This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND99.71 199.72 1299.35 198.97 8298.88 5099.94 398.47 2499.81 1299.84 6
test_one_060199.66 2699.25 298.86 6397.55 1699.20 2899.47 1197.57 6
DVP-MVScopyleft99.03 398.83 599.63 499.72 1299.25 298.97 8298.58 13797.62 1299.45 1699.46 1497.42 999.94 398.47 2499.81 1299.69 49
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.72 1299.25 299.06 6298.88 5097.62 1299.56 1199.50 697.42 9
SED-MVS99.09 198.91 199.63 499.71 1999.24 599.02 7398.87 5797.65 1099.73 299.48 997.53 799.94 398.43 2899.81 1299.70 46
test_241102_ONE99.71 1999.24 598.87 5797.62 1299.73 299.39 1997.53 799.74 97
DVP-MVS++99.08 298.89 299.64 399.17 8899.23 799.69 198.88 5097.32 2999.53 1499.47 1197.81 399.94 398.47 2499.72 4699.74 30
IU-MVS99.71 1999.23 798.64 12595.28 12999.63 998.35 3399.81 1299.83 7
DPE-MVScopyleft98.92 598.67 899.65 299.58 3299.20 998.42 18598.91 4497.58 1599.54 1399.46 1497.10 1299.94 397.64 7299.84 1099.83 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.63 2999.18 1099.27 25
MSC_two_6792asdad99.62 699.17 8899.08 1198.63 12799.94 398.53 1699.80 1999.86 2
No_MVS99.62 699.17 8899.08 1198.63 12799.94 398.53 1699.80 1999.86 2
HPM-MVS++copyleft98.58 1998.25 3699.55 999.50 4199.08 1198.72 13898.66 12097.51 1898.15 8698.83 11195.70 4299.92 2397.53 8299.67 5299.66 61
OPU-MVS99.37 2099.24 8199.05 1499.02 7399.16 6397.81 399.37 15597.24 9299.73 4399.70 46
SMA-MVScopyleft98.58 1998.25 3699.56 899.51 3999.04 1598.95 8698.80 8293.67 20699.37 2199.52 396.52 2199.89 3698.06 4399.81 1299.76 27
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS99.02 498.84 499.55 999.57 3398.96 1699.39 1298.93 3897.38 2699.41 1899.54 196.66 1799.84 5398.86 899.85 599.87 1
ACMMP_NAP98.61 1498.30 3399.55 999.62 3098.95 1798.82 11298.81 7495.80 10299.16 3399.47 1195.37 5399.92 2397.89 5399.75 3899.79 13
MP-MVS-pluss98.31 4697.92 5299.49 1299.72 1298.88 1898.43 18398.78 8994.10 17597.69 12199.42 1795.25 6199.92 2398.09 4299.80 1999.67 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MCST-MVS98.65 1198.37 2199.48 1399.60 3198.87 1998.41 18698.68 11297.04 4998.52 7298.80 11496.78 1699.83 5597.93 5099.61 6399.74 30
CNVR-MVS98.78 798.56 1299.45 1599.32 5998.87 1998.47 17798.81 7497.72 798.76 5699.16 6397.05 1399.78 8798.06 4399.66 5499.69 49
APD-MVScopyleft98.35 4298.00 5099.42 1699.51 3998.72 2198.80 11998.82 6994.52 16499.23 2799.25 4795.54 4799.80 7496.52 12699.77 2899.74 30
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 1798.32 3299.41 1799.54 3598.71 2299.04 6798.81 7495.12 13799.32 2399.39 1996.22 2499.84 5397.72 6599.73 4399.67 58
ZD-MVS99.46 4998.70 2398.79 8793.21 22598.67 6198.97 9195.70 4299.83 5596.07 13799.58 69
FOURS199.82 198.66 2499.69 198.95 3497.46 2199.39 20
MTAPA98.58 1998.29 3499.46 1499.76 298.64 2598.90 9398.74 9797.27 3698.02 9799.39 1994.81 7399.96 297.91 5199.79 2399.77 21
NCCC98.61 1498.35 2499.38 1899.28 7198.61 2698.45 17898.76 9397.82 698.45 7698.93 10096.65 1899.83 5597.38 8999.41 9399.71 42
DPM-MVS97.55 7796.99 9099.23 3799.04 10198.55 2797.17 29998.35 18494.85 15297.93 10798.58 13795.07 6899.71 10492.60 24599.34 9999.43 101
3Dnovator+94.38 697.43 8496.78 10099.38 1897.83 20498.52 2899.37 1498.71 10597.09 4892.99 28099.13 6889.36 17199.89 3696.97 10199.57 7099.71 42
TEST999.31 6198.50 2997.92 23798.73 10092.63 24497.74 11698.68 12696.20 2699.80 74
train_agg97.97 5197.52 6699.33 2699.31 6198.50 2997.92 23798.73 10092.98 23397.74 11698.68 12696.20 2699.80 7496.59 12299.57 7099.68 54
test_899.29 6798.44 3197.89 24398.72 10292.98 23397.70 12098.66 12996.20 2699.80 74
CDPH-MVS97.94 5497.49 6799.28 3199.47 4798.44 3197.91 23998.67 11792.57 24898.77 5598.85 10895.93 3699.72 9995.56 15899.69 5099.68 54
SteuartSystems-ACMMP98.90 698.75 699.36 2199.22 8398.43 3399.10 5798.87 5797.38 2699.35 2299.40 1897.78 599.87 4597.77 6299.85 599.78 15
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS98.49 2998.20 4199.35 2299.73 1198.39 3499.19 4198.86 6395.77 10398.31 8599.10 7295.46 4899.93 1897.57 7999.81 1299.74 30
save fliter99.46 4998.38 3598.21 20698.71 10597.95 4
GST-MVS98.43 3598.12 4499.34 2399.72 1298.38 3599.09 5898.82 6995.71 10798.73 5999.06 8295.27 5999.93 1897.07 9899.63 6099.72 38
agg_prior99.30 6598.38 3598.72 10297.57 13099.81 67
canonicalmvs97.67 6797.23 8098.98 5398.70 13298.38 3599.34 1898.39 17796.76 6297.67 12297.40 24892.26 10899.49 14498.28 3696.28 20599.08 149
alignmvs97.56 7697.07 8799.01 5198.66 13798.37 3998.83 11098.06 24496.74 6398.00 10197.65 22890.80 14699.48 14898.37 3296.56 19399.19 131
SD-MVS98.64 1298.68 798.53 7899.33 5698.36 4098.90 9398.85 6697.28 3299.72 499.39 1996.63 1997.60 32798.17 3899.85 599.64 64
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVS98.70 1098.49 1599.34 2399.70 2298.35 4199.29 2298.88 5097.40 2398.46 7399.20 5395.90 3899.89 3697.85 5699.74 4199.78 15
X-MVStestdata94.06 26592.30 28699.34 2399.70 2298.35 4199.29 2298.88 5097.40 2398.46 7343.50 37495.90 3899.89 3697.85 5699.74 4199.78 15
DP-MVS Recon97.86 5797.46 7099.06 5099.53 3698.35 4198.33 19098.89 4792.62 24598.05 9298.94 9995.34 5599.65 11596.04 14199.42 9299.19 131
HFP-MVS98.63 1398.40 1899.32 2799.72 1298.29 4499.23 3198.96 3396.10 9098.94 4299.17 6096.06 3099.92 2397.62 7399.78 2699.75 28
TSAR-MVS + MP.98.78 798.62 999.24 3599.69 2498.28 4599.14 4898.66 12096.84 5799.56 1199.31 3796.34 2399.70 10598.32 3499.73 4399.73 35
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS98.74 998.55 1399.29 2899.75 398.23 4699.26 2798.88 5097.52 1799.41 1898.78 11696.00 3399.79 8497.79 6199.59 6699.85 4
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_prior99.19 3899.31 6198.22 4798.84 6799.70 10599.65 62
test1299.18 4099.16 9298.19 4898.53 14798.07 9195.13 6699.72 9999.56 7699.63 66
SR-MVS98.57 2298.35 2499.24 3599.53 3698.18 4999.09 5898.82 6996.58 6999.10 3599.32 3595.39 5199.82 6297.70 6999.63 6099.72 38
MP-MVScopyleft98.33 4598.01 4999.28 3199.75 398.18 4999.22 3598.79 8796.13 8897.92 10899.23 4894.54 7699.94 396.74 12199.78 2699.73 35
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
region2R98.61 1498.38 2099.29 2899.74 798.16 5199.23 3198.93 3896.15 8798.94 4299.17 6095.91 3799.94 397.55 8099.79 2399.78 15
nrg03096.28 13595.72 14397.96 12296.90 27198.15 5299.39 1298.31 19095.47 11794.42 22198.35 16292.09 11598.69 23597.50 8489.05 30897.04 231
ACMMPR98.59 1798.36 2299.29 2899.74 798.15 5299.23 3198.95 3496.10 9098.93 4699.19 5895.70 4299.94 397.62 7399.79 2399.78 15
PHI-MVS98.34 4398.06 4799.18 4099.15 9498.12 5499.04 6799.09 2193.32 22098.83 5299.10 7296.54 2099.83 5597.70 6999.76 3499.59 72
PGM-MVS98.49 2998.23 3999.27 3399.72 1298.08 5598.99 7999.49 595.43 11999.03 3699.32 3595.56 4599.94 396.80 11899.77 2899.78 15
mPP-MVS98.51 2898.26 3599.25 3499.75 398.04 5699.28 2498.81 7496.24 8398.35 8299.23 4895.46 4899.94 397.42 8799.81 1299.77 21
DeepC-MVS_fast96.70 198.55 2598.34 2799.18 4099.25 7598.04 5698.50 17498.78 8997.72 798.92 4799.28 4095.27 5999.82 6297.55 8099.77 2899.69 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior498.01 5897.86 246
新几何199.16 4399.34 5498.01 5898.69 10990.06 31498.13 8798.95 9894.60 7599.89 3691.97 26599.47 8799.59 72
APD-MVS_3200maxsize98.53 2798.33 3199.15 4499.50 4197.92 6099.15 4698.81 7496.24 8399.20 2899.37 2595.30 5799.80 7497.73 6499.67 5299.72 38
SR-MVS-dyc-post98.54 2698.35 2499.13 4599.49 4597.86 6199.11 5498.80 8296.49 7299.17 3199.35 3195.34 5599.82 6297.72 6599.65 5599.71 42
RE-MVS-def98.34 2799.49 4597.86 6199.11 5498.80 8296.49 7299.17 3199.35 3195.29 5897.72 6599.65 5599.71 42
HPM-MVS_fast98.38 3898.13 4399.12 4799.75 397.86 6199.44 1198.82 6994.46 16798.94 4299.20 5395.16 6599.74 9797.58 7699.85 599.77 21
CP-MVS98.57 2298.36 2299.19 3899.66 2697.86 6199.34 1898.87 5795.96 9598.60 6999.13 6896.05 3199.94 397.77 6299.86 199.77 21
HPM-MVScopyleft98.36 4098.10 4699.13 4599.74 797.82 6599.53 898.80 8294.63 16098.61 6898.97 9195.13 6699.77 9297.65 7199.83 1199.79 13
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS98.40 3798.20 4198.99 5299.00 10697.66 6697.75 25598.89 4797.71 998.33 8398.97 9194.97 7099.88 4498.42 3099.76 3499.42 103
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator94.51 597.46 7996.93 9299.07 4997.78 20697.64 6799.35 1799.06 2397.02 5093.75 25599.16 6389.25 17599.92 2397.22 9499.75 3899.64 64
114514_t96.93 10696.27 12198.92 5799.50 4197.63 6898.85 10698.90 4584.80 35197.77 11299.11 7092.84 9999.66 11494.85 17599.77 2899.47 92
ACMMPcopyleft98.23 4797.95 5199.09 4899.74 797.62 6999.03 7099.41 695.98 9397.60 12999.36 2994.45 8199.93 1897.14 9598.85 12199.70 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
QAPM96.29 13395.40 15598.96 5597.85 20397.60 7099.23 3198.93 3889.76 31993.11 27799.02 8489.11 18099.93 1891.99 26499.62 6299.34 107
VNet97.79 6097.40 7498.96 5598.88 11697.55 7198.63 15598.93 3896.74 6399.02 3798.84 10990.33 15599.83 5598.53 1696.66 18999.50 84
FIs96.51 12396.12 12697.67 14497.13 25797.54 7299.36 1599.22 1595.89 9794.03 24198.35 16291.98 11898.44 26396.40 13092.76 26297.01 233
旧先验199.29 6797.48 7398.70 10899.09 7895.56 4599.47 8799.61 68
UA-Net97.96 5297.62 5998.98 5398.86 11897.47 7498.89 9799.08 2296.67 6698.72 6099.54 193.15 9799.81 6794.87 17498.83 12299.65 62
UniMVSNet (Re)95.78 15895.19 17197.58 15196.99 26497.47 7498.79 12499.18 1795.60 11193.92 24597.04 27691.68 12398.48 25695.80 15087.66 32396.79 260
CNLPA97.45 8297.03 8898.73 6399.05 10097.44 7698.07 22498.53 14795.32 12796.80 15898.53 14193.32 9599.72 9994.31 19699.31 10199.02 153
MVS_111021_HR98.47 3298.34 2798.88 6099.22 8397.32 7797.91 23999.58 397.20 3998.33 8399.00 8995.99 3499.64 11798.05 4599.76 3499.69 49
OpenMVScopyleft93.04 1395.83 15695.00 18098.32 9697.18 25497.32 7799.21 3898.97 3189.96 31591.14 31399.05 8386.64 23599.92 2393.38 22399.47 8797.73 214
ETV-MVS97.96 5297.81 5398.40 9298.42 15397.27 7998.73 13498.55 14396.84 5798.38 7997.44 24595.39 5199.35 15697.62 7398.89 11798.58 188
CANet98.05 5097.76 5598.90 5998.73 12797.27 7998.35 18898.78 8997.37 2897.72 11998.96 9691.53 13199.92 2398.79 1099.65 5599.51 82
FC-MVSNet-test96.42 12696.05 12997.53 15496.95 26697.27 7999.36 1599.23 1395.83 10193.93 24498.37 16092.00 11798.32 28296.02 14292.72 26397.00 234
VPA-MVSNet95.75 15995.11 17697.69 14297.24 24697.27 7998.94 8899.23 1395.13 13695.51 19297.32 25185.73 25198.91 21397.33 9189.55 30096.89 248
DROMVSNet98.21 4898.11 4598.49 8298.34 16497.26 8399.61 598.43 17196.78 6098.87 4998.84 10993.72 9299.01 19998.91 799.50 8299.19 131
TSAR-MVS + GP.98.38 3898.24 3898.81 6199.22 8397.25 8498.11 22298.29 19897.19 4098.99 4199.02 8496.22 2499.67 11298.52 2298.56 13599.51 82
NR-MVSNet94.98 20794.16 22097.44 15696.53 29097.22 8598.74 13098.95 3494.96 14789.25 33097.69 22489.32 17298.18 29494.59 18787.40 32696.92 240
LS3D97.16 9896.66 10898.68 6698.53 14797.19 8698.93 9098.90 4592.83 24095.99 18699.37 2592.12 11499.87 4593.67 21799.57 7098.97 158
test22299.23 8297.17 8797.40 27798.66 12088.68 33198.05 9298.96 9694.14 8799.53 8099.61 68
CPTT-MVS97.72 6397.32 7798.92 5799.64 2897.10 8899.12 5298.81 7492.34 25698.09 9099.08 8093.01 9899.92 2396.06 14099.77 2899.75 28
CS-MVS-test98.49 2998.50 1498.46 8599.20 8697.05 8999.64 498.50 15697.45 2298.88 4899.14 6795.25 6199.15 17598.83 999.56 7699.20 127
HY-MVS93.96 896.82 11196.23 12498.57 7298.46 15197.00 9098.14 21798.21 20793.95 18496.72 16097.99 19691.58 12699.76 9394.51 18996.54 19498.95 161
UniMVSNet_NR-MVSNet95.71 16295.15 17297.40 16096.84 27496.97 9198.74 13099.24 1195.16 13593.88 24797.72 22191.68 12398.31 28495.81 14887.25 32896.92 240
DU-MVS95.42 17894.76 19197.40 16096.53 29096.97 9198.66 15198.99 3095.43 11993.88 24797.69 22488.57 19498.31 28495.81 14887.25 32896.92 240
DeepC-MVS95.98 397.88 5697.58 6198.77 6299.25 7596.93 9398.83 11098.75 9596.96 5396.89 15399.50 690.46 15299.87 4597.84 5899.76 3499.52 79
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR96.84 11096.24 12398.65 6898.72 13196.92 9497.36 28398.57 13993.33 21996.67 16197.57 23694.30 8499.56 13191.05 28298.59 13399.47 92
MVS_111021_LR98.34 4398.23 3998.67 6799.27 7296.90 9597.95 23599.58 397.14 4498.44 7799.01 8895.03 6999.62 12397.91 5199.75 3899.50 84
MAR-MVS96.91 10796.40 11698.45 8698.69 13496.90 9598.66 15198.68 11292.40 25597.07 14397.96 19991.54 13099.75 9593.68 21598.92 11598.69 178
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS97.37 8996.92 9398.72 6498.86 11896.89 9798.31 19598.71 10595.26 13097.67 12298.56 14092.21 11199.78 8795.89 14596.85 18499.48 90
MSLP-MVS++98.56 2498.57 1198.55 7499.26 7496.80 9898.71 13999.05 2597.28 3298.84 5099.28 4096.47 2299.40 15398.52 2299.70 4999.47 92
API-MVS97.41 8697.25 7997.91 12398.70 13296.80 9898.82 11298.69 10994.53 16298.11 8898.28 17194.50 8099.57 12894.12 20299.49 8497.37 224
PCF-MVS93.45 1194.68 22093.43 26698.42 9198.62 14196.77 10095.48 34898.20 20984.63 35293.34 26898.32 16888.55 19699.81 6784.80 34298.96 11498.68 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ab-mvs96.42 12695.71 14698.55 7498.63 14096.75 10197.88 24498.74 9793.84 18996.54 17098.18 18285.34 26099.75 9595.93 14496.35 19999.15 138
CS-MVS98.44 3498.49 1598.31 9799.08 9996.73 10299.67 398.47 16297.17 4198.94 4299.10 7295.73 4199.13 17898.71 1199.49 8499.09 145
Effi-MVS+97.12 10096.69 10598.39 9398.19 17996.72 10397.37 28198.43 17193.71 19997.65 12598.02 19292.20 11299.25 16296.87 11397.79 16599.19 131
AdaColmapbinary97.15 9996.70 10498.48 8399.16 9296.69 10498.01 23098.89 4794.44 16896.83 15498.68 12690.69 14999.76 9394.36 19299.29 10298.98 157
原ACMM198.65 6899.32 5996.62 10598.67 11793.27 22497.81 11198.97 9195.18 6499.83 5593.84 21199.46 9099.50 84
FMVSNet394.97 20894.26 21597.11 17698.18 18196.62 10598.56 16798.26 20393.67 20694.09 23797.10 26384.25 27898.01 30892.08 25992.14 26696.70 272
sss97.39 8796.98 9198.61 7098.60 14396.61 10798.22 20598.93 3893.97 18398.01 10098.48 14691.98 11899.85 5096.45 12898.15 15399.39 104
test_yl97.22 9396.78 10098.54 7698.73 12796.60 10898.45 17898.31 19094.70 15498.02 9798.42 15490.80 14699.70 10596.81 11696.79 18699.34 107
DCV-MVSNet97.22 9396.78 10098.54 7698.73 12796.60 10898.45 17898.31 19094.70 15498.02 9798.42 15490.80 14699.70 10596.81 11696.79 18699.34 107
casdiffmvs_mvgpermissive97.72 6397.48 6998.44 8798.42 15396.59 11098.92 9198.44 16796.20 8597.76 11399.20 5391.66 12599.23 16598.27 3798.41 14499.49 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VPNet94.99 20594.19 21897.40 16097.16 25596.57 11198.71 13998.97 3195.67 10994.84 20398.24 17880.36 30998.67 23996.46 12787.32 32796.96 237
MVS94.67 22393.54 26298.08 11496.88 27296.56 11298.19 21198.50 15678.05 36192.69 28898.02 19291.07 14299.63 12090.09 29398.36 14798.04 205
XXY-MVS95.20 19494.45 20897.46 15596.75 27996.56 11298.86 10598.65 12493.30 22293.27 27098.27 17484.85 26898.87 22094.82 17791.26 27996.96 237
iter_conf_final96.42 12696.12 12697.34 16398.46 15196.55 11499.08 6098.06 24496.03 9295.63 19098.46 15087.72 21598.59 24597.84 5893.80 23996.87 251
PatchMatch-RL96.59 11896.03 13198.27 9999.31 6196.51 11597.91 23999.06 2393.72 19896.92 15198.06 18988.50 19899.65 11591.77 26999.00 11398.66 182
EI-MVSNet-Vis-set98.47 3298.39 1998.69 6599.46 4996.49 11698.30 19798.69 10997.21 3898.84 5099.36 2995.41 5099.78 8798.62 1399.65 5599.80 12
WR-MVS95.15 19694.46 20697.22 16796.67 28496.45 11798.21 20698.81 7494.15 17393.16 27397.69 22487.51 22098.30 28695.29 16688.62 31496.90 247
EIA-MVS97.75 6197.58 6198.27 9998.38 15696.44 11899.01 7598.60 13095.88 9997.26 13597.53 23994.97 7099.33 15897.38 8999.20 10499.05 151
mvsmamba96.57 12196.32 11997.32 16496.60 28696.43 11999.54 797.98 25096.49 7295.20 19698.64 13090.82 14498.55 24997.97 4793.65 24496.98 235
FMVSNet294.47 23893.61 25897.04 17998.21 17596.43 11998.79 12498.27 19992.46 24993.50 26497.09 26781.16 30198.00 31091.09 27891.93 26996.70 272
PAPM_NR97.46 7997.11 8498.50 8099.50 4196.41 12198.63 15598.60 13095.18 13497.06 14498.06 18994.26 8699.57 12893.80 21398.87 12099.52 79
1112_ss96.63 11696.00 13298.50 8098.56 14496.37 12298.18 21498.10 23292.92 23694.84 20398.43 15292.14 11399.58 12794.35 19396.51 19599.56 78
TranMVSNet+NR-MVSNet95.14 19794.48 20497.11 17696.45 29696.36 12399.03 7099.03 2695.04 14393.58 25897.93 20188.27 20198.03 30794.13 20186.90 33396.95 239
IS-MVSNet97.22 9396.88 9498.25 10298.85 12096.36 12399.19 4197.97 25295.39 12197.23 13698.99 9091.11 14098.93 21194.60 18598.59 13399.47 92
EI-MVSNet-UG-set98.41 3698.34 2798.61 7099.45 5296.32 12598.28 20098.68 11297.17 4198.74 5799.37 2595.25 6199.79 8498.57 1499.54 7999.73 35
LFMVS95.86 15494.98 18298.47 8498.87 11796.32 12598.84 10996.02 33993.40 21798.62 6799.20 5374.99 34299.63 12097.72 6597.20 17999.46 96
PLCcopyleft95.07 497.20 9696.78 10098.44 8799.29 6796.31 12798.14 21798.76 9392.41 25496.39 17698.31 16994.92 7299.78 8794.06 20598.77 12599.23 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Vis-MVSNetpermissive97.42 8597.11 8498.34 9598.66 13796.23 12899.22 3599.00 2896.63 6898.04 9499.21 5188.05 20899.35 15696.01 14399.21 10399.45 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D94.13 25892.98 27497.58 15198.22 17496.20 12997.31 28895.37 34794.53 16279.56 36097.63 23286.51 23697.53 33196.91 10490.74 28499.02 153
baseline97.64 6997.44 7298.25 10298.35 15996.20 12999.00 7798.32 18896.33 8298.03 9599.17 6091.35 13499.16 17298.10 4198.29 15199.39 104
DP-MVS96.59 11895.93 13598.57 7299.34 5496.19 13198.70 14398.39 17789.45 32494.52 21399.35 3191.85 12099.85 5092.89 24198.88 11899.68 54
casdiffmvspermissive97.63 7097.41 7398.28 9898.33 16696.14 13298.82 11298.32 18896.38 8097.95 10399.21 5191.23 13899.23 16598.12 4098.37 14599.48 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet97.28 9196.87 9598.51 7994.98 33796.14 13298.90 9397.02 31698.28 195.99 18699.11 7091.36 13399.89 3696.98 10099.19 10599.50 84
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet_DTU96.96 10596.55 11198.21 10498.17 18396.07 13497.98 23398.21 20797.24 3797.13 13998.93 10086.88 23299.91 3195.00 17399.37 9898.66 182
iter_conf0596.13 14095.79 13997.15 17298.16 18495.99 13598.88 10097.98 25095.91 9695.58 19198.46 15085.53 25598.59 24597.88 5493.75 24096.86 254
xiu_mvs_v1_base_debu97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
xiu_mvs_v1_base97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
xiu_mvs_v1_base_debi97.60 7197.56 6397.72 13898.35 15995.98 13697.86 24698.51 15197.13 4599.01 3898.40 15691.56 12799.80 7498.53 1698.68 12697.37 224
baseline195.84 15595.12 17598.01 11898.49 15095.98 13698.73 13497.03 31495.37 12496.22 17998.19 18189.96 16099.16 17294.60 18587.48 32498.90 164
CDS-MVSNet96.99 10496.69 10597.90 12498.05 19295.98 13698.20 20898.33 18793.67 20696.95 14798.49 14593.54 9398.42 26595.24 16997.74 16899.31 113
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+96.28 13595.70 14898.03 11798.29 17095.97 14198.58 16198.25 20491.74 27395.29 19597.23 25791.03 14399.15 17592.90 23997.96 15998.97 158
MVS_Test97.28 9197.00 8998.13 11098.33 16695.97 14198.74 13098.07 23994.27 17198.44 7798.07 18892.48 10399.26 16196.43 12998.19 15299.16 137
MG-MVS97.81 5997.60 6098.44 8799.12 9695.97 14197.75 25598.78 8996.89 5698.46 7399.22 5093.90 9199.68 11194.81 17899.52 8199.67 58
tfpnnormal93.66 27092.70 28096.55 22596.94 26795.94 14498.97 8299.19 1691.04 29891.38 31197.34 24984.94 26698.61 24285.45 33789.02 31095.11 338
pmmvs494.69 21893.99 23296.81 19795.74 32295.94 14497.40 27797.67 26990.42 30893.37 26797.59 23489.08 18198.20 29392.97 23691.67 27396.30 314
Test_1112_low_res96.34 13295.66 15198.36 9498.56 14495.94 14497.71 25898.07 23992.10 26594.79 20797.29 25391.75 12299.56 13194.17 20096.50 19699.58 76
MVSTER96.06 14295.72 14397.08 17898.23 17395.93 14798.73 13498.27 19994.86 15195.07 19898.09 18788.21 20298.54 25196.59 12293.46 24996.79 260
OMC-MVS97.55 7797.34 7698.20 10599.33 5695.92 14898.28 20098.59 13295.52 11597.97 10299.10 7293.28 9699.49 14495.09 17198.88 11899.19 131
PVSNet_Blended_VisFu97.70 6597.46 7098.44 8799.27 7295.91 14998.63 15599.16 1894.48 16697.67 12298.88 10592.80 10099.91 3197.11 9699.12 10799.50 84
anonymousdsp95.42 17894.91 18596.94 18795.10 33695.90 15099.14 4898.41 17393.75 19493.16 27397.46 24287.50 22298.41 27395.63 15794.03 23296.50 302
GeoE96.58 12096.07 12898.10 11398.35 15995.89 15199.34 1898.12 22693.12 22996.09 18298.87 10689.71 16498.97 20192.95 23798.08 15699.43 101
UGNet96.78 11296.30 12098.19 10798.24 17195.89 15198.88 10098.93 3897.39 2596.81 15797.84 21082.60 29499.90 3496.53 12599.49 8498.79 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WR-MVS_H95.05 20294.46 20696.81 19796.86 27395.82 15399.24 3099.24 1193.87 18892.53 29396.84 29590.37 15398.24 29293.24 22787.93 32096.38 309
diffmvspermissive97.58 7497.40 7498.13 11098.32 16895.81 15498.06 22598.37 18196.20 8598.74 5798.89 10491.31 13699.25 16298.16 3998.52 13699.34 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
bld_raw_dy_0_6495.74 16095.31 16697.03 18096.35 30095.76 15599.12 5297.37 29995.97 9494.70 20998.48 14685.80 25098.49 25596.55 12493.48 24896.84 256
MVSFormer97.57 7597.49 6797.84 12698.07 18995.76 15599.47 998.40 17594.98 14598.79 5398.83 11192.34 10598.41 27396.91 10499.59 6699.34 107
lupinMVS97.44 8397.22 8198.12 11298.07 18995.76 15597.68 26097.76 26594.50 16598.79 5398.61 13292.34 10599.30 15997.58 7699.59 6699.31 113
PAPM94.95 20994.00 23097.78 13297.04 26195.65 15896.03 34098.25 20491.23 29394.19 23397.80 21691.27 13798.86 22282.61 35097.61 17298.84 168
jason97.32 9097.08 8698.06 11697.45 23595.59 15997.87 24597.91 25994.79 15398.55 7198.83 11191.12 13999.23 16597.58 7699.60 6499.34 107
jason: jason.
PS-MVSNAJ97.73 6297.77 5497.62 14998.68 13595.58 16097.34 28598.51 15197.29 3198.66 6597.88 20694.51 7799.90 3497.87 5599.17 10697.39 222
CP-MVSNet94.94 21194.30 21496.83 19596.72 28195.56 16199.11 5498.95 3493.89 18692.42 29897.90 20387.19 22698.12 29994.32 19588.21 31796.82 259
HyFIR lowres test96.90 10896.49 11498.14 10899.33 5695.56 16197.38 27999.65 292.34 25697.61 12898.20 18089.29 17399.10 18696.97 10197.60 17399.77 21
131496.25 13795.73 14297.79 13197.13 25795.55 16398.19 21198.59 13293.47 21492.03 30597.82 21491.33 13599.49 14494.62 18498.44 14198.32 198
thisisatest053096.01 14395.36 16097.97 12098.38 15695.52 16498.88 10094.19 36094.04 17797.64 12698.31 16983.82 29099.46 15195.29 16697.70 17098.93 162
test_djsdf96.00 14495.69 14996.93 18895.72 32395.49 16599.47 998.40 17594.98 14594.58 21197.86 20789.16 17898.41 27396.91 10494.12 23096.88 249
xiu_mvs_v2_base97.66 6897.70 5797.56 15398.61 14295.46 16697.44 27498.46 16397.15 4398.65 6698.15 18394.33 8399.80 7497.84 5898.66 13097.41 220
Vis-MVSNet (Re-imp)96.87 10996.55 11197.83 12798.73 12795.46 16699.20 3998.30 19694.96 14796.60 16598.87 10690.05 15898.59 24593.67 21798.60 13299.46 96
EPP-MVSNet97.46 7997.28 7897.99 11998.64 13995.38 16899.33 2198.31 19093.61 21097.19 13799.07 8194.05 8899.23 16596.89 10898.43 14399.37 106
testdata98.26 10199.20 8695.36 16998.68 11291.89 27098.60 6999.10 7294.44 8299.82 6294.27 19799.44 9199.58 76
MSDG95.93 15095.30 16797.83 12798.90 11495.36 16996.83 32498.37 18191.32 28894.43 22098.73 12290.27 15699.60 12590.05 29698.82 12398.52 189
PVSNet_BlendedMVS96.73 11396.60 10997.12 17599.25 7595.35 17198.26 20399.26 994.28 17097.94 10597.46 24292.74 10199.81 6796.88 11093.32 25496.20 317
PVSNet_Blended97.38 8897.12 8398.14 10899.25 7595.35 17197.28 29099.26 993.13 22897.94 10598.21 17992.74 10199.81 6796.88 11099.40 9599.27 120
TAMVS97.02 10396.79 9997.70 14198.06 19195.31 17398.52 16998.31 19093.95 18497.05 14598.61 13293.49 9498.52 25395.33 16397.81 16499.29 118
PS-CasMVS94.67 22393.99 23296.71 20196.68 28395.26 17499.13 5199.03 2693.68 20492.33 29997.95 20085.35 25998.10 30093.59 21988.16 31996.79 260
V4294.78 21694.14 22296.70 20396.33 30295.22 17598.97 8298.09 23692.32 25894.31 22697.06 27388.39 19998.55 24992.90 23988.87 31296.34 310
FA-MVS(test-final)96.41 13095.94 13497.82 12998.21 17595.20 17697.80 25197.58 27593.21 22597.36 13397.70 22289.47 16899.56 13194.12 20297.99 15798.71 177
pm-mvs193.94 26893.06 27396.59 21696.49 29395.16 17798.95 8698.03 24792.32 25891.08 31497.84 21084.54 27498.41 27392.16 25786.13 33996.19 318
CSCG97.85 5897.74 5698.20 10599.67 2595.16 17799.22 3599.32 793.04 23197.02 14698.92 10295.36 5499.91 3197.43 8699.64 5999.52 79
thisisatest051595.61 17194.89 18797.76 13598.15 18595.15 17996.77 32594.41 35692.95 23597.18 13897.43 24684.78 26999.45 15294.63 18297.73 16998.68 179
VDDNet95.36 18494.53 20197.86 12598.10 18895.13 18098.85 10697.75 26690.46 30698.36 8099.39 1973.27 34999.64 11797.98 4696.58 19298.81 169
gg-mvs-nofinetune92.21 29390.58 30197.13 17496.75 27995.09 18195.85 34289.40 37485.43 34994.50 21481.98 36780.80 30798.40 27992.16 25798.33 14897.88 208
PS-MVSNAJss96.43 12596.26 12296.92 19195.84 32195.08 18299.16 4598.50 15695.87 10093.84 25098.34 16694.51 7798.61 24296.88 11093.45 25197.06 230
thres600view795.49 17294.77 19097.67 14498.98 11095.02 18398.85 10696.90 32295.38 12296.63 16396.90 29084.29 27699.59 12688.65 31796.33 20098.40 193
GBi-Net94.49 23693.80 24596.56 22098.21 17595.00 18498.82 11298.18 21492.46 24994.09 23797.07 27081.16 30197.95 31292.08 25992.14 26696.72 268
test194.49 23693.80 24596.56 22098.21 17595.00 18498.82 11298.18 21492.46 24994.09 23797.07 27081.16 30197.95 31292.08 25992.14 26696.72 268
FMVSNet193.19 28392.07 28896.56 22097.54 22595.00 18498.82 11298.18 21490.38 30992.27 30097.07 27073.68 34897.95 31289.36 31091.30 27796.72 268
tfpn200view995.32 18894.62 19797.43 15798.94 11294.98 18798.68 14696.93 32095.33 12596.55 16896.53 30784.23 27999.56 13188.11 31896.29 20297.76 211
GG-mvs-BLEND96.59 21696.34 30194.98 18796.51 33488.58 37593.10 27894.34 34580.34 31198.05 30689.53 30696.99 18296.74 265
thres40095.38 18194.62 19797.65 14898.94 11294.98 18798.68 14696.93 32095.33 12596.55 16896.53 30784.23 27999.56 13188.11 31896.29 20298.40 193
F-COLMAP97.09 10296.80 9797.97 12099.45 5294.95 19098.55 16898.62 12993.02 23296.17 18198.58 13794.01 8999.81 6793.95 20798.90 11699.14 140
FE-MVS95.62 16894.90 18697.78 13298.37 15894.92 19197.17 29997.38 29890.95 30097.73 11897.70 22285.32 26299.63 12091.18 27798.33 14898.79 170
thres100view90095.38 18194.70 19497.41 15898.98 11094.92 19198.87 10396.90 32295.38 12296.61 16496.88 29184.29 27699.56 13188.11 31896.29 20297.76 211
thres20095.25 19094.57 19997.28 16598.81 12394.92 19198.20 20897.11 30995.24 13396.54 17096.22 31884.58 27399.53 13987.93 32296.50 19697.39 222
tttt051796.07 14195.51 15497.78 13298.41 15594.84 19499.28 2494.33 35894.26 17297.64 12698.64 13084.05 28399.47 15095.34 16297.60 17399.03 152
PEN-MVS94.42 24193.73 25296.49 22996.28 30394.84 19499.17 4499.00 2893.51 21292.23 30197.83 21386.10 24597.90 31692.55 25086.92 33296.74 265
v894.47 23893.77 24896.57 21996.36 29994.83 19699.05 6498.19 21191.92 26993.16 27396.97 28388.82 19198.48 25691.69 27187.79 32196.39 308
TAPA-MVS93.98 795.35 18594.56 20097.74 13799.13 9594.83 19698.33 19098.64 12586.62 33996.29 17898.61 13294.00 9099.29 16080.00 35699.41 9399.09 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1094.29 24893.55 26196.51 22896.39 29894.80 19898.99 7998.19 21191.35 28693.02 27996.99 28188.09 20698.41 27390.50 28988.41 31696.33 312
v2v48294.69 21894.03 22696.65 20696.17 30794.79 19998.67 14998.08 23792.72 24294.00 24297.16 26187.69 21998.45 26192.91 23888.87 31296.72 268
v114494.59 22893.92 23596.60 21596.21 30494.78 20098.59 15998.14 22491.86 27294.21 23297.02 27887.97 20998.41 27391.72 27089.57 29896.61 282
TransMVSNet (Re)92.67 28991.51 29496.15 25096.58 28894.65 20198.90 9396.73 32990.86 30189.46 32997.86 20785.62 25398.09 30286.45 32981.12 35195.71 328
BH-RMVSNet95.92 15195.32 16497.69 14298.32 16894.64 20298.19 21197.45 29294.56 16196.03 18498.61 13285.02 26499.12 18090.68 28799.06 10899.30 116
OPM-MVS95.69 16595.33 16396.76 19996.16 30994.63 20398.43 18398.39 17796.64 6795.02 20098.78 11685.15 26399.05 19095.21 17094.20 22596.60 283
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
jajsoiax95.45 17695.03 17996.73 20095.42 33494.63 20399.14 4898.52 14995.74 10493.22 27198.36 16183.87 28898.65 24096.95 10394.04 23196.91 245
plane_prior797.42 23794.63 203
plane_prior697.35 24294.61 20687.09 227
plane_prior394.61 20697.02 5095.34 193
HQP_MVS96.14 13995.90 13696.85 19497.42 23794.60 20898.80 11998.56 14197.28 3295.34 19398.28 17187.09 22799.03 19496.07 13794.27 22296.92 240
plane_prior94.60 20898.44 18196.74 6394.22 224
CHOSEN 1792x268897.12 10096.80 9798.08 11499.30 6594.56 21098.05 22699.71 193.57 21197.09 14098.91 10388.17 20399.89 3696.87 11399.56 7699.81 11
NP-MVS97.28 24494.51 21197.73 219
h-mvs3396.17 13895.62 15297.81 13099.03 10294.45 21298.64 15398.75 9597.48 1998.67 6198.72 12389.76 16299.86 4997.95 4881.59 35099.11 143
v119294.32 24693.58 25996.53 22696.10 31094.45 21298.50 17498.17 21991.54 27994.19 23397.06 27386.95 23198.43 26490.14 29289.57 29896.70 272
mvs_tets95.41 18095.00 18096.65 20695.58 32794.42 21499.00 7798.55 14395.73 10693.21 27298.38 15983.45 29298.63 24197.09 9794.00 23396.91 245
LTVRE_ROB92.95 1594.60 22693.90 23896.68 20597.41 24094.42 21498.52 16998.59 13291.69 27691.21 31298.35 16284.87 26799.04 19391.06 28093.44 25296.60 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet93.98 26793.26 27196.14 25196.06 31294.39 21699.20 3998.86 6393.06 23091.78 30797.81 21585.87 24997.58 32990.53 28886.17 33796.46 306
v7n94.19 25493.43 26696.47 23295.90 31894.38 21799.26 2798.34 18691.99 26792.76 28597.13 26288.31 20098.52 25389.48 30887.70 32296.52 297
v14419294.39 24393.70 25496.48 23196.06 31294.35 21898.58 16198.16 22191.45 28194.33 22597.02 27887.50 22298.45 26191.08 27989.11 30796.63 280
Anonymous2023121194.10 26193.26 27196.61 21399.11 9794.28 21999.01 7598.88 5086.43 34192.81 28397.57 23681.66 29898.68 23894.83 17689.02 31096.88 249
cascas94.63 22593.86 24196.93 18896.91 27094.27 22096.00 34198.51 15185.55 34894.54 21296.23 31684.20 28198.87 22095.80 15096.98 18397.66 217
Anonymous2024052995.10 19994.22 21697.75 13699.01 10594.26 22198.87 10398.83 6885.79 34796.64 16298.97 9178.73 31899.85 5096.27 13294.89 21999.12 142
HQP5-MVS94.25 222
HQP-MVS95.72 16195.40 15596.69 20497.20 25094.25 22298.05 22698.46 16396.43 7594.45 21697.73 21986.75 23398.96 20595.30 16494.18 22696.86 254
RRT_MVS95.98 14595.78 14096.56 22096.48 29494.22 22499.57 697.92 25795.89 9793.95 24398.70 12489.27 17498.42 26597.23 9393.02 25897.04 231
mvsany_test197.69 6697.70 5797.66 14798.24 17194.18 22597.53 27197.53 28495.52 11599.66 699.51 594.30 8499.56 13198.38 3198.62 13199.23 124
TR-MVS94.94 21194.20 21797.17 17197.75 20894.14 22697.59 26897.02 31692.28 26095.75 18997.64 23083.88 28798.96 20589.77 30096.15 21098.40 193
v192192094.20 25393.47 26596.40 24095.98 31594.08 22798.52 16998.15 22291.33 28794.25 22997.20 26086.41 24098.42 26590.04 29789.39 30496.69 277
Baseline_NR-MVSNet94.35 24493.81 24495.96 25996.20 30594.05 22898.61 15896.67 33391.44 28293.85 24997.60 23388.57 19498.14 29794.39 19186.93 33195.68 329
VDD-MVS95.82 15795.23 16997.61 15098.84 12193.98 22998.68 14697.40 29695.02 14497.95 10399.34 3474.37 34699.78 8798.64 1296.80 18599.08 149
PMMVS96.60 11796.33 11897.41 15897.90 20193.93 23097.35 28498.41 17392.84 23997.76 11397.45 24491.10 14199.20 16996.26 13397.91 16099.11 143
v124094.06 26593.29 27096.34 24396.03 31493.90 23198.44 18198.17 21991.18 29694.13 23697.01 28086.05 24698.42 26589.13 31389.50 30296.70 272
GA-MVS94.81 21494.03 22697.14 17397.15 25693.86 23296.76 32697.58 27594.00 18194.76 20897.04 27680.91 30498.48 25691.79 26896.25 20799.09 145
ACMM93.85 995.69 16595.38 15996.61 21397.61 21893.84 23398.91 9298.44 16795.25 13194.28 22798.47 14886.04 24899.12 18095.50 16093.95 23596.87 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_anonymous96.70 11596.53 11397.18 17098.19 17993.78 23498.31 19598.19 21194.01 18094.47 21598.27 17492.08 11698.46 26097.39 8897.91 16099.31 113
XVG-OURS-SEG-HR96.51 12396.34 11797.02 18198.77 12593.76 23597.79 25398.50 15695.45 11896.94 14899.09 7887.87 21399.55 13896.76 12095.83 21597.74 213
XVG-OURS96.55 12296.41 11596.99 18298.75 12693.76 23597.50 27398.52 14995.67 10996.83 15499.30 3888.95 18899.53 13995.88 14696.26 20697.69 216
Anonymous20240521195.28 18994.49 20397.67 14499.00 10693.75 23798.70 14397.04 31390.66 30296.49 17298.80 11478.13 32499.83 5596.21 13695.36 21899.44 99
CLD-MVS95.62 16895.34 16196.46 23597.52 22893.75 23797.27 29198.46 16395.53 11494.42 22198.00 19586.21 24398.97 20196.25 13594.37 22096.66 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_enhance_ethall95.10 19994.75 19296.12 25397.53 22793.73 23996.61 33198.08 23792.20 26493.89 24696.65 30392.44 10498.30 28694.21 19991.16 28096.34 310
IterMVS-LS95.46 17495.21 17096.22 24998.12 18693.72 24098.32 19498.13 22593.71 19994.26 22897.31 25292.24 10998.10 30094.63 18290.12 29196.84 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 14695.83 13896.36 24197.93 19993.70 24198.12 22098.27 19993.70 20195.07 19899.02 8492.23 11098.54 25194.68 18093.46 24996.84 256
cl2294.68 22094.19 21896.13 25298.11 18793.60 24296.94 31198.31 19092.43 25393.32 26996.87 29386.51 23698.28 29094.10 20491.16 28096.51 300
baseline295.11 19894.52 20296.87 19396.65 28593.56 24398.27 20294.10 36293.45 21592.02 30697.43 24687.45 22499.19 17093.88 21097.41 17797.87 209
LPG-MVS_test95.62 16895.34 16196.47 23297.46 23193.54 24498.99 7998.54 14594.67 15894.36 22398.77 11885.39 25799.11 18295.71 15394.15 22896.76 263
LGP-MVS_train96.47 23297.46 23193.54 24498.54 14594.67 15894.36 22398.77 11885.39 25799.11 18295.71 15394.15 22896.76 263
hse-mvs295.71 16295.30 16796.93 18898.50 14893.53 24698.36 18798.10 23297.48 1998.67 6197.99 19689.76 16299.02 19797.95 4880.91 35498.22 200
AUN-MVS94.53 23393.73 25296.92 19198.50 14893.52 24798.34 18998.10 23293.83 19195.94 18897.98 19885.59 25499.03 19494.35 19380.94 35398.22 200
ACMP93.49 1095.34 18694.98 18296.43 23797.67 21493.48 24898.73 13498.44 16794.94 15092.53 29398.53 14184.50 27599.14 17795.48 16194.00 23396.66 278
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CR-MVSNet94.76 21794.15 22196.59 21697.00 26293.43 24994.96 35097.56 27792.46 24996.93 14996.24 31488.15 20497.88 32087.38 32496.65 19098.46 191
RPMNet92.81 28791.34 29597.24 16697.00 26293.43 24994.96 35098.80 8282.27 35696.93 14992.12 35986.98 23099.82 6276.32 36496.65 19098.46 191
IB-MVS91.98 1793.27 27991.97 29097.19 16997.47 23093.41 25197.09 30495.99 34093.32 22092.47 29695.73 32778.06 32599.53 13994.59 18782.98 34598.62 185
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl____94.51 23594.01 22996.02 25597.58 22093.40 25297.05 30597.96 25491.73 27592.76 28597.08 26989.06 18298.13 29892.61 24490.29 28996.52 297
DIV-MVS_self_test94.52 23494.03 22695.99 25697.57 22493.38 25397.05 30597.94 25591.74 27392.81 28397.10 26389.12 17998.07 30492.60 24590.30 28896.53 294
UniMVSNet_ETH3D94.24 25193.33 26896.97 18597.19 25393.38 25398.74 13098.57 13991.21 29593.81 25198.58 13772.85 35098.77 23195.05 17293.93 23698.77 174
miper_ehance_all_eth95.01 20394.69 19595.97 25897.70 21393.31 25597.02 30798.07 23992.23 26193.51 26396.96 28591.85 12098.15 29693.68 21591.16 28096.44 307
CHOSEN 280x42097.18 9797.18 8297.20 16898.81 12393.27 25695.78 34499.15 1995.25 13196.79 15998.11 18692.29 10799.07 18998.56 1599.85 599.25 123
ACMH92.88 1694.55 23093.95 23496.34 24397.63 21793.26 25798.81 11898.49 16193.43 21689.74 32598.53 14181.91 29699.08 18893.69 21493.30 25596.70 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft93.27 1295.33 18794.87 18896.71 20199.29 6793.24 25898.58 16198.11 22989.92 31693.57 25999.10 7286.37 24199.79 8490.78 28598.10 15597.09 229
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest95.24 19194.65 19696.99 18299.25 7593.21 25998.59 15998.18 21491.36 28493.52 26198.77 11884.67 27199.72 9989.70 30397.87 16298.02 206
TestCases96.99 18299.25 7593.21 25998.18 21491.36 28493.52 26198.77 11884.67 27199.72 9989.70 30397.87 16298.02 206
MIMVSNet93.26 28092.21 28796.41 23897.73 21293.13 26195.65 34597.03 31491.27 29294.04 24096.06 32175.33 34097.19 33786.56 32896.23 20898.92 163
c3_l94.79 21594.43 21095.89 26397.75 20893.12 26297.16 30198.03 24792.23 26193.46 26697.05 27591.39 13298.01 30893.58 22089.21 30696.53 294
Patchmtry93.22 28192.35 28595.84 26596.77 27693.09 26394.66 35797.56 27787.37 33792.90 28196.24 31488.15 20497.90 31687.37 32590.10 29296.53 294
tt080594.54 23193.85 24296.63 21097.98 19793.06 26498.77 12697.84 26293.67 20693.80 25298.04 19176.88 33598.96 20594.79 17992.86 26197.86 210
v14894.29 24893.76 25095.91 26196.10 31092.93 26598.58 16197.97 25292.59 24793.47 26596.95 28788.53 19798.32 28292.56 24987.06 33096.49 303
test0.0.03 194.08 26393.51 26395.80 26695.53 32992.89 26697.38 27995.97 34195.11 13892.51 29596.66 30187.71 21696.94 34187.03 32693.67 24297.57 218
PatchT93.06 28591.97 29096.35 24296.69 28292.67 26794.48 35897.08 31086.62 33997.08 14192.23 35887.94 21097.90 31678.89 36096.69 18898.49 190
MVP-Stereo94.28 25093.92 23595.35 28194.95 33892.60 26897.97 23497.65 27091.61 27890.68 31897.09 26786.32 24298.42 26589.70 30399.34 9995.02 341
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs593.65 27292.97 27595.68 27095.49 33092.37 26998.20 20897.28 30389.66 32192.58 29197.26 25482.14 29598.09 30293.18 23090.95 28396.58 285
BH-untuned95.95 14795.72 14396.65 20698.55 14692.26 27098.23 20497.79 26493.73 19794.62 21098.01 19488.97 18799.00 20093.04 23498.51 13798.68 179
pmmvs-eth3d90.36 30989.05 31494.32 31291.10 36192.12 27197.63 26796.95 31988.86 33084.91 35493.13 35378.32 32196.74 34488.70 31681.81 34994.09 351
FMVSNet591.81 29490.92 29794.49 30797.21 24992.09 27298.00 23297.55 28289.31 32790.86 31695.61 33374.48 34495.32 35985.57 33589.70 29696.07 321
D2MVS95.18 19595.08 17795.48 27697.10 25992.07 27398.30 19799.13 2094.02 17992.90 28196.73 29889.48 16798.73 23394.48 19093.60 24795.65 330
PVSNet91.96 1896.35 13196.15 12596.96 18699.17 8892.05 27496.08 33798.68 11293.69 20297.75 11597.80 21688.86 18999.69 11094.26 19899.01 11299.15 138
ACMH+92.99 1494.30 24793.77 24895.88 26497.81 20592.04 27598.71 13998.37 18193.99 18290.60 31998.47 14880.86 30699.05 19092.75 24392.40 26596.55 291
ADS-MVSNet95.00 20494.45 20896.63 21098.00 19391.91 27696.04 33897.74 26790.15 31296.47 17396.64 30487.89 21198.96 20590.08 29497.06 18099.02 153
BH-w/o95.38 18195.08 17796.26 24898.34 16491.79 27797.70 25997.43 29492.87 23894.24 23097.22 25888.66 19298.84 22391.55 27397.70 17098.16 203
Patchmatch-test94.42 24193.68 25696.63 21097.60 21991.76 27894.83 35497.49 28989.45 32494.14 23597.10 26388.99 18398.83 22585.37 33898.13 15499.29 118
EPMVS94.99 20594.48 20496.52 22797.22 24891.75 27997.23 29291.66 37094.11 17497.28 13496.81 29685.70 25298.84 22393.04 23497.28 17898.97 158
Fast-Effi-MVS+-dtu95.87 15395.85 13795.91 26197.74 21191.74 28098.69 14598.15 22295.56 11394.92 20197.68 22788.98 18698.79 22993.19 22997.78 16697.20 228
eth_miper_zixun_eth94.68 22094.41 21195.47 27797.64 21691.71 28196.73 32898.07 23992.71 24393.64 25697.21 25990.54 15198.17 29593.38 22389.76 29596.54 292
XVG-ACMP-BASELINE94.54 23194.14 22295.75 26996.55 28991.65 28298.11 22298.44 16794.96 14794.22 23197.90 20379.18 31799.11 18294.05 20693.85 23796.48 304
KD-MVS_2432*160089.61 31587.96 32194.54 30594.06 34891.59 28395.59 34697.63 27289.87 31788.95 33294.38 34378.28 32296.82 34284.83 34068.05 36895.21 335
miper_refine_blended89.61 31587.96 32194.54 30594.06 34891.59 28395.59 34697.63 27289.87 31788.95 33294.38 34378.28 32296.82 34284.83 34068.05 36895.21 335
TDRefinement91.06 30389.68 30895.21 28485.35 37291.49 28598.51 17397.07 31191.47 28088.83 33597.84 21077.31 33199.09 18792.79 24277.98 36095.04 340
MDA-MVSNet-bldmvs89.97 31288.35 31794.83 29895.21 33591.34 28697.64 26497.51 28688.36 33371.17 36896.13 32079.22 31696.63 34983.65 34686.27 33696.52 297
MVS_030492.81 28792.01 28995.23 28397.46 23191.33 28798.17 21598.81 7491.13 29793.80 25295.68 33266.08 35998.06 30590.79 28496.13 21196.32 313
ITE_SJBPF95.44 27997.42 23791.32 28897.50 28795.09 14193.59 25798.35 16281.70 29798.88 21989.71 30293.39 25396.12 319
SCA95.46 17495.13 17396.46 23597.67 21491.29 28997.33 28697.60 27494.68 15796.92 15197.10 26383.97 28598.89 21792.59 24798.32 15099.20 127
pmmvs691.77 29590.63 30095.17 28694.69 34491.24 29098.67 14997.92 25786.14 34389.62 32697.56 23875.79 33998.34 28090.75 28684.56 34195.94 324
test_040291.32 29890.27 30494.48 30896.60 28691.12 29198.50 17497.22 30786.10 34488.30 33796.98 28277.65 32997.99 31178.13 36292.94 26094.34 345
MIMVSNet189.67 31488.28 31893.82 31692.81 35691.08 29298.01 23097.45 29287.95 33487.90 33995.87 32467.63 35694.56 36378.73 36188.18 31895.83 326
miper_lstm_enhance94.33 24594.07 22595.11 28897.75 20890.97 29397.22 29398.03 24791.67 27792.76 28596.97 28390.03 15997.78 32392.51 25289.64 29796.56 289
ECVR-MVScopyleft95.95 14795.71 14696.65 20699.02 10390.86 29499.03 7091.80 36996.96 5398.10 8999.26 4381.31 30099.51 14396.90 10799.04 10999.59 72
ppachtmachnet_test93.22 28192.63 28194.97 29295.45 33290.84 29596.88 32097.88 26090.60 30392.08 30497.26 25488.08 20797.86 32185.12 33990.33 28796.22 316
USDC93.33 27892.71 27995.21 28496.83 27590.83 29696.91 31497.50 28793.84 18990.72 31798.14 18477.69 32798.82 22689.51 30793.21 25795.97 323
MDA-MVSNet_test_wron90.71 30689.38 31194.68 30294.83 34090.78 29797.19 29697.46 29087.60 33572.41 36795.72 32986.51 23696.71 34785.92 33386.80 33496.56 289
PatchmatchNetpermissive95.71 16295.52 15396.29 24797.58 22090.72 29896.84 32397.52 28594.06 17697.08 14196.96 28589.24 17698.90 21692.03 26398.37 14599.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patch_mono-298.36 4098.87 396.82 19699.53 3690.68 29998.64 15399.29 897.88 599.19 3099.52 396.80 1599.97 199.11 399.86 199.82 10
YYNet190.70 30789.39 31094.62 30494.79 34290.65 30097.20 29597.46 29087.54 33672.54 36695.74 32586.51 23696.66 34886.00 33286.76 33596.54 292
JIA-IIPM93.35 27692.49 28395.92 26096.48 29490.65 30095.01 34996.96 31885.93 34596.08 18387.33 36487.70 21898.78 23091.35 27595.58 21698.34 196
IterMVS-SCA-FT94.11 26093.87 24094.85 29697.98 19790.56 30297.18 29798.11 22993.75 19492.58 29197.48 24183.97 28597.41 33492.48 25491.30 27796.58 285
EPNet_dtu95.21 19394.95 18495.99 25696.17 30790.45 30398.16 21697.27 30496.77 6193.14 27698.33 16790.34 15498.42 26585.57 33598.81 12499.09 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis1_n95.47 17395.13 17396.49 22997.77 20790.41 30499.27 2698.11 22996.58 6999.66 699.18 5967.00 35799.62 12399.21 299.40 9599.44 99
IterMVS94.09 26293.85 24294.80 29997.99 19590.35 30597.18 29798.12 22693.68 20492.46 29797.34 24984.05 28397.41 33492.51 25291.33 27696.62 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dcpmvs_298.08 4998.59 1096.56 22099.57 3390.34 30699.15 4698.38 18096.82 5999.29 2499.49 895.78 4099.57 12898.94 699.86 199.77 21
Effi-MVS+-dtu96.29 13396.56 11095.51 27597.89 20290.22 30798.80 11998.10 23296.57 7196.45 17596.66 30190.81 14598.91 21395.72 15297.99 15797.40 221
test111195.94 14995.78 14096.41 23898.99 10990.12 30899.04 6792.45 36896.99 5298.03 9599.27 4281.40 29999.48 14896.87 11399.04 10999.63 66
testgi93.06 28592.45 28494.88 29596.43 29789.90 30998.75 12797.54 28395.60 11191.63 31097.91 20274.46 34597.02 33986.10 33193.67 24297.72 215
UnsupCasMVSNet_eth90.99 30489.92 30794.19 31494.08 34789.83 31097.13 30398.67 11793.69 20285.83 35096.19 31975.15 34196.74 34489.14 31279.41 35696.00 322
TinyColmap92.31 29291.53 29394.65 30396.92 26889.75 31196.92 31296.68 33290.45 30789.62 32697.85 20976.06 33898.81 22786.74 32792.51 26495.41 332
test_vis1_n_192096.71 11496.84 9696.31 24599.11 9789.74 31299.05 6498.58 13798.08 399.87 199.37 2578.48 32099.93 1899.29 199.69 5099.27 120
test-LLR95.10 19994.87 18895.80 26696.77 27689.70 31396.91 31495.21 34895.11 13894.83 20595.72 32987.71 21698.97 20193.06 23298.50 13898.72 175
test-mter94.08 26393.51 26395.80 26696.77 27689.70 31396.91 31495.21 34892.89 23794.83 20595.72 32977.69 32798.97 20193.06 23298.50 13898.72 175
our_test_393.65 27293.30 26994.69 30195.45 33289.68 31596.91 31497.65 27091.97 26891.66 30996.88 29189.67 16597.93 31588.02 32191.49 27596.48 304
EGC-MVSNET75.22 33669.54 33992.28 33294.81 34189.58 31697.64 26496.50 3361.82 3795.57 38095.74 32568.21 35496.26 35373.80 36691.71 27290.99 361
DeepPCF-MVS96.37 297.93 5598.48 1796.30 24699.00 10689.54 31797.43 27698.87 5798.16 299.26 2699.38 2496.12 2999.64 11798.30 3599.77 2899.72 38
MS-PatchMatch93.84 26993.63 25794.46 31096.18 30689.45 31897.76 25498.27 19992.23 26192.13 30397.49 24079.50 31498.69 23589.75 30199.38 9795.25 334
OpenMVS_ROBcopyleft86.42 2089.00 31887.43 32593.69 31793.08 35489.42 31997.91 23996.89 32478.58 36085.86 34994.69 34069.48 35398.29 28977.13 36393.29 25693.36 357
SixPastTwentyTwo93.34 27792.86 27694.75 30095.67 32489.41 32098.75 12796.67 33393.89 18690.15 32398.25 17780.87 30598.27 29190.90 28390.64 28596.57 287
K. test v392.55 29091.91 29294.48 30895.64 32589.24 32199.07 6194.88 35294.04 17786.78 34497.59 23477.64 33097.64 32692.08 25989.43 30396.57 287
OurMVSNet-221017-094.21 25294.00 23094.85 29695.60 32689.22 32298.89 9797.43 29495.29 12892.18 30298.52 14482.86 29398.59 24593.46 22291.76 27196.74 265
TESTMET0.1,194.18 25693.69 25595.63 27296.92 26889.12 32396.91 31494.78 35393.17 22794.88 20296.45 31078.52 31998.92 21293.09 23198.50 13898.85 166
CostFormer94.95 20994.73 19395.60 27497.28 24489.06 32497.53 27196.89 32489.66 32196.82 15696.72 29986.05 24698.95 21095.53 15996.13 21198.79 170
tpm294.19 25493.76 25095.46 27897.23 24789.04 32597.31 28896.85 32887.08 33896.21 18096.79 29783.75 29198.74 23292.43 25596.23 20898.59 186
EG-PatchMatch MVS91.13 30290.12 30594.17 31594.73 34389.00 32698.13 21997.81 26389.22 32885.32 35396.46 30967.71 35598.42 26587.89 32393.82 23895.08 339
test250694.44 24093.91 23796.04 25499.02 10388.99 32799.06 6279.47 38196.96 5398.36 8099.26 4377.21 33299.52 14296.78 11999.04 10999.59 72
KD-MVS_self_test90.38 30889.38 31193.40 32192.85 35588.94 32897.95 23597.94 25590.35 31090.25 32193.96 34679.82 31295.94 35484.62 34476.69 36295.33 333
UnsupCasMVSNet_bld87.17 32385.12 32993.31 32391.94 35788.77 32994.92 35298.30 19684.30 35382.30 35790.04 36163.96 36197.25 33685.85 33474.47 36693.93 355
ADS-MVSNet294.58 22994.40 21295.11 28898.00 19388.74 33096.04 33897.30 30190.15 31296.47 17396.64 30487.89 21197.56 33090.08 29497.06 18099.02 153
LF4IMVS93.14 28492.79 27894.20 31395.88 31988.67 33197.66 26297.07 31193.81 19291.71 30897.65 22877.96 32698.81 22791.47 27491.92 27095.12 337
tpmvs94.60 22694.36 21395.33 28297.46 23188.60 33296.88 32097.68 26891.29 29093.80 25296.42 31188.58 19399.24 16491.06 28096.04 21398.17 202
tpmrst95.63 16795.69 14995.44 27997.54 22588.54 33396.97 30997.56 27793.50 21397.52 13196.93 28989.49 16699.16 17295.25 16896.42 19898.64 184
test_fmvs196.42 12696.67 10795.66 27198.82 12288.53 33498.80 11998.20 20996.39 7999.64 899.20 5380.35 31099.67 11299.04 499.57 7098.78 173
Anonymous2024052191.18 30190.44 30293.42 31993.70 35188.47 33598.94 8897.56 27788.46 33289.56 32895.08 33877.15 33496.97 34083.92 34589.55 30094.82 343
lessismore_v094.45 31194.93 33988.44 33691.03 37186.77 34597.64 23076.23 33798.42 26590.31 29185.64 34096.51 300
MDTV_nov1_ep1395.40 15597.48 22988.34 33796.85 32297.29 30293.74 19697.48 13297.26 25489.18 17799.05 19091.92 26697.43 176
test_fmvs1_n95.90 15295.99 13395.63 27298.67 13688.32 33899.26 2798.22 20696.40 7899.67 599.26 4373.91 34799.70 10599.02 599.50 8298.87 165
new_pmnet90.06 31189.00 31593.22 32594.18 34588.32 33896.42 33696.89 32486.19 34285.67 35193.62 34877.18 33397.10 33881.61 35289.29 30594.23 347
CL-MVSNet_self_test90.11 31089.14 31393.02 32791.86 35888.23 34096.51 33498.07 23990.49 30490.49 32094.41 34184.75 27095.34 35880.79 35474.95 36495.50 331
test20.0390.89 30590.38 30392.43 33093.48 35288.14 34198.33 19097.56 27793.40 21787.96 33896.71 30080.69 30894.13 36479.15 35986.17 33795.01 342
tpm cat193.36 27592.80 27795.07 29097.58 22087.97 34296.76 32697.86 26182.17 35793.53 26096.04 32286.13 24499.13 17889.24 31195.87 21498.10 204
tpm94.13 25893.80 24595.12 28796.50 29287.91 34397.44 27495.89 34492.62 24596.37 17796.30 31384.13 28298.30 28693.24 22791.66 27499.14 140
LCM-MVSNet-Re95.22 19295.32 16494.91 29398.18 18187.85 34498.75 12795.66 34595.11 13888.96 33196.85 29490.26 15797.65 32595.65 15698.44 14199.22 126
gm-plane-assit95.88 31987.47 34589.74 32096.94 28899.19 17093.32 226
Anonymous2023120691.66 29691.10 29693.33 32294.02 35087.35 34698.58 16197.26 30590.48 30590.16 32296.31 31283.83 28996.53 35079.36 35889.90 29496.12 319
PVSNet_088.72 1991.28 30090.03 30695.00 29197.99 19587.29 34794.84 35398.50 15692.06 26689.86 32495.19 33579.81 31399.39 15492.27 25669.79 36798.33 197
pmmvs386.67 32684.86 33092.11 33488.16 36687.19 34896.63 33094.75 35479.88 35987.22 34292.75 35666.56 35895.20 36081.24 35376.56 36393.96 354
dp94.15 25793.90 23894.90 29497.31 24386.82 34996.97 30997.19 30891.22 29496.02 18596.61 30685.51 25699.02 19790.00 29894.30 22198.85 166
test_vis1_rt91.29 29990.65 29993.19 32697.45 23586.25 35098.57 16690.90 37293.30 22286.94 34393.59 34962.07 36299.11 18297.48 8595.58 21694.22 348
new-patchmatchnet88.50 32087.45 32491.67 33590.31 36385.89 35197.16 30197.33 30089.47 32383.63 35692.77 35576.38 33695.06 36182.70 34977.29 36194.06 353
Patchmatch-RL test91.49 29790.85 29893.41 32091.37 35984.40 35292.81 36295.93 34391.87 27187.25 34194.87 33988.99 18396.53 35092.54 25182.00 34799.30 116
MDTV_nov1_ep13_2view84.26 35396.89 31990.97 29997.90 10989.89 16193.91 20999.18 136
test_fmvs293.43 27493.58 25992.95 32896.97 26583.91 35499.19 4197.24 30695.74 10495.20 19698.27 17469.65 35298.72 23496.26 13393.73 24196.24 315
CVMVSNet95.43 17796.04 13093.57 31897.93 19983.62 35598.12 22098.59 13295.68 10896.56 16699.02 8487.51 22097.51 33293.56 22197.44 17599.60 70
EU-MVSNet93.66 27094.14 22292.25 33395.96 31783.38 35698.52 16998.12 22694.69 15692.61 29098.13 18587.36 22596.39 35291.82 26790.00 29396.98 235
PM-MVS87.77 32286.55 32791.40 33691.03 36283.36 35796.92 31295.18 35091.28 29186.48 34893.42 35053.27 36696.74 34489.43 30981.97 34894.11 350
DSMNet-mixed92.52 29192.58 28292.33 33194.15 34682.65 35898.30 19794.26 35989.08 32992.65 28995.73 32785.01 26595.76 35586.24 33097.76 16798.59 186
MVS-HIRNet89.46 31788.40 31692.64 32997.58 22082.15 35994.16 36193.05 36775.73 36390.90 31582.52 36679.42 31598.33 28183.53 34798.68 12697.43 219
RPSCF94.87 21395.40 15593.26 32498.89 11582.06 36098.33 19098.06 24490.30 31196.56 16699.26 4387.09 22799.49 14493.82 21296.32 20198.24 199
mvsany_test388.80 31988.04 31991.09 33789.78 36481.57 36197.83 25095.49 34693.81 19287.53 34093.95 34756.14 36597.43 33394.68 18083.13 34494.26 346
Gipumacopyleft78.40 33376.75 33683.38 34895.54 32880.43 36279.42 37197.40 29664.67 36873.46 36580.82 36945.65 36893.14 36866.32 37087.43 32576.56 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CMPMVSbinary66.06 2189.70 31389.67 30989.78 33893.19 35376.56 36397.00 30898.35 18480.97 35881.57 35897.75 21874.75 34398.61 24289.85 29993.63 24594.17 349
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc89.49 33986.66 36975.78 36492.66 36396.72 33086.55 34792.50 35746.01 36797.90 31690.32 29082.09 34694.80 344
test_fmvs387.17 32387.06 32687.50 34291.21 36075.66 36599.05 6496.61 33592.79 24188.85 33492.78 35443.72 36993.49 36593.95 20784.56 34193.34 358
test_f86.07 32785.39 32888.10 34189.28 36575.57 36697.73 25796.33 33889.41 32685.35 35291.56 36043.31 37195.53 35691.32 27684.23 34393.21 359
PMMVS277.95 33475.44 33885.46 34582.54 37374.95 36794.23 36093.08 36672.80 36474.68 36287.38 36336.36 37491.56 37073.95 36563.94 37089.87 362
test_vis3_rt79.22 32877.40 33484.67 34786.44 37074.85 36897.66 26281.43 37984.98 35067.12 37081.91 36828.09 37997.60 32788.96 31480.04 35581.55 368
APD_test188.22 32188.01 32088.86 34095.98 31574.66 36997.21 29496.44 33783.96 35486.66 34697.90 20360.95 36397.84 32282.73 34890.23 29094.09 351
DeepMVS_CXcopyleft86.78 34397.09 26072.30 37095.17 35175.92 36284.34 35595.19 33570.58 35195.35 35779.98 35789.04 30992.68 360
LCM-MVSNet78.70 33276.24 33786.08 34477.26 37871.99 37194.34 35996.72 33061.62 36976.53 36189.33 36233.91 37792.78 36981.85 35174.60 36593.46 356
ANet_high69.08 33765.37 34180.22 35265.99 38071.96 37290.91 36690.09 37382.62 35549.93 37578.39 37029.36 37881.75 37362.49 37138.52 37486.95 367
testf179.02 33077.70 33282.99 34988.10 36766.90 37394.67 35593.11 36471.08 36574.02 36393.41 35134.15 37593.25 36672.25 36778.50 35888.82 363
APD_test279.02 33077.70 33282.99 34988.10 36766.90 37394.67 35593.11 36471.08 36574.02 36393.41 35134.15 37593.25 36672.25 36778.50 35888.82 363
MVEpermissive62.14 2263.28 34259.38 34574.99 35474.33 37965.47 37585.55 36880.50 38052.02 37251.10 37475.00 37310.91 38380.50 37451.60 37353.40 37178.99 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
N_pmnet87.12 32587.77 32385.17 34695.46 33161.92 37697.37 28170.66 38285.83 34688.73 33696.04 32285.33 26197.76 32480.02 35590.48 28695.84 325
FPMVS77.62 33577.14 33579.05 35379.25 37660.97 37795.79 34395.94 34265.96 36767.93 36994.40 34237.73 37388.88 37268.83 36988.46 31587.29 365
tmp_tt68.90 33866.97 34074.68 35550.78 38259.95 37887.13 36783.47 37838.80 37562.21 37196.23 31664.70 36076.91 37788.91 31530.49 37587.19 366
E-PMN64.94 34064.25 34267.02 35782.28 37459.36 37991.83 36585.63 37652.69 37160.22 37277.28 37141.06 37280.12 37546.15 37441.14 37261.57 373
EMVS64.07 34163.26 34466.53 35881.73 37558.81 38091.85 36484.75 37751.93 37359.09 37375.13 37243.32 37079.09 37642.03 37539.47 37361.69 372
test_method79.03 32978.17 33181.63 35186.06 37154.40 38182.75 37096.89 32439.54 37480.98 35995.57 33458.37 36494.73 36284.74 34378.61 35795.75 327
PMVScopyleft61.03 2365.95 33963.57 34373.09 35657.90 38151.22 38285.05 36993.93 36354.45 37044.32 37683.57 36513.22 38089.15 37158.68 37281.00 35278.91 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d30.17 34330.18 34730.16 35978.61 37743.29 38366.79 37214.21 38317.31 37614.82 37911.93 37911.55 38241.43 37837.08 37619.30 3765.76 376
test12320.95 34623.72 34912.64 36013.54 3848.19 38496.55 3336.13 3857.48 37816.74 37837.98 37612.97 3816.05 37916.69 3775.43 37823.68 374
testmvs21.48 34524.95 34811.09 36114.89 3836.47 38596.56 3329.87 3847.55 37717.93 37739.02 3759.43 3845.90 38016.56 37812.72 37720.91 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k23.98 34431.98 3460.00 3620.00 3850.00 3860.00 37398.59 1320.00 3800.00 38198.61 13290.60 1500.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.88 34810.50 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38094.51 770.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.20 34710.94 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38198.43 1520.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
PC_three_145295.08 14299.60 1099.16 6397.86 298.47 25997.52 8399.72 4699.74 30
eth-test20.00 385
eth-test0.00 385
test_241102_TWO98.87 5797.65 1099.53 1499.48 997.34 1199.94 398.43 2899.80 1999.83 7
9.1498.06 4799.47 4798.71 13998.82 6994.36 16999.16 3399.29 3996.05 3199.81 6797.00 9999.71 48
test_0728_THIRD97.32 2999.45 1699.46 1497.88 199.94 398.47 2499.86 199.85 4
GSMVS99.20 127
sam_mvs189.45 16999.20 127
sam_mvs88.99 183
MTGPAbinary98.74 97
test_post196.68 32930.43 37887.85 21498.69 23592.59 247
test_post31.83 37788.83 19098.91 213
patchmatchnet-post95.10 33789.42 17098.89 217
MTMP98.89 9794.14 361
test9_res96.39 13199.57 7099.69 49
agg_prior295.87 14799.57 7099.68 54
test_prior297.80 25196.12 8997.89 11098.69 12595.96 3596.89 10899.60 64
旧先验297.57 27091.30 28998.67 6199.80 7495.70 155
新几何297.64 264
无先验97.58 26998.72 10291.38 28399.87 4593.36 22599.60 70
原ACMM297.67 261
testdata299.89 3691.65 272
segment_acmp96.85 14
testdata197.32 28796.34 81
plane_prior598.56 14199.03 19496.07 13794.27 22296.92 240
plane_prior498.28 171
plane_prior298.80 11997.28 32
plane_prior197.37 241
n20.00 386
nn0.00 386
door-mid94.37 357
test1198.66 120
door94.64 355
HQP-NCC97.20 25098.05 22696.43 7594.45 216
ACMP_Plane97.20 25098.05 22696.43 7594.45 216
BP-MVS95.30 164
HQP4-MVS94.45 21698.96 20596.87 251
HQP3-MVS98.46 16394.18 226
HQP2-MVS86.75 233
ACMMP++_ref92.97 259
ACMMP++93.61 246
Test By Simon94.64 74