| patch_mono-2 | | | 98.36 50 | 98.87 6 | 96.82 219 | 99.53 36 | 90.68 325 | 98.64 170 | 99.29 14 | 97.88 15 | 99.19 40 | 99.52 11 | 96.80 15 | 99.97 1 | 99.11 16 | 99.86 1 | 99.82 16 |
|
| dcpmvs_2 | | | 98.08 60 | 98.59 14 | 96.56 243 | 99.57 33 | 90.34 332 | 99.15 49 | 98.38 194 | 96.82 73 | 99.29 34 | 99.49 17 | 95.78 43 | 99.57 142 | 98.94 19 | 99.86 1 | 99.77 27 |
|
| test_0728_THIRD | | | | | | | | | | 97.32 42 | 99.45 25 | 99.46 24 | 97.88 1 | 99.94 8 | 98.47 38 | 99.86 1 | 99.85 10 |
|
| CP-MVS | | | 98.57 27 | 98.36 30 | 99.19 40 | 99.66 26 | 97.86 64 | 99.34 18 | 98.87 69 | 95.96 111 | 98.60 81 | 99.13 82 | 96.05 33 | 99.94 8 | 97.77 78 | 99.86 1 | 99.77 27 |
|
| CHOSEN 280x420 | | | 97.18 113 | 97.18 98 | 97.20 189 | 98.81 134 | 93.27 277 | 95.78 375 | 99.15 28 | 95.25 149 | 96.79 176 | 98.11 202 | 92.29 116 | 99.07 213 | 98.56 29 | 99.85 5 | 99.25 133 |
|
| SD-MVS | | | 98.64 16 | 98.68 11 | 98.53 87 | 99.33 59 | 98.36 41 | 98.90 100 | 98.85 78 | 97.28 45 | 99.72 12 | 99.39 32 | 96.63 20 | 97.60 352 | 98.17 54 | 99.85 5 | 99.64 71 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| APDe-MVS |  | | 99.02 6 | 98.84 8 | 99.55 9 | 99.57 33 | 98.96 16 | 99.39 12 | 98.93 50 | 97.38 39 | 99.41 28 | 99.54 8 | 96.66 18 | 99.84 67 | 98.86 21 | 99.85 5 | 99.87 7 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| HPM-MVS_fast | | | 98.38 47 | 98.13 54 | 99.12 50 | 99.75 3 | 97.86 64 | 99.44 11 | 98.82 81 | 94.46 190 | 98.94 53 | 99.20 67 | 95.16 68 | 99.74 111 | 97.58 92 | 99.85 5 | 99.77 27 |
|
| SteuartSystems-ACMMP | | | 98.90 9 | 98.75 10 | 99.36 21 | 99.22 89 | 98.43 33 | 99.10 59 | 98.87 69 | 97.38 39 | 99.35 32 | 99.40 31 | 97.78 5 | 99.87 58 | 97.77 78 | 99.85 5 | 99.78 21 |
| Skip Steuart: Steuart Systems R&D Blog. |
| iter_conf05_11 | | | 96.28 151 | 95.69 166 | 98.03 133 | 98.29 184 | 95.88 164 | 97.43 305 | 96.24 365 | 96.50 89 | 98.26 100 | 98.30 186 | 78.78 340 | 99.44 169 | 97.58 92 | 99.84 10 | 98.78 189 |
|
| DPE-MVS |  | | 98.92 7 | 98.67 12 | 99.65 2 | 99.58 32 | 99.20 9 | 98.42 204 | 98.91 56 | 97.58 27 | 99.54 22 | 99.46 24 | 97.10 12 | 99.94 8 | 97.64 88 | 99.84 10 | 99.83 13 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| HPM-MVS |  | | 98.36 50 | 98.10 57 | 99.13 48 | 99.74 7 | 97.82 68 | 99.53 8 | 98.80 93 | 94.63 181 | 98.61 80 | 98.97 105 | 95.13 70 | 99.77 106 | 97.65 87 | 99.83 12 | 99.79 19 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| SED-MVS | | | 99.09 1 | 98.91 4 | 99.63 4 | 99.71 19 | 99.24 5 | 99.02 75 | 98.87 69 | 97.65 22 | 99.73 10 | 99.48 18 | 97.53 7 | 99.94 8 | 98.43 42 | 99.81 13 | 99.70 53 |
|
| IU-MVS | | | | | | 99.71 19 | 99.23 7 | | 98.64 136 | 95.28 147 | 99.63 18 | | | | 98.35 47 | 99.81 13 | 99.83 13 |
|
| ZNCC-MVS | | | 98.49 35 | 98.20 52 | 99.35 22 | 99.73 11 | 98.39 34 | 99.19 44 | 98.86 75 | 95.77 121 | 98.31 99 | 99.10 86 | 95.46 51 | 99.93 25 | 97.57 97 | 99.81 13 | 99.74 37 |
|
| DVP-MVS |  | | 99.03 5 | 98.83 9 | 99.63 4 | 99.72 12 | 99.25 2 | 98.97 85 | 98.58 149 | 97.62 24 | 99.45 25 | 99.46 24 | 97.42 9 | 99.94 8 | 98.47 38 | 99.81 13 | 99.69 56 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 85 | 98.88 62 | | | | | 99.94 8 | 98.47 38 | 99.81 13 | 99.84 12 |
|
| SMA-MVS |  | | 98.58 23 | 98.25 44 | 99.56 8 | 99.51 39 | 99.04 15 | 98.95 91 | 98.80 93 | 93.67 232 | 99.37 31 | 99.52 11 | 96.52 22 | 99.89 47 | 98.06 59 | 99.81 13 | 99.76 34 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| mPP-MVS | | | 98.51 33 | 98.26 43 | 99.25 35 | 99.75 3 | 98.04 59 | 99.28 26 | 98.81 86 | 96.24 101 | 98.35 96 | 99.23 62 | 95.46 51 | 99.94 8 | 97.42 105 | 99.81 13 | 99.77 27 |
|
| fmvsm_l_conf0.5_n_a | | | 99.09 1 | 99.08 1 | 99.11 51 | 99.43 54 | 97.48 78 | 98.88 109 | 99.30 13 | 98.47 9 | 99.85 4 | 99.43 28 | 96.71 17 | 99.96 4 | 99.86 1 | 99.80 20 | 99.89 5 |
|
| test_fmvsmconf_n | | | 98.92 7 | 98.87 6 | 99.04 55 | 98.88 126 | 97.25 90 | 98.82 127 | 99.34 10 | 98.75 3 | 99.80 5 | 99.61 4 | 95.16 68 | 99.95 7 | 99.70 6 | 99.80 20 | 99.93 1 |
|
| MSC_two_6792asdad | | | | | 99.62 6 | 99.17 94 | 99.08 11 | | 98.63 138 | | | | | 99.94 8 | 98.53 30 | 99.80 20 | 99.86 8 |
|
| No_MVS | | | | | 99.62 6 | 99.17 94 | 99.08 11 | | 98.63 138 | | | | | 99.94 8 | 98.53 30 | 99.80 20 | 99.86 8 |
|
| test_241102_TWO | | | | | | | | | 98.87 69 | 97.65 22 | 99.53 23 | 99.48 18 | 97.34 11 | 99.94 8 | 98.43 42 | 99.80 20 | 99.83 13 |
|
| MP-MVS-pluss | | | 98.31 56 | 97.92 64 | 99.49 12 | 99.72 12 | 98.88 18 | 98.43 202 | 98.78 100 | 94.10 199 | 97.69 136 | 99.42 29 | 95.25 64 | 99.92 31 | 98.09 58 | 99.80 20 | 99.67 65 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| test_fmvsmconf0.1_n | | | 98.58 23 | 98.44 24 | 98.99 57 | 97.73 235 | 97.15 95 | 98.84 123 | 98.97 42 | 98.75 3 | 99.43 27 | 99.54 8 | 93.29 102 | 99.93 25 | 99.64 9 | 99.79 26 | 99.89 5 |
|
| MTAPA | | | 98.58 23 | 98.29 42 | 99.46 14 | 99.76 2 | 98.64 25 | 98.90 100 | 98.74 108 | 97.27 49 | 98.02 112 | 99.39 32 | 94.81 77 | 99.96 4 | 97.91 68 | 99.79 26 | 99.77 27 |
|
| region2R | | | 98.61 18 | 98.38 28 | 99.29 29 | 99.74 7 | 98.16 53 | 99.23 33 | 98.93 50 | 96.15 105 | 98.94 53 | 99.17 74 | 95.91 39 | 99.94 8 | 97.55 98 | 99.79 26 | 99.78 21 |
|
| ACMMPR | | | 98.59 21 | 98.36 30 | 99.29 29 | 99.74 7 | 98.15 54 | 99.23 33 | 98.95 46 | 96.10 108 | 98.93 57 | 99.19 72 | 95.70 45 | 99.94 8 | 97.62 89 | 99.79 26 | 99.78 21 |
|
| HFP-MVS | | | 98.63 17 | 98.40 26 | 99.32 28 | 99.72 12 | 98.29 45 | 99.23 33 | 98.96 45 | 96.10 108 | 98.94 53 | 99.17 74 | 96.06 32 | 99.92 31 | 97.62 89 | 99.78 30 | 99.75 35 |
|
| MP-MVS |  | | 98.33 55 | 98.01 61 | 99.28 32 | 99.75 3 | 98.18 51 | 99.22 37 | 98.79 98 | 96.13 106 | 97.92 123 | 99.23 62 | 94.54 80 | 99.94 8 | 96.74 139 | 99.78 30 | 99.73 42 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| PGM-MVS | | | 98.49 35 | 98.23 48 | 99.27 34 | 99.72 12 | 98.08 58 | 98.99 82 | 99.49 5 | 95.43 137 | 99.03 47 | 99.32 49 | 95.56 48 | 99.94 8 | 96.80 136 | 99.77 32 | 99.78 21 |
|
| APD-MVS |  | | 98.35 52 | 98.00 62 | 99.42 16 | 99.51 39 | 98.72 21 | 98.80 136 | 98.82 81 | 94.52 187 | 99.23 37 | 99.25 61 | 95.54 50 | 99.80 88 | 96.52 143 | 99.77 32 | 99.74 37 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| 114514_t | | | 96.93 122 | 96.27 138 | 98.92 64 | 99.50 41 | 97.63 72 | 98.85 119 | 98.90 57 | 84.80 382 | 97.77 127 | 99.11 84 | 92.84 106 | 99.66 128 | 94.85 196 | 99.77 32 | 99.47 100 |
|
| CPTT-MVS | | | 97.72 76 | 97.32 91 | 98.92 64 | 99.64 28 | 97.10 96 | 99.12 55 | 98.81 86 | 92.34 286 | 98.09 105 | 99.08 94 | 93.01 105 | 99.92 31 | 96.06 157 | 99.77 32 | 99.75 35 |
|
| DeepPCF-MVS | | 96.37 2 | 97.93 67 | 98.48 23 | 96.30 269 | 99.00 114 | 89.54 344 | 97.43 305 | 98.87 69 | 98.16 11 | 99.26 36 | 99.38 37 | 96.12 31 | 99.64 131 | 98.30 49 | 99.77 32 | 99.72 45 |
|
| DeepC-MVS_fast | | 96.70 1 | 98.55 30 | 98.34 35 | 99.18 42 | 99.25 81 | 98.04 59 | 98.50 193 | 98.78 100 | 97.72 17 | 98.92 59 | 99.28 54 | 95.27 62 | 99.82 76 | 97.55 98 | 99.77 32 | 99.69 56 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DELS-MVS | | | 98.40 46 | 98.20 52 | 98.99 57 | 99.00 114 | 97.66 70 | 97.75 283 | 98.89 59 | 97.71 19 | 98.33 97 | 98.97 105 | 94.97 74 | 99.88 56 | 98.42 44 | 99.76 38 | 99.42 111 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MVS_111021_HR | | | 98.47 38 | 98.34 35 | 98.88 68 | 99.22 89 | 97.32 83 | 97.91 264 | 99.58 3 | 97.20 53 | 98.33 97 | 99.00 103 | 95.99 36 | 99.64 131 | 98.05 61 | 99.76 38 | 99.69 56 |
|
| PHI-MVS | | | 98.34 53 | 98.06 58 | 99.18 42 | 99.15 100 | 98.12 57 | 99.04 68 | 99.09 31 | 93.32 247 | 98.83 64 | 99.10 86 | 96.54 21 | 99.83 69 | 97.70 85 | 99.76 38 | 99.59 79 |
|
| DeepC-MVS | | 95.98 3 | 97.88 68 | 97.58 73 | 98.77 71 | 99.25 81 | 96.93 101 | 98.83 125 | 98.75 106 | 96.96 67 | 96.89 170 | 99.50 15 | 90.46 166 | 99.87 58 | 97.84 75 | 99.76 38 | 99.52 86 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_fmvsm_n_1920 | | | 98.87 10 | 99.01 3 | 98.45 95 | 99.42 55 | 96.43 127 | 98.96 90 | 99.36 9 | 98.63 5 | 99.86 2 | 99.51 13 | 95.91 39 | 99.97 1 | 99.72 5 | 99.75 42 | 98.94 176 |
|
| ACMMP_NAP | | | 98.61 18 | 98.30 41 | 99.55 9 | 99.62 30 | 98.95 17 | 98.82 127 | 98.81 86 | 95.80 120 | 99.16 44 | 99.47 20 | 95.37 56 | 99.92 31 | 97.89 70 | 99.75 42 | 99.79 19 |
|
| MVS_111021_LR | | | 98.34 53 | 98.23 48 | 98.67 76 | 99.27 78 | 96.90 103 | 97.95 259 | 99.58 3 | 97.14 58 | 98.44 91 | 99.01 102 | 95.03 73 | 99.62 137 | 97.91 68 | 99.75 42 | 99.50 91 |
|
| 3Dnovator | | 94.51 5 | 97.46 94 | 96.93 108 | 99.07 53 | 97.78 229 | 97.64 71 | 99.35 17 | 99.06 34 | 97.02 64 | 93.75 281 | 99.16 77 | 89.25 189 | 99.92 31 | 97.22 112 | 99.75 42 | 99.64 71 |
|
| fmvsm_l_conf0.5_n | | | 99.07 4 | 99.05 2 | 99.14 47 | 99.41 56 | 97.54 76 | 98.89 104 | 99.31 12 | 98.49 8 | 99.86 2 | 99.42 29 | 96.45 24 | 99.96 4 | 99.86 1 | 99.74 46 | 99.90 3 |
|
| XVS | | | 98.70 14 | 98.49 21 | 99.34 23 | 99.70 22 | 98.35 42 | 99.29 24 | 98.88 62 | 97.40 36 | 98.46 86 | 99.20 67 | 95.90 41 | 99.89 47 | 97.85 73 | 99.74 46 | 99.78 21 |
|
| X-MVStestdata | | | 94.06 291 | 92.30 314 | 99.34 23 | 99.70 22 | 98.35 42 | 99.29 24 | 98.88 62 | 97.40 36 | 98.46 86 | 43.50 405 | 95.90 41 | 99.89 47 | 97.85 73 | 99.74 46 | 99.78 21 |
|
| OPU-MVS | | | | | 99.37 20 | 99.24 87 | 99.05 14 | 99.02 75 | | | | 99.16 77 | 97.81 3 | 99.37 177 | 97.24 110 | 99.73 49 | 99.70 53 |
|
| SF-MVS | | | 98.59 21 | 98.32 40 | 99.41 17 | 99.54 35 | 98.71 22 | 99.04 68 | 98.81 86 | 95.12 155 | 99.32 33 | 99.39 32 | 96.22 26 | 99.84 67 | 97.72 81 | 99.73 49 | 99.67 65 |
|
| TSAR-MVS + MP. | | | 98.78 11 | 98.62 13 | 99.24 36 | 99.69 24 | 98.28 46 | 99.14 51 | 98.66 131 | 96.84 71 | 99.56 20 | 99.31 51 | 96.34 25 | 99.70 119 | 98.32 48 | 99.73 49 | 99.73 42 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| DVP-MVS++ | | | 99.08 3 | 98.89 5 | 99.64 3 | 99.17 94 | 99.23 7 | 99.69 1 | 98.88 62 | 97.32 42 | 99.53 23 | 99.47 20 | 97.81 3 | 99.94 8 | 98.47 38 | 99.72 52 | 99.74 37 |
|
| PC_three_1452 | | | | | | | | | | 95.08 160 | 99.60 19 | 99.16 77 | 97.86 2 | 98.47 283 | 97.52 101 | 99.72 52 | 99.74 37 |
|
| 9.14 | | | | 98.06 58 | | 99.47 47 | | 98.71 156 | 98.82 81 | 94.36 193 | 99.16 44 | 99.29 53 | 96.05 33 | 99.81 81 | 97.00 117 | 99.71 54 | |
|
| MVS_0304 | | | 98.47 38 | 98.22 50 | 99.21 39 | 99.00 114 | 97.80 69 | 98.88 109 | 95.32 376 | 98.86 2 | 98.53 84 | 99.44 27 | 94.38 87 | 99.94 8 | 99.86 1 | 99.70 55 | 99.90 3 |
|
| MSLP-MVS++ | | | 98.56 29 | 98.57 15 | 98.55 83 | 99.26 80 | 96.80 107 | 98.71 156 | 99.05 36 | 97.28 45 | 98.84 62 | 99.28 54 | 96.47 23 | 99.40 173 | 98.52 36 | 99.70 55 | 99.47 100 |
|
| MM | | | 98.51 33 | 98.24 46 | 99.33 26 | 99.12 102 | 98.14 56 | 98.93 96 | 97.02 337 | 98.96 1 | 99.17 41 | 99.47 20 | 91.97 131 | 99.94 8 | 99.85 4 | 99.69 57 | 99.91 2 |
|
| test_vis1_n_1920 | | | 96.71 131 | 96.84 112 | 96.31 268 | 99.11 104 | 89.74 339 | 99.05 65 | 98.58 149 | 98.08 12 | 99.87 1 | 99.37 38 | 78.48 345 | 99.93 25 | 99.29 14 | 99.69 57 | 99.27 129 |
|
| CDPH-MVS | | | 97.94 66 | 97.49 80 | 99.28 32 | 99.47 47 | 98.44 31 | 97.91 264 | 98.67 128 | 92.57 278 | 98.77 67 | 98.85 122 | 95.93 38 | 99.72 113 | 95.56 176 | 99.69 57 | 99.68 61 |
|
| HPM-MVS++ |  | | 98.58 23 | 98.25 44 | 99.55 9 | 99.50 41 | 99.08 11 | 98.72 155 | 98.66 131 | 97.51 30 | 98.15 101 | 98.83 125 | 95.70 45 | 99.92 31 | 97.53 100 | 99.67 60 | 99.66 68 |
|
| APD-MVS_3200maxsize | | | 98.53 32 | 98.33 39 | 99.15 46 | 99.50 41 | 97.92 63 | 99.15 49 | 98.81 86 | 96.24 101 | 99.20 38 | 99.37 38 | 95.30 60 | 99.80 88 | 97.73 80 | 99.67 60 | 99.72 45 |
|
| test_fmvsmvis_n_1920 | | | 98.44 41 | 98.51 18 | 98.23 115 | 98.33 179 | 96.15 142 | 98.97 85 | 99.15 28 | 98.55 7 | 98.45 89 | 99.55 6 | 94.26 91 | 99.97 1 | 99.65 7 | 99.66 62 | 98.57 212 |
|
| test_cas_vis1_n_1920 | | | 97.38 103 | 97.36 89 | 97.45 175 | 98.95 121 | 93.25 279 | 99.00 79 | 98.53 159 | 97.70 20 | 99.77 7 | 99.35 44 | 84.71 289 | 99.85 63 | 98.57 27 | 99.66 62 | 99.26 131 |
|
| CNVR-MVS | | | 98.78 11 | 98.56 16 | 99.45 15 | 99.32 62 | 98.87 19 | 98.47 196 | 98.81 86 | 97.72 17 | 98.76 68 | 99.16 77 | 97.05 13 | 99.78 101 | 98.06 59 | 99.66 62 | 99.69 56 |
|
| SR-MVS-dyc-post | | | 98.54 31 | 98.35 32 | 99.13 48 | 99.49 45 | 97.86 64 | 99.11 56 | 98.80 93 | 96.49 90 | 99.17 41 | 99.35 44 | 95.34 58 | 99.82 76 | 97.72 81 | 99.65 65 | 99.71 49 |
|
| RE-MVS-def | | | | 98.34 35 | | 99.49 45 | 97.86 64 | 99.11 56 | 98.80 93 | 96.49 90 | 99.17 41 | 99.35 44 | 95.29 61 | | 97.72 81 | 99.65 65 | 99.71 49 |
|
| CANet | | | 98.05 62 | 97.76 67 | 98.90 67 | 98.73 138 | 97.27 85 | 98.35 207 | 98.78 100 | 97.37 41 | 97.72 134 | 98.96 110 | 91.53 143 | 99.92 31 | 98.79 23 | 99.65 65 | 99.51 89 |
|
| EI-MVSNet-Vis-set | | | 98.47 38 | 98.39 27 | 98.69 74 | 99.46 49 | 96.49 124 | 98.30 216 | 98.69 120 | 97.21 52 | 98.84 62 | 99.36 42 | 95.41 53 | 99.78 101 | 98.62 26 | 99.65 65 | 99.80 18 |
|
| CSCG | | | 97.85 71 | 97.74 68 | 98.20 118 | 99.67 25 | 95.16 194 | 99.22 37 | 99.32 11 | 93.04 261 | 97.02 163 | 98.92 116 | 95.36 57 | 99.91 39 | 97.43 104 | 99.64 69 | 99.52 86 |
|
| SR-MVS | | | 98.57 27 | 98.35 32 | 99.24 36 | 99.53 36 | 98.18 51 | 99.09 60 | 98.82 81 | 96.58 85 | 99.10 46 | 99.32 49 | 95.39 54 | 99.82 76 | 97.70 85 | 99.63 70 | 99.72 45 |
|
| GST-MVS | | | 98.43 43 | 98.12 55 | 99.34 23 | 99.72 12 | 98.38 35 | 99.09 60 | 98.82 81 | 95.71 125 | 98.73 71 | 99.06 96 | 95.27 62 | 99.93 25 | 97.07 116 | 99.63 70 | 99.72 45 |
|
| QAPM | | | 96.29 149 | 95.40 173 | 98.96 62 | 97.85 225 | 97.60 74 | 99.23 33 | 98.93 50 | 89.76 348 | 93.11 305 | 99.02 98 | 89.11 194 | 99.93 25 | 91.99 285 | 99.62 72 | 99.34 116 |
|
| test_fmvsmconf0.01_n | | | 97.86 69 | 97.54 78 | 98.83 69 | 95.48 358 | 96.83 106 | 98.95 91 | 98.60 141 | 98.58 6 | 98.93 57 | 99.55 6 | 88.57 208 | 99.91 39 | 99.54 11 | 99.61 73 | 99.77 27 |
|
| MCST-MVS | | | 98.65 15 | 98.37 29 | 99.48 13 | 99.60 31 | 98.87 19 | 98.41 205 | 98.68 123 | 97.04 63 | 98.52 85 | 98.80 128 | 96.78 16 | 99.83 69 | 97.93 66 | 99.61 73 | 99.74 37 |
|
| test_prior2 | | | | | | | | 97.80 279 | | 96.12 107 | 97.89 125 | 98.69 141 | 95.96 37 | | 96.89 126 | 99.60 75 | |
|
| jason | | | 97.32 106 | 97.08 102 | 98.06 132 | 97.45 260 | 95.59 171 | 97.87 272 | 97.91 273 | 94.79 174 | 98.55 83 | 98.83 125 | 91.12 153 | 99.23 189 | 97.58 92 | 99.60 75 | 99.34 116 |
| jason: jason. |
| MSP-MVS | | | 98.74 13 | 98.55 17 | 99.29 29 | 99.75 3 | 98.23 47 | 99.26 29 | 98.88 62 | 97.52 29 | 99.41 28 | 98.78 130 | 96.00 35 | 99.79 98 | 97.79 77 | 99.59 77 | 99.85 10 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MVSFormer | | | 97.57 90 | 97.49 80 | 97.84 144 | 98.07 206 | 95.76 167 | 99.47 9 | 98.40 188 | 94.98 164 | 98.79 65 | 98.83 125 | 92.34 114 | 98.41 297 | 96.91 122 | 99.59 77 | 99.34 116 |
|
| lupinMVS | | | 97.44 98 | 97.22 96 | 98.12 127 | 98.07 206 | 95.76 167 | 97.68 288 | 97.76 279 | 94.50 188 | 98.79 65 | 98.61 148 | 92.34 114 | 99.30 182 | 97.58 92 | 99.59 77 | 99.31 122 |
|
| ZD-MVS | | | | | | 99.46 49 | 98.70 23 | | 98.79 98 | 93.21 252 | 98.67 73 | 98.97 105 | 95.70 45 | 99.83 69 | 96.07 154 | 99.58 80 | |
|
| test_fmvs1 | | | 96.42 143 | 96.67 123 | 95.66 294 | 98.82 133 | 88.53 362 | 98.80 136 | 98.20 224 | 96.39 97 | 99.64 17 | 99.20 67 | 80.35 332 | 99.67 126 | 99.04 17 | 99.57 81 | 98.78 189 |
|
| test9_res | | | | | | | | | | | | | | | 96.39 148 | 99.57 81 | 99.69 56 |
|
| train_agg | | | 97.97 63 | 97.52 79 | 99.33 26 | 99.31 64 | 98.50 29 | 97.92 262 | 98.73 111 | 92.98 263 | 97.74 131 | 98.68 142 | 96.20 28 | 99.80 88 | 96.59 140 | 99.57 81 | 99.68 61 |
|
| agg_prior2 | | | | | | | | | | | | | | | 95.87 164 | 99.57 81 | 99.68 61 |
|
| 3Dnovator+ | | 94.38 6 | 97.43 99 | 96.78 116 | 99.38 18 | 97.83 226 | 98.52 28 | 99.37 14 | 98.71 116 | 97.09 62 | 92.99 308 | 99.13 82 | 89.36 185 | 99.89 47 | 96.97 119 | 99.57 81 | 99.71 49 |
|
| LS3D | | | 97.16 114 | 96.66 124 | 98.68 75 | 98.53 161 | 97.19 93 | 98.93 96 | 98.90 57 | 92.83 270 | 95.99 205 | 99.37 38 | 92.12 124 | 99.87 58 | 93.67 238 | 99.57 81 | 98.97 172 |
|
| CS-MVS-test | | | 98.49 35 | 98.50 20 | 98.46 94 | 99.20 92 | 97.05 97 | 99.64 4 | 98.50 169 | 97.45 35 | 98.88 60 | 99.14 81 | 95.25 64 | 99.15 199 | 98.83 22 | 99.56 87 | 99.20 139 |
|
| test12 | | | | | 99.18 42 | 99.16 98 | 98.19 50 | | 98.53 159 | | 98.07 106 | | 95.13 70 | 99.72 113 | | 99.56 87 | 99.63 73 |
|
| CHOSEN 1792x2688 | | | 97.12 116 | 96.80 113 | 98.08 130 | 99.30 68 | 94.56 228 | 98.05 249 | 99.71 1 | 93.57 237 | 97.09 157 | 98.91 117 | 88.17 218 | 99.89 47 | 96.87 131 | 99.56 87 | 99.81 17 |
|
| fmvsm_s_conf0.1_n | | | 98.18 59 | 98.21 51 | 98.11 128 | 98.54 160 | 95.24 191 | 98.87 114 | 99.24 17 | 97.50 31 | 99.70 13 | 99.67 1 | 91.33 147 | 99.89 47 | 99.47 12 | 99.54 90 | 99.21 138 |
|
| EI-MVSNet-UG-set | | | 98.41 45 | 98.34 35 | 98.61 79 | 99.45 52 | 96.32 135 | 98.28 219 | 98.68 123 | 97.17 55 | 98.74 69 | 99.37 38 | 95.25 64 | 99.79 98 | 98.57 27 | 99.54 90 | 99.73 42 |
|
| test222 | | | | | | 99.23 88 | 97.17 94 | 97.40 307 | 98.66 131 | 88.68 362 | 98.05 107 | 98.96 110 | 94.14 93 | | | 99.53 92 | 99.61 75 |
|
| fmvsm_s_conf0.5_n | | | 98.42 44 | 98.51 18 | 98.13 124 | 99.30 68 | 95.25 190 | 98.85 119 | 99.39 7 | 97.94 14 | 99.74 9 | 99.62 3 | 92.59 110 | 99.91 39 | 99.65 7 | 99.52 93 | 99.25 133 |
|
| MG-MVS | | | 97.81 72 | 97.60 72 | 98.44 97 | 99.12 102 | 95.97 152 | 97.75 283 | 98.78 100 | 96.89 70 | 98.46 86 | 99.22 64 | 93.90 97 | 99.68 125 | 94.81 199 | 99.52 93 | 99.67 65 |
|
| test_fmvs1_n | | | 95.90 170 | 95.99 149 | 95.63 295 | 98.67 148 | 88.32 366 | 99.26 29 | 98.22 221 | 96.40 96 | 99.67 14 | 99.26 57 | 73.91 376 | 99.70 119 | 99.02 18 | 99.50 95 | 98.87 180 |
|
| EC-MVSNet | | | 98.21 58 | 98.11 56 | 98.49 91 | 98.34 177 | 97.26 89 | 99.61 5 | 98.43 184 | 96.78 74 | 98.87 61 | 98.84 123 | 93.72 98 | 99.01 223 | 98.91 20 | 99.50 95 | 99.19 143 |
|
| CS-MVS | | | 98.44 41 | 98.49 21 | 98.31 107 | 99.08 107 | 96.73 111 | 99.67 3 | 98.47 175 | 97.17 55 | 98.94 53 | 99.10 86 | 95.73 44 | 99.13 202 | 98.71 24 | 99.49 97 | 99.09 157 |
|
| UGNet | | | 96.78 129 | 96.30 137 | 98.19 120 | 98.24 187 | 95.89 162 | 98.88 109 | 98.93 50 | 97.39 38 | 96.81 174 | 97.84 226 | 82.60 316 | 99.90 45 | 96.53 142 | 99.49 97 | 98.79 186 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| API-MVS | | | 97.41 101 | 97.25 93 | 97.91 141 | 98.70 143 | 96.80 107 | 98.82 127 | 98.69 120 | 94.53 185 | 98.11 103 | 98.28 187 | 94.50 84 | 99.57 142 | 94.12 223 | 99.49 97 | 97.37 254 |
|
| 新几何1 | | | | | 99.16 45 | 99.34 57 | 98.01 61 | | 98.69 120 | 90.06 343 | 98.13 102 | 98.95 112 | 94.60 79 | 99.89 47 | 91.97 287 | 99.47 100 | 99.59 79 |
|
| 旧先验1 | | | | | | 99.29 73 | 97.48 78 | | 98.70 119 | | | 99.09 92 | 95.56 48 | | | 99.47 100 | 99.61 75 |
|
| OpenMVS |  | 93.04 13 | 95.83 174 | 95.00 197 | 98.32 106 | 97.18 281 | 97.32 83 | 99.21 40 | 98.97 42 | 89.96 344 | 91.14 341 | 99.05 97 | 86.64 250 | 99.92 31 | 93.38 244 | 99.47 100 | 97.73 241 |
|
| 原ACMM1 | | | | | 98.65 77 | 99.32 62 | 96.62 114 | | 98.67 128 | 93.27 251 | 97.81 126 | 98.97 105 | 95.18 67 | 99.83 69 | 93.84 232 | 99.46 103 | 99.50 91 |
|
| testdata | | | | | 98.26 112 | 99.20 92 | 95.36 183 | | 98.68 123 | 91.89 300 | 98.60 81 | 99.10 86 | 94.44 86 | 99.82 76 | 94.27 218 | 99.44 104 | 99.58 83 |
|
| fmvsm_s_conf0.5_n_a | | | 98.38 47 | 98.42 25 | 98.27 109 | 99.09 106 | 95.41 180 | 98.86 117 | 99.37 8 | 97.69 21 | 99.78 6 | 99.61 4 | 92.38 113 | 99.91 39 | 99.58 10 | 99.43 105 | 99.49 96 |
|
| DP-MVS Recon | | | 97.86 69 | 97.46 83 | 99.06 54 | 99.53 36 | 98.35 42 | 98.33 209 | 98.89 59 | 92.62 275 | 98.05 107 | 98.94 113 | 95.34 58 | 99.65 129 | 96.04 158 | 99.42 106 | 99.19 143 |
|
| fmvsm_s_conf0.1_n_a | | | 98.08 60 | 98.04 60 | 98.21 116 | 97.66 241 | 95.39 181 | 98.89 104 | 99.17 26 | 97.24 50 | 99.76 8 | 99.67 1 | 91.13 152 | 99.88 56 | 99.39 13 | 99.41 107 | 99.35 115 |
|
| NCCC | | | 98.61 18 | 98.35 32 | 99.38 18 | 99.28 77 | 98.61 26 | 98.45 197 | 98.76 104 | 97.82 16 | 98.45 89 | 98.93 114 | 96.65 19 | 99.83 69 | 97.38 107 | 99.41 107 | 99.71 49 |
|
| TAPA-MVS | | 93.98 7 | 95.35 203 | 94.56 218 | 97.74 155 | 99.13 101 | 94.83 213 | 98.33 209 | 98.64 136 | 86.62 370 | 96.29 197 | 98.61 148 | 94.00 96 | 99.29 183 | 80.00 384 | 99.41 107 | 99.09 157 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| test_vis1_n | | | 95.47 191 | 95.13 190 | 96.49 252 | 97.77 230 | 90.41 330 | 99.27 28 | 98.11 244 | 96.58 85 | 99.66 15 | 99.18 73 | 67.00 389 | 99.62 137 | 99.21 15 | 99.40 110 | 99.44 107 |
|
| PVSNet_Blended | | | 97.38 103 | 97.12 99 | 98.14 121 | 99.25 81 | 95.35 185 | 97.28 320 | 99.26 15 | 93.13 257 | 97.94 120 | 98.21 195 | 92.74 108 | 99.81 81 | 96.88 128 | 99.40 110 | 99.27 129 |
|
| MS-PatchMatch | | | 93.84 295 | 93.63 281 | 94.46 337 | 96.18 333 | 89.45 345 | 97.76 282 | 98.27 214 | 92.23 291 | 92.13 331 | 97.49 256 | 79.50 336 | 98.69 261 | 89.75 325 | 99.38 112 | 95.25 362 |
|
| CANet_DTU | | | 96.96 121 | 96.55 127 | 98.21 116 | 98.17 200 | 96.07 145 | 97.98 257 | 98.21 222 | 97.24 50 | 97.13 156 | 98.93 114 | 86.88 247 | 99.91 39 | 95.00 193 | 99.37 113 | 98.66 203 |
|
| DPM-MVS | | | 97.55 92 | 96.99 106 | 99.23 38 | 99.04 109 | 98.55 27 | 97.17 330 | 98.35 199 | 94.85 173 | 97.93 122 | 98.58 153 | 95.07 72 | 99.71 118 | 92.60 266 | 99.34 114 | 99.43 109 |
|
| MVP-Stereo | | | 94.28 274 | 93.92 258 | 95.35 306 | 94.95 367 | 92.60 291 | 97.97 258 | 97.65 284 | 91.61 308 | 90.68 346 | 97.09 286 | 86.32 257 | 98.42 289 | 89.70 327 | 99.34 114 | 95.02 369 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| CNLPA | | | 97.45 97 | 97.03 104 | 98.73 72 | 99.05 108 | 97.44 82 | 98.07 247 | 98.53 159 | 95.32 145 | 96.80 175 | 98.53 157 | 93.32 101 | 99.72 113 | 94.31 217 | 99.31 116 | 99.02 167 |
|
| AdaColmap |  | | 97.15 115 | 96.70 120 | 98.48 92 | 99.16 98 | 96.69 113 | 98.01 253 | 98.89 59 | 94.44 191 | 96.83 171 | 98.68 142 | 90.69 163 | 99.76 107 | 94.36 213 | 99.29 117 | 98.98 171 |
|
| Vis-MVSNet |  | | 97.42 100 | 97.11 100 | 98.34 105 | 98.66 149 | 96.23 138 | 99.22 37 | 99.00 39 | 96.63 84 | 98.04 109 | 99.21 65 | 88.05 224 | 99.35 178 | 96.01 160 | 99.21 118 | 99.45 106 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| EIA-MVS | | | 97.75 74 | 97.58 73 | 98.27 109 | 98.38 169 | 96.44 126 | 99.01 77 | 98.60 141 | 95.88 117 | 97.26 152 | 97.53 255 | 94.97 74 | 99.33 180 | 97.38 107 | 99.20 119 | 99.05 165 |
|
| EPNet | | | 97.28 107 | 96.87 111 | 98.51 88 | 94.98 366 | 96.14 143 | 98.90 100 | 97.02 337 | 98.28 10 | 95.99 205 | 99.11 84 | 91.36 145 | 99.89 47 | 96.98 118 | 99.19 120 | 99.50 91 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PS-MVSNAJ | | | 97.73 75 | 97.77 66 | 97.62 168 | 98.68 147 | 95.58 172 | 97.34 315 | 98.51 164 | 97.29 44 | 98.66 77 | 97.88 222 | 94.51 81 | 99.90 45 | 97.87 72 | 99.17 121 | 97.39 252 |
|
| PVSNet_Blended_VisFu | | | 97.70 78 | 97.46 83 | 98.44 97 | 99.27 78 | 95.91 160 | 98.63 173 | 99.16 27 | 94.48 189 | 97.67 137 | 98.88 119 | 92.80 107 | 99.91 39 | 97.11 114 | 99.12 122 | 99.50 91 |
|
| BH-RMVSNet | | | 95.92 169 | 95.32 182 | 97.69 160 | 98.32 182 | 94.64 220 | 98.19 230 | 97.45 309 | 94.56 183 | 96.03 203 | 98.61 148 | 85.02 280 | 99.12 204 | 90.68 311 | 99.06 123 | 99.30 125 |
|
| test2506 | | | 94.44 263 | 93.91 260 | 96.04 277 | 99.02 111 | 88.99 354 | 99.06 63 | 79.47 412 | 96.96 67 | 98.36 94 | 99.26 57 | 77.21 357 | 99.52 156 | 96.78 137 | 99.04 124 | 99.59 79 |
|
| test1111 | | | 95.94 167 | 95.78 156 | 96.41 261 | 98.99 118 | 90.12 334 | 99.04 68 | 92.45 398 | 96.99 66 | 98.03 110 | 99.27 56 | 81.40 321 | 99.48 164 | 96.87 131 | 99.04 124 | 99.63 73 |
|
| ECVR-MVS |  | | 95.95 165 | 95.71 163 | 96.65 229 | 99.02 111 | 90.86 320 | 99.03 72 | 91.80 399 | 96.96 67 | 98.10 104 | 99.26 57 | 81.31 322 | 99.51 157 | 96.90 125 | 99.04 124 | 99.59 79 |
|
| PVSNet | | 91.96 18 | 96.35 147 | 96.15 142 | 96.96 209 | 99.17 94 | 92.05 299 | 96.08 368 | 98.68 123 | 93.69 228 | 97.75 130 | 97.80 232 | 88.86 203 | 99.69 124 | 94.26 219 | 99.01 127 | 99.15 150 |
|
| PatchMatch-RL | | | 96.59 135 | 96.03 147 | 98.27 109 | 99.31 64 | 96.51 123 | 97.91 264 | 99.06 34 | 93.72 224 | 96.92 168 | 98.06 205 | 88.50 213 | 99.65 129 | 91.77 291 | 99.00 128 | 98.66 203 |
|
| PCF-MVS | | 93.45 11 | 94.68 241 | 93.43 291 | 98.42 101 | 98.62 154 | 96.77 109 | 95.48 379 | 98.20 224 | 84.63 383 | 93.34 296 | 98.32 183 | 88.55 211 | 99.81 81 | 84.80 370 | 98.96 129 | 98.68 199 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MAR-MVS | | | 96.91 123 | 96.40 133 | 98.45 95 | 98.69 146 | 96.90 103 | 98.66 168 | 98.68 123 | 92.40 285 | 97.07 160 | 97.96 215 | 91.54 142 | 99.75 109 | 93.68 236 | 98.92 130 | 98.69 198 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| F-COLMAP | | | 97.09 118 | 96.80 113 | 97.97 137 | 99.45 52 | 94.95 207 | 98.55 186 | 98.62 140 | 93.02 262 | 96.17 200 | 98.58 153 | 94.01 95 | 99.81 81 | 93.95 228 | 98.90 131 | 99.14 152 |
|
| ETV-MVS | | | 97.96 64 | 97.81 65 | 98.40 102 | 98.42 166 | 97.27 85 | 98.73 151 | 98.55 155 | 96.84 71 | 98.38 93 | 97.44 261 | 95.39 54 | 99.35 178 | 97.62 89 | 98.89 132 | 98.58 211 |
|
| DP-MVS | | | 96.59 135 | 95.93 151 | 98.57 81 | 99.34 57 | 96.19 141 | 98.70 160 | 98.39 190 | 89.45 354 | 94.52 238 | 99.35 44 | 91.85 132 | 99.85 63 | 92.89 262 | 98.88 133 | 99.68 61 |
|
| OMC-MVS | | | 97.55 92 | 97.34 90 | 98.20 118 | 99.33 59 | 95.92 159 | 98.28 219 | 98.59 144 | 95.52 133 | 97.97 117 | 99.10 86 | 93.28 103 | 99.49 159 | 95.09 190 | 98.88 133 | 99.19 143 |
|
| PAPM_NR | | | 97.46 94 | 97.11 100 | 98.50 89 | 99.50 41 | 96.41 130 | 98.63 173 | 98.60 141 | 95.18 152 | 97.06 161 | 98.06 205 | 94.26 91 | 99.57 142 | 93.80 234 | 98.87 135 | 99.52 86 |
|
| ACMMP |  | | 98.23 57 | 97.95 63 | 99.09 52 | 99.74 7 | 97.62 73 | 99.03 72 | 99.41 6 | 95.98 110 | 97.60 145 | 99.36 42 | 94.45 85 | 99.93 25 | 97.14 113 | 98.85 136 | 99.70 53 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| UA-Net | | | 97.96 64 | 97.62 71 | 98.98 59 | 98.86 129 | 97.47 80 | 98.89 104 | 99.08 32 | 96.67 82 | 98.72 72 | 99.54 8 | 93.15 104 | 99.81 81 | 94.87 195 | 98.83 137 | 99.65 69 |
|
| MSDG | | | 95.93 168 | 95.30 184 | 97.83 145 | 98.90 124 | 95.36 183 | 96.83 355 | 98.37 196 | 91.32 318 | 94.43 245 | 98.73 138 | 90.27 170 | 99.60 139 | 90.05 320 | 98.82 138 | 98.52 213 |
|
| EPNet_dtu | | | 95.21 211 | 94.95 202 | 95.99 279 | 96.17 334 | 90.45 329 | 98.16 236 | 97.27 320 | 96.77 75 | 93.14 304 | 98.33 182 | 90.34 168 | 98.42 289 | 85.57 362 | 98.81 139 | 99.09 157 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PLC |  | 95.07 4 | 97.20 112 | 96.78 116 | 98.44 97 | 99.29 73 | 96.31 137 | 98.14 237 | 98.76 104 | 92.41 284 | 96.39 195 | 98.31 184 | 94.92 76 | 99.78 101 | 94.06 226 | 98.77 140 | 99.23 135 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| xiu_mvs_v1_base_debu | | | 97.60 86 | 97.56 75 | 97.72 156 | 98.35 172 | 95.98 147 | 97.86 273 | 98.51 164 | 97.13 59 | 99.01 49 | 98.40 171 | 91.56 139 | 99.80 88 | 98.53 30 | 98.68 141 | 97.37 254 |
|
| xiu_mvs_v1_base | | | 97.60 86 | 97.56 75 | 97.72 156 | 98.35 172 | 95.98 147 | 97.86 273 | 98.51 164 | 97.13 59 | 99.01 49 | 98.40 171 | 91.56 139 | 99.80 88 | 98.53 30 | 98.68 141 | 97.37 254 |
|
| xiu_mvs_v1_base_debi | | | 97.60 86 | 97.56 75 | 97.72 156 | 98.35 172 | 95.98 147 | 97.86 273 | 98.51 164 | 97.13 59 | 99.01 49 | 98.40 171 | 91.56 139 | 99.80 88 | 98.53 30 | 98.68 141 | 97.37 254 |
|
| MVS-HIRNet | | | 89.46 345 | 88.40 345 | 92.64 356 | 97.58 246 | 82.15 388 | 94.16 392 | 93.05 397 | 75.73 394 | 90.90 343 | 82.52 397 | 79.42 337 | 98.33 305 | 83.53 375 | 98.68 141 | 97.43 249 |
|
| xiu_mvs_v2_base | | | 97.66 82 | 97.70 69 | 97.56 172 | 98.61 155 | 95.46 178 | 97.44 303 | 98.46 176 | 97.15 57 | 98.65 78 | 98.15 199 | 94.33 88 | 99.80 88 | 97.84 75 | 98.66 145 | 97.41 250 |
|
| mvsany_test1 | | | 97.69 79 | 97.70 69 | 97.66 166 | 98.24 187 | 94.18 244 | 97.53 299 | 97.53 299 | 95.52 133 | 99.66 15 | 99.51 13 | 94.30 89 | 99.56 145 | 98.38 45 | 98.62 146 | 99.23 135 |
|
| Vis-MVSNet (Re-imp) | | | 96.87 125 | 96.55 127 | 97.83 145 | 98.73 138 | 95.46 178 | 99.20 42 | 98.30 211 | 94.96 166 | 96.60 183 | 98.87 120 | 90.05 172 | 98.59 271 | 93.67 238 | 98.60 147 | 99.46 104 |
|
| IS-MVSNet | | | 97.22 109 | 96.88 110 | 98.25 113 | 98.85 131 | 96.36 133 | 99.19 44 | 97.97 266 | 95.39 139 | 97.23 153 | 98.99 104 | 91.11 154 | 98.93 235 | 94.60 206 | 98.59 148 | 99.47 100 |
|
| PAPR | | | 96.84 127 | 96.24 140 | 98.65 77 | 98.72 142 | 96.92 102 | 97.36 313 | 98.57 151 | 93.33 246 | 96.67 178 | 97.57 252 | 94.30 89 | 99.56 145 | 91.05 306 | 98.59 148 | 99.47 100 |
|
| TSAR-MVS + GP. | | | 98.38 47 | 98.24 46 | 98.81 70 | 99.22 89 | 97.25 90 | 98.11 242 | 98.29 213 | 97.19 54 | 98.99 52 | 99.02 98 | 96.22 26 | 99.67 126 | 98.52 36 | 98.56 150 | 99.51 89 |
|
| diffmvs |  | | 97.58 89 | 97.40 87 | 98.13 124 | 98.32 182 | 95.81 166 | 98.06 248 | 98.37 196 | 96.20 103 | 98.74 69 | 98.89 118 | 91.31 149 | 99.25 186 | 98.16 55 | 98.52 151 | 99.34 116 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| BH-untuned | | | 95.95 165 | 95.72 160 | 96.65 229 | 98.55 159 | 92.26 294 | 98.23 223 | 97.79 278 | 93.73 222 | 94.62 235 | 98.01 210 | 88.97 201 | 99.00 224 | 93.04 255 | 98.51 152 | 98.68 199 |
|
| test-LLR | | | 95.10 217 | 94.87 206 | 95.80 289 | 96.77 304 | 89.70 340 | 96.91 345 | 95.21 377 | 95.11 156 | 94.83 231 | 95.72 356 | 87.71 231 | 98.97 225 | 93.06 253 | 98.50 153 | 98.72 194 |
|
| TESTMET0.1,1 | | | 94.18 281 | 93.69 279 | 95.63 295 | 96.92 295 | 89.12 350 | 96.91 345 | 94.78 382 | 93.17 254 | 94.88 228 | 96.45 332 | 78.52 344 | 98.92 236 | 93.09 252 | 98.50 153 | 98.85 181 |
|
| test-mter | | | 94.08 289 | 93.51 287 | 95.80 289 | 96.77 304 | 89.70 340 | 96.91 345 | 95.21 377 | 92.89 267 | 94.83 231 | 95.72 356 | 77.69 352 | 98.97 225 | 93.06 253 | 98.50 153 | 98.72 194 |
|
| 1314 | | | 96.25 154 | 95.73 159 | 97.79 149 | 97.13 284 | 95.55 175 | 98.19 230 | 98.59 144 | 93.47 241 | 92.03 333 | 97.82 230 | 91.33 147 | 99.49 159 | 94.62 205 | 98.44 156 | 98.32 224 |
|
| LCM-MVSNet-Re | | | 95.22 210 | 95.32 182 | 94.91 318 | 98.18 197 | 87.85 372 | 98.75 144 | 95.66 373 | 95.11 156 | 88.96 359 | 96.85 315 | 90.26 171 | 97.65 350 | 95.65 174 | 98.44 156 | 99.22 137 |
|
| EPP-MVSNet | | | 97.46 94 | 97.28 92 | 97.99 136 | 98.64 152 | 95.38 182 | 99.33 22 | 98.31 205 | 93.61 236 | 97.19 154 | 99.07 95 | 94.05 94 | 99.23 189 | 96.89 126 | 98.43 158 | 99.37 114 |
|
| casdiffmvs_mvg |  | | 97.72 76 | 97.48 82 | 98.44 97 | 98.42 166 | 96.59 119 | 98.92 98 | 98.44 180 | 96.20 103 | 97.76 128 | 99.20 67 | 91.66 137 | 99.23 189 | 98.27 53 | 98.41 159 | 99.49 96 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| casdiffmvs |  | | 97.63 84 | 97.41 86 | 98.28 108 | 98.33 179 | 96.14 143 | 98.82 127 | 98.32 203 | 96.38 98 | 97.95 118 | 99.21 65 | 91.23 151 | 99.23 189 | 98.12 56 | 98.37 160 | 99.48 98 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PatchmatchNet |  | | 95.71 180 | 95.52 171 | 96.29 270 | 97.58 246 | 90.72 324 | 96.84 354 | 97.52 300 | 94.06 200 | 97.08 158 | 96.96 306 | 89.24 190 | 98.90 241 | 92.03 284 | 98.37 160 | 99.26 131 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MVS | | | 94.67 244 | 93.54 286 | 98.08 130 | 96.88 299 | 96.56 121 | 98.19 230 | 98.50 169 | 78.05 392 | 92.69 316 | 98.02 208 | 91.07 156 | 99.63 134 | 90.09 317 | 98.36 162 | 98.04 232 |
|
| FE-MVS | | | 95.62 186 | 94.90 204 | 97.78 150 | 98.37 171 | 94.92 208 | 97.17 330 | 97.38 315 | 90.95 329 | 97.73 133 | 97.70 238 | 85.32 277 | 99.63 134 | 91.18 299 | 98.33 163 | 98.79 186 |
|
| gg-mvs-nofinetune | | | 92.21 321 | 90.58 329 | 97.13 197 | 96.75 307 | 95.09 198 | 95.85 373 | 89.40 405 | 85.43 380 | 94.50 239 | 81.98 398 | 80.80 329 | 98.40 303 | 92.16 278 | 98.33 163 | 97.88 235 |
|
| SCA | | | 95.46 192 | 95.13 190 | 96.46 258 | 97.67 239 | 91.29 313 | 97.33 316 | 97.60 288 | 94.68 178 | 96.92 168 | 97.10 282 | 83.97 306 | 98.89 242 | 92.59 268 | 98.32 165 | 99.20 139 |
|
| baseline | | | 97.64 83 | 97.44 85 | 98.25 113 | 98.35 172 | 96.20 139 | 99.00 79 | 98.32 203 | 96.33 100 | 98.03 110 | 99.17 74 | 91.35 146 | 99.16 196 | 98.10 57 | 98.29 166 | 99.39 112 |
|
| MVS_Test | | | 97.28 107 | 97.00 105 | 98.13 124 | 98.33 179 | 95.97 152 | 98.74 147 | 98.07 254 | 94.27 195 | 98.44 91 | 98.07 204 | 92.48 111 | 99.26 185 | 96.43 146 | 98.19 167 | 99.16 149 |
|
| sss | | | 97.39 102 | 96.98 107 | 98.61 79 | 98.60 156 | 96.61 116 | 98.22 224 | 98.93 50 | 93.97 207 | 98.01 115 | 98.48 162 | 91.98 129 | 99.85 63 | 96.45 145 | 98.15 168 | 99.39 112 |
|
| Patchmatch-test | | | 94.42 264 | 93.68 280 | 96.63 233 | 97.60 245 | 91.76 303 | 94.83 385 | 97.49 304 | 89.45 354 | 94.14 261 | 97.10 282 | 88.99 197 | 98.83 251 | 85.37 365 | 98.13 169 | 99.29 127 |
|
| COLMAP_ROB |  | 93.27 12 | 95.33 205 | 94.87 206 | 96.71 224 | 99.29 73 | 93.24 280 | 98.58 179 | 98.11 244 | 89.92 345 | 93.57 285 | 99.10 86 | 86.37 256 | 99.79 98 | 90.78 309 | 98.10 170 | 97.09 259 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| GeoE | | | 96.58 137 | 96.07 144 | 98.10 129 | 98.35 172 | 95.89 162 | 99.34 18 | 98.12 241 | 93.12 258 | 96.09 201 | 98.87 120 | 89.71 178 | 98.97 225 | 92.95 258 | 98.08 171 | 99.43 109 |
|
| FA-MVS(test-final) | | | 96.41 146 | 95.94 150 | 97.82 147 | 98.21 191 | 95.20 193 | 97.80 279 | 97.58 289 | 93.21 252 | 97.36 150 | 97.70 238 | 89.47 182 | 99.56 145 | 94.12 223 | 97.99 172 | 98.71 197 |
|
| Effi-MVS+-dtu | | | 96.29 149 | 96.56 126 | 95.51 299 | 97.89 224 | 90.22 333 | 98.80 136 | 98.10 247 | 96.57 87 | 96.45 193 | 96.66 323 | 90.81 159 | 98.91 238 | 95.72 170 | 97.99 172 | 97.40 251 |
|
| Fast-Effi-MVS+ | | | 96.28 151 | 95.70 165 | 98.03 133 | 98.29 184 | 95.97 152 | 98.58 179 | 98.25 219 | 91.74 303 | 95.29 221 | 97.23 276 | 91.03 157 | 99.15 199 | 92.90 260 | 97.96 174 | 98.97 172 |
|
| mvs_anonymous | | | 96.70 132 | 96.53 129 | 97.18 192 | 98.19 195 | 93.78 253 | 98.31 214 | 98.19 226 | 94.01 204 | 94.47 240 | 98.27 190 | 92.08 127 | 98.46 284 | 97.39 106 | 97.91 175 | 99.31 122 |
|
| PMMVS | | | 96.60 134 | 96.33 135 | 97.41 179 | 97.90 223 | 93.93 249 | 97.35 314 | 98.41 186 | 92.84 269 | 97.76 128 | 97.45 260 | 91.10 155 | 99.20 193 | 96.26 150 | 97.91 175 | 99.11 155 |
|
| AllTest | | | 95.24 209 | 94.65 214 | 96.99 205 | 99.25 81 | 93.21 281 | 98.59 177 | 98.18 229 | 91.36 314 | 93.52 287 | 98.77 132 | 84.67 290 | 99.72 113 | 89.70 327 | 97.87 177 | 98.02 233 |
|
| TestCases | | | | | 96.99 205 | 99.25 81 | 93.21 281 | | 98.18 229 | 91.36 314 | 93.52 287 | 98.77 132 | 84.67 290 | 99.72 113 | 89.70 327 | 97.87 177 | 98.02 233 |
|
| TAMVS | | | 97.02 119 | 96.79 115 | 97.70 159 | 98.06 209 | 95.31 188 | 98.52 188 | 98.31 205 | 93.95 208 | 97.05 162 | 98.61 148 | 93.49 100 | 98.52 278 | 95.33 182 | 97.81 179 | 99.29 127 |
|
| Effi-MVS+ | | | 97.12 116 | 96.69 121 | 98.39 103 | 98.19 195 | 96.72 112 | 97.37 311 | 98.43 184 | 93.71 225 | 97.65 141 | 98.02 208 | 92.20 122 | 99.25 186 | 96.87 131 | 97.79 180 | 99.19 143 |
|
| Fast-Effi-MVS+-dtu | | | 95.87 171 | 95.85 153 | 95.91 284 | 97.74 234 | 91.74 305 | 98.69 162 | 98.15 237 | 95.56 131 | 94.92 227 | 97.68 243 | 88.98 200 | 98.79 255 | 93.19 250 | 97.78 181 | 97.20 258 |
|
| DSMNet-mixed | | | 92.52 319 | 92.58 309 | 92.33 359 | 94.15 375 | 82.65 387 | 98.30 216 | 94.26 388 | 89.08 359 | 92.65 317 | 95.73 354 | 85.01 281 | 95.76 383 | 86.24 357 | 97.76 182 | 98.59 209 |
|
| CDS-MVSNet | | | 96.99 120 | 96.69 121 | 97.90 142 | 98.05 210 | 95.98 147 | 98.20 227 | 98.33 202 | 93.67 232 | 96.95 164 | 98.49 161 | 93.54 99 | 98.42 289 | 95.24 188 | 97.74 183 | 99.31 122 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| thisisatest0515 | | | 95.61 189 | 94.89 205 | 97.76 153 | 98.15 202 | 95.15 196 | 96.77 356 | 94.41 385 | 92.95 265 | 97.18 155 | 97.43 262 | 84.78 286 | 99.45 168 | 94.63 203 | 97.73 184 | 98.68 199 |
|
| thisisatest0530 | | | 96.01 161 | 95.36 178 | 97.97 137 | 98.38 169 | 95.52 176 | 98.88 109 | 94.19 389 | 94.04 201 | 97.64 142 | 98.31 184 | 83.82 311 | 99.46 167 | 95.29 185 | 97.70 185 | 98.93 177 |
|
| BH-w/o | | | 95.38 199 | 95.08 194 | 96.26 271 | 98.34 177 | 91.79 302 | 97.70 287 | 97.43 311 | 92.87 268 | 94.24 256 | 97.22 277 | 88.66 206 | 98.84 248 | 91.55 295 | 97.70 185 | 98.16 230 |
|
| PAPM | | | 94.95 229 | 94.00 253 | 97.78 150 | 97.04 288 | 95.65 170 | 96.03 371 | 98.25 219 | 91.23 323 | 94.19 259 | 97.80 232 | 91.27 150 | 98.86 247 | 82.61 378 | 97.61 187 | 98.84 183 |
|
| tttt0517 | | | 96.07 159 | 95.51 172 | 97.78 150 | 98.41 168 | 94.84 211 | 99.28 26 | 94.33 387 | 94.26 196 | 97.64 142 | 98.64 146 | 84.05 304 | 99.47 166 | 95.34 181 | 97.60 188 | 99.03 166 |
|
| HyFIR lowres test | | | 96.90 124 | 96.49 130 | 98.14 121 | 99.33 59 | 95.56 173 | 97.38 309 | 99.65 2 | 92.34 286 | 97.61 144 | 98.20 196 | 89.29 187 | 99.10 210 | 96.97 119 | 97.60 188 | 99.77 27 |
|
| UWE-MVS | | | 94.30 270 | 93.89 263 | 95.53 298 | 97.83 226 | 88.95 355 | 97.52 301 | 93.25 393 | 94.44 191 | 96.63 180 | 97.07 289 | 78.70 343 | 99.28 184 | 91.99 285 | 97.56 190 | 98.36 221 |
|
| CVMVSNet | | | 95.43 195 | 96.04 146 | 93.57 345 | 97.93 221 | 83.62 383 | 98.12 240 | 98.59 144 | 95.68 126 | 96.56 184 | 99.02 98 | 87.51 235 | 97.51 357 | 93.56 242 | 97.44 191 | 99.60 77 |
|
| MDTV_nov1_ep13 | | | | 95.40 173 | | 97.48 255 | 88.34 365 | 96.85 353 | 97.29 318 | 93.74 221 | 97.48 149 | 97.26 272 | 89.18 191 | 99.05 214 | 91.92 288 | 97.43 192 | |
|
| baseline2 | | | 95.11 216 | 94.52 220 | 96.87 216 | 96.65 313 | 93.56 262 | 98.27 221 | 94.10 391 | 93.45 242 | 92.02 334 | 97.43 262 | 87.45 239 | 99.19 194 | 93.88 231 | 97.41 193 | 97.87 236 |
|
| EPMVS | | | 94.99 224 | 94.48 222 | 96.52 250 | 97.22 275 | 91.75 304 | 97.23 322 | 91.66 400 | 94.11 198 | 97.28 151 | 96.81 317 | 85.70 267 | 98.84 248 | 93.04 255 | 97.28 194 | 98.97 172 |
|
| LFMVS | | | 95.86 172 | 94.98 199 | 98.47 93 | 98.87 128 | 96.32 135 | 98.84 123 | 96.02 366 | 93.40 244 | 98.62 79 | 99.20 67 | 74.99 370 | 99.63 134 | 97.72 81 | 97.20 195 | 99.46 104 |
|
| testing3 | | | 93.19 309 | 92.48 311 | 95.30 308 | 98.07 206 | 92.27 293 | 98.64 170 | 97.17 325 | 93.94 210 | 93.98 269 | 97.04 296 | 67.97 386 | 96.01 381 | 88.40 343 | 97.14 196 | 97.63 245 |
|
| ADS-MVSNet2 | | | 94.58 250 | 94.40 230 | 95.11 313 | 98.00 212 | 88.74 358 | 96.04 369 | 97.30 317 | 90.15 341 | 96.47 191 | 96.64 326 | 87.89 227 | 97.56 355 | 90.08 318 | 97.06 197 | 99.02 167 |
|
| ADS-MVSNet | | | 95.00 222 | 94.45 226 | 96.63 233 | 98.00 212 | 91.91 301 | 96.04 369 | 97.74 281 | 90.15 341 | 96.47 191 | 96.64 326 | 87.89 227 | 98.96 229 | 90.08 318 | 97.06 197 | 99.02 167 |
|
| Syy-MVS | | | 92.55 317 | 92.61 308 | 92.38 358 | 97.39 266 | 83.41 384 | 97.91 264 | 97.46 305 | 93.16 255 | 93.42 293 | 95.37 362 | 84.75 287 | 96.12 379 | 77.00 392 | 96.99 199 | 97.60 246 |
|
| myMVS_eth3d | | | 92.73 315 | 92.01 317 | 94.89 320 | 97.39 266 | 90.94 318 | 97.91 264 | 97.46 305 | 93.16 255 | 93.42 293 | 95.37 362 | 68.09 385 | 96.12 379 | 88.34 344 | 96.99 199 | 97.60 246 |
|
| GG-mvs-BLEND | | | | | 96.59 239 | 96.34 328 | 94.98 204 | 96.51 365 | 88.58 406 | | 93.10 306 | 94.34 376 | 80.34 333 | 98.05 329 | 89.53 330 | 96.99 199 | 96.74 293 |
|
| cascas | | | 94.63 246 | 93.86 265 | 96.93 211 | 96.91 297 | 94.27 239 | 96.00 372 | 98.51 164 | 85.55 379 | 94.54 237 | 96.23 338 | 84.20 302 | 98.87 245 | 95.80 167 | 96.98 202 | 97.66 244 |
|
| WB-MVSnew | | | 94.19 278 | 94.04 248 | 94.66 329 | 96.82 303 | 92.14 295 | 97.86 273 | 95.96 369 | 93.50 239 | 95.64 213 | 96.77 319 | 88.06 223 | 97.99 334 | 84.87 367 | 96.86 203 | 93.85 384 |
|
| WTY-MVS | | | 97.37 105 | 96.92 109 | 98.72 73 | 98.86 129 | 96.89 105 | 98.31 214 | 98.71 116 | 95.26 148 | 97.67 137 | 98.56 156 | 92.21 121 | 99.78 101 | 95.89 162 | 96.85 204 | 99.48 98 |
|
| VDD-MVS | | | 95.82 175 | 95.23 186 | 97.61 169 | 98.84 132 | 93.98 248 | 98.68 163 | 97.40 313 | 95.02 162 | 97.95 118 | 99.34 48 | 74.37 375 | 99.78 101 | 98.64 25 | 96.80 205 | 99.08 161 |
|
| test_yl | | | 97.22 109 | 96.78 116 | 98.54 85 | 98.73 138 | 96.60 117 | 98.45 197 | 98.31 205 | 94.70 175 | 98.02 112 | 98.42 169 | 90.80 160 | 99.70 119 | 96.81 134 | 96.79 206 | 99.34 116 |
|
| DCV-MVSNet | | | 97.22 109 | 96.78 116 | 98.54 85 | 98.73 138 | 96.60 117 | 98.45 197 | 98.31 205 | 94.70 175 | 98.02 112 | 98.42 169 | 90.80 160 | 99.70 119 | 96.81 134 | 96.79 206 | 99.34 116 |
|
| PatchT | | | 93.06 312 | 91.97 318 | 96.35 265 | 96.69 310 | 92.67 290 | 94.48 389 | 97.08 329 | 86.62 370 | 97.08 158 | 92.23 389 | 87.94 226 | 97.90 340 | 78.89 388 | 96.69 208 | 98.49 215 |
|
| VNet | | | 97.79 73 | 97.40 87 | 98.96 62 | 98.88 126 | 97.55 75 | 98.63 173 | 98.93 50 | 96.74 78 | 99.02 48 | 98.84 123 | 90.33 169 | 99.83 69 | 98.53 30 | 96.66 209 | 99.50 91 |
|
| CR-MVSNet | | | 94.76 238 | 94.15 242 | 96.59 239 | 97.00 289 | 93.43 268 | 94.96 381 | 97.56 292 | 92.46 279 | 96.93 166 | 96.24 336 | 88.15 219 | 97.88 344 | 87.38 351 | 96.65 210 | 98.46 216 |
|
| RPMNet | | | 92.81 314 | 91.34 323 | 97.24 187 | 97.00 289 | 93.43 268 | 94.96 381 | 98.80 93 | 82.27 387 | 96.93 166 | 92.12 390 | 86.98 245 | 99.82 76 | 76.32 393 | 96.65 210 | 98.46 216 |
|
| VDDNet | | | 95.36 202 | 94.53 219 | 97.86 143 | 98.10 205 | 95.13 197 | 98.85 119 | 97.75 280 | 90.46 335 | 98.36 94 | 99.39 32 | 73.27 378 | 99.64 131 | 97.98 62 | 96.58 212 | 98.81 185 |
|
| alignmvs | | | 97.56 91 | 97.07 103 | 99.01 56 | 98.66 149 | 98.37 40 | 98.83 125 | 98.06 259 | 96.74 78 | 98.00 116 | 97.65 244 | 90.80 160 | 99.48 164 | 98.37 46 | 96.56 213 | 99.19 143 |
|
| HY-MVS | | 93.96 8 | 96.82 128 | 96.23 141 | 98.57 81 | 98.46 165 | 97.00 98 | 98.14 237 | 98.21 222 | 93.95 208 | 96.72 177 | 97.99 212 | 91.58 138 | 99.76 107 | 94.51 210 | 96.54 214 | 98.95 175 |
|
| 1112_ss | | | 96.63 133 | 96.00 148 | 98.50 89 | 98.56 157 | 96.37 132 | 98.18 235 | 98.10 247 | 92.92 266 | 94.84 229 | 98.43 167 | 92.14 123 | 99.58 141 | 94.35 214 | 96.51 215 | 99.56 85 |
|
| thres200 | | | 95.25 208 | 94.57 217 | 97.28 186 | 98.81 134 | 94.92 208 | 98.20 227 | 97.11 327 | 95.24 151 | 96.54 188 | 96.22 340 | 84.58 293 | 99.53 153 | 87.93 349 | 96.50 216 | 97.39 252 |
|
| Test_1112_low_res | | | 96.34 148 | 95.66 169 | 98.36 104 | 98.56 157 | 95.94 155 | 97.71 286 | 98.07 254 | 92.10 295 | 94.79 233 | 97.29 271 | 91.75 134 | 99.56 145 | 94.17 221 | 96.50 216 | 99.58 83 |
|
| tpmrst | | | 95.63 185 | 95.69 166 | 95.44 303 | 97.54 251 | 88.54 361 | 96.97 340 | 97.56 292 | 93.50 239 | 97.52 148 | 96.93 310 | 89.49 180 | 99.16 196 | 95.25 187 | 96.42 218 | 98.64 205 |
|
| ab-mvs | | | 96.42 143 | 95.71 163 | 98.55 83 | 98.63 153 | 96.75 110 | 97.88 271 | 98.74 108 | 93.84 214 | 96.54 188 | 98.18 198 | 85.34 275 | 99.75 109 | 95.93 161 | 96.35 219 | 99.15 150 |
|
| thres600view7 | | | 95.49 190 | 94.77 208 | 97.67 163 | 98.98 119 | 95.02 200 | 98.85 119 | 96.90 344 | 95.38 140 | 96.63 180 | 96.90 311 | 84.29 296 | 99.59 140 | 88.65 342 | 96.33 220 | 98.40 218 |
|
| RPSCF | | | 94.87 233 | 95.40 173 | 93.26 351 | 98.89 125 | 82.06 389 | 98.33 209 | 98.06 259 | 90.30 340 | 96.56 184 | 99.26 57 | 87.09 242 | 99.49 159 | 93.82 233 | 96.32 221 | 98.24 225 |
|
| ETVMVS | | | 94.50 257 | 93.44 290 | 97.68 162 | 98.18 197 | 95.35 185 | 98.19 230 | 97.11 327 | 93.73 222 | 96.40 194 | 95.39 361 | 74.53 372 | 98.84 248 | 91.10 301 | 96.31 222 | 98.84 183 |
|
| testing11 | | | 95.00 222 | 94.28 233 | 97.16 194 | 97.96 218 | 93.36 275 | 98.09 245 | 97.06 333 | 94.94 169 | 95.33 220 | 96.15 342 | 76.89 361 | 99.40 173 | 95.77 169 | 96.30 223 | 98.72 194 |
|
| thres100view900 | | | 95.38 199 | 94.70 212 | 97.41 179 | 98.98 119 | 94.92 208 | 98.87 114 | 96.90 344 | 95.38 140 | 96.61 182 | 96.88 312 | 84.29 296 | 99.56 145 | 88.11 345 | 96.29 224 | 97.76 238 |
|
| tfpn200view9 | | | 95.32 206 | 94.62 215 | 97.43 177 | 98.94 122 | 94.98 204 | 98.68 163 | 96.93 342 | 95.33 143 | 96.55 186 | 96.53 329 | 84.23 300 | 99.56 145 | 88.11 345 | 96.29 224 | 97.76 238 |
|
| thres400 | | | 95.38 199 | 94.62 215 | 97.65 167 | 98.94 122 | 94.98 204 | 98.68 163 | 96.93 342 | 95.33 143 | 96.55 186 | 96.53 329 | 84.23 300 | 99.56 145 | 88.11 345 | 96.29 224 | 98.40 218 |
|
| sasdasda | | | 97.67 80 | 97.23 94 | 98.98 59 | 98.70 143 | 98.38 35 | 99.34 18 | 98.39 190 | 96.76 76 | 97.67 137 | 97.40 265 | 92.26 117 | 99.49 159 | 98.28 50 | 96.28 227 | 99.08 161 |
|
| canonicalmvs | | | 97.67 80 | 97.23 94 | 98.98 59 | 98.70 143 | 98.38 35 | 99.34 18 | 98.39 190 | 96.76 76 | 97.67 137 | 97.40 265 | 92.26 117 | 99.49 159 | 98.28 50 | 96.28 227 | 99.08 161 |
|
| XVG-OURS | | | 96.55 139 | 96.41 132 | 96.99 205 | 98.75 137 | 93.76 254 | 97.50 302 | 98.52 162 | 95.67 127 | 96.83 171 | 99.30 52 | 88.95 202 | 99.53 153 | 95.88 163 | 96.26 229 | 97.69 243 |
|
| MGCFI-Net | | | 97.62 85 | 97.19 97 | 98.92 64 | 98.66 149 | 98.20 49 | 99.32 23 | 98.38 194 | 96.69 81 | 97.58 146 | 97.42 264 | 92.10 125 | 99.50 158 | 98.28 50 | 96.25 230 | 99.08 161 |
|
| GA-MVS | | | 94.81 235 | 94.03 249 | 97.14 196 | 97.15 283 | 93.86 251 | 96.76 357 | 97.58 289 | 94.00 205 | 94.76 234 | 97.04 296 | 80.91 326 | 98.48 280 | 91.79 290 | 96.25 230 | 99.09 157 |
|
| tpm2 | | | 94.19 278 | 93.76 274 | 95.46 302 | 97.23 274 | 89.04 352 | 97.31 318 | 96.85 350 | 87.08 369 | 96.21 199 | 96.79 318 | 83.75 312 | 98.74 258 | 92.43 276 | 96.23 232 | 98.59 209 |
|
| MIMVSNet | | | 93.26 306 | 92.21 315 | 96.41 261 | 97.73 235 | 93.13 283 | 95.65 376 | 97.03 335 | 91.27 322 | 94.04 266 | 96.06 344 | 75.33 368 | 97.19 362 | 86.56 355 | 96.23 232 | 98.92 178 |
|
| TR-MVS | | | 94.94 231 | 94.20 237 | 97.17 193 | 97.75 231 | 94.14 245 | 97.59 296 | 97.02 337 | 92.28 290 | 95.75 212 | 97.64 246 | 83.88 308 | 98.96 229 | 89.77 324 | 96.15 234 | 98.40 218 |
|
| CostFormer | | | 94.95 229 | 94.73 211 | 95.60 297 | 97.28 271 | 89.06 351 | 97.53 299 | 96.89 346 | 89.66 350 | 96.82 173 | 96.72 321 | 86.05 261 | 98.95 234 | 95.53 178 | 96.13 235 | 98.79 186 |
|
| tpmvs | | | 94.60 247 | 94.36 231 | 95.33 307 | 97.46 257 | 88.60 360 | 96.88 351 | 97.68 282 | 91.29 320 | 93.80 279 | 96.42 333 | 88.58 207 | 99.24 188 | 91.06 304 | 96.04 236 | 98.17 229 |
|
| testing91 | | | 94.98 226 | 94.25 235 | 97.20 189 | 97.94 219 | 93.41 270 | 98.00 255 | 97.58 289 | 94.99 163 | 95.45 216 | 96.04 345 | 77.20 358 | 99.42 172 | 94.97 194 | 96.02 237 | 98.78 189 |
|
| testing99 | | | 94.83 234 | 94.08 246 | 97.07 202 | 97.94 219 | 93.13 283 | 98.10 244 | 97.17 325 | 94.86 171 | 95.34 217 | 96.00 348 | 76.31 364 | 99.40 173 | 95.08 191 | 95.90 238 | 98.68 199 |
|
| testing222 | | | 94.12 285 | 93.03 299 | 97.37 184 | 98.02 211 | 94.66 218 | 97.94 261 | 96.65 357 | 94.63 181 | 95.78 211 | 95.76 351 | 71.49 380 | 98.92 236 | 91.17 300 | 95.88 239 | 98.52 213 |
|
| tpm cat1 | | | 93.36 301 | 92.80 303 | 95.07 315 | 97.58 246 | 87.97 370 | 96.76 357 | 97.86 275 | 82.17 388 | 93.53 286 | 96.04 345 | 86.13 259 | 99.13 202 | 89.24 335 | 95.87 240 | 98.10 231 |
|
| XVG-OURS-SEG-HR | | | 96.51 140 | 96.34 134 | 97.02 204 | 98.77 136 | 93.76 254 | 97.79 281 | 98.50 169 | 95.45 136 | 96.94 165 | 99.09 92 | 87.87 229 | 99.55 152 | 96.76 138 | 95.83 241 | 97.74 240 |
|
| SDMVSNet | | | 96.85 126 | 96.42 131 | 98.14 121 | 99.30 68 | 96.38 131 | 99.21 40 | 99.23 20 | 95.92 112 | 95.96 207 | 98.76 136 | 85.88 264 | 99.44 169 | 97.93 66 | 95.59 242 | 98.60 207 |
|
| sd_testset | | | 96.17 155 | 95.76 158 | 97.42 178 | 99.30 68 | 94.34 237 | 98.82 127 | 99.08 32 | 95.92 112 | 95.96 207 | 98.76 136 | 82.83 315 | 99.32 181 | 95.56 176 | 95.59 242 | 98.60 207 |
|
| test_vis1_rt | | | 91.29 327 | 90.65 327 | 93.19 353 | 97.45 260 | 86.25 378 | 98.57 184 | 90.90 403 | 93.30 249 | 86.94 371 | 93.59 380 | 62.07 393 | 99.11 206 | 97.48 103 | 95.58 244 | 94.22 376 |
|
| JIA-IIPM | | | 93.35 302 | 92.49 310 | 95.92 283 | 96.48 322 | 90.65 326 | 95.01 380 | 96.96 340 | 85.93 376 | 96.08 202 | 87.33 395 | 87.70 233 | 98.78 256 | 91.35 297 | 95.58 244 | 98.34 222 |
|
| Anonymous202405211 | | | 95.28 207 | 94.49 221 | 97.67 163 | 99.00 114 | 93.75 256 | 98.70 160 | 97.04 334 | 90.66 331 | 96.49 190 | 98.80 128 | 78.13 349 | 99.83 69 | 96.21 153 | 95.36 246 | 99.44 107 |
|
| Anonymous20240529 | | | 95.10 217 | 94.22 236 | 97.75 154 | 99.01 113 | 94.26 240 | 98.87 114 | 98.83 80 | 85.79 378 | 96.64 179 | 98.97 105 | 78.73 341 | 99.85 63 | 96.27 149 | 94.89 247 | 99.12 154 |
|
| CLD-MVS | | | 95.62 186 | 95.34 179 | 96.46 258 | 97.52 254 | 93.75 256 | 97.27 321 | 98.46 176 | 95.53 132 | 94.42 246 | 98.00 211 | 86.21 258 | 98.97 225 | 96.25 152 | 94.37 248 | 96.66 306 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| dp | | | 94.15 282 | 93.90 261 | 94.90 319 | 97.31 270 | 86.82 377 | 96.97 340 | 97.19 324 | 91.22 324 | 96.02 204 | 96.61 328 | 85.51 271 | 99.02 221 | 90.00 322 | 94.30 249 | 98.85 181 |
|
| HQP_MVS | | | 96.14 157 | 95.90 152 | 96.85 217 | 97.42 262 | 94.60 226 | 98.80 136 | 98.56 153 | 97.28 45 | 95.34 217 | 98.28 187 | 87.09 242 | 99.03 218 | 96.07 154 | 94.27 250 | 96.92 270 |
|
| plane_prior5 | | | | | | | | | 98.56 153 | | | | | 99.03 218 | 96.07 154 | 94.27 250 | 96.92 270 |
|
| plane_prior | | | | | | | 94.60 226 | 98.44 200 | | 96.74 78 | | | | | | 94.22 252 | |
|
| OPM-MVS | | | 95.69 183 | 95.33 181 | 96.76 222 | 96.16 336 | 94.63 221 | 98.43 202 | 98.39 190 | 96.64 83 | 95.02 226 | 98.78 130 | 85.15 279 | 99.05 214 | 95.21 189 | 94.20 253 | 96.60 311 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| HQP3-MVS | | | | | | | | | 98.46 176 | | | | | | | 94.18 254 | |
|
| HQP-MVS | | | 95.72 178 | 95.40 173 | 96.69 227 | 97.20 277 | 94.25 241 | 98.05 249 | 98.46 176 | 96.43 93 | 94.45 241 | 97.73 235 | 86.75 248 | 98.96 229 | 95.30 183 | 94.18 254 | 96.86 283 |
|
| LPG-MVS_test | | | 95.62 186 | 95.34 179 | 96.47 255 | 97.46 257 | 93.54 263 | 98.99 82 | 98.54 157 | 94.67 179 | 94.36 249 | 98.77 132 | 85.39 272 | 99.11 206 | 95.71 171 | 94.15 256 | 96.76 291 |
|
| LGP-MVS_train | | | | | 96.47 255 | 97.46 257 | 93.54 263 | | 98.54 157 | 94.67 179 | 94.36 249 | 98.77 132 | 85.39 272 | 99.11 206 | 95.71 171 | 94.15 256 | 96.76 291 |
|
| test_djsdf | | | 96.00 162 | 95.69 166 | 96.93 211 | 95.72 350 | 95.49 177 | 99.47 9 | 98.40 188 | 94.98 164 | 94.58 236 | 97.86 223 | 89.16 192 | 98.41 297 | 96.91 122 | 94.12 258 | 96.88 279 |
|
| jajsoiax | | | 95.45 194 | 95.03 196 | 96.73 223 | 95.42 362 | 94.63 221 | 99.14 51 | 98.52 162 | 95.74 122 | 93.22 299 | 98.36 176 | 83.87 309 | 98.65 266 | 96.95 121 | 94.04 259 | 96.91 275 |
|
| anonymousdsp | | | 95.42 196 | 94.91 203 | 96.94 210 | 95.10 365 | 95.90 161 | 99.14 51 | 98.41 186 | 93.75 219 | 93.16 301 | 97.46 258 | 87.50 237 | 98.41 297 | 95.63 175 | 94.03 260 | 96.50 330 |
|
| mvs_tets | | | 95.41 198 | 95.00 197 | 96.65 229 | 95.58 354 | 94.42 232 | 99.00 79 | 98.55 155 | 95.73 124 | 93.21 300 | 98.38 174 | 83.45 313 | 98.63 267 | 97.09 115 | 94.00 261 | 96.91 275 |
|
| ACMP | | 93.49 10 | 95.34 204 | 94.98 199 | 96.43 260 | 97.67 239 | 93.48 267 | 98.73 151 | 98.44 180 | 94.94 169 | 92.53 321 | 98.53 157 | 84.50 295 | 99.14 201 | 95.48 180 | 94.00 261 | 96.66 306 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| bld_raw_dy_0_64 | | | 95.72 178 | 94.98 199 | 97.97 137 | 98.29 184 | 95.68 169 | 99.04 68 | 96.34 362 | 96.51 88 | 95.86 210 | 98.44 166 | 78.73 341 | 99.44 169 | 97.58 92 | 93.99 263 | 98.78 189 |
|
| ACMM | | 93.85 9 | 95.69 183 | 95.38 177 | 96.61 236 | 97.61 244 | 93.84 252 | 98.91 99 | 98.44 180 | 95.25 149 | 94.28 253 | 98.47 163 | 86.04 263 | 99.12 204 | 95.50 179 | 93.95 264 | 96.87 281 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| UniMVSNet_ETH3D | | | 94.24 275 | 93.33 293 | 96.97 208 | 97.19 280 | 93.38 273 | 98.74 147 | 98.57 151 | 91.21 325 | 93.81 278 | 98.58 153 | 72.85 379 | 98.77 257 | 95.05 192 | 93.93 265 | 98.77 193 |
|
| XVG-ACMP-BASELINE | | | 94.54 252 | 94.14 243 | 95.75 292 | 96.55 317 | 91.65 307 | 98.11 242 | 98.44 180 | 94.96 166 | 94.22 257 | 97.90 219 | 79.18 339 | 99.11 206 | 94.05 227 | 93.85 266 | 96.48 333 |
|
| EG-PatchMatch MVS | | | 91.13 330 | 90.12 333 | 94.17 342 | 94.73 372 | 89.00 353 | 98.13 239 | 97.81 277 | 89.22 358 | 85.32 382 | 96.46 331 | 67.71 387 | 98.42 289 | 87.89 350 | 93.82 267 | 95.08 367 |
|
| iter_conf05 | | | 96.13 158 | 95.79 155 | 97.15 195 | 98.16 201 | 95.99 146 | 98.88 109 | 97.98 264 | 95.91 114 | 95.58 214 | 98.46 165 | 85.53 270 | 98.59 271 | 97.88 71 | 93.75 268 | 96.86 283 |
|
| test_fmvs2 | | | 93.43 300 | 93.58 283 | 92.95 355 | 96.97 292 | 83.91 382 | 99.19 44 | 97.24 322 | 95.74 122 | 95.20 222 | 98.27 190 | 69.65 382 | 98.72 260 | 96.26 150 | 93.73 269 | 96.24 343 |
|
| testgi | | | 93.06 312 | 92.45 312 | 94.88 321 | 96.43 325 | 89.90 336 | 98.75 144 | 97.54 298 | 95.60 129 | 91.63 338 | 97.91 218 | 74.46 374 | 97.02 364 | 86.10 358 | 93.67 270 | 97.72 242 |
|
| test0.0.03 1 | | | 94.08 289 | 93.51 287 | 95.80 289 | 95.53 356 | 92.89 289 | 97.38 309 | 95.97 368 | 95.11 156 | 92.51 323 | 96.66 323 | 87.71 231 | 96.94 366 | 87.03 353 | 93.67 270 | 97.57 248 |
|
| mvsmamba | | | 96.57 138 | 96.32 136 | 97.32 185 | 96.60 314 | 96.43 127 | 99.54 7 | 97.98 264 | 96.49 90 | 95.20 222 | 98.64 146 | 90.82 158 | 98.55 274 | 97.97 63 | 93.65 272 | 96.98 265 |
|
| CMPMVS |  | 66.06 21 | 89.70 341 | 89.67 337 | 89.78 366 | 93.19 382 | 76.56 392 | 97.00 339 | 98.35 199 | 80.97 389 | 81.57 388 | 97.75 234 | 74.75 371 | 98.61 268 | 89.85 323 | 93.63 273 | 94.17 377 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| ACMMP++ | | | | | | | | | | | | | | | | 93.61 274 | |
|
| D2MVS | | | 95.18 213 | 95.08 194 | 95.48 300 | 97.10 286 | 92.07 298 | 98.30 216 | 99.13 30 | 94.02 203 | 92.90 309 | 96.73 320 | 89.48 181 | 98.73 259 | 94.48 211 | 93.60 275 | 95.65 358 |
|
| EI-MVSNet | | | 95.96 164 | 95.83 154 | 96.36 264 | 97.93 221 | 93.70 260 | 98.12 240 | 98.27 214 | 93.70 227 | 95.07 224 | 99.02 98 | 92.23 120 | 98.54 276 | 94.68 201 | 93.46 276 | 96.84 285 |
|
| MVSTER | | | 96.06 160 | 95.72 160 | 97.08 201 | 98.23 189 | 95.93 158 | 98.73 151 | 98.27 214 | 94.86 171 | 95.07 224 | 98.09 203 | 88.21 217 | 98.54 276 | 96.59 140 | 93.46 276 | 96.79 288 |
|
| PS-MVSNAJss | | | 96.43 142 | 96.26 139 | 96.92 214 | 95.84 348 | 95.08 199 | 99.16 48 | 98.50 169 | 95.87 118 | 93.84 277 | 98.34 181 | 94.51 81 | 98.61 268 | 96.88 128 | 93.45 278 | 97.06 260 |
|
| LTVRE_ROB | | 92.95 15 | 94.60 247 | 93.90 261 | 96.68 228 | 97.41 265 | 94.42 232 | 98.52 188 | 98.59 144 | 91.69 306 | 91.21 340 | 98.35 177 | 84.87 283 | 99.04 217 | 91.06 304 | 93.44 279 | 96.60 311 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| ITE_SJBPF | | | | | 95.44 303 | 97.42 262 | 91.32 312 | | 97.50 302 | 95.09 159 | 93.59 283 | 98.35 177 | 81.70 319 | 98.88 244 | 89.71 326 | 93.39 280 | 96.12 347 |
|
| PVSNet_BlendedMVS | | | 96.73 130 | 96.60 125 | 97.12 198 | 99.25 81 | 95.35 185 | 98.26 222 | 99.26 15 | 94.28 194 | 97.94 120 | 97.46 258 | 92.74 108 | 99.81 81 | 96.88 128 | 93.32 281 | 96.20 345 |
|
| ACMH | | 92.88 16 | 94.55 251 | 93.95 257 | 96.34 266 | 97.63 243 | 93.26 278 | 98.81 135 | 98.49 174 | 93.43 243 | 89.74 353 | 98.53 157 | 81.91 318 | 99.08 212 | 93.69 235 | 93.30 282 | 96.70 300 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| OpenMVS_ROB |  | 86.42 20 | 89.00 346 | 87.43 354 | 93.69 344 | 93.08 383 | 89.42 346 | 97.91 264 | 96.89 346 | 78.58 391 | 85.86 377 | 94.69 369 | 69.48 383 | 98.29 313 | 77.13 391 | 93.29 283 | 93.36 386 |
|
| USDC | | | 93.33 304 | 92.71 305 | 95.21 309 | 96.83 302 | 90.83 322 | 96.91 345 | 97.50 302 | 93.84 214 | 90.72 345 | 98.14 200 | 77.69 352 | 98.82 252 | 89.51 331 | 93.21 284 | 95.97 351 |
|
| RRT_MVS | | | 95.98 163 | 95.78 156 | 96.56 243 | 96.48 322 | 94.22 243 | 99.57 6 | 97.92 271 | 95.89 115 | 93.95 270 | 98.70 140 | 89.27 188 | 98.42 289 | 97.23 111 | 93.02 285 | 97.04 261 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 286 | |
|
| test_0402 | | | 91.32 326 | 90.27 332 | 94.48 335 | 96.60 314 | 91.12 315 | 98.50 193 | 97.22 323 | 86.10 375 | 88.30 365 | 96.98 303 | 77.65 354 | 97.99 334 | 78.13 390 | 92.94 287 | 94.34 373 |
|
| tt0805 | | | 94.54 252 | 93.85 266 | 96.63 233 | 97.98 216 | 93.06 287 | 98.77 143 | 97.84 276 | 93.67 232 | 93.80 279 | 98.04 207 | 76.88 362 | 98.96 229 | 94.79 200 | 92.86 288 | 97.86 237 |
|
| dmvs_re | | | 94.48 260 | 94.18 240 | 95.37 305 | 97.68 238 | 90.11 335 | 98.54 187 | 97.08 329 | 94.56 183 | 94.42 246 | 97.24 275 | 84.25 298 | 97.76 348 | 91.02 307 | 92.83 289 | 98.24 225 |
|
| FIs | | | 96.51 140 | 96.12 143 | 97.67 163 | 97.13 284 | 97.54 76 | 99.36 15 | 99.22 23 | 95.89 115 | 94.03 267 | 98.35 177 | 91.98 129 | 98.44 287 | 96.40 147 | 92.76 290 | 97.01 263 |
|
| FC-MVSNet-test | | | 96.42 143 | 96.05 145 | 97.53 173 | 96.95 293 | 97.27 85 | 99.36 15 | 99.23 20 | 95.83 119 | 93.93 271 | 98.37 175 | 92.00 128 | 98.32 306 | 96.02 159 | 92.72 291 | 97.00 264 |
|
| TinyColmap | | | 92.31 320 | 91.53 321 | 94.65 330 | 96.92 295 | 89.75 338 | 96.92 343 | 96.68 354 | 90.45 336 | 89.62 354 | 97.85 225 | 76.06 366 | 98.81 253 | 86.74 354 | 92.51 292 | 95.41 360 |
|
| ACMH+ | | 92.99 14 | 94.30 270 | 93.77 272 | 95.88 287 | 97.81 228 | 92.04 300 | 98.71 156 | 98.37 196 | 93.99 206 | 90.60 347 | 98.47 163 | 80.86 328 | 99.05 214 | 92.75 264 | 92.40 293 | 96.55 319 |
|
| GBi-Net | | | 94.49 258 | 93.80 269 | 96.56 243 | 98.21 191 | 95.00 201 | 98.82 127 | 98.18 229 | 92.46 279 | 94.09 263 | 97.07 289 | 81.16 323 | 97.95 336 | 92.08 280 | 92.14 294 | 96.72 296 |
|
| test1 | | | 94.49 258 | 93.80 269 | 96.56 243 | 98.21 191 | 95.00 201 | 98.82 127 | 98.18 229 | 92.46 279 | 94.09 263 | 97.07 289 | 81.16 323 | 97.95 336 | 92.08 280 | 92.14 294 | 96.72 296 |
|
| FMVSNet3 | | | 94.97 228 | 94.26 234 | 97.11 199 | 98.18 197 | 96.62 114 | 98.56 185 | 98.26 218 | 93.67 232 | 94.09 263 | 97.10 282 | 84.25 298 | 98.01 331 | 92.08 280 | 92.14 294 | 96.70 300 |
|
| FMVSNet2 | | | 94.47 261 | 93.61 282 | 97.04 203 | 98.21 191 | 96.43 127 | 98.79 141 | 98.27 214 | 92.46 279 | 93.50 290 | 97.09 286 | 81.16 323 | 98.00 333 | 91.09 302 | 91.93 297 | 96.70 300 |
|
| LF4IMVS | | | 93.14 311 | 92.79 304 | 94.20 340 | 95.88 346 | 88.67 359 | 97.66 290 | 97.07 331 | 93.81 217 | 91.71 336 | 97.65 244 | 77.96 351 | 98.81 253 | 91.47 296 | 91.92 298 | 95.12 365 |
|
| OurMVSNet-221017-0 | | | 94.21 276 | 94.00 253 | 94.85 322 | 95.60 353 | 89.22 349 | 98.89 104 | 97.43 311 | 95.29 146 | 92.18 330 | 98.52 160 | 82.86 314 | 98.59 271 | 93.46 243 | 91.76 299 | 96.74 293 |
|
| EGC-MVSNET | | | 75.22 367 | 69.54 370 | 92.28 360 | 94.81 370 | 89.58 343 | 97.64 292 | 96.50 359 | 1.82 410 | 5.57 411 | 95.74 352 | 68.21 384 | 96.26 378 | 73.80 395 | 91.71 300 | 90.99 390 |
|
| pmmvs4 | | | 94.69 239 | 93.99 255 | 96.81 220 | 95.74 349 | 95.94 155 | 97.40 307 | 97.67 283 | 90.42 337 | 93.37 295 | 97.59 250 | 89.08 195 | 98.20 317 | 92.97 257 | 91.67 301 | 96.30 342 |
|
| tpm | | | 94.13 283 | 93.80 269 | 95.12 312 | 96.50 320 | 87.91 371 | 97.44 303 | 95.89 372 | 92.62 275 | 96.37 196 | 96.30 335 | 84.13 303 | 98.30 310 | 93.24 248 | 91.66 302 | 99.14 152 |
|
| our_test_3 | | | 93.65 298 | 93.30 294 | 94.69 327 | 95.45 360 | 89.68 342 | 96.91 345 | 97.65 284 | 91.97 298 | 91.66 337 | 96.88 312 | 89.67 179 | 97.93 339 | 88.02 348 | 91.49 303 | 96.48 333 |
|
| IterMVS | | | 94.09 288 | 93.85 266 | 94.80 325 | 97.99 214 | 90.35 331 | 97.18 328 | 98.12 241 | 93.68 230 | 92.46 325 | 97.34 267 | 84.05 304 | 97.41 359 | 92.51 273 | 91.33 304 | 96.62 309 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| IterMVS-SCA-FT | | | 94.11 286 | 93.87 264 | 94.85 322 | 97.98 216 | 90.56 328 | 97.18 328 | 98.11 244 | 93.75 219 | 92.58 319 | 97.48 257 | 83.97 306 | 97.41 359 | 92.48 275 | 91.30 305 | 96.58 313 |
|
| FMVSNet1 | | | 93.19 309 | 92.07 316 | 96.56 243 | 97.54 251 | 95.00 201 | 98.82 127 | 98.18 229 | 90.38 338 | 92.27 328 | 97.07 289 | 73.68 377 | 97.95 336 | 89.36 334 | 91.30 305 | 96.72 296 |
|
| XXY-MVS | | | 95.20 212 | 94.45 226 | 97.46 174 | 96.75 307 | 96.56 121 | 98.86 117 | 98.65 135 | 93.30 249 | 93.27 298 | 98.27 190 | 84.85 284 | 98.87 245 | 94.82 198 | 91.26 307 | 96.96 267 |
|
| cl22 | | | 94.68 241 | 94.19 238 | 96.13 275 | 98.11 204 | 93.60 261 | 96.94 342 | 98.31 205 | 92.43 283 | 93.32 297 | 96.87 314 | 86.51 251 | 98.28 314 | 94.10 225 | 91.16 308 | 96.51 328 |
|
| miper_ehance_all_eth | | | 95.01 221 | 94.69 213 | 95.97 281 | 97.70 237 | 93.31 276 | 97.02 338 | 98.07 254 | 92.23 291 | 93.51 289 | 96.96 306 | 91.85 132 | 98.15 320 | 93.68 236 | 91.16 308 | 96.44 336 |
|
| miper_enhance_ethall | | | 95.10 217 | 94.75 210 | 96.12 276 | 97.53 253 | 93.73 258 | 96.61 362 | 98.08 252 | 92.20 294 | 93.89 273 | 96.65 325 | 92.44 112 | 98.30 310 | 94.21 220 | 91.16 308 | 96.34 339 |
|
| pmmvs5 | | | 93.65 298 | 92.97 301 | 95.68 293 | 95.49 357 | 92.37 292 | 98.20 227 | 97.28 319 | 89.66 350 | 92.58 319 | 97.26 272 | 82.14 317 | 98.09 326 | 93.18 251 | 90.95 311 | 96.58 313 |
|
| ET-MVSNet_ETH3D | | | 94.13 283 | 92.98 300 | 97.58 170 | 98.22 190 | 96.20 139 | 97.31 318 | 95.37 375 | 94.53 185 | 79.56 391 | 97.63 248 | 86.51 251 | 97.53 356 | 96.91 122 | 90.74 312 | 99.02 167 |
|
| SixPastTwentyTwo | | | 93.34 303 | 92.86 302 | 94.75 326 | 95.67 351 | 89.41 347 | 98.75 144 | 96.67 355 | 93.89 211 | 90.15 351 | 98.25 193 | 80.87 327 | 98.27 315 | 90.90 308 | 90.64 313 | 96.57 315 |
|
| N_pmnet | | | 87.12 354 | 87.77 352 | 85.17 374 | 95.46 359 | 61.92 408 | 97.37 311 | 70.66 413 | 85.83 377 | 88.73 364 | 96.04 345 | 85.33 276 | 97.76 348 | 80.02 383 | 90.48 314 | 95.84 353 |
|
| ppachtmachnet_test | | | 93.22 307 | 92.63 307 | 94.97 317 | 95.45 360 | 90.84 321 | 96.88 351 | 97.88 274 | 90.60 332 | 92.08 332 | 97.26 272 | 88.08 222 | 97.86 345 | 85.12 366 | 90.33 315 | 96.22 344 |
|
| DIV-MVS_self_test | | | 94.52 255 | 94.03 249 | 95.99 279 | 97.57 250 | 93.38 273 | 97.05 336 | 97.94 269 | 91.74 303 | 92.81 311 | 97.10 282 | 89.12 193 | 98.07 328 | 92.60 266 | 90.30 316 | 96.53 322 |
|
| cl____ | | | 94.51 256 | 94.01 252 | 96.02 278 | 97.58 246 | 93.40 272 | 97.05 336 | 97.96 268 | 91.73 305 | 92.76 313 | 97.08 288 | 89.06 196 | 98.13 322 | 92.61 265 | 90.29 317 | 96.52 325 |
|
| APD_test1 | | | 88.22 349 | 88.01 349 | 88.86 368 | 95.98 342 | 74.66 398 | 97.21 324 | 96.44 360 | 83.96 385 | 86.66 374 | 97.90 219 | 60.95 394 | 97.84 346 | 82.73 376 | 90.23 318 | 94.09 379 |
|
| IterMVS-LS | | | 95.46 192 | 95.21 187 | 96.22 272 | 98.12 203 | 93.72 259 | 98.32 213 | 98.13 240 | 93.71 225 | 94.26 254 | 97.31 270 | 92.24 119 | 98.10 324 | 94.63 203 | 90.12 319 | 96.84 285 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Patchmtry | | | 93.22 307 | 92.35 313 | 95.84 288 | 96.77 304 | 93.09 286 | 94.66 388 | 97.56 292 | 87.37 368 | 92.90 309 | 96.24 336 | 88.15 219 | 97.90 340 | 87.37 352 | 90.10 320 | 96.53 322 |
|
| EU-MVSNet | | | 93.66 296 | 94.14 243 | 92.25 361 | 95.96 344 | 83.38 385 | 98.52 188 | 98.12 241 | 94.69 177 | 92.61 318 | 98.13 201 | 87.36 240 | 96.39 377 | 91.82 289 | 90.00 321 | 96.98 265 |
|
| Anonymous20231206 | | | 91.66 324 | 91.10 324 | 93.33 349 | 94.02 379 | 87.35 374 | 98.58 179 | 97.26 321 | 90.48 334 | 90.16 350 | 96.31 334 | 83.83 310 | 96.53 375 | 79.36 386 | 89.90 322 | 96.12 347 |
|
| eth_miper_zixun_eth | | | 94.68 241 | 94.41 229 | 95.47 301 | 97.64 242 | 91.71 306 | 96.73 359 | 98.07 254 | 92.71 273 | 93.64 282 | 97.21 278 | 90.54 165 | 98.17 319 | 93.38 244 | 89.76 323 | 96.54 320 |
|
| FMVSNet5 | | | 91.81 322 | 90.92 325 | 94.49 334 | 97.21 276 | 92.09 297 | 98.00 255 | 97.55 297 | 89.31 357 | 90.86 344 | 95.61 359 | 74.48 373 | 95.32 387 | 85.57 362 | 89.70 324 | 96.07 349 |
|
| miper_lstm_enhance | | | 94.33 268 | 94.07 247 | 95.11 313 | 97.75 231 | 90.97 317 | 97.22 323 | 98.03 261 | 91.67 307 | 92.76 313 | 96.97 304 | 90.03 173 | 97.78 347 | 92.51 273 | 89.64 325 | 96.56 317 |
|
| v1192 | | | 94.32 269 | 93.58 283 | 96.53 249 | 96.10 337 | 94.45 230 | 98.50 193 | 98.17 234 | 91.54 309 | 94.19 259 | 97.06 293 | 86.95 246 | 98.43 288 | 90.14 316 | 89.57 326 | 96.70 300 |
|
| v1144 | | | 94.59 249 | 93.92 258 | 96.60 238 | 96.21 331 | 94.78 217 | 98.59 177 | 98.14 239 | 91.86 302 | 94.21 258 | 97.02 299 | 87.97 225 | 98.41 297 | 91.72 292 | 89.57 326 | 96.61 310 |
|
| Anonymous20240521 | | | 91.18 329 | 90.44 330 | 93.42 346 | 93.70 380 | 88.47 363 | 98.94 94 | 97.56 292 | 88.46 363 | 89.56 356 | 95.08 367 | 77.15 360 | 96.97 365 | 83.92 373 | 89.55 328 | 94.82 371 |
|
| VPA-MVSNet | | | 95.75 177 | 95.11 193 | 97.69 160 | 97.24 273 | 97.27 85 | 98.94 94 | 99.23 20 | 95.13 154 | 95.51 215 | 97.32 269 | 85.73 266 | 98.91 238 | 97.33 109 | 89.55 328 | 96.89 278 |
|
| v1240 | | | 94.06 291 | 93.29 295 | 96.34 266 | 96.03 341 | 93.90 250 | 98.44 200 | 98.17 234 | 91.18 326 | 94.13 262 | 97.01 301 | 86.05 261 | 98.42 289 | 89.13 337 | 89.50 330 | 96.70 300 |
|
| K. test v3 | | | 92.55 317 | 91.91 320 | 94.48 335 | 95.64 352 | 89.24 348 | 99.07 62 | 94.88 381 | 94.04 201 | 86.78 372 | 97.59 250 | 77.64 355 | 97.64 351 | 92.08 280 | 89.43 331 | 96.57 315 |
|
| v1921920 | | | 94.20 277 | 93.47 289 | 96.40 263 | 95.98 342 | 94.08 246 | 98.52 188 | 98.15 237 | 91.33 317 | 94.25 255 | 97.20 279 | 86.41 255 | 98.42 289 | 90.04 321 | 89.39 332 | 96.69 305 |
|
| new_pmnet | | | 90.06 339 | 89.00 343 | 93.22 352 | 94.18 374 | 88.32 366 | 96.42 367 | 96.89 346 | 86.19 373 | 85.67 379 | 93.62 379 | 77.18 359 | 97.10 363 | 81.61 380 | 89.29 333 | 94.23 375 |
|
| c3_l | | | 94.79 236 | 94.43 228 | 95.89 286 | 97.75 231 | 93.12 285 | 97.16 332 | 98.03 261 | 92.23 291 | 93.46 292 | 97.05 295 | 91.39 144 | 98.01 331 | 93.58 241 | 89.21 334 | 96.53 322 |
|
| v144192 | | | 94.39 266 | 93.70 278 | 96.48 254 | 96.06 339 | 94.35 236 | 98.58 179 | 98.16 236 | 91.45 311 | 94.33 251 | 97.02 299 | 87.50 237 | 98.45 285 | 91.08 303 | 89.11 335 | 96.63 308 |
|
| nrg030 | | | 96.28 151 | 95.72 160 | 97.96 140 | 96.90 298 | 98.15 54 | 99.39 12 | 98.31 205 | 95.47 135 | 94.42 246 | 98.35 177 | 92.09 126 | 98.69 261 | 97.50 102 | 89.05 336 | 97.04 261 |
|
| DeepMVS_CX |  | | | | 86.78 371 | 97.09 287 | 72.30 399 | | 95.17 380 | 75.92 393 | 84.34 384 | 95.19 364 | 70.58 381 | 95.35 385 | 79.98 385 | 89.04 337 | 92.68 389 |
|
| tfpnnormal | | | 93.66 296 | 92.70 306 | 96.55 248 | 96.94 294 | 95.94 155 | 98.97 85 | 99.19 24 | 91.04 327 | 91.38 339 | 97.34 267 | 84.94 282 | 98.61 268 | 85.45 364 | 89.02 338 | 95.11 366 |
|
| Anonymous20231211 | | | 94.10 287 | 93.26 296 | 96.61 236 | 99.11 104 | 94.28 238 | 99.01 77 | 98.88 62 | 86.43 372 | 92.81 311 | 97.57 252 | 81.66 320 | 98.68 264 | 94.83 197 | 89.02 338 | 96.88 279 |
|
| v2v482 | | | 94.69 239 | 94.03 249 | 96.65 229 | 96.17 334 | 94.79 216 | 98.67 166 | 98.08 252 | 92.72 272 | 94.00 268 | 97.16 280 | 87.69 234 | 98.45 285 | 92.91 259 | 88.87 340 | 96.72 296 |
|
| V42 | | | 94.78 237 | 94.14 243 | 96.70 226 | 96.33 329 | 95.22 192 | 98.97 85 | 98.09 251 | 92.32 288 | 94.31 252 | 97.06 293 | 88.39 214 | 98.55 274 | 92.90 260 | 88.87 340 | 96.34 339 |
|
| WR-MVS | | | 95.15 214 | 94.46 224 | 97.22 188 | 96.67 312 | 96.45 125 | 98.21 225 | 98.81 86 | 94.15 197 | 93.16 301 | 97.69 240 | 87.51 235 | 98.30 310 | 95.29 185 | 88.62 342 | 96.90 277 |
|
| FPMVS | | | 77.62 366 | 77.14 366 | 79.05 384 | 79.25 407 | 60.97 409 | 95.79 374 | 95.94 370 | 65.96 398 | 67.93 400 | 94.40 373 | 37.73 404 | 88.88 403 | 68.83 399 | 88.46 343 | 87.29 396 |
|
| v10 | | | 94.29 272 | 93.55 285 | 96.51 251 | 96.39 326 | 94.80 215 | 98.99 82 | 98.19 226 | 91.35 316 | 93.02 307 | 96.99 302 | 88.09 221 | 98.41 297 | 90.50 313 | 88.41 344 | 96.33 341 |
|
| CP-MVSNet | | | 94.94 231 | 94.30 232 | 96.83 218 | 96.72 309 | 95.56 173 | 99.11 56 | 98.95 46 | 93.89 211 | 92.42 326 | 97.90 219 | 87.19 241 | 98.12 323 | 94.32 216 | 88.21 345 | 96.82 287 |
|
| MIMVSNet1 | | | 89.67 342 | 88.28 347 | 93.82 343 | 92.81 385 | 91.08 316 | 98.01 253 | 97.45 309 | 87.95 365 | 87.90 367 | 95.87 350 | 67.63 388 | 94.56 391 | 78.73 389 | 88.18 346 | 95.83 354 |
|
| PS-CasMVS | | | 94.67 244 | 93.99 255 | 96.71 224 | 96.68 311 | 95.26 189 | 99.13 54 | 99.03 37 | 93.68 230 | 92.33 327 | 97.95 216 | 85.35 274 | 98.10 324 | 93.59 240 | 88.16 347 | 96.79 288 |
|
| WR-MVS_H | | | 95.05 220 | 94.46 224 | 96.81 220 | 96.86 300 | 95.82 165 | 99.24 32 | 99.24 17 | 93.87 213 | 92.53 321 | 96.84 316 | 90.37 167 | 98.24 316 | 93.24 248 | 87.93 348 | 96.38 338 |
|
| v8 | | | 94.47 261 | 93.77 272 | 96.57 242 | 96.36 327 | 94.83 213 | 99.05 65 | 98.19 226 | 91.92 299 | 93.16 301 | 96.97 304 | 88.82 205 | 98.48 280 | 91.69 293 | 87.79 349 | 96.39 337 |
|
| v7n | | | 94.19 278 | 93.43 291 | 96.47 255 | 95.90 345 | 94.38 235 | 99.26 29 | 98.34 201 | 91.99 297 | 92.76 313 | 97.13 281 | 88.31 215 | 98.52 278 | 89.48 332 | 87.70 350 | 96.52 325 |
|
| UniMVSNet (Re) | | | 95.78 176 | 95.19 188 | 97.58 170 | 96.99 291 | 97.47 80 | 98.79 141 | 99.18 25 | 95.60 129 | 93.92 272 | 97.04 296 | 91.68 135 | 98.48 280 | 95.80 167 | 87.66 351 | 96.79 288 |
|
| baseline1 | | | 95.84 173 | 95.12 192 | 98.01 135 | 98.49 164 | 95.98 147 | 98.73 151 | 97.03 335 | 95.37 142 | 96.22 198 | 98.19 197 | 89.96 174 | 99.16 196 | 94.60 206 | 87.48 352 | 98.90 179 |
|
| Gipuma |  | | 78.40 364 | 76.75 367 | 83.38 378 | 95.54 355 | 80.43 391 | 79.42 402 | 97.40 313 | 64.67 399 | 73.46 396 | 80.82 400 | 45.65 399 | 93.14 396 | 66.32 400 | 87.43 353 | 76.56 402 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| NR-MVSNet | | | 94.98 226 | 94.16 241 | 97.44 176 | 96.53 318 | 97.22 92 | 98.74 147 | 98.95 46 | 94.96 166 | 89.25 358 | 97.69 240 | 89.32 186 | 98.18 318 | 94.59 208 | 87.40 354 | 96.92 270 |
|
| dmvs_testset | | | 87.64 351 | 88.93 344 | 83.79 376 | 95.25 363 | 63.36 407 | 97.20 325 | 91.17 401 | 93.07 259 | 85.64 380 | 95.98 349 | 85.30 278 | 91.52 399 | 69.42 398 | 87.33 355 | 96.49 331 |
|
| VPNet | | | 94.99 224 | 94.19 238 | 97.40 181 | 97.16 282 | 96.57 120 | 98.71 156 | 98.97 42 | 95.67 127 | 94.84 229 | 98.24 194 | 80.36 331 | 98.67 265 | 96.46 144 | 87.32 356 | 96.96 267 |
|
| UniMVSNet_NR-MVSNet | | | 95.71 180 | 95.15 189 | 97.40 181 | 96.84 301 | 96.97 99 | 98.74 147 | 99.24 17 | 95.16 153 | 93.88 274 | 97.72 237 | 91.68 135 | 98.31 308 | 95.81 165 | 87.25 357 | 96.92 270 |
|
| DU-MVS | | | 95.42 196 | 94.76 209 | 97.40 181 | 96.53 318 | 96.97 99 | 98.66 168 | 98.99 41 | 95.43 137 | 93.88 274 | 97.69 240 | 88.57 208 | 98.31 308 | 95.81 165 | 87.25 357 | 96.92 270 |
|
| v148 | | | 94.29 272 | 93.76 274 | 95.91 284 | 96.10 337 | 92.93 288 | 98.58 179 | 97.97 266 | 92.59 277 | 93.47 291 | 96.95 308 | 88.53 212 | 98.32 306 | 92.56 270 | 87.06 359 | 96.49 331 |
|
| Baseline_NR-MVSNet | | | 94.35 267 | 93.81 268 | 95.96 282 | 96.20 332 | 94.05 247 | 98.61 176 | 96.67 355 | 91.44 312 | 93.85 276 | 97.60 249 | 88.57 208 | 98.14 321 | 94.39 212 | 86.93 360 | 95.68 357 |
|
| PEN-MVS | | | 94.42 264 | 93.73 276 | 96.49 252 | 96.28 330 | 94.84 211 | 99.17 47 | 99.00 39 | 93.51 238 | 92.23 329 | 97.83 229 | 86.10 260 | 97.90 340 | 92.55 271 | 86.92 361 | 96.74 293 |
|
| TranMVSNet+NR-MVSNet | | | 95.14 215 | 94.48 222 | 97.11 199 | 96.45 324 | 96.36 133 | 99.03 72 | 99.03 37 | 95.04 161 | 93.58 284 | 97.93 217 | 88.27 216 | 98.03 330 | 94.13 222 | 86.90 362 | 96.95 269 |
|
| MDA-MVSNet_test_wron | | | 90.71 334 | 89.38 339 | 94.68 328 | 94.83 369 | 90.78 323 | 97.19 327 | 97.46 305 | 87.60 366 | 72.41 398 | 95.72 356 | 86.51 251 | 96.71 372 | 85.92 360 | 86.80 363 | 96.56 317 |
|
| YYNet1 | | | 90.70 335 | 89.39 338 | 94.62 331 | 94.79 371 | 90.65 326 | 97.20 325 | 97.46 305 | 87.54 367 | 72.54 397 | 95.74 352 | 86.51 251 | 96.66 373 | 86.00 359 | 86.76 364 | 96.54 320 |
|
| MDA-MVSNet-bldmvs | | | 89.97 340 | 88.35 346 | 94.83 324 | 95.21 364 | 91.34 311 | 97.64 292 | 97.51 301 | 88.36 364 | 71.17 399 | 96.13 343 | 79.22 338 | 96.63 374 | 83.65 374 | 86.27 365 | 96.52 325 |
|
| test20.03 | | | 90.89 333 | 90.38 331 | 92.43 357 | 93.48 381 | 88.14 369 | 98.33 209 | 97.56 292 | 93.40 244 | 87.96 366 | 96.71 322 | 80.69 330 | 94.13 392 | 79.15 387 | 86.17 366 | 95.01 370 |
|
| DTE-MVSNet | | | 93.98 293 | 93.26 296 | 96.14 274 | 96.06 339 | 94.39 234 | 99.20 42 | 98.86 75 | 93.06 260 | 91.78 335 | 97.81 231 | 85.87 265 | 97.58 354 | 90.53 312 | 86.17 366 | 96.46 335 |
|
| pm-mvs1 | | | 93.94 294 | 93.06 298 | 96.59 239 | 96.49 321 | 95.16 194 | 98.95 91 | 98.03 261 | 92.32 288 | 91.08 342 | 97.84 226 | 84.54 294 | 98.41 297 | 92.16 278 | 86.13 368 | 96.19 346 |
|
| lessismore_v0 | | | | | 94.45 338 | 94.93 368 | 88.44 364 | | 91.03 402 | | 86.77 373 | 97.64 246 | 76.23 365 | 98.42 289 | 90.31 315 | 85.64 369 | 96.51 328 |
|
| test_fmvs3 | | | 87.17 352 | 87.06 355 | 87.50 370 | 91.21 389 | 75.66 394 | 99.05 65 | 96.61 358 | 92.79 271 | 88.85 362 | 92.78 385 | 43.72 400 | 93.49 393 | 93.95 228 | 84.56 370 | 93.34 387 |
|
| pmmvs6 | | | 91.77 323 | 90.63 328 | 95.17 311 | 94.69 373 | 91.24 314 | 98.67 166 | 97.92 271 | 86.14 374 | 89.62 354 | 97.56 254 | 75.79 367 | 98.34 304 | 90.75 310 | 84.56 370 | 95.94 352 |
|
| test_f | | | 86.07 356 | 85.39 357 | 88.10 369 | 89.28 395 | 75.57 395 | 97.73 285 | 96.33 363 | 89.41 356 | 85.35 381 | 91.56 391 | 43.31 402 | 95.53 384 | 91.32 298 | 84.23 372 | 93.21 388 |
|
| mvsany_test3 | | | 88.80 347 | 88.04 348 | 91.09 365 | 89.78 393 | 81.57 390 | 97.83 278 | 95.49 374 | 93.81 217 | 87.53 368 | 93.95 378 | 56.14 396 | 97.43 358 | 94.68 201 | 83.13 373 | 94.26 374 |
|
| IB-MVS | | 91.98 17 | 93.27 305 | 91.97 318 | 97.19 191 | 97.47 256 | 93.41 270 | 97.09 335 | 95.99 367 | 93.32 247 | 92.47 324 | 95.73 354 | 78.06 350 | 99.53 153 | 94.59 208 | 82.98 374 | 98.62 206 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| ambc | | | | | 89.49 367 | 86.66 400 | 75.78 393 | 92.66 394 | 96.72 352 | | 86.55 375 | 92.50 388 | 46.01 398 | 97.90 340 | 90.32 314 | 82.09 375 | 94.80 372 |
|
| Patchmatch-RL test | | | 91.49 325 | 90.85 326 | 93.41 347 | 91.37 388 | 84.40 380 | 92.81 393 | 95.93 371 | 91.87 301 | 87.25 369 | 94.87 368 | 88.99 197 | 96.53 375 | 92.54 272 | 82.00 376 | 99.30 125 |
|
| PM-MVS | | | 87.77 350 | 86.55 356 | 91.40 364 | 91.03 391 | 83.36 386 | 96.92 343 | 95.18 379 | 91.28 321 | 86.48 376 | 93.42 381 | 53.27 397 | 96.74 369 | 89.43 333 | 81.97 377 | 94.11 378 |
|
| pmmvs-eth3d | | | 90.36 337 | 89.05 342 | 94.32 339 | 91.10 390 | 92.12 296 | 97.63 295 | 96.95 341 | 88.86 361 | 84.91 383 | 93.13 384 | 78.32 346 | 96.74 369 | 88.70 340 | 81.81 378 | 94.09 379 |
|
| h-mvs33 | | | 96.17 155 | 95.62 170 | 97.81 148 | 99.03 110 | 94.45 230 | 98.64 170 | 98.75 106 | 97.48 32 | 98.67 73 | 98.72 139 | 89.76 176 | 99.86 62 | 97.95 64 | 81.59 379 | 99.11 155 |
|
| TransMVSNet (Re) | | | 92.67 316 | 91.51 322 | 96.15 273 | 96.58 316 | 94.65 219 | 98.90 100 | 96.73 351 | 90.86 330 | 89.46 357 | 97.86 223 | 85.62 268 | 98.09 326 | 86.45 356 | 81.12 380 | 95.71 356 |
|
| PMVS |  | 61.03 23 | 65.95 370 | 63.57 374 | 73.09 387 | 57.90 412 | 51.22 414 | 85.05 400 | 93.93 392 | 54.45 401 | 44.32 407 | 83.57 396 | 13.22 411 | 89.15 402 | 58.68 402 | 81.00 381 | 78.91 401 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| AUN-MVS | | | 94.53 254 | 93.73 276 | 96.92 214 | 98.50 162 | 93.52 266 | 98.34 208 | 98.10 247 | 93.83 216 | 95.94 209 | 97.98 214 | 85.59 269 | 99.03 218 | 94.35 214 | 80.94 382 | 98.22 227 |
|
| hse-mvs2 | | | 95.71 180 | 95.30 184 | 96.93 211 | 98.50 162 | 93.53 265 | 98.36 206 | 98.10 247 | 97.48 32 | 98.67 73 | 97.99 212 | 89.76 176 | 99.02 221 | 97.95 64 | 80.91 383 | 98.22 227 |
|
| WB-MVS | | | 84.86 357 | 85.33 358 | 83.46 377 | 89.48 394 | 69.56 402 | 98.19 230 | 96.42 361 | 89.55 352 | 81.79 387 | 94.67 370 | 84.80 285 | 90.12 400 | 52.44 403 | 80.64 384 | 90.69 391 |
|
| test_vis3_rt | | | 79.22 359 | 77.40 365 | 84.67 375 | 86.44 401 | 74.85 397 | 97.66 290 | 81.43 410 | 84.98 381 | 67.12 401 | 81.91 399 | 28.09 410 | 97.60 352 | 88.96 338 | 80.04 385 | 81.55 399 |
|
| SSC-MVS | | | 84.27 358 | 84.71 361 | 82.96 381 | 89.19 396 | 68.83 403 | 98.08 246 | 96.30 364 | 89.04 360 | 81.37 389 | 94.47 371 | 84.60 292 | 89.89 401 | 49.80 405 | 79.52 386 | 90.15 392 |
|
| UnsupCasMVSNet_eth | | | 90.99 332 | 89.92 335 | 94.19 341 | 94.08 376 | 89.83 337 | 97.13 334 | 98.67 128 | 93.69 228 | 85.83 378 | 96.19 341 | 75.15 369 | 96.74 369 | 89.14 336 | 79.41 387 | 96.00 350 |
|
| test_method | | | 79.03 360 | 78.17 362 | 81.63 382 | 86.06 402 | 54.40 413 | 82.75 401 | 96.89 346 | 39.54 405 | 80.98 390 | 95.57 360 | 58.37 395 | 94.73 390 | 84.74 371 | 78.61 388 | 95.75 355 |
|
| testf1 | | | 79.02 361 | 77.70 363 | 82.99 379 | 88.10 398 | 66.90 404 | 94.67 386 | 93.11 394 | 71.08 396 | 74.02 394 | 93.41 382 | 34.15 406 | 93.25 394 | 72.25 396 | 78.50 389 | 88.82 394 |
|
| APD_test2 | | | 79.02 361 | 77.70 363 | 82.99 379 | 88.10 398 | 66.90 404 | 94.67 386 | 93.11 394 | 71.08 396 | 74.02 394 | 93.41 382 | 34.15 406 | 93.25 394 | 72.25 396 | 78.50 389 | 88.82 394 |
|
| TDRefinement | | | 91.06 331 | 89.68 336 | 95.21 309 | 85.35 403 | 91.49 310 | 98.51 192 | 97.07 331 | 91.47 310 | 88.83 363 | 97.84 226 | 77.31 356 | 99.09 211 | 92.79 263 | 77.98 391 | 95.04 368 |
|
| new-patchmatchnet | | | 88.50 348 | 87.45 353 | 91.67 363 | 90.31 392 | 85.89 379 | 97.16 332 | 97.33 316 | 89.47 353 | 83.63 385 | 92.77 386 | 76.38 363 | 95.06 389 | 82.70 377 | 77.29 392 | 94.06 381 |
|
| KD-MVS_self_test | | | 90.38 336 | 89.38 339 | 93.40 348 | 92.85 384 | 88.94 356 | 97.95 259 | 97.94 269 | 90.35 339 | 90.25 349 | 93.96 377 | 79.82 334 | 95.94 382 | 84.62 372 | 76.69 393 | 95.33 361 |
|
| pmmvs3 | | | 86.67 355 | 84.86 360 | 92.11 362 | 88.16 397 | 87.19 376 | 96.63 361 | 94.75 383 | 79.88 390 | 87.22 370 | 92.75 387 | 66.56 390 | 95.20 388 | 81.24 381 | 76.56 394 | 93.96 382 |
|
| CL-MVSNet_self_test | | | 90.11 338 | 89.14 341 | 93.02 354 | 91.86 387 | 88.23 368 | 96.51 365 | 98.07 254 | 90.49 333 | 90.49 348 | 94.41 372 | 84.75 287 | 95.34 386 | 80.79 382 | 74.95 395 | 95.50 359 |
|
| LCM-MVSNet | | | 78.70 363 | 76.24 368 | 86.08 372 | 77.26 409 | 71.99 400 | 94.34 390 | 96.72 352 | 61.62 400 | 76.53 392 | 89.33 393 | 33.91 408 | 92.78 397 | 81.85 379 | 74.60 396 | 93.46 385 |
|
| UnsupCasMVSNet_bld | | | 87.17 352 | 85.12 359 | 93.31 350 | 91.94 386 | 88.77 357 | 94.92 383 | 98.30 211 | 84.30 384 | 82.30 386 | 90.04 392 | 63.96 392 | 97.25 361 | 85.85 361 | 74.47 397 | 93.93 383 |
|
| PVSNet_0 | | 88.72 19 | 91.28 328 | 90.03 334 | 95.00 316 | 97.99 214 | 87.29 375 | 94.84 384 | 98.50 169 | 92.06 296 | 89.86 352 | 95.19 364 | 79.81 335 | 99.39 176 | 92.27 277 | 69.79 398 | 98.33 223 |
|
| KD-MVS_2432*1600 | | | 89.61 343 | 87.96 350 | 94.54 332 | 94.06 377 | 91.59 308 | 95.59 377 | 97.63 286 | 89.87 346 | 88.95 360 | 94.38 374 | 78.28 347 | 96.82 367 | 84.83 368 | 68.05 399 | 95.21 363 |
|
| miper_refine_blended | | | 89.61 343 | 87.96 350 | 94.54 332 | 94.06 377 | 91.59 308 | 95.59 377 | 97.63 286 | 89.87 346 | 88.95 360 | 94.38 374 | 78.28 347 | 96.82 367 | 84.83 368 | 68.05 399 | 95.21 363 |
|
| PMMVS2 | | | 77.95 365 | 75.44 369 | 85.46 373 | 82.54 404 | 74.95 396 | 94.23 391 | 93.08 396 | 72.80 395 | 74.68 393 | 87.38 394 | 36.36 405 | 91.56 398 | 73.95 394 | 63.94 401 | 89.87 393 |
|
| MVE |  | 62.14 22 | 63.28 373 | 59.38 376 | 74.99 385 | 74.33 410 | 65.47 406 | 85.55 399 | 80.50 411 | 52.02 403 | 51.10 405 | 75.00 404 | 10.91 414 | 80.50 405 | 51.60 404 | 53.40 402 | 78.99 400 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| E-PMN | | | 64.94 371 | 64.25 373 | 67.02 388 | 82.28 405 | 59.36 411 | 91.83 396 | 85.63 407 | 52.69 402 | 60.22 403 | 77.28 402 | 41.06 403 | 80.12 406 | 46.15 406 | 41.14 403 | 61.57 404 |
|
| EMVS | | | 64.07 372 | 63.26 375 | 66.53 389 | 81.73 406 | 58.81 412 | 91.85 395 | 84.75 408 | 51.93 404 | 59.09 404 | 75.13 403 | 43.32 401 | 79.09 407 | 42.03 407 | 39.47 404 | 61.69 403 |
|
| ANet_high | | | 69.08 368 | 65.37 372 | 80.22 383 | 65.99 411 | 71.96 401 | 90.91 397 | 90.09 404 | 82.62 386 | 49.93 406 | 78.39 401 | 29.36 409 | 81.75 404 | 62.49 401 | 38.52 405 | 86.95 398 |
|
| tmp_tt | | | 68.90 369 | 66.97 371 | 74.68 386 | 50.78 413 | 59.95 410 | 87.13 398 | 83.47 409 | 38.80 406 | 62.21 402 | 96.23 338 | 64.70 391 | 76.91 408 | 88.91 339 | 30.49 406 | 87.19 397 |
|
| wuyk23d | | | 30.17 374 | 30.18 378 | 30.16 390 | 78.61 408 | 43.29 415 | 66.79 403 | 14.21 414 | 17.31 407 | 14.82 410 | 11.93 410 | 11.55 413 | 41.43 409 | 37.08 408 | 19.30 407 | 5.76 407 |
|
| testmvs | | | 21.48 376 | 24.95 379 | 11.09 392 | 14.89 414 | 6.47 417 | 96.56 363 | 9.87 415 | 7.55 408 | 17.93 408 | 39.02 406 | 9.43 415 | 5.90 411 | 16.56 410 | 12.72 408 | 20.91 406 |
|
| test123 | | | 20.95 377 | 23.72 380 | 12.64 391 | 13.54 415 | 8.19 416 | 96.55 364 | 6.13 416 | 7.48 409 | 16.74 409 | 37.98 407 | 12.97 412 | 6.05 410 | 16.69 409 | 5.43 409 | 23.68 405 |
|
| test_blank | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet_test | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| DCPMVS | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| cdsmvs_eth3d_5k | | | 23.98 375 | 31.98 377 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 98.59 144 | 0.00 411 | 0.00 412 | 98.61 148 | 90.60 164 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| pcd_1.5k_mvsjas | | | 7.88 379 | 10.50 382 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 94.51 81 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet-low-res | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uncertanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| Regformer | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| ab-mvs-re | | | 8.20 378 | 10.94 381 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 98.43 167 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| WAC-MVS | | | | | | | 90.94 318 | | | | | | | | 88.66 341 | | |
|
| FOURS1 | | | | | | 99.82 1 | 98.66 24 | 99.69 1 | 98.95 46 | 97.46 34 | 99.39 30 | | | | | | |
|
| test_one_0601 | | | | | | 99.66 26 | 99.25 2 | | 98.86 75 | 97.55 28 | 99.20 38 | 99.47 20 | 97.57 6 | | | | |
|
| eth-test2 | | | | | | 0.00 416 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 416 | | | | | | | | | | | |
|
| test_241102_ONE | | | | | | 99.71 19 | 99.24 5 | | 98.87 69 | 97.62 24 | 99.73 10 | 99.39 32 | 97.53 7 | 99.74 111 | | | |
|
| save fliter | | | | | | 99.46 49 | 98.38 35 | 98.21 225 | 98.71 116 | 97.95 13 | | | | | | | |
|
| test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 63 | 98.88 62 | 97.62 24 | 99.56 20 | 99.50 15 | 97.42 9 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.20 139 |
|
| test_part2 | | | | | | 99.63 29 | 99.18 10 | | | | 99.27 35 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 89.45 183 | | | | 99.20 139 |
|
| sam_mvs | | | | | | | | | | | | | 88.99 197 | | | | |
|
| MTGPA |  | | | | | | | | 98.74 108 | | | | | | | | |
|
| test_post1 | | | | | | | | 96.68 360 | | | | 30.43 409 | 87.85 230 | 98.69 261 | 92.59 268 | | |
|
| test_post | | | | | | | | | | | | 31.83 408 | 88.83 204 | 98.91 238 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 95.10 366 | 89.42 184 | 98.89 242 | | | |
|
| MTMP | | | | | | | | 98.89 104 | 94.14 390 | | | | | | | | |
|
| gm-plane-assit | | | | | | 95.88 346 | 87.47 373 | | | 89.74 349 | | 96.94 309 | | 99.19 194 | 93.32 247 | | |
|
| TEST9 | | | | | | 99.31 64 | 98.50 29 | 97.92 262 | 98.73 111 | 92.63 274 | 97.74 131 | 98.68 142 | 96.20 28 | 99.80 88 | | | |
|
| test_8 | | | | | | 99.29 73 | 98.44 31 | 97.89 270 | 98.72 113 | 92.98 263 | 97.70 135 | 98.66 145 | 96.20 28 | 99.80 88 | | | |
|
| agg_prior | | | | | | 99.30 68 | 98.38 35 | | 98.72 113 | | 97.57 147 | | | 99.81 81 | | | |
|
| test_prior4 | | | | | | | 98.01 61 | 97.86 273 | | | | | | | | | |
|
| test_prior | | | | | 99.19 40 | 99.31 64 | 98.22 48 | | 98.84 79 | | | | | 99.70 119 | | | 99.65 69 |
|
| 旧先验2 | | | | | | | | 97.57 298 | | 91.30 319 | 98.67 73 | | | 99.80 88 | 95.70 173 | | |
|
| 新几何2 | | | | | | | | 97.64 292 | | | | | | | | | |
|
| 无先验 | | | | | | | | 97.58 297 | 98.72 113 | 91.38 313 | | | | 99.87 58 | 93.36 246 | | 99.60 77 |
|
| 原ACMM2 | | | | | | | | 97.67 289 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.89 47 | 91.65 294 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.85 14 | | | | |
|
| testdata1 | | | | | | | | 97.32 317 | | 96.34 99 | | | | | | | |
|
| plane_prior7 | | | | | | 97.42 262 | 94.63 221 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 97.35 269 | 94.61 224 | | | | | | 87.09 242 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 98.28 187 | | | | | |
|
| plane_prior3 | | | | | | | 94.61 224 | | | 97.02 64 | 95.34 217 | | | | | | |
|
| plane_prior2 | | | | | | | | 98.80 136 | | 97.28 45 | | | | | | | |
|
| plane_prior1 | | | | | | 97.37 268 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 417 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 417 | | | | | | | | |
|
| door-mid | | | | | | | | | 94.37 386 | | | | | | | | |
|
| test11 | | | | | | | | | 98.66 131 | | | | | | | | |
|
| door | | | | | | | | | 94.64 384 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 94.25 241 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 97.20 277 | | 98.05 249 | | 96.43 93 | 94.45 241 | | | | | | |
|
| ACMP_Plane | | | | | | 97.20 277 | | 98.05 249 | | 96.43 93 | 94.45 241 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 95.30 183 | | |
|
| HQP4-MVS | | | | | | | | | | | 94.45 241 | | | 98.96 229 | | | 96.87 281 |
|
| HQP2-MVS | | | | | | | | | | | | | 86.75 248 | | | | |
|
| NP-MVS | | | | | | 97.28 271 | 94.51 229 | | | | | 97.73 235 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 84.26 381 | 96.89 350 | | 90.97 328 | 97.90 124 | | 89.89 175 | | 93.91 230 | | 99.18 148 |
|
| Test By Simon | | | | | | | | | | | | | 94.64 78 | | | | |
|