EPNet | | | 95.20 77 | 94.56 85 | 97.14 57 | 92.80 329 | 92.68 76 | 97.85 71 | 94.87 315 | 96.64 1 | 92.46 160 | 97.80 87 | 86.23 120 | 99.65 49 | 93.72 112 | 98.62 89 | 99.10 75 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
NCCC | | | 97.30 14 | 97.03 18 | 98.11 16 | 98.77 53 | 95.06 24 | 97.34 129 | 98.04 78 | 95.96 2 | 97.09 43 | 97.88 78 | 93.18 23 | 99.71 37 | 95.84 57 | 99.17 67 | 99.56 25 |
|
CS-MVS-test | | | 96.89 28 | 97.04 17 | 96.45 82 | 98.29 81 | 91.66 104 | 99.03 4 | 97.85 105 | 95.84 3 | 96.90 47 | 97.97 72 | 91.24 55 | 98.75 161 | 96.92 22 | 99.33 53 | 98.94 90 |
|
CNVR-MVS | | | 97.68 6 | 97.44 9 | 98.37 7 | 98.90 50 | 95.86 6 | 97.27 136 | 98.08 63 | 95.81 4 | 97.87 27 | 98.31 46 | 94.26 13 | 99.68 45 | 97.02 20 | 99.49 36 | 99.57 22 |
|
HPM-MVS++ |  | | 97.34 13 | 96.97 20 | 98.47 5 | 99.08 36 | 96.16 4 | 97.55 108 | 97.97 90 | 95.59 5 | 96.61 60 | 97.89 76 | 92.57 32 | 99.84 21 | 95.95 52 | 99.51 31 | 99.40 48 |
|
MSP-MVS | | | 97.59 8 | 97.54 6 | 97.73 34 | 99.40 11 | 93.77 52 | 98.53 15 | 98.29 25 | 95.55 6 | 98.56 14 | 97.81 85 | 93.90 15 | 99.65 49 | 96.62 28 | 99.21 64 | 99.77 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DeepPCF-MVS | | 93.97 1 | 96.61 42 | 97.09 13 | 95.15 149 | 98.09 98 | 86.63 262 | 96.00 237 | 98.15 51 | 95.43 7 | 97.95 24 | 98.56 18 | 93.40 20 | 99.36 101 | 96.77 25 | 99.48 37 | 99.45 41 |
|
CANet | | | 96.39 47 | 96.02 52 | 97.50 43 | 97.62 123 | 93.38 59 | 97.02 155 | 97.96 91 | 95.42 8 | 94.86 111 | 97.81 85 | 87.38 107 | 99.82 26 | 96.88 23 | 99.20 65 | 99.29 56 |
|
save fliter | | | | | | 98.91 49 | 94.28 34 | 97.02 155 | 98.02 83 | 95.35 9 | | | | | | | |
|
SteuartSystems-ACMMP | | | 97.62 7 | 97.53 7 | 97.87 22 | 98.39 76 | 94.25 36 | 98.43 24 | 98.27 30 | 95.34 10 | 98.11 19 | 98.56 18 | 94.53 12 | 99.71 37 | 96.57 31 | 99.62 15 | 99.65 12 |
Skip Steuart: Steuart Systems R&D Blog. |
CS-MVS | | | 96.86 30 | 97.06 14 | 96.26 97 | 98.16 95 | 91.16 130 | 99.09 3 | 97.87 100 | 95.30 11 | 97.06 44 | 98.03 66 | 91.72 43 | 98.71 167 | 97.10 18 | 99.17 67 | 98.90 95 |
|
DELS-MVS | | | 96.61 42 | 96.38 47 | 97.30 49 | 97.79 113 | 93.19 65 | 95.96 239 | 98.18 46 | 95.23 12 | 95.87 87 | 97.65 97 | 91.45 50 | 99.70 42 | 95.87 53 | 99.44 43 | 99.00 85 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
h-mvs33 | | | 94.15 101 | 93.52 110 | 96.04 108 | 97.81 112 | 90.22 157 | 97.62 100 | 97.58 131 | 95.19 13 | 96.74 52 | 97.45 110 | 83.67 155 | 99.61 57 | 95.85 55 | 79.73 338 | 98.29 143 |
|
hse-mvs2 | | | 93.45 131 | 92.99 127 | 94.81 171 | 97.02 151 | 88.59 209 | 96.69 184 | 96.47 240 | 95.19 13 | 96.74 52 | 96.16 183 | 83.67 155 | 98.48 187 | 95.85 55 | 79.13 342 | 97.35 185 |
|
DPE-MVS |  | | 97.86 4 | 97.65 5 | 98.47 5 | 99.17 32 | 95.78 7 | 97.21 144 | 98.35 20 | 95.16 15 | 98.71 12 | 98.80 11 | 95.05 10 | 99.89 3 | 96.70 27 | 99.73 1 | 99.73 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
test_one_0601 | | | | | | 99.32 22 | 95.20 20 | | 98.25 35 | 95.13 16 | 98.48 16 | 98.87 6 | 95.16 7 | | | | |
|
SED-MVS | | | 98.05 2 | 97.99 1 | 98.24 10 | 99.42 7 | 95.30 17 | 98.25 36 | 98.27 30 | 95.13 16 | 99.19 1 | 98.89 4 | 95.54 5 | 99.85 16 | 97.52 9 | 99.66 10 | 99.56 25 |
|
test_241102_TWO | | | | | | | | | 98.27 30 | 95.13 16 | 98.93 6 | 98.89 4 | 94.99 11 | 99.85 16 | 97.52 9 | 99.65 12 | 99.74 7 |
|
test_241102_ONE | | | | | | 99.42 7 | 95.30 17 | | 98.27 30 | 95.09 19 | 99.19 1 | 98.81 10 | 95.54 5 | 99.65 49 | | | |
|
MTAPA | | | 97.08 19 | 96.78 30 | 97.97 21 | 99.37 16 | 94.42 32 | 97.24 138 | 98.08 63 | 95.07 20 | 96.11 79 | 98.59 17 | 90.88 64 | 99.90 2 | 96.18 45 | 99.50 33 | 99.58 21 |
|
FOURS1 | | | | | | 99.55 1 | 93.34 62 | 99.29 1 | 98.35 20 | 94.98 21 | 98.49 15 | | | | | | |
|
DVP-MVS |  | | 97.91 3 | 97.81 3 | 98.22 12 | 99.45 3 | 95.36 13 | 98.21 43 | 97.85 105 | 94.92 22 | 98.73 10 | 98.87 6 | 95.08 8 | 99.84 21 | 97.52 9 | 99.67 6 | 99.48 39 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.45 3 | 95.36 13 | 98.31 29 | 98.29 25 | 94.92 22 | 98.99 4 | 98.92 2 | 95.08 8 | | | | |
|
XVS | | | 97.18 16 | 96.96 21 | 97.81 26 | 99.38 14 | 94.03 46 | 98.59 12 | 98.20 42 | 94.85 24 | 96.59 62 | 98.29 49 | 91.70 45 | 99.80 28 | 95.66 61 | 99.40 46 | 99.62 15 |
|
X-MVStestdata | | | 91.71 198 | 89.67 257 | 97.81 26 | 99.38 14 | 94.03 46 | 98.59 12 | 98.20 42 | 94.85 24 | 96.59 62 | 32.69 374 | 91.70 45 | 99.80 28 | 95.66 61 | 99.40 46 | 99.62 15 |
|
HQP_MVS | | | 93.78 120 | 93.43 116 | 94.82 169 | 96.21 195 | 89.99 162 | 97.74 80 | 97.51 139 | 94.85 24 | 91.34 187 | 96.64 152 | 81.32 204 | 98.60 176 | 93.02 127 | 92.23 211 | 95.86 224 |
|
plane_prior2 | | | | | | | | 97.74 80 | | 94.85 24 | | | | | | | |
|
SD-MVS | | | 97.41 10 | 97.53 7 | 97.06 60 | 98.57 69 | 94.46 30 | 97.92 65 | 98.14 53 | 94.82 28 | 99.01 3 | 98.55 20 | 94.18 14 | 97.41 303 | 96.94 21 | 99.64 13 | 99.32 55 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
UA-Net | | | 95.95 58 | 95.53 59 | 97.20 56 | 97.67 118 | 92.98 70 | 97.65 93 | 98.13 54 | 94.81 29 | 96.61 60 | 98.35 37 | 88.87 83 | 99.51 83 | 90.36 174 | 97.35 128 | 99.11 74 |
|
DeepC-MVS_fast | | 93.89 2 | 96.93 27 | 96.64 35 | 97.78 29 | 98.64 64 | 94.30 33 | 97.41 120 | 98.04 78 | 94.81 29 | 96.59 62 | 98.37 36 | 91.24 55 | 99.64 56 | 95.16 79 | 99.52 28 | 99.42 47 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DVP-MVS++ | | | 98.06 1 | 97.99 1 | 98.28 9 | 98.67 58 | 95.39 11 | 99.29 1 | 98.28 27 | 94.78 31 | 98.93 6 | 98.87 6 | 96.04 2 | 99.86 8 | 97.45 13 | 99.58 21 | 99.59 19 |
|
test_0728_THIRD | | | | | | | | | | 94.78 31 | 98.73 10 | 98.87 6 | 95.87 4 | 99.84 21 | 97.45 13 | 99.72 2 | 99.77 1 |
|
APDe-MVS | | | 97.82 5 | 97.73 4 | 98.08 17 | 99.15 33 | 94.82 26 | 98.81 7 | 98.30 24 | 94.76 33 | 98.30 17 | 98.90 3 | 93.77 17 | 99.68 45 | 97.93 1 | 99.69 3 | 99.75 5 |
|
EI-MVSNet-Vis-set | | | 96.51 44 | 96.47 42 | 96.63 67 | 98.24 85 | 91.20 125 | 96.89 166 | 97.73 114 | 94.74 34 | 96.49 66 | 98.49 25 | 90.88 64 | 99.58 64 | 96.44 34 | 98.32 100 | 99.13 70 |
|
patch_mono-2 | | | 96.83 33 | 97.44 9 | 95.01 157 | 99.05 39 | 85.39 282 | 96.98 160 | 98.77 5 | 94.70 35 | 97.99 23 | 98.66 14 | 93.61 19 | 99.91 1 | 97.67 5 | 99.50 33 | 99.72 10 |
|
test_vis1_n_1920 | | | 94.17 100 | 94.58 84 | 92.91 259 | 97.42 131 | 82.02 319 | 97.83 73 | 97.85 105 | 94.68 36 | 98.10 20 | 98.49 25 | 70.15 315 | 99.32 104 | 97.91 2 | 98.82 82 | 97.40 182 |
|
EI-MVSNet-UG-set | | | 96.34 49 | 96.30 48 | 96.47 79 | 98.20 90 | 90.93 137 | 96.86 167 | 97.72 116 | 94.67 37 | 96.16 78 | 98.46 29 | 90.43 69 | 99.58 64 | 96.23 38 | 97.96 111 | 98.90 95 |
|
MSLP-MVS++ | | | 96.94 26 | 97.06 14 | 96.59 70 | 98.72 55 | 91.86 99 | 97.67 90 | 98.49 13 | 94.66 38 | 97.24 37 | 98.41 34 | 92.31 37 | 98.94 145 | 96.61 29 | 99.46 39 | 98.96 87 |
|
3Dnovator+ | | 91.43 4 | 95.40 69 | 94.48 90 | 98.16 15 | 96.90 156 | 95.34 16 | 98.48 21 | 97.87 100 | 94.65 39 | 88.53 263 | 98.02 68 | 83.69 154 | 99.71 37 | 93.18 121 | 98.96 78 | 99.44 43 |
|
ETV-MVS | | | 96.02 55 | 95.89 55 | 96.40 85 | 97.16 138 | 92.44 82 | 97.47 117 | 97.77 110 | 94.55 40 | 96.48 67 | 94.51 257 | 91.23 57 | 98.92 146 | 95.65 64 | 98.19 104 | 97.82 165 |
|
canonicalmvs | | | 96.02 55 | 95.45 62 | 97.75 33 | 97.59 126 | 95.15 23 | 98.28 32 | 97.60 128 | 94.52 41 | 96.27 75 | 96.12 184 | 87.65 100 | 99.18 117 | 96.20 44 | 94.82 179 | 98.91 94 |
|
plane_prior3 | | | | | | | 90.00 160 | | | 94.46 42 | 91.34 187 | | | | | | |
|
DROMVSNet | | | 96.42 46 | 96.47 42 | 96.26 97 | 97.01 152 | 91.52 110 | 98.89 5 | 97.75 111 | 94.42 43 | 96.64 59 | 97.68 93 | 89.32 77 | 98.60 176 | 97.45 13 | 99.11 73 | 98.67 114 |
|
UGNet | | | 94.04 109 | 93.28 121 | 96.31 92 | 96.85 158 | 91.19 126 | 97.88 67 | 97.68 121 | 94.40 44 | 93.00 152 | 96.18 180 | 73.39 297 | 99.61 57 | 91.72 150 | 98.46 96 | 98.13 148 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
alignmvs | | | 95.87 60 | 95.23 69 | 97.78 29 | 97.56 129 | 95.19 21 | 97.86 68 | 97.17 179 | 94.39 45 | 96.47 68 | 96.40 171 | 85.89 126 | 99.20 114 | 96.21 43 | 95.11 175 | 98.95 89 |
|
CANet_DTU | | | 94.37 95 | 93.65 104 | 96.55 71 | 96.46 185 | 92.13 92 | 96.21 227 | 96.67 228 | 94.38 46 | 93.53 140 | 97.03 131 | 79.34 237 | 99.71 37 | 90.76 168 | 98.45 97 | 97.82 165 |
|
Vis-MVSNet |  | | 95.23 75 | 94.81 77 | 96.51 75 | 97.18 137 | 91.58 108 | 98.26 35 | 98.12 56 | 94.38 46 | 94.90 110 | 98.15 58 | 82.28 188 | 98.92 146 | 91.45 158 | 98.58 91 | 99.01 82 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MVS_111021_HR | | | 96.68 41 | 96.58 38 | 96.99 61 | 98.46 70 | 92.31 86 | 96.20 228 | 98.90 2 | 94.30 48 | 95.86 88 | 97.74 90 | 92.33 35 | 99.38 100 | 96.04 49 | 99.42 44 | 99.28 58 |
|
mvsmamba | | | 93.83 117 | 93.46 113 | 94.93 166 | 94.88 265 | 90.85 140 | 98.55 14 | 95.49 283 | 94.24 49 | 91.29 193 | 96.97 133 | 83.04 169 | 98.14 215 | 95.56 72 | 91.17 233 | 95.78 233 |
|
TSAR-MVS + GP. | | | 96.69 39 | 96.49 41 | 97.27 52 | 98.31 80 | 93.39 58 | 96.79 173 | 96.72 221 | 94.17 50 | 97.44 31 | 97.66 96 | 92.76 26 | 99.33 102 | 96.86 24 | 97.76 117 | 99.08 76 |
|
3Dnovator | | 91.36 5 | 95.19 78 | 94.44 92 | 97.44 45 | 96.56 177 | 93.36 61 | 98.65 11 | 98.36 17 | 94.12 51 | 89.25 248 | 98.06 63 | 82.20 190 | 99.77 30 | 93.41 118 | 99.32 54 | 99.18 65 |
|
plane_prior | | | | | | | 89.99 162 | 97.24 138 | | 94.06 52 | | | | | | 92.16 215 | |
|
casdiffmvs |  | | 95.64 64 | 95.49 60 | 96.08 104 | 96.76 168 | 90.45 153 | 97.29 135 | 97.44 156 | 94.00 53 | 95.46 103 | 97.98 71 | 87.52 104 | 98.73 163 | 95.64 65 | 97.33 129 | 99.08 76 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
casdiffmvs_mvg |  | | 95.81 61 | 95.57 58 | 96.51 75 | 96.87 157 | 91.49 111 | 97.50 111 | 97.56 135 | 93.99 54 | 95.13 108 | 97.92 75 | 87.89 96 | 98.78 156 | 95.97 51 | 97.33 129 | 99.26 60 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MVS_111021_LR | | | 96.24 52 | 96.19 51 | 96.39 87 | 98.23 89 | 91.35 117 | 96.24 226 | 98.79 4 | 93.99 54 | 95.80 90 | 97.65 97 | 89.92 75 | 99.24 111 | 95.87 53 | 99.20 65 | 98.58 116 |
|
dcpmvs_2 | | | 96.37 48 | 97.05 16 | 94.31 196 | 98.96 46 | 84.11 299 | 97.56 105 | 97.51 139 | 93.92 56 | 97.43 33 | 98.52 22 | 92.75 27 | 99.32 104 | 97.32 17 | 99.50 33 | 99.51 33 |
|
DeepC-MVS | | 93.07 3 | 96.06 53 | 95.66 57 | 97.29 50 | 97.96 102 | 93.17 66 | 97.30 134 | 98.06 71 | 93.92 56 | 93.38 144 | 98.66 14 | 86.83 113 | 99.73 33 | 95.60 70 | 99.22 63 | 98.96 87 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
VNet | | | 95.89 59 | 95.45 62 | 97.21 55 | 98.07 100 | 92.94 71 | 97.50 111 | 98.15 51 | 93.87 58 | 97.52 29 | 97.61 103 | 85.29 133 | 99.53 78 | 95.81 58 | 95.27 171 | 99.16 66 |
|
Effi-MVS+-dtu | | | 93.08 146 | 93.21 123 | 92.68 269 | 96.02 208 | 83.25 309 | 97.14 150 | 96.72 221 | 93.85 59 | 91.20 197 | 93.44 304 | 83.08 167 | 98.30 202 | 91.69 153 | 95.73 163 | 96.50 206 |
|
PS-MVSNAJ | | | 95.37 70 | 95.33 67 | 95.49 137 | 97.35 132 | 90.66 148 | 95.31 265 | 97.48 142 | 93.85 59 | 96.51 65 | 95.70 208 | 88.65 87 | 99.65 49 | 94.80 90 | 98.27 101 | 96.17 214 |
|
SR-MVS | | | 97.01 23 | 96.86 23 | 97.47 44 | 99.09 34 | 93.27 64 | 97.98 57 | 98.07 68 | 93.75 61 | 97.45 30 | 98.48 28 | 91.43 51 | 99.59 61 | 96.22 39 | 99.27 57 | 99.54 29 |
|
TSAR-MVS + MP. | | | 97.42 9 | 97.33 11 | 97.69 38 | 99.25 27 | 94.24 37 | 98.07 52 | 97.85 105 | 93.72 62 | 98.57 13 | 98.35 37 | 93.69 18 | 99.40 97 | 97.06 19 | 99.46 39 | 99.44 43 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
OPM-MVS | | | 93.28 136 | 92.76 137 | 94.82 169 | 94.63 279 | 90.77 144 | 96.65 188 | 97.18 177 | 93.72 62 | 91.68 178 | 97.26 118 | 79.33 238 | 98.63 173 | 92.13 140 | 92.28 210 | 95.07 273 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
xiu_mvs_v2_base | | | 95.32 72 | 95.29 68 | 95.40 142 | 97.22 134 | 90.50 151 | 95.44 259 | 97.44 156 | 93.70 64 | 96.46 69 | 96.18 180 | 88.59 90 | 99.53 78 | 94.79 92 | 97.81 114 | 96.17 214 |
|
baseline | | | 95.58 66 | 95.42 64 | 96.08 104 | 96.78 164 | 90.41 155 | 97.16 148 | 97.45 152 | 93.69 65 | 95.65 97 | 97.85 82 | 87.29 108 | 98.68 169 | 95.66 61 | 97.25 133 | 99.13 70 |
|
EIA-MVS | | | 95.53 68 | 95.47 61 | 95.71 124 | 97.06 147 | 89.63 172 | 97.82 74 | 97.87 100 | 93.57 66 | 93.92 132 | 95.04 234 | 90.61 67 | 98.95 144 | 94.62 95 | 98.68 87 | 98.54 118 |
|
HQP-NCC | | | | | | 95.86 210 | | 96.65 188 | | 93.55 67 | 90.14 210 | | | | | | |
|
ACMP_Plane | | | | | | 95.86 210 | | 96.65 188 | | 93.55 67 | 90.14 210 | | | | | | |
|
HQP-MVS | | | 93.19 140 | 92.74 140 | 94.54 186 | 95.86 210 | 89.33 189 | 96.65 188 | 97.39 162 | 93.55 67 | 90.14 210 | 95.87 194 | 80.95 207 | 98.50 184 | 92.13 140 | 92.10 216 | 95.78 233 |
|
MCST-MVS | | | 97.18 16 | 96.84 25 | 98.20 13 | 99.30 24 | 95.35 15 | 97.12 151 | 98.07 68 | 93.54 70 | 96.08 80 | 97.69 92 | 93.86 16 | 99.71 37 | 96.50 32 | 99.39 48 | 99.55 28 |
|
test1111 | | | 93.19 140 | 92.82 135 | 94.30 197 | 97.58 128 | 84.56 294 | 98.21 43 | 89.02 362 | 93.53 71 | 94.58 116 | 98.21 53 | 72.69 298 | 99.05 137 | 93.06 125 | 98.48 95 | 99.28 58 |
|
SR-MVS-dyc-post | | | 96.88 29 | 96.80 29 | 97.11 59 | 99.02 42 | 92.34 84 | 97.98 57 | 98.03 80 | 93.52 72 | 97.43 33 | 98.51 23 | 91.40 52 | 99.56 72 | 96.05 47 | 99.26 59 | 99.43 45 |
|
RE-MVS-def | | | | 96.72 32 | | 99.02 42 | 92.34 84 | 97.98 57 | 98.03 80 | 93.52 72 | 97.43 33 | 98.51 23 | 90.71 66 | | 96.05 47 | 99.26 59 | 99.43 45 |
|
MG-MVS | | | 95.61 65 | 95.38 65 | 96.31 92 | 98.42 73 | 90.53 150 | 96.04 234 | 97.48 142 | 93.47 74 | 95.67 96 | 98.10 59 | 89.17 79 | 99.25 110 | 91.27 161 | 98.77 84 | 99.13 70 |
|
RRT_MVS | | | 93.10 145 | 92.83 134 | 93.93 218 | 94.76 270 | 88.04 228 | 98.47 22 | 96.55 236 | 93.44 75 | 90.01 222 | 97.04 130 | 80.64 214 | 97.93 256 | 94.33 99 | 90.21 250 | 95.83 228 |
|
test2506 | | | 91.60 202 | 90.78 210 | 94.04 207 | 97.66 120 | 83.81 302 | 98.27 33 | 75.53 377 | 93.43 76 | 95.23 105 | 98.21 53 | 67.21 330 | 99.07 134 | 93.01 129 | 98.49 93 | 99.25 61 |
|
ECVR-MVS |  | | 93.19 140 | 92.73 141 | 94.57 185 | 97.66 120 | 85.41 280 | 98.21 43 | 88.23 363 | 93.43 76 | 94.70 114 | 98.21 53 | 72.57 299 | 99.07 134 | 93.05 126 | 98.49 93 | 99.25 61 |
|
FC-MVSNet-test | | | 93.94 112 | 93.57 105 | 95.04 154 | 95.48 226 | 91.45 115 | 98.12 48 | 98.71 6 | 93.37 78 | 90.23 209 | 96.70 146 | 87.66 99 | 97.85 263 | 91.49 156 | 90.39 248 | 95.83 228 |
|
MP-MVS |  | | 96.77 36 | 96.45 45 | 97.72 35 | 99.39 13 | 93.80 49 | 98.41 25 | 98.06 71 | 93.37 78 | 95.54 101 | 98.34 40 | 90.59 68 | 99.88 4 | 94.83 87 | 99.54 26 | 99.49 37 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
FIs | | | 94.09 106 | 93.70 102 | 95.27 145 | 95.70 217 | 92.03 95 | 98.10 49 | 98.68 8 | 93.36 80 | 90.39 206 | 96.70 146 | 87.63 101 | 97.94 253 | 92.25 136 | 90.50 247 | 95.84 227 |
|
mPP-MVS | | | 96.86 30 | 96.60 36 | 97.64 41 | 99.40 11 | 93.44 57 | 98.50 19 | 98.09 62 | 93.27 81 | 95.95 86 | 98.33 43 | 91.04 60 | 99.88 4 | 95.20 78 | 99.57 23 | 99.60 18 |
|
HFP-MVS | | | 97.14 18 | 96.92 22 | 97.83 24 | 99.42 7 | 94.12 42 | 98.52 16 | 98.32 22 | 93.21 82 | 97.18 38 | 98.29 49 | 92.08 39 | 99.83 24 | 95.63 66 | 99.59 17 | 99.54 29 |
|
ACMMPR | | | 97.07 20 | 96.84 25 | 97.79 28 | 99.44 6 | 93.88 48 | 98.52 16 | 98.31 23 | 93.21 82 | 97.15 39 | 98.33 43 | 91.35 53 | 99.86 8 | 95.63 66 | 99.59 17 | 99.62 15 |
|
IS-MVSNet | | | 94.90 86 | 94.52 88 | 96.05 107 | 97.67 118 | 90.56 149 | 98.44 23 | 96.22 251 | 93.21 82 | 93.99 129 | 97.74 90 | 85.55 131 | 98.45 188 | 89.98 178 | 97.86 112 | 99.14 69 |
|
region2R | | | 97.07 20 | 96.84 25 | 97.77 31 | 99.46 2 | 93.79 50 | 98.52 16 | 98.24 37 | 93.19 85 | 97.14 40 | 98.34 40 | 91.59 49 | 99.87 7 | 95.46 73 | 99.59 17 | 99.64 13 |
|
EPNet_dtu | | | 91.71 198 | 91.28 192 | 92.99 256 | 93.76 306 | 83.71 305 | 96.69 184 | 95.28 292 | 93.15 86 | 87.02 295 | 95.95 191 | 83.37 161 | 97.38 305 | 79.46 323 | 96.84 140 | 97.88 160 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
UniMVSNet (Re) | | | 93.31 135 | 92.55 149 | 95.61 129 | 95.39 229 | 93.34 62 | 97.39 125 | 98.71 6 | 93.14 87 | 90.10 218 | 94.83 244 | 87.71 98 | 98.03 238 | 91.67 154 | 83.99 315 | 95.46 251 |
|
APD-MVS_3200maxsize | | | 96.81 34 | 96.71 33 | 97.12 58 | 99.01 45 | 92.31 86 | 97.98 57 | 98.06 71 | 93.11 88 | 97.44 31 | 98.55 20 | 90.93 62 | 99.55 74 | 96.06 46 | 99.25 61 | 99.51 33 |
|
testdata1 | | | | | | | | 95.26 270 | | 93.10 89 | | | | | | | |
|
DU-MVS | | | 92.90 156 | 92.04 163 | 95.49 137 | 94.95 258 | 92.83 72 | 97.16 148 | 98.24 37 | 93.02 90 | 90.13 214 | 95.71 206 | 83.47 158 | 97.85 263 | 91.71 151 | 83.93 316 | 95.78 233 |
|
xiu_mvs_v1_base_debu | | | 95.01 80 | 94.76 78 | 95.75 119 | 96.58 174 | 91.71 100 | 96.25 223 | 97.35 168 | 92.99 91 | 96.70 54 | 96.63 158 | 82.67 178 | 99.44 93 | 96.22 39 | 97.46 121 | 96.11 219 |
|
xiu_mvs_v1_base | | | 95.01 80 | 94.76 78 | 95.75 119 | 96.58 174 | 91.71 100 | 96.25 223 | 97.35 168 | 92.99 91 | 96.70 54 | 96.63 158 | 82.67 178 | 99.44 93 | 96.22 39 | 97.46 121 | 96.11 219 |
|
xiu_mvs_v1_base_debi | | | 95.01 80 | 94.76 78 | 95.75 119 | 96.58 174 | 91.71 100 | 96.25 223 | 97.35 168 | 92.99 91 | 96.70 54 | 96.63 158 | 82.67 178 | 99.44 93 | 96.22 39 | 97.46 121 | 96.11 219 |
|
CP-MVS | | | 97.02 22 | 96.81 28 | 97.64 41 | 99.33 21 | 93.54 55 | 98.80 8 | 98.28 27 | 92.99 91 | 96.45 70 | 98.30 48 | 91.90 42 | 99.85 16 | 95.61 68 | 99.68 4 | 99.54 29 |
|
ACMMP |  | | 96.27 51 | 95.93 53 | 97.28 51 | 99.24 28 | 92.62 77 | 98.25 36 | 98.81 3 | 92.99 91 | 94.56 117 | 98.39 35 | 88.96 82 | 99.85 16 | 94.57 97 | 97.63 118 | 99.36 53 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
iter_conf_final | | | 93.60 124 | 93.11 124 | 95.04 154 | 97.13 141 | 91.30 118 | 97.92 65 | 95.65 276 | 92.98 96 | 91.60 179 | 96.64 152 | 79.28 239 | 98.13 216 | 95.34 76 | 91.49 225 | 95.70 241 |
|
UniMVSNet_NR-MVSNet | | | 93.37 133 | 92.67 143 | 95.47 140 | 95.34 235 | 92.83 72 | 97.17 147 | 98.58 11 | 92.98 96 | 90.13 214 | 95.80 199 | 88.37 92 | 97.85 263 | 91.71 151 | 83.93 316 | 95.73 240 |
|
VPNet | | | 92.23 184 | 91.31 190 | 94.99 158 | 95.56 222 | 90.96 135 | 97.22 143 | 97.86 104 | 92.96 98 | 90.96 198 | 96.62 161 | 75.06 286 | 98.20 209 | 91.90 144 | 83.65 321 | 95.80 231 |
|
nrg030 | | | 94.05 108 | 93.31 120 | 96.27 96 | 95.22 246 | 94.59 28 | 98.34 27 | 97.46 147 | 92.93 99 | 91.21 196 | 96.64 152 | 87.23 110 | 98.22 207 | 94.99 84 | 85.80 288 | 95.98 223 |
|
TranMVSNet+NR-MVSNet | | | 92.50 167 | 91.63 178 | 95.14 150 | 94.76 270 | 92.07 93 | 97.53 109 | 98.11 59 | 92.90 100 | 89.56 236 | 96.12 184 | 83.16 164 | 97.60 286 | 89.30 196 | 83.20 325 | 95.75 238 |
|
diffmvs |  | | 95.25 74 | 95.13 72 | 95.63 127 | 96.43 187 | 89.34 188 | 95.99 238 | 97.35 168 | 92.83 101 | 96.31 73 | 97.37 114 | 86.44 118 | 98.67 170 | 96.26 36 | 97.19 135 | 98.87 100 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
ACMMP_NAP | | | 97.20 15 | 96.86 23 | 98.23 11 | 99.09 34 | 95.16 22 | 97.60 101 | 98.19 44 | 92.82 102 | 97.93 25 | 98.74 13 | 91.60 48 | 99.86 8 | 96.26 36 | 99.52 28 | 99.67 11 |
|
test_prior2 | | | | | | | | 96.35 215 | | 92.80 103 | 96.03 81 | 97.59 104 | 92.01 40 | | 95.01 83 | 99.38 49 | |
|
bld_raw_dy_0_64 | | | 92.37 174 | 91.69 176 | 94.39 191 | 94.28 293 | 89.73 171 | 97.71 87 | 93.65 335 | 92.78 104 | 90.46 204 | 96.67 150 | 75.88 279 | 97.97 245 | 92.92 131 | 90.89 241 | 95.48 247 |
|
GST-MVS | | | 96.85 32 | 96.52 40 | 97.82 25 | 99.36 18 | 94.14 41 | 98.29 31 | 98.13 54 | 92.72 105 | 96.70 54 | 98.06 63 | 91.35 53 | 99.86 8 | 94.83 87 | 99.28 56 | 99.47 40 |
|
CLD-MVS | | | 92.98 151 | 92.53 151 | 94.32 195 | 96.12 204 | 89.20 195 | 95.28 266 | 97.47 145 | 92.66 106 | 89.90 224 | 95.62 212 | 80.58 215 | 98.40 191 | 92.73 132 | 92.40 209 | 95.38 258 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
NR-MVSNet | | | 92.34 176 | 91.27 193 | 95.53 134 | 94.95 258 | 93.05 68 | 97.39 125 | 98.07 68 | 92.65 107 | 84.46 317 | 95.71 206 | 85.00 137 | 97.77 272 | 89.71 185 | 83.52 322 | 95.78 233 |
|
ZNCC-MVS | | | 96.96 24 | 96.67 34 | 97.85 23 | 99.37 16 | 94.12 42 | 98.49 20 | 98.18 46 | 92.64 108 | 96.39 72 | 98.18 56 | 91.61 47 | 99.88 4 | 95.59 71 | 99.55 24 | 99.57 22 |
|
iter_conf05 | | | 93.18 143 | 92.63 144 | 94.83 168 | 96.64 170 | 90.69 146 | 97.60 101 | 95.53 282 | 92.52 109 | 91.58 180 | 96.64 152 | 76.35 277 | 98.13 216 | 95.43 74 | 91.42 228 | 95.68 243 |
|
PS-MVSNAJss | | | 93.74 121 | 93.51 111 | 94.44 188 | 93.91 301 | 89.28 193 | 97.75 79 | 97.56 135 | 92.50 110 | 89.94 223 | 96.54 164 | 88.65 87 | 98.18 212 | 93.83 111 | 90.90 240 | 95.86 224 |
|
VDD-MVS | | | 93.82 118 | 93.08 125 | 96.02 109 | 97.88 109 | 89.96 166 | 97.72 85 | 95.85 265 | 92.43 111 | 95.86 88 | 98.44 31 | 68.42 324 | 99.39 98 | 96.31 35 | 94.85 177 | 98.71 111 |
|
LCM-MVSNet-Re | | | 92.50 167 | 92.52 152 | 92.44 272 | 96.82 163 | 81.89 320 | 96.92 164 | 93.71 334 | 92.41 112 | 84.30 319 | 94.60 255 | 85.08 136 | 97.03 316 | 91.51 155 | 97.36 127 | 98.40 136 |
|
SF-MVS | | | 97.39 11 | 97.13 12 | 98.17 14 | 99.02 42 | 95.28 19 | 98.23 40 | 98.27 30 | 92.37 113 | 98.27 18 | 98.65 16 | 93.33 21 | 99.72 36 | 96.49 33 | 99.52 28 | 99.51 33 |
|
VPA-MVSNet | | | 93.24 137 | 92.48 154 | 95.51 135 | 95.70 217 | 92.39 83 | 97.86 68 | 98.66 10 | 92.30 114 | 92.09 173 | 95.37 222 | 80.49 217 | 98.40 191 | 93.95 105 | 85.86 287 | 95.75 238 |
|
PGM-MVS | | | 96.81 34 | 96.53 39 | 97.65 39 | 99.35 20 | 93.53 56 | 97.65 93 | 98.98 1 | 92.22 115 | 97.14 40 | 98.44 31 | 91.17 58 | 99.85 16 | 94.35 98 | 99.46 39 | 99.57 22 |
|
Vis-MVSNet (Re-imp) | | | 94.15 101 | 93.88 99 | 94.95 163 | 97.61 124 | 87.92 232 | 98.10 49 | 95.80 267 | 92.22 115 | 93.02 151 | 97.45 110 | 84.53 143 | 97.91 260 | 88.24 215 | 97.97 110 | 99.02 79 |
|
thres100view900 | | | 92.43 170 | 91.58 180 | 94.98 160 | 97.92 106 | 89.37 187 | 97.71 87 | 94.66 317 | 92.20 117 | 93.31 146 | 94.90 240 | 78.06 262 | 99.08 131 | 81.40 308 | 94.08 188 | 96.48 207 |
|
baseline1 | | | 92.82 161 | 91.90 169 | 95.55 133 | 97.20 136 | 90.77 144 | 97.19 145 | 94.58 320 | 92.20 117 | 92.36 164 | 96.34 174 | 84.16 149 | 98.21 208 | 89.20 202 | 83.90 319 | 97.68 170 |
|
tfpn200view9 | | | 92.38 173 | 91.52 183 | 94.95 163 | 97.85 110 | 89.29 191 | 97.41 120 | 94.88 312 | 92.19 119 | 93.27 148 | 94.46 262 | 78.17 258 | 99.08 131 | 81.40 308 | 94.08 188 | 96.48 207 |
|
thres400 | | | 92.42 171 | 91.52 183 | 95.12 152 | 97.85 110 | 89.29 191 | 97.41 120 | 94.88 312 | 92.19 119 | 93.27 148 | 94.46 262 | 78.17 258 | 99.08 131 | 81.40 308 | 94.08 188 | 96.98 192 |
|
thres600view7 | | | 92.49 169 | 91.60 179 | 95.18 148 | 97.91 107 | 89.47 181 | 97.65 93 | 94.66 317 | 92.18 121 | 93.33 145 | 94.91 239 | 78.06 262 | 99.10 126 | 81.61 305 | 94.06 191 | 96.98 192 |
|
Fast-Effi-MVS+-dtu | | | 92.29 180 | 91.99 166 | 93.21 250 | 95.27 242 | 85.52 278 | 97.03 153 | 96.63 232 | 92.09 122 | 89.11 251 | 95.14 231 | 80.33 221 | 98.08 227 | 87.54 234 | 94.74 182 | 96.03 222 |
|
thres200 | | | 92.23 184 | 91.39 186 | 94.75 178 | 97.61 124 | 89.03 200 | 96.60 196 | 95.09 302 | 92.08 123 | 93.28 147 | 94.00 285 | 78.39 256 | 99.04 140 | 81.26 312 | 94.18 187 | 96.19 213 |
|
mvs_tets | | | 92.31 178 | 91.76 172 | 93.94 216 | 93.41 318 | 88.29 218 | 97.63 99 | 97.53 137 | 92.04 124 | 88.76 258 | 96.45 168 | 74.62 288 | 98.09 226 | 93.91 107 | 91.48 226 | 95.45 252 |
|
OMC-MVS | | | 95.09 79 | 94.70 81 | 96.25 100 | 98.46 70 | 91.28 119 | 96.43 204 | 97.57 132 | 92.04 124 | 94.77 113 | 97.96 73 | 87.01 112 | 99.09 129 | 91.31 160 | 96.77 142 | 98.36 140 |
|
jajsoiax | | | 92.42 171 | 91.89 170 | 94.03 208 | 93.33 321 | 88.50 214 | 97.73 82 | 97.53 137 | 92.00 126 | 88.85 255 | 96.50 166 | 75.62 284 | 98.11 222 | 93.88 109 | 91.56 224 | 95.48 247 |
|
XVG-OURS | | | 93.72 122 | 93.35 119 | 94.80 174 | 97.07 144 | 88.61 208 | 94.79 277 | 97.46 147 | 91.97 127 | 93.99 129 | 97.86 81 | 81.74 199 | 98.88 150 | 92.64 133 | 92.67 206 | 96.92 196 |
|
WR-MVS | | | 92.34 176 | 91.53 182 | 94.77 176 | 95.13 251 | 90.83 141 | 96.40 210 | 97.98 89 | 91.88 128 | 89.29 245 | 95.54 217 | 82.50 183 | 97.80 268 | 89.79 184 | 85.27 296 | 95.69 242 |
|
PAPM_NR | | | 95.01 80 | 94.59 83 | 96.26 97 | 98.89 51 | 90.68 147 | 97.24 138 | 97.73 114 | 91.80 129 | 92.93 157 | 96.62 161 | 89.13 80 | 99.14 122 | 89.21 201 | 97.78 115 | 98.97 86 |
|
testgi | | | 87.97 288 | 87.21 288 | 90.24 318 | 92.86 327 | 80.76 328 | 96.67 187 | 94.97 307 | 91.74 130 | 85.52 308 | 95.83 197 | 62.66 348 | 94.47 352 | 76.25 338 | 88.36 267 | 95.48 247 |
|
CP-MVSNet | | | 91.89 194 | 91.24 194 | 93.82 222 | 95.05 254 | 88.57 210 | 97.82 74 | 98.19 44 | 91.70 131 | 88.21 271 | 95.76 204 | 81.96 194 | 97.52 294 | 87.86 220 | 84.65 305 | 95.37 259 |
|
XVG-OURS-SEG-HR | | | 93.86 116 | 93.55 106 | 94.81 171 | 97.06 147 | 88.53 213 | 95.28 266 | 97.45 152 | 91.68 132 | 94.08 128 | 97.68 93 | 82.41 186 | 98.90 149 | 93.84 110 | 92.47 208 | 96.98 192 |
|
OurMVSNet-221017-0 | | | 90.51 252 | 90.19 237 | 91.44 299 | 93.41 318 | 81.25 324 | 96.98 160 | 96.28 247 | 91.68 132 | 86.55 301 | 96.30 175 | 74.20 291 | 97.98 242 | 88.96 206 | 87.40 276 | 95.09 272 |
|
ACMP | | 89.59 10 | 92.62 166 | 92.14 161 | 94.05 206 | 96.40 188 | 88.20 223 | 97.36 128 | 97.25 176 | 91.52 134 | 88.30 267 | 96.64 152 | 78.46 254 | 98.72 166 | 91.86 147 | 91.48 226 | 95.23 269 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
APD-MVS |  | | 96.95 25 | 96.60 36 | 98.01 18 | 99.03 41 | 94.93 25 | 97.72 85 | 98.10 61 | 91.50 135 | 98.01 22 | 98.32 45 | 92.33 35 | 99.58 64 | 94.85 86 | 99.51 31 | 99.53 32 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ITE_SJBPF | | | | | 92.43 273 | 95.34 235 | 85.37 283 | | 95.92 260 | 91.47 136 | 87.75 281 | 96.39 172 | 71.00 308 | 97.96 250 | 82.36 302 | 89.86 253 | 93.97 320 |
|
PS-CasMVS | | | 91.55 207 | 90.84 208 | 93.69 230 | 94.96 257 | 88.28 219 | 97.84 72 | 98.24 37 | 91.46 137 | 88.04 275 | 95.80 199 | 79.67 233 | 97.48 296 | 87.02 245 | 84.54 310 | 95.31 262 |
|
WR-MVS_H | | | 92.00 191 | 91.35 187 | 93.95 214 | 95.09 253 | 89.47 181 | 98.04 54 | 98.68 8 | 91.46 137 | 88.34 265 | 94.68 251 | 85.86 127 | 97.56 288 | 85.77 265 | 84.24 313 | 94.82 290 |
|
MVSFormer | | | 95.37 70 | 95.16 71 | 95.99 111 | 96.34 191 | 91.21 123 | 98.22 41 | 97.57 132 | 91.42 139 | 96.22 76 | 97.32 115 | 86.20 123 | 97.92 257 | 94.07 102 | 99.05 74 | 98.85 101 |
|
test_djsdf | | | 93.07 147 | 92.76 137 | 94.00 209 | 93.49 315 | 88.70 207 | 98.22 41 | 97.57 132 | 91.42 139 | 90.08 220 | 95.55 216 | 82.85 175 | 97.92 257 | 94.07 102 | 91.58 223 | 95.40 256 |
|
ACMM | | 89.79 8 | 92.96 152 | 92.50 153 | 94.35 193 | 96.30 193 | 88.71 206 | 97.58 103 | 97.36 167 | 91.40 141 | 90.53 202 | 96.65 151 | 79.77 231 | 98.75 161 | 91.24 162 | 91.64 221 | 95.59 245 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PEN-MVS | | | 91.20 226 | 90.44 222 | 93.48 239 | 94.49 283 | 87.91 234 | 97.76 78 | 98.18 46 | 91.29 142 | 87.78 280 | 95.74 205 | 80.35 220 | 97.33 307 | 85.46 269 | 82.96 326 | 95.19 271 |
|
LPG-MVS_test | | | 92.94 154 | 92.56 148 | 94.10 203 | 96.16 200 | 88.26 220 | 97.65 93 | 97.46 147 | 91.29 142 | 90.12 216 | 97.16 123 | 79.05 242 | 98.73 163 | 92.25 136 | 91.89 219 | 95.31 262 |
|
LGP-MVS_train | | | | | 94.10 203 | 96.16 200 | 88.26 220 | | 97.46 147 | 91.29 142 | 90.12 216 | 97.16 123 | 79.05 242 | 98.73 163 | 92.25 136 | 91.89 219 | 95.31 262 |
|
9.14 | | | | 96.75 31 | | 98.93 47 | | 97.73 82 | 98.23 40 | 91.28 145 | 97.88 26 | 98.44 31 | 93.00 24 | 99.65 49 | 95.76 59 | 99.47 38 | |
|
MVSTER | | | 93.20 139 | 92.81 136 | 94.37 192 | 96.56 177 | 89.59 175 | 97.06 152 | 97.12 183 | 91.24 146 | 91.30 190 | 95.96 190 | 82.02 193 | 98.05 234 | 93.48 115 | 90.55 245 | 95.47 250 |
|
test_yl | | | 94.78 91 | 94.23 94 | 96.43 83 | 97.74 115 | 91.22 121 | 96.85 168 | 97.10 185 | 91.23 147 | 95.71 93 | 96.93 134 | 84.30 146 | 99.31 106 | 93.10 122 | 95.12 173 | 98.75 106 |
|
DCV-MVSNet | | | 94.78 91 | 94.23 94 | 96.43 83 | 97.74 115 | 91.22 121 | 96.85 168 | 97.10 185 | 91.23 147 | 95.71 93 | 96.93 134 | 84.30 146 | 99.31 106 | 93.10 122 | 95.12 173 | 98.75 106 |
|
test_vis1_n | | | 92.37 174 | 92.26 159 | 92.72 266 | 94.75 272 | 82.64 311 | 98.02 55 | 96.80 218 | 91.18 149 | 97.77 28 | 97.93 74 | 58.02 353 | 98.29 203 | 97.63 6 | 98.21 103 | 97.23 188 |
|
MVS_Test | | | 94.89 87 | 94.62 82 | 95.68 125 | 96.83 161 | 89.55 177 | 96.70 182 | 97.17 179 | 91.17 150 | 95.60 98 | 96.11 187 | 87.87 97 | 98.76 160 | 93.01 129 | 97.17 136 | 98.72 109 |
|
HPM-MVS |  | | 96.69 39 | 96.45 45 | 97.40 46 | 99.36 18 | 93.11 67 | 98.87 6 | 98.06 71 | 91.17 150 | 96.40 71 | 97.99 70 | 90.99 61 | 99.58 64 | 95.61 68 | 99.61 16 | 99.49 37 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test-LLR | | | 91.42 213 | 91.19 197 | 92.12 280 | 94.59 280 | 80.66 329 | 94.29 295 | 92.98 340 | 91.11 152 | 90.76 200 | 92.37 318 | 79.02 244 | 98.07 231 | 88.81 208 | 96.74 143 | 97.63 171 |
|
test0.0.03 1 | | | 89.37 273 | 88.70 271 | 91.41 300 | 92.47 335 | 85.63 276 | 95.22 271 | 92.70 343 | 91.11 152 | 86.91 298 | 93.65 299 | 79.02 244 | 93.19 360 | 78.00 330 | 89.18 258 | 95.41 253 |
|
XVG-ACMP-BASELINE | | | 90.93 239 | 90.21 236 | 93.09 253 | 94.31 291 | 85.89 273 | 95.33 263 | 97.26 174 | 91.06 154 | 89.38 241 | 95.44 221 | 68.61 322 | 98.60 176 | 89.46 192 | 91.05 236 | 94.79 295 |
|
Effi-MVS+ | | | 94.93 85 | 94.45 91 | 96.36 90 | 96.61 171 | 91.47 113 | 96.41 206 | 97.41 161 | 91.02 155 | 94.50 118 | 95.92 192 | 87.53 103 | 98.78 156 | 93.89 108 | 96.81 141 | 98.84 103 |
|
SCA | | | 91.84 195 | 91.18 198 | 93.83 221 | 95.59 220 | 84.95 290 | 94.72 278 | 95.58 279 | 90.82 156 | 92.25 167 | 93.69 295 | 75.80 281 | 98.10 223 | 86.20 255 | 95.98 156 | 98.45 130 |
|
SixPastTwentyTwo | | | 89.15 274 | 88.54 274 | 90.98 306 | 93.49 315 | 80.28 337 | 96.70 182 | 94.70 316 | 90.78 157 | 84.15 322 | 95.57 214 | 71.78 303 | 97.71 276 | 84.63 279 | 85.07 300 | 94.94 279 |
|
PC_three_1452 | | | | | | | | | | 90.77 158 | 98.89 8 | 98.28 51 | 96.24 1 | 98.35 198 | 95.76 59 | 99.58 21 | 99.59 19 |
|
DTE-MVSNet | | | 90.56 250 | 89.75 255 | 93.01 255 | 93.95 299 | 87.25 244 | 97.64 97 | 97.65 124 | 90.74 159 | 87.12 291 | 95.68 209 | 79.97 228 | 97.00 320 | 83.33 292 | 81.66 331 | 94.78 297 |
|
GA-MVS | | | 91.38 215 | 90.31 227 | 94.59 180 | 94.65 277 | 87.62 239 | 94.34 292 | 96.19 254 | 90.73 160 | 90.35 207 | 93.83 289 | 71.84 302 | 97.96 250 | 87.22 240 | 93.61 197 | 98.21 146 |
|
test_fmvs1_n | | | 92.73 164 | 92.88 132 | 92.29 276 | 96.08 207 | 81.05 327 | 97.98 57 | 97.08 188 | 90.72 161 | 96.79 50 | 98.18 56 | 63.07 346 | 98.45 188 | 97.62 7 | 98.42 98 | 97.36 183 |
|
EPP-MVSNet | | | 95.22 76 | 95.04 74 | 95.76 117 | 97.49 130 | 89.56 176 | 98.67 10 | 97.00 199 | 90.69 162 | 94.24 123 | 97.62 102 | 89.79 76 | 98.81 154 | 93.39 119 | 96.49 150 | 98.92 93 |
|
test_fmvs1 | | | 93.21 138 | 93.53 108 | 92.25 278 | 96.55 179 | 81.20 326 | 97.40 124 | 96.96 201 | 90.68 163 | 96.80 49 | 98.04 65 | 69.25 319 | 98.40 191 | 97.58 8 | 98.50 92 | 97.16 189 |
|
MP-MVS-pluss | | | 96.70 38 | 96.27 49 | 97.98 20 | 99.23 30 | 94.71 27 | 96.96 162 | 98.06 71 | 90.67 164 | 95.55 99 | 98.78 12 | 91.07 59 | 99.86 8 | 96.58 30 | 99.55 24 | 99.38 51 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
IterMVS-LS | | | 92.29 180 | 91.94 168 | 93.34 244 | 96.25 194 | 86.97 253 | 96.57 200 | 97.05 193 | 90.67 164 | 89.50 239 | 94.80 246 | 86.59 114 | 97.64 281 | 89.91 180 | 86.11 286 | 95.40 256 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 93.03 149 | 92.88 132 | 93.48 239 | 95.77 215 | 86.98 252 | 96.44 202 | 97.12 183 | 90.66 166 | 91.30 190 | 97.64 100 | 86.56 115 | 98.05 234 | 89.91 180 | 90.55 245 | 95.41 253 |
|
K. test v3 | | | 87.64 292 | 86.75 293 | 90.32 317 | 93.02 326 | 79.48 344 | 96.61 194 | 92.08 349 | 90.66 166 | 80.25 345 | 94.09 282 | 67.21 330 | 96.65 327 | 85.96 263 | 80.83 334 | 94.83 288 |
|
tttt0517 | | | 92.96 152 | 92.33 157 | 94.87 167 | 97.11 142 | 87.16 249 | 97.97 62 | 92.09 348 | 90.63 168 | 93.88 133 | 97.01 132 | 76.50 273 | 99.06 136 | 90.29 176 | 95.45 168 | 98.38 138 |
|
BH-RMVSNet | | | 92.72 165 | 91.97 167 | 94.97 161 | 97.16 138 | 87.99 230 | 96.15 230 | 95.60 277 | 90.62 169 | 91.87 176 | 97.15 125 | 78.41 255 | 98.57 180 | 83.16 293 | 97.60 119 | 98.36 140 |
|
IterMVS-SCA-FT | | | 90.31 255 | 89.81 251 | 91.82 288 | 95.52 224 | 84.20 298 | 94.30 294 | 96.15 255 | 90.61 170 | 87.39 287 | 94.27 273 | 75.80 281 | 96.44 328 | 87.34 237 | 86.88 282 | 94.82 290 |
|
WTY-MVS | | | 94.71 93 | 94.02 96 | 96.79 63 | 97.71 117 | 92.05 94 | 96.59 197 | 97.35 168 | 90.61 170 | 94.64 115 | 96.93 134 | 86.41 119 | 99.39 98 | 91.20 163 | 94.71 183 | 98.94 90 |
|
ET-MVSNet_ETH3D | | | 91.49 210 | 90.11 238 | 95.63 127 | 96.40 188 | 91.57 109 | 95.34 262 | 93.48 337 | 90.60 172 | 75.58 355 | 95.49 219 | 80.08 225 | 96.79 325 | 94.25 100 | 89.76 254 | 98.52 120 |
|
SMA-MVS |  | | 97.35 12 | 97.03 18 | 98.30 8 | 99.06 38 | 95.42 10 | 97.94 63 | 98.18 46 | 90.57 173 | 98.85 9 | 98.94 1 | 93.33 21 | 99.83 24 | 96.72 26 | 99.68 4 | 99.63 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
LFMVS | | | 93.60 124 | 92.63 144 | 96.52 72 | 98.13 97 | 91.27 120 | 97.94 63 | 93.39 338 | 90.57 173 | 96.29 74 | 98.31 46 | 69.00 320 | 99.16 119 | 94.18 101 | 95.87 159 | 99.12 73 |
|
HPM-MVS_fast | | | 96.51 44 | 96.27 49 | 97.22 54 | 99.32 22 | 92.74 74 | 98.74 9 | 98.06 71 | 90.57 173 | 96.77 51 | 98.35 37 | 90.21 71 | 99.53 78 | 94.80 90 | 99.63 14 | 99.38 51 |
|
DPM-MVS | | | 95.69 62 | 94.92 75 | 98.01 18 | 98.08 99 | 95.71 9 | 95.27 268 | 97.62 127 | 90.43 176 | 95.55 99 | 97.07 128 | 91.72 43 | 99.50 86 | 89.62 189 | 98.94 79 | 98.82 104 |
|
IU-MVS | | | | | | 99.42 7 | 95.39 11 | | 97.94 93 | 90.40 177 | 98.94 5 | | | | 97.41 16 | 99.66 10 | 99.74 7 |
|
PVSNet_Blended_VisFu | | | 95.27 73 | 94.91 76 | 96.38 88 | 98.20 90 | 90.86 139 | 97.27 136 | 98.25 35 | 90.21 178 | 94.18 125 | 97.27 117 | 87.48 105 | 99.73 33 | 93.53 113 | 97.77 116 | 98.55 117 |
|
PVSNet_BlendedMVS | | | 94.06 107 | 93.92 98 | 94.47 187 | 98.27 82 | 89.46 183 | 96.73 178 | 98.36 17 | 90.17 179 | 94.36 120 | 95.24 228 | 88.02 93 | 99.58 64 | 93.44 116 | 90.72 243 | 94.36 310 |
|
thisisatest0530 | | | 93.03 149 | 92.21 160 | 95.49 137 | 97.07 144 | 89.11 199 | 97.49 116 | 92.19 347 | 90.16 180 | 94.09 127 | 96.41 170 | 76.43 276 | 99.05 137 | 90.38 173 | 95.68 165 | 98.31 142 |
|
CNLPA | | | 94.28 97 | 93.53 108 | 96.52 72 | 98.38 77 | 92.55 79 | 96.59 197 | 96.88 212 | 90.13 181 | 91.91 175 | 97.24 119 | 85.21 134 | 99.09 129 | 87.64 231 | 97.83 113 | 97.92 157 |
|
BH-untuned | | | 92.94 154 | 92.62 146 | 93.92 219 | 97.22 134 | 86.16 271 | 96.40 210 | 96.25 250 | 90.06 182 | 89.79 228 | 96.17 182 | 83.19 163 | 98.35 198 | 87.19 241 | 97.27 132 | 97.24 187 |
|
IterMVS | | | 90.15 261 | 89.67 257 | 91.61 295 | 95.48 226 | 83.72 304 | 94.33 293 | 96.12 256 | 89.99 183 | 87.31 290 | 94.15 281 | 75.78 283 | 96.27 331 | 86.97 246 | 86.89 281 | 94.83 288 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
AdaColmap |  | | 94.34 96 | 93.68 103 | 96.31 92 | 98.59 66 | 91.68 103 | 96.59 197 | 97.81 109 | 89.87 184 | 92.15 169 | 97.06 129 | 83.62 157 | 99.54 76 | 89.34 195 | 98.07 108 | 97.70 169 |
|
UnsupCasMVSNet_eth | | | 85.99 306 | 84.45 310 | 90.62 313 | 89.97 350 | 82.40 316 | 93.62 318 | 97.37 165 | 89.86 185 | 78.59 351 | 92.37 318 | 65.25 342 | 95.35 347 | 82.27 303 | 70.75 359 | 94.10 317 |
|
PHI-MVS | | | 96.77 36 | 96.46 44 | 97.71 37 | 98.40 74 | 94.07 44 | 98.21 43 | 98.45 16 | 89.86 185 | 97.11 42 | 98.01 69 | 92.52 33 | 99.69 43 | 96.03 50 | 99.53 27 | 99.36 53 |
|
mvs_anonymous | | | 93.82 118 | 93.74 101 | 94.06 205 | 96.44 186 | 85.41 280 | 95.81 245 | 97.05 193 | 89.85 187 | 90.09 219 | 96.36 173 | 87.44 106 | 97.75 273 | 93.97 104 | 96.69 146 | 99.02 79 |
|
test_fmvs2 | | | 89.77 269 | 89.93 246 | 89.31 326 | 93.68 309 | 76.37 353 | 97.64 97 | 95.90 262 | 89.84 188 | 91.49 183 | 96.26 178 | 58.77 352 | 97.10 313 | 94.65 94 | 91.13 234 | 94.46 306 |
|
ab-mvs | | | 93.57 127 | 92.55 149 | 96.64 65 | 97.28 133 | 91.96 98 | 95.40 260 | 97.45 152 | 89.81 189 | 93.22 150 | 96.28 176 | 79.62 234 | 99.46 90 | 90.74 169 | 93.11 200 | 98.50 123 |
|
FMVSNet3 | | | 91.78 196 | 90.69 215 | 95.03 156 | 96.53 180 | 92.27 88 | 97.02 155 | 96.93 204 | 89.79 190 | 89.35 242 | 94.65 253 | 77.01 270 | 97.47 297 | 86.12 258 | 88.82 260 | 95.35 260 |
|
AUN-MVS | | | 91.76 197 | 90.75 212 | 94.81 171 | 97.00 153 | 88.57 210 | 96.65 188 | 96.49 239 | 89.63 191 | 92.15 169 | 96.12 184 | 78.66 251 | 98.50 184 | 90.83 166 | 79.18 341 | 97.36 183 |
|
FA-MVS(test-final) | | | 93.52 129 | 92.92 130 | 95.31 144 | 96.77 165 | 88.54 212 | 94.82 276 | 96.21 253 | 89.61 192 | 94.20 124 | 95.25 227 | 83.24 162 | 99.14 122 | 90.01 177 | 96.16 154 | 98.25 144 |
|
tt0805 | | | 91.09 230 | 90.07 242 | 94.16 201 | 95.61 219 | 88.31 217 | 97.56 105 | 96.51 238 | 89.56 193 | 89.17 249 | 95.64 211 | 67.08 334 | 98.38 196 | 91.07 164 | 88.44 266 | 95.80 231 |
|
v2v482 | | | 91.59 203 | 90.85 207 | 93.80 223 | 93.87 303 | 88.17 225 | 96.94 163 | 96.88 212 | 89.54 194 | 89.53 237 | 94.90 240 | 81.70 200 | 98.02 239 | 89.25 199 | 85.04 302 | 95.20 270 |
|
PatchmatchNet |  | | 91.91 193 | 91.35 187 | 93.59 234 | 95.38 230 | 84.11 299 | 93.15 327 | 95.39 285 | 89.54 194 | 92.10 172 | 93.68 297 | 82.82 176 | 98.13 216 | 84.81 276 | 95.32 170 | 98.52 120 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPMVS | | | 90.70 247 | 89.81 251 | 93.37 243 | 94.73 274 | 84.21 297 | 93.67 316 | 88.02 364 | 89.50 196 | 92.38 163 | 93.49 302 | 77.82 266 | 97.78 270 | 86.03 261 | 92.68 205 | 98.11 152 |
|
GeoE | | | 93.89 114 | 93.28 121 | 95.72 123 | 96.96 155 | 89.75 170 | 98.24 39 | 96.92 208 | 89.47 197 | 92.12 171 | 97.21 121 | 84.42 144 | 98.39 195 | 87.71 225 | 96.50 149 | 99.01 82 |
|
v148 | | | 90.99 235 | 90.38 224 | 92.81 264 | 93.83 304 | 85.80 274 | 96.78 175 | 96.68 226 | 89.45 198 | 88.75 259 | 93.93 288 | 82.96 173 | 97.82 267 | 87.83 221 | 83.25 323 | 94.80 293 |
|
anonymousdsp | | | 92.16 186 | 91.55 181 | 93.97 212 | 92.58 333 | 89.55 177 | 97.51 110 | 97.42 160 | 89.42 199 | 88.40 264 | 94.84 243 | 80.66 213 | 97.88 262 | 91.87 146 | 91.28 231 | 94.48 305 |
|
baseline2 | | | 91.63 201 | 90.86 205 | 93.94 216 | 94.33 289 | 86.32 265 | 95.92 241 | 91.64 352 | 89.37 200 | 86.94 296 | 94.69 250 | 81.62 201 | 98.69 168 | 88.64 212 | 94.57 184 | 96.81 199 |
|
IB-MVS | | 87.33 17 | 89.91 264 | 88.28 277 | 94.79 175 | 95.26 245 | 87.70 238 | 95.12 274 | 93.95 332 | 89.35 201 | 87.03 294 | 92.49 316 | 70.74 310 | 99.19 115 | 89.18 203 | 81.37 332 | 97.49 180 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
jason | | | 94.84 89 | 94.39 93 | 96.18 102 | 95.52 224 | 90.93 137 | 96.09 232 | 96.52 237 | 89.28 202 | 96.01 84 | 97.32 115 | 84.70 140 | 98.77 159 | 95.15 80 | 98.91 81 | 98.85 101 |
jason: jason. |
TAMVS | | | 94.01 110 | 93.46 113 | 95.64 126 | 96.16 200 | 90.45 153 | 96.71 181 | 96.89 211 | 89.27 203 | 93.46 142 | 96.92 137 | 87.29 108 | 97.94 253 | 88.70 211 | 95.74 162 | 98.53 119 |
|
ZD-MVS | | | | | | 99.05 39 | 94.59 28 | | 98.08 63 | 89.22 204 | 97.03 45 | 98.10 59 | 92.52 33 | 99.65 49 | 94.58 96 | 99.31 55 | |
|
API-MVS | | | 94.84 89 | 94.49 89 | 95.90 113 | 97.90 108 | 92.00 96 | 97.80 76 | 97.48 142 | 89.19 205 | 94.81 112 | 96.71 144 | 88.84 84 | 99.17 118 | 88.91 207 | 98.76 85 | 96.53 204 |
|
XXY-MVS | | | 92.16 186 | 91.23 195 | 94.95 163 | 94.75 272 | 90.94 136 | 97.47 117 | 97.43 159 | 89.14 206 | 88.90 252 | 96.43 169 | 79.71 232 | 98.24 205 | 89.56 190 | 87.68 271 | 95.67 244 |
|
pm-mvs1 | | | 90.72 246 | 89.65 259 | 93.96 213 | 94.29 292 | 89.63 172 | 97.79 77 | 96.82 217 | 89.07 207 | 86.12 305 | 95.48 220 | 78.61 252 | 97.78 270 | 86.97 246 | 81.67 330 | 94.46 306 |
|
HY-MVS | | 89.66 9 | 93.87 115 | 92.95 129 | 96.63 67 | 97.10 143 | 92.49 81 | 95.64 252 | 96.64 229 | 89.05 208 | 93.00 152 | 95.79 202 | 85.77 129 | 99.45 92 | 89.16 204 | 94.35 185 | 97.96 155 |
|
CSCG | | | 96.05 54 | 95.91 54 | 96.46 81 | 99.24 28 | 90.47 152 | 98.30 30 | 98.57 12 | 89.01 209 | 93.97 131 | 97.57 105 | 92.62 31 | 99.76 31 | 94.66 93 | 99.27 57 | 99.15 68 |
|
v8 | | | 91.29 223 | 90.53 221 | 93.57 236 | 94.15 294 | 88.12 227 | 97.34 129 | 97.06 192 | 88.99 210 | 88.32 266 | 94.26 275 | 83.08 167 | 98.01 240 | 87.62 232 | 83.92 318 | 94.57 304 |
|
PAPR | | | 94.18 99 | 93.42 118 | 96.48 78 | 97.64 122 | 91.42 116 | 95.55 254 | 97.71 120 | 88.99 210 | 92.34 166 | 95.82 198 | 89.19 78 | 99.11 125 | 86.14 257 | 97.38 126 | 98.90 95 |
|
CDS-MVSNet | | | 94.14 104 | 93.54 107 | 95.93 112 | 96.18 198 | 91.46 114 | 96.33 217 | 97.04 195 | 88.97 212 | 93.56 137 | 96.51 165 | 87.55 102 | 97.89 261 | 89.80 183 | 95.95 157 | 98.44 133 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
sss | | | 94.51 94 | 93.80 100 | 96.64 65 | 97.07 144 | 91.97 97 | 96.32 218 | 98.06 71 | 88.94 213 | 94.50 118 | 96.78 141 | 84.60 141 | 99.27 109 | 91.90 144 | 96.02 155 | 98.68 113 |
|
lupinMVS | | | 94.99 84 | 94.56 85 | 96.29 95 | 96.34 191 | 91.21 123 | 95.83 244 | 96.27 248 | 88.93 214 | 96.22 76 | 96.88 139 | 86.20 123 | 98.85 151 | 95.27 77 | 99.05 74 | 98.82 104 |
|
D2MVS | | | 91.30 222 | 90.95 202 | 92.35 274 | 94.71 275 | 85.52 278 | 96.18 229 | 98.21 41 | 88.89 215 | 86.60 300 | 93.82 291 | 79.92 229 | 97.95 252 | 89.29 197 | 90.95 239 | 93.56 324 |
|
v7n | | | 90.76 243 | 89.86 248 | 93.45 241 | 93.54 312 | 87.60 240 | 97.70 89 | 97.37 165 | 88.85 216 | 87.65 282 | 94.08 283 | 81.08 206 | 98.10 223 | 84.68 278 | 83.79 320 | 94.66 302 |
|
PVSNet_Blended | | | 94.87 88 | 94.56 85 | 95.81 116 | 98.27 82 | 89.46 183 | 95.47 258 | 98.36 17 | 88.84 217 | 94.36 120 | 96.09 188 | 88.02 93 | 99.58 64 | 93.44 116 | 98.18 105 | 98.40 136 |
|
ACMH+ | | 87.92 14 | 90.20 259 | 89.18 266 | 93.25 247 | 96.48 184 | 86.45 264 | 96.99 159 | 96.68 226 | 88.83 218 | 84.79 316 | 96.22 179 | 70.16 314 | 98.53 182 | 84.42 283 | 88.04 268 | 94.77 298 |
|
GBi-Net | | | 91.35 218 | 90.27 230 | 94.59 180 | 96.51 181 | 91.18 127 | 97.50 111 | 96.93 204 | 88.82 219 | 89.35 242 | 94.51 257 | 73.87 292 | 97.29 309 | 86.12 258 | 88.82 260 | 95.31 262 |
|
test1 | | | 91.35 218 | 90.27 230 | 94.59 180 | 96.51 181 | 91.18 127 | 97.50 111 | 96.93 204 | 88.82 219 | 89.35 242 | 94.51 257 | 73.87 292 | 97.29 309 | 86.12 258 | 88.82 260 | 95.31 262 |
|
FMVSNet2 | | | 91.31 221 | 90.08 239 | 94.99 158 | 96.51 181 | 92.21 89 | 97.41 120 | 96.95 202 | 88.82 219 | 88.62 260 | 94.75 248 | 73.87 292 | 97.42 302 | 85.20 273 | 88.55 265 | 95.35 260 |
|
V42 | | | 91.58 205 | 90.87 204 | 93.73 226 | 94.05 298 | 88.50 214 | 97.32 132 | 96.97 200 | 88.80 222 | 89.71 229 | 94.33 268 | 82.54 182 | 98.05 234 | 89.01 205 | 85.07 300 | 94.64 303 |
|
mvsany_test1 | | | 93.93 113 | 93.98 97 | 93.78 225 | 94.94 260 | 86.80 255 | 94.62 280 | 92.55 345 | 88.77 223 | 96.85 48 | 98.49 25 | 88.98 81 | 98.08 227 | 95.03 82 | 95.62 166 | 96.46 209 |
|
BH-w/o | | | 92.14 188 | 91.75 173 | 93.31 245 | 96.99 154 | 85.73 275 | 95.67 249 | 95.69 272 | 88.73 224 | 89.26 247 | 94.82 245 | 82.97 172 | 98.07 231 | 85.26 272 | 96.32 153 | 96.13 218 |
|
test20.03 | | | 86.14 305 | 85.40 302 | 88.35 328 | 90.12 348 | 80.06 339 | 95.90 242 | 95.20 297 | 88.59 225 | 81.29 338 | 93.62 300 | 71.43 305 | 92.65 361 | 71.26 356 | 81.17 333 | 92.34 340 |
|
train_agg | | | 96.30 50 | 95.83 56 | 97.72 35 | 98.70 56 | 94.19 38 | 96.41 206 | 98.02 83 | 88.58 226 | 96.03 81 | 97.56 107 | 92.73 29 | 99.59 61 | 95.04 81 | 99.37 52 | 99.39 49 |
|
test_8 | | | | | | 98.67 58 | 94.06 45 | 96.37 214 | 98.01 86 | 88.58 226 | 95.98 85 | 97.55 109 | 92.73 29 | 99.58 64 | | | |
|
eth_miper_zixun_eth | | | 91.02 234 | 90.59 218 | 92.34 275 | 95.33 238 | 84.35 295 | 94.10 300 | 96.90 209 | 88.56 228 | 88.84 256 | 94.33 268 | 84.08 150 | 97.60 286 | 88.77 210 | 84.37 312 | 95.06 274 |
|
tpmrst | | | 91.44 212 | 91.32 189 | 91.79 290 | 95.15 249 | 79.20 346 | 93.42 322 | 95.37 287 | 88.55 229 | 93.49 141 | 93.67 298 | 82.49 184 | 98.27 204 | 90.41 172 | 89.34 257 | 97.90 158 |
|
ACMH | | 87.59 16 | 90.53 251 | 89.42 261 | 93.87 220 | 96.21 195 | 87.92 232 | 97.24 138 | 96.94 203 | 88.45 230 | 83.91 327 | 96.27 177 | 71.92 301 | 98.62 175 | 84.43 282 | 89.43 256 | 95.05 275 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Baseline_NR-MVSNet | | | 91.20 226 | 90.62 216 | 92.95 258 | 93.83 304 | 88.03 229 | 97.01 158 | 95.12 301 | 88.42 231 | 89.70 230 | 95.13 232 | 83.47 158 | 97.44 300 | 89.66 188 | 83.24 324 | 93.37 328 |
|
v1144 | | | 91.37 217 | 90.60 217 | 93.68 231 | 93.89 302 | 88.23 222 | 96.84 170 | 97.03 197 | 88.37 232 | 89.69 231 | 94.39 264 | 82.04 192 | 97.98 242 | 87.80 222 | 85.37 293 | 94.84 287 |
|
DP-MVS Recon | | | 95.68 63 | 95.12 73 | 97.37 47 | 99.19 31 | 94.19 38 | 97.03 153 | 98.08 63 | 88.35 233 | 95.09 109 | 97.65 97 | 89.97 74 | 99.48 88 | 92.08 143 | 98.59 90 | 98.44 133 |
|
tpm | | | 90.25 257 | 89.74 256 | 91.76 293 | 93.92 300 | 79.73 342 | 93.98 302 | 93.54 336 | 88.28 234 | 91.99 174 | 93.25 307 | 77.51 268 | 97.44 300 | 87.30 239 | 87.94 269 | 98.12 149 |
|
v10 | | | 91.04 233 | 90.23 233 | 93.49 238 | 94.12 295 | 88.16 226 | 97.32 132 | 97.08 188 | 88.26 235 | 88.29 268 | 94.22 278 | 82.17 191 | 97.97 245 | 86.45 252 | 84.12 314 | 94.33 311 |
|
Fast-Effi-MVS+ | | | 93.46 130 | 92.75 139 | 95.59 130 | 96.77 165 | 90.03 159 | 96.81 172 | 97.13 182 | 88.19 236 | 91.30 190 | 94.27 273 | 86.21 122 | 98.63 173 | 87.66 230 | 96.46 152 | 98.12 149 |
|
c3_l | | | 91.38 215 | 90.89 203 | 92.88 261 | 95.58 221 | 86.30 266 | 94.68 279 | 96.84 216 | 88.17 237 | 88.83 257 | 94.23 276 | 85.65 130 | 97.47 297 | 89.36 194 | 84.63 306 | 94.89 285 |
|
TEST9 | | | | | | 98.70 56 | 94.19 38 | 96.41 206 | 98.02 83 | 88.17 237 | 96.03 81 | 97.56 107 | 92.74 28 | 99.59 61 | | | |
|
MDTV_nov1_ep13 | | | | 90.76 211 | | 95.22 246 | 80.33 335 | 93.03 330 | 95.28 292 | 88.14 239 | 92.84 158 | 93.83 289 | 81.34 203 | 98.08 227 | 82.86 296 | 94.34 186 | |
|
MAR-MVS | | | 94.22 98 | 93.46 113 | 96.51 75 | 98.00 101 | 92.19 91 | 97.67 90 | 97.47 145 | 88.13 240 | 93.00 152 | 95.84 196 | 84.86 139 | 99.51 83 | 87.99 218 | 98.17 106 | 97.83 164 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
UniMVSNet_ETH3D | | | 91.34 220 | 90.22 235 | 94.68 179 | 94.86 266 | 87.86 235 | 97.23 142 | 97.46 147 | 87.99 241 | 89.90 224 | 96.92 137 | 66.35 336 | 98.23 206 | 90.30 175 | 90.99 238 | 97.96 155 |
|
PatchMatch-RL | | | 92.90 156 | 92.02 165 | 95.56 131 | 98.19 92 | 90.80 142 | 95.27 268 | 97.18 177 | 87.96 242 | 91.86 177 | 95.68 209 | 80.44 218 | 98.99 142 | 84.01 287 | 97.54 120 | 96.89 197 |
|
thisisatest0515 | | | 92.29 180 | 91.30 191 | 95.25 146 | 96.60 172 | 88.90 203 | 94.36 291 | 92.32 346 | 87.92 243 | 93.43 143 | 94.57 256 | 77.28 269 | 99.00 141 | 89.42 193 | 95.86 160 | 97.86 161 |
|
PVSNet | | 86.66 18 | 92.24 183 | 91.74 175 | 93.73 226 | 97.77 114 | 83.69 306 | 92.88 331 | 96.72 221 | 87.91 244 | 93.00 152 | 94.86 242 | 78.51 253 | 99.05 137 | 86.53 249 | 97.45 125 | 98.47 128 |
|
LTVRE_ROB | | 88.41 13 | 90.99 235 | 89.92 247 | 94.19 199 | 96.18 198 | 89.55 177 | 96.31 219 | 97.09 187 | 87.88 245 | 85.67 307 | 95.91 193 | 78.79 250 | 98.57 180 | 81.50 306 | 89.98 251 | 94.44 308 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
cl____ | | | 90.96 238 | 90.32 226 | 92.89 260 | 95.37 232 | 86.21 269 | 94.46 287 | 96.64 229 | 87.82 246 | 88.15 273 | 94.18 279 | 82.98 171 | 97.54 290 | 87.70 226 | 85.59 289 | 94.92 283 |
|
DIV-MVS_self_test | | | 90.97 237 | 90.33 225 | 92.88 261 | 95.36 233 | 86.19 270 | 94.46 287 | 96.63 232 | 87.82 246 | 88.18 272 | 94.23 276 | 82.99 170 | 97.53 292 | 87.72 223 | 85.57 290 | 94.93 281 |
|
cl22 | | | 91.21 225 | 90.56 220 | 93.14 252 | 96.09 206 | 86.80 255 | 94.41 289 | 96.58 235 | 87.80 248 | 88.58 262 | 93.99 286 | 80.85 212 | 97.62 284 | 89.87 182 | 86.93 278 | 94.99 276 |
|
CPTT-MVS | | | 95.57 67 | 95.19 70 | 96.70 64 | 99.27 26 | 91.48 112 | 98.33 28 | 98.11 59 | 87.79 249 | 95.17 107 | 98.03 66 | 87.09 111 | 99.61 57 | 93.51 114 | 99.42 44 | 99.02 79 |
|
miper_ehance_all_eth | | | 91.59 203 | 91.13 199 | 92.97 257 | 95.55 223 | 86.57 263 | 94.47 285 | 96.88 212 | 87.77 250 | 88.88 254 | 94.01 284 | 86.22 121 | 97.54 290 | 89.49 191 | 86.93 278 | 94.79 295 |
|
v1192 | | | 91.07 231 | 90.23 233 | 93.58 235 | 93.70 307 | 87.82 236 | 96.73 178 | 97.07 190 | 87.77 250 | 89.58 234 | 94.32 270 | 80.90 211 | 97.97 245 | 86.52 250 | 85.48 291 | 94.95 277 |
|
F-COLMAP | | | 93.58 126 | 92.98 128 | 95.37 143 | 98.40 74 | 88.98 201 | 97.18 146 | 97.29 173 | 87.75 252 | 90.49 203 | 97.10 127 | 85.21 134 | 99.50 86 | 86.70 248 | 96.72 145 | 97.63 171 |
|
1314 | | | 92.81 162 | 92.03 164 | 95.14 150 | 95.33 238 | 89.52 180 | 96.04 234 | 97.44 156 | 87.72 253 | 86.25 303 | 95.33 223 | 83.84 152 | 98.79 155 | 89.26 198 | 97.05 138 | 97.11 190 |
|
test-mter | | | 90.19 260 | 89.54 260 | 92.12 280 | 94.59 280 | 80.66 329 | 94.29 295 | 92.98 340 | 87.68 254 | 90.76 200 | 92.37 318 | 67.67 326 | 98.07 231 | 88.81 208 | 96.74 143 | 97.63 171 |
|
TR-MVS | | | 91.48 211 | 90.59 218 | 94.16 201 | 96.40 188 | 87.33 241 | 95.67 249 | 95.34 291 | 87.68 254 | 91.46 184 | 95.52 218 | 76.77 271 | 98.35 198 | 82.85 297 | 93.61 197 | 96.79 200 |
|
LF4IMVS | | | 87.94 289 | 87.25 286 | 89.98 320 | 92.38 338 | 80.05 340 | 94.38 290 | 95.25 295 | 87.59 256 | 84.34 318 | 94.74 249 | 64.31 343 | 97.66 280 | 84.83 275 | 87.45 273 | 92.23 341 |
|
miper_lstm_enhance | | | 90.50 253 | 90.06 243 | 91.83 287 | 95.33 238 | 83.74 303 | 93.86 309 | 96.70 225 | 87.56 257 | 87.79 279 | 93.81 292 | 83.45 160 | 96.92 322 | 87.39 236 | 84.62 307 | 94.82 290 |
|
TransMVSNet (Re) | | | 88.94 276 | 87.56 283 | 93.08 254 | 94.35 288 | 88.45 216 | 97.73 82 | 95.23 296 | 87.47 258 | 84.26 320 | 95.29 224 | 79.86 230 | 97.33 307 | 79.44 324 | 74.44 353 | 93.45 327 |
|
v144192 | | | 91.06 232 | 90.28 229 | 93.39 242 | 93.66 310 | 87.23 246 | 96.83 171 | 97.07 190 | 87.43 259 | 89.69 231 | 94.28 272 | 81.48 202 | 98.00 241 | 87.18 242 | 84.92 304 | 94.93 281 |
|
原ACMM1 | | | | | 96.38 88 | 98.59 66 | 91.09 132 | | 97.89 96 | 87.41 260 | 95.22 106 | 97.68 93 | 90.25 70 | 99.54 76 | 87.95 219 | 99.12 72 | 98.49 125 |
|
v1921920 | | | 90.85 241 | 90.03 244 | 93.29 246 | 93.55 311 | 86.96 254 | 96.74 177 | 97.04 195 | 87.36 261 | 89.52 238 | 94.34 267 | 80.23 223 | 97.97 245 | 86.27 253 | 85.21 297 | 94.94 279 |
|
USDC | | | 88.94 276 | 87.83 281 | 92.27 277 | 94.66 276 | 84.96 289 | 93.86 309 | 95.90 262 | 87.34 262 | 83.40 329 | 95.56 215 | 67.43 328 | 98.19 211 | 82.64 301 | 89.67 255 | 93.66 323 |
|
PLC |  | 91.00 6 | 94.11 105 | 93.43 116 | 96.13 103 | 98.58 68 | 91.15 131 | 96.69 184 | 97.39 162 | 87.29 263 | 91.37 186 | 96.71 144 | 88.39 91 | 99.52 82 | 87.33 238 | 97.13 137 | 97.73 167 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
tfpnnormal | | | 89.70 270 | 88.40 275 | 93.60 233 | 95.15 249 | 90.10 158 | 97.56 105 | 98.16 50 | 87.28 264 | 86.16 304 | 94.63 254 | 77.57 267 | 98.05 234 | 74.48 343 | 84.59 308 | 92.65 336 |
|
TESTMET0.1,1 | | | 90.06 262 | 89.42 261 | 91.97 283 | 94.41 287 | 80.62 331 | 94.29 295 | 91.97 350 | 87.28 264 | 90.44 205 | 92.47 317 | 68.79 321 | 97.67 278 | 88.50 214 | 96.60 148 | 97.61 175 |
|
v1240 | | | 90.70 247 | 89.85 249 | 93.23 248 | 93.51 314 | 86.80 255 | 96.61 194 | 97.02 198 | 87.16 266 | 89.58 234 | 94.31 271 | 79.55 235 | 97.98 242 | 85.52 268 | 85.44 292 | 94.90 284 |
|
Patchmatch-RL test | | | 87.38 293 | 86.24 294 | 90.81 309 | 88.74 358 | 78.40 350 | 88.12 361 | 93.17 339 | 87.11 267 | 82.17 336 | 89.29 346 | 81.95 195 | 95.60 342 | 88.64 212 | 77.02 346 | 98.41 135 |
|
CDPH-MVS | | | 95.97 57 | 95.38 65 | 97.77 31 | 98.93 47 | 94.44 31 | 96.35 215 | 97.88 98 | 86.98 268 | 96.65 58 | 97.89 76 | 91.99 41 | 99.47 89 | 92.26 134 | 99.46 39 | 99.39 49 |
|
PM-MVS | | | 83.48 318 | 81.86 323 | 88.31 329 | 87.83 361 | 77.59 351 | 93.43 321 | 91.75 351 | 86.91 269 | 80.63 341 | 89.91 342 | 44.42 364 | 95.84 337 | 85.17 274 | 76.73 349 | 91.50 349 |
|
CR-MVSNet | | | 90.82 242 | 89.77 253 | 93.95 214 | 94.45 285 | 87.19 247 | 90.23 351 | 95.68 274 | 86.89 270 | 92.40 161 | 92.36 321 | 80.91 209 | 97.05 315 | 81.09 313 | 93.95 192 | 97.60 176 |
|
1112_ss | | | 93.37 133 | 92.42 155 | 96.21 101 | 97.05 149 | 90.99 133 | 96.31 219 | 96.72 221 | 86.87 271 | 89.83 227 | 96.69 148 | 86.51 117 | 99.14 122 | 88.12 216 | 93.67 194 | 98.50 123 |
|
miper_enhance_ethall | | | 91.54 208 | 91.01 201 | 93.15 251 | 95.35 234 | 87.07 251 | 93.97 303 | 96.90 209 | 86.79 272 | 89.17 249 | 93.43 306 | 86.55 116 | 97.64 281 | 89.97 179 | 86.93 278 | 94.74 299 |
|
CL-MVSNet_self_test | | | 86.31 302 | 85.15 304 | 89.80 322 | 88.83 357 | 81.74 322 | 93.93 306 | 96.22 251 | 86.67 273 | 85.03 313 | 90.80 335 | 78.09 261 | 94.50 350 | 74.92 342 | 71.86 358 | 93.15 329 |
|
FMVSNet1 | | | 89.88 266 | 88.31 276 | 94.59 180 | 95.41 228 | 91.18 127 | 97.50 111 | 96.93 204 | 86.62 274 | 87.41 286 | 94.51 257 | 65.94 340 | 97.29 309 | 83.04 295 | 87.43 274 | 95.31 262 |
|
CHOSEN 280x420 | | | 93.12 144 | 92.72 142 | 94.34 194 | 96.71 169 | 87.27 243 | 90.29 350 | 97.72 116 | 86.61 275 | 91.34 187 | 95.29 224 | 84.29 148 | 98.41 190 | 93.25 120 | 98.94 79 | 97.35 185 |
|
test_fmvs3 | | | 83.21 319 | 83.02 316 | 83.78 341 | 86.77 363 | 68.34 366 | 96.76 176 | 94.91 310 | 86.49 276 | 84.14 323 | 89.48 345 | 36.04 368 | 91.73 363 | 91.86 147 | 80.77 335 | 91.26 352 |
|
MVS_0304 | | | 88.79 280 | 87.57 282 | 92.46 271 | 94.65 277 | 86.15 272 | 96.40 210 | 97.17 179 | 86.44 277 | 88.02 276 | 91.71 330 | 56.68 356 | 97.03 316 | 84.47 281 | 92.58 207 | 94.19 316 |
|
mvsany_test3 | | | 83.59 317 | 82.44 320 | 87.03 335 | 83.80 364 | 73.82 358 | 93.70 313 | 90.92 358 | 86.42 278 | 82.51 334 | 90.26 338 | 46.76 363 | 95.71 339 | 90.82 167 | 76.76 348 | 91.57 347 |
|
MIMVSNet | | | 88.50 284 | 86.76 292 | 93.72 228 | 94.84 267 | 87.77 237 | 91.39 341 | 94.05 329 | 86.41 279 | 87.99 277 | 92.59 315 | 63.27 345 | 95.82 338 | 77.44 331 | 92.84 203 | 97.57 178 |
|
FE-MVS | | | 92.05 190 | 91.05 200 | 95.08 153 | 96.83 161 | 87.93 231 | 93.91 308 | 95.70 270 | 86.30 280 | 94.15 126 | 94.97 235 | 76.59 272 | 99.21 113 | 84.10 285 | 96.86 139 | 98.09 153 |
|
tpmvs | | | 89.83 268 | 89.15 267 | 91.89 285 | 94.92 261 | 80.30 336 | 93.11 328 | 95.46 284 | 86.28 281 | 88.08 274 | 92.65 312 | 80.44 218 | 98.52 183 | 81.47 307 | 89.92 252 | 96.84 198 |
|
PAPM | | | 91.52 209 | 90.30 228 | 95.20 147 | 95.30 241 | 89.83 168 | 93.38 323 | 96.85 215 | 86.26 282 | 88.59 261 | 95.80 199 | 84.88 138 | 98.15 214 | 75.67 341 | 95.93 158 | 97.63 171 |
|
VDDNet | | | 93.05 148 | 92.07 162 | 96.02 109 | 96.84 159 | 90.39 156 | 98.08 51 | 95.85 265 | 86.22 283 | 95.79 91 | 98.46 29 | 67.59 327 | 99.19 115 | 94.92 85 | 94.85 177 | 98.47 128 |
|
MS-PatchMatch | | | 90.27 256 | 89.77 253 | 91.78 291 | 94.33 289 | 84.72 293 | 95.55 254 | 96.73 220 | 86.17 284 | 86.36 302 | 95.28 226 | 71.28 306 | 97.80 268 | 84.09 286 | 98.14 107 | 92.81 333 |
|
MVP-Stereo | | | 90.74 245 | 90.08 239 | 92.71 267 | 93.19 323 | 88.20 223 | 95.86 243 | 96.27 248 | 86.07 285 | 84.86 315 | 94.76 247 | 77.84 265 | 97.75 273 | 83.88 290 | 98.01 109 | 92.17 344 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
Anonymous202405211 | | | 92.07 189 | 90.83 209 | 95.76 117 | 98.19 92 | 88.75 205 | 97.58 103 | 95.00 305 | 86.00 286 | 93.64 136 | 97.45 110 | 66.24 338 | 99.53 78 | 90.68 171 | 92.71 204 | 99.01 82 |
|
KD-MVS_self_test | | | 85.95 307 | 84.95 306 | 88.96 327 | 89.55 354 | 79.11 347 | 95.13 273 | 96.42 242 | 85.91 287 | 84.07 325 | 90.48 336 | 70.03 316 | 94.82 349 | 80.04 317 | 72.94 356 | 92.94 331 |
|
CVMVSNet | | | 91.23 224 | 91.75 173 | 89.67 323 | 95.77 215 | 74.69 356 | 96.44 202 | 94.88 312 | 85.81 288 | 92.18 168 | 97.64 100 | 79.07 241 | 95.58 343 | 88.06 217 | 95.86 160 | 98.74 108 |
|
our_test_3 | | | 88.78 281 | 87.98 280 | 91.20 304 | 92.45 336 | 82.53 313 | 93.61 319 | 95.69 272 | 85.77 289 | 84.88 314 | 93.71 294 | 79.99 227 | 96.78 326 | 79.47 322 | 86.24 283 | 94.28 314 |
|
MSDG | | | 91.42 213 | 90.24 232 | 94.96 162 | 97.15 140 | 88.91 202 | 93.69 315 | 96.32 246 | 85.72 290 | 86.93 297 | 96.47 167 | 80.24 222 | 98.98 143 | 80.57 314 | 95.05 176 | 96.98 192 |
|
CHOSEN 1792x2688 | | | 94.15 101 | 93.51 111 | 96.06 106 | 98.27 82 | 89.38 186 | 95.18 272 | 98.48 15 | 85.60 291 | 93.76 135 | 97.11 126 | 83.15 165 | 99.61 57 | 91.33 159 | 98.72 86 | 99.19 64 |
|
KD-MVS_2432*1600 | | | 84.81 314 | 82.64 318 | 91.31 301 | 91.07 344 | 85.34 284 | 91.22 343 | 95.75 268 | 85.56 292 | 83.09 331 | 90.21 339 | 67.21 330 | 95.89 334 | 77.18 335 | 62.48 367 | 92.69 334 |
|
miper_refine_blended | | | 84.81 314 | 82.64 318 | 91.31 301 | 91.07 344 | 85.34 284 | 91.22 343 | 95.75 268 | 85.56 292 | 83.09 331 | 90.21 339 | 67.21 330 | 95.89 334 | 77.18 335 | 62.48 367 | 92.69 334 |
|
AllTest | | | 90.23 258 | 88.98 268 | 93.98 210 | 97.94 104 | 86.64 259 | 96.51 201 | 95.54 280 | 85.38 294 | 85.49 309 | 96.77 142 | 70.28 312 | 99.15 120 | 80.02 318 | 92.87 201 | 96.15 216 |
|
TestCases | | | | | 93.98 210 | 97.94 104 | 86.64 259 | | 95.54 280 | 85.38 294 | 85.49 309 | 96.77 142 | 70.28 312 | 99.15 120 | 80.02 318 | 92.87 201 | 96.15 216 |
|
Test_1112_low_res | | | 92.84 160 | 91.84 171 | 95.85 115 | 97.04 150 | 89.97 165 | 95.53 256 | 96.64 229 | 85.38 294 | 89.65 233 | 95.18 229 | 85.86 127 | 99.10 126 | 87.70 226 | 93.58 199 | 98.49 125 |
|
test_vis1_rt | | | 86.16 304 | 85.06 305 | 89.46 324 | 93.47 317 | 80.46 333 | 96.41 206 | 86.61 369 | 85.22 297 | 79.15 349 | 88.64 347 | 52.41 360 | 97.06 314 | 93.08 124 | 90.57 244 | 90.87 353 |
|
EU-MVSNet | | | 88.72 282 | 88.90 269 | 88.20 330 | 93.15 324 | 74.21 357 | 96.63 193 | 94.22 328 | 85.18 298 | 87.32 289 | 95.97 189 | 76.16 278 | 94.98 348 | 85.27 271 | 86.17 284 | 95.41 253 |
|
LS3D | | | 93.57 127 | 92.61 147 | 96.47 79 | 97.59 126 | 91.61 105 | 97.67 90 | 97.72 116 | 85.17 299 | 90.29 208 | 98.34 40 | 84.60 141 | 99.73 33 | 83.85 291 | 98.27 101 | 98.06 154 |
|
dp | | | 88.90 278 | 88.26 278 | 90.81 309 | 94.58 282 | 76.62 352 | 92.85 332 | 94.93 309 | 85.12 300 | 90.07 221 | 93.07 308 | 75.81 280 | 98.12 221 | 80.53 315 | 87.42 275 | 97.71 168 |
|
HyFIR lowres test | | | 93.66 123 | 92.92 130 | 95.87 114 | 98.24 85 | 89.88 167 | 94.58 282 | 98.49 13 | 85.06 301 | 93.78 134 | 95.78 203 | 82.86 174 | 98.67 170 | 91.77 149 | 95.71 164 | 99.07 78 |
|
new-patchmatchnet | | | 83.18 320 | 81.87 322 | 87.11 334 | 86.88 362 | 75.99 355 | 93.70 313 | 95.18 298 | 85.02 302 | 77.30 353 | 88.40 349 | 65.99 339 | 93.88 356 | 74.19 347 | 70.18 360 | 91.47 350 |
|
TDRefinement | | | 86.53 298 | 84.76 309 | 91.85 286 | 82.23 368 | 84.25 296 | 96.38 213 | 95.35 288 | 84.97 303 | 84.09 324 | 94.94 237 | 65.76 341 | 98.34 201 | 84.60 280 | 74.52 352 | 92.97 330 |
|
OpenMVS |  | 89.19 12 | 92.86 158 | 91.68 177 | 96.40 85 | 95.34 235 | 92.73 75 | 98.27 33 | 98.12 56 | 84.86 304 | 85.78 306 | 97.75 89 | 78.89 249 | 99.74 32 | 87.50 235 | 98.65 88 | 96.73 201 |
|
gm-plane-assit | | | | | | 93.22 322 | 78.89 349 | | | 84.82 305 | | 93.52 301 | | 98.64 172 | 87.72 223 | | |
|
PMMVS | | | 92.86 158 | 92.34 156 | 94.42 190 | 94.92 261 | 86.73 258 | 94.53 284 | 96.38 244 | 84.78 306 | 94.27 122 | 95.12 233 | 83.13 166 | 98.40 191 | 91.47 157 | 96.49 150 | 98.12 149 |
|
pmmvs4 | | | 90.93 239 | 89.85 249 | 94.17 200 | 93.34 320 | 90.79 143 | 94.60 281 | 96.02 258 | 84.62 307 | 87.45 284 | 95.15 230 | 81.88 197 | 97.45 299 | 87.70 226 | 87.87 270 | 94.27 315 |
|
MDA-MVSNet-bldmvs | | | 85.00 312 | 82.95 317 | 91.17 305 | 93.13 325 | 83.33 308 | 94.56 283 | 95.00 305 | 84.57 308 | 65.13 364 | 92.65 312 | 70.45 311 | 95.85 336 | 73.57 348 | 77.49 345 | 94.33 311 |
|
QAPM | | | 93.45 131 | 92.27 158 | 96.98 62 | 96.77 165 | 92.62 77 | 98.39 26 | 98.12 56 | 84.50 309 | 88.27 269 | 97.77 88 | 82.39 187 | 99.81 27 | 85.40 270 | 98.81 83 | 98.51 122 |
|
ppachtmachnet_test | | | 88.35 286 | 87.29 285 | 91.53 296 | 92.45 336 | 83.57 307 | 93.75 312 | 95.97 259 | 84.28 310 | 85.32 312 | 94.18 279 | 79.00 248 | 96.93 321 | 75.71 340 | 84.99 303 | 94.10 317 |
|
pmmvs5 | | | 89.86 267 | 88.87 270 | 92.82 263 | 92.86 327 | 86.23 268 | 96.26 222 | 95.39 285 | 84.24 311 | 87.12 291 | 94.51 257 | 74.27 290 | 97.36 306 | 87.61 233 | 87.57 272 | 94.86 286 |
|
CostFormer | | | 91.18 229 | 90.70 214 | 92.62 270 | 94.84 267 | 81.76 321 | 94.09 301 | 94.43 322 | 84.15 312 | 92.72 159 | 93.77 293 | 79.43 236 | 98.20 209 | 90.70 170 | 92.18 214 | 97.90 158 |
|
FMVSNet5 | | | 87.29 294 | 85.79 298 | 91.78 291 | 94.80 269 | 87.28 242 | 95.49 257 | 95.28 292 | 84.09 313 | 83.85 328 | 91.82 327 | 62.95 347 | 94.17 354 | 78.48 327 | 85.34 295 | 93.91 321 |
|
MIMVSNet1 | | | 84.93 313 | 83.05 315 | 90.56 314 | 89.56 353 | 84.84 292 | 95.40 260 | 95.35 288 | 83.91 314 | 80.38 343 | 92.21 325 | 57.23 354 | 93.34 359 | 70.69 358 | 82.75 329 | 93.50 325 |
|
RPSCF | | | 90.75 244 | 90.86 205 | 90.42 316 | 96.84 159 | 76.29 354 | 95.61 253 | 96.34 245 | 83.89 315 | 91.38 185 | 97.87 79 | 76.45 274 | 98.78 156 | 87.16 243 | 92.23 211 | 96.20 212 |
|
MDTV_nov1_ep13_2view | | | | | | | 70.35 362 | 93.10 329 | | 83.88 316 | 93.55 138 | | 82.47 185 | | 86.25 254 | | 98.38 138 |
|
无先验 | | | | | | | | 95.79 246 | 97.87 100 | 83.87 317 | | | | 99.65 49 | 87.68 229 | | 98.89 98 |
|
PVSNet_0 | | 82.17 19 | 85.46 311 | 83.64 314 | 90.92 307 | 95.27 242 | 79.49 343 | 90.55 349 | 95.60 277 | 83.76 318 | 83.00 333 | 89.95 341 | 71.09 307 | 97.97 245 | 82.75 299 | 60.79 369 | 95.31 262 |
|
Anonymous20240521 | | | 86.42 300 | 85.44 300 | 89.34 325 | 90.33 347 | 79.79 341 | 96.73 178 | 95.92 260 | 83.71 319 | 83.25 330 | 91.36 333 | 63.92 344 | 96.01 332 | 78.39 329 | 85.36 294 | 92.22 342 |
|
TinyColmap | | | 86.82 297 | 85.35 303 | 91.21 303 | 94.91 263 | 82.99 310 | 93.94 305 | 94.02 331 | 83.58 320 | 81.56 337 | 94.68 251 | 62.34 349 | 98.13 216 | 75.78 339 | 87.35 277 | 92.52 338 |
|
Anonymous20231206 | | | 87.09 295 | 86.14 296 | 89.93 321 | 91.22 343 | 80.35 334 | 96.11 231 | 95.35 288 | 83.57 321 | 84.16 321 | 93.02 309 | 73.54 296 | 95.61 341 | 72.16 352 | 86.14 285 | 93.84 322 |
|
pmmvs-eth3d | | | 86.22 303 | 84.45 310 | 91.53 296 | 88.34 359 | 87.25 244 | 94.47 285 | 95.01 304 | 83.47 322 | 79.51 348 | 89.61 344 | 69.75 318 | 95.71 339 | 83.13 294 | 76.73 349 | 91.64 345 |
|
EG-PatchMatch MVS | | | 87.02 296 | 85.44 300 | 91.76 293 | 92.67 331 | 85.00 288 | 96.08 233 | 96.45 241 | 83.41 323 | 79.52 347 | 93.49 302 | 57.10 355 | 97.72 275 | 79.34 325 | 90.87 242 | 92.56 337 |
|
ADS-MVSNet2 | | | 89.45 271 | 88.59 273 | 92.03 282 | 95.86 210 | 82.26 317 | 90.93 346 | 94.32 327 | 83.23 324 | 91.28 194 | 91.81 328 | 79.01 246 | 95.99 333 | 79.52 320 | 91.39 229 | 97.84 162 |
|
ADS-MVSNet | | | 89.89 265 | 88.68 272 | 93.53 237 | 95.86 210 | 84.89 291 | 90.93 346 | 95.07 303 | 83.23 324 | 91.28 194 | 91.81 328 | 79.01 246 | 97.85 263 | 79.52 320 | 91.39 229 | 97.84 162 |
|
COLMAP_ROB |  | 87.81 15 | 90.40 254 | 89.28 264 | 93.79 224 | 97.95 103 | 87.13 250 | 96.92 164 | 95.89 264 | 82.83 326 | 86.88 299 | 97.18 122 | 73.77 295 | 99.29 108 | 78.44 328 | 93.62 196 | 94.95 277 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
testdata | | | | | 95.46 141 | 98.18 94 | 88.90 203 | | 97.66 122 | 82.73 327 | 97.03 45 | 98.07 62 | 90.06 72 | 98.85 151 | 89.67 187 | 98.98 77 | 98.64 115 |
|
DP-MVS | | | 92.76 163 | 91.51 185 | 96.52 72 | 98.77 53 | 90.99 133 | 97.38 127 | 96.08 257 | 82.38 328 | 89.29 245 | 97.87 79 | 83.77 153 | 99.69 43 | 81.37 311 | 96.69 146 | 98.89 98 |
|
MDA-MVSNet_test_wron | | | 85.87 308 | 84.23 312 | 90.80 311 | 92.38 338 | 82.57 312 | 93.17 325 | 95.15 299 | 82.15 329 | 67.65 360 | 92.33 324 | 78.20 257 | 95.51 344 | 77.33 332 | 79.74 337 | 94.31 313 |
|
YYNet1 | | | 85.87 308 | 84.23 312 | 90.78 312 | 92.38 338 | 82.46 315 | 93.17 325 | 95.14 300 | 82.12 330 | 67.69 359 | 92.36 321 | 78.16 260 | 95.50 345 | 77.31 333 | 79.73 338 | 94.39 309 |
|
PatchT | | | 88.87 279 | 87.42 284 | 93.22 249 | 94.08 297 | 85.10 287 | 89.51 355 | 94.64 319 | 81.92 331 | 92.36 164 | 88.15 352 | 80.05 226 | 97.01 319 | 72.43 351 | 93.65 195 | 97.54 179 |
|
TAPA-MVS | | 90.10 7 | 92.30 179 | 91.22 196 | 95.56 131 | 98.33 79 | 89.60 174 | 96.79 173 | 97.65 124 | 81.83 332 | 91.52 182 | 97.23 120 | 87.94 95 | 98.91 148 | 71.31 355 | 98.37 99 | 98.17 147 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
旧先验2 | | | | | | | | 95.94 240 | | 81.66 333 | 97.34 36 | | | 98.82 153 | 92.26 134 | | |
|
新几何1 | | | | | 97.32 48 | 98.60 65 | 93.59 54 | | 97.75 111 | 81.58 334 | 95.75 92 | 97.85 82 | 90.04 73 | 99.67 47 | 86.50 251 | 99.13 71 | 98.69 112 |
|
Patchmatch-test | | | 89.42 272 | 87.99 279 | 93.70 229 | 95.27 242 | 85.11 286 | 88.98 357 | 94.37 325 | 81.11 335 | 87.10 293 | 93.69 295 | 82.28 188 | 97.50 295 | 74.37 345 | 94.76 180 | 98.48 127 |
|
test_0402 | | | 86.46 299 | 84.79 308 | 91.45 298 | 95.02 255 | 85.55 277 | 96.29 221 | 94.89 311 | 80.90 336 | 82.21 335 | 93.97 287 | 68.21 325 | 97.29 309 | 62.98 364 | 88.68 264 | 91.51 348 |
|
gg-mvs-nofinetune | | | 87.82 290 | 85.61 299 | 94.44 188 | 94.46 284 | 89.27 194 | 91.21 345 | 84.61 372 | 80.88 337 | 89.89 226 | 74.98 365 | 71.50 304 | 97.53 292 | 85.75 266 | 97.21 134 | 96.51 205 |
|
JIA-IIPM | | | 88.26 287 | 87.04 291 | 91.91 284 | 93.52 313 | 81.42 323 | 89.38 356 | 94.38 324 | 80.84 338 | 90.93 199 | 80.74 363 | 79.22 240 | 97.92 257 | 82.76 298 | 91.62 222 | 96.38 210 |
|
Patchmtry | | | 88.64 283 | 87.25 286 | 92.78 265 | 94.09 296 | 86.64 259 | 89.82 354 | 95.68 274 | 80.81 339 | 87.63 283 | 92.36 321 | 80.91 209 | 97.03 316 | 78.86 326 | 85.12 299 | 94.67 301 |
|
test_f | | | 80.57 324 | 79.62 326 | 83.41 342 | 83.38 366 | 67.80 368 | 93.57 320 | 93.72 333 | 80.80 340 | 77.91 352 | 87.63 355 | 33.40 369 | 92.08 362 | 87.14 244 | 79.04 343 | 90.34 356 |
|
tpm2 | | | 89.96 263 | 89.21 265 | 92.23 279 | 94.91 263 | 81.25 324 | 93.78 311 | 94.42 323 | 80.62 341 | 91.56 181 | 93.44 304 | 76.44 275 | 97.94 253 | 85.60 267 | 92.08 218 | 97.49 180 |
|
pmmvs6 | | | 87.81 291 | 86.19 295 | 92.69 268 | 91.32 342 | 86.30 266 | 97.34 129 | 96.41 243 | 80.59 342 | 84.05 326 | 94.37 266 | 67.37 329 | 97.67 278 | 84.75 277 | 79.51 340 | 94.09 319 |
|
Anonymous20231211 | | | 90.63 249 | 89.42 261 | 94.27 198 | 98.24 85 | 89.19 197 | 98.05 53 | 97.89 96 | 79.95 343 | 88.25 270 | 94.96 236 | 72.56 300 | 98.13 216 | 89.70 186 | 85.14 298 | 95.49 246 |
|
cascas | | | 91.20 226 | 90.08 239 | 94.58 184 | 94.97 256 | 89.16 198 | 93.65 317 | 97.59 130 | 79.90 344 | 89.40 240 | 92.92 310 | 75.36 285 | 98.36 197 | 92.14 139 | 94.75 181 | 96.23 211 |
|
Anonymous20240529 | | | 91.98 192 | 90.73 213 | 95.73 122 | 98.14 96 | 89.40 185 | 97.99 56 | 97.72 116 | 79.63 345 | 93.54 139 | 97.41 113 | 69.94 317 | 99.56 72 | 91.04 165 | 91.11 235 | 98.22 145 |
|
PCF-MVS | | 89.48 11 | 91.56 206 | 89.95 245 | 96.36 90 | 96.60 172 | 92.52 80 | 92.51 336 | 97.26 174 | 79.41 346 | 88.90 252 | 96.56 163 | 84.04 151 | 99.55 74 | 77.01 337 | 97.30 131 | 97.01 191 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
test222 | | | | | | 98.24 85 | 92.21 89 | 95.33 263 | 97.60 128 | 79.22 347 | 95.25 104 | 97.84 84 | 88.80 85 | | | 99.15 69 | 98.72 109 |
|
UnsupCasMVSNet_bld | | | 82.13 323 | 79.46 327 | 90.14 319 | 88.00 360 | 82.47 314 | 90.89 348 | 96.62 234 | 78.94 348 | 75.61 354 | 84.40 361 | 56.63 357 | 96.31 330 | 77.30 334 | 66.77 365 | 91.63 346 |
|
N_pmnet | | | 78.73 327 | 78.71 328 | 78.79 346 | 92.80 329 | 46.50 379 | 94.14 299 | 43.71 382 | 78.61 349 | 80.83 339 | 91.66 331 | 74.94 287 | 96.36 329 | 67.24 361 | 84.45 311 | 93.50 325 |
|
ANet_high | | | 63.94 337 | 59.58 340 | 77.02 347 | 61.24 380 | 66.06 369 | 85.66 364 | 87.93 365 | 78.53 350 | 42.94 372 | 71.04 369 | 25.42 375 | 80.71 372 | 52.60 370 | 30.83 373 | 84.28 361 |
|
114514_t | | | 93.95 111 | 93.06 126 | 96.63 67 | 99.07 37 | 91.61 105 | 97.46 119 | 97.96 91 | 77.99 351 | 93.00 152 | 97.57 105 | 86.14 125 | 99.33 102 | 89.22 200 | 99.15 69 | 98.94 90 |
|
DSMNet-mixed | | | 86.34 301 | 86.12 297 | 87.00 336 | 89.88 351 | 70.43 361 | 94.93 275 | 90.08 360 | 77.97 352 | 85.42 311 | 92.78 311 | 74.44 289 | 93.96 355 | 74.43 344 | 95.14 172 | 96.62 203 |
|
RPMNet | | | 88.98 275 | 87.05 290 | 94.77 176 | 94.45 285 | 87.19 247 | 90.23 351 | 98.03 80 | 77.87 353 | 92.40 161 | 87.55 356 | 80.17 224 | 99.51 83 | 68.84 360 | 93.95 192 | 97.60 176 |
|
test_vis3_rt | | | 72.73 328 | 70.55 331 | 79.27 345 | 80.02 369 | 68.13 367 | 93.92 307 | 74.30 379 | 76.90 354 | 58.99 368 | 73.58 368 | 20.29 377 | 95.37 346 | 84.16 284 | 72.80 357 | 74.31 367 |
|
new_pmnet | | | 82.89 321 | 81.12 325 | 88.18 331 | 89.63 352 | 80.18 338 | 91.77 340 | 92.57 344 | 76.79 355 | 75.56 356 | 88.23 351 | 61.22 350 | 94.48 351 | 71.43 354 | 82.92 327 | 89.87 357 |
|
tpm cat1 | | | 88.36 285 | 87.21 288 | 91.81 289 | 95.13 251 | 80.55 332 | 92.58 335 | 95.70 270 | 74.97 356 | 87.45 284 | 91.96 326 | 78.01 264 | 98.17 213 | 80.39 316 | 88.74 263 | 96.72 202 |
|
CMPMVS |  | 62.92 21 | 85.62 310 | 84.92 307 | 87.74 332 | 89.14 355 | 73.12 360 | 94.17 298 | 96.80 218 | 73.98 357 | 73.65 358 | 94.93 238 | 66.36 335 | 97.61 285 | 83.95 289 | 91.28 231 | 92.48 339 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
OpenMVS_ROB |  | 81.14 20 | 84.42 316 | 82.28 321 | 90.83 308 | 90.06 349 | 84.05 301 | 95.73 248 | 94.04 330 | 73.89 358 | 80.17 346 | 91.53 332 | 59.15 351 | 97.64 281 | 66.92 362 | 89.05 259 | 90.80 354 |
|
MVS | | | 91.71 198 | 90.44 222 | 95.51 135 | 95.20 248 | 91.59 107 | 96.04 234 | 97.45 152 | 73.44 359 | 87.36 288 | 95.60 213 | 85.42 132 | 99.10 126 | 85.97 262 | 97.46 121 | 95.83 228 |
|
pmmvs3 | | | 79.97 325 | 77.50 330 | 87.39 333 | 82.80 367 | 79.38 345 | 92.70 334 | 90.75 359 | 70.69 360 | 78.66 350 | 87.47 357 | 51.34 361 | 93.40 358 | 73.39 349 | 69.65 361 | 89.38 358 |
|
APD_test1 | | | 79.31 326 | 77.70 329 | 84.14 340 | 89.11 356 | 69.07 365 | 92.36 339 | 91.50 353 | 69.07 361 | 73.87 357 | 92.63 314 | 39.93 366 | 94.32 353 | 70.54 359 | 80.25 336 | 89.02 359 |
|
MVS-HIRNet | | | 82.47 322 | 81.21 324 | 86.26 338 | 95.38 230 | 69.21 364 | 88.96 358 | 89.49 361 | 66.28 362 | 80.79 340 | 74.08 367 | 68.48 323 | 97.39 304 | 71.93 353 | 95.47 167 | 92.18 343 |
|
DeepMVS_CX |  | | | | 74.68 352 | 90.84 346 | 64.34 372 | | 81.61 375 | 65.34 363 | 67.47 361 | 88.01 354 | 48.60 362 | 80.13 373 | 62.33 365 | 73.68 355 | 79.58 364 |
|
PMMVS2 | | | 70.19 331 | 66.92 334 | 80.01 344 | 76.35 372 | 65.67 370 | 86.22 362 | 87.58 366 | 64.83 364 | 62.38 365 | 80.29 364 | 26.78 374 | 88.49 368 | 63.79 363 | 54.07 370 | 85.88 360 |
|
FPMVS | | | 71.27 330 | 69.85 332 | 75.50 350 | 74.64 373 | 59.03 375 | 91.30 342 | 91.50 353 | 58.80 365 | 57.92 369 | 88.28 350 | 29.98 372 | 85.53 370 | 53.43 369 | 82.84 328 | 81.95 363 |
|
testf1 | | | 69.31 332 | 66.76 335 | 76.94 348 | 78.61 370 | 61.93 373 | 88.27 359 | 86.11 370 | 55.62 366 | 59.69 366 | 85.31 359 | 20.19 378 | 89.32 365 | 57.62 366 | 69.44 362 | 79.58 364 |
|
APD_test2 | | | 69.31 332 | 66.76 335 | 76.94 348 | 78.61 370 | 61.93 373 | 88.27 359 | 86.11 370 | 55.62 366 | 59.69 366 | 85.31 359 | 20.19 378 | 89.32 365 | 57.62 366 | 69.44 362 | 79.58 364 |
|
LCM-MVSNet | | | 72.55 329 | 69.39 333 | 82.03 343 | 70.81 378 | 65.42 371 | 90.12 353 | 94.36 326 | 55.02 368 | 65.88 362 | 81.72 362 | 24.16 376 | 89.96 364 | 74.32 346 | 68.10 364 | 90.71 355 |
|
Gipuma |  | | 67.86 335 | 65.41 337 | 75.18 351 | 92.66 332 | 73.45 359 | 66.50 370 | 94.52 321 | 53.33 369 | 57.80 370 | 66.07 370 | 30.81 370 | 89.20 367 | 48.15 371 | 78.88 344 | 62.90 370 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 53.92 22 | 58.58 338 | 55.40 341 | 68.12 354 | 51.00 381 | 48.64 377 | 78.86 367 | 87.10 368 | 46.77 370 | 35.84 376 | 74.28 366 | 8.76 380 | 86.34 369 | 42.07 372 | 73.91 354 | 69.38 368 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 53.28 339 | 52.56 343 | 55.43 356 | 74.43 374 | 47.13 378 | 83.63 366 | 76.30 376 | 42.23 371 | 42.59 373 | 62.22 372 | 28.57 373 | 74.40 374 | 31.53 374 | 31.51 372 | 44.78 371 |
|
EMVS | | | 52.08 341 | 51.31 344 | 54.39 357 | 72.62 376 | 45.39 380 | 83.84 365 | 75.51 378 | 41.13 372 | 40.77 374 | 59.65 373 | 30.08 371 | 73.60 375 | 28.31 375 | 29.90 374 | 44.18 372 |
|
MVE |  | 50.73 23 | 53.25 340 | 48.81 345 | 66.58 355 | 65.34 379 | 57.50 376 | 72.49 369 | 70.94 380 | 40.15 373 | 39.28 375 | 63.51 371 | 6.89 382 | 73.48 376 | 38.29 373 | 42.38 371 | 68.76 369 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 66.11 336 | 64.89 338 | 69.79 353 | 72.62 376 | 35.23 383 | 65.19 371 | 92.83 342 | 20.35 374 | 65.20 363 | 88.08 353 | 43.14 365 | 82.70 371 | 73.12 350 | 63.46 366 | 91.45 351 |
|
tmp_tt | | | 51.94 342 | 53.82 342 | 46.29 358 | 33.73 382 | 45.30 381 | 78.32 368 | 67.24 381 | 18.02 375 | 50.93 371 | 87.05 358 | 52.99 359 | 53.11 377 | 70.76 357 | 25.29 375 | 40.46 373 |
|
wuyk23d | | | 25.11 343 | 24.57 347 | 26.74 359 | 73.98 375 | 39.89 382 | 57.88 372 | 9.80 383 | 12.27 376 | 10.39 377 | 6.97 379 | 7.03 381 | 36.44 378 | 25.43 376 | 17.39 376 | 3.89 376 |
|
testmvs | | | 13.36 345 | 16.33 348 | 4.48 361 | 5.04 383 | 2.26 385 | 93.18 324 | 3.28 384 | 2.70 377 | 8.24 378 | 21.66 375 | 2.29 384 | 2.19 379 | 7.58 377 | 2.96 377 | 9.00 375 |
|
test123 | | | 13.04 346 | 15.66 349 | 5.18 360 | 4.51 384 | 3.45 384 | 92.50 337 | 1.81 385 | 2.50 378 | 7.58 379 | 20.15 376 | 3.67 383 | 2.18 380 | 7.13 378 | 1.07 378 | 9.90 374 |
|
EGC-MVSNET | | | 68.77 334 | 63.01 339 | 86.07 339 | 92.49 334 | 82.24 318 | 93.96 304 | 90.96 357 | 0.71 379 | 2.62 380 | 90.89 334 | 53.66 358 | 93.46 357 | 57.25 368 | 84.55 309 | 82.51 362 |
|
test_blank | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet_test | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
DCPMVS | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
cdsmvs_eth3d_5k | | | 23.24 344 | 30.99 346 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 97.63 126 | 0.00 380 | 0.00 381 | 96.88 139 | 84.38 145 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
pcd_1.5k_mvsjas | | | 7.39 348 | 9.85 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 88.65 87 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet-low-res | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uncertanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
Regformer | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
ab-mvs-re | | | 8.06 347 | 10.74 350 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 96.69 148 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
MSC_two_6792asdad | | | | | 98.86 1 | 98.67 58 | 96.94 1 | | 97.93 94 | | | | | 99.86 8 | 97.68 3 | 99.67 6 | 99.77 1 |
|
No_MVS | | | | | 98.86 1 | 98.67 58 | 96.94 1 | | 97.93 94 | | | | | 99.86 8 | 97.68 3 | 99.67 6 | 99.77 1 |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
OPU-MVS | | | | | 98.55 3 | 98.82 52 | 96.86 3 | 98.25 36 | | | | 98.26 52 | 96.04 2 | 99.24 111 | 95.36 75 | 99.59 17 | 99.56 25 |
|
test_0728_SECOND | | | | | 98.51 4 | 99.45 3 | 95.93 5 | 98.21 43 | 98.28 27 | | | | | 99.86 8 | 97.52 9 | 99.67 6 | 99.75 5 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.45 130 |
|
test_part2 | | | | | | 99.28 25 | 95.74 8 | | | | 98.10 20 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 82.76 177 | | | | 98.45 130 |
|
sam_mvs | | | | | | | | | | | | | 81.94 196 | | | | |
|
ambc | | | | | 86.56 337 | 83.60 365 | 70.00 363 | 85.69 363 | 94.97 307 | | 80.60 342 | 88.45 348 | 37.42 367 | 96.84 324 | 82.69 300 | 75.44 351 | 92.86 332 |
|
MTGPA |  | | | | | | | | 98.08 63 | | | | | | | | |
|
test_post1 | | | | | | | | 92.81 333 | | | | 16.58 378 | 80.53 216 | 97.68 277 | 86.20 255 | | |
|
test_post | | | | | | | | | | | | 17.58 377 | 81.76 198 | 98.08 227 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 90.45 337 | 82.65 181 | 98.10 223 | | | |
|
GG-mvs-BLEND | | | | | 93.62 232 | 93.69 308 | 89.20 195 | 92.39 338 | 83.33 373 | | 87.98 278 | 89.84 343 | 71.00 308 | 96.87 323 | 82.08 304 | 95.40 169 | 94.80 293 |
|
MTMP | | | | | | | | 97.86 68 | 82.03 374 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 94.81 89 | 99.38 49 | 99.45 41 |
|
agg_prior2 | | | | | | | | | | | | | | | 93.94 106 | 99.38 49 | 99.50 36 |
|
agg_prior | | | | | | 98.67 58 | 93.79 50 | | 98.00 87 | | 95.68 95 | | | 99.57 71 | | | |
|
test_prior4 | | | | | | | 93.66 53 | 96.42 205 | | | | | | | | | |
|
test_prior | | | | | 97.23 53 | 98.67 58 | 92.99 69 | | 98.00 87 | | | | | 99.41 96 | | | 99.29 56 |
|
新几何2 | | | | | | | | 95.79 246 | | | | | | | | | |
|
旧先验1 | | | | | | 98.38 77 | 93.38 59 | | 97.75 111 | | | 98.09 61 | 92.30 38 | | | 99.01 76 | 99.16 66 |
|
原ACMM2 | | | | | | | | 95.67 249 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.67 47 | 85.96 263 | | |
|
segment_acmp | | | | | | | | | | | | | 92.89 25 | | | | |
|
test12 | | | | | 97.65 39 | 98.46 70 | 94.26 35 | | 97.66 122 | | 95.52 102 | | 90.89 63 | 99.46 90 | | 99.25 61 | 99.22 63 |
|
plane_prior7 | | | | | | 96.21 195 | 89.98 164 | | | | | | | | | | |
|
plane_prior6 | | | | | | 96.10 205 | 90.00 160 | | | | | | 81.32 204 | | | | |
|
plane_prior5 | | | | | | | | | 97.51 139 | | | | | 98.60 176 | 93.02 127 | 92.23 211 | 95.86 224 |
|
plane_prior4 | | | | | | | | | | | | 96.64 152 | | | | | |
|
plane_prior1 | | | | | | 96.14 203 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 91.06 356 | | | | | | | | |
|
lessismore_v0 | | | | | 90.45 315 | 91.96 341 | 79.09 348 | | 87.19 367 | | 80.32 344 | 94.39 264 | 66.31 337 | 97.55 289 | 84.00 288 | 76.84 347 | 94.70 300 |
|
test11 | | | | | | | | | 97.88 98 | | | | | | | | |
|
door | | | | | | | | | 91.13 355 | | | | | | | | |
|
HQP5-MVS | | | | | | | 89.33 189 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.13 140 | | |
|
HQP4-MVS | | | | | | | | | | | 90.14 210 | | | 98.50 184 | | | 95.78 233 |
|
HQP3-MVS | | | | | | | | | 97.39 162 | | | | | | | 92.10 216 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.95 207 | | | | |
|
NP-MVS | | | | | | 95.99 209 | 89.81 169 | | | | | 95.87 194 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 249 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.02 237 | |
|
Test By Simon | | | | | | | | | | | | | 88.73 86 | | | | |
|