This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
test_fmvs399.83 1999.93 299.53 17499.96 798.62 27599.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 799.98 199.99 1699.98 3
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6799.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18999.98 1100.00 199.98 3
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4499.92 2799.98 1399.93 1799.94 499.98 2099.77 38100.00 199.92 18
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4999.89 3599.98 1399.90 2999.94 499.98 2099.75 39100.00 199.90 20
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 198100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis1_n_192099.72 3699.88 699.27 24599.93 2597.84 32699.34 123100.00 199.99 299.99 799.82 7399.87 999.99 799.97 499.99 1699.97 7
mvsany_test399.85 1199.88 699.75 7499.95 1599.37 17899.53 8699.98 1199.77 7299.99 799.95 1399.85 1099.94 7799.95 1299.98 4199.94 13
test_f99.75 3299.88 699.37 21999.96 798.21 30099.51 91100.00 199.94 23100.00 199.93 1799.58 3699.94 7799.97 499.99 1699.97 7
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 29100.00 199.97 1199.61 3299.97 3399.75 39100.00 199.84 36
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3199.90 799.96 199.92 3099.90 2999.97 1999.87 4799.81 1499.95 6399.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 22999.99 1099.99 299.98 1399.88 4299.97 299.99 799.96 9100.00 199.98 3
test_fmvsmvis_n_192099.84 1599.86 1299.81 4099.88 4499.55 13899.17 17899.98 1199.99 299.96 2399.84 6299.96 399.99 799.96 999.99 1699.88 25
test_cas_vis1_n_192099.76 3199.86 1299.45 19299.93 2598.40 28899.30 13699.98 1199.94 2399.99 799.89 3499.80 1599.97 3399.96 999.97 5699.97 7
pmmvs699.86 999.86 1299.83 3399.94 1899.90 799.83 699.91 3399.85 5099.94 3499.95 1399.73 2199.90 15799.65 4699.97 5699.69 83
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2599.78 4999.07 21699.98 1199.99 299.98 1399.90 2999.88 899.92 11699.93 2099.99 1699.98 3
test_fmvsm_n_192099.84 1599.85 1699.83 3399.82 7299.70 9099.17 17899.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
test_fmvs299.72 3699.85 1699.34 22699.91 3198.08 31399.48 97100.00 199.90 2999.99 799.91 2499.50 4699.98 2099.98 199.99 1699.96 10
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3199.73 7698.97 24199.98 1199.99 299.96 2399.85 5699.93 799.99 799.94 1699.99 1699.93 15
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20599.98 1199.99 299.98 1399.91 2499.68 2699.93 9499.93 2099.99 1699.99 1
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 3999.91 499.89 499.71 12699.93 2599.95 3199.89 3499.71 2299.96 5499.51 6499.97 5699.84 36
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5499.95 2099.98 1399.92 2199.28 6699.98 2099.75 39100.00 199.94 13
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5899.78 4999.03 22499.96 2399.99 299.97 1999.84 6299.78 1799.92 11699.92 2299.99 1699.92 18
test_fmvs1_n99.68 4599.81 2399.28 24299.95 1597.93 32399.49 96100.00 199.82 5899.99 799.89 3499.21 7599.98 2099.97 499.98 4199.93 15
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7499.97 1999.92 2199.77 1999.98 2099.43 72100.00 199.90 20
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6799.84 5399.94 3499.91 2499.13 8699.96 5499.83 3299.99 1699.83 40
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3099.88 4499.64 11099.12 19899.91 3399.98 1499.95 3199.67 16699.67 2799.99 799.94 1699.99 1699.88 25
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5899.82 3599.03 22499.96 2399.99 299.97 1999.84 6299.58 3699.93 9499.92 2299.98 4199.93 15
test_vis1_n99.68 4599.79 2799.36 22399.94 1898.18 30399.52 87100.00 199.86 45100.00 199.88 4298.99 10499.96 5499.97 499.96 7099.95 11
pm-mvs199.79 2699.79 2799.78 5499.91 3199.83 2999.76 1999.87 4699.73 7499.89 5399.87 4799.63 2999.87 20399.54 6099.92 10599.63 127
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4499.66 10199.11 20299.91 3399.98 1499.96 2399.64 17899.60 3499.99 799.95 1299.99 1699.88 25
sd_testset99.78 2799.78 3199.80 4599.80 8699.76 6199.80 1099.79 8699.97 1699.89 5399.89 3499.53 4399.99 799.36 8499.96 7099.65 112
SDMVSNet99.77 3099.77 3399.76 6499.80 8699.65 10799.63 6099.86 4999.97 1699.89 5399.89 3499.52 4499.99 799.42 7799.96 7099.65 112
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5499.70 8599.92 4199.93 1799.45 4799.97 3399.36 84100.00 199.85 35
TransMVSNet (Re)99.78 2799.77 3399.81 4099.91 3199.85 1999.75 2299.86 4999.70 8599.91 4499.89 3499.60 3499.87 20399.59 5199.74 21899.71 76
UA-Net99.78 2799.76 3699.86 2599.72 14099.71 8399.91 399.95 2899.96 1899.71 13299.91 2499.15 8199.97 3399.50 66100.00 199.90 20
Vis-MVSNetpermissive99.75 3299.74 3799.79 5199.88 4499.66 10199.69 4299.92 3099.67 9499.77 10699.75 11699.61 3299.98 2099.35 8799.98 4199.72 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OurMVSNet-221017-099.75 3299.71 3899.84 3099.96 799.83 2999.83 699.85 5499.80 6499.93 3799.93 1798.54 16499.93 9499.59 5199.98 4199.76 66
CS-MVS99.67 5199.70 3999.58 15699.53 22199.84 2499.79 1199.96 2399.90 2999.61 17499.41 27299.51 4599.95 6399.66 4599.89 12498.96 335
CS-MVS-test99.68 4599.70 3999.64 12899.57 20199.83 2999.78 1299.97 1899.92 2799.50 21399.38 28299.57 3899.95 6399.69 4399.90 11599.15 295
mvsmamba99.74 3599.70 3999.85 2799.93 2599.83 2999.76 1999.81 7699.96 1899.91 4499.81 7998.60 15599.94 7799.58 5499.98 4199.77 60
TDRefinement99.72 3699.70 3999.77 5799.90 3799.85 1999.86 599.92 3099.69 8899.78 10199.92 2199.37 5699.88 18998.93 14899.95 8399.60 152
v899.68 4599.69 4399.65 12199.80 8699.40 17199.66 5399.76 10099.64 10299.93 3799.85 5698.66 14799.84 25599.88 2999.99 1699.71 76
v1099.69 4299.69 4399.66 11699.81 8099.39 17399.66 5399.75 10599.60 11699.92 4199.87 4798.75 13499.86 22299.90 2599.99 1699.73 71
EC-MVSNet99.69 4299.69 4399.68 10699.71 14399.91 499.76 1999.96 2399.86 4599.51 21199.39 28099.57 3899.93 9499.64 4899.86 15399.20 284
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10499.81 8099.59 12899.29 14399.90 3899.71 8099.79 9799.73 12399.54 4199.84 25599.36 8499.96 7099.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS99.71 3999.67 4799.81 4099.89 3999.72 8199.59 7599.82 6799.39 14699.82 8199.84 6299.38 5499.91 13999.38 8099.93 10199.80 47
GeoE99.69 4299.66 4899.78 5499.76 11799.76 6199.60 7499.82 6799.46 13399.75 11499.56 23399.63 2999.95 6399.43 7299.88 13499.62 138
nrg03099.70 4099.66 4899.82 3799.76 11799.84 2499.61 6899.70 13199.93 2599.78 10199.68 16299.10 8799.78 30899.45 7099.96 7099.83 40
test_fmvs199.48 8799.65 5098.97 28999.54 21597.16 34999.11 20299.98 1199.78 6899.96 2399.81 7998.72 13999.97 3399.95 1299.97 5699.79 54
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4499.86 1899.72 3099.78 9299.90 2999.82 8199.83 6698.45 17999.87 20399.51 6499.97 5699.86 32
DSMNet-mixed99.48 8799.65 5098.95 29299.71 14397.27 34699.50 9299.82 6799.59 11899.41 23699.85 5699.62 31100.00 199.53 6299.89 12499.59 159
dcpmvs_299.61 6799.64 5399.53 17499.79 9898.82 25499.58 7799.97 1899.95 2099.96 2399.76 11198.44 18099.99 799.34 8899.96 7099.78 56
FMVSNet199.66 5399.63 5499.73 8899.78 10599.77 5499.68 4599.70 13199.67 9499.82 8199.83 6698.98 10699.90 15799.24 10499.97 5699.53 187
EU-MVSNet99.39 11599.62 5598.72 32099.88 4496.44 36399.56 8299.85 5499.90 2999.90 4999.85 5698.09 21699.83 27099.58 5499.95 8399.90 20
VPA-MVSNet99.66 5399.62 5599.79 5199.68 16399.75 6799.62 6399.69 13799.85 5099.80 9299.81 7998.81 12299.91 13999.47 6899.88 13499.70 79
baseline99.63 5999.62 5599.66 11699.80 8699.62 11799.44 10699.80 8099.71 8099.72 12799.69 15199.15 8199.83 27099.32 9399.94 9499.53 187
MIMVSNet199.66 5399.62 5599.80 4599.94 1899.87 1599.69 4299.77 9599.78 6899.93 3799.89 3497.94 22899.92 11699.65 4699.98 4199.62 138
casdiffmvspermissive99.63 5999.61 5999.67 10999.79 9899.59 12899.13 19499.85 5499.79 6699.76 10899.72 13099.33 6199.82 27999.21 10799.94 9499.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DTE-MVSNet99.68 4599.61 5999.88 1799.80 8699.87 1599.67 4999.71 12699.72 7899.84 7699.78 10198.67 14599.97 3399.30 9799.95 8399.80 47
DeepC-MVS98.90 499.62 6599.61 5999.67 10999.72 14099.44 15899.24 15799.71 12699.27 16099.93 3799.90 2999.70 2499.93 9498.99 13699.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testf199.63 5999.60 6299.72 9499.94 1899.95 299.47 10099.89 4099.43 14199.88 6199.80 8399.26 7099.90 15798.81 15699.88 13499.32 259
APD_test299.63 5999.60 6299.72 9499.94 1899.95 299.47 10099.89 4099.43 14199.88 6199.80 8399.26 7099.90 15798.81 15699.88 13499.32 259
KD-MVS_self_test99.63 5999.59 6499.76 6499.84 6199.90 799.37 11899.79 8699.83 5699.88 6199.85 5698.42 18399.90 15799.60 5099.73 22399.49 210
RRT_MVS99.67 5199.59 6499.91 299.94 1899.88 1299.78 1299.27 30399.87 4199.91 4499.87 4798.04 22099.96 5499.68 4499.99 1699.90 20
PEN-MVS99.66 5399.59 6499.89 1199.83 6599.87 1599.66 5399.73 11499.70 8599.84 7699.73 12398.56 16199.96 5499.29 10099.94 9499.83 40
Gipumacopyleft99.57 7099.59 6499.49 18199.98 399.71 8399.72 3099.84 6099.81 6199.94 3499.78 10198.91 11499.71 33498.41 18299.95 8399.05 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FIs99.65 5899.58 6899.84 3099.84 6199.85 1999.66 5399.75 10599.86 4599.74 12299.79 9398.27 20199.85 24099.37 8399.93 10199.83 40
v124099.56 7399.58 6899.51 17899.80 8699.00 23699.00 23299.65 15999.15 18899.90 4999.75 11699.09 8999.88 18999.90 2599.96 7099.67 95
PS-CasMVS99.66 5399.58 6899.89 1199.80 8699.85 1999.66 5399.73 11499.62 10799.84 7699.71 13898.62 15199.96 5499.30 9799.96 7099.86 32
tt080599.63 5999.57 7199.81 4099.87 5199.88 1299.58 7798.70 34899.72 7899.91 4499.60 21399.43 4899.81 29499.81 3699.53 28799.73 71
new-patchmatchnet99.35 12599.57 7198.71 32299.82 7296.62 36198.55 29399.75 10599.50 12499.88 6199.87 4799.31 6299.88 18999.43 72100.00 199.62 138
Anonymous2023121199.62 6599.57 7199.76 6499.61 18099.60 12699.81 999.73 11499.82 5899.90 4999.90 2997.97 22799.86 22299.42 7799.96 7099.80 47
v192192099.56 7399.57 7199.55 16899.75 12899.11 22599.05 21799.61 17799.15 18899.88 6199.71 13899.08 9299.87 20399.90 2599.97 5699.66 104
v119299.57 7099.57 7199.57 16299.77 11399.22 21199.04 22099.60 18999.18 17699.87 6999.72 13099.08 9299.85 24099.89 2899.98 4199.66 104
EG-PatchMatch MVS99.57 7099.56 7699.62 14499.77 11399.33 18899.26 15099.76 10099.32 15499.80 9299.78 10199.29 6499.87 20399.15 11999.91 11499.66 104
v14419299.55 7699.54 7799.58 15699.78 10599.20 21699.11 20299.62 17099.18 17699.89 5399.72 13098.66 14799.87 20399.88 2999.97 5699.66 104
V4299.56 7399.54 7799.63 13599.79 9899.46 15199.39 11299.59 19599.24 16699.86 7199.70 14598.55 16299.82 27999.79 3799.95 8399.60 152
test20.0399.55 7699.54 7799.58 15699.79 9899.37 17899.02 22799.89 4099.60 11699.82 8199.62 19698.81 12299.89 17599.43 7299.86 15399.47 218
ACMH98.42 699.59 6999.54 7799.72 9499.86 5499.62 11799.56 8299.79 8698.77 23799.80 9299.85 5699.64 2899.85 24098.70 16899.89 12499.70 79
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v114499.54 7899.53 8199.59 15299.79 9899.28 19699.10 20599.61 17799.20 17499.84 7699.73 12398.67 14599.84 25599.86 3199.98 4199.64 122
WR-MVS_H99.61 6799.53 8199.87 2199.80 8699.83 2999.67 4999.75 10599.58 11999.85 7399.69 15198.18 21299.94 7799.28 10299.95 8399.83 40
EI-MVSNet-UG-set99.48 8799.50 8399.42 20199.57 20198.65 27299.24 15799.46 25699.68 9099.80 9299.66 17198.99 10499.89 17599.19 11199.90 11599.72 73
EI-MVSNet-Vis-set99.47 9499.49 8499.42 20199.57 20198.66 26999.24 15799.46 25699.67 9499.79 9799.65 17698.97 10899.89 17599.15 11999.89 12499.71 76
pmmvs-eth3d99.48 8799.47 8599.51 17899.77 11399.41 17098.81 26299.66 14999.42 14599.75 11499.66 17199.20 7699.76 31898.98 13899.99 1699.36 249
v2v48299.50 8399.47 8599.58 15699.78 10599.25 20399.14 18899.58 20499.25 16499.81 8899.62 19698.24 20399.84 25599.83 3299.97 5699.64 122
TranMVSNet+NR-MVSNet99.54 7899.47 8599.76 6499.58 19199.64 11099.30 13699.63 16799.61 11099.71 13299.56 23398.76 13299.96 5499.14 12599.92 10599.68 89
IterMVS-LS99.41 10999.47 8599.25 25199.81 8098.09 31098.85 25499.76 10099.62 10799.83 8099.64 17898.54 16499.97 3399.15 11999.99 1699.68 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis1_rt99.45 9799.46 8999.41 20899.71 14398.63 27498.99 23799.96 2399.03 20199.95 3199.12 33198.75 13499.84 25599.82 3599.82 17999.77 60
patch_mono-299.51 8299.46 8999.64 12899.70 15199.11 22599.04 22099.87 4699.71 8099.47 21899.79 9398.24 20399.98 2099.38 8099.96 7099.83 40
mvsany_test199.44 9999.45 9199.40 21099.37 27698.64 27397.90 35899.59 19599.27 16099.92 4199.82 7399.74 2099.93 9499.55 5999.87 14599.63 127
PMMVS299.48 8799.45 9199.57 16299.76 11798.99 23798.09 33499.90 3898.95 20999.78 10199.58 22199.57 3899.93 9499.48 6799.95 8399.79 54
TAMVS99.49 8599.45 9199.63 13599.48 24499.42 16599.45 10499.57 20699.66 9899.78 10199.83 6697.85 23599.86 22299.44 7199.96 7099.61 148
EI-MVSNet99.38 11799.44 9499.21 25599.58 19198.09 31099.26 15099.46 25699.62 10799.75 11499.67 16698.54 16499.85 24099.15 11999.92 10599.68 89
MVSFormer99.41 10999.44 9499.31 23699.57 20198.40 28899.77 1599.80 8099.73 7499.63 15999.30 30198.02 22299.98 2099.43 7299.69 23899.55 174
CP-MVSNet99.54 7899.43 9699.87 2199.76 11799.82 3599.57 8099.61 17799.54 12099.80 9299.64 17897.79 23999.95 6399.21 10799.94 9499.84 36
ACMH+98.40 899.50 8399.43 9699.71 9999.86 5499.76 6199.32 12899.77 9599.53 12299.77 10699.76 11199.26 7099.78 30897.77 23899.88 13499.60 152
SSC-MVS99.52 8199.42 9899.83 3399.86 5499.65 10799.52 8799.81 7699.87 4199.81 8899.79 9396.78 28399.99 799.83 3299.51 29199.86 32
Anonymous2024052199.44 9999.42 9899.49 18199.89 3998.96 24299.62 6399.76 10099.85 5099.82 8199.88 4296.39 29799.97 3399.59 5199.98 4199.55 174
v14899.40 11199.41 10099.39 21399.76 11798.94 24399.09 21099.59 19599.17 18199.81 8899.61 20598.41 18499.69 34399.32 9399.94 9499.53 187
mvs_anonymous99.28 13999.39 10198.94 29399.19 32397.81 32899.02 22799.55 21799.78 6899.85 7399.80 8398.24 20399.86 22299.57 5699.50 29499.15 295
DP-MVS99.48 8799.39 10199.74 7999.57 20199.62 11799.29 14399.61 17799.87 4199.74 12299.76 11198.69 14199.87 20398.20 20099.80 19399.75 69
tfpnnormal99.43 10299.38 10399.60 15099.87 5199.75 6799.59 7599.78 9299.71 8099.90 4999.69 15198.85 12099.90 15797.25 28799.78 20399.15 295
PVSNet_Blended_VisFu99.40 11199.38 10399.44 19599.90 3798.66 26998.94 24699.91 3397.97 31199.79 9799.73 12399.05 9899.97 3399.15 11999.99 1699.68 89
ACMM98.09 1199.46 9599.38 10399.72 9499.80 8699.69 9499.13 19499.65 15998.99 20399.64 15599.72 13099.39 5099.86 22298.23 19799.81 18899.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 9599.37 10699.71 9999.82 7299.59 12899.48 9799.70 13199.81 6199.69 13999.58 22197.66 25199.86 22299.17 11699.44 30199.67 95
Baseline_NR-MVSNet99.49 8599.37 10699.82 3799.91 3199.84 2498.83 25799.86 4999.68 9099.65 15499.88 4297.67 24799.87 20399.03 13399.86 15399.76 66
COLMAP_ROBcopyleft98.06 1299.45 9799.37 10699.70 10399.83 6599.70 9099.38 11499.78 9299.53 12299.67 14899.78 10199.19 7799.86 22297.32 27699.87 14599.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APDe-MVScopyleft99.48 8799.36 10999.85 2799.55 21399.81 4099.50 9299.69 13798.99 20399.75 11499.71 13898.79 12799.93 9498.46 18099.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator99.15 299.43 10299.36 10999.65 12199.39 27199.42 16599.70 3599.56 21199.23 16899.35 24699.80 8399.17 7999.95 6398.21 19999.84 16299.59 159
Anonymous2024052999.42 10599.34 11199.65 12199.53 22199.60 12699.63 6099.39 27799.47 13099.76 10899.78 10198.13 21499.86 22298.70 16899.68 24399.49 210
xiu_mvs_v1_base_debu99.23 15099.34 11198.91 29999.59 18698.23 29798.47 30399.66 14999.61 11099.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 369
xiu_mvs_v1_base99.23 15099.34 11198.91 29999.59 18698.23 29798.47 30399.66 14999.61 11099.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 369
xiu_mvs_v1_base_debi99.23 15099.34 11198.91 29999.59 18698.23 29798.47 30399.66 14999.61 11099.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 369
UGNet99.38 11799.34 11199.49 18198.90 36198.90 24999.70 3599.35 28699.86 4598.57 34699.81 7998.50 17499.93 9499.38 8099.98 4199.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WB-MVS99.44 9999.32 11699.80 4599.81 8099.61 12399.47 10099.81 7699.82 5899.71 13299.72 13096.60 28799.98 2099.75 3999.23 33199.82 46
diffmvspermissive99.34 13099.32 11699.39 21399.67 16898.77 26098.57 29199.81 7699.61 11099.48 21699.41 27298.47 17599.86 22298.97 14099.90 11599.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023120699.35 12599.31 11899.47 18799.74 13499.06 23599.28 14599.74 11099.23 16899.72 12799.53 24497.63 25399.88 18999.11 12799.84 16299.48 214
MVS_Test99.28 13999.31 11899.19 25899.35 28198.79 25899.36 12199.49 24999.17 18199.21 27799.67 16698.78 12999.66 36499.09 12999.66 25299.10 306
NR-MVSNet99.40 11199.31 11899.68 10699.43 26399.55 13899.73 2799.50 24599.46 13399.88 6199.36 28897.54 25499.87 20398.97 14099.87 14599.63 127
GBi-Net99.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13699.62 16899.83 6697.21 26899.90 15798.96 14299.90 11599.53 187
test199.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13699.62 16899.83 6697.21 26899.90 15798.96 14299.90 11599.53 187
SD-MVS99.01 21199.30 12398.15 34599.50 23499.40 17198.94 24699.61 17799.22 17399.75 11499.82 7399.54 4195.51 40997.48 26799.87 14599.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast99.43 10299.30 12399.80 4599.83 6599.81 4099.52 8799.70 13198.35 28599.51 21199.50 25199.31 6299.88 18998.18 20499.84 16299.69 83
SixPastTwentyTwo99.42 10599.30 12399.76 6499.92 3099.67 9999.70 3599.14 32799.65 10099.89 5399.90 2996.20 30399.94 7799.42 7799.92 10599.67 95
CHOSEN 1792x268899.39 11599.30 12399.65 12199.88 4499.25 20398.78 26999.88 4498.66 24899.96 2399.79 9397.45 25799.93 9499.34 8899.99 1699.78 56
DELS-MVS99.34 13099.30 12399.48 18599.51 22899.36 18298.12 33099.53 23299.36 15099.41 23699.61 20599.22 7499.87 20399.21 10799.68 24399.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PM-MVS99.36 12399.29 12899.58 15699.83 6599.66 10198.95 24499.86 4998.85 22499.81 8899.73 12398.40 18899.92 11698.36 18599.83 17099.17 291
CSCG99.37 12099.29 12899.60 15099.71 14399.46 15199.43 10899.85 5498.79 23399.41 23699.60 21398.92 11299.92 11698.02 21399.92 10599.43 234
APD_test199.36 12399.28 13099.61 14799.89 3999.89 1099.32 12899.74 11099.18 17699.69 13999.75 11698.41 18499.84 25597.85 23399.70 23499.10 306
SED-MVS99.40 11199.28 13099.77 5799.69 15599.82 3599.20 16899.54 22399.13 19099.82 8199.63 18998.91 11499.92 11697.85 23399.70 23499.58 164
FMVSNet299.35 12599.28 13099.55 16899.49 23999.35 18599.45 10499.57 20699.44 13699.70 13699.74 11997.21 26899.87 20399.03 13399.94 9499.44 228
ab-mvs99.33 13399.28 13099.47 18799.57 20199.39 17399.78 1299.43 26498.87 22199.57 18599.82 7398.06 21999.87 20398.69 17099.73 22399.15 295
testgi99.29 13899.26 13499.37 21999.75 12898.81 25598.84 25599.89 4098.38 27899.75 11499.04 34199.36 5999.86 22299.08 13099.25 32799.45 223
UniMVSNet (Re)99.37 12099.26 13499.68 10699.51 22899.58 13298.98 24099.60 18999.43 14199.70 13699.36 28897.70 24399.88 18999.20 11099.87 14599.59 159
DVP-MVS++99.38 11799.25 13699.77 5799.03 35199.77 5499.74 2499.61 17799.18 17699.76 10899.61 20599.00 10299.92 11697.72 24499.60 26999.62 138
UniMVSNet_NR-MVSNet99.37 12099.25 13699.72 9499.47 25099.56 13598.97 24199.61 17799.43 14199.67 14899.28 30597.85 23599.95 6399.17 11699.81 18899.65 112
TSAR-MVS + MP.99.34 13099.24 13899.63 13599.82 7299.37 17899.26 15099.35 28698.77 23799.57 18599.70 14599.27 6999.88 18997.71 24699.75 21199.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+98.92 399.35 12599.24 13899.67 10999.35 28199.47 14799.62 6399.50 24599.44 13699.12 29099.78 10198.77 13199.94 7797.87 23099.72 22999.62 138
DU-MVS99.33 13399.21 14099.71 9999.43 26399.56 13598.83 25799.53 23299.38 14799.67 14899.36 28897.67 24799.95 6399.17 11699.81 18899.63 127
MTAPA99.35 12599.20 14199.80 4599.81 8099.81 4099.33 12699.53 23299.27 16099.42 23099.63 18998.21 20899.95 6397.83 23799.79 19899.65 112
D2MVS99.22 15899.19 14299.29 24099.69 15598.74 26298.81 26299.41 26798.55 25999.68 14299.69 15198.13 21499.87 20398.82 15499.98 4199.24 273
ETV-MVS99.18 17299.18 14399.16 26399.34 29099.28 19699.12 19899.79 8699.48 12698.93 30698.55 37999.40 4999.93 9498.51 17899.52 29098.28 381
DVP-MVScopyleft99.32 13599.17 14499.77 5799.69 15599.80 4499.14 18899.31 29599.16 18499.62 16899.61 20598.35 19299.91 13997.88 22799.72 22999.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
IterMVS-SCA-FT99.00 21399.16 14598.51 32999.75 12895.90 37398.07 33799.84 6099.84 5399.89 5399.73 12396.01 30699.99 799.33 91100.00 199.63 127
APD-MVS_3200maxsize99.31 13699.16 14599.74 7999.53 22199.75 6799.27 14899.61 17799.19 17599.57 18599.64 17898.76 13299.90 15797.29 27899.62 25999.56 171
IterMVS98.97 21799.16 14598.42 33399.74 13495.64 37698.06 33999.83 6299.83 5699.85 7399.74 11996.10 30599.99 799.27 103100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LCM-MVSNet-Re99.28 13999.15 14899.67 10999.33 29599.76 6199.34 12399.97 1898.93 21399.91 4499.79 9398.68 14299.93 9496.80 31099.56 27699.30 265
SteuartSystems-ACMMP99.30 13799.14 14999.76 6499.87 5199.66 10199.18 17399.60 18998.55 25999.57 18599.67 16699.03 10199.94 7797.01 29799.80 19399.69 83
Skip Steuart: Steuart Systems R&D Blog.
test_040299.22 15899.14 14999.45 19299.79 9899.43 16299.28 14599.68 14099.54 12099.40 24199.56 23399.07 9499.82 27996.01 34999.96 7099.11 304
RE-MVS-def99.13 15199.54 21599.74 7399.26 15099.62 17099.16 18499.52 20699.64 17898.57 15997.27 28199.61 26699.54 182
OPM-MVS99.26 14599.13 15199.63 13599.70 15199.61 12398.58 28799.48 25098.50 26699.52 20699.63 18999.14 8499.76 31897.89 22699.77 20799.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CDS-MVSNet99.22 15899.13 15199.50 18099.35 28199.11 22598.96 24399.54 22399.46 13399.61 17499.70 14596.31 29999.83 27099.34 8899.88 13499.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
wuyk23d97.58 32299.13 15192.93 38999.69 15599.49 14599.52 8799.77 9597.97 31199.96 2399.79 9399.84 1299.94 7795.85 35899.82 17979.36 405
ppachtmachnet_test98.89 23299.12 15598.20 34499.66 16995.24 38297.63 36899.68 14099.08 19599.78 10199.62 19698.65 14999.88 18998.02 21399.96 7099.48 214
Fast-Effi-MVS+-dtu99.20 16599.12 15599.43 19999.25 31199.69 9499.05 21799.82 6799.50 12498.97 30299.05 33998.98 10699.98 2098.20 20099.24 32998.62 361
DeepC-MVS_fast98.47 599.23 15099.12 15599.56 16599.28 30699.22 21198.99 23799.40 27499.08 19599.58 18299.64 17898.90 11799.83 27097.44 26999.75 21199.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post99.27 14399.11 15899.73 8899.54 21599.74 7399.26 15099.62 17099.16 18499.52 20699.64 17898.41 18499.91 13997.27 28199.61 26699.54 182
ACMMP_NAP99.28 13999.11 15899.79 5199.75 12899.81 4098.95 24499.53 23298.27 29499.53 20499.73 12398.75 13499.87 20397.70 24999.83 17099.68 89
xiu_mvs_v2_base99.02 20599.11 15898.77 31799.37 27698.09 31098.13 32999.51 24199.47 13099.42 23098.54 38099.38 5499.97 3398.83 15299.33 31698.24 383
pmmvs599.19 16899.11 15899.42 20199.76 11798.88 25198.55 29399.73 11498.82 22899.72 12799.62 19696.56 28899.82 27999.32 9399.95 8399.56 171
XVS99.27 14399.11 15899.75 7499.71 14399.71 8399.37 11899.61 17799.29 15698.76 32999.47 26298.47 17599.88 18997.62 25799.73 22399.67 95
VDD-MVS99.20 16599.11 15899.44 19599.43 26398.98 23899.50 9298.32 37099.80 6499.56 19299.69 15196.99 27899.85 24098.99 13699.73 22399.50 205
jason99.16 17999.11 15899.32 23399.75 12898.44 28598.26 31999.39 27798.70 24599.74 12299.30 30198.54 16499.97 3398.48 17999.82 17999.55 174
jason: jason.
LS3D99.24 14999.11 15899.61 14798.38 39499.79 4699.57 8099.68 14099.61 11099.15 28599.71 13898.70 14099.91 13997.54 26399.68 24399.13 303
XVG-ACMP-BASELINE99.23 15099.10 16699.63 13599.82 7299.58 13298.83 25799.72 12398.36 28099.60 17799.71 13898.92 11299.91 13997.08 29599.84 16299.40 239
our_test_398.85 23699.09 16798.13 34699.66 16994.90 38697.72 36499.58 20499.07 19799.64 15599.62 19698.19 21099.93 9498.41 18299.95 8399.55 174
MSLP-MVS++99.05 19999.09 16798.91 29999.21 31898.36 29398.82 26199.47 25398.85 22498.90 31299.56 23398.78 12999.09 40198.57 17599.68 24399.26 270
MVP-Stereo99.16 17999.08 16999.43 19999.48 24499.07 23399.08 21399.55 21798.63 25199.31 25899.68 16298.19 21099.78 30898.18 20499.58 27499.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HFP-MVS99.25 14699.08 16999.76 6499.73 13799.70 9099.31 13399.59 19598.36 28099.36 24599.37 28498.80 12699.91 13997.43 27099.75 21199.68 89
PS-MVSNAJ99.00 21399.08 16998.76 31899.37 27698.10 30998.00 34599.51 24199.47 13099.41 23698.50 38299.28 6699.97 3398.83 15299.34 31598.20 387
ACMMPcopyleft99.25 14699.08 16999.74 7999.79 9899.68 9799.50 9299.65 15998.07 30599.52 20699.69 15198.57 15999.92 11697.18 29299.79 19899.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AllTest99.21 16399.07 17399.63 13599.78 10599.64 11099.12 19899.83 6298.63 25199.63 15999.72 13098.68 14299.75 32296.38 33699.83 17099.51 200
HPM-MVScopyleft99.25 14699.07 17399.78 5499.81 8099.75 6799.61 6899.67 14497.72 32699.35 24699.25 31299.23 7399.92 11697.21 29099.82 17999.67 95
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs499.13 18599.06 17599.36 22399.57 20199.10 23098.01 34399.25 30998.78 23599.58 18299.44 26998.24 20399.76 31898.74 16599.93 10199.22 278
VNet99.18 17299.06 17599.56 16599.24 31399.36 18299.33 12699.31 29599.67 9499.47 21899.57 22996.48 29199.84 25599.15 11999.30 32099.47 218
ACMMPR99.23 15099.06 17599.76 6499.74 13499.69 9499.31 13399.59 19598.36 28099.35 24699.38 28298.61 15399.93 9497.43 27099.75 21199.67 95
XVG-OURS99.21 16399.06 17599.65 12199.82 7299.62 11797.87 35999.74 11098.36 28099.66 15299.68 16299.71 2299.90 15796.84 30999.88 13499.43 234
MM99.18 17299.05 17999.55 16899.35 28198.81 25599.05 21797.79 38199.99 299.48 21699.59 21896.29 30199.95 6399.94 1699.98 4199.88 25
CANet99.11 19099.05 17999.28 24298.83 36898.56 27898.71 27699.41 26799.25 16499.23 27299.22 31997.66 25199.94 7799.19 11199.97 5699.33 256
region2R99.23 15099.05 17999.77 5799.76 11799.70 9099.31 13399.59 19598.41 27499.32 25499.36 28898.73 13899.93 9497.29 27899.74 21899.67 95
MDA-MVSNet-bldmvs99.06 19699.05 17999.07 28099.80 8697.83 32798.89 24999.72 12399.29 15699.63 15999.70 14596.47 29299.89 17598.17 20699.82 17999.50 205
LPG-MVS_test99.22 15899.05 17999.74 7999.82 7299.63 11599.16 18499.73 11497.56 33199.64 15599.69 15199.37 5699.89 17596.66 31899.87 14599.69 83
CP-MVS99.23 15099.05 17999.75 7499.66 16999.66 10199.38 11499.62 17098.38 27899.06 29899.27 30798.79 12799.94 7797.51 26699.82 17999.66 104
ZNCC-MVS99.22 15899.04 18599.77 5799.76 11799.73 7699.28 14599.56 21198.19 29999.14 28799.29 30498.84 12199.92 11697.53 26599.80 19399.64 122
TSAR-MVS + GP.99.12 18799.04 18599.38 21699.34 29099.16 22098.15 32699.29 29998.18 30099.63 15999.62 19699.18 7899.68 35598.20 20099.74 21899.30 265
MVS_030499.17 17799.03 18799.59 15299.44 25998.90 24999.04 22095.32 39999.99 299.68 14299.57 22998.30 19899.97 3399.94 1699.98 4199.88 25
MVS_111021_LR99.13 18599.03 18799.42 20199.58 19199.32 19097.91 35799.73 11498.68 24699.31 25899.48 25899.09 8999.66 36497.70 24999.77 20799.29 268
RPSCF99.18 17299.02 18999.64 12899.83 6599.85 1999.44 10699.82 6798.33 29099.50 21399.78 10197.90 23099.65 37096.78 31199.83 17099.44 228
MVS_111021_HR99.12 18799.02 18999.40 21099.50 23499.11 22597.92 35599.71 12698.76 24099.08 29499.47 26299.17 7999.54 38697.85 23399.76 20999.54 182
DeepPCF-MVS98.42 699.18 17299.02 18999.67 10999.22 31699.75 6797.25 38699.47 25398.72 24299.66 15299.70 14599.29 6499.63 37398.07 21299.81 18899.62 138
MGCFI-Net99.02 20599.01 19299.06 28299.11 33898.60 27699.63 6099.67 14499.63 10498.58 34497.65 39799.07 9499.57 38298.85 15098.92 34899.03 326
EIA-MVS99.12 18799.01 19299.45 19299.36 27999.62 11799.34 12399.79 8698.41 27498.84 31998.89 36398.75 13499.84 25598.15 20899.51 29198.89 345
PGM-MVS99.20 16599.01 19299.77 5799.75 12899.71 8399.16 18499.72 12397.99 30999.42 23099.60 21398.81 12299.93 9496.91 30399.74 21899.66 104
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21597.99 31698.58 28799.82 6797.62 33099.34 24999.71 13898.52 17199.77 31697.98 21899.97 5699.52 198
sasdasda99.02 20599.00 19699.09 27599.10 34098.70 26499.61 6899.66 14999.63 10498.64 33897.65 39799.04 9999.54 38698.79 15898.92 34899.04 324
SR-MVS99.19 16899.00 19699.74 7999.51 22899.72 8199.18 17399.60 18998.85 22499.47 21899.58 22198.38 18999.92 11696.92 30299.54 28599.57 169
SMA-MVScopyleft99.19 16899.00 19699.73 8899.46 25499.73 7699.13 19499.52 23797.40 34299.57 18599.64 17898.93 11199.83 27097.61 25999.79 19899.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
canonicalmvs99.02 20599.00 19699.09 27599.10 34098.70 26499.61 6899.66 14999.63 10498.64 33897.65 39799.04 9999.54 38698.79 15898.92 34899.04 324
mPP-MVS99.19 16899.00 19699.76 6499.76 11799.68 9799.38 11499.54 22398.34 28999.01 30099.50 25198.53 16899.93 9497.18 29299.78 20399.66 104
EPP-MVSNet99.17 17799.00 19699.66 11699.80 8699.43 16299.70 3599.24 31299.48 12699.56 19299.77 10894.89 31699.93 9498.72 16799.89 12499.63 127
YYNet198.95 22498.99 20298.84 31099.64 17397.14 35198.22 32299.32 29198.92 21599.59 18099.66 17197.40 25999.83 27098.27 19499.90 11599.55 174
MDA-MVSNet_test_wron98.95 22498.99 20298.85 30899.64 17397.16 34998.23 32199.33 28998.93 21399.56 19299.66 17197.39 26199.83 27098.29 19099.88 13499.55 174
XVG-OURS-SEG-HR99.16 17998.99 20299.66 11699.84 6199.64 11098.25 32099.73 11498.39 27799.63 15999.43 27099.70 2499.90 15797.34 27598.64 36799.44 228
MSDG99.08 19498.98 20599.37 21999.60 18299.13 22397.54 37299.74 11098.84 22799.53 20499.55 24099.10 8799.79 30597.07 29699.86 15399.18 289
Effi-MVS+99.06 19698.97 20699.34 22699.31 29798.98 23898.31 31599.91 3398.81 23098.79 32698.94 35899.14 8499.84 25598.79 15898.74 36199.20 284
MS-PatchMatch99.00 21398.97 20699.09 27599.11 33898.19 30198.76 27199.33 28998.49 26899.44 22499.58 22198.21 20899.69 34398.20 20099.62 25999.39 241
GST-MVS99.16 17998.96 20899.75 7499.73 13799.73 7699.20 16899.55 21798.22 29699.32 25499.35 29398.65 14999.91 13996.86 30699.74 21899.62 138
PHI-MVS99.11 19098.95 20999.59 15299.13 33199.59 12899.17 17899.65 15997.88 31999.25 26899.46 26598.97 10899.80 30297.26 28399.82 17999.37 246
SF-MVS99.10 19398.93 21099.62 14499.58 19199.51 14399.13 19499.65 15997.97 31199.42 23099.61 20598.86 11999.87 20396.45 33399.68 24399.49 210
WR-MVS99.11 19098.93 21099.66 11699.30 30199.42 16598.42 30899.37 28299.04 20099.57 18599.20 32396.89 28099.86 22298.66 17299.87 14599.70 79
USDC98.96 22198.93 21099.05 28399.54 21597.99 31697.07 39299.80 8098.21 29799.75 11499.77 10898.43 18199.64 37297.90 22599.88 13499.51 200
TinyColmap98.97 21798.93 21099.07 28099.46 25498.19 30197.75 36399.75 10598.79 23399.54 19999.70 14598.97 10899.62 37496.63 32299.83 17099.41 238
DPE-MVScopyleft99.14 18398.92 21499.82 3799.57 20199.77 5498.74 27299.60 18998.55 25999.76 10899.69 15198.23 20799.92 11696.39 33599.75 21199.76 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Effi-MVS+-dtu99.07 19598.92 21499.52 17698.89 36499.78 4999.15 18699.66 14999.34 15198.92 30999.24 31797.69 24599.98 2098.11 21099.28 32398.81 352
MP-MVS-pluss99.14 18398.92 21499.80 4599.83 6599.83 2998.61 28099.63 16796.84 36299.44 22499.58 22198.81 12299.91 13997.70 24999.82 17999.67 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LF4IMVS99.01 21198.92 21499.27 24599.71 14399.28 19698.59 28599.77 9598.32 29199.39 24299.41 27298.62 15199.84 25596.62 32399.84 16298.69 359
bld_raw_dy_0_6498.97 21798.90 21899.17 26299.07 34599.24 20799.24 15799.93 2999.23 16899.87 6999.03 34595.48 31299.81 29498.29 19099.99 1698.47 374
new_pmnet98.88 23398.89 21998.84 31099.70 15197.62 33598.15 32699.50 24597.98 31099.62 16899.54 24298.15 21399.94 7797.55 26299.84 16298.95 337
CVMVSNet98.61 25598.88 22097.80 35799.58 19193.60 39499.26 15099.64 16599.66 9899.72 12799.67 16693.26 33599.93 9499.30 9799.81 18899.87 30
Fast-Effi-MVS+99.02 20598.87 22199.46 18999.38 27499.50 14499.04 22099.79 8697.17 35398.62 34098.74 37199.34 6099.95 6398.32 18999.41 30698.92 341
lupinMVS98.96 22198.87 22199.24 25399.57 20198.40 28898.12 33099.18 32398.28 29399.63 15999.13 32798.02 22299.97 3398.22 19899.69 23899.35 252
CANet_DTU98.91 22798.85 22399.09 27598.79 37498.13 30598.18 32399.31 29599.48 12698.86 31799.51 24896.56 28899.95 6399.05 13299.95 8399.19 287
IS-MVSNet99.03 20398.85 22399.55 16899.80 8699.25 20399.73 2799.15 32699.37 14899.61 17499.71 13894.73 32099.81 29497.70 24999.88 13499.58 164
1112_ss99.05 19998.84 22599.67 10999.66 16999.29 19498.52 29999.82 6797.65 32999.43 22899.16 32596.42 29499.91 13999.07 13199.84 16299.80 47
ACMP97.51 1499.05 19998.84 22599.67 10999.78 10599.55 13898.88 25099.66 14997.11 35799.47 21899.60 21399.07 9499.89 17596.18 34499.85 15799.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MP-MVScopyleft99.06 19698.83 22799.76 6499.76 11799.71 8399.32 12899.50 24598.35 28598.97 30299.48 25898.37 19099.92 11695.95 35599.75 21199.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
VDDNet98.97 21798.82 22899.42 20199.71 14398.81 25599.62 6398.68 34999.81 6199.38 24399.80 8394.25 32499.85 24098.79 15899.32 31899.59 159
MCST-MVS99.02 20598.81 22999.65 12199.58 19199.49 14598.58 28799.07 33198.40 27699.04 29999.25 31298.51 17399.80 30297.31 27799.51 29199.65 112
PMVScopyleft92.94 2198.82 23898.81 22998.85 30899.84 6197.99 31699.20 16899.47 25399.71 8099.42 23099.82 7398.09 21699.47 39493.88 39099.85 15799.07 321
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CNVR-MVS98.99 21698.80 23199.56 16599.25 31199.43 16298.54 29699.27 30398.58 25798.80 32499.43 27098.53 16899.70 33797.22 28999.59 27399.54 182
MSP-MVS99.04 20298.79 23299.81 4099.78 10599.73 7699.35 12299.57 20698.54 26299.54 19998.99 34996.81 28299.93 9496.97 30099.53 28799.77 60
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sss98.90 22998.77 23399.27 24599.48 24498.44 28598.72 27499.32 29197.94 31599.37 24499.35 29396.31 29999.91 13998.85 15099.63 25899.47 218
Test_1112_low_res98.95 22498.73 23499.63 13599.68 16399.15 22298.09 33499.80 8097.14 35599.46 22299.40 27696.11 30499.89 17599.01 13599.84 16299.84 36
OMC-MVS98.90 22998.72 23599.44 19599.39 27199.42 16598.58 28799.64 16597.31 34799.44 22499.62 19698.59 15699.69 34396.17 34599.79 19899.22 278
eth_miper_zixun_eth98.68 25298.71 23698.60 32599.10 34096.84 35897.52 37699.54 22398.94 21099.58 18299.48 25896.25 30299.76 31898.01 21699.93 10199.21 280
c3_l98.72 24898.71 23698.72 32099.12 33397.22 34897.68 36799.56 21198.90 21799.54 19999.48 25896.37 29899.73 32897.88 22799.88 13499.21 280
HPM-MVS++copyleft98.96 22198.70 23899.74 7999.52 22699.71 8398.86 25299.19 32298.47 27098.59 34399.06 33898.08 21899.91 13996.94 30199.60 26999.60 152
HQP_MVS98.90 22998.68 23999.55 16899.58 19199.24 20798.80 26599.54 22398.94 21099.14 28799.25 31297.24 26699.82 27995.84 35999.78 20399.60 152
9.1498.64 24099.45 25898.81 26299.60 18997.52 33699.28 26599.56 23398.53 16899.83 27095.36 37099.64 256
HyFIR lowres test98.91 22798.64 24099.73 8899.85 5899.47 14798.07 33799.83 6298.64 25099.89 5399.60 21392.57 342100.00 199.33 9199.97 5699.72 73
FMVSNet398.80 24098.63 24299.32 23399.13 33198.72 26399.10 20599.48 25099.23 16899.62 16899.64 17892.57 34299.86 22298.96 14299.90 11599.39 241
miper_lstm_enhance98.65 25498.60 24398.82 31599.20 32197.33 34597.78 36299.66 14999.01 20299.59 18099.50 25194.62 32199.85 24098.12 20999.90 11599.26 270
K. test v398.87 23498.60 24399.69 10499.93 2599.46 15199.74 2494.97 40099.78 6899.88 6199.88 4293.66 33299.97 3399.61 4999.95 8399.64 122
miper_ehance_all_eth98.59 26098.59 24598.59 32698.98 35797.07 35297.49 37799.52 23798.50 26699.52 20699.37 28496.41 29699.71 33497.86 23199.62 25999.00 333
APD-MVScopyleft98.87 23498.59 24599.71 9999.50 23499.62 11799.01 22999.57 20696.80 36499.54 19999.63 18998.29 19999.91 13995.24 37199.71 23299.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended98.70 25098.59 24599.02 28599.54 21597.99 31697.58 37199.82 6795.70 37899.34 24998.98 35298.52 17199.77 31697.98 21899.83 17099.30 265
Vis-MVSNet (Re-imp)98.77 24298.58 24899.34 22699.78 10598.88 25199.61 6899.56 21199.11 19499.24 27199.56 23393.00 34099.78 30897.43 27099.89 12499.35 252
NCCC98.82 23898.57 24999.58 15699.21 31899.31 19198.61 28099.25 30998.65 24998.43 35399.26 31097.86 23399.81 29496.55 32499.27 32699.61 148
UnsupCasMVSNet_eth98.83 23798.57 24999.59 15299.68 16399.45 15698.99 23799.67 14499.48 12699.55 19799.36 28894.92 31599.86 22298.95 14696.57 40099.45 223
CLD-MVS98.76 24398.57 24999.33 22999.57 20198.97 24097.53 37499.55 21796.41 36799.27 26699.13 32799.07 9499.78 30896.73 31499.89 12499.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CL-MVSNet_self_test98.71 24998.56 25299.15 26599.22 31698.66 26997.14 38999.51 24198.09 30499.54 19999.27 30796.87 28199.74 32598.43 18198.96 34599.03 326
Patchmtry98.78 24198.54 25399.49 18198.89 36499.19 21899.32 12899.67 14499.65 10099.72 12799.79 9391.87 35099.95 6398.00 21799.97 5699.33 256
RPMNet98.60 25798.53 25498.83 31299.05 34898.12 30699.30 13699.62 17099.86 4599.16 28399.74 11992.53 34499.92 11698.75 16498.77 35798.44 376
N_pmnet98.73 24798.53 25499.35 22599.72 14098.67 26698.34 31294.65 40198.35 28599.79 9799.68 16298.03 22199.93 9498.28 19399.92 10599.44 228
dmvs_re98.69 25198.48 25699.31 23699.55 21399.42 16599.54 8598.38 36799.32 15498.72 33298.71 37296.76 28499.21 39996.01 34999.35 31499.31 263
PatchMatch-RL98.68 25298.47 25799.30 23999.44 25999.28 19698.14 32899.54 22397.12 35699.11 29199.25 31297.80 23899.70 33796.51 32799.30 32098.93 339
Anonymous20240521198.75 24498.46 25899.63 13599.34 29099.66 10199.47 10097.65 38299.28 15999.56 19299.50 25193.15 33699.84 25598.62 17399.58 27499.40 239
F-COLMAP98.74 24598.45 25999.62 14499.57 20199.47 14798.84 25599.65 15996.31 37098.93 30699.19 32497.68 24699.87 20396.52 32699.37 31199.53 187
CPTT-MVS98.74 24598.44 26099.64 12899.61 18099.38 17599.18 17399.55 21796.49 36699.27 26699.37 28497.11 27499.92 11695.74 36299.67 24999.62 138
PVSNet97.47 1598.42 28098.44 26098.35 33699.46 25496.26 36796.70 39799.34 28897.68 32899.00 30199.13 32797.40 25999.72 33097.59 26199.68 24399.08 316
DIV-MVS_self_test98.54 26598.42 26298.92 29799.03 35197.80 33097.46 37899.59 19598.90 21799.60 17799.46 26593.87 32799.78 30897.97 22099.89 12499.18 289
cl____98.54 26598.41 26398.92 29799.03 35197.80 33097.46 37899.59 19598.90 21799.60 17799.46 26593.85 32899.78 30897.97 22099.89 12499.17 291
CHOSEN 280x42098.41 28198.41 26398.40 33499.34 29095.89 37496.94 39499.44 26198.80 23299.25 26899.52 24693.51 33499.98 2098.94 14799.98 4199.32 259
API-MVS98.38 28498.39 26598.35 33698.83 36899.26 20099.14 18899.18 32398.59 25698.66 33798.78 36998.61 15399.57 38294.14 38599.56 27696.21 402
MG-MVS98.52 26898.39 26598.94 29399.15 32897.39 34498.18 32399.21 31998.89 22099.23 27299.63 18997.37 26299.74 32594.22 38499.61 26699.69 83
WTY-MVS98.59 26098.37 26799.26 24899.43 26398.40 28898.74 27299.13 32998.10 30299.21 27799.24 31794.82 31799.90 15797.86 23198.77 35799.49 210
SCA98.11 30198.36 26897.36 36899.20 32192.99 39698.17 32598.49 36198.24 29599.10 29399.57 22996.01 30699.94 7796.86 30699.62 25999.14 300
Patchmatch-RL test98.60 25798.36 26899.33 22999.77 11399.07 23398.27 31799.87 4698.91 21699.74 12299.72 13090.57 36799.79 30598.55 17699.85 15799.11 304
AdaColmapbinary98.60 25798.35 27099.38 21699.12 33399.22 21198.67 27799.42 26697.84 32398.81 32299.27 30797.32 26499.81 29495.14 37399.53 28799.10 306
h-mvs3398.61 25598.34 27199.44 19599.60 18298.67 26699.27 14899.44 26199.68 9099.32 25499.49 25592.50 345100.00 199.24 10496.51 40199.65 112
CNLPA98.57 26298.34 27199.28 24299.18 32599.10 23098.34 31299.41 26798.48 26998.52 34898.98 35297.05 27699.78 30895.59 36499.50 29498.96 335
iter_conf05_1198.54 26598.33 27399.18 26099.07 34599.20 21697.94 35297.59 38399.17 18199.30 26398.92 36294.79 31899.86 22298.29 19099.89 12498.47 374
FA-MVS(test-final)98.52 26898.32 27499.10 27499.48 24498.67 26699.77 1598.60 35697.35 34599.63 15999.80 8393.07 33899.84 25597.92 22399.30 32098.78 355
PatchT98.45 27898.32 27498.83 31298.94 35998.29 29599.24 15798.82 34399.84 5399.08 29499.76 11191.37 35399.94 7798.82 15499.00 34398.26 382
hse-mvs298.52 26898.30 27699.16 26399.29 30398.60 27698.77 27099.02 33599.68 9099.32 25499.04 34192.50 34599.85 24099.24 10497.87 39299.03 326
PMMVS98.49 27398.29 27799.11 27298.96 35898.42 28797.54 37299.32 29197.53 33598.47 35198.15 38997.88 23299.82 27997.46 26899.24 32999.09 310
UnsupCasMVSNet_bld98.55 26498.27 27899.40 21099.56 21299.37 17897.97 35099.68 14097.49 33899.08 29499.35 29395.41 31499.82 27997.70 24998.19 38299.01 332
iter_conf0598.46 27698.23 27999.15 26599.04 35097.99 31699.10 20599.61 17799.79 6699.76 10899.58 22187.88 38099.92 11699.31 9699.97 5699.53 187
DP-MVS Recon98.50 27198.23 27999.31 23699.49 23999.46 15198.56 29299.63 16794.86 38998.85 31899.37 28497.81 23799.59 38096.08 34699.44 30198.88 346
MVSTER98.47 27598.22 28199.24 25399.06 34798.35 29499.08 21399.46 25699.27 16099.75 11499.66 17188.61 37899.85 24099.14 12599.92 10599.52 198
MVS-HIRNet97.86 30998.22 28196.76 37799.28 30691.53 40498.38 31092.60 40799.13 19099.31 25899.96 1297.18 27299.68 35598.34 18799.83 17099.07 321
CDPH-MVS98.56 26398.20 28399.61 14799.50 23499.46 15198.32 31499.41 26795.22 38399.21 27799.10 33598.34 19499.82 27995.09 37599.66 25299.56 171
CR-MVSNet98.35 28898.20 28398.83 31299.05 34898.12 30699.30 13699.67 14497.39 34399.16 28399.79 9391.87 35099.91 13998.78 16298.77 35798.44 376
MIMVSNet98.43 27998.20 28399.11 27299.53 22198.38 29299.58 7798.61 35498.96 20799.33 25199.76 11190.92 36099.81 29497.38 27399.76 20999.15 295
LFMVS98.46 27698.19 28699.26 24899.24 31398.52 28199.62 6396.94 39199.87 4199.31 25899.58 22191.04 35899.81 29498.68 17199.42 30599.45 223
CMPMVSbinary77.52 2398.50 27198.19 28699.41 20898.33 39699.56 13599.01 22999.59 19595.44 38099.57 18599.80 8395.64 30999.46 39696.47 33199.92 10599.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test111197.74 31498.16 28896.49 38299.60 18289.86 41299.71 3491.21 40899.89 3599.88 6199.87 4793.73 33199.90 15799.56 5799.99 1699.70 79
WB-MVSnew98.34 29098.14 28998.96 29098.14 40397.90 32598.27 31797.26 39098.63 25198.80 32498.00 39297.77 24099.90 15797.37 27498.98 34499.09 310
BH-RMVSNet98.41 28198.14 28999.21 25599.21 31898.47 28298.60 28298.26 37198.35 28598.93 30699.31 29997.20 27199.66 36494.32 38299.10 33699.51 200
114514_t98.49 27398.11 29199.64 12899.73 13799.58 13299.24 15799.76 10089.94 40099.42 23099.56 23397.76 24299.86 22297.74 24399.82 17999.47 218
BH-untuned98.22 29798.09 29298.58 32899.38 27497.24 34798.55 29398.98 33897.81 32499.20 28298.76 37097.01 27799.65 37094.83 37698.33 37598.86 348
tpmrst97.73 31598.07 29396.73 37998.71 38392.00 40099.10 20598.86 34098.52 26498.92 30999.54 24291.90 34899.82 27998.02 21399.03 34198.37 378
ECVR-MVScopyleft97.73 31598.04 29496.78 37699.59 18690.81 40899.72 3090.43 41099.89 3599.86 7199.86 5493.60 33399.89 17599.46 6999.99 1699.65 112
PAPM_NR98.36 28598.04 29499.33 22999.48 24498.93 24698.79 26899.28 30297.54 33498.56 34798.57 37797.12 27399.69 34394.09 38698.90 35299.38 243
HQP-MVS98.36 28598.02 29699.39 21399.31 29798.94 24397.98 34799.37 28297.45 33998.15 36298.83 36696.67 28599.70 33794.73 37799.67 24999.53 187
QAPM98.40 28397.99 29799.65 12199.39 27199.47 14799.67 4999.52 23791.70 39798.78 32899.80 8398.55 16299.95 6394.71 37999.75 21199.53 187
PLCcopyleft97.35 1698.36 28597.99 29799.48 18599.32 29699.24 20798.50 30199.51 24195.19 38598.58 34498.96 35696.95 27999.83 27095.63 36399.25 32799.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Patchmatch-test98.10 30297.98 29998.48 33199.27 30896.48 36299.40 11099.07 33198.81 23099.23 27299.57 22990.11 37199.87 20396.69 31599.64 25699.09 310
alignmvs98.28 29197.96 30099.25 25199.12 33398.93 24699.03 22498.42 36499.64 10298.72 33297.85 39490.86 36399.62 37498.88 14999.13 33399.19 287
test_yl98.25 29397.95 30199.13 27099.17 32698.47 28299.00 23298.67 35198.97 20599.22 27599.02 34791.31 35499.69 34397.26 28398.93 34699.24 273
DCV-MVSNet98.25 29397.95 30199.13 27099.17 32698.47 28299.00 23298.67 35198.97 20599.22 27599.02 34791.31 35499.69 34397.26 28398.93 34699.24 273
train_agg98.35 28897.95 30199.57 16299.35 28199.35 18598.11 33299.41 26794.90 38797.92 37298.99 34998.02 22299.85 24095.38 36999.44 30199.50 205
HY-MVS98.23 998.21 29897.95 30198.99 28799.03 35198.24 29699.61 6898.72 34796.81 36398.73 33199.51 24894.06 32599.86 22296.91 30398.20 38098.86 348
miper_enhance_ethall98.03 30597.94 30598.32 33998.27 39796.43 36496.95 39399.41 26796.37 36999.43 22898.96 35694.74 31999.69 34397.71 24699.62 25998.83 351
DPM-MVS98.28 29197.94 30599.32 23399.36 27999.11 22597.31 38498.78 34596.88 36098.84 31999.11 33497.77 24099.61 37894.03 38899.36 31299.23 276
JIA-IIPM98.06 30497.92 30798.50 33098.59 38797.02 35398.80 26598.51 35999.88 4097.89 37499.87 4791.89 34999.90 15798.16 20797.68 39498.59 363
MAR-MVS98.24 29597.92 30799.19 25898.78 37699.65 10799.17 17899.14 32795.36 38198.04 36998.81 36897.47 25699.72 33095.47 36799.06 33798.21 385
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
131498.00 30797.90 30998.27 34398.90 36197.45 34199.30 13699.06 33394.98 38697.21 38899.12 33198.43 18199.67 36095.58 36598.56 37097.71 394
OpenMVScopyleft98.12 1098.23 29697.89 31099.26 24899.19 32399.26 20099.65 5899.69 13791.33 39898.14 36699.77 10898.28 20099.96 5495.41 36899.55 28098.58 365
Syy-MVS98.17 29997.85 31199.15 26598.50 39198.79 25898.60 28299.21 31997.89 31796.76 39396.37 41295.47 31399.57 38299.10 12898.73 36399.09 310
pmmvs398.08 30397.80 31298.91 29999.41 26997.69 33497.87 35999.66 14995.87 37499.50 21399.51 24890.35 36999.97 3398.55 17699.47 29899.08 316
PatchmatchNetpermissive97.65 31997.80 31297.18 37398.82 37192.49 39899.17 17898.39 36698.12 30198.79 32699.58 22190.71 36599.89 17597.23 28899.41 30699.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu97.62 32097.79 31497.11 37596.67 40892.31 39998.51 30098.04 37499.24 16695.77 40299.47 26293.78 33099.66 36498.98 13899.62 25999.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.13 30097.77 31599.18 26094.57 41197.99 31699.24 15797.96 37699.74 7397.29 38699.62 19693.13 33799.97 3398.59 17499.83 17099.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1397.73 31698.70 38490.83 40799.15 18698.02 37598.51 26598.82 32199.61 20590.98 35999.66 36496.89 30598.92 348
tpmvs97.39 32797.69 31796.52 38198.41 39391.76 40199.30 13698.94 33997.74 32597.85 37799.55 24092.40 34799.73 32896.25 34198.73 36398.06 390
GA-MVS97.99 30897.68 31898.93 29699.52 22698.04 31497.19 38899.05 33498.32 29198.81 32298.97 35489.89 37499.41 39798.33 18899.05 33999.34 255
ADS-MVSNet97.72 31897.67 31997.86 35599.14 32994.65 38799.22 16598.86 34096.97 35898.25 35899.64 17890.90 36199.84 25596.51 32799.56 27699.08 316
ADS-MVSNet297.78 31397.66 32098.12 34799.14 32995.36 37999.22 16598.75 34696.97 35898.25 35899.64 17890.90 36199.94 7796.51 32799.56 27699.08 316
TAPA-MVS97.92 1398.03 30597.55 32199.46 18999.47 25099.44 15898.50 30199.62 17086.79 40199.07 29799.26 31098.26 20299.62 37497.28 28099.73 22399.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
E-PMN97.14 33497.43 32296.27 38498.79 37491.62 40395.54 40199.01 33799.44 13698.88 31399.12 33192.78 34199.68 35594.30 38399.03 34197.50 395
FE-MVS97.85 31097.42 32399.15 26599.44 25998.75 26199.77 1598.20 37395.85 37599.33 25199.80 8388.86 37799.88 18996.40 33499.12 33498.81 352
AUN-MVS97.82 31197.38 32499.14 26999.27 30898.53 27998.72 27499.02 33598.10 30297.18 38999.03 34589.26 37699.85 24097.94 22297.91 39099.03 326
baseline197.73 31597.33 32598.96 29099.30 30197.73 33299.40 11098.42 36499.33 15399.46 22299.21 32191.18 35699.82 27998.35 18691.26 40699.32 259
cl2297.56 32397.28 32698.40 33498.37 39596.75 35997.24 38799.37 28297.31 34799.41 23699.22 31987.30 38199.37 39897.70 24999.62 25999.08 316
EMVS96.96 33797.28 32695.99 38798.76 37991.03 40695.26 40298.61 35499.34 15198.92 30998.88 36493.79 32999.66 36492.87 39199.05 33997.30 399
FMVSNet597.80 31297.25 32899.42 20198.83 36898.97 24099.38 11499.80 8098.87 22199.25 26899.69 15180.60 39999.91 13998.96 14299.90 11599.38 243
tttt051797.62 32097.20 32998.90 30599.76 11797.40 34399.48 9794.36 40299.06 19999.70 13699.49 25584.55 39499.94 7798.73 16699.65 25499.36 249
TR-MVS97.44 32697.15 33098.32 33998.53 38997.46 34098.47 30397.91 37896.85 36198.21 36198.51 38196.42 29499.51 39292.16 39397.29 39697.98 391
dp96.86 33897.07 33196.24 38598.68 38590.30 41199.19 17298.38 36797.35 34598.23 36099.59 21887.23 38299.82 27996.27 34098.73 36398.59 363
PAPR97.56 32397.07 33199.04 28498.80 37298.11 30897.63 36899.25 30994.56 39298.02 37098.25 38797.43 25899.68 35590.90 39798.74 36199.33 256
BH-w/o97.20 33197.01 33397.76 35899.08 34495.69 37598.03 34298.52 35895.76 37797.96 37198.02 39095.62 31099.47 39492.82 39297.25 39798.12 389
tpm cat196.78 34096.98 33496.16 38698.85 36790.59 41099.08 21399.32 29192.37 39597.73 38399.46 26591.15 35799.69 34396.07 34798.80 35498.21 385
thisisatest053097.45 32596.95 33598.94 29399.68 16397.73 33299.09 21094.19 40498.61 25599.56 19299.30 30184.30 39599.93 9498.27 19499.54 28599.16 293
test-LLR97.15 33296.95 33597.74 36098.18 40095.02 38497.38 38096.10 39398.00 30797.81 37998.58 37590.04 37299.91 13997.69 25598.78 35598.31 379
tpm97.15 33296.95 33597.75 35998.91 36094.24 38999.32 12897.96 37697.71 32798.29 35699.32 29786.72 38999.92 11698.10 21196.24 40399.09 310
test0.0.03 197.37 32896.91 33898.74 31997.72 40497.57 33697.60 37097.36 38998.00 30799.21 27798.02 39090.04 37299.79 30598.37 18495.89 40498.86 348
OpenMVS_ROBcopyleft97.31 1797.36 32996.84 33998.89 30699.29 30399.45 15698.87 25199.48 25086.54 40399.44 22499.74 11997.34 26399.86 22291.61 39499.28 32397.37 398
dmvs_testset97.27 33096.83 34098.59 32699.46 25497.55 33799.25 15696.84 39298.78 23597.24 38797.67 39697.11 27498.97 40386.59 40798.54 37199.27 269
cascas96.99 33596.82 34197.48 36497.57 40795.64 37696.43 39999.56 21191.75 39697.13 39197.61 40095.58 31198.63 40596.68 31699.11 33598.18 388
CostFormer96.71 34396.79 34296.46 38398.90 36190.71 40999.41 10998.68 34994.69 39198.14 36699.34 29686.32 39199.80 30297.60 26098.07 38898.88 346
thisisatest051596.98 33696.42 34398.66 32399.42 26897.47 33997.27 38594.30 40397.24 34999.15 28598.86 36585.01 39299.87 20397.10 29499.39 30898.63 360
EPMVS96.53 34696.32 34497.17 37498.18 40092.97 39799.39 11289.95 41198.21 29798.61 34199.59 21886.69 39099.72 33096.99 29899.23 33198.81 352
baseline296.83 33996.28 34598.46 33299.09 34396.91 35698.83 25793.87 40697.23 35096.23 40198.36 38488.12 37999.90 15796.68 31698.14 38598.57 366
tpm296.35 35096.22 34696.73 37998.88 36691.75 40299.21 16798.51 35993.27 39497.89 37499.21 32184.83 39399.70 33796.04 34898.18 38398.75 358
thres600view796.60 34596.16 34797.93 35299.63 17596.09 37199.18 17397.57 38498.77 23798.72 33297.32 40287.04 38499.72 33088.57 39998.62 36897.98 391
MVEpermissive92.54 2296.66 34496.11 34898.31 34199.68 16397.55 33797.94 35295.60 39899.37 14890.68 40898.70 37396.56 28898.61 40686.94 40699.55 28098.77 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ET-MVSNet_ETH3D96.78 34096.07 34998.91 29999.26 31097.92 32497.70 36696.05 39697.96 31492.37 40798.43 38387.06 38399.90 15798.27 19497.56 39598.91 342
thres100view90096.39 34996.03 35097.47 36599.63 17595.93 37299.18 17397.57 38498.75 24198.70 33597.31 40387.04 38499.67 36087.62 40298.51 37296.81 400
tfpn200view996.30 35295.89 35197.53 36299.58 19196.11 36999.00 23297.54 38798.43 27198.52 34896.98 40586.85 38699.67 36087.62 40298.51 37296.81 400
thres40096.40 34895.89 35197.92 35399.58 19196.11 36999.00 23297.54 38798.43 27198.52 34896.98 40586.85 38699.67 36087.62 40298.51 37297.98 391
PCF-MVS96.03 1896.73 34295.86 35399.33 22999.44 25999.16 22096.87 39599.44 26186.58 40298.95 30499.40 27694.38 32399.88 18987.93 40199.80 19398.95 337
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TESTMET0.1,196.24 35395.84 35497.41 36798.24 39893.84 39297.38 38095.84 39798.43 27197.81 37998.56 37879.77 40199.89 17597.77 23898.77 35798.52 368
UWE-MVS96.21 35595.78 35597.49 36398.53 38993.83 39398.04 34093.94 40598.96 20798.46 35298.17 38879.86 40099.87 20396.99 29899.06 33798.78 355
test-mter96.23 35495.73 35697.74 36098.18 40095.02 38497.38 38096.10 39397.90 31697.81 37998.58 37579.12 40499.91 13997.69 25598.78 35598.31 379
thres20096.09 35795.68 35797.33 37099.48 24496.22 36898.53 29897.57 38498.06 30698.37 35596.73 40886.84 38899.61 37886.99 40598.57 36996.16 403
testing396.48 34795.63 35899.01 28699.23 31597.81 32898.90 24899.10 33098.72 24297.84 37897.92 39372.44 41199.85 24097.21 29099.33 31699.35 252
FPMVS96.32 35195.50 35998.79 31699.60 18298.17 30498.46 30798.80 34497.16 35496.28 39899.63 18982.19 39699.09 40188.45 40098.89 35399.10 306
tmp_tt95.75 36695.42 36096.76 37789.90 41394.42 38898.86 25297.87 38078.01 40499.30 26399.69 15197.70 24395.89 40899.29 10098.14 38599.95 11
testing1196.05 35995.41 36197.97 35098.78 37695.27 38198.59 28598.23 37298.86 22396.56 39696.91 40775.20 40799.69 34397.26 28398.29 37798.93 339
KD-MVS_2432*160095.89 36195.41 36197.31 37194.96 40993.89 39097.09 39099.22 31697.23 35098.88 31399.04 34179.23 40299.54 38696.24 34296.81 39898.50 372
miper_refine_blended95.89 36195.41 36197.31 37194.96 40993.89 39097.09 39099.22 31697.23 35098.88 31399.04 34179.23 40299.54 38696.24 34296.81 39898.50 372
testing9196.00 36095.32 36498.02 34898.76 37995.39 37898.38 31098.65 35398.82 22896.84 39296.71 40975.06 40899.71 33496.46 33298.23 37998.98 334
PVSNet_095.53 1995.85 36595.31 36597.47 36598.78 37693.48 39595.72 40099.40 27496.18 37297.37 38497.73 39595.73 30899.58 38195.49 36681.40 40799.36 249
ETVMVS96.14 35695.22 36698.89 30698.80 37298.01 31598.66 27898.35 36998.71 24497.18 38996.31 41474.23 41099.75 32296.64 32198.13 38798.90 343
testing9995.86 36495.19 36797.87 35498.76 37995.03 38398.62 27998.44 36398.68 24696.67 39596.66 41074.31 40999.69 34396.51 32798.03 38998.90 343
gg-mvs-nofinetune95.87 36395.17 36897.97 35098.19 39996.95 35499.69 4289.23 41299.89 3596.24 40099.94 1681.19 39799.51 39293.99 38998.20 38097.44 396
X-MVStestdata96.09 35794.87 36999.75 7499.71 14399.71 8399.37 11899.61 17799.29 15698.76 32961.30 41598.47 17599.88 18997.62 25799.73 22399.67 95
myMVS_eth3d95.63 36894.73 37098.34 33898.50 39196.36 36598.60 28299.21 31997.89 31796.76 39396.37 41272.10 41299.57 38294.38 38198.73 36399.09 310
PAPM95.61 36994.71 37198.31 34199.12 33396.63 36096.66 39898.46 36290.77 39996.25 39998.68 37493.01 33999.69 34381.60 40897.86 39398.62 361
MVS95.72 36794.63 37298.99 28798.56 38897.98 32299.30 13698.86 34072.71 40697.30 38599.08 33698.34 19499.74 32589.21 39898.33 37599.26 270
testing22295.60 37094.59 37398.61 32498.66 38697.45 34198.54 29697.90 37998.53 26396.54 39796.47 41170.62 41399.81 29495.91 35798.15 38498.56 367
test250694.73 37294.59 37395.15 38899.59 18685.90 41499.75 2274.01 41499.89 3599.71 13299.86 5479.00 40599.90 15799.52 6399.99 1699.65 112
IB-MVS95.41 2095.30 37194.46 37597.84 35698.76 37995.33 38097.33 38396.07 39596.02 37395.37 40597.41 40176.17 40699.96 5497.54 26395.44 40598.22 384
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_method91.72 37392.32 37689.91 39093.49 41270.18 41590.28 40399.56 21161.71 40795.39 40499.52 24693.90 32699.94 7798.76 16398.27 37899.62 138
EGC-MVSNET89.05 37485.52 37799.64 12899.89 3999.78 4999.56 8299.52 23724.19 40849.96 40999.83 6699.15 8199.92 11697.71 24699.85 15799.21 280
testmvs28.94 37633.33 37815.79 39226.03 4149.81 41796.77 39615.67 41511.55 41023.87 41150.74 41819.03 4158.53 41123.21 41033.07 40829.03 407
cdsmvs_eth3d_5k24.88 37733.17 3790.00 3930.00 4160.00 4180.00 40499.62 1700.00 4110.00 41299.13 32799.82 130.00 4120.00 4110.00 4100.00 408
test12329.31 37533.05 38018.08 39125.93 41512.24 41697.53 37410.93 41611.78 40924.21 41050.08 41921.04 4148.60 41023.51 40932.43 40933.39 406
pcd_1.5k_mvsjas16.61 37822.14 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 199.28 660.00 4120.00 4110.00 4100.00 408
test_blank8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
sosnet-low-res8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
sosnet8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
Regformer8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
uanet8.33 37911.11 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 412100.00 10.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.26 38711.02 3900.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41299.16 3250.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS96.36 36595.20 372
FOURS199.83 6599.89 1099.74 2499.71 12699.69 8899.63 159
MSC_two_6792asdad99.74 7999.03 35199.53 14199.23 31399.92 11697.77 23899.69 23899.78 56
PC_three_145297.56 33199.68 14299.41 27299.09 8997.09 40796.66 31899.60 26999.62 138
No_MVS99.74 7999.03 35199.53 14199.23 31399.92 11697.77 23899.69 23899.78 56
test_one_060199.63 17599.76 6199.55 21799.23 16899.31 25899.61 20598.59 156
eth-test20.00 416
eth-test0.00 416
ZD-MVS99.43 26399.61 12399.43 26496.38 36899.11 29199.07 33797.86 23399.92 11694.04 38799.49 296
IU-MVS99.69 15599.77 5499.22 31697.50 33799.69 13997.75 24299.70 23499.77 60
OPU-MVS99.29 24099.12 33399.44 15899.20 16899.40 27699.00 10298.84 40496.54 32599.60 26999.58 164
test_241102_TWO99.54 22399.13 19099.76 10899.63 18998.32 19799.92 11697.85 23399.69 23899.75 69
test_241102_ONE99.69 15599.82 3599.54 22399.12 19399.82 8199.49 25598.91 11499.52 391
save fliter99.53 22199.25 20398.29 31699.38 28199.07 197
test_0728_THIRD99.18 17699.62 16899.61 20598.58 15899.91 13997.72 24499.80 19399.77 60
test_0728_SECOND99.83 3399.70 15199.79 4699.14 18899.61 17799.92 11697.88 22799.72 22999.77 60
test072699.69 15599.80 4499.24 15799.57 20699.16 18499.73 12699.65 17698.35 192
GSMVS99.14 300
test_part299.62 17999.67 9999.55 197
sam_mvs190.81 36499.14 300
sam_mvs90.52 368
ambc99.20 25799.35 28198.53 27999.17 17899.46 25699.67 14899.80 8398.46 17899.70 33797.92 22399.70 23499.38 243
MTGPAbinary99.53 232
test_post199.14 18851.63 41789.54 37599.82 27996.86 306
test_post52.41 41690.25 37099.86 222
patchmatchnet-post99.62 19690.58 36699.94 77
GG-mvs-BLEND97.36 36897.59 40596.87 35799.70 3588.49 41394.64 40697.26 40480.66 39899.12 40091.50 39596.50 40296.08 404
MTMP99.09 21098.59 357
gm-plane-assit97.59 40589.02 41393.47 39398.30 38599.84 25596.38 336
test9_res95.10 37499.44 30199.50 205
TEST999.35 28199.35 18598.11 33299.41 26794.83 39097.92 37298.99 34998.02 22299.85 240
test_899.34 29099.31 19198.08 33699.40 27494.90 38797.87 37698.97 35498.02 22299.84 255
agg_prior294.58 38099.46 30099.50 205
agg_prior99.35 28199.36 18299.39 27797.76 38299.85 240
TestCases99.63 13599.78 10599.64 11099.83 6298.63 25199.63 15999.72 13098.68 14299.75 32296.38 33699.83 17099.51 200
test_prior499.19 21898.00 345
test_prior297.95 35197.87 32098.05 36899.05 33997.90 23095.99 35299.49 296
test_prior99.46 18999.35 28199.22 21199.39 27799.69 34399.48 214
旧先验297.94 35295.33 38298.94 30599.88 18996.75 312
新几何298.04 340
新几何199.52 17699.50 23499.22 21199.26 30695.66 37998.60 34299.28 30597.67 24799.89 17595.95 35599.32 31899.45 223
旧先验199.49 23999.29 19499.26 30699.39 28097.67 24799.36 31299.46 222
无先验98.01 34399.23 31395.83 37699.85 24095.79 36199.44 228
原ACMM297.92 355
原ACMM199.37 21999.47 25098.87 25399.27 30396.74 36598.26 35799.32 29797.93 22999.82 27995.96 35499.38 30999.43 234
test22299.51 22899.08 23297.83 36199.29 29995.21 38498.68 33699.31 29997.28 26599.38 30999.43 234
testdata299.89 17595.99 352
segment_acmp98.37 190
testdata99.42 20199.51 22898.93 24699.30 29896.20 37198.87 31699.40 27698.33 19699.89 17596.29 33999.28 32399.44 228
testdata197.72 36497.86 322
test1299.54 17399.29 30399.33 18899.16 32598.43 35397.54 25499.82 27999.47 29899.48 214
plane_prior799.58 19199.38 175
plane_prior699.47 25099.26 20097.24 266
plane_prior599.54 22399.82 27995.84 35999.78 20399.60 152
plane_prior499.25 312
plane_prior399.31 19198.36 28099.14 287
plane_prior298.80 26598.94 210
plane_prior199.51 228
plane_prior99.24 20798.42 30897.87 32099.71 232
n20.00 417
nn0.00 417
door-mid99.83 62
lessismore_v099.64 12899.86 5499.38 17590.66 40999.89 5399.83 6694.56 32299.97 3399.56 5799.92 10599.57 169
LGP-MVS_train99.74 7999.82 7299.63 11599.73 11497.56 33199.64 15599.69 15199.37 5699.89 17596.66 31899.87 14599.69 83
test1199.29 299
door99.77 95
HQP5-MVS98.94 243
HQP-NCC99.31 29797.98 34797.45 33998.15 362
ACMP_Plane99.31 29797.98 34797.45 33998.15 362
BP-MVS94.73 377
HQP4-MVS98.15 36299.70 33799.53 187
HQP3-MVS99.37 28299.67 249
HQP2-MVS96.67 285
NP-MVS99.40 27099.13 22398.83 366
MDTV_nov1_ep13_2view91.44 40599.14 18897.37 34499.21 27791.78 35296.75 31299.03 326
ACMMP++_ref99.94 94
ACMMP++99.79 198
Test By Simon98.41 184
ITE_SJBPF99.38 21699.63 17599.44 15899.73 11498.56 25899.33 25199.53 24498.88 11899.68 35596.01 34999.65 25499.02 331
DeepMVS_CXcopyleft97.98 34999.69 15596.95 35499.26 30675.51 40595.74 40398.28 38696.47 29299.62 37491.23 39697.89 39197.38 397