This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 29100.00 199.97 1199.61 3299.97 3399.75 39100.00 199.84 36
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 198100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6799.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18999.98 1100.00 199.98 3
Gipumacopyleft99.57 7099.59 6499.49 18199.98 399.71 8399.72 3099.84 6099.81 6199.94 3499.78 10198.91 11499.71 33498.41 18299.95 8399.05 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 22999.99 1099.99 299.98 1399.88 4299.97 299.99 799.96 9100.00 199.98 3
test_fmvs399.83 1999.93 299.53 17499.96 798.62 27599.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 799.98 199.99 1699.98 3
test_f99.75 3299.88 699.37 21999.96 798.21 30099.51 91100.00 199.94 23100.00 199.93 1799.58 3699.94 7799.97 499.99 1699.97 7
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5499.70 8599.92 4199.93 1799.45 4799.97 3399.36 84100.00 199.85 35
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6799.84 5399.94 3499.91 2499.13 8699.96 5499.83 3299.99 1699.83 40
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5499.95 2099.98 1399.92 2199.28 6699.98 2099.75 39100.00 199.94 13
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4999.89 3599.98 1399.90 2999.94 499.98 2099.75 39100.00 199.90 20
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4499.92 2799.98 1399.93 1799.94 499.98 2099.77 38100.00 199.92 18
OurMVSNet-221017-099.75 3299.71 3899.84 3099.96 799.83 2999.83 699.85 5499.80 6499.93 3799.93 1798.54 16499.93 9499.59 5199.98 4199.76 66
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20599.98 1199.99 299.98 1399.91 2499.68 2699.93 9499.93 2099.99 1699.99 1
test_fmvs1_n99.68 4599.81 2399.28 24299.95 1597.93 32399.49 96100.00 199.82 5899.99 799.89 3499.21 7599.98 2099.97 499.98 4199.93 15
mvsany_test399.85 1199.88 699.75 7499.95 1599.37 17899.53 8699.98 1199.77 7299.99 799.95 1399.85 1099.94 7799.95 1299.98 4199.94 13
test_vis1_n99.68 4599.79 2799.36 22399.94 1898.18 30399.52 87100.00 199.86 45100.00 199.88 4298.99 10499.96 5499.97 499.96 7099.95 11
testf199.63 5999.60 6299.72 9499.94 1899.95 299.47 10099.89 4099.43 14199.88 6199.80 8399.26 7099.90 15798.81 15699.88 13499.32 259
APD_test299.63 5999.60 6299.72 9499.94 1899.95 299.47 10099.89 4099.43 14199.88 6199.80 8399.26 7099.90 15798.81 15699.88 13499.32 259
pmmvs699.86 999.86 1299.83 3399.94 1899.90 799.83 699.91 3399.85 5099.94 3499.95 1399.73 2199.90 15799.65 4699.97 5699.69 83
RRT_MVS99.67 5199.59 6499.91 299.94 1899.88 1299.78 1299.27 30399.87 4199.91 4499.87 4798.04 22099.96 5499.68 4499.99 1699.90 20
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7499.97 1999.92 2199.77 1999.98 2099.43 72100.00 199.90 20
MIMVSNet199.66 5399.62 5599.80 4599.94 1899.87 1599.69 4299.77 9599.78 6899.93 3799.89 3497.94 22899.92 11699.65 4699.98 4199.62 138
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2599.78 4999.07 21699.98 1199.99 299.98 1399.90 2999.88 899.92 11699.93 2099.99 1699.98 3
test_cas_vis1_n_192099.76 3199.86 1299.45 19299.93 2598.40 28899.30 13699.98 1199.94 2399.99 799.89 3499.80 1599.97 3399.96 999.97 5699.97 7
test_vis1_n_192099.72 3699.88 699.27 24599.93 2597.84 32699.34 123100.00 199.99 299.99 799.82 7399.87 999.99 799.97 499.99 1699.97 7
mvsmamba99.74 3599.70 3999.85 2799.93 2599.83 2999.76 1999.81 7699.96 1899.91 4499.81 7998.60 15599.94 7799.58 5499.98 4199.77 60
K. test v398.87 23498.60 24399.69 10499.93 2599.46 15199.74 2494.97 40099.78 6899.88 6199.88 4293.66 33299.97 3399.61 4999.95 8399.64 122
SixPastTwentyTwo99.42 10599.30 12399.76 6499.92 3099.67 9999.70 3599.14 32799.65 10099.89 5399.90 2996.20 30399.94 7799.42 7799.92 10599.67 95
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3199.73 7698.97 24199.98 1199.99 299.96 2399.85 5699.93 799.99 799.94 1699.99 1699.93 15
test_fmvs299.72 3699.85 1699.34 22699.91 3198.08 31399.48 97100.00 199.90 2999.99 799.91 2499.50 4699.98 2099.98 199.99 1699.96 10
pm-mvs199.79 2699.79 2799.78 5499.91 3199.83 2999.76 1999.87 4699.73 7499.89 5399.87 4799.63 2999.87 20399.54 6099.92 10599.63 127
TransMVSNet (Re)99.78 2799.77 3399.81 4099.91 3199.85 1999.75 2299.86 4999.70 8599.91 4499.89 3499.60 3499.87 20399.59 5199.74 21899.71 76
Baseline_NR-MVSNet99.49 8599.37 10699.82 3799.91 3199.84 2498.83 25799.86 4999.68 9099.65 15499.88 4297.67 24799.87 20399.03 13399.86 15399.76 66
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3199.90 799.96 199.92 3099.90 2999.97 1999.87 4799.81 1499.95 6399.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PVSNet_Blended_VisFu99.40 11199.38 10399.44 19599.90 3798.66 26998.94 24699.91 3397.97 31199.79 9799.73 12399.05 9899.97 3399.15 11999.99 1699.68 89
TDRefinement99.72 3699.70 3999.77 5799.90 3799.85 1999.86 599.92 3099.69 8899.78 10199.92 2199.37 5699.88 18998.93 14899.95 8399.60 152
APD_test199.36 12399.28 13099.61 14799.89 3999.89 1099.32 12899.74 11099.18 17699.69 13999.75 11698.41 18499.84 25597.85 23399.70 23499.10 306
EGC-MVSNET89.05 37485.52 37799.64 12899.89 3999.78 4999.56 8299.52 23724.19 40849.96 40999.83 6699.15 8199.92 11697.71 24699.85 15799.21 280
Anonymous2024052199.44 9999.42 9899.49 18199.89 3998.96 24299.62 6399.76 10099.85 5099.82 8199.88 4296.39 29799.97 3399.59 5199.98 4199.55 174
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 3999.91 499.89 499.71 12699.93 2599.95 3199.89 3499.71 2299.96 5499.51 6499.97 5699.84 36
XXY-MVS99.71 3999.67 4799.81 4099.89 3999.72 8199.59 7599.82 6799.39 14699.82 8199.84 6299.38 5499.91 13999.38 8099.93 10199.80 47
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3099.88 4499.64 11099.12 19899.91 3399.98 1499.95 3199.67 16699.67 2799.99 799.94 1699.99 1699.88 25
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4499.66 10199.11 20299.91 3399.98 1499.96 2399.64 17899.60 3499.99 799.95 1299.99 1699.88 25
test_fmvsmvis_n_192099.84 1599.86 1299.81 4099.88 4499.55 13899.17 17899.98 1199.99 299.96 2399.84 6299.96 399.99 799.96 999.99 1699.88 25
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4499.86 1899.72 3099.78 9299.90 2999.82 8199.83 6698.45 17999.87 20399.51 6499.97 5699.86 32
EU-MVSNet99.39 11599.62 5598.72 32099.88 4496.44 36399.56 8299.85 5499.90 2999.90 4999.85 5698.09 21699.83 27099.58 5499.95 8399.90 20
CHOSEN 1792x268899.39 11599.30 12399.65 12199.88 4499.25 20398.78 26999.88 4498.66 24899.96 2399.79 9397.45 25799.93 9499.34 8899.99 1699.78 56
Vis-MVSNetpermissive99.75 3299.74 3799.79 5199.88 4499.66 10199.69 4299.92 3099.67 9499.77 10699.75 11699.61 3299.98 2099.35 8799.98 4199.72 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tt080599.63 5999.57 7199.81 4099.87 5199.88 1299.58 7798.70 34899.72 7899.91 4499.60 21399.43 4899.81 29499.81 3699.53 28799.73 71
tfpnnormal99.43 10299.38 10399.60 15099.87 5199.75 6799.59 7599.78 9299.71 8099.90 4999.69 15198.85 12099.90 15797.25 28799.78 20399.15 295
SteuartSystems-ACMMP99.30 13799.14 14999.76 6499.87 5199.66 10199.18 17399.60 18998.55 25999.57 18599.67 16699.03 10199.94 7797.01 29799.80 19399.69 83
Skip Steuart: Steuart Systems R&D Blog.
SSC-MVS99.52 8199.42 9899.83 3399.86 5499.65 10799.52 8799.81 7699.87 4199.81 8899.79 9396.78 28399.99 799.83 3299.51 29199.86 32
lessismore_v099.64 12899.86 5499.38 17590.66 40999.89 5399.83 6694.56 32299.97 3399.56 5799.92 10599.57 169
ACMH+98.40 899.50 8399.43 9699.71 9999.86 5499.76 6199.32 12899.77 9599.53 12299.77 10699.76 11199.26 7099.78 30897.77 23899.88 13499.60 152
ACMH98.42 699.59 6999.54 7799.72 9499.86 5499.62 11799.56 8299.79 8698.77 23799.80 9299.85 5699.64 2899.85 24098.70 16899.89 12499.70 79
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5899.82 3599.03 22499.96 2399.99 299.97 1999.84 6299.58 3699.93 9499.92 2299.98 4199.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5899.78 4999.03 22499.96 2399.99 299.97 1999.84 6299.78 1799.92 11699.92 2299.99 1699.92 18
HyFIR lowres test98.91 22798.64 24099.73 8899.85 5899.47 14798.07 33799.83 6298.64 25099.89 5399.60 21392.57 342100.00 199.33 9199.97 5699.72 73
KD-MVS_self_test99.63 5999.59 6499.76 6499.84 6199.90 799.37 11899.79 8699.83 5699.88 6199.85 5698.42 18399.90 15799.60 5099.73 22399.49 210
FIs99.65 5899.58 6899.84 3099.84 6199.85 1999.66 5399.75 10599.86 4599.74 12299.79 9398.27 20199.85 24099.37 8399.93 10199.83 40
XVG-OURS-SEG-HR99.16 17998.99 20299.66 11699.84 6199.64 11098.25 32099.73 11498.39 27799.63 15999.43 27099.70 2499.90 15797.34 27598.64 36799.44 228
PMVScopyleft92.94 2198.82 23898.81 22998.85 30899.84 6197.99 31699.20 16899.47 25399.71 8099.42 23099.82 7398.09 21699.47 39493.88 39099.85 15799.07 321
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FOURS199.83 6599.89 1099.74 2499.71 12699.69 8899.63 159
MP-MVS-pluss99.14 18398.92 21499.80 4599.83 6599.83 2998.61 28099.63 16796.84 36299.44 22499.58 22198.81 12299.91 13997.70 24999.82 17999.67 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PM-MVS99.36 12399.29 12899.58 15699.83 6599.66 10198.95 24499.86 4998.85 22499.81 8899.73 12398.40 18899.92 11698.36 18599.83 17099.17 291
PEN-MVS99.66 5399.59 6499.89 1199.83 6599.87 1599.66 5399.73 11499.70 8599.84 7699.73 12398.56 16199.96 5499.29 10099.94 9499.83 40
HPM-MVS_fast99.43 10299.30 12399.80 4599.83 6599.81 4099.52 8799.70 13198.35 28599.51 21199.50 25199.31 6299.88 18998.18 20499.84 16299.69 83
RPSCF99.18 17299.02 18999.64 12899.83 6599.85 1999.44 10699.82 6798.33 29099.50 21399.78 10197.90 23099.65 37096.78 31199.83 17099.44 228
COLMAP_ROBcopyleft98.06 1299.45 9799.37 10699.70 10399.83 6599.70 9099.38 11499.78 9299.53 12299.67 14899.78 10199.19 7799.86 22297.32 27699.87 14599.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvsm_n_192099.84 1599.85 1699.83 3399.82 7299.70 9099.17 17899.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
TSAR-MVS + MP.99.34 13099.24 13899.63 13599.82 7299.37 17899.26 15099.35 28698.77 23799.57 18599.70 14599.27 6999.88 18997.71 24699.75 21199.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
new-patchmatchnet99.35 12599.57 7198.71 32299.82 7296.62 36198.55 29399.75 10599.50 12499.88 6199.87 4799.31 6299.88 18999.43 72100.00 199.62 138
VPNet99.46 9599.37 10699.71 9999.82 7299.59 12899.48 9799.70 13199.81 6199.69 13999.58 22197.66 25199.86 22299.17 11699.44 30199.67 95
XVG-OURS99.21 16399.06 17599.65 12199.82 7299.62 11797.87 35999.74 11098.36 28099.66 15299.68 16299.71 2299.90 15796.84 30999.88 13499.43 234
XVG-ACMP-BASELINE99.23 15099.10 16699.63 13599.82 7299.58 13298.83 25799.72 12398.36 28099.60 17799.71 13898.92 11299.91 13997.08 29599.84 16299.40 239
LPG-MVS_test99.22 15899.05 17999.74 7999.82 7299.63 11599.16 18499.73 11497.56 33199.64 15599.69 15199.37 5699.89 17596.66 31899.87 14599.69 83
LGP-MVS_train99.74 7999.82 7299.63 11599.73 11497.56 33199.64 15599.69 15199.37 5699.89 17596.66 31899.87 14599.69 83
WB-MVS99.44 9999.32 11699.80 4599.81 8099.61 12399.47 10099.81 7699.82 5899.71 13299.72 13096.60 28799.98 2099.75 3999.23 33199.82 46
MTAPA99.35 12599.20 14199.80 4599.81 8099.81 4099.33 12699.53 23299.27 16099.42 23099.63 18998.21 20899.95 6397.83 23799.79 19899.65 112
v1099.69 4299.69 4399.66 11699.81 8099.39 17399.66 5399.75 10599.60 11699.92 4199.87 4798.75 13499.86 22299.90 2599.99 1699.73 71
HPM-MVScopyleft99.25 14699.07 17399.78 5499.81 8099.75 6799.61 6899.67 14497.72 32699.35 24699.25 31299.23 7399.92 11697.21 29099.82 17999.67 95
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10499.81 8099.59 12899.29 14399.90 3899.71 8099.79 9799.73 12399.54 4199.84 25599.36 8499.96 7099.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS99.41 10999.47 8599.25 25199.81 8098.09 31098.85 25499.76 10099.62 10799.83 8099.64 17898.54 16499.97 3399.15 11999.99 1699.68 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SDMVSNet99.77 3099.77 3399.76 6499.80 8699.65 10799.63 6099.86 4999.97 1699.89 5399.89 3499.52 4499.99 799.42 7799.96 7099.65 112
sd_testset99.78 2799.78 3199.80 4599.80 8699.76 6199.80 1099.79 8699.97 1699.89 5399.89 3499.53 4399.99 799.36 8499.96 7099.65 112
v124099.56 7399.58 6899.51 17899.80 8699.00 23699.00 23299.65 15999.15 18899.90 4999.75 11699.09 8999.88 18999.90 2599.96 7099.67 95
v899.68 4599.69 4399.65 12199.80 8699.40 17199.66 5399.76 10099.64 10299.93 3799.85 5698.66 14799.84 25599.88 2999.99 1699.71 76
MDA-MVSNet-bldmvs99.06 19699.05 17999.07 28099.80 8697.83 32798.89 24999.72 12399.29 15699.63 15999.70 14596.47 29299.89 17598.17 20699.82 17999.50 205
PS-CasMVS99.66 5399.58 6899.89 1199.80 8699.85 1999.66 5399.73 11499.62 10799.84 7699.71 13898.62 15199.96 5499.30 9799.96 7099.86 32
DTE-MVSNet99.68 4599.61 5999.88 1799.80 8699.87 1599.67 4999.71 12699.72 7899.84 7699.78 10198.67 14599.97 3399.30 9799.95 8399.80 47
WR-MVS_H99.61 6799.53 8199.87 2199.80 8699.83 2999.67 4999.75 10599.58 11999.85 7399.69 15198.18 21299.94 7799.28 10299.95 8399.83 40
baseline99.63 5999.62 5599.66 11699.80 8699.62 11799.44 10699.80 8099.71 8099.72 12799.69 15199.15 8199.83 27099.32 9399.94 9499.53 187
IS-MVSNet99.03 20398.85 22399.55 16899.80 8699.25 20399.73 2799.15 32699.37 14899.61 17499.71 13894.73 32099.81 29497.70 24999.88 13499.58 164
EPP-MVSNet99.17 17799.00 19699.66 11699.80 8699.43 16299.70 3599.24 31299.48 12699.56 19299.77 10894.89 31699.93 9498.72 16799.89 12499.63 127
ACMM98.09 1199.46 9599.38 10399.72 9499.80 8699.69 9499.13 19499.65 15998.99 20399.64 15599.72 13099.39 5099.86 22298.23 19799.81 18899.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dcpmvs_299.61 6799.64 5399.53 17499.79 9898.82 25499.58 7799.97 1899.95 2099.96 2399.76 11198.44 18099.99 799.34 8899.96 7099.78 56
v114499.54 7899.53 8199.59 15299.79 9899.28 19699.10 20599.61 17799.20 17499.84 7699.73 12398.67 14599.84 25599.86 3199.98 4199.64 122
V4299.56 7399.54 7799.63 13599.79 9899.46 15199.39 11299.59 19599.24 16699.86 7199.70 14598.55 16299.82 27999.79 3799.95 8399.60 152
test20.0399.55 7699.54 7799.58 15699.79 9899.37 17899.02 22799.89 4099.60 11699.82 8199.62 19698.81 12299.89 17599.43 7299.86 15399.47 218
casdiffmvspermissive99.63 5999.61 5999.67 10999.79 9899.59 12899.13 19499.85 5499.79 6699.76 10899.72 13099.33 6199.82 27999.21 10799.94 9499.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_040299.22 15899.14 14999.45 19299.79 9899.43 16299.28 14599.68 14099.54 12099.40 24199.56 23399.07 9499.82 27996.01 34999.96 7099.11 304
ACMMPcopyleft99.25 14699.08 16999.74 7999.79 9899.68 9799.50 9299.65 15998.07 30599.52 20699.69 15198.57 15999.92 11697.18 29299.79 19899.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSP-MVS99.04 20298.79 23299.81 4099.78 10599.73 7699.35 12299.57 20698.54 26299.54 19998.99 34996.81 28299.93 9496.97 30099.53 28799.77 60
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
v14419299.55 7699.54 7799.58 15699.78 10599.20 21699.11 20299.62 17099.18 17699.89 5399.72 13098.66 14799.87 20399.88 2999.97 5699.66 104
AllTest99.21 16399.07 17399.63 13599.78 10599.64 11099.12 19899.83 6298.63 25199.63 15999.72 13098.68 14299.75 32296.38 33699.83 17099.51 200
TestCases99.63 13599.78 10599.64 11099.83 6298.63 25199.63 15999.72 13098.68 14299.75 32296.38 33699.83 17099.51 200
v2v48299.50 8399.47 8599.58 15699.78 10599.25 20399.14 18899.58 20499.25 16499.81 8899.62 19698.24 20399.84 25599.83 3299.97 5699.64 122
FMVSNet199.66 5399.63 5499.73 8899.78 10599.77 5499.68 4599.70 13199.67 9499.82 8199.83 6698.98 10699.90 15799.24 10499.97 5699.53 187
Vis-MVSNet (Re-imp)98.77 24298.58 24899.34 22699.78 10598.88 25199.61 6899.56 21199.11 19499.24 27199.56 23393.00 34099.78 30897.43 27099.89 12499.35 252
ACMP97.51 1499.05 19998.84 22599.67 10999.78 10599.55 13898.88 25099.66 14997.11 35799.47 21899.60 21399.07 9499.89 17596.18 34499.85 15799.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs-eth3d99.48 8799.47 8599.51 17899.77 11399.41 17098.81 26299.66 14999.42 14599.75 11499.66 17199.20 7699.76 31898.98 13899.99 1699.36 249
Patchmatch-RL test98.60 25798.36 26899.33 22999.77 11399.07 23398.27 31799.87 4698.91 21699.74 12299.72 13090.57 36799.79 30598.55 17699.85 15799.11 304
v119299.57 7099.57 7199.57 16299.77 11399.22 21199.04 22099.60 18999.18 17699.87 6999.72 13099.08 9299.85 24099.89 2899.98 4199.66 104
EG-PatchMatch MVS99.57 7099.56 7699.62 14499.77 11399.33 18899.26 15099.76 10099.32 15499.80 9299.78 10199.29 6499.87 20399.15 11999.91 11499.66 104
GeoE99.69 4299.66 4899.78 5499.76 11799.76 6199.60 7499.82 6799.46 13399.75 11499.56 23399.63 2999.95 6399.43 7299.88 13499.62 138
ZNCC-MVS99.22 15899.04 18599.77 5799.76 11799.73 7699.28 14599.56 21198.19 29999.14 28799.29 30498.84 12199.92 11697.53 26599.80 19399.64 122
tttt051797.62 32097.20 32998.90 30599.76 11797.40 34399.48 9794.36 40299.06 19999.70 13699.49 25584.55 39499.94 7798.73 16699.65 25499.36 249
pmmvs599.19 16899.11 15899.42 20199.76 11798.88 25198.55 29399.73 11498.82 22899.72 12799.62 19696.56 28899.82 27999.32 9399.95 8399.56 171
nrg03099.70 4099.66 4899.82 3799.76 11799.84 2499.61 6899.70 13199.93 2599.78 10199.68 16299.10 8799.78 30899.45 7099.96 7099.83 40
v14899.40 11199.41 10099.39 21399.76 11798.94 24399.09 21099.59 19599.17 18199.81 8899.61 20598.41 18499.69 34399.32 9399.94 9499.53 187
region2R99.23 15099.05 17999.77 5799.76 11799.70 9099.31 13399.59 19598.41 27499.32 25499.36 28898.73 13899.93 9497.29 27899.74 21899.67 95
MP-MVScopyleft99.06 19698.83 22799.76 6499.76 11799.71 8399.32 12899.50 24598.35 28598.97 30299.48 25898.37 19099.92 11695.95 35599.75 21199.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PMMVS299.48 8799.45 9199.57 16299.76 11798.99 23798.09 33499.90 3898.95 20999.78 10199.58 22199.57 3899.93 9499.48 6799.95 8399.79 54
CP-MVSNet99.54 7899.43 9699.87 2199.76 11799.82 3599.57 8099.61 17799.54 12099.80 9299.64 17897.79 23999.95 6399.21 10799.94 9499.84 36
mPP-MVS99.19 16899.00 19699.76 6499.76 11799.68 9799.38 11499.54 22398.34 28999.01 30099.50 25198.53 16899.93 9497.18 29299.78 20399.66 104
IterMVS-SCA-FT99.00 21399.16 14598.51 32999.75 12895.90 37398.07 33799.84 6099.84 5399.89 5399.73 12396.01 30699.99 799.33 91100.00 199.63 127
ACMMP_NAP99.28 13999.11 15899.79 5199.75 12899.81 4098.95 24499.53 23298.27 29499.53 20499.73 12398.75 13499.87 20397.70 24999.83 17099.68 89
v192192099.56 7399.57 7199.55 16899.75 12899.11 22599.05 21799.61 17799.15 18899.88 6199.71 13899.08 9299.87 20399.90 2599.97 5699.66 104
testgi99.29 13899.26 13499.37 21999.75 12898.81 25598.84 25599.89 4098.38 27899.75 11499.04 34199.36 5999.86 22299.08 13099.25 32799.45 223
PGM-MVS99.20 16599.01 19299.77 5799.75 12899.71 8399.16 18499.72 12397.99 30999.42 23099.60 21398.81 12299.93 9496.91 30399.74 21899.66 104
jason99.16 17999.11 15899.32 23399.75 12898.44 28598.26 31999.39 27798.70 24599.74 12299.30 30198.54 16499.97 3398.48 17999.82 17999.55 174
jason: jason.
Anonymous2023120699.35 12599.31 11899.47 18799.74 13499.06 23599.28 14599.74 11099.23 16899.72 12799.53 24497.63 25399.88 18999.11 12799.84 16299.48 214
ACMMPR99.23 15099.06 17599.76 6499.74 13499.69 9499.31 13399.59 19598.36 28099.35 24699.38 28298.61 15399.93 9497.43 27099.75 21199.67 95
IterMVS98.97 21799.16 14598.42 33399.74 13495.64 37698.06 33999.83 6299.83 5699.85 7399.74 11996.10 30599.99 799.27 103100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GST-MVS99.16 17998.96 20899.75 7499.73 13799.73 7699.20 16899.55 21798.22 29699.32 25499.35 29398.65 14999.91 13996.86 30699.74 21899.62 138
HFP-MVS99.25 14699.08 16999.76 6499.73 13799.70 9099.31 13399.59 19598.36 28099.36 24599.37 28498.80 12699.91 13997.43 27099.75 21199.68 89
114514_t98.49 27398.11 29199.64 12899.73 13799.58 13299.24 15799.76 10089.94 40099.42 23099.56 23397.76 24299.86 22297.74 24399.82 17999.47 218
UA-Net99.78 2799.76 3699.86 2599.72 14099.71 8399.91 399.95 2899.96 1899.71 13299.91 2499.15 8199.97 3399.50 66100.00 199.90 20
N_pmnet98.73 24798.53 25499.35 22599.72 14098.67 26698.34 31294.65 40198.35 28599.79 9799.68 16298.03 22199.93 9498.28 19399.92 10599.44 228
DeepC-MVS98.90 499.62 6599.61 5999.67 10999.72 14099.44 15899.24 15799.71 12699.27 16099.93 3799.90 2999.70 2499.93 9498.99 13699.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_vis1_rt99.45 9799.46 8999.41 20899.71 14398.63 27498.99 23799.96 2399.03 20199.95 3199.12 33198.75 13499.84 25599.82 3599.82 17999.77 60
XVS99.27 14399.11 15899.75 7499.71 14399.71 8399.37 11899.61 17799.29 15698.76 32999.47 26298.47 17599.88 18997.62 25799.73 22399.67 95
X-MVStestdata96.09 35794.87 36999.75 7499.71 14399.71 8399.37 11899.61 17799.29 15698.76 32961.30 41598.47 17599.88 18997.62 25799.73 22399.67 95
VDDNet98.97 21798.82 22899.42 20199.71 14398.81 25599.62 6398.68 34999.81 6199.38 24399.80 8394.25 32499.85 24098.79 15899.32 31899.59 159
DSMNet-mixed99.48 8799.65 5098.95 29299.71 14397.27 34699.50 9299.82 6799.59 11899.41 23699.85 5699.62 31100.00 199.53 6299.89 12499.59 159
EC-MVSNet99.69 4299.69 4399.68 10699.71 14399.91 499.76 1999.96 2399.86 4599.51 21199.39 28099.57 3899.93 9499.64 4899.86 15399.20 284
CSCG99.37 12099.29 12899.60 15099.71 14399.46 15199.43 10899.85 5498.79 23399.41 23699.60 21398.92 11299.92 11698.02 21399.92 10599.43 234
LF4IMVS99.01 21198.92 21499.27 24599.71 14399.28 19698.59 28599.77 9598.32 29199.39 24299.41 27298.62 15199.84 25596.62 32399.84 16298.69 359
patch_mono-299.51 8299.46 8999.64 12899.70 15199.11 22599.04 22099.87 4699.71 8099.47 21899.79 9398.24 20399.98 2099.38 8099.96 7099.83 40
test_0728_SECOND99.83 3399.70 15199.79 4699.14 18899.61 17799.92 11697.88 22799.72 22999.77 60
OPM-MVS99.26 14599.13 15199.63 13599.70 15199.61 12398.58 28799.48 25098.50 26699.52 20699.63 18999.14 8499.76 31897.89 22699.77 20799.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
new_pmnet98.88 23398.89 21998.84 31099.70 15197.62 33598.15 32699.50 24597.98 31099.62 16899.54 24298.15 21399.94 7797.55 26299.84 16298.95 337
SED-MVS99.40 11199.28 13099.77 5799.69 15599.82 3599.20 16899.54 22399.13 19099.82 8199.63 18998.91 11499.92 11697.85 23399.70 23499.58 164
IU-MVS99.69 15599.77 5499.22 31697.50 33799.69 13997.75 24299.70 23499.77 60
test_241102_ONE99.69 15599.82 3599.54 22399.12 19399.82 8199.49 25598.91 11499.52 391
D2MVS99.22 15899.19 14299.29 24099.69 15598.74 26298.81 26299.41 26798.55 25999.68 14299.69 15198.13 21499.87 20398.82 15499.98 4199.24 273
DVP-MVScopyleft99.32 13599.17 14499.77 5799.69 15599.80 4499.14 18899.31 29599.16 18499.62 16899.61 20598.35 19299.91 13997.88 22799.72 22999.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 15599.80 4499.24 15799.57 20699.16 18499.73 12699.65 17698.35 192
wuyk23d97.58 32299.13 15192.93 38999.69 15599.49 14599.52 8799.77 9597.97 31199.96 2399.79 9399.84 1299.94 7795.85 35899.82 17979.36 405
DeepMVS_CXcopyleft97.98 34999.69 15596.95 35499.26 30675.51 40595.74 40398.28 38696.47 29299.62 37491.23 39697.89 39197.38 397
thisisatest053097.45 32596.95 33598.94 29399.68 16397.73 33299.09 21094.19 40498.61 25599.56 19299.30 30184.30 39599.93 9498.27 19499.54 28599.16 293
VPA-MVSNet99.66 5399.62 5599.79 5199.68 16399.75 6799.62 6399.69 13799.85 5099.80 9299.81 7998.81 12299.91 13999.47 6899.88 13499.70 79
UnsupCasMVSNet_eth98.83 23798.57 24999.59 15299.68 16399.45 15698.99 23799.67 14499.48 12699.55 19799.36 28894.92 31599.86 22298.95 14696.57 40099.45 223
Test_1112_low_res98.95 22498.73 23499.63 13599.68 16399.15 22298.09 33499.80 8097.14 35599.46 22299.40 27696.11 30499.89 17599.01 13599.84 16299.84 36
MVEpermissive92.54 2296.66 34496.11 34898.31 34199.68 16397.55 33797.94 35295.60 39899.37 14890.68 40898.70 37396.56 28898.61 40686.94 40699.55 28098.77 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
diffmvspermissive99.34 13099.32 11699.39 21399.67 16898.77 26098.57 29199.81 7699.61 11099.48 21699.41 27298.47 17599.86 22298.97 14099.90 11599.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
our_test_398.85 23699.09 16798.13 34699.66 16994.90 38697.72 36499.58 20499.07 19799.64 15599.62 19698.19 21099.93 9498.41 18299.95 8399.55 174
ppachtmachnet_test98.89 23299.12 15598.20 34499.66 16995.24 38297.63 36899.68 14099.08 19599.78 10199.62 19698.65 14999.88 18998.02 21399.96 7099.48 214
CP-MVS99.23 15099.05 17999.75 7499.66 16999.66 10199.38 11499.62 17098.38 27899.06 29899.27 30798.79 12799.94 7797.51 26699.82 17999.66 104
1112_ss99.05 19998.84 22599.67 10999.66 16999.29 19498.52 29999.82 6797.65 32999.43 22899.16 32596.42 29499.91 13999.07 13199.84 16299.80 47
YYNet198.95 22498.99 20298.84 31099.64 17397.14 35198.22 32299.32 29198.92 21599.59 18099.66 17197.40 25999.83 27098.27 19499.90 11599.55 174
MDA-MVSNet_test_wron98.95 22498.99 20298.85 30899.64 17397.16 34998.23 32199.33 28998.93 21399.56 19299.66 17197.39 26199.83 27098.29 19099.88 13499.55 174
test_one_060199.63 17599.76 6199.55 21799.23 16899.31 25899.61 20598.59 156
thres100view90096.39 34996.03 35097.47 36599.63 17595.93 37299.18 17397.57 38498.75 24198.70 33597.31 40387.04 38499.67 36087.62 40298.51 37296.81 400
thres600view796.60 34596.16 34797.93 35299.63 17596.09 37199.18 17397.57 38498.77 23798.72 33297.32 40287.04 38499.72 33088.57 39998.62 36897.98 391
ITE_SJBPF99.38 21699.63 17599.44 15899.73 11498.56 25899.33 25199.53 24498.88 11899.68 35596.01 34999.65 25499.02 331
test_part299.62 17999.67 9999.55 197
Anonymous2023121199.62 6599.57 7199.76 6499.61 18099.60 12699.81 999.73 11499.82 5899.90 4999.90 2997.97 22799.86 22299.42 7799.96 7099.80 47
CPTT-MVS98.74 24598.44 26099.64 12899.61 18099.38 17599.18 17399.55 21796.49 36699.27 26699.37 28497.11 27499.92 11695.74 36299.67 24999.62 138
test111197.74 31498.16 28896.49 38299.60 18289.86 41299.71 3491.21 40899.89 3599.88 6199.87 4793.73 33199.90 15799.56 5799.99 1699.70 79
h-mvs3398.61 25598.34 27199.44 19599.60 18298.67 26699.27 14899.44 26199.68 9099.32 25499.49 25592.50 345100.00 199.24 10496.51 40199.65 112
MSDG99.08 19498.98 20599.37 21999.60 18299.13 22397.54 37299.74 11098.84 22799.53 20499.55 24099.10 8799.79 30597.07 29699.86 15399.18 289
FPMVS96.32 35195.50 35998.79 31699.60 18298.17 30498.46 30798.80 34497.16 35496.28 39899.63 18982.19 39699.09 40188.45 40098.89 35399.10 306
test250694.73 37294.59 37395.15 38899.59 18685.90 41499.75 2274.01 41499.89 3599.71 13299.86 5479.00 40599.90 15799.52 6399.99 1699.65 112
ECVR-MVScopyleft97.73 31598.04 29496.78 37699.59 18690.81 40899.72 3090.43 41099.89 3599.86 7199.86 5493.60 33399.89 17599.46 6999.99 1699.65 112
xiu_mvs_v1_base_debu99.23 15099.34 11198.91 29999.59 18698.23 29798.47 30399.66 14999.61 11099.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 369
xiu_mvs_v1_base99.23 15099.34 11198.91 29999.59 18698.23 29798.47 30399.66 14999.61 11099.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 369
xiu_mvs_v1_base_debi99.23 15099.34 11198.91 29999.59 18698.23 29798.47 30399.66 14999.61 11099.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 369
SF-MVS99.10 19398.93 21099.62 14499.58 19199.51 14399.13 19499.65 15997.97 31199.42 23099.61 20598.86 11999.87 20396.45 33399.68 24399.49 210
tfpn200view996.30 35295.89 35197.53 36299.58 19196.11 36999.00 23297.54 38798.43 27198.52 34896.98 40586.85 38699.67 36087.62 40298.51 37296.81 400
EI-MVSNet99.38 11799.44 9499.21 25599.58 19198.09 31099.26 15099.46 25699.62 10799.75 11499.67 16698.54 16499.85 24099.15 11999.92 10599.68 89
CVMVSNet98.61 25598.88 22097.80 35799.58 19193.60 39499.26 15099.64 16599.66 9899.72 12799.67 16693.26 33599.93 9499.30 9799.81 18899.87 30
thres40096.40 34895.89 35197.92 35399.58 19196.11 36999.00 23297.54 38798.43 27198.52 34896.98 40586.85 38699.67 36087.62 40298.51 37297.98 391
MCST-MVS99.02 20598.81 22999.65 12199.58 19199.49 14598.58 28799.07 33198.40 27699.04 29999.25 31298.51 17399.80 30297.31 27799.51 29199.65 112
HQP_MVS98.90 22998.68 23999.55 16899.58 19199.24 20798.80 26599.54 22398.94 21099.14 28799.25 31297.24 26699.82 27995.84 35999.78 20399.60 152
plane_prior799.58 19199.38 175
TranMVSNet+NR-MVSNet99.54 7899.47 8599.76 6499.58 19199.64 11099.30 13699.63 16799.61 11099.71 13299.56 23398.76 13299.96 5499.14 12599.92 10599.68 89
MVS_111021_LR99.13 18599.03 18799.42 20199.58 19199.32 19097.91 35799.73 11498.68 24699.31 25899.48 25899.09 8999.66 36497.70 24999.77 20799.29 268
DPE-MVScopyleft99.14 18398.92 21499.82 3799.57 20199.77 5498.74 27299.60 18998.55 25999.76 10899.69 15198.23 20799.92 11696.39 33599.75 21199.76 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS-test99.68 4599.70 3999.64 12899.57 20199.83 2999.78 1299.97 1899.92 2799.50 21399.38 28299.57 3899.95 6399.69 4399.90 11599.15 295
EI-MVSNet-UG-set99.48 8799.50 8399.42 20199.57 20198.65 27299.24 15799.46 25699.68 9099.80 9299.66 17198.99 10499.89 17599.19 11199.90 11599.72 73
EI-MVSNet-Vis-set99.47 9499.49 8499.42 20199.57 20198.66 26999.24 15799.46 25699.67 9499.79 9799.65 17698.97 10899.89 17599.15 11999.89 12499.71 76
pmmvs499.13 18599.06 17599.36 22399.57 20199.10 23098.01 34399.25 30998.78 23599.58 18299.44 26998.24 20399.76 31898.74 16599.93 10199.22 278
MVSFormer99.41 10999.44 9499.31 23699.57 20198.40 28899.77 1599.80 8099.73 7499.63 15999.30 30198.02 22299.98 2099.43 7299.69 23899.55 174
lupinMVS98.96 22198.87 22199.24 25399.57 20198.40 28898.12 33099.18 32398.28 29399.63 15999.13 32798.02 22299.97 3398.22 19899.69 23899.35 252
ab-mvs99.33 13399.28 13099.47 18799.57 20199.39 17399.78 1299.43 26498.87 22199.57 18599.82 7398.06 21999.87 20398.69 17099.73 22399.15 295
DP-MVS99.48 8799.39 10199.74 7999.57 20199.62 11799.29 14399.61 17799.87 4199.74 12299.76 11198.69 14199.87 20398.20 20099.80 19399.75 69
F-COLMAP98.74 24598.45 25999.62 14499.57 20199.47 14798.84 25599.65 15996.31 37098.93 30699.19 32497.68 24699.87 20396.52 32699.37 31199.53 187
CLD-MVS98.76 24398.57 24999.33 22999.57 20198.97 24097.53 37499.55 21796.41 36799.27 26699.13 32799.07 9499.78 30896.73 31499.89 12499.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UnsupCasMVSNet_bld98.55 26498.27 27899.40 21099.56 21299.37 17897.97 35099.68 14097.49 33899.08 29499.35 29395.41 31499.82 27997.70 24998.19 38299.01 332
dmvs_re98.69 25198.48 25699.31 23699.55 21399.42 16599.54 8598.38 36799.32 15498.72 33298.71 37296.76 28499.21 39996.01 34999.35 31499.31 263
APDe-MVScopyleft99.48 8799.36 10999.85 2799.55 21399.81 4099.50 9299.69 13798.99 20399.75 11499.71 13898.79 12799.93 9498.46 18099.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvs199.48 8799.65 5098.97 28999.54 21597.16 34999.11 20299.98 1199.78 6899.96 2399.81 7998.72 13999.97 3399.95 1299.97 5699.79 54
SR-MVS-dyc-post99.27 14399.11 15899.73 8899.54 21599.74 7399.26 15099.62 17099.16 18499.52 20699.64 17898.41 18499.91 13997.27 28199.61 26699.54 182
RE-MVS-def99.13 15199.54 21599.74 7399.26 15099.62 17099.16 18499.52 20699.64 17898.57 15997.27 28199.61 26699.54 182
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21597.99 31698.58 28799.82 6797.62 33099.34 24999.71 13898.52 17199.77 31697.98 21899.97 5699.52 198
PVSNet_Blended98.70 25098.59 24599.02 28599.54 21597.99 31697.58 37199.82 6795.70 37899.34 24998.98 35298.52 17199.77 31697.98 21899.83 17099.30 265
USDC98.96 22198.93 21099.05 28399.54 21597.99 31697.07 39299.80 8098.21 29799.75 11499.77 10898.43 18199.64 37297.90 22599.88 13499.51 200
save fliter99.53 22199.25 20398.29 31699.38 28199.07 197
CS-MVS99.67 5199.70 3999.58 15699.53 22199.84 2499.79 1199.96 2399.90 2999.61 17499.41 27299.51 4599.95 6399.66 4599.89 12498.96 335
Anonymous2024052999.42 10599.34 11199.65 12199.53 22199.60 12699.63 6099.39 27799.47 13099.76 10899.78 10198.13 21499.86 22298.70 16899.68 24399.49 210
APD-MVS_3200maxsize99.31 13699.16 14599.74 7999.53 22199.75 6799.27 14899.61 17799.19 17599.57 18599.64 17898.76 13299.90 15797.29 27899.62 25999.56 171
MIMVSNet98.43 27998.20 28399.11 27299.53 22198.38 29299.58 7798.61 35498.96 20799.33 25199.76 11190.92 36099.81 29497.38 27399.76 20999.15 295
HPM-MVS++copyleft98.96 22198.70 23899.74 7999.52 22699.71 8398.86 25299.19 32298.47 27098.59 34399.06 33898.08 21899.91 13996.94 30199.60 26999.60 152
GA-MVS97.99 30897.68 31898.93 29699.52 22698.04 31497.19 38899.05 33498.32 29198.81 32298.97 35489.89 37499.41 39798.33 18899.05 33999.34 255
SR-MVS99.19 16899.00 19699.74 7999.51 22899.72 8199.18 17399.60 18998.85 22499.47 21899.58 22198.38 18999.92 11696.92 30299.54 28599.57 169
test22299.51 22899.08 23297.83 36199.29 29995.21 38498.68 33699.31 29997.28 26599.38 30999.43 234
testdata99.42 20199.51 22898.93 24699.30 29896.20 37198.87 31699.40 27698.33 19699.89 17596.29 33999.28 32399.44 228
plane_prior199.51 228
UniMVSNet (Re)99.37 12099.26 13499.68 10699.51 22899.58 13298.98 24099.60 18999.43 14199.70 13699.36 28897.70 24399.88 18999.20 11099.87 14599.59 159
DELS-MVS99.34 13099.30 12399.48 18599.51 22899.36 18298.12 33099.53 23299.36 15099.41 23699.61 20599.22 7499.87 20399.21 10799.68 24399.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
新几何199.52 17699.50 23499.22 21199.26 30695.66 37998.60 34299.28 30597.67 24799.89 17595.95 35599.32 31899.45 223
SD-MVS99.01 21199.30 12398.15 34599.50 23499.40 17198.94 24699.61 17799.22 17399.75 11499.82 7399.54 4195.51 40997.48 26799.87 14599.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS98.56 26398.20 28399.61 14799.50 23499.46 15198.32 31499.41 26795.22 38399.21 27799.10 33598.34 19499.82 27995.09 37599.66 25299.56 171
APD-MVScopyleft98.87 23498.59 24599.71 9999.50 23499.62 11799.01 22999.57 20696.80 36499.54 19999.63 18998.29 19999.91 13995.24 37199.71 23299.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR99.12 18799.02 18999.40 21099.50 23499.11 22597.92 35599.71 12698.76 24099.08 29499.47 26299.17 7999.54 38697.85 23399.76 20999.54 182
旧先验199.49 23999.29 19499.26 30699.39 28097.67 24799.36 31299.46 222
GBi-Net99.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13699.62 16899.83 6697.21 26899.90 15798.96 14299.90 11599.53 187
test199.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13699.62 16899.83 6697.21 26899.90 15798.96 14299.90 11599.53 187
FMVSNet299.35 12599.28 13099.55 16899.49 23999.35 18599.45 10499.57 20699.44 13699.70 13699.74 11997.21 26899.87 20399.03 13399.94 9499.44 228
DP-MVS Recon98.50 27198.23 27999.31 23699.49 23999.46 15198.56 29299.63 16794.86 38998.85 31899.37 28497.81 23799.59 38096.08 34699.44 30198.88 346
FA-MVS(test-final)98.52 26898.32 27499.10 27499.48 24498.67 26699.77 1598.60 35697.35 34599.63 15999.80 8393.07 33899.84 25597.92 22399.30 32098.78 355
MVP-Stereo99.16 17999.08 16999.43 19999.48 24499.07 23399.08 21399.55 21798.63 25199.31 25899.68 16298.19 21099.78 30898.18 20499.58 27499.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres20096.09 35795.68 35797.33 37099.48 24496.22 36898.53 29897.57 38498.06 30698.37 35596.73 40886.84 38899.61 37886.99 40598.57 36996.16 403
sss98.90 22998.77 23399.27 24599.48 24498.44 28598.72 27499.32 29197.94 31599.37 24499.35 29396.31 29999.91 13998.85 15099.63 25899.47 218
PAPM_NR98.36 28598.04 29499.33 22999.48 24498.93 24698.79 26899.28 30297.54 33498.56 34798.57 37797.12 27399.69 34394.09 38698.90 35299.38 243
TAMVS99.49 8599.45 9199.63 13599.48 24499.42 16599.45 10499.57 20699.66 9899.78 10199.83 6697.85 23599.86 22299.44 7199.96 7099.61 148
原ACMM199.37 21999.47 25098.87 25399.27 30396.74 36598.26 35799.32 29797.93 22999.82 27995.96 35499.38 30999.43 234
plane_prior699.47 25099.26 20097.24 266
UniMVSNet_NR-MVSNet99.37 12099.25 13699.72 9499.47 25099.56 13598.97 24199.61 17799.43 14199.67 14899.28 30597.85 23599.95 6399.17 11699.81 18899.65 112
TAPA-MVS97.92 1398.03 30597.55 32199.46 18999.47 25099.44 15898.50 30199.62 17086.79 40199.07 29799.26 31098.26 20299.62 37497.28 28099.73 22399.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_testset97.27 33096.83 34098.59 32699.46 25497.55 33799.25 15696.84 39298.78 23597.24 38797.67 39697.11 27498.97 40386.59 40798.54 37199.27 269
SMA-MVScopyleft99.19 16899.00 19699.73 8899.46 25499.73 7699.13 19499.52 23797.40 34299.57 18599.64 17898.93 11199.83 27097.61 25999.79 19899.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PVSNet97.47 1598.42 28098.44 26098.35 33699.46 25496.26 36796.70 39799.34 28897.68 32899.00 30199.13 32797.40 25999.72 33097.59 26199.68 24399.08 316
TinyColmap98.97 21798.93 21099.07 28099.46 25498.19 30197.75 36399.75 10598.79 23399.54 19999.70 14598.97 10899.62 37496.63 32299.83 17099.41 238
9.1498.64 24099.45 25898.81 26299.60 18997.52 33699.28 26599.56 23398.53 16899.83 27095.36 37099.64 256
FE-MVS97.85 31097.42 32399.15 26599.44 25998.75 26199.77 1598.20 37395.85 37599.33 25199.80 8388.86 37799.88 18996.40 33499.12 33498.81 352
MVS_030499.17 17799.03 18799.59 15299.44 25998.90 24999.04 22095.32 39999.99 299.68 14299.57 22998.30 19899.97 3399.94 1699.98 4199.88 25
PatchMatch-RL98.68 25298.47 25799.30 23999.44 25999.28 19698.14 32899.54 22397.12 35699.11 29199.25 31297.80 23899.70 33796.51 32799.30 32098.93 339
PCF-MVS96.03 1896.73 34295.86 35399.33 22999.44 25999.16 22096.87 39599.44 26186.58 40298.95 30499.40 27694.38 32399.88 18987.93 40199.80 19398.95 337
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ZD-MVS99.43 26399.61 12399.43 26496.38 36899.11 29199.07 33797.86 23399.92 11694.04 38799.49 296
VDD-MVS99.20 16599.11 15899.44 19599.43 26398.98 23899.50 9298.32 37099.80 6499.56 19299.69 15196.99 27899.85 24098.99 13699.73 22399.50 205
DU-MVS99.33 13399.21 14099.71 9999.43 26399.56 13598.83 25799.53 23299.38 14799.67 14899.36 28897.67 24799.95 6399.17 11699.81 18899.63 127
NR-MVSNet99.40 11199.31 11899.68 10699.43 26399.55 13899.73 2799.50 24599.46 13399.88 6199.36 28897.54 25499.87 20398.97 14099.87 14599.63 127
WTY-MVS98.59 26098.37 26799.26 24899.43 26398.40 28898.74 27299.13 32998.10 30299.21 27799.24 31794.82 31799.90 15797.86 23198.77 35799.49 210
thisisatest051596.98 33696.42 34398.66 32399.42 26897.47 33997.27 38594.30 40397.24 34999.15 28598.86 36585.01 39299.87 20397.10 29499.39 30898.63 360
pmmvs398.08 30397.80 31298.91 29999.41 26997.69 33497.87 35999.66 14995.87 37499.50 21399.51 24890.35 36999.97 3398.55 17699.47 29899.08 316
NP-MVS99.40 27099.13 22398.83 366
QAPM98.40 28397.99 29799.65 12199.39 27199.47 14799.67 4999.52 23791.70 39798.78 32899.80 8398.55 16299.95 6394.71 37999.75 21199.53 187
OMC-MVS98.90 22998.72 23599.44 19599.39 27199.42 16598.58 28799.64 16597.31 34799.44 22499.62 19698.59 15699.69 34396.17 34599.79 19899.22 278
3Dnovator99.15 299.43 10299.36 10999.65 12199.39 27199.42 16599.70 3599.56 21199.23 16899.35 24699.80 8399.17 7999.95 6398.21 19999.84 16299.59 159
Fast-Effi-MVS+99.02 20598.87 22199.46 18999.38 27499.50 14499.04 22099.79 8697.17 35398.62 34098.74 37199.34 6099.95 6398.32 18999.41 30698.92 341
BH-untuned98.22 29798.09 29298.58 32899.38 27497.24 34798.55 29398.98 33897.81 32499.20 28298.76 37097.01 27799.65 37094.83 37698.33 37598.86 348
mvsany_test199.44 9999.45 9199.40 21099.37 27698.64 27397.90 35899.59 19599.27 16099.92 4199.82 7399.74 2099.93 9499.55 5999.87 14599.63 127
xiu_mvs_v2_base99.02 20599.11 15898.77 31799.37 27698.09 31098.13 32999.51 24199.47 13099.42 23098.54 38099.38 5499.97 3398.83 15299.33 31698.24 383
PS-MVSNAJ99.00 21399.08 16998.76 31899.37 27698.10 30998.00 34599.51 24199.47 13099.41 23698.50 38299.28 6699.97 3398.83 15299.34 31598.20 387
EIA-MVS99.12 18799.01 19299.45 19299.36 27999.62 11799.34 12399.79 8698.41 27498.84 31998.89 36398.75 13499.84 25598.15 20899.51 29198.89 345
DPM-MVS98.28 29197.94 30599.32 23399.36 27999.11 22597.31 38498.78 34596.88 36098.84 31999.11 33497.77 24099.61 37894.03 38899.36 31299.23 276
MM99.18 17299.05 17999.55 16899.35 28198.81 25599.05 21797.79 38199.99 299.48 21699.59 21896.29 30199.95 6399.94 1699.98 4199.88 25
ambc99.20 25799.35 28198.53 27999.17 17899.46 25699.67 14899.80 8398.46 17899.70 33797.92 22399.70 23499.38 243
TEST999.35 28199.35 18598.11 33299.41 26794.83 39097.92 37298.99 34998.02 22299.85 240
train_agg98.35 28897.95 30199.57 16299.35 28199.35 18598.11 33299.41 26794.90 38797.92 37298.99 34998.02 22299.85 24095.38 36999.44 30199.50 205
agg_prior99.35 28199.36 18299.39 27797.76 38299.85 240
test_prior99.46 18999.35 28199.22 21199.39 27799.69 34399.48 214
MVS_Test99.28 13999.31 11899.19 25899.35 28198.79 25899.36 12199.49 24999.17 18199.21 27799.67 16698.78 12999.66 36499.09 12999.66 25299.10 306
CDS-MVSNet99.22 15899.13 15199.50 18099.35 28199.11 22598.96 24399.54 22399.46 13399.61 17499.70 14596.31 29999.83 27099.34 8899.88 13499.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
3Dnovator+98.92 399.35 12599.24 13899.67 10999.35 28199.47 14799.62 6399.50 24599.44 13699.12 29099.78 10198.77 13199.94 7797.87 23099.72 22999.62 138
ETV-MVS99.18 17299.18 14399.16 26399.34 29099.28 19699.12 19899.79 8699.48 12698.93 30698.55 37999.40 4999.93 9498.51 17899.52 29098.28 381
Anonymous20240521198.75 24498.46 25899.63 13599.34 29099.66 10199.47 10097.65 38299.28 15999.56 19299.50 25193.15 33699.84 25598.62 17399.58 27499.40 239
CHOSEN 280x42098.41 28198.41 26398.40 33499.34 29095.89 37496.94 39499.44 26198.80 23299.25 26899.52 24693.51 33499.98 2098.94 14799.98 4199.32 259
test_899.34 29099.31 19198.08 33699.40 27494.90 38797.87 37698.97 35498.02 22299.84 255
TSAR-MVS + GP.99.12 18799.04 18599.38 21699.34 29099.16 22098.15 32699.29 29998.18 30099.63 15999.62 19699.18 7899.68 35598.20 20099.74 21899.30 265
LCM-MVSNet-Re99.28 13999.15 14899.67 10999.33 29599.76 6199.34 12399.97 1898.93 21399.91 4499.79 9398.68 14299.93 9496.80 31099.56 27699.30 265
PLCcopyleft97.35 1698.36 28597.99 29799.48 18599.32 29699.24 20798.50 30199.51 24195.19 38598.58 34498.96 35696.95 27999.83 27095.63 36399.25 32799.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+99.06 19698.97 20699.34 22699.31 29798.98 23898.31 31599.91 3398.81 23098.79 32698.94 35899.14 8499.84 25598.79 15898.74 36199.20 284
HQP-NCC99.31 29797.98 34797.45 33998.15 362
ACMP_Plane99.31 29797.98 34797.45 33998.15 362
HQP-MVS98.36 28598.02 29699.39 21399.31 29798.94 24397.98 34799.37 28297.45 33998.15 36298.83 36696.67 28599.70 33794.73 37799.67 24999.53 187
baseline197.73 31597.33 32598.96 29099.30 30197.73 33299.40 11098.42 36499.33 15399.46 22299.21 32191.18 35699.82 27998.35 18691.26 40699.32 259
WR-MVS99.11 19098.93 21099.66 11699.30 30199.42 16598.42 30899.37 28299.04 20099.57 18599.20 32396.89 28099.86 22298.66 17299.87 14599.70 79
hse-mvs298.52 26898.30 27699.16 26399.29 30398.60 27698.77 27099.02 33599.68 9099.32 25499.04 34192.50 34599.85 24099.24 10497.87 39299.03 326
test1299.54 17399.29 30399.33 18899.16 32598.43 35397.54 25499.82 27999.47 29899.48 214
OpenMVS_ROBcopyleft97.31 1797.36 32996.84 33998.89 30699.29 30399.45 15698.87 25199.48 25086.54 40399.44 22499.74 11997.34 26399.86 22291.61 39499.28 32397.37 398
MVS-HIRNet97.86 30998.22 28196.76 37799.28 30691.53 40498.38 31092.60 40799.13 19099.31 25899.96 1297.18 27299.68 35598.34 18799.83 17099.07 321
DeepC-MVS_fast98.47 599.23 15099.12 15599.56 16599.28 30699.22 21198.99 23799.40 27499.08 19599.58 18299.64 17898.90 11799.83 27097.44 26999.75 21199.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS97.82 31197.38 32499.14 26999.27 30898.53 27998.72 27499.02 33598.10 30297.18 38999.03 34589.26 37699.85 24097.94 22297.91 39099.03 326
Patchmatch-test98.10 30297.98 29998.48 33199.27 30896.48 36299.40 11099.07 33198.81 23099.23 27299.57 22990.11 37199.87 20396.69 31599.64 25699.09 310
ET-MVSNet_ETH3D96.78 34096.07 34998.91 29999.26 31097.92 32497.70 36696.05 39697.96 31492.37 40798.43 38387.06 38399.90 15798.27 19497.56 39598.91 342
Fast-Effi-MVS+-dtu99.20 16599.12 15599.43 19999.25 31199.69 9499.05 21799.82 6799.50 12498.97 30299.05 33998.98 10699.98 2098.20 20099.24 32998.62 361
CNVR-MVS98.99 21698.80 23199.56 16599.25 31199.43 16298.54 29699.27 30398.58 25798.80 32499.43 27098.53 16899.70 33797.22 28999.59 27399.54 182
LFMVS98.46 27698.19 28699.26 24899.24 31398.52 28199.62 6396.94 39199.87 4199.31 25899.58 22191.04 35899.81 29498.68 17199.42 30599.45 223
VNet99.18 17299.06 17599.56 16599.24 31399.36 18299.33 12699.31 29599.67 9499.47 21899.57 22996.48 29199.84 25599.15 11999.30 32099.47 218
testing396.48 34795.63 35899.01 28699.23 31597.81 32898.90 24899.10 33098.72 24297.84 37897.92 39372.44 41199.85 24097.21 29099.33 31699.35 252
CL-MVSNet_self_test98.71 24998.56 25299.15 26599.22 31698.66 26997.14 38999.51 24198.09 30499.54 19999.27 30796.87 28199.74 32598.43 18198.96 34599.03 326
DeepPCF-MVS98.42 699.18 17299.02 18999.67 10999.22 31699.75 6797.25 38699.47 25398.72 24299.66 15299.70 14599.29 6499.63 37398.07 21299.81 18899.62 138
MSLP-MVS++99.05 19999.09 16798.91 29999.21 31898.36 29398.82 26199.47 25398.85 22498.90 31299.56 23398.78 12999.09 40198.57 17599.68 24399.26 270
NCCC98.82 23898.57 24999.58 15699.21 31899.31 19198.61 28099.25 30998.65 24998.43 35399.26 31097.86 23399.81 29496.55 32499.27 32699.61 148
BH-RMVSNet98.41 28198.14 28999.21 25599.21 31898.47 28298.60 28298.26 37198.35 28598.93 30699.31 29997.20 27199.66 36494.32 38299.10 33699.51 200
miper_lstm_enhance98.65 25498.60 24398.82 31599.20 32197.33 34597.78 36299.66 14999.01 20299.59 18099.50 25194.62 32199.85 24098.12 20999.90 11599.26 270
SCA98.11 30198.36 26897.36 36899.20 32192.99 39698.17 32598.49 36198.24 29599.10 29399.57 22996.01 30699.94 7796.86 30699.62 25999.14 300
mvs_anonymous99.28 13999.39 10198.94 29399.19 32397.81 32899.02 22799.55 21799.78 6899.85 7399.80 8398.24 20399.86 22299.57 5699.50 29499.15 295
OpenMVScopyleft98.12 1098.23 29697.89 31099.26 24899.19 32399.26 20099.65 5899.69 13791.33 39898.14 36699.77 10898.28 20099.96 5495.41 36899.55 28098.58 365
CNLPA98.57 26298.34 27199.28 24299.18 32599.10 23098.34 31299.41 26798.48 26998.52 34898.98 35297.05 27699.78 30895.59 36499.50 29498.96 335
test_yl98.25 29397.95 30199.13 27099.17 32698.47 28299.00 23298.67 35198.97 20599.22 27599.02 34791.31 35499.69 34397.26 28398.93 34699.24 273
DCV-MVSNet98.25 29397.95 30199.13 27099.17 32698.47 28299.00 23298.67 35198.97 20599.22 27599.02 34791.31 35499.69 34397.26 28398.93 34699.24 273
MG-MVS98.52 26898.39 26598.94 29399.15 32897.39 34498.18 32399.21 31998.89 22099.23 27299.63 18997.37 26299.74 32594.22 38499.61 26699.69 83
ADS-MVSNet297.78 31397.66 32098.12 34799.14 32995.36 37999.22 16598.75 34696.97 35898.25 35899.64 17890.90 36199.94 7796.51 32799.56 27699.08 316
ADS-MVSNet97.72 31897.67 31997.86 35599.14 32994.65 38799.22 16598.86 34096.97 35898.25 35899.64 17890.90 36199.84 25596.51 32799.56 27699.08 316
FMVSNet398.80 24098.63 24299.32 23399.13 33198.72 26399.10 20599.48 25099.23 16899.62 16899.64 17892.57 34299.86 22298.96 14299.90 11599.39 241
PHI-MVS99.11 19098.95 20999.59 15299.13 33199.59 12899.17 17899.65 15997.88 31999.25 26899.46 26598.97 10899.80 30297.26 28399.82 17999.37 246
OPU-MVS99.29 24099.12 33399.44 15899.20 16899.40 27699.00 10298.84 40496.54 32599.60 26999.58 164
c3_l98.72 24898.71 23698.72 32099.12 33397.22 34897.68 36799.56 21198.90 21799.54 19999.48 25896.37 29899.73 32897.88 22799.88 13499.21 280
alignmvs98.28 29197.96 30099.25 25199.12 33398.93 24699.03 22498.42 36499.64 10298.72 33297.85 39490.86 36399.62 37498.88 14999.13 33399.19 287
PAPM95.61 36994.71 37198.31 34199.12 33396.63 36096.66 39898.46 36290.77 39996.25 39998.68 37493.01 33999.69 34381.60 40897.86 39398.62 361
AdaColmapbinary98.60 25798.35 27099.38 21699.12 33399.22 21198.67 27799.42 26697.84 32398.81 32299.27 30797.32 26499.81 29495.14 37399.53 28799.10 306
MGCFI-Net99.02 20599.01 19299.06 28299.11 33898.60 27699.63 6099.67 14499.63 10498.58 34497.65 39799.07 9499.57 38298.85 15098.92 34899.03 326
MS-PatchMatch99.00 21398.97 20699.09 27599.11 33898.19 30198.76 27199.33 28998.49 26899.44 22499.58 22198.21 20899.69 34398.20 20099.62 25999.39 241
sasdasda99.02 20599.00 19699.09 27599.10 34098.70 26499.61 6899.66 14999.63 10498.64 33897.65 39799.04 9999.54 38698.79 15898.92 34899.04 324
eth_miper_zixun_eth98.68 25298.71 23698.60 32599.10 34096.84 35897.52 37699.54 22398.94 21099.58 18299.48 25896.25 30299.76 31898.01 21699.93 10199.21 280
canonicalmvs99.02 20599.00 19699.09 27599.10 34098.70 26499.61 6899.66 14999.63 10498.64 33897.65 39799.04 9999.54 38698.79 15898.92 34899.04 324
baseline296.83 33996.28 34598.46 33299.09 34396.91 35698.83 25793.87 40697.23 35096.23 40198.36 38488.12 37999.90 15796.68 31698.14 38598.57 366
BH-w/o97.20 33197.01 33397.76 35899.08 34495.69 37598.03 34298.52 35895.76 37797.96 37198.02 39095.62 31099.47 39492.82 39297.25 39798.12 389
iter_conf05_1198.54 26598.33 27399.18 26099.07 34599.20 21697.94 35297.59 38399.17 18199.30 26398.92 36294.79 31899.86 22298.29 19099.89 12498.47 374
bld_raw_dy_0_6498.97 21798.90 21899.17 26299.07 34599.24 20799.24 15799.93 2999.23 16899.87 6999.03 34595.48 31299.81 29498.29 19099.99 1698.47 374
MVSTER98.47 27598.22 28199.24 25399.06 34798.35 29499.08 21399.46 25699.27 16099.75 11499.66 17188.61 37899.85 24099.14 12599.92 10599.52 198
CR-MVSNet98.35 28898.20 28398.83 31299.05 34898.12 30699.30 13699.67 14497.39 34399.16 28399.79 9391.87 35099.91 13998.78 16298.77 35798.44 376
RPMNet98.60 25798.53 25498.83 31299.05 34898.12 30699.30 13699.62 17099.86 4599.16 28399.74 11992.53 34499.92 11698.75 16498.77 35798.44 376
iter_conf0598.46 27698.23 27999.15 26599.04 35097.99 31699.10 20599.61 17799.79 6699.76 10899.58 22187.88 38099.92 11699.31 9699.97 5699.53 187
DVP-MVS++99.38 11799.25 13699.77 5799.03 35199.77 5499.74 2499.61 17799.18 17699.76 10899.61 20599.00 10299.92 11697.72 24499.60 26999.62 138
MSC_two_6792asdad99.74 7999.03 35199.53 14199.23 31399.92 11697.77 23899.69 23899.78 56
No_MVS99.74 7999.03 35199.53 14199.23 31399.92 11697.77 23899.69 23899.78 56
cl____98.54 26598.41 26398.92 29799.03 35197.80 33097.46 37899.59 19598.90 21799.60 17799.46 26593.85 32899.78 30897.97 22099.89 12499.17 291
DIV-MVS_self_test98.54 26598.42 26298.92 29799.03 35197.80 33097.46 37899.59 19598.90 21799.60 17799.46 26593.87 32799.78 30897.97 22099.89 12499.18 289
HY-MVS98.23 998.21 29897.95 30198.99 28799.03 35198.24 29699.61 6898.72 34796.81 36398.73 33199.51 24894.06 32599.86 22296.91 30398.20 38098.86 348
miper_ehance_all_eth98.59 26098.59 24598.59 32698.98 35797.07 35297.49 37799.52 23798.50 26699.52 20699.37 28496.41 29699.71 33497.86 23199.62 25999.00 333
PMMVS98.49 27398.29 27799.11 27298.96 35898.42 28797.54 37299.32 29197.53 33598.47 35198.15 38997.88 23299.82 27997.46 26899.24 32999.09 310
PatchT98.45 27898.32 27498.83 31298.94 35998.29 29599.24 15798.82 34399.84 5399.08 29499.76 11191.37 35399.94 7798.82 15499.00 34398.26 382
tpm97.15 33296.95 33597.75 35998.91 36094.24 38999.32 12897.96 37697.71 32798.29 35699.32 29786.72 38999.92 11698.10 21196.24 40399.09 310
131498.00 30797.90 30998.27 34398.90 36197.45 34199.30 13699.06 33394.98 38697.21 38899.12 33198.43 18199.67 36095.58 36598.56 37097.71 394
CostFormer96.71 34396.79 34296.46 38398.90 36190.71 40999.41 10998.68 34994.69 39198.14 36699.34 29686.32 39199.80 30297.60 26098.07 38898.88 346
UGNet99.38 11799.34 11199.49 18198.90 36198.90 24999.70 3599.35 28699.86 4598.57 34699.81 7998.50 17499.93 9499.38 8099.98 4199.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+-dtu99.07 19598.92 21499.52 17698.89 36499.78 4999.15 18699.66 14999.34 15198.92 30999.24 31797.69 24599.98 2098.11 21099.28 32398.81 352
Patchmtry98.78 24198.54 25399.49 18198.89 36499.19 21899.32 12899.67 14499.65 10099.72 12799.79 9391.87 35099.95 6398.00 21799.97 5699.33 256
tpm296.35 35096.22 34696.73 37998.88 36691.75 40299.21 16798.51 35993.27 39497.89 37499.21 32184.83 39399.70 33796.04 34898.18 38398.75 358
tpm cat196.78 34096.98 33496.16 38698.85 36790.59 41099.08 21399.32 29192.37 39597.73 38399.46 26591.15 35799.69 34396.07 34798.80 35498.21 385
CANet99.11 19099.05 17999.28 24298.83 36898.56 27898.71 27699.41 26799.25 16499.23 27299.22 31997.66 25199.94 7799.19 11199.97 5699.33 256
FMVSNet597.80 31297.25 32899.42 20198.83 36898.97 24099.38 11499.80 8098.87 22199.25 26899.69 15180.60 39999.91 13998.96 14299.90 11599.38 243
API-MVS98.38 28498.39 26598.35 33698.83 36899.26 20099.14 18899.18 32398.59 25698.66 33798.78 36998.61 15399.57 38294.14 38599.56 27696.21 402
PatchmatchNetpermissive97.65 31997.80 31297.18 37398.82 37192.49 39899.17 17898.39 36698.12 30198.79 32699.58 22190.71 36599.89 17597.23 28899.41 30699.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ETVMVS96.14 35695.22 36698.89 30698.80 37298.01 31598.66 27898.35 36998.71 24497.18 38996.31 41474.23 41099.75 32296.64 32198.13 38798.90 343
PAPR97.56 32397.07 33199.04 28498.80 37298.11 30897.63 36899.25 30994.56 39298.02 37098.25 38797.43 25899.68 35590.90 39798.74 36199.33 256
CANet_DTU98.91 22798.85 22399.09 27598.79 37498.13 30598.18 32399.31 29599.48 12698.86 31799.51 24896.56 28899.95 6399.05 13299.95 8399.19 287
E-PMN97.14 33497.43 32296.27 38498.79 37491.62 40395.54 40199.01 33799.44 13698.88 31399.12 33192.78 34199.68 35594.30 38399.03 34197.50 395
testing1196.05 35995.41 36197.97 35098.78 37695.27 38198.59 28598.23 37298.86 22396.56 39696.91 40775.20 40799.69 34397.26 28398.29 37798.93 339
PVSNet_095.53 1995.85 36595.31 36597.47 36598.78 37693.48 39595.72 40099.40 27496.18 37297.37 38497.73 39595.73 30899.58 38195.49 36681.40 40799.36 249
MAR-MVS98.24 29597.92 30799.19 25898.78 37699.65 10799.17 17899.14 32795.36 38198.04 36998.81 36897.47 25699.72 33095.47 36799.06 33798.21 385
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing9196.00 36095.32 36498.02 34898.76 37995.39 37898.38 31098.65 35398.82 22896.84 39296.71 40975.06 40899.71 33496.46 33298.23 37998.98 334
testing9995.86 36495.19 36797.87 35498.76 37995.03 38398.62 27998.44 36398.68 24696.67 39596.66 41074.31 40999.69 34396.51 32798.03 38998.90 343
EMVS96.96 33797.28 32695.99 38798.76 37991.03 40695.26 40298.61 35499.34 15198.92 30998.88 36493.79 32999.66 36492.87 39199.05 33997.30 399
IB-MVS95.41 2095.30 37194.46 37597.84 35698.76 37995.33 38097.33 38396.07 39596.02 37395.37 40597.41 40176.17 40699.96 5497.54 26395.44 40598.22 384
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmrst97.73 31598.07 29396.73 37998.71 38392.00 40099.10 20598.86 34098.52 26498.92 30999.54 24291.90 34899.82 27998.02 21399.03 34198.37 378
MDTV_nov1_ep1397.73 31698.70 38490.83 40799.15 18698.02 37598.51 26598.82 32199.61 20590.98 35999.66 36496.89 30598.92 348
dp96.86 33897.07 33196.24 38598.68 38590.30 41199.19 17298.38 36797.35 34598.23 36099.59 21887.23 38299.82 27996.27 34098.73 36398.59 363
testing22295.60 37094.59 37398.61 32498.66 38697.45 34198.54 29697.90 37998.53 26396.54 39796.47 41170.62 41399.81 29495.91 35798.15 38498.56 367
JIA-IIPM98.06 30497.92 30798.50 33098.59 38797.02 35398.80 26598.51 35999.88 4097.89 37499.87 4791.89 34999.90 15798.16 20797.68 39498.59 363
MVS95.72 36794.63 37298.99 28798.56 38897.98 32299.30 13698.86 34072.71 40697.30 38599.08 33698.34 19499.74 32589.21 39898.33 37599.26 270
UWE-MVS96.21 35595.78 35597.49 36398.53 38993.83 39398.04 34093.94 40598.96 20798.46 35298.17 38879.86 40099.87 20396.99 29899.06 33798.78 355
TR-MVS97.44 32697.15 33098.32 33998.53 38997.46 34098.47 30397.91 37896.85 36198.21 36198.51 38196.42 29499.51 39292.16 39397.29 39697.98 391
Syy-MVS98.17 29997.85 31199.15 26598.50 39198.79 25898.60 28299.21 31997.89 31796.76 39396.37 41295.47 31399.57 38299.10 12898.73 36399.09 310
myMVS_eth3d95.63 36894.73 37098.34 33898.50 39196.36 36598.60 28299.21 31997.89 31796.76 39396.37 41272.10 41299.57 38294.38 38198.73 36399.09 310
tpmvs97.39 32797.69 31796.52 38198.41 39391.76 40199.30 13698.94 33997.74 32597.85 37799.55 24092.40 34799.73 32896.25 34198.73 36398.06 390
LS3D99.24 14999.11 15899.61 14798.38 39499.79 4699.57 8099.68 14099.61 11099.15 28599.71 13898.70 14099.91 13997.54 26399.68 24399.13 303
cl2297.56 32397.28 32698.40 33498.37 39596.75 35997.24 38799.37 28297.31 34799.41 23699.22 31987.30 38199.37 39897.70 24999.62 25999.08 316
CMPMVSbinary77.52 2398.50 27198.19 28699.41 20898.33 39699.56 13599.01 22999.59 19595.44 38099.57 18599.80 8395.64 30999.46 39696.47 33199.92 10599.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
miper_enhance_ethall98.03 30597.94 30598.32 33998.27 39796.43 36496.95 39399.41 26796.37 36999.43 22898.96 35694.74 31999.69 34397.71 24699.62 25998.83 351
TESTMET0.1,196.24 35395.84 35497.41 36798.24 39893.84 39297.38 38095.84 39798.43 27197.81 37998.56 37879.77 40199.89 17597.77 23898.77 35798.52 368
gg-mvs-nofinetune95.87 36395.17 36897.97 35098.19 39996.95 35499.69 4289.23 41299.89 3596.24 40099.94 1681.19 39799.51 39293.99 38998.20 38097.44 396
test-LLR97.15 33296.95 33597.74 36098.18 40095.02 38497.38 38096.10 39398.00 30797.81 37998.58 37590.04 37299.91 13997.69 25598.78 35598.31 379
test-mter96.23 35495.73 35697.74 36098.18 40095.02 38497.38 38096.10 39397.90 31697.81 37998.58 37579.12 40499.91 13997.69 25598.78 35598.31 379
EPMVS96.53 34696.32 34497.17 37498.18 40092.97 39799.39 11289.95 41198.21 29798.61 34199.59 21886.69 39099.72 33096.99 29899.23 33198.81 352
WB-MVSnew98.34 29098.14 28998.96 29098.14 40397.90 32598.27 31797.26 39098.63 25198.80 32498.00 39297.77 24099.90 15797.37 27498.98 34499.09 310
test0.0.03 197.37 32896.91 33898.74 31997.72 40497.57 33697.60 37097.36 38998.00 30799.21 27798.02 39090.04 37299.79 30598.37 18495.89 40498.86 348
GG-mvs-BLEND97.36 36897.59 40596.87 35799.70 3588.49 41394.64 40697.26 40480.66 39899.12 40091.50 39596.50 40296.08 404
gm-plane-assit97.59 40589.02 41393.47 39398.30 38599.84 25596.38 336
cascas96.99 33596.82 34197.48 36497.57 40795.64 37696.43 39999.56 21191.75 39697.13 39197.61 40095.58 31198.63 40596.68 31699.11 33598.18 388
EPNet_dtu97.62 32097.79 31497.11 37596.67 40892.31 39998.51 30098.04 37499.24 16695.77 40299.47 26293.78 33099.66 36498.98 13899.62 25999.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160095.89 36195.41 36197.31 37194.96 40993.89 39097.09 39099.22 31697.23 35098.88 31399.04 34179.23 40299.54 38696.24 34296.81 39898.50 372
miper_refine_blended95.89 36195.41 36197.31 37194.96 40993.89 39097.09 39099.22 31697.23 35098.88 31399.04 34179.23 40299.54 38696.24 34296.81 39898.50 372
EPNet98.13 30097.77 31599.18 26094.57 41197.99 31699.24 15797.96 37699.74 7397.29 38699.62 19693.13 33799.97 3398.59 17499.83 17099.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method91.72 37392.32 37689.91 39093.49 41270.18 41590.28 40399.56 21161.71 40795.39 40499.52 24693.90 32699.94 7798.76 16398.27 37899.62 138
tmp_tt95.75 36695.42 36096.76 37789.90 41394.42 38898.86 25297.87 38078.01 40499.30 26399.69 15197.70 24395.89 40899.29 10098.14 38599.95 11
testmvs28.94 37633.33 37815.79 39226.03 4149.81 41796.77 39615.67 41511.55 41023.87 41150.74 41819.03 4158.53 41123.21 41033.07 40829.03 407
test12329.31 37533.05 38018.08 39125.93 41512.24 41697.53 37410.93 41611.78 40924.21 41050.08 41921.04 4148.60 41023.51 40932.43 40933.39 406
test_blank8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
eth-test20.00 416
eth-test0.00 416
uanet_test8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k24.88 37733.17 3790.00 3930.00 4160.00 4180.00 40499.62 1700.00 4110.00 41299.13 32799.82 130.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas16.61 37822.14 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 199.28 660.00 4120.00 4110.00 4100.00 408
sosnet-low-res8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
sosnet8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
Regformer8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.26 38711.02 3900.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41299.16 3250.00 4160.00 4120.00 4110.00 4100.00 408
uanet8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS96.36 36595.20 372
PC_three_145297.56 33199.68 14299.41 27299.09 8997.09 40796.66 31899.60 26999.62 138
test_241102_TWO99.54 22399.13 19099.76 10899.63 18998.32 19799.92 11697.85 23399.69 23899.75 69
test_0728_THIRD99.18 17699.62 16899.61 20598.58 15899.91 13997.72 24499.80 19399.77 60
GSMVS99.14 300
sam_mvs190.81 36499.14 300
sam_mvs90.52 368
MTGPAbinary99.53 232
test_post199.14 18851.63 41789.54 37599.82 27996.86 306
test_post52.41 41690.25 37099.86 222
patchmatchnet-post99.62 19690.58 36699.94 77
MTMP99.09 21098.59 357
test9_res95.10 37499.44 30199.50 205
agg_prior294.58 38099.46 30099.50 205
test_prior499.19 21898.00 345
test_prior297.95 35197.87 32098.05 36899.05 33997.90 23095.99 35299.49 296
旧先验297.94 35295.33 38298.94 30599.88 18996.75 312
新几何298.04 340
无先验98.01 34399.23 31395.83 37699.85 24095.79 36199.44 228
原ACMM297.92 355
testdata299.89 17595.99 352
segment_acmp98.37 190
testdata197.72 36497.86 322
plane_prior599.54 22399.82 27995.84 35999.78 20399.60 152
plane_prior499.25 312
plane_prior399.31 19198.36 28099.14 287
plane_prior298.80 26598.94 210
plane_prior99.24 20798.42 30897.87 32099.71 232
n20.00 417
nn0.00 417
door-mid99.83 62
test1199.29 299
door99.77 95
HQP5-MVS98.94 243
BP-MVS94.73 377
HQP4-MVS98.15 36299.70 33799.53 187
HQP3-MVS99.37 28299.67 249
HQP2-MVS96.67 285
MDTV_nov1_ep13_2view91.44 40599.14 18897.37 34499.21 27791.78 35296.75 31299.03 326
ACMMP++_ref99.94 94
ACMMP++99.79 198
Test By Simon98.41 184