23990.49 30490.49 32094.41 34184.75 27095.34 35880.79 35474.95 36495.50 331
GG-mvs-BLEND96.59 21696.34 30194.98 18796.51 33488.58 37593.10 27894.34 34580.34 31198.05 30689.53 30696.99 18296.74 265
new_pmnet90.06 31189.00 31593.22 32594.18 34588.32 33896.42 33696.89 32486.19 34285.67 35193.62 34877.18 33397.10 33881.61 35289.29 30594.23 347
PVSNet91.96 1896.35 13196.15 12596.96 18699.17 8892.05 27496.08 33798.68 11293.69 20297.75 11597.80 21688.86 18999.69 11094.26 19899.01 11299.15 138
ADS-MVSNet294.58 22994.40 21295.11 28898.00 19388.74 33096.04 33897.30 30190.15 31296.47 17396.64 30487.89 21197.56 33090.08 29497.06 18099.02 153
ADS-MVSNet95.00 20494.45 20896.63 21098.00 19391.91 27696.04 33897.74 26790.15 31296.47 17396.64 30487.89 21198.96 20590.08 29497.06 18099.02 153
PAPM94.95 20994.00 23097.78 13297.04 26195.65 15896.03 34098.25 20491.23 29394.19 23397.80 21691.27 13798.86 22282.61 35097.61 17298.84 168
cascas94.63 22593.86 24196.93 18896.91 27094.27 22096.00 34198.51 15185.55 34894.54 21296.23 31684.20 28198.87 22095.80 15096.98 18397.66 217
gg-mvs-nofinetune92.21 29390.58 30197.13 17496.75 27995.09 18195.85 34289.40 37485.43 34994.50 21481.98 36780.80 30798.40 27992.16 25798.33 14897.88 208
FPMVS77.62 33577.14 33579.05 35379.25 37660.97 37795.79 34395.94 34265.96 36767.93 36994.40 34237.73 37388.88 37268.83 36988.46 31587.29 365
CHOSEN 280x42097.18 9797.18 8297.20 16898.81 12393.27 25695.78 34499.15 1995.25 13196.79 15998.11 18692.29 10799.07 18998.56 1599.85 599.25 123
MIMVSNet93.26 28092.21 28796.41 23897.73 21293.13 26195.65 34597.03 31491.27 29294.04 24096.06 32175.33 34097.19 33786.56 32896.23 20898.92 163
KD-MVS_2432*160089.61 31587.96 32194.54 30594.06 34891.59 28395.59 34697.63 27289.87 31788.95 33294.38 34378.28 32296.82 34284.83 34068.05 36895.21 335
miper_refine_blended89.61 31587.96 32194.54 30594.06 34891.59 28395.59 34697.63 27289.87 31788.95 33294.38 34378.28 32296.82 34284.83 34068.05 36895.21 335
PCF-MVS93.45 1194.68 22093.43 26698.42 9198.62 14196.77 10095.48 34898.20 20984.63 35293.34 26898.32 16888.55 19699.81 6784.80 34298.96 11498.68 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
JIA-IIPM93.35 27692.49 28395.92 26096.48 29490.65 30095.01 34996.96 31885.93 34596.08 18387.33 36487.70 21898.78 23091.35 27595.58 21698.34 196
CR-MVSNet94.76 21794.15 22196.59 21697.00 26293.43 24994.96 35097.56 27792.46 24996.93 14996.24 31488.15 20497.88 32087.38 32496.65 19098.46 191
RPMNet92.81 28791.34 29597.24 16697.00 26293.43 24994.96 35098.80 8282.27 35696.93 14992.12 35986.98 23099.82 6276.32 36496.65 19098.46 191
UnsupCasMVSNet_bld87.17 32385.12 32993.31 32391.94 35788.77 32994.92 35298.30 19684.30 35382.30 35790.04 36163.96 36197.25 33685.85 33474.47 36693.93 355
PVSNet_088.72 1991.28 30090.03 30695.00 29197.99 19587.29 34794.84 35398.50 15692.06 26689.86 32495.19 33579.81 31399.39 15492.27 25669.79 36798.33 197
Patchmatch-test94.42 24193.68 25696.63 21097.60 21991.76 27894.83 35497.49 28989.45 32494.14 23597.10 26388.99 18398.83 22585.37 33898.13 15499.29 118
testf179.02 33077.70 33282.99 34988.10 36766.90 37394.67 35593.11 36471.08 36574.02 36393.41 35134.15 37593.25 36672.25 36778.50 35888.82 363
APD_test279.02 33077.70 33282.99 34988.10 36766.90 37394.67 35593.11 36471.08 36574.02 36393.41 35134.15 37593.25 36672.25 36778.50 35888.82 363
Patchmtry93.22 28192.35 28595.84 26596.77 27693.09 26394.66 35797.56 27787.37 33792.90 28196.24 31488.15 20497.90 31687.37 32590.10 29296.53 294
PatchT93.06 28591.97 29096.35 24296.69 28292.67 26794.48 35897.08 31086.62 33997.08 14192.23 35887.94 21097.90 31678.89 36096.69 18898.49 190
LCM-MVSNet78.70 33276.24 33786.08 34477.26 37871.99 37194.34 35996.72 33061.62 36976.53 36189.33 36233.91 37792.78 36981.85 35174.60 36593.46 356
PMMVS277.95 33475.44 33885.46 34582.54 37374.95 36794.23 36093.08 36672.80 36474.68 36287.38 36336.36 37491.56 37073.95 36563.94 37089.87 362
MVS-HIRNet89.46 31788.40 31692.64 32997.58 22082.15 35994.16 36193.05 36775.73 36390.90 31582.52 36679.42 31598.33 28183.53 34798.68 12697.43 219
Patchmatch-RL test91.49 29790.85 29893.41 32091.37 35984.40 35292.81 36295.93 34391.87 27187.25 34194.87 33988.99 18396.53 35092.54 25182.00 34799.30 116
ambc89.49 33986.66 36975.78 36492.66 36396.72 33086.55 34792.50 35746.01 36797.90 31690.32 29082.09 34694.80 344
EMVS64.07 34163.26 34466.53 35881.73 37558.81 38091.85 36484.75 37751.93 37359.09 37375.13 37243.32 37079.09 37642.03 37539.47 37361.69 372
E-PMN64.94 34064.25 34267.02 35782.28 37459.36 37991.83 36585.63 37652.69 37160.22 37277.28 37141.06 37280.12 37546.15 37441.14 37261.57 373
ANet_high69.08 33765.37 34180.22 35265.99 38071.96 37290.91 36690.09 37382.62 35549.93 37578.39 37029.36 37881.75 37362.49 37138.52 37486.95 367
tmp_tt68.90 33866.97 34074.68 35550.78 38259.95 37887.13 36783.47 37838.80 37562.21 37196.23 31664.70 36076.91 37788.91 31530.49 37587.19 366
MVEpermissive62.14 2263.28 34259.38 34574.99 35474.33 37965.47 37585.55 36880.50 38052.02 37251.10 37475.00 37310.91 38380.50 37451.60 37353.40 37178.99 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 33963.57 34373.09 35657.90 38151.22 38285.05 36993.93 36354.45 37044.32 37683.57 36513.22 38089.15 37158.68 37281.00 35278.91 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method79.03 32978.17 33181.63 35186.06 37154.40 38182.75 37096.89 32439.54 37480.98 35995.57 33458.37 36494.73 36284.74 34378.61 35795.75 327
Gipumacopyleft78.40 33376.75 33683.38 34895.54 32880.43 36279.42 37197.40 29664.67 36873.46 36580.82 36945.65 36893.14 36866.32 37087.43 32576.56 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
wuyk23d30.17 34330.18 34730.16 35978.61 37743.29 38366.79 37214.21 38317.31 37614.82 37911.93 37911.55 38241.43 37837.08 37619.30 3765.76 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k23.98 34431.98 3460.00 3620.00 3850.00 3860.00 37398.59 1320.00 3800.00 38198.61 13290.60 1500.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.88 34810.50 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38094.51 770.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.20 34710.94 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38198.43 1520.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
MSC_two_6792asdad99.62 699.17 8899.08 1198.63 12799.94 398.53 1699.80 1999.86 2
PC_three_145295.08 14299.60 1099.16 6397.86 298.47 25997.52 8399.72 4699.74 30
No_MVS99.62 699.17 8899.08 1198.63 12799.94 398.53 1699.80 1999.86 2
test_one_060199.66 2699.25 298.86 6397.55 1699.20 2899.47 1197.57 6
eth-test20.00 385
eth-test0.00 385
ZD-MVS99.46 4998.70 2398.79 8793.21 22598.67 6198.97 9195.70 4299.83 5596.07 13799.58 69
IU-MVS99.71 1999.23 798.64 12595.28 12999.63 998.35 3399.81 1299.83 7
test_241102_TWO98.87 5797.65 1099.53 1499.48 997.34 1199.94 398.43 2899.80 1999.83 7
test_241102_ONE99.71 1999.24 598.87 5797.62 1299.73 299.39 1997.53 799.74 97
test_0728_THIRD97.32 2999.45 1699.46 1497.88 199.94 398.47 2499.86 199.85 4
GSMVS99.20 127
test_part299.63 2999.18 1099.27 25
sam_mvs189.45 16999.20 127
sam_mvs88.99 183
MTGPAbinary98.74 97
test_post31.83 37788.83 19098.91 213
patchmatchnet-post95.10 33789.42 17098.89 217
gm-plane-assit95.88 31987.47 34589.74 32096.94 28899.19 17093.32 226
test9_res96.39 13199.57 7099.69 49
agg_prior295.87 14799.57 7099.68 54
agg_prior99.30 6598.38 3598.72 10297.57 13099.81 67
TestCases96.99 18299.25 7593.21 25998.18 21491.36 28493.52 26198.77 11884.67 27199.72 9989.70 30397.87 16298.02 206
test_prior99.19 3899.31 6198.22 4798.84 6799.70 10599.65 62
新几何199.16 4399.34 5498.01 5898.69 10990.06 31498.13 8798.95 9894.60 7599.89 3691.97 26599.47 8799.59 72
旧先验199.29 6797.48 7398.70 10899.09 7895.56 4599.47 8799.61 68
原ACMM198.65 6899.32 5996.62 10598.67 11793.27 22497.81 11198.97 9195.18 6499.83 5593.84 21199.46 9099.50 84
testdata299.89 3691.65 272
segment_acmp96.85 14
testdata98.26 10199.20 8695.36 16998.68 11291.89 27098.60 6999.10 7294.44 8299.82 6294.27 19799.44 9199.58 76
test1299.18 4099.16 9298.19 4898.53 14798.07 9195.13 6699.72 9999.56 7699.63 66
plane_prior797.42 23794.63 203
plane_prior697.35 24294.61 20687.09 227
plane_prior598.56 14199.03 19496.07 13794.27 22296.92 240
plane_prior498.28 171
plane_prior394.61 20697.02 5095.34 193
plane_prior197.37 241
n20.00 386
nn0.00 386
door-mid94.37 357
lessismore_v094.45 31194.93 33988.44 33691.03 37186.77 34597.64 23076.23 33798.42 26590.31 29185.64 34096.51 300
LGP-MVS_train96.47 23297.46 23193.54 24498.54 14594.67 15894.36 22398.77 11885.39 25799.11 18295.71 15394.15 22896.76 263
test1198.66 120
door94.64 355
HQP5-MVS94.25 222
BP-MVS95.30 164
HQP4-MVS94.45 21698.96 20596.87 251
HQP3-MVS98.46 16394.18 226
HQP2-MVS86.75 233
NP-MVS97.28 24494.51 21197.73 219
ACMMP++_ref92.97 259
ACMMP++93.61 246
Test By Simon94.64 74
ITE_SJBPF95.44 27997.42 23791.32 28897.50 28795.09 14193.59 25798.35 16281.70 29798.88 21989.71 30293.39 25396.12 319
DeepMVS_CXcopyleft86.78 34397.09 26072.30 37095.17 35175.92 36284.34 35595.19 33570.58 35195.35 35779.98 35789.04 30992.68 360