This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 12084.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8997.05 196.93 1
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12372.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15074.08 2087.16 2891.97 1984.80 276.97 19664.98 12193.61 6072.28 298
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PS-CasMVS80.41 4782.86 3673.07 13589.93 639.21 31777.15 11181.28 10779.74 590.87 492.73 1175.03 4384.93 6263.83 13395.19 1595.07 3
DTE-MVSNet80.35 4882.89 3572.74 14889.84 737.34 33777.16 11081.81 9780.45 390.92 392.95 774.57 4786.12 2963.65 13494.68 3194.76 6
PEN-MVS80.46 4682.91 3473.11 13389.83 839.02 32077.06 11382.61 8680.04 490.60 692.85 974.93 4485.21 5763.15 14195.15 1795.09 2
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 124
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8981.05 10588.38 11457.10 21087.10 879.75 783.87 22884.31 121
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVSNet79.48 5481.65 4572.98 13889.66 1239.06 31976.76 11480.46 12778.91 790.32 791.70 2568.49 9184.89 6363.40 13895.12 1895.01 4
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29478.24 9782.24 8978.21 989.57 992.10 1868.05 9685.59 4866.04 11395.62 994.88 5
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1978.84 1994.03 5384.64 104
X-MVStestdata76.81 7774.79 10082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 39673.86 5286.31 1978.84 1994.03 5384.64 104
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4164.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
UniMVSNet_ETH3D76.74 7879.02 6169.92 19189.27 1943.81 28274.47 14971.70 22972.33 3585.50 5093.65 377.98 2176.88 19954.60 21291.64 8689.08 32
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5380.92 10788.52 11072.00 6382.39 10074.80 4493.04 6881.14 193
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 109
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13464.71 9178.11 13688.39 11365.46 12583.14 8977.64 2991.20 9778.94 235
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5784.14 6790.21 7373.37 5686.41 1679.09 1893.98 5684.30 123
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10551.71 22277.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13775.34 1579.80 11894.91 269.79 8380.25 14172.63 6394.46 3688.78 42
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3577.77 2693.58 6183.09 155
新几何169.99 18988.37 3471.34 5162.08 30443.85 29274.99 18486.11 16452.85 23270.57 26750.99 23983.23 23768.05 332
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5666.40 6987.45 2289.16 9481.02 880.52 13774.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22287.30 3769.15 7367.85 23559.59 31441.06 31473.05 21685.72 17248.03 26480.65 26466.92 337
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2866.56 6885.64 4589.57 8369.12 8780.55 13672.51 6593.37 6383.48 141
save fliter87.00 3967.23 8679.24 8577.94 17656.65 163
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
EGC-MVSNET64.77 23361.17 26675.60 9886.90 4274.47 3084.04 3568.62 2630.60 3981.13 40091.61 2865.32 12774.15 23064.01 12888.28 16078.17 245
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 6965.64 7385.54 4989.28 8776.32 3183.47 8474.03 5293.57 6284.35 120
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6586.70 3089.99 7681.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11185.39 3466.73 6680.39 11488.85 10374.43 5078.33 17774.73 4685.79 20082.35 175
VDDNet71.60 14973.13 12867.02 23486.29 4741.11 30469.97 20566.50 27268.72 5574.74 18791.70 2559.90 17875.81 20748.58 26091.72 8484.15 125
test_0728_SECOND76.57 8586.20 4860.57 15183.77 4085.49 2985.90 3875.86 3994.39 4183.25 150
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 95
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 95
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14883.77 4080.58 12572.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5160.78 14883.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14183.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 4075.29 4294.39 4183.08 156
IU-MVS86.12 5360.90 14580.38 12945.49 28181.31 10175.64 4194.39 4184.65 103
test_241102_ONE86.12 5361.06 14184.72 4872.64 2987.38 2489.47 8477.48 2385.74 44
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12384.95 4366.89 6382.75 8588.99 9966.82 10878.37 17574.80 4490.76 11782.40 174
test_part285.90 5766.44 9184.61 62
原ACMM173.90 11885.90 5765.15 10681.67 9950.97 23474.25 19886.16 16161.60 15783.54 8256.75 18991.08 10473.00 289
testdata64.13 25585.87 5963.34 11961.80 30747.83 26476.42 17086.60 14848.83 25862.31 32354.46 21481.26 25866.74 341
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 10081.50 10163.92 9677.51 14486.56 14968.43 9384.82 6573.83 5391.61 8882.26 179
test_one_060185.84 6161.45 13485.63 2775.27 1785.62 4890.38 6476.72 27
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11665.77 7275.55 17786.25 15867.42 10185.42 5070.10 7690.88 11281.81 185
TEST985.47 6369.32 7076.42 11978.69 16153.73 20376.97 14986.74 13966.84 10781.10 122
train_agg76.38 8076.55 8375.86 9585.47 6369.32 7076.42 11978.69 16154.00 19876.97 14986.74 13966.60 11381.10 12272.50 6691.56 9077.15 258
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 2965.45 7678.23 13389.11 9560.83 17086.15 2771.09 7190.94 10684.82 99
plane_prior785.18 6666.21 94
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
test_885.09 6967.89 7976.26 12478.66 16354.00 19876.89 15386.72 14166.60 11380.89 132
bld_raw_dy_0_6472.85 13472.76 13673.09 13485.08 7064.80 10878.72 9064.22 29351.92 22083.13 7790.26 7039.21 31269.91 27270.73 7391.60 8984.56 111
WR-MVS71.20 15272.48 14167.36 22984.98 7135.70 34764.43 28268.66 26265.05 8681.49 9986.43 15357.57 20676.48 20350.36 24493.32 6589.90 23
PS-MVSNAJss77.54 7177.35 7778.13 7084.88 7266.37 9278.55 9379.59 14453.48 20686.29 3692.43 1562.39 14980.25 14167.90 9490.61 11887.77 49
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11481.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6576.50 19151.98 21987.40 2391.86 2176.09 3378.53 16768.58 8490.20 12386.69 66
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSLP-MVS++74.48 10575.78 9270.59 17584.66 7662.40 12478.65 9184.24 6260.55 12577.71 14281.98 22163.12 14077.64 19162.95 14288.14 16271.73 303
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6976.12 19351.33 23087.19 2791.51 2973.79 5478.44 17168.27 8790.13 12786.49 68
TranMVSNet+NR-MVSNet76.13 8277.66 7471.56 16684.61 7842.57 29670.98 19278.29 17068.67 5683.04 7889.26 8872.99 5880.75 13355.58 20495.47 1091.35 13
旧先验184.55 7960.36 15363.69 29687.05 13154.65 22383.34 23669.66 321
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 8070.53 5983.85 3883.70 7169.43 5283.67 7388.96 10075.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
plane_prior184.46 81
agg_prior84.44 8266.02 9778.62 16476.95 15180.34 139
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 12184.05 6756.66 16280.27 11585.31 17568.56 9087.03 1067.39 10091.26 9583.50 138
CDPH-MVS77.33 7377.06 8078.14 6984.21 8463.98 11576.07 12783.45 7454.20 19377.68 14387.18 12669.98 8085.37 5168.01 9192.72 7485.08 92
plane_prior684.18 8565.31 10360.83 170
114514_t73.40 11673.33 12573.64 12384.15 8657.11 17578.20 9880.02 13643.76 29572.55 22286.07 16664.00 13683.35 8760.14 16691.03 10580.45 214
ZD-MVS83.91 8769.36 6981.09 11358.91 14082.73 8689.11 9575.77 3586.63 1272.73 6292.93 70
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7983.75 7056.73 16174.88 18685.32 17465.54 12387.79 265.61 11791.14 10083.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3373.08 12371.61 15477.48 7483.89 8972.89 4470.47 19971.12 24554.28 18977.89 13783.41 19749.04 25580.98 12763.62 13590.77 11678.58 239
SD-MVS80.28 4981.55 4776.47 8883.57 9067.83 8083.39 4785.35 3564.42 9286.14 3987.07 13074.02 5180.97 12877.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DU-MVS74.91 10075.57 9572.93 14283.50 9145.79 26869.47 21180.14 13565.22 8281.74 9687.08 12861.82 15581.07 12456.21 19694.98 2091.93 8
NR-MVSNet73.62 11274.05 11072.33 15983.50 9143.71 28365.65 26777.32 18364.32 9375.59 17687.08 12862.45 14881.34 11654.90 20795.63 891.93 8
test_040278.17 6979.48 5974.24 11383.50 9159.15 16272.52 16374.60 20875.34 1588.69 1391.81 2275.06 4282.37 10165.10 11988.68 15781.20 191
OPU-MVS78.65 6283.44 9466.85 8983.62 4286.12 16366.82 10886.01 3161.72 14989.79 13583.08 156
NP-MVS83.34 9563.07 12285.97 167
DVP-MVS++81.24 3582.74 3776.76 8283.14 9660.90 14591.64 185.49 2974.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11483.49 139
MSC_two_6792asdad79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
No_MVS79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 13683.29 4880.34 13257.43 15486.65 3191.79 2350.52 24586.01 3171.36 7094.65 3291.62 11
UniMVSNet (Re)75.00 9875.48 9673.56 12583.14 9647.92 24570.41 20181.04 11563.67 10079.54 12086.37 15462.83 14381.82 11057.10 18895.25 1490.94 17
hse-mvs272.32 14370.66 16677.31 7983.10 10171.77 4769.19 21671.45 23554.28 18977.89 13778.26 27549.04 25579.23 15563.62 13589.13 15180.92 200
UniMVSNet_NR-MVSNet74.90 10175.65 9372.64 15183.04 10245.79 26869.26 21478.81 15666.66 6781.74 9686.88 13463.26 13981.07 12456.21 19694.98 2091.05 15
HyFIR lowres test63.01 25360.47 27370.61 17483.04 10254.10 19459.93 31572.24 22833.67 35969.00 26775.63 29638.69 31576.93 19736.60 34275.45 30780.81 205
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10895.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS70.22 16267.88 19877.22 8082.96 10571.61 4869.08 21771.39 23649.17 25371.70 23278.07 28037.62 32379.21 15661.81 14689.15 14980.82 203
DP-MVS Recon73.57 11372.69 13776.23 9182.85 10663.39 11874.32 15082.96 8057.75 14870.35 25081.98 22164.34 13584.41 7349.69 24889.95 13080.89 201
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
PVSNet_Blended_VisFu70.04 16468.88 18173.53 12682.71 10863.62 11774.81 14081.95 9548.53 25867.16 29279.18 26451.42 24178.38 17454.39 21679.72 27678.60 238
DPM-MVS69.98 16669.22 17772.26 16082.69 10958.82 16670.53 19881.23 10947.79 26564.16 30980.21 24451.32 24283.12 9060.14 16684.95 21574.83 276
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 11058.80 16771.48 18273.64 21254.98 17776.55 16481.77 22461.10 16778.94 16154.87 20880.84 26272.74 293
HQP-NCC82.37 11177.32 10759.08 13471.58 234
ACMP_Plane82.37 11177.32 10759.08 13471.58 234
HQP-MVS75.24 9375.01 9975.94 9382.37 11158.80 16777.32 10784.12 6559.08 13471.58 23485.96 16858.09 19785.30 5367.38 10289.16 14783.73 135
test1276.51 8682.28 11460.94 14481.64 10073.60 20764.88 13085.19 5990.42 12183.38 146
TAMVS65.31 22663.75 24569.97 19082.23 11559.76 15766.78 25463.37 29845.20 28569.79 25979.37 26047.42 26772.17 25034.48 35585.15 21077.99 250
test_prior75.27 10282.15 11659.85 15684.33 5983.39 8682.58 171
SF-MVS80.72 4381.80 4277.48 7482.03 11764.40 11283.41 4688.46 565.28 8184.29 6589.18 9273.73 5583.22 8876.01 3893.77 5884.81 101
AdaColmapbinary74.22 10674.56 10273.20 13081.95 11860.97 14379.43 8280.90 11765.57 7472.54 22381.76 22570.98 7385.26 5447.88 26990.00 12873.37 286
PAPM_NR73.91 10874.16 10973.16 13181.90 11953.50 19881.28 6081.40 10466.17 7073.30 21383.31 20359.96 17783.10 9158.45 18081.66 25582.87 162
DP-MVS78.44 6679.29 6075.90 9481.86 12065.33 10279.05 8784.63 5474.83 1880.41 11386.27 15671.68 6483.45 8562.45 14592.40 7778.92 236
F-COLMAP75.29 9173.99 11179.18 5281.73 12171.90 4681.86 5882.98 7959.86 13172.27 22684.00 19064.56 13383.07 9251.48 23487.19 18382.56 172
SixPastTwentyTwo75.77 8476.34 8574.06 11681.69 12254.84 18876.47 11675.49 20064.10 9587.73 1792.24 1750.45 24781.30 11867.41 9891.46 9286.04 73
Vis-MVSNetpermissive74.85 10474.56 10275.72 9681.63 12364.64 11076.35 12179.06 15262.85 11073.33 21288.41 11262.54 14779.59 15263.94 13282.92 23882.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19852.27 21487.37 2692.25 1668.04 9780.56 13472.28 6791.15 9990.32 22
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11190.18 7459.80 18187.58 573.06 5991.34 9489.01 34
tt080576.12 8378.43 6869.20 20181.32 12641.37 30276.72 11577.64 17963.78 9982.06 9087.88 12379.78 1179.05 15864.33 12692.40 7787.17 60
MCST-MVS73.42 11573.34 12473.63 12481.28 12759.17 16174.80 14283.13 7845.50 27972.84 21883.78 19465.15 12880.99 12664.54 12389.09 15380.73 207
MIMVSNet166.57 21669.23 17658.59 30581.26 12837.73 33464.06 28557.62 31857.02 15778.40 13290.75 4662.65 14458.10 33841.77 30889.58 14079.95 220
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12962.39 12580.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 9964.82 12296.10 487.21 57
MVS_111021_HR72.98 13072.97 13372.99 13780.82 13065.47 10068.81 22172.77 22157.67 15075.76 17482.38 21871.01 7277.17 19461.38 15186.15 19676.32 264
9.1480.22 5380.68 13180.35 7287.69 1059.90 12983.00 7988.20 11774.57 4781.75 11273.75 5493.78 57
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6384.76 4662.54 11281.77 9486.65 14571.46 6683.53 8367.95 9392.44 7689.60 24
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13364.16 11380.24 7482.06 9261.89 11688.77 1293.32 457.15 20882.60 9870.08 7792.80 7189.25 28
CDS-MVSNet64.33 24162.66 25769.35 19880.44 13458.28 17165.26 27265.66 27844.36 29067.30 29175.54 29743.27 28571.77 25637.68 33484.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 13380.58 6682.12 9153.54 20583.93 7091.03 3749.49 25185.97 3373.26 5793.08 6791.59 12
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13668.63 7578.18 9981.24 10854.57 18667.09 29380.63 23859.44 18281.74 11346.91 27684.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 1792x268858.09 29256.30 30363.45 26479.95 13750.93 21254.07 34865.59 27928.56 37561.53 32674.33 30941.09 29966.52 30733.91 35867.69 36072.92 290
K. test v373.67 11173.61 11973.87 11979.78 13855.62 18674.69 14662.04 30666.16 7184.76 6093.23 549.47 25280.97 12865.66 11686.67 19185.02 94
VPNet65.58 22467.56 20159.65 29879.72 13930.17 37460.27 31362.14 30254.19 19471.24 24286.63 14658.80 18967.62 29144.17 29590.87 11381.18 192
ACMH63.62 1477.50 7280.11 5469.68 19379.61 14056.28 17978.81 8983.62 7263.41 10687.14 2990.23 7276.11 3273.32 23667.58 9594.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lessismore_v072.75 14779.60 14156.83 17857.37 32183.80 7289.01 9847.45 26678.74 16564.39 12586.49 19482.69 168
MVS_111021_LR72.10 14571.82 15072.95 13979.53 14273.90 3670.45 20066.64 27156.87 15876.81 15781.76 22568.78 8871.76 25761.81 14683.74 23073.18 288
Test_1112_low_res58.78 28858.69 28559.04 30379.41 14338.13 33057.62 32866.98 27034.74 35259.62 34277.56 28442.92 28863.65 31838.66 32670.73 34275.35 273
CSCG74.12 10774.39 10473.33 12879.35 14461.66 13277.45 10681.98 9462.47 11479.06 12580.19 24661.83 15478.79 16459.83 17087.35 17679.54 228
MVS_030476.32 8175.96 9177.42 7679.33 14560.86 14780.18 7674.88 20566.93 6269.11 26588.95 10157.84 20486.12 2976.63 3789.77 13685.28 86
MVP-Stereo61.56 26759.22 28068.58 21679.28 14660.44 15269.20 21571.57 23143.58 29856.42 35478.37 27439.57 31076.46 20434.86 35460.16 37768.86 329
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MG-MVS70.47 16171.34 15967.85 22479.26 14740.42 31274.67 14775.15 20458.41 14268.74 27788.14 12156.08 21983.69 8059.90 16981.71 25479.43 230
IS-MVSNet75.10 9575.42 9774.15 11579.23 14848.05 24379.43 8278.04 17470.09 4979.17 12488.02 12253.04 23183.60 8158.05 18393.76 5990.79 19
FC-MVSNet-test73.32 11874.78 10168.93 20979.21 14936.57 33971.82 17979.54 14657.63 15382.57 8790.38 6459.38 18478.99 16057.91 18494.56 3491.23 14
AllTest77.66 7077.43 7578.35 6679.19 15070.81 5578.60 9288.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
xiu_mvs_v1_base_debu67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base_debi67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
VDD-MVS70.81 15771.44 15868.91 21079.07 15546.51 26267.82 23670.83 24961.23 11974.07 20288.69 10659.86 17975.62 21051.11 23790.28 12284.61 107
test111164.62 23465.19 23062.93 27179.01 15629.91 37565.45 27054.41 34154.09 19671.47 24188.48 11137.02 32574.29 22846.83 27889.94 13184.58 110
TSAR-MVS + GP.73.08 12371.60 15577.54 7378.99 15770.73 5774.96 13769.38 25760.73 12474.39 19678.44 27357.72 20582.78 9560.16 16589.60 13879.11 233
test250661.23 26960.85 27062.38 27678.80 15827.88 38167.33 24537.42 39354.23 19167.55 28888.68 10717.87 39774.39 22646.33 28189.41 14384.86 97
ECVR-MVScopyleft64.82 23165.22 22963.60 26178.80 15831.14 37166.97 25056.47 33254.23 19169.94 25688.68 10737.23 32474.81 22145.28 29189.41 14384.86 97
FIs72.56 13973.80 11468.84 21278.74 16037.74 33371.02 19179.83 13956.12 16680.88 11089.45 8558.18 19378.28 17856.63 19093.36 6490.51 21
v7n79.37 5680.41 5276.28 9078.67 16155.81 18379.22 8682.51 8870.72 4487.54 2192.44 1468.00 9881.34 11672.84 6191.72 8491.69 10
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8685.26 5466.15 11091.24 9687.61 52
CNLPA73.44 11473.03 13174.66 10578.27 16375.29 2675.99 12878.49 16565.39 7875.67 17583.22 20961.23 16366.77 30553.70 22385.33 20681.92 184
EPP-MVSNet73.86 11073.38 12275.31 10178.19 16453.35 20080.45 6877.32 18365.11 8576.47 16886.80 13549.47 25283.77 7753.89 22192.72 7488.81 41
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15573.04 16081.50 10145.34 28379.66 11984.35 18665.15 12882.65 9748.70 25889.38 14684.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE73.14 12173.77 11671.26 17078.09 16652.64 20374.32 15079.56 14556.32 16576.35 17183.36 20270.76 7477.96 18563.32 13981.84 24983.18 153
LFMVS67.06 21167.89 19764.56 25278.02 16738.25 32870.81 19659.60 31365.18 8371.06 24486.56 14943.85 28275.22 21446.35 28089.63 13780.21 218
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19350.51 24089.19 1090.88 4271.45 6777.78 18973.38 5690.60 11990.90 18
BH-untuned69.39 17669.46 17269.18 20277.96 16956.88 17668.47 23077.53 18056.77 16077.79 14079.63 25560.30 17580.20 14446.04 28380.65 26470.47 314
1112_ss59.48 28358.99 28360.96 29077.84 17042.39 29761.42 30368.45 26437.96 33759.93 33967.46 35845.11 27565.07 31140.89 31471.81 33675.41 271
PS-MVSNAJ64.27 24263.73 24665.90 24577.82 17151.42 20963.33 29272.33 22645.09 28761.60 32568.04 35662.39 14973.95 23249.07 25473.87 32372.34 296
ambc70.10 18777.74 17250.21 21974.28 15277.93 17779.26 12388.29 11654.11 22779.77 14864.43 12491.10 10380.30 216
xiu_mvs_v2_base64.43 23963.96 24365.85 24677.72 17351.32 21063.63 28972.31 22745.06 28861.70 32469.66 34462.56 14573.93 23349.06 25573.91 32272.31 297
Anonymous2023121175.54 8977.19 7870.59 17577.67 17445.70 27174.73 14480.19 13368.80 5382.95 8192.91 866.26 11676.76 20158.41 18192.77 7289.30 27
FMVSNet171.06 15372.48 14166.81 23577.65 17540.68 30871.96 17373.03 21661.14 12079.45 12290.36 6760.44 17375.20 21550.20 24588.05 16484.54 112
FPMVS59.43 28460.07 27557.51 31177.62 17671.52 4962.33 29950.92 35557.40 15569.40 26380.00 25039.14 31361.92 32537.47 33766.36 36239.09 392
testing358.28 29158.38 28958.00 30977.45 17726.12 38660.78 30943.00 37956.02 16770.18 25375.76 29413.27 40467.24 29748.02 26780.89 26080.65 210
Effi-MVS+-dtu75.43 9072.28 14584.91 277.05 17883.58 178.47 9477.70 17857.68 14974.89 18578.13 27964.80 13184.26 7456.46 19485.32 20786.88 62
CLD-MVS72.88 13372.36 14474.43 11077.03 17954.30 19268.77 22483.43 7552.12 21676.79 15874.44 30869.54 8583.91 7555.88 19993.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS76.51 7976.00 8978.06 7177.02 18064.77 10980.78 6482.66 8560.39 12674.15 19983.30 20469.65 8482.07 10769.27 8286.75 19087.36 55
CS-MVS-test74.89 10274.23 10876.86 8177.01 18162.94 12378.98 8884.61 5558.62 14170.17 25480.80 23566.74 11281.96 10861.74 14889.40 14585.69 81
Baseline_NR-MVSNet70.62 15973.19 12662.92 27276.97 18234.44 35568.84 21970.88 24860.25 12779.50 12190.53 5361.82 15569.11 27854.67 21195.27 1385.22 87
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12666.87 6483.64 7486.18 15970.25 7879.90 14761.12 15688.95 15587.56 53
SSC-MVS61.79 26566.08 21948.89 34876.91 18410.00 40253.56 35047.37 36868.20 5876.56 16389.21 9054.13 22657.59 33954.75 20974.07 32179.08 234
jason64.47 23862.84 25569.34 19976.91 18459.20 15867.15 24765.67 27735.29 34965.16 30276.74 29044.67 27770.68 26554.74 21079.28 27978.14 246
jason: jason.
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 18073.34 15884.67 5162.04 11572.19 22970.81 33465.90 12085.24 5658.64 17884.96 21481.95 183
Anonymous2024052972.56 13973.79 11568.86 21176.89 18745.21 27368.80 22377.25 18567.16 6176.89 15390.44 5665.95 11974.19 22950.75 24090.00 12887.18 59
EC-MVSNet77.08 7677.39 7676.14 9276.86 18856.87 17780.32 7387.52 1163.45 10474.66 19184.52 18369.87 8284.94 6169.76 7989.59 13986.60 67
PM-MVS64.49 23763.61 24767.14 23376.68 18975.15 2768.49 22942.85 38051.17 23377.85 13980.51 23945.76 26966.31 30852.83 22976.35 29959.96 369
TransMVSNet (Re)69.62 17171.63 15363.57 26276.51 19035.93 34565.75 26671.29 24061.05 12175.02 18389.90 7965.88 12170.41 27149.79 24789.48 14184.38 119
BH-RMVSNet68.69 18668.20 19470.14 18676.40 19153.90 19764.62 27973.48 21458.01 14573.91 20681.78 22359.09 18678.22 17948.59 25977.96 29378.31 242
PHI-MVS74.92 9974.36 10676.61 8476.40 19162.32 12680.38 7083.15 7754.16 19573.23 21480.75 23662.19 15283.86 7668.02 9090.92 10983.65 136
UGNet70.20 16369.05 17873.65 12276.24 19363.64 11675.87 13172.53 22461.48 11860.93 33386.14 16252.37 23477.12 19550.67 24185.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchMatch-RL58.68 28957.72 29361.57 28276.21 19473.59 3961.83 30049.00 36247.30 26961.08 32968.97 34950.16 24859.01 33236.06 34968.84 35352.10 379
VPA-MVSNet68.71 18570.37 16763.72 26076.13 19538.06 33164.10 28471.48 23456.60 16474.10 20188.31 11564.78 13269.72 27347.69 27190.15 12583.37 147
WB-MVS60.04 27964.19 24147.59 35076.09 19610.22 40152.44 35546.74 36965.17 8474.07 20287.48 12553.48 22955.28 34249.36 25272.84 32877.28 255
PAPM61.79 26560.37 27466.05 24376.09 19641.87 29969.30 21376.79 19040.64 32253.80 36679.62 25644.38 27982.92 9429.64 37473.11 32773.36 287
BH-w/o64.81 23264.29 24066.36 24076.08 19854.71 18965.61 26875.23 20350.10 24571.05 24571.86 32954.33 22579.02 15938.20 33176.14 30165.36 347
dcpmvs_271.02 15572.65 13866.16 24276.06 19950.49 21571.97 17279.36 14750.34 24182.81 8483.63 19564.38 13467.27 29661.54 15083.71 23280.71 209
pmmvs671.82 14773.66 11766.31 24175.94 20042.01 29866.99 24972.53 22463.45 10476.43 16992.78 1072.95 5969.69 27451.41 23590.46 12087.22 56
CANet73.00 12871.84 14976.48 8775.82 20161.28 13774.81 14080.37 13063.17 10862.43 32380.50 24061.10 16785.16 6064.00 12984.34 22483.01 159
pmmvs-eth3d64.41 24063.27 25167.82 22675.81 20260.18 15469.49 21062.05 30538.81 33374.13 20082.23 21943.76 28368.65 28242.53 30280.63 26674.63 277
TR-MVS64.59 23563.54 24867.73 22775.75 20350.83 21363.39 29170.29 25249.33 25171.55 23874.55 30650.94 24378.46 17040.43 31675.69 30373.89 283
tttt051769.46 17467.79 20074.46 10775.34 20452.72 20275.05 13663.27 29954.69 18378.87 12784.37 18526.63 37681.15 12063.95 13087.93 16889.51 25
cascas64.59 23562.77 25670.05 18875.27 20550.02 22161.79 30171.61 23042.46 30563.68 31668.89 35149.33 25480.35 13847.82 27084.05 22779.78 223
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 18180.99 6176.84 18862.48 11371.24 24277.51 28561.51 15980.96 13152.04 23085.76 20171.22 308
EIA-MVS68.59 18867.16 20772.90 14375.18 20755.64 18569.39 21281.29 10652.44 21364.53 30570.69 33560.33 17482.30 10354.27 21876.31 30080.75 206
PAPR69.20 17868.66 18770.82 17275.15 20847.77 24875.31 13481.11 11149.62 25066.33 29579.27 26161.53 15882.96 9348.12 26681.50 25781.74 187
MVSFormer69.93 16769.03 17972.63 15274.93 20959.19 15983.98 3675.72 19852.27 21463.53 31976.74 29043.19 28680.56 13472.28 6778.67 28578.14 246
lupinMVS63.36 24861.49 26468.97 20774.93 20959.19 15965.80 26564.52 29034.68 35463.53 31974.25 31143.19 28670.62 26653.88 22278.67 28577.10 259
nrg03074.87 10375.99 9071.52 16774.90 21149.88 22874.10 15482.58 8754.55 18783.50 7589.21 9071.51 6575.74 20961.24 15292.34 7988.94 37
TAPA-MVS65.27 1275.16 9474.29 10777.77 7274.86 21268.08 7777.89 10184.04 6855.15 17676.19 17383.39 19866.91 10680.11 14560.04 16890.14 12685.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RPSCF75.76 8574.37 10579.93 4074.81 21377.53 1677.53 10579.30 14959.44 13378.88 12689.80 8071.26 6973.09 23857.45 18580.89 26089.17 31
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16572.24 16571.56 23263.92 9678.59 12871.59 33066.22 11778.60 16667.58 9580.32 26789.00 35
v124073.06 12573.14 12772.84 14574.74 21547.27 25671.88 17881.11 11151.80 22182.28 8984.21 18756.22 21882.34 10268.82 8387.17 18488.91 38
v192192072.96 13172.98 13272.89 14474.67 21647.58 25171.92 17680.69 12051.70 22381.69 9883.89 19256.58 21582.25 10468.34 8687.36 17588.82 40
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 17072.02 17071.50 23363.53 10278.58 13071.39 33365.98 11878.53 16767.30 10580.18 26989.23 29
Fast-Effi-MVS+68.81 18368.30 19070.35 18074.66 21848.61 23666.06 26078.32 16850.62 23871.48 24075.54 29768.75 8979.59 15250.55 24378.73 28482.86 163
v119273.40 11673.42 12073.32 12974.65 21948.67 23572.21 16681.73 9852.76 21181.85 9284.56 18257.12 20982.24 10568.58 8487.33 17789.06 33
v14419272.99 12973.06 13072.77 14674.58 22047.48 25271.90 17780.44 12851.57 22481.46 10084.11 18958.04 20182.12 10667.98 9287.47 17388.70 43
MAR-MVS67.72 20066.16 21872.40 15774.45 22164.99 10774.87 13877.50 18148.67 25765.78 29968.58 35557.01 21277.79 18846.68 27981.92 24674.42 279
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v1075.69 8676.20 8774.16 11474.44 22248.69 23475.84 13282.93 8159.02 13885.92 4189.17 9358.56 19182.74 9670.73 7389.14 15091.05 15
canonicalmvs72.29 14473.38 12269.04 20474.23 22347.37 25473.93 15683.18 7654.36 18876.61 16281.64 22772.03 6175.34 21357.12 18787.28 17984.40 118
Anonymous20240521166.02 22166.89 21363.43 26574.22 22438.14 32959.00 31966.13 27463.33 10769.76 26085.95 16951.88 23670.50 26844.23 29487.52 17181.64 188
Effi-MVS+72.10 14572.28 14571.58 16574.21 22550.33 21774.72 14582.73 8362.62 11170.77 24676.83 28969.96 8180.97 12860.20 16378.43 28783.45 144
FE-MVS68.29 19366.96 21272.26 16074.16 22654.24 19377.55 10473.42 21557.65 15272.66 22084.91 17932.02 34981.49 11548.43 26281.85 24881.04 195
v114473.29 11973.39 12173.01 13674.12 22748.11 24172.01 17181.08 11453.83 20281.77 9484.68 18058.07 20081.91 10968.10 8886.86 18688.99 36
FA-MVS(test-final)71.27 15171.06 16171.92 16373.96 22852.32 20676.45 11876.12 19359.07 13774.04 20486.18 15952.18 23579.43 15459.75 17281.76 25084.03 126
EI-MVSNet69.61 17269.01 18071.41 16973.94 22949.90 22471.31 18771.32 23858.22 14375.40 18170.44 33658.16 19475.85 20562.51 14379.81 27388.48 44
CVMVSNet59.21 28558.44 28861.51 28373.94 22947.76 24971.31 18764.56 28926.91 38160.34 33570.44 33636.24 32967.65 29053.57 22468.66 35469.12 327
IterMVS-LS73.01 12773.12 12972.66 15073.79 23149.90 22471.63 18178.44 16658.22 14380.51 11286.63 14658.15 19579.62 15062.51 14388.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
iter_conf_final68.69 18667.00 21173.76 12173.68 23252.33 20575.96 12973.54 21350.56 23969.90 25782.85 21024.76 38583.73 7865.40 11886.33 19585.22 87
alignmvs70.54 16071.00 16269.15 20373.50 23348.04 24469.85 20879.62 14153.94 20176.54 16582.00 22059.00 18774.68 22257.32 18687.21 18284.72 102
Fast-Effi-MVS+-dtu70.00 16568.74 18573.77 12073.47 23464.53 11171.36 18578.14 17355.81 17168.84 27574.71 30565.36 12675.75 20852.00 23179.00 28181.03 196
v875.07 9675.64 9473.35 12773.42 23547.46 25375.20 13581.45 10360.05 12885.64 4589.26 8858.08 19981.80 11169.71 8187.97 16790.79 19
tfpnnormal66.48 21767.93 19662.16 27873.40 23636.65 33863.45 29064.99 28455.97 16872.82 21987.80 12457.06 21169.10 27948.31 26487.54 17080.72 208
IterMVS-SCA-FT67.68 20166.07 22072.49 15573.34 23758.20 17263.80 28765.55 28048.10 26076.91 15282.64 21545.20 27378.84 16261.20 15377.89 29480.44 215
VNet64.01 24565.15 23360.57 29273.28 23835.61 34857.60 32967.08 26954.61 18566.76 29483.37 20056.28 21766.87 30142.19 30485.20 20979.23 232
3Dnovator65.95 1171.50 15071.22 16072.34 15873.16 23963.09 12178.37 9578.32 16857.67 15072.22 22884.61 18154.77 22178.47 16960.82 15981.07 25975.45 270
GBi-Net68.30 19168.79 18266.81 23573.14 24040.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26175.20 21547.12 27385.37 20384.54 112
test168.30 19168.79 18266.81 23573.14 24040.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26175.20 21547.12 27385.37 20384.54 112
FMVSNet267.48 20368.21 19365.29 24773.14 24038.94 32168.81 22171.21 24454.81 17876.73 15986.48 15148.63 26174.60 22347.98 26886.11 19882.35 175
thisisatest053067.05 21265.16 23172.73 14973.10 24350.55 21471.26 18963.91 29550.22 24374.46 19580.75 23626.81 37580.25 14159.43 17486.50 19387.37 54
pm-mvs168.40 18969.85 17164.04 25873.10 24339.94 31464.61 28070.50 25055.52 17373.97 20589.33 8663.91 13768.38 28449.68 24988.02 16583.81 131
pmmvs460.78 27359.04 28266.00 24473.06 24557.67 17464.53 28160.22 31136.91 34365.96 29677.27 28639.66 30968.54 28338.87 32474.89 31171.80 302
SDMVSNet66.36 21967.85 19961.88 28073.04 24646.14 26758.54 32371.36 23751.42 22768.93 27182.72 21365.62 12262.22 32454.41 21584.67 21677.28 255
sd_testset63.55 24665.38 22758.07 30873.04 24638.83 32357.41 33065.44 28151.42 22768.93 27182.72 21363.76 13858.11 33741.05 31284.67 21677.28 255
v2v48272.55 14172.58 13972.43 15672.92 24846.72 26071.41 18479.13 15155.27 17481.17 10485.25 17655.41 22081.13 12167.25 10685.46 20289.43 26
casdiffmvs_mvgpermissive75.26 9276.18 8872.52 15372.87 24949.47 22972.94 16184.71 5059.49 13280.90 10988.81 10470.07 7979.71 14967.40 9988.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet54.39 30956.12 30549.20 34472.57 25030.91 37259.98 31448.43 36441.66 30855.94 35683.86 19341.19 29850.42 34926.05 38475.38 30866.27 342
Patchmatch-RL test59.95 28059.12 28162.44 27572.46 25154.61 19159.63 31647.51 36741.05 31574.58 19374.30 31031.06 35865.31 30951.61 23379.85 27267.39 334
CL-MVSNet_self_test62.44 26063.40 24959.55 29972.34 25232.38 36456.39 33464.84 28651.21 23267.46 28981.01 23350.75 24463.51 31938.47 32988.12 16382.75 166
Vis-MVSNet (Re-imp)62.74 25763.21 25261.34 28672.19 25331.56 36867.31 24653.87 34253.60 20469.88 25883.37 20040.52 30370.98 26441.40 31086.78 18981.48 190
thres100view90061.17 27061.09 26761.39 28572.14 25435.01 35165.42 27156.99 32655.23 17570.71 24779.90 25132.07 34772.09 25135.61 35081.73 25177.08 260
ab-mvs64.11 24365.13 23461.05 28871.99 25538.03 33267.59 23768.79 26149.08 25565.32 30186.26 15758.02 20266.85 30339.33 32079.79 27578.27 243
thres600view761.82 26461.38 26563.12 26771.81 25634.93 35264.64 27856.99 32654.78 18270.33 25179.74 25332.07 34772.42 24838.61 32783.46 23582.02 181
QAPM69.18 17969.26 17568.94 20871.61 25752.58 20480.37 7178.79 15949.63 24973.51 20885.14 17753.66 22879.12 15755.11 20675.54 30575.11 275
baseline73.10 12273.96 11270.51 17771.46 25846.39 26572.08 16984.40 5855.95 16976.62 16186.46 15267.20 10278.03 18464.22 12787.27 18087.11 61
casdiffmvspermissive73.06 12573.84 11370.72 17371.32 25946.71 26170.93 19384.26 6155.62 17277.46 14587.10 12767.09 10477.81 18763.95 13086.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmvis_n_192072.36 14272.49 14071.96 16271.29 26064.06 11472.79 16281.82 9640.23 32481.25 10381.04 23270.62 7568.69 28169.74 8083.60 23483.14 154
Anonymous2023120654.13 31055.82 30749.04 34770.89 26135.96 34451.73 35650.87 35634.86 35062.49 32279.22 26242.52 29244.29 37527.95 38181.88 24766.88 338
fmvsm_s_conf0.1_n_a67.37 20766.36 21670.37 17970.86 26261.17 13974.00 15557.18 32540.77 31968.83 27680.88 23463.11 14167.61 29266.94 10774.72 31282.33 178
tfpn200view960.35 27759.97 27661.51 28370.78 26335.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34472.09 25135.61 35081.73 25177.08 260
thres40060.77 27459.97 27663.15 26670.78 26335.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34472.09 25135.61 35081.73 25182.02 181
MSDG67.47 20567.48 20467.46 22870.70 26554.69 19066.90 25278.17 17160.88 12370.41 24974.76 30361.22 16573.18 23747.38 27276.87 29774.49 278
test_yl65.11 22765.09 23565.18 24870.59 26640.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 28974.89 21945.50 28884.97 21179.81 221
DCV-MVSNet65.11 22765.09 23565.18 24870.59 26640.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 28974.89 21945.50 28884.97 21179.81 221
test_fmvsm_n_192069.63 17068.45 18873.16 13170.56 26865.86 9870.26 20278.35 16737.69 33874.29 19778.89 26961.10 16768.10 28765.87 11579.07 28085.53 83
OpenMVScopyleft62.51 1568.76 18468.75 18468.78 21370.56 26853.91 19678.29 9677.35 18248.85 25670.22 25283.52 19652.65 23376.93 19755.31 20581.99 24575.49 269
DELS-MVS68.83 18268.31 18970.38 17870.55 27048.31 23763.78 28882.13 9054.00 19868.96 26975.17 30158.95 18880.06 14658.55 17982.74 24082.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
LCM-MVSNet-Re69.10 18071.57 15661.70 28170.37 27134.30 35761.45 30279.62 14156.81 15989.59 888.16 12068.44 9272.94 23942.30 30387.33 17777.85 252
patch_mono-262.73 25864.08 24258.68 30470.36 27255.87 18260.84 30864.11 29441.23 31264.04 31078.22 27660.00 17648.80 35454.17 21983.71 23271.37 305
SCA58.57 29058.04 29160.17 29570.17 27341.07 30565.19 27353.38 34843.34 30261.00 33273.48 31745.20 27369.38 27640.34 31770.31 34570.05 317
ET-MVSNet_ETH3D63.32 24960.69 27271.20 17170.15 27455.66 18465.02 27564.32 29143.28 30368.99 26872.05 32825.46 38278.19 18254.16 22082.80 23979.74 224
APD_test175.04 9775.38 9874.02 11769.89 27570.15 6276.46 11779.71 14065.50 7582.99 8088.60 10966.94 10572.35 24959.77 17188.54 15879.56 225
iter_conf0567.34 20865.62 22472.50 15469.82 27647.06 25872.19 16776.86 18745.32 28472.86 21782.85 21020.53 39283.73 7861.13 15589.02 15486.70 65
PVSNet_BlendedMVS65.38 22564.30 23968.61 21569.81 27749.36 23065.60 26978.96 15345.50 27959.98 33678.61 27151.82 23778.20 18044.30 29284.11 22678.27 243
PVSNet_Blended62.90 25561.64 26166.69 23869.81 27749.36 23061.23 30578.96 15342.04 30659.98 33668.86 35251.82 23778.20 18044.30 29277.77 29572.52 294
OpenMVS_ROBcopyleft54.93 1763.23 25163.28 25063.07 26869.81 27745.34 27268.52 22867.14 26843.74 29670.61 24879.22 26247.90 26572.66 24248.75 25773.84 32471.21 309
test_fmvsmconf0.01_n73.91 10873.64 11874.71 10469.79 28066.25 9375.90 13079.90 13846.03 27676.48 16785.02 17867.96 9973.97 23174.47 4987.22 18183.90 129
fmvsm_s_conf0.5_n_a67.00 21365.95 22370.17 18469.72 28161.16 14073.34 15856.83 32840.96 31668.36 27980.08 24962.84 14267.57 29366.90 10974.50 31681.78 186
FMVSNet365.00 23065.16 23164.52 25369.47 28237.56 33666.63 25570.38 25151.55 22574.72 18883.27 20537.89 32174.44 22547.12 27385.37 20381.57 189
MS-PatchMatch55.59 30354.89 31257.68 31069.18 28349.05 23361.00 30762.93 30035.98 34658.36 34568.93 35036.71 32766.59 30637.62 33663.30 36957.39 375
baseline157.82 29458.36 29056.19 31569.17 28430.76 37362.94 29755.21 33646.04 27563.83 31478.47 27241.20 29763.68 31739.44 31968.99 35274.13 280
v14869.38 17769.39 17369.36 19769.14 28544.56 27768.83 22072.70 22254.79 18178.59 12884.12 18854.69 22276.74 20259.40 17582.20 24386.79 63
test_fmvsmconf0.1_n73.26 12072.82 13574.56 10669.10 28666.18 9574.65 14879.34 14845.58 27875.54 17883.91 19167.19 10373.88 23473.26 5786.86 18683.63 137
fmvsm_s_conf0.1_n66.60 21565.54 22569.77 19268.99 28759.15 16272.12 16856.74 33040.72 32168.25 28280.14 24861.18 16666.92 29967.34 10474.40 31783.23 152
Syy-MVS54.13 31055.45 31050.18 33868.77 28823.59 39055.02 34344.55 37443.80 29358.05 34764.07 36746.22 26858.83 33346.16 28272.36 33168.12 330
myMVS_eth3d50.36 33350.52 33849.88 33968.77 28822.69 39255.02 34344.55 37443.80 29358.05 34764.07 36714.16 40358.83 33333.90 35972.36 33168.12 330
test_fmvsmconf_n72.91 13272.40 14374.46 10768.62 29066.12 9674.21 15378.80 15845.64 27774.62 19283.25 20666.80 11173.86 23572.97 6086.66 19283.39 145
CANet_DTU64.04 24463.83 24464.66 25168.39 29142.97 29273.45 15774.50 20952.05 21854.78 36175.44 30043.99 28170.42 27053.49 22578.41 28880.59 212
EU-MVSNet60.82 27260.80 27160.86 29168.37 29241.16 30372.27 16468.27 26526.96 37969.08 26675.71 29532.09 34667.44 29455.59 20378.90 28273.97 281
PVSNet43.83 2151.56 32751.17 33052.73 32868.34 29338.27 32748.22 36453.56 34636.41 34454.29 36464.94 36634.60 33354.20 34630.34 36969.87 34865.71 345
EPNet69.10 18067.32 20574.46 10768.33 29461.27 13877.56 10363.57 29760.95 12256.62 35382.75 21251.53 24081.24 11954.36 21790.20 12380.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n66.34 22065.27 22869.57 19568.20 29559.14 16471.66 18056.48 33140.92 31767.78 28479.46 25761.23 16366.90 30067.39 10074.32 32082.66 169
IB-MVS49.67 1859.69 28256.96 29867.90 22368.19 29650.30 21861.42 30365.18 28347.57 26755.83 35767.15 36223.77 38879.60 15143.56 29879.97 27173.79 284
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS60.62 27559.97 27662.58 27468.13 29747.28 25568.59 22673.96 21132.19 36359.94 33868.86 35250.48 24677.64 19141.85 30775.74 30262.83 358
eth_miper_zixun_eth69.42 17568.73 18671.50 16867.99 29846.42 26367.58 23878.81 15650.72 23778.13 13580.34 24350.15 24980.34 13960.18 16484.65 21887.74 50
TinyColmap67.98 19669.28 17464.08 25667.98 29946.82 25970.04 20375.26 20253.05 20877.36 14686.79 13659.39 18372.59 24645.64 28688.01 16672.83 291
EPNet_dtu58.93 28758.52 28660.16 29667.91 30047.70 25069.97 20558.02 31749.73 24847.28 38273.02 32238.14 31762.34 32236.57 34385.99 19970.43 315
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20057.55 29557.02 29759.17 30067.89 30134.93 35258.91 32157.25 32350.24 24264.01 31171.46 33232.49 34371.39 26131.31 36679.57 27771.19 310
our_test_356.46 29856.51 30156.30 31467.70 30239.66 31655.36 34252.34 35340.57 32363.85 31369.91 34340.04 30658.22 33643.49 29975.29 31071.03 312
ppachtmachnet_test60.26 27859.61 27962.20 27767.70 30244.33 27958.18 32660.96 30940.75 32065.80 29872.57 32441.23 29663.92 31646.87 27782.42 24278.33 241
MVS_Test69.84 16870.71 16567.24 23067.49 30443.25 29069.87 20781.22 11052.69 21271.57 23786.68 14262.09 15374.51 22466.05 11278.74 28383.96 127
fmvsm_l_conf0.5_n67.48 20366.88 21469.28 20067.41 30562.04 12770.69 19769.85 25439.46 32769.59 26181.09 23158.15 19568.73 28067.51 9778.16 29277.07 262
thisisatest051560.48 27657.86 29268.34 21867.25 30646.42 26360.58 31162.14 30240.82 31863.58 31869.12 34726.28 37878.34 17648.83 25682.13 24480.26 217
V4271.06 15370.83 16471.72 16467.25 30647.14 25765.94 26180.35 13151.35 22983.40 7683.23 20759.25 18578.80 16365.91 11480.81 26389.23 29
fmvsm_l_conf0.5_n_a66.66 21465.97 22268.72 21467.09 30861.38 13570.03 20469.15 25938.59 33468.41 27880.36 24256.56 21668.32 28566.10 11177.45 29676.46 263
GA-MVS62.91 25461.66 26066.66 23967.09 30844.49 27861.18 30669.36 25851.33 23069.33 26474.47 30736.83 32674.94 21850.60 24274.72 31280.57 213
testf175.66 8776.57 8172.95 13967.07 31067.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
APD_test275.66 8776.57 8172.95 13967.07 31067.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
HY-MVS49.31 1957.96 29357.59 29459.10 30266.85 31236.17 34265.13 27465.39 28239.24 33054.69 36378.14 27844.28 28067.18 29833.75 36070.79 34173.95 282
CR-MVSNet58.96 28658.49 28760.36 29466.37 31348.24 23970.93 19356.40 33332.87 36261.35 32786.66 14333.19 33863.22 32048.50 26170.17 34669.62 322
RPMNet65.77 22365.08 23767.84 22566.37 31348.24 23970.93 19386.27 1954.66 18461.35 32786.77 13833.29 33785.67 4755.93 19870.17 34669.62 322
IterMVS63.12 25262.48 25865.02 25066.34 31552.86 20163.81 28662.25 30146.57 27371.51 23980.40 24144.60 27866.82 30451.38 23675.47 30675.38 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
c3_l69.82 16969.89 17069.61 19466.24 31643.48 28668.12 23379.61 14351.43 22677.72 14180.18 24754.61 22478.15 18363.62 13587.50 17287.20 58
tpm256.12 29954.64 31360.55 29366.24 31636.01 34368.14 23256.77 32933.60 36058.25 34675.52 29930.25 36474.33 22733.27 36169.76 35071.32 306
Anonymous2024052163.55 24666.07 22055.99 31666.18 31844.04 28168.77 22468.80 26046.99 27072.57 22185.84 17039.87 30750.22 35053.40 22892.23 8173.71 285
Patchmtry60.91 27163.01 25454.62 32166.10 31926.27 38567.47 24056.40 33354.05 19772.04 23086.66 14333.19 33860.17 32943.69 29687.45 17477.42 253
FMVSNet555.08 30655.54 30953.71 32365.80 32033.50 36156.22 33652.50 35243.72 29761.06 33083.38 19925.46 38254.87 34330.11 37181.64 25672.75 292
131459.83 28158.86 28462.74 27365.71 32144.78 27668.59 22672.63 22333.54 36161.05 33167.29 36143.62 28471.26 26249.49 25167.84 35972.19 299
MDTV_nov1_ep1354.05 31665.54 32229.30 37759.00 31955.22 33535.96 34752.44 36875.98 29330.77 36159.62 33038.21 33073.33 326
baseline255.57 30452.74 32164.05 25765.26 32344.11 28062.38 29854.43 34039.03 33151.21 37267.35 36033.66 33672.45 24737.14 33964.22 36775.60 268
USDC62.80 25663.10 25361.89 27965.19 32443.30 28967.42 24174.20 21035.80 34872.25 22784.48 18445.67 27071.95 25537.95 33384.97 21170.42 316
tpm50.60 33152.42 32445.14 36165.18 32526.29 38460.30 31243.50 37637.41 34057.01 35079.09 26630.20 36642.32 38032.77 36366.36 36266.81 340
PatchmatchNetpermissive54.60 30854.27 31455.59 31765.17 32639.08 31866.92 25151.80 35439.89 32558.39 34473.12 32131.69 35258.33 33543.01 30158.38 38369.38 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
miper_ehance_all_eth68.36 19068.16 19568.98 20665.14 32743.34 28867.07 24878.92 15549.11 25476.21 17277.72 28253.48 22977.92 18661.16 15484.59 22085.68 82
cl____68.26 19568.26 19168.29 21964.98 32843.67 28465.89 26274.67 20650.04 24676.86 15582.42 21748.74 25975.38 21160.92 15889.81 13385.80 80
DIV-MVS_self_test68.27 19468.26 19168.29 21964.98 32843.67 28465.89 26274.67 20650.04 24676.86 15582.43 21648.74 25975.38 21160.94 15789.81 13385.81 76
tpm cat154.02 31352.63 32258.19 30764.85 33039.86 31566.26 25957.28 32232.16 36456.90 35170.39 33832.75 34265.30 31034.29 35658.79 38069.41 324
XXY-MVS55.19 30557.40 29648.56 34964.45 33134.84 35451.54 35753.59 34438.99 33263.79 31579.43 25856.59 21445.57 36536.92 34171.29 33865.25 348
PatchT53.35 31556.47 30243.99 36664.19 33217.46 39759.15 31743.10 37852.11 21754.74 36286.95 13229.97 36749.98 35143.62 29774.40 31764.53 355
D2MVS62.58 25961.05 26867.20 23163.85 33347.92 24556.29 33569.58 25639.32 32870.07 25578.19 27734.93 33272.68 24153.44 22683.74 23081.00 198
mvs_anonymous65.08 22965.49 22663.83 25963.79 33437.60 33566.52 25769.82 25543.44 29973.46 21086.08 16558.79 19071.75 25851.90 23275.63 30482.15 180
CostFormer57.35 29656.14 30460.97 28963.76 33538.43 32567.50 23960.22 31137.14 34259.12 34376.34 29232.78 34171.99 25439.12 32369.27 35172.47 295
Gipumacopyleft69.55 17372.83 13459.70 29763.63 33653.97 19580.08 7875.93 19664.24 9473.49 20988.93 10257.89 20362.46 32159.75 17291.55 9162.67 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
cl2267.14 20966.51 21569.03 20563.20 33743.46 28766.88 25376.25 19249.22 25274.48 19477.88 28145.49 27277.40 19360.64 16084.59 22086.24 69
gg-mvs-nofinetune55.75 30156.75 30052.72 32962.87 33828.04 38068.92 21841.36 38871.09 4150.80 37492.63 1220.74 39166.86 30229.97 37272.41 33063.25 357
gm-plane-assit62.51 33933.91 35937.25 34162.71 37272.74 24038.70 325
MVS-HIRNet45.53 34647.29 34640.24 37262.29 34026.82 38356.02 33837.41 39429.74 37443.69 39281.27 22833.96 33455.48 34124.46 39056.79 38438.43 393
diffmvspermissive67.42 20667.50 20367.20 23162.26 34145.21 27364.87 27677.04 18648.21 25971.74 23179.70 25458.40 19271.17 26364.99 12080.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 280x42041.62 35739.89 36246.80 35461.81 34251.59 20733.56 39035.74 39527.48 37837.64 39653.53 38623.24 38942.09 38127.39 38258.64 38146.72 385
KD-MVS_self_test66.38 21867.51 20262.97 27061.76 34334.39 35658.11 32775.30 20150.84 23677.12 14885.42 17356.84 21369.44 27551.07 23891.16 9885.08 92
MDA-MVSNet-bldmvs62.34 26161.73 25964.16 25461.64 34449.90 22448.11 36557.24 32453.31 20780.95 10679.39 25949.00 25761.55 32645.92 28480.05 27081.03 196
miper_enhance_ethall65.86 22265.05 23868.28 22161.62 34542.62 29564.74 27777.97 17542.52 30473.42 21172.79 32349.66 25077.68 19058.12 18284.59 22084.54 112
WTY-MVS49.39 33750.31 34046.62 35561.22 34632.00 36746.61 37049.77 35933.87 35754.12 36569.55 34641.96 29345.40 36731.28 36764.42 36662.47 362
CMPMVSbinary48.73 2061.54 26860.89 26963.52 26361.08 34751.55 20868.07 23468.00 26633.88 35665.87 29781.25 22937.91 32067.71 28949.32 25382.60 24171.31 307
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test-LLR50.43 33250.69 33749.64 34260.76 34841.87 29953.18 35145.48 37243.41 30049.41 37960.47 38029.22 37044.73 37242.09 30572.14 33462.33 364
test-mter48.56 33948.20 34449.64 34260.76 34841.87 29953.18 35145.48 37231.91 36849.41 37960.47 38018.34 39544.73 37242.09 30572.14 33462.33 364
GG-mvs-BLEND52.24 33060.64 35029.21 37869.73 20942.41 38145.47 38552.33 38920.43 39368.16 28625.52 38865.42 36459.36 371
tpmvs55.84 30055.45 31057.01 31260.33 35133.20 36265.89 26259.29 31547.52 26856.04 35573.60 31631.05 35968.06 28840.64 31564.64 36569.77 320
miper_lstm_enhance61.97 26261.63 26262.98 26960.04 35245.74 27047.53 36770.95 24644.04 29173.06 21578.84 27039.72 30860.33 32855.82 20084.64 21982.88 161
dmvs_re49.91 33650.77 33647.34 35159.98 35338.86 32253.18 35153.58 34539.75 32655.06 36061.58 37636.42 32844.40 37429.15 37968.23 35558.75 372
PVSNet_036.71 2241.12 35840.78 36142.14 36859.97 35440.13 31340.97 37942.24 38530.81 37244.86 38849.41 39240.70 30245.12 36923.15 39134.96 39541.16 391
dmvs_testset45.26 34747.51 34538.49 37559.96 35514.71 39958.50 32443.39 37741.30 31151.79 37156.48 38439.44 31149.91 35321.42 39355.35 38950.85 380
new-patchmatchnet52.89 31755.76 30844.26 36559.94 3566.31 40337.36 38750.76 35741.10 31364.28 30879.82 25244.77 27648.43 35836.24 34687.61 16978.03 248
test20.0355.74 30257.51 29550.42 33759.89 35732.09 36650.63 35949.01 36150.11 24465.07 30383.23 20745.61 27148.11 35930.22 37083.82 22971.07 311
MVSTER63.29 25061.60 26368.36 21759.77 35846.21 26660.62 31071.32 23841.83 30775.40 18179.12 26530.25 36475.85 20556.30 19579.81 27383.03 158
N_pmnet52.06 32351.11 33154.92 31859.64 35971.03 5337.42 38661.62 30833.68 35857.12 34972.10 32537.94 31931.03 39329.13 38071.35 33762.70 359
test_vis1_n_192052.96 31653.50 31751.32 33459.15 36044.90 27556.13 33764.29 29230.56 37359.87 34060.68 37840.16 30547.47 36048.25 26562.46 37161.58 366
JIA-IIPM54.03 31251.62 32661.25 28759.14 36155.21 18759.10 31847.72 36550.85 23550.31 37885.81 17120.10 39463.97 31536.16 34755.41 38864.55 354
LF4IMVS67.50 20267.31 20668.08 22258.86 36261.93 12871.43 18375.90 19744.67 28972.42 22480.20 24557.16 20770.44 26958.99 17786.12 19771.88 301
UnsupCasMVSNet_bld50.01 33551.03 33346.95 35258.61 36332.64 36348.31 36353.27 34934.27 35560.47 33471.53 33141.40 29547.07 36230.68 36860.78 37661.13 367
dp44.09 35344.88 35541.72 37158.53 36423.18 39154.70 34642.38 38334.80 35144.25 39065.61 36424.48 38744.80 37129.77 37349.42 39157.18 376
testgi54.00 31456.86 29945.45 35958.20 36525.81 38749.05 36149.50 36045.43 28267.84 28381.17 23051.81 23943.20 37929.30 37579.41 27867.34 336
wuyk23d61.97 26266.25 21749.12 34658.19 36660.77 15066.32 25852.97 35055.93 17090.62 586.91 13373.07 5735.98 39120.63 39591.63 8750.62 381
ANet_high67.08 21069.94 16958.51 30657.55 36727.09 38258.43 32576.80 18963.56 10182.40 8891.93 2059.82 18064.98 31250.10 24688.86 15683.46 143
Patchmatch-test47.93 34049.96 34141.84 36957.42 36824.26 38948.75 36241.49 38739.30 32956.79 35273.48 31730.48 36333.87 39229.29 37672.61 32967.39 334
test_vis1_n51.27 32950.41 33953.83 32256.99 36950.01 22256.75 33260.53 31025.68 38359.74 34157.86 38329.40 36947.41 36143.10 30063.66 36864.08 356
new_pmnet37.55 36139.80 36330.79 37756.83 37016.46 39839.35 38330.65 39725.59 38445.26 38661.60 37524.54 38628.02 39621.60 39252.80 39047.90 384
pmmvs346.71 34345.09 35351.55 33356.76 37148.25 23855.78 34039.53 39224.13 38850.35 37763.40 36915.90 40051.08 34829.29 37670.69 34355.33 378
sss47.59 34248.32 34245.40 36056.73 37233.96 35845.17 37348.51 36332.11 36752.37 36965.79 36340.39 30441.91 38331.85 36461.97 37360.35 368
tpmrst50.15 33451.38 32946.45 35656.05 37324.77 38864.40 28349.98 35836.14 34553.32 36769.59 34535.16 33148.69 35539.24 32158.51 38265.89 343
TESTMET0.1,145.17 34844.93 35445.89 35856.02 37438.31 32653.18 35141.94 38627.85 37644.86 38856.47 38517.93 39641.50 38438.08 33268.06 35657.85 373
ADS-MVSNet248.76 33847.25 34753.29 32755.90 37540.54 31147.34 36854.99 33831.41 37050.48 37572.06 32631.23 35554.26 34525.93 38555.93 38565.07 349
ADS-MVSNet44.62 35145.58 35041.73 37055.90 37520.83 39547.34 36839.94 39131.41 37050.48 37572.06 32631.23 35539.31 38725.93 38555.93 38565.07 349
test0.0.03 147.72 34148.31 34345.93 35755.53 37729.39 37646.40 37141.21 38943.41 30055.81 35867.65 35729.22 37043.77 37825.73 38769.87 34864.62 353
UnsupCasMVSNet_eth52.26 32253.29 32049.16 34555.08 37833.67 36050.03 36058.79 31637.67 33963.43 32174.75 30441.82 29445.83 36438.59 32859.42 37967.98 333
pmmvs552.49 32152.58 32352.21 33154.99 37932.38 36455.45 34153.84 34332.15 36555.49 35974.81 30238.08 31857.37 34034.02 35774.40 31766.88 338
DSMNet-mixed43.18 35644.66 35638.75 37454.75 38028.88 37957.06 33127.42 39913.47 39547.27 38377.67 28338.83 31439.29 38825.32 38960.12 37848.08 383
MDA-MVSNet_test_wron52.57 32053.49 31949.81 34154.24 38136.47 34040.48 38146.58 37038.13 33575.47 18073.32 31941.05 30143.85 37740.98 31371.20 33969.10 328
YYNet152.58 31953.50 31749.85 34054.15 38236.45 34140.53 38046.55 37138.09 33675.52 17973.31 32041.08 30043.88 37641.10 31171.14 34069.21 326
EPMVS45.74 34546.53 34843.39 36754.14 38322.33 39455.02 34335.00 39634.69 35351.09 37370.20 34025.92 38042.04 38237.19 33855.50 38765.78 344
test_cas_vis1_n_192050.90 33050.92 33450.83 33654.12 38447.80 24751.44 35854.61 33926.95 38063.95 31260.85 37737.86 32244.97 37045.53 28762.97 37059.72 370
test_fmvs356.78 29755.99 30659.12 30153.96 38548.09 24258.76 32266.22 27327.54 37776.66 16068.69 35425.32 38451.31 34753.42 22773.38 32577.97 251
test_fmvs1_n52.70 31852.01 32554.76 31953.83 38650.36 21655.80 33965.90 27524.96 38565.39 30060.64 37927.69 37348.46 35645.88 28567.99 35765.46 346
KD-MVS_2432*160052.05 32451.58 32753.44 32552.11 38731.20 36944.88 37464.83 28741.53 30964.37 30670.03 34115.61 40164.20 31336.25 34474.61 31464.93 351
miper_refine_blended52.05 32451.58 32753.44 32552.11 38731.20 36944.88 37464.83 28741.53 30964.37 30670.03 34115.61 40164.20 31336.25 34474.61 31464.93 351
test_fmvs254.80 30754.11 31556.88 31351.76 38949.95 22356.70 33365.80 27626.22 38269.42 26265.25 36531.82 35049.98 35149.63 25070.36 34470.71 313
E-PMN45.17 34845.36 35144.60 36350.07 39042.75 29338.66 38442.29 38446.39 27439.55 39351.15 39026.00 37945.37 36837.68 33476.41 29845.69 387
PMMVS44.69 35043.95 35846.92 35350.05 39153.47 19948.08 36642.40 38222.36 39144.01 39153.05 38842.60 29145.49 36631.69 36561.36 37541.79 390
test_fmvs151.51 32850.86 33553.48 32449.72 39249.35 23254.11 34764.96 28524.64 38763.66 31759.61 38228.33 37248.45 35745.38 29067.30 36162.66 361
EMVS44.61 35244.45 35745.10 36248.91 39343.00 29137.92 38541.10 39046.75 27238.00 39548.43 39326.42 37746.27 36337.11 34075.38 30846.03 386
mvsany_test343.76 35541.01 35952.01 33248.09 39457.74 17342.47 37823.85 40223.30 39064.80 30462.17 37427.12 37440.59 38529.17 37848.11 39257.69 374
mvsany_test137.88 35935.74 36444.28 36447.28 39549.90 22436.54 38824.37 40119.56 39445.76 38453.46 38732.99 34037.97 39026.17 38335.52 39444.99 389
test_vis3_rt51.94 32651.04 33254.65 32046.32 39650.13 22044.34 37678.17 17123.62 38968.95 27062.81 37121.41 39038.52 38941.49 30972.22 33375.30 274
test_vis1_rt46.70 34445.24 35251.06 33544.58 39751.04 21139.91 38267.56 26721.84 39351.94 37050.79 39133.83 33539.77 38635.25 35361.50 37462.38 363
MVEpermissive27.91 2336.69 36235.64 36539.84 37343.37 39835.85 34619.49 39224.61 40024.68 38639.05 39462.63 37338.67 31627.10 39721.04 39447.25 39356.56 377
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS237.74 36040.87 36028.36 37842.41 3995.35 40424.61 39127.75 39832.15 36547.85 38170.27 33935.85 33029.51 39519.08 39667.85 35850.22 382
test_f43.79 35445.63 34938.24 37642.29 40038.58 32434.76 38947.68 36622.22 39267.34 29063.15 37031.82 35030.60 39439.19 32262.28 37245.53 388
DeepMVS_CXcopyleft11.83 38015.51 40113.86 40011.25 4055.76 39620.85 39826.46 39517.06 3999.22 3999.69 39913.82 39812.42 395
test_method19.26 36319.12 36719.71 3799.09 4021.91 4067.79 39453.44 3471.42 39710.27 39935.80 39417.42 39825.11 39812.44 39724.38 39732.10 394
tmp_tt11.98 36514.73 3683.72 3812.28 4034.62 40519.44 39314.50 4040.47 39921.55 3979.58 39725.78 3814.57 40011.61 39827.37 3961.96 396
test1234.43 3685.78 3710.39 3830.97 4040.28 40746.33 3720.45 4060.31 4000.62 4011.50 4000.61 4060.11 4020.56 4000.63 3990.77 398
testmvs4.06 3695.28 3720.41 3820.64 4050.16 40842.54 3770.31 4070.26 4010.50 4021.40 4010.77 4050.17 4010.56 4000.55 4000.90 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
eth-test20.00 406
eth-test0.00 406
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k17.71 36423.62 3660.00 3840.00 4060.00 4090.00 39570.17 2530.00 4020.00 40374.25 31168.16 950.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.20 3676.93 3700.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40262.39 1490.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re5.62 3667.50 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40367.46 3580.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
MM79.55 4865.47 10080.94 6278.74 16071.22 4072.40 22588.70 10560.51 17287.70 377.40 3289.13 15185.48 84
WAC-MVS22.69 39236.10 348
PC_three_145246.98 27181.83 9386.28 15566.55 11584.47 7163.31 14090.78 11483.49 139
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 4075.29 4294.22 5283.25 150
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 121
GSMVS70.05 317
sam_mvs131.41 35370.05 317
sam_mvs31.21 357
MTGPAbinary80.63 123
test_post166.63 2552.08 39830.66 36259.33 33140.34 317
test_post1.99 39930.91 36054.76 344
patchmatchnet-post68.99 34831.32 35469.38 276
MTMP84.83 3119.26 403
test9_res72.12 6991.37 9377.40 254
agg_prior270.70 7590.93 10878.55 240
test_prior470.14 6377.57 102
test_prior275.57 13358.92 13976.53 16686.78 13767.83 10069.81 7892.76 73
旧先验271.17 19045.11 28678.54 13161.28 32759.19 176
新几何271.33 186
无先验74.82 13970.94 24747.75 26676.85 20054.47 21372.09 300
原ACMM274.78 143
testdata267.30 29548.34 263
segment_acmp68.30 94
testdata168.34 23157.24 156
plane_prior585.49 2986.15 2771.09 7190.94 10684.82 99
plane_prior489.11 95
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior65.18 10480.06 7961.88 11789.91 132
n20.00 408
nn0.00 408
door-mid55.02 337
test1182.71 84
door52.91 351
HQP5-MVS58.80 167
BP-MVS67.38 102
HQP4-MVS71.59 23385.31 5283.74 134
HQP3-MVS84.12 6589.16 147
HQP2-MVS58.09 197
MDTV_nov1_ep13_2view18.41 39653.74 34931.57 36944.89 38729.90 36832.93 36271.48 304
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 145