This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11984.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8897.05 196.93 1
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12672.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 205
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8472.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 177
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7471.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15374.08 2087.16 2891.97 1984.80 276.97 19764.98 11993.61 6072.28 305
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PS-CasMVS80.41 4782.86 3673.07 13389.93 639.21 31977.15 11081.28 11079.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
DTE-MVSNet80.35 4882.89 3572.74 14689.84 737.34 33977.16 10981.81 10080.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
PEN-MVS80.46 4682.91 3473.11 13289.83 839.02 32277.06 11282.61 8880.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6470.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6570.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 123
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 4064.94 8981.05 10588.38 11357.10 21287.10 879.75 783.87 23084.31 120
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVSNet79.48 5481.65 4572.98 13689.66 1239.06 32176.76 11380.46 13078.91 790.32 791.70 2568.49 9384.89 6363.40 13695.12 1895.01 4
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3467.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29678.24 9682.24 9278.21 989.57 992.10 1868.05 9885.59 4866.04 11295.62 994.88 5
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 8190.39 6273.86 5286.31 1978.84 1994.03 5384.64 103
X-MVStestdata76.81 7874.79 10182.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 819.95 40573.86 5286.31 1978.84 1994.03 5384.64 103
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5871.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 175
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4264.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
UniMVSNet_ETH3D76.74 7979.02 6169.92 19189.27 1943.81 28374.47 14871.70 23272.33 3585.50 5093.65 377.98 2176.88 20054.60 21491.64 8689.08 32
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6170.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2671.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9668.80 5380.92 10788.52 10972.00 6582.39 10174.80 4493.04 6881.14 195
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2567.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 108
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13764.71 9178.11 13688.39 11265.46 12783.14 8977.64 2991.20 9678.94 237
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3868.58 5784.14 6790.21 7273.37 5686.41 1679.09 1893.98 5684.30 122
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10851.71 22377.15 14791.42 3265.49 12687.20 679.44 1387.17 18684.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 14075.34 1579.80 11894.91 269.79 8580.25 14272.63 6394.46 3688.78 42
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4763.53 10284.23 6691.47 3072.02 6487.16 779.74 994.36 4584.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1963.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3777.42 1386.15 3890.24 7081.69 585.94 3577.77 2693.58 6183.09 155
新几何169.99 18988.37 3471.34 5162.08 30643.85 29674.99 18686.11 16352.85 23470.57 27050.99 24183.23 23968.05 341
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5766.40 6987.45 2289.16 9381.02 880.52 13874.27 5195.73 780.98 201
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22287.30 3769.15 7367.85 23659.59 31641.06 32073.05 21885.72 17148.03 26880.65 26666.92 346
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2966.56 6885.64 4589.57 8269.12 8980.55 13772.51 6593.37 6383.48 141
save fliter87.00 3967.23 8679.24 8577.94 17956.65 163
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
EGC-MVSNET64.77 23661.17 26975.60 9886.90 4274.47 3084.04 3568.62 2660.60 4071.13 40991.61 2865.32 12974.15 23364.01 12688.28 16078.17 247
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 7065.64 7385.54 4989.28 8676.32 3183.47 8374.03 5293.57 6284.35 119
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6188.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2466.80 6586.70 3089.99 7581.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11085.39 3566.73 6680.39 11488.85 10274.43 5078.33 17874.73 4685.79 20282.35 177
VDDNet71.60 15173.13 13067.02 23686.29 4741.11 30669.97 20666.50 27568.72 5574.74 18991.70 2559.90 18075.81 20848.58 26291.72 8484.15 125
test_0728_SECOND76.57 8586.20 4860.57 15083.77 4085.49 3085.90 3875.86 3994.39 4183.25 150
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 94
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 94
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14783.77 4080.58 12872.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 233
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5160.78 14783.81 3985.10 4072.48 3285.27 5389.96 7678.57 17
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14083.62 4284.72 4972.61 3087.38 2489.70 8077.48 2385.89 4075.29 4294.39 4183.08 156
IU-MVS86.12 5360.90 14480.38 13245.49 28481.31 10175.64 4194.39 4184.65 102
test_241102_ONE86.12 5361.06 14084.72 4972.64 2987.38 2489.47 8377.48 2385.74 44
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12284.95 4466.89 6382.75 8488.99 9866.82 11078.37 17674.80 4490.76 11682.40 176
test_part285.90 5766.44 9184.61 62
原ACMM173.90 11885.90 5765.15 10681.67 10250.97 23574.25 20086.16 16061.60 15983.54 8156.75 18991.08 10373.00 295
testdata64.13 25785.87 5963.34 11861.80 30947.83 26676.42 17186.60 14748.83 26162.31 32954.46 21681.26 26066.74 350
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 9981.50 10463.92 9677.51 14486.56 14868.43 9584.82 6573.83 5391.61 8882.26 181
test_one_060185.84 6161.45 13385.63 2875.27 1785.62 4890.38 6476.72 27
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11965.77 7275.55 17986.25 15767.42 10385.42 5070.10 7590.88 11181.81 187
TEST985.47 6369.32 7076.42 11878.69 16453.73 20576.97 14986.74 13866.84 10981.10 123
train_agg76.38 8176.55 8475.86 9585.47 6369.32 7076.42 11878.69 16454.00 20076.97 14986.74 13866.60 11581.10 12372.50 6691.56 8977.15 260
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4273.52 2485.43 5190.03 7476.37 2986.97 1174.56 4794.02 5582.62 172
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 3065.45 7678.23 13389.11 9460.83 17286.15 2771.09 7190.94 10584.82 98
plane_prior785.18 6666.21 94
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4670.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
test_885.09 6967.89 7976.26 12378.66 16654.00 20076.89 15386.72 14066.60 11580.89 133
WR-MVS71.20 15472.48 14367.36 23184.98 7035.70 34964.43 28468.66 26565.05 8681.49 9886.43 15257.57 20876.48 20450.36 24693.32 6589.90 23
PS-MVSNAJss77.54 7277.35 7878.13 7084.88 7166.37 9278.55 9279.59 14753.48 20886.29 3692.43 1562.39 15180.25 14267.90 9390.61 11787.77 49
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7275.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 7081.53 11581.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets78.93 5878.67 6579.72 4384.81 7373.93 3580.65 6576.50 19551.98 22187.40 2391.86 2176.09 3378.53 16868.58 8390.20 12286.69 66
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7466.72 9086.54 2085.11 3972.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSLP-MVS++74.48 10675.78 9370.59 17584.66 7562.40 12378.65 9084.24 6360.55 12577.71 14281.98 22063.12 14277.64 19262.95 14088.14 16271.73 310
jajsoiax78.51 6378.16 7079.59 4784.65 7673.83 3780.42 6976.12 19751.33 23187.19 2791.51 2973.79 5478.44 17268.27 8690.13 12686.49 68
TranMVSNet+NR-MVSNet76.13 8377.66 7571.56 16484.61 7742.57 29870.98 19378.29 17368.67 5683.04 7789.26 8772.99 5880.75 13455.58 20695.47 1091.35 13
旧先验184.55 7860.36 15263.69 29887.05 13054.65 22583.34 23869.66 329
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 7970.53 5983.85 3883.70 7269.43 5283.67 7388.96 9975.89 3486.41 1672.62 6492.95 6981.14 195
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
plane_prior184.46 80
agg_prior84.44 8166.02 9778.62 16776.95 15180.34 140
DeepPCF-MVS71.07 578.48 6577.14 8082.52 1684.39 8277.04 2176.35 12084.05 6856.66 16280.27 11585.31 17468.56 9287.03 1067.39 9991.26 9483.50 138
CDPH-MVS77.33 7477.06 8178.14 6984.21 8363.98 11476.07 12683.45 7554.20 19577.68 14387.18 12569.98 8285.37 5168.01 9092.72 7485.08 91
plane_prior684.18 8465.31 10360.83 172
114514_t73.40 11773.33 12773.64 12284.15 8557.11 17478.20 9780.02 13943.76 29972.55 22486.07 16564.00 13883.35 8660.14 16491.03 10480.45 216
ZD-MVS83.91 8669.36 6981.09 11658.91 14082.73 8589.11 9475.77 3586.63 1272.73 6292.93 70
DeepC-MVS_fast69.89 777.17 7676.33 8779.70 4483.90 8767.94 7880.06 7983.75 7156.73 16174.88 18885.32 17365.54 12587.79 265.61 11691.14 9983.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3373.08 12471.61 15677.48 7483.89 8872.89 4470.47 20071.12 24854.28 19177.89 13783.41 19649.04 25880.98 12863.62 13390.77 11578.58 241
SD-MVS80.28 4981.55 4776.47 8883.57 8967.83 8083.39 4785.35 3664.42 9286.14 3987.07 12974.02 5180.97 12977.70 2892.32 8080.62 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DU-MVS74.91 10175.57 9672.93 14083.50 9045.79 26969.47 21280.14 13865.22 8281.74 9587.08 12761.82 15781.07 12556.21 19894.98 2091.93 8
NR-MVSNet73.62 11374.05 11172.33 15783.50 9043.71 28465.65 26977.32 18664.32 9375.59 17887.08 12762.45 15081.34 11754.90 20995.63 891.93 8
test_040278.17 6979.48 5974.24 11383.50 9059.15 16172.52 16374.60 21275.34 1588.69 1391.81 2275.06 4282.37 10265.10 11788.68 15781.20 193
OPU-MVS78.65 6283.44 9366.85 8983.62 4286.12 16266.82 11086.01 3161.72 14789.79 13483.08 156
NP-MVS83.34 9463.07 12185.97 166
DVP-MVS++81.24 3582.74 3776.76 8283.14 9560.90 14491.64 185.49 3074.03 2184.93 5690.38 6466.82 11085.90 3877.43 3090.78 11383.49 139
MSC_two_6792asdad79.02 5583.14 9567.03 8780.75 12186.24 2277.27 3394.85 2583.78 132
No_MVS79.02 5583.14 9567.03 8780.75 12186.24 2277.27 3394.85 2583.78 132
RRT_MVS78.18 6877.69 7379.66 4683.14 9561.34 13583.29 4880.34 13557.43 15486.65 3191.79 2350.52 24786.01 3171.36 7094.65 3291.62 11
UniMVSNet (Re)75.00 9975.48 9773.56 12483.14 9547.92 24370.41 20281.04 11863.67 10079.54 12086.37 15362.83 14581.82 11157.10 18895.25 1490.94 17
hse-mvs272.32 14370.66 16877.31 7983.10 10071.77 4769.19 21771.45 23854.28 19177.89 13778.26 27549.04 25879.23 15663.62 13389.13 15180.92 202
UniMVSNet_NR-MVSNet74.90 10275.65 9472.64 14983.04 10145.79 26969.26 21578.81 15966.66 6781.74 9586.88 13363.26 14181.07 12556.21 19894.98 2091.05 15
HyFIR lowres test63.01 25660.47 27670.61 17483.04 10154.10 19359.93 31772.24 23133.67 36869.00 26875.63 29638.69 31976.93 19836.60 34675.45 31380.81 207
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10374.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS70.22 16467.88 20177.22 8082.96 10471.61 4869.08 21871.39 23949.17 25571.70 23478.07 28037.62 32779.21 15761.81 14489.15 14980.82 205
DP-MVS Recon73.57 11472.69 13976.23 9182.85 10563.39 11774.32 14982.96 8257.75 14870.35 25281.98 22064.34 13784.41 7349.69 25089.95 12980.89 203
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10673.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
PVSNet_Blended_VisFu70.04 16668.88 18473.53 12582.71 10763.62 11674.81 13981.95 9848.53 26067.16 29379.18 26451.42 24378.38 17554.39 21879.72 27878.60 240
DPM-MVS69.98 16869.22 18072.26 15882.69 10858.82 16570.53 19981.23 11247.79 26764.16 31080.21 24451.32 24483.12 9060.14 16484.95 21774.83 278
EG-PatchMatch MVS70.70 16070.88 16570.16 18582.64 10958.80 16671.48 18373.64 21654.98 17776.55 16581.77 22361.10 16978.94 16254.87 21080.84 26472.74 300
HQP-NCC82.37 11077.32 10659.08 13471.58 236
ACMP_Plane82.37 11077.32 10659.08 13471.58 236
HQP-MVS75.24 9475.01 10075.94 9382.37 11058.80 16677.32 10684.12 6659.08 13471.58 23685.96 16758.09 19985.30 5367.38 10189.16 14783.73 135
test1276.51 8682.28 11360.94 14381.64 10373.60 20964.88 13285.19 5990.42 12083.38 146
TAMVS65.31 22963.75 24869.97 19082.23 11459.76 15666.78 25563.37 30045.20 28869.79 26079.37 26047.42 27172.17 25334.48 35985.15 21277.99 252
test_prior75.27 10282.15 11559.85 15584.33 6083.39 8582.58 173
SF-MVS80.72 4381.80 4277.48 7482.03 11664.40 11183.41 4688.46 565.28 8184.29 6589.18 9173.73 5583.22 8876.01 3893.77 5884.81 100
AdaColmapbinary74.22 10774.56 10373.20 12981.95 11760.97 14279.43 8280.90 12065.57 7472.54 22581.76 22470.98 7585.26 5447.88 27190.00 12773.37 291
PAPM_NR73.91 10974.16 11073.16 13081.90 11853.50 19781.28 6081.40 10766.17 7073.30 21583.31 20259.96 17983.10 9158.45 17881.66 25782.87 162
DP-MVS78.44 6679.29 6075.90 9481.86 11965.33 10279.05 8784.63 5574.83 1880.41 11386.27 15571.68 6683.45 8462.45 14392.40 7778.92 238
F-COLMAP75.29 9273.99 11279.18 5281.73 12071.90 4681.86 5882.98 8159.86 13172.27 22884.00 18964.56 13583.07 9251.48 23687.19 18582.56 174
SixPastTwentyTwo75.77 8576.34 8674.06 11681.69 12154.84 18776.47 11575.49 20464.10 9587.73 1792.24 1750.45 24981.30 11967.41 9791.46 9186.04 73
Vis-MVSNetpermissive74.85 10574.56 10375.72 9681.63 12264.64 10976.35 12079.06 15562.85 11073.33 21488.41 11162.54 14979.59 15363.94 13082.92 24082.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_djsdf78.88 5978.27 6980.70 3581.42 12371.24 5283.98 3675.72 20252.27 21687.37 2692.25 1668.04 9980.56 13572.28 6791.15 9890.32 22
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12472.03 4584.38 3486.23 2377.28 1480.65 11190.18 7359.80 18387.58 573.06 5991.34 9389.01 34
tt080576.12 8478.43 6869.20 20181.32 12541.37 30476.72 11477.64 18263.78 9982.06 8987.88 12279.78 1179.05 15964.33 12492.40 7787.17 60
MCST-MVS73.42 11673.34 12673.63 12381.28 12659.17 16074.80 14183.13 8045.50 28272.84 22083.78 19365.15 13080.99 12764.54 12189.09 15380.73 209
MIMVSNet166.57 21969.23 17958.59 30781.26 12737.73 33664.06 28757.62 32057.02 15778.40 13290.75 4662.65 14658.10 34641.77 31089.58 14079.95 222
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12862.39 12480.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 10064.82 12096.10 487.21 57
MVS_111021_HR72.98 13172.97 13672.99 13580.82 12965.47 10068.81 22272.77 22457.67 15075.76 17682.38 21671.01 7477.17 19561.38 14986.15 19776.32 266
9.1480.22 5380.68 13080.35 7287.69 1059.90 12983.00 7888.20 11674.57 4781.75 11373.75 5493.78 57
OMC-MVS79.41 5578.79 6381.28 2980.62 13170.71 5880.91 6384.76 4762.54 11281.77 9386.65 14471.46 6883.53 8267.95 9292.44 7689.60 24
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13264.16 11280.24 7482.06 9561.89 11688.77 1293.32 457.15 21082.60 9970.08 7692.80 7189.25 28
CDS-MVSNet64.33 24462.66 26069.35 19880.44 13358.28 17065.26 27465.66 28144.36 29467.30 29275.54 29743.27 29071.77 25937.68 33684.44 22578.01 251
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvsmamba77.20 7576.37 8579.69 4580.34 13461.52 13280.58 6682.12 9453.54 20783.93 7091.03 3749.49 25385.97 3373.26 5793.08 6791.59 12
PLCcopyleft62.01 1671.79 14970.28 17076.33 8980.31 13568.63 7578.18 9881.24 11154.57 18767.09 29480.63 23859.44 18481.74 11446.91 27884.17 22778.63 239
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MM78.15 7077.68 7479.55 4880.10 13665.47 10080.94 6278.74 16371.22 4072.40 22788.70 10460.51 17487.70 377.40 3289.13 15185.48 84
CHOSEN 1792x268858.09 29556.30 30663.45 26679.95 13750.93 21054.07 35665.59 28228.56 38461.53 32974.33 31041.09 30466.52 30933.91 36267.69 36972.92 296
K. test v373.67 11273.61 12073.87 11979.78 13855.62 18574.69 14562.04 30866.16 7184.76 6093.23 549.47 25480.97 12965.66 11586.67 19385.02 93
VPNet65.58 22767.56 20459.65 30079.72 13930.17 37960.27 31562.14 30454.19 19671.24 24486.63 14558.80 19167.62 29344.17 29790.87 11281.18 194
ACMH63.62 1477.50 7380.11 5469.68 19379.61 14056.28 17878.81 8983.62 7363.41 10687.14 2990.23 7176.11 3273.32 23967.58 9494.44 3979.44 231
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lessismore_v072.75 14579.60 14156.83 17757.37 32383.80 7289.01 9747.45 27078.74 16664.39 12386.49 19682.69 168
MVS_111021_LR72.10 14671.82 15272.95 13779.53 14273.90 3670.45 20166.64 27456.87 15876.81 15781.76 22468.78 9071.76 26061.81 14483.74 23273.18 293
Test_1112_low_res58.78 29158.69 28859.04 30579.41 14338.13 33257.62 33166.98 27334.74 36159.62 34577.56 28442.92 29363.65 32438.66 32870.73 35175.35 275
CSCG74.12 10874.39 10573.33 12779.35 14461.66 13177.45 10581.98 9762.47 11479.06 12580.19 24661.83 15678.79 16559.83 16887.35 17679.54 230
MVS_030476.32 8275.96 9277.42 7679.33 14560.86 14680.18 7674.88 20966.93 6269.11 26688.95 10057.84 20686.12 2976.63 3789.77 13585.28 86
MVP-Stereo61.56 27059.22 28368.58 21779.28 14660.44 15169.20 21671.57 23443.58 30256.42 36178.37 27439.57 31576.46 20534.86 35860.16 38668.86 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MG-MVS70.47 16371.34 16167.85 22579.26 14740.42 31474.67 14675.15 20858.41 14268.74 27888.14 12056.08 22183.69 7959.90 16781.71 25679.43 232
IS-MVSNet75.10 9675.42 9874.15 11579.23 14848.05 24179.43 8278.04 17770.09 4979.17 12488.02 12153.04 23383.60 8058.05 18193.76 5990.79 19
FC-MVSNet-test73.32 11974.78 10268.93 21079.21 14936.57 34171.82 18079.54 14957.63 15382.57 8690.38 6459.38 18678.99 16157.91 18294.56 3491.23 14
AllTest77.66 7177.43 7678.35 6679.19 15070.81 5578.60 9188.64 365.37 7980.09 11688.17 11770.33 7878.43 17355.60 20390.90 10985.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11770.33 7878.43 17355.60 20390.90 10985.81 76
xiu_mvs_v1_base_debu67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
xiu_mvs_v1_base67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
xiu_mvs_v1_base_debi67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
VDD-MVS70.81 15971.44 16068.91 21179.07 15546.51 26367.82 23770.83 25261.23 11974.07 20488.69 10559.86 18175.62 21151.11 23990.28 12184.61 106
test111164.62 23765.19 23362.93 27379.01 15629.91 38065.45 27254.41 34454.09 19871.47 24388.48 11037.02 32974.29 23146.83 28089.94 13084.58 109
TSAR-MVS + GP.73.08 12471.60 15777.54 7378.99 15770.73 5774.96 13669.38 26060.73 12474.39 19878.44 27357.72 20782.78 9660.16 16389.60 13779.11 235
test250661.23 27260.85 27362.38 27878.80 15827.88 38867.33 24637.42 40254.23 19367.55 28988.68 10617.87 40674.39 22946.33 28389.41 14384.86 96
ECVR-MVScopyleft64.82 23465.22 23163.60 26378.80 15831.14 37466.97 25156.47 33454.23 19369.94 25888.68 10637.23 32874.81 22445.28 29389.41 14384.86 96
FIs72.56 13973.80 11568.84 21378.74 16037.74 33571.02 19279.83 14256.12 16680.88 11089.45 8458.18 19578.28 17956.63 19093.36 6490.51 21
v7n79.37 5680.41 5276.28 9078.67 16155.81 18279.22 8682.51 9070.72 4487.54 2192.44 1468.00 10081.34 11772.84 6191.72 8491.69 10
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2777.48 1281.98 9089.95 7769.14 8885.26 5466.15 10991.24 9587.61 52
CNLPA73.44 11573.03 13474.66 10578.27 16375.29 2675.99 12778.49 16865.39 7875.67 17783.22 20861.23 16566.77 30753.70 22585.33 20881.92 186
EPP-MVSNet73.86 11173.38 12375.31 10178.19 16453.35 19980.45 6877.32 18665.11 8576.47 16986.80 13449.47 25483.77 7753.89 22392.72 7488.81 41
PCF-MVS63.80 1372.70 13771.69 15375.72 9678.10 16560.01 15473.04 16081.50 10445.34 28679.66 11984.35 18565.15 13082.65 9848.70 26089.38 14684.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE73.14 12273.77 11771.26 16878.09 16652.64 20274.32 14979.56 14856.32 16576.35 17283.36 20170.76 7677.96 18663.32 13781.84 25183.18 153
LFMVS67.06 21367.89 20064.56 25478.02 16738.25 33070.81 19759.60 31565.18 8371.06 24686.56 14843.85 28775.22 21646.35 28289.63 13680.21 220
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19750.51 24089.19 1090.88 4271.45 6977.78 19073.38 5690.60 11890.90 18
BH-untuned69.39 17969.46 17569.18 20277.96 16956.88 17568.47 23177.53 18356.77 16077.79 14079.63 25560.30 17780.20 14546.04 28580.65 26670.47 321
1112_ss59.48 28658.99 28660.96 29277.84 17042.39 29961.42 30568.45 26737.96 34559.93 34267.46 36745.11 28065.07 31740.89 31671.81 34475.41 273
PS-MVSNAJ64.27 24563.73 24965.90 24777.82 17151.42 20763.33 29472.33 22945.09 29061.60 32868.04 36462.39 15173.95 23549.07 25673.87 32972.34 303
ambc70.10 18777.74 17250.21 21774.28 15177.93 18079.26 12388.29 11554.11 22979.77 14964.43 12291.10 10280.30 218
xiu_mvs_v2_base64.43 24263.96 24665.85 24877.72 17351.32 20863.63 29172.31 23045.06 29161.70 32769.66 35062.56 14773.93 23649.06 25773.91 32872.31 304
Anonymous2023121175.54 9077.19 7970.59 17577.67 17445.70 27274.73 14380.19 13668.80 5382.95 8092.91 866.26 11876.76 20258.41 17992.77 7289.30 27
FMVSNet171.06 15572.48 14366.81 23777.65 17540.68 31071.96 17473.03 21961.14 12079.45 12290.36 6760.44 17575.20 21850.20 24788.05 16484.54 110
FPMVS59.43 28760.07 27857.51 31377.62 17671.52 4962.33 30150.92 36157.40 15569.40 26480.00 25039.14 31761.92 33137.47 33966.36 37139.09 401
testing358.28 29458.38 29258.00 31177.45 17726.12 39560.78 31143.00 38856.02 16770.18 25575.76 29413.27 41367.24 29948.02 26980.89 26280.65 212
Effi-MVS+-dtu75.43 9172.28 14784.91 277.05 17883.58 178.47 9377.70 18157.68 14974.89 18778.13 27964.80 13384.26 7456.46 19485.32 20986.88 62
CLD-MVS72.88 13472.36 14674.43 11077.03 17954.30 19168.77 22583.43 7652.12 21876.79 15874.44 30969.54 8783.91 7555.88 20193.25 6685.09 90
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS76.51 8076.00 9078.06 7177.02 18064.77 10880.78 6482.66 8760.39 12674.15 20183.30 20369.65 8682.07 10869.27 8186.75 19287.36 55
CS-MVS-test74.89 10374.23 10976.86 8177.01 18162.94 12278.98 8884.61 5658.62 14170.17 25680.80 23566.74 11481.96 10961.74 14689.40 14585.69 81
Baseline_NR-MVSNet70.62 16173.19 12862.92 27476.97 18234.44 35768.84 22070.88 25160.25 12779.50 12190.53 5361.82 15769.11 28054.67 21395.27 1385.22 87
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12966.87 6483.64 7486.18 15870.25 8079.90 14861.12 15488.95 15587.56 53
SSC-MVS61.79 26866.08 22148.89 35776.91 18410.00 41153.56 35847.37 37668.20 5876.56 16489.21 8954.13 22857.59 34754.75 21174.07 32779.08 236
jason64.47 24162.84 25869.34 19976.91 18459.20 15767.15 24865.67 28035.29 35865.16 30376.74 29044.67 28270.68 26854.74 21279.28 28178.14 248
jason: jason.
ETV-MVS72.72 13672.16 14974.38 11276.90 18655.95 17973.34 15884.67 5262.04 11572.19 23170.81 33765.90 12285.24 5658.64 17684.96 21681.95 185
Anonymous2024052972.56 13973.79 11668.86 21276.89 18745.21 27468.80 22477.25 18867.16 6176.89 15390.44 5665.95 12174.19 23250.75 24290.00 12787.18 59
EC-MVSNet77.08 7777.39 7776.14 9276.86 18856.87 17680.32 7387.52 1163.45 10474.66 19384.52 18269.87 8484.94 6169.76 7889.59 13886.60 67
PM-MVS64.49 24063.61 25067.14 23576.68 18975.15 2768.49 23042.85 38951.17 23477.85 13980.51 23945.76 27466.31 31052.83 23176.35 30459.96 378
TransMVSNet (Re)69.62 17471.63 15563.57 26476.51 19035.93 34765.75 26871.29 24361.05 12175.02 18589.90 7865.88 12370.41 27449.79 24989.48 14184.38 118
BH-RMVSNet68.69 18968.20 19770.14 18676.40 19153.90 19664.62 28173.48 21758.01 14573.91 20881.78 22259.09 18878.22 18048.59 26177.96 29578.31 244
PHI-MVS74.92 10074.36 10776.61 8476.40 19162.32 12580.38 7083.15 7954.16 19773.23 21680.75 23662.19 15483.86 7668.02 8990.92 10883.65 136
UGNet70.20 16569.05 18173.65 12176.24 19363.64 11575.87 12972.53 22761.48 11860.93 33686.14 16152.37 23677.12 19650.67 24385.21 21080.17 221
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchMatch-RL58.68 29257.72 29661.57 28476.21 19473.59 3961.83 30249.00 37047.30 27161.08 33268.97 35550.16 25059.01 34036.06 35368.84 36252.10 388
VPA-MVSNet68.71 18870.37 16963.72 26276.13 19538.06 33364.10 28671.48 23756.60 16474.10 20388.31 11464.78 13469.72 27547.69 27390.15 12483.37 147
WB-MVS60.04 28264.19 24447.59 35976.09 19610.22 41052.44 36346.74 37765.17 8474.07 20487.48 12453.48 23155.28 35049.36 25472.84 33577.28 257
PAPM61.79 26860.37 27766.05 24576.09 19641.87 30169.30 21476.79 19440.64 32853.80 37479.62 25644.38 28482.92 9529.64 37973.11 33473.36 292
BH-w/o64.81 23564.29 24366.36 24276.08 19854.71 18865.61 27075.23 20750.10 24671.05 24771.86 33154.33 22779.02 16038.20 33376.14 30665.36 356
dcpmvs_271.02 15772.65 14066.16 24476.06 19950.49 21371.97 17379.36 15050.34 24182.81 8383.63 19464.38 13667.27 29861.54 14883.71 23480.71 211
pmmvs671.82 14873.66 11866.31 24375.94 20042.01 30066.99 25072.53 22763.45 10476.43 17092.78 1072.95 5969.69 27651.41 23790.46 11987.22 56
CANet73.00 12971.84 15176.48 8775.82 20161.28 13674.81 13980.37 13363.17 10862.43 32680.50 24061.10 16985.16 6064.00 12784.34 22683.01 159
pmmvs-eth3d64.41 24363.27 25467.82 22775.81 20260.18 15369.49 21162.05 30738.81 34074.13 20282.23 21743.76 28868.65 28442.53 30480.63 26874.63 279
TR-MVS64.59 23863.54 25167.73 22875.75 20350.83 21163.39 29370.29 25549.33 25371.55 24074.55 30750.94 24578.46 17140.43 31875.69 30973.89 288
tttt051769.46 17767.79 20374.46 10775.34 20452.72 20175.05 13563.27 30154.69 18378.87 12784.37 18426.63 38081.15 12163.95 12887.93 16889.51 25
cascas64.59 23862.77 25970.05 18875.27 20550.02 21961.79 30371.61 23342.46 31163.68 31768.89 35849.33 25680.35 13947.82 27284.05 22979.78 225
API-MVS70.97 15871.51 15969.37 19675.20 20655.94 18080.99 6176.84 19262.48 11371.24 24477.51 28561.51 16180.96 13252.04 23285.76 20371.22 315
EIA-MVS68.59 19067.16 21072.90 14175.18 20755.64 18469.39 21381.29 10952.44 21564.53 30670.69 33860.33 17682.30 10454.27 22076.31 30580.75 208
PAPR69.20 18168.66 19070.82 17275.15 20847.77 24675.31 13381.11 11449.62 25166.33 29679.27 26161.53 16082.96 9448.12 26881.50 25981.74 189
MVSFormer69.93 17069.03 18272.63 15074.93 20959.19 15883.98 3675.72 20252.27 21663.53 32076.74 29043.19 29180.56 13572.28 6778.67 28778.14 248
lupinMVS63.36 25161.49 26768.97 20874.93 20959.19 15865.80 26764.52 29334.68 36363.53 32074.25 31243.19 29170.62 26953.88 22478.67 28777.10 261
nrg03074.87 10475.99 9171.52 16574.90 21149.88 22674.10 15382.58 8954.55 18883.50 7589.21 8971.51 6775.74 21061.24 15092.34 7988.94 37
TAPA-MVS65.27 1275.16 9574.29 10877.77 7274.86 21268.08 7777.89 10084.04 6955.15 17676.19 17483.39 19766.91 10880.11 14660.04 16690.14 12585.13 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RPSCF75.76 8674.37 10679.93 4074.81 21377.53 1677.53 10479.30 15259.44 13378.88 12689.80 7971.26 7173.09 24157.45 18480.89 26289.17 31
EI-MVSNet-Vis-set72.78 13571.87 15075.54 9974.77 21459.02 16472.24 16571.56 23563.92 9678.59 12871.59 33266.22 11978.60 16767.58 9480.32 26989.00 35
v124073.06 12673.14 12972.84 14374.74 21547.27 25571.88 17981.11 11451.80 22282.28 8884.21 18656.22 22082.34 10368.82 8287.17 18688.91 38
v192192072.96 13272.98 13572.89 14274.67 21647.58 24971.92 17780.69 12351.70 22481.69 9783.89 19156.58 21782.25 10568.34 8587.36 17588.82 40
EI-MVSNet-UG-set72.63 13871.68 15475.47 10074.67 21658.64 16972.02 17171.50 23663.53 10278.58 13071.39 33665.98 12078.53 16867.30 10480.18 27189.23 29
Fast-Effi-MVS+68.81 18668.30 19370.35 18074.66 21848.61 23466.06 26278.32 17150.62 23971.48 24275.54 29768.75 9179.59 15350.55 24578.73 28682.86 163
v119273.40 11773.42 12173.32 12874.65 21948.67 23372.21 16681.73 10152.76 21381.85 9184.56 18157.12 21182.24 10668.58 8387.33 17889.06 33
v14419272.99 13073.06 13372.77 14474.58 22047.48 25071.90 17880.44 13151.57 22581.46 9984.11 18858.04 20382.12 10767.98 9187.47 17388.70 43
MAR-MVS67.72 20266.16 22072.40 15574.45 22164.99 10774.87 13777.50 18448.67 25965.78 30068.58 36257.01 21477.79 18946.68 28181.92 24874.42 284
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v1075.69 8776.20 8874.16 11474.44 22248.69 23275.84 13082.93 8359.02 13885.92 4189.17 9258.56 19382.74 9770.73 7389.14 15091.05 15
sasdasda72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18976.61 16281.64 22672.03 6275.34 21457.12 18687.28 18084.40 116
canonicalmvs72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18976.61 16281.64 22672.03 6275.34 21457.12 18687.28 18084.40 116
Anonymous20240521166.02 22466.89 21563.43 26774.22 22538.14 33159.00 32166.13 27763.33 10769.76 26185.95 16851.88 23870.50 27144.23 29687.52 17181.64 190
Effi-MVS+72.10 14672.28 14771.58 16374.21 22650.33 21574.72 14482.73 8562.62 11170.77 24876.83 28969.96 8380.97 12960.20 16178.43 28983.45 144
FE-MVS68.29 19566.96 21472.26 15874.16 22754.24 19277.55 10373.42 21857.65 15272.66 22284.91 17832.02 35381.49 11648.43 26481.85 25081.04 197
v114473.29 12073.39 12273.01 13474.12 22848.11 23972.01 17281.08 11753.83 20481.77 9384.68 17958.07 20281.91 11068.10 8786.86 18888.99 36
FA-MVS(test-final)71.27 15371.06 16371.92 16173.96 22952.32 20476.45 11776.12 19759.07 13774.04 20686.18 15852.18 23779.43 15559.75 17081.76 25284.03 126
EI-MVSNet69.61 17569.01 18371.41 16773.94 23049.90 22271.31 18871.32 24158.22 14375.40 18370.44 33958.16 19675.85 20662.51 14179.81 27588.48 44
CVMVSNet59.21 28858.44 29161.51 28573.94 23047.76 24771.31 18864.56 29226.91 39060.34 33870.44 33936.24 33367.65 29253.57 22668.66 36369.12 335
IterMVS-LS73.01 12873.12 13172.66 14873.79 23249.90 22271.63 18278.44 16958.22 14380.51 11286.63 14558.15 19779.62 15162.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UWE-MVS52.94 32552.70 32853.65 33073.56 23327.49 38957.30 33449.57 36738.56 34262.79 32471.42 33519.49 40260.41 33424.33 39877.33 29973.06 294
alignmvs70.54 16271.00 16469.15 20373.50 23448.04 24269.85 20979.62 14453.94 20376.54 16682.00 21859.00 18974.68 22557.32 18587.21 18484.72 101
Fast-Effi-MVS+-dtu70.00 16768.74 18873.77 12073.47 23564.53 11071.36 18678.14 17655.81 17168.84 27674.71 30665.36 12875.75 20952.00 23379.00 28381.03 198
v875.07 9775.64 9573.35 12673.42 23647.46 25175.20 13481.45 10660.05 12885.64 4589.26 8758.08 20181.80 11269.71 8087.97 16790.79 19
tfpnnormal66.48 22067.93 19962.16 28073.40 23736.65 34063.45 29264.99 28755.97 16872.82 22187.80 12357.06 21369.10 28148.31 26687.54 17080.72 210
IterMVS-SCA-FT67.68 20366.07 22272.49 15373.34 23858.20 17163.80 28965.55 28348.10 26276.91 15282.64 21345.20 27878.84 16361.20 15177.89 29680.44 217
iter_conf05_1166.64 21765.20 23270.94 17073.28 23946.89 25866.09 26177.03 19043.44 30463.43 32274.09 31747.19 27283.26 8756.25 19686.01 20082.66 169
bld_raw_dy_0_6469.94 16969.64 17470.84 17173.28 23946.85 25975.82 13186.52 1640.43 33081.41 10074.77 30348.70 26483.01 9356.25 19689.59 13882.66 169
VNet64.01 24865.15 23660.57 29473.28 23935.61 35057.60 33267.08 27254.61 18566.76 29583.37 19956.28 21966.87 30342.19 30685.20 21179.23 234
MGCFI-Net71.70 15073.10 13267.49 22973.23 24243.08 29272.06 17082.43 9154.58 18675.97 17582.00 21872.42 6075.22 21657.84 18387.34 17784.18 123
3Dnovator65.95 1171.50 15271.22 16272.34 15673.16 24363.09 12078.37 9478.32 17157.67 15072.22 23084.61 18054.77 22378.47 17060.82 15781.07 26175.45 272
GBi-Net68.30 19368.79 18566.81 23773.14 24440.68 31071.96 17473.03 21954.81 17874.72 19090.36 6748.63 26575.20 21847.12 27585.37 20584.54 110
test168.30 19368.79 18566.81 23773.14 24440.68 31071.96 17473.03 21954.81 17874.72 19090.36 6748.63 26575.20 21847.12 27585.37 20584.54 110
FMVSNet267.48 20568.21 19665.29 24973.14 24438.94 32368.81 22271.21 24754.81 17876.73 15986.48 15048.63 26574.60 22647.98 27086.11 19982.35 177
thisisatest053067.05 21465.16 23472.73 14773.10 24750.55 21271.26 19063.91 29750.22 24474.46 19780.75 23626.81 37980.25 14259.43 17286.50 19587.37 54
pm-mvs168.40 19169.85 17364.04 26073.10 24739.94 31664.61 28270.50 25355.52 17373.97 20789.33 8563.91 13968.38 28649.68 25188.02 16583.81 131
pmmvs460.78 27659.04 28566.00 24673.06 24957.67 17364.53 28360.22 31336.91 35265.96 29777.27 28639.66 31468.54 28538.87 32674.89 31771.80 309
SDMVSNet66.36 22267.85 20261.88 28273.04 25046.14 26858.54 32571.36 24051.42 22868.93 27282.72 21165.62 12462.22 33054.41 21784.67 21877.28 257
sd_testset63.55 24965.38 22958.07 31073.04 25038.83 32557.41 33365.44 28451.42 22868.93 27282.72 21163.76 14058.11 34541.05 31484.67 21877.28 257
v2v48272.55 14172.58 14172.43 15472.92 25246.72 26171.41 18579.13 15455.27 17481.17 10485.25 17555.41 22281.13 12267.25 10585.46 20489.43 26
casdiffmvs_mvgpermissive75.26 9376.18 8972.52 15172.87 25349.47 22772.94 16184.71 5159.49 13280.90 10988.81 10370.07 8179.71 15067.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet54.39 31456.12 30849.20 35372.57 25430.91 37559.98 31648.43 37241.66 31455.94 36383.86 19241.19 30350.42 35826.05 38975.38 31466.27 351
Patchmatch-RL test59.95 28359.12 28462.44 27772.46 25554.61 19059.63 31847.51 37541.05 32174.58 19574.30 31131.06 36265.31 31551.61 23579.85 27467.39 343
CL-MVSNet_self_test62.44 26363.40 25259.55 30172.34 25632.38 36656.39 33864.84 28951.21 23367.46 29081.01 23350.75 24663.51 32538.47 33188.12 16382.75 166
Vis-MVSNet (Re-imp)62.74 26063.21 25561.34 28872.19 25731.56 37167.31 24753.87 34653.60 20669.88 25983.37 19940.52 30870.98 26741.40 31286.78 19181.48 192
thres100view90061.17 27361.09 27061.39 28772.14 25835.01 35365.42 27356.99 32855.23 17570.71 24979.90 25132.07 35172.09 25435.61 35481.73 25377.08 262
ab-mvs64.11 24665.13 23761.05 29071.99 25938.03 33467.59 23868.79 26449.08 25765.32 30286.26 15658.02 20466.85 30539.33 32279.79 27778.27 245
thres600view761.82 26761.38 26863.12 26971.81 26034.93 35464.64 28056.99 32854.78 18270.33 25379.74 25332.07 35172.42 25138.61 32983.46 23782.02 183
QAPM69.18 18269.26 17868.94 20971.61 26152.58 20380.37 7178.79 16249.63 25073.51 21085.14 17653.66 23079.12 15855.11 20875.54 31175.11 277
WB-MVSnew53.94 32054.76 31751.49 34271.53 26228.05 38658.22 32850.36 36437.94 34659.16 34670.17 34449.21 25751.94 35524.49 39671.80 34574.47 283
baseline73.10 12373.96 11370.51 17771.46 26346.39 26672.08 16984.40 5955.95 16976.62 16186.46 15167.20 10478.03 18564.22 12587.27 18287.11 61
casdiffmvspermissive73.06 12673.84 11470.72 17371.32 26446.71 26270.93 19484.26 6255.62 17277.46 14587.10 12667.09 10677.81 18863.95 12886.83 19087.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmvis_n_192072.36 14272.49 14271.96 16071.29 26564.06 11372.79 16281.82 9940.23 33181.25 10381.04 23270.62 7768.69 28369.74 7983.60 23683.14 154
Anonymous2023120654.13 31555.82 31049.04 35670.89 26635.96 34651.73 36550.87 36234.86 35962.49 32579.22 26242.52 29744.29 38427.95 38681.88 24966.88 347
fmvsm_s_conf0.1_n_a67.37 20966.36 21870.37 17970.86 26761.17 13874.00 15457.18 32740.77 32568.83 27780.88 23463.11 14367.61 29466.94 10674.72 31882.33 180
tfpn200view960.35 28059.97 27961.51 28570.78 26835.35 35163.27 29557.47 32153.00 21168.31 28177.09 28732.45 34872.09 25435.61 35481.73 25377.08 262
thres40060.77 27759.97 27963.15 26870.78 26835.35 35163.27 29557.47 32153.00 21168.31 28177.09 28732.45 34872.09 25435.61 35481.73 25382.02 183
MSDG67.47 20767.48 20767.46 23070.70 27054.69 18966.90 25378.17 17460.88 12370.41 25174.76 30461.22 16773.18 24047.38 27476.87 30174.49 282
testing9155.74 30555.29 31557.08 31470.63 27130.85 37654.94 35156.31 33750.34 24157.08 35470.10 34624.50 39065.86 31136.98 34476.75 30274.53 281
test_yl65.11 23065.09 23865.18 25070.59 27240.86 30863.22 29772.79 22257.91 14668.88 27479.07 26742.85 29474.89 22245.50 29084.97 21379.81 223
DCV-MVSNet65.11 23065.09 23865.18 25070.59 27240.86 30863.22 29772.79 22257.91 14668.88 27479.07 26742.85 29474.89 22245.50 29084.97 21379.81 223
test_fmvsm_n_192069.63 17368.45 19173.16 13070.56 27465.86 9870.26 20378.35 17037.69 34774.29 19978.89 26961.10 16968.10 28965.87 11479.07 28285.53 83
OpenMVScopyleft62.51 1568.76 18768.75 18768.78 21470.56 27453.91 19578.29 9577.35 18548.85 25870.22 25483.52 19552.65 23576.93 19855.31 20781.99 24775.49 271
DELS-MVS68.83 18568.31 19270.38 17870.55 27648.31 23563.78 29082.13 9354.00 20068.96 27075.17 30158.95 19080.06 14758.55 17782.74 24282.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testing22253.37 32152.50 33155.98 32170.51 27729.68 38156.20 34151.85 35946.19 27756.76 35868.94 35619.18 40365.39 31425.87 39276.98 30072.87 297
testing1153.13 32352.26 33355.75 32270.44 27831.73 37054.75 35252.40 35744.81 29252.36 37868.40 36321.83 39565.74 31332.64 36872.73 33669.78 327
LCM-MVSNet-Re69.10 18371.57 15861.70 28370.37 27934.30 35961.45 30479.62 14456.81 15989.59 888.16 11968.44 9472.94 24242.30 30587.33 17877.85 254
patch_mono-262.73 26164.08 24558.68 30670.36 28055.87 18160.84 31064.11 29641.23 31864.04 31178.22 27660.00 17848.80 36354.17 22183.71 23471.37 312
ETVMVS50.32 34349.87 35151.68 34070.30 28126.66 39252.33 36443.93 38443.54 30354.91 36867.95 36520.01 40160.17 33622.47 40073.40 33168.22 338
SCA58.57 29358.04 29460.17 29770.17 28241.07 30765.19 27553.38 35243.34 30861.00 33573.48 31945.20 27869.38 27840.34 31970.31 35470.05 324
ET-MVSNet_ETH3D63.32 25260.69 27571.20 16970.15 28355.66 18365.02 27764.32 29443.28 30968.99 26972.05 33025.46 38678.19 18354.16 22282.80 24179.74 226
testing9955.16 31054.56 31956.98 31670.13 28430.58 37854.55 35454.11 34549.53 25256.76 35870.14 34522.76 39465.79 31236.99 34376.04 30774.57 280
APD_test175.04 9875.38 9974.02 11769.89 28570.15 6276.46 11679.71 14365.50 7582.99 7988.60 10866.94 10772.35 25259.77 16988.54 15879.56 227
iter_conf0567.34 21065.62 22672.50 15269.82 28647.06 25772.19 16776.86 19145.32 28772.86 21982.85 20920.53 39883.73 7861.13 15389.02 15486.70 65
PVSNet_BlendedMVS65.38 22864.30 24268.61 21669.81 28749.36 22865.60 27178.96 15645.50 28259.98 33978.61 27151.82 23978.20 18144.30 29484.11 22878.27 245
PVSNet_Blended62.90 25861.64 26466.69 24069.81 28749.36 22861.23 30778.96 15642.04 31259.98 33968.86 35951.82 23978.20 18144.30 29477.77 29772.52 301
OpenMVS_ROBcopyleft54.93 1763.23 25463.28 25363.07 27069.81 28745.34 27368.52 22967.14 27143.74 30070.61 25079.22 26247.90 26972.66 24548.75 25973.84 33071.21 316
test_fmvsmconf0.01_n73.91 10973.64 11974.71 10469.79 29066.25 9375.90 12879.90 14146.03 27976.48 16885.02 17767.96 10173.97 23474.47 4987.22 18383.90 129
fmvsm_s_conf0.5_n_a67.00 21565.95 22570.17 18469.72 29161.16 13973.34 15856.83 33040.96 32268.36 28080.08 24962.84 14467.57 29566.90 10874.50 32281.78 188
FMVSNet365.00 23365.16 23464.52 25569.47 29237.56 33866.63 25670.38 25451.55 22674.72 19083.27 20437.89 32574.44 22847.12 27585.37 20581.57 191
MS-PatchMatch55.59 30754.89 31657.68 31269.18 29349.05 23161.00 30962.93 30235.98 35558.36 34968.93 35736.71 33166.59 30837.62 33863.30 37857.39 384
baseline157.82 29758.36 29356.19 31969.17 29430.76 37762.94 29955.21 33946.04 27863.83 31578.47 27241.20 30263.68 32339.44 32168.99 36174.13 285
v14869.38 18069.39 17669.36 19769.14 29544.56 27868.83 22172.70 22554.79 18178.59 12884.12 18754.69 22476.74 20359.40 17382.20 24586.79 63
test_fmvsmconf0.1_n73.26 12172.82 13874.56 10669.10 29666.18 9574.65 14779.34 15145.58 28175.54 18083.91 19067.19 10573.88 23773.26 5786.86 18883.63 137
fmvsm_s_conf0.1_n66.60 21865.54 22769.77 19268.99 29759.15 16172.12 16856.74 33240.72 32768.25 28380.14 24861.18 16866.92 30167.34 10374.40 32383.23 152
Syy-MVS54.13 31555.45 31350.18 34768.77 29823.59 39955.02 34844.55 38243.80 29758.05 35164.07 37646.22 27358.83 34146.16 28472.36 33968.12 339
myMVS_eth3d50.36 34250.52 34749.88 34868.77 29822.69 40155.02 34844.55 38243.80 29758.05 35164.07 37614.16 41258.83 34133.90 36372.36 33968.12 339
test_fmvsmconf_n72.91 13372.40 14574.46 10768.62 30066.12 9674.21 15278.80 16145.64 28074.62 19483.25 20566.80 11373.86 23872.97 6086.66 19483.39 145
CANet_DTU64.04 24763.83 24764.66 25368.39 30142.97 29473.45 15774.50 21352.05 22054.78 36975.44 30043.99 28670.42 27353.49 22778.41 29080.59 214
EU-MVSNet60.82 27560.80 27460.86 29368.37 30241.16 30572.27 16468.27 26826.96 38869.08 26775.71 29532.09 35067.44 29655.59 20578.90 28473.97 286
PVSNet43.83 2151.56 33651.17 33952.73 33568.34 30338.27 32948.22 37353.56 35036.41 35354.29 37264.94 37534.60 33754.20 35430.34 37469.87 35765.71 354
EPNet69.10 18367.32 20874.46 10768.33 30461.27 13777.56 10263.57 29960.95 12256.62 36082.75 21051.53 24281.24 12054.36 21990.20 12280.88 204
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n66.34 22365.27 23069.57 19568.20 30559.14 16371.66 18156.48 33340.92 32367.78 28579.46 25761.23 16566.90 30267.39 9974.32 32682.66 169
IB-MVS49.67 1859.69 28556.96 30167.90 22468.19 30650.30 21661.42 30565.18 28647.57 26955.83 36467.15 37123.77 39279.60 15243.56 30079.97 27373.79 289
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS60.62 27859.97 27962.58 27668.13 30747.28 25468.59 22773.96 21532.19 37259.94 34168.86 35950.48 24877.64 19241.85 30975.74 30862.83 367
eth_miper_zixun_eth69.42 17868.73 18971.50 16667.99 30846.42 26467.58 23978.81 15950.72 23878.13 13580.34 24350.15 25180.34 14060.18 16284.65 22087.74 50
TinyColmap67.98 19869.28 17764.08 25867.98 30946.82 26070.04 20475.26 20653.05 21077.36 14686.79 13559.39 18572.59 24945.64 28888.01 16672.83 298
EPNet_dtu58.93 29058.52 28960.16 29867.91 31047.70 24869.97 20658.02 31949.73 24947.28 39173.02 32438.14 32162.34 32836.57 34785.99 20170.43 322
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20057.55 29857.02 30059.17 30267.89 31134.93 35458.91 32357.25 32550.24 24364.01 31271.46 33432.49 34771.39 26431.31 37179.57 27971.19 317
our_test_356.46 30156.51 30456.30 31867.70 31239.66 31855.36 34752.34 35840.57 32963.85 31469.91 34940.04 31158.22 34443.49 30175.29 31671.03 319
ppachtmachnet_test60.26 28159.61 28262.20 27967.70 31244.33 28058.18 32960.96 31140.75 32665.80 29972.57 32641.23 30163.92 32246.87 27982.42 24478.33 243
MVS_Test69.84 17170.71 16767.24 23267.49 31443.25 29169.87 20881.22 11352.69 21471.57 23986.68 14162.09 15574.51 22766.05 11178.74 28583.96 127
fmvsm_l_conf0.5_n67.48 20566.88 21669.28 20067.41 31562.04 12670.69 19869.85 25739.46 33469.59 26281.09 23158.15 19768.73 28267.51 9678.16 29477.07 264
thisisatest051560.48 27957.86 29568.34 21967.25 31646.42 26460.58 31362.14 30440.82 32463.58 31969.12 35326.28 38278.34 17748.83 25882.13 24680.26 219
V4271.06 15570.83 16671.72 16267.25 31647.14 25665.94 26380.35 13451.35 23083.40 7683.23 20659.25 18778.80 16465.91 11380.81 26589.23 29
fmvsm_l_conf0.5_n_a66.66 21665.97 22468.72 21567.09 31861.38 13470.03 20569.15 26238.59 34168.41 27980.36 24256.56 21868.32 28766.10 11077.45 29876.46 265
GA-MVS62.91 25761.66 26366.66 24167.09 31844.49 27961.18 30869.36 26151.33 23169.33 26574.47 30836.83 33074.94 22150.60 24474.72 31880.57 215
testf175.66 8876.57 8272.95 13767.07 32067.62 8176.10 12480.68 12464.95 8786.58 3390.94 4071.20 7271.68 26260.46 15991.13 10079.56 227
APD_test275.66 8876.57 8272.95 13767.07 32067.62 8176.10 12480.68 12464.95 8786.58 3390.94 4071.20 7271.68 26260.46 15991.13 10079.56 227
HY-MVS49.31 1957.96 29657.59 29759.10 30466.85 32236.17 34465.13 27665.39 28539.24 33754.69 37178.14 27844.28 28567.18 30033.75 36470.79 35073.95 287
CR-MVSNet58.96 28958.49 29060.36 29666.37 32348.24 23770.93 19456.40 33532.87 37161.35 33086.66 14233.19 34263.22 32648.50 26370.17 35569.62 330
RPMNet65.77 22665.08 24067.84 22666.37 32348.24 23770.93 19486.27 2054.66 18461.35 33086.77 13733.29 34185.67 4755.93 20070.17 35569.62 330
IterMVS63.12 25562.48 26165.02 25266.34 32552.86 20063.81 28862.25 30346.57 27571.51 24180.40 24144.60 28366.82 30651.38 23875.47 31275.38 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
c3_l69.82 17269.89 17269.61 19466.24 32643.48 28768.12 23479.61 14651.43 22777.72 14180.18 24754.61 22678.15 18463.62 13387.50 17287.20 58
tpm256.12 30254.64 31860.55 29566.24 32636.01 34568.14 23356.77 33133.60 36958.25 35075.52 29930.25 36874.33 23033.27 36569.76 35971.32 313
Anonymous2024052163.55 24966.07 22255.99 32066.18 32844.04 28268.77 22568.80 26346.99 27272.57 22385.84 16939.87 31250.22 35953.40 23092.23 8173.71 290
Patchmtry60.91 27463.01 25754.62 32766.10 32926.27 39467.47 24156.40 33554.05 19972.04 23286.66 14233.19 34260.17 33643.69 29887.45 17477.42 255
FMVSNet555.08 31155.54 31253.71 32965.80 33033.50 36356.22 34052.50 35643.72 30161.06 33383.38 19825.46 38654.87 35130.11 37681.64 25872.75 299
131459.83 28458.86 28762.74 27565.71 33144.78 27768.59 22772.63 22633.54 37061.05 33467.29 37043.62 28971.26 26549.49 25367.84 36872.19 306
MDTV_nov1_ep1354.05 32265.54 33229.30 38359.00 32155.22 33835.96 35652.44 37675.98 29330.77 36559.62 33838.21 33273.33 333
baseline255.57 30852.74 32764.05 25965.26 33344.11 28162.38 30054.43 34339.03 33851.21 38167.35 36933.66 34072.45 25037.14 34164.22 37675.60 270
USDC62.80 25963.10 25661.89 28165.19 33443.30 29067.42 24274.20 21435.80 35772.25 22984.48 18345.67 27571.95 25837.95 33584.97 21370.42 323
tpm50.60 34052.42 33245.14 37065.18 33526.29 39360.30 31443.50 38537.41 34957.01 35579.09 26630.20 37042.32 38932.77 36766.36 37166.81 349
PatchmatchNetpermissive54.60 31354.27 32055.59 32365.17 33639.08 32066.92 25251.80 36039.89 33258.39 34873.12 32331.69 35658.33 34343.01 30358.38 39269.38 333
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
miper_ehance_all_eth68.36 19268.16 19868.98 20765.14 33743.34 28967.07 24978.92 15849.11 25676.21 17377.72 28253.48 23177.92 18761.16 15284.59 22285.68 82
cl____68.26 19768.26 19468.29 22064.98 33843.67 28565.89 26474.67 21050.04 24776.86 15582.42 21548.74 26275.38 21260.92 15689.81 13285.80 80
DIV-MVS_self_test68.27 19668.26 19468.29 22064.98 33843.67 28565.89 26474.67 21050.04 24776.86 15582.43 21448.74 26275.38 21260.94 15589.81 13285.81 76
tpm cat154.02 31852.63 32958.19 30964.85 34039.86 31766.26 26057.28 32432.16 37356.90 35670.39 34132.75 34665.30 31634.29 36058.79 38969.41 332
XXY-MVS55.19 30957.40 29948.56 35864.45 34134.84 35651.54 36653.59 34838.99 33963.79 31679.43 25856.59 21645.57 37436.92 34571.29 34765.25 357
PatchT53.35 32256.47 30543.99 37564.19 34217.46 40659.15 31943.10 38752.11 21954.74 37086.95 13129.97 37149.98 36043.62 29974.40 32364.53 364
D2MVS62.58 26261.05 27167.20 23363.85 34347.92 24356.29 33969.58 25939.32 33570.07 25778.19 27734.93 33672.68 24453.44 22883.74 23281.00 200
mvs_anonymous65.08 23265.49 22863.83 26163.79 34437.60 33766.52 25869.82 25843.44 30473.46 21286.08 16458.79 19271.75 26151.90 23475.63 31082.15 182
CostFormer57.35 29956.14 30760.97 29163.76 34538.43 32767.50 24060.22 31337.14 35159.12 34776.34 29232.78 34571.99 25739.12 32569.27 36072.47 302
Gipumacopyleft69.55 17672.83 13759.70 29963.63 34653.97 19480.08 7875.93 20064.24 9473.49 21188.93 10157.89 20562.46 32759.75 17091.55 9062.67 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
cl2267.14 21166.51 21769.03 20663.20 34743.46 28866.88 25476.25 19649.22 25474.48 19677.88 28145.49 27777.40 19460.64 15884.59 22286.24 69
gg-mvs-nofinetune55.75 30456.75 30352.72 33662.87 34828.04 38768.92 21941.36 39771.09 4150.80 38392.63 1220.74 39766.86 30429.97 37772.41 33863.25 366
gm-plane-assit62.51 34933.91 36137.25 35062.71 38172.74 24338.70 327
MVS-HIRNet45.53 35647.29 35640.24 38162.29 35026.82 39156.02 34337.41 40329.74 38343.69 40181.27 22833.96 33855.48 34924.46 39756.79 39338.43 402
diffmvspermissive67.42 20867.50 20667.20 23362.26 35145.21 27464.87 27877.04 18948.21 26171.74 23379.70 25458.40 19471.17 26664.99 11880.27 27085.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 280x42041.62 36739.89 37246.80 36361.81 35251.59 20533.56 39935.74 40427.48 38737.64 40553.53 39523.24 39342.09 39027.39 38758.64 39046.72 394
KD-MVS_self_test66.38 22167.51 20562.97 27261.76 35334.39 35858.11 33075.30 20550.84 23777.12 14885.42 17256.84 21569.44 27751.07 24091.16 9785.08 91
MDA-MVSNet-bldmvs62.34 26461.73 26264.16 25661.64 35449.90 22248.11 37457.24 32653.31 20980.95 10679.39 25949.00 26061.55 33245.92 28680.05 27281.03 198
miper_enhance_ethall65.86 22565.05 24168.28 22261.62 35542.62 29764.74 27977.97 17842.52 31073.42 21372.79 32549.66 25277.68 19158.12 18084.59 22284.54 110
WTY-MVS49.39 34750.31 34946.62 36461.22 35632.00 36946.61 37949.77 36633.87 36654.12 37369.55 35241.96 29845.40 37631.28 37264.42 37562.47 371
CMPMVSbinary48.73 2061.54 27160.89 27263.52 26561.08 35751.55 20668.07 23568.00 26933.88 36565.87 29881.25 22937.91 32467.71 29149.32 25582.60 24371.31 314
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test-LLR50.43 34150.69 34649.64 35160.76 35841.87 30153.18 35945.48 38043.41 30649.41 38860.47 38929.22 37444.73 38142.09 30772.14 34262.33 373
test-mter48.56 34948.20 35449.64 35160.76 35841.87 30153.18 35945.48 38031.91 37749.41 38860.47 38918.34 40444.73 38142.09 30772.14 34262.33 373
GG-mvs-BLEND52.24 33760.64 36029.21 38469.73 21042.41 39045.47 39452.33 39820.43 39968.16 28825.52 39465.42 37359.36 380
tpmvs55.84 30355.45 31357.01 31560.33 36133.20 36465.89 26459.29 31747.52 27056.04 36273.60 31831.05 36368.06 29040.64 31764.64 37469.77 328
miper_lstm_enhance61.97 26561.63 26562.98 27160.04 36245.74 27147.53 37670.95 24944.04 29573.06 21778.84 27039.72 31360.33 33555.82 20284.64 22182.88 161
dmvs_re49.91 34650.77 34547.34 36059.98 36338.86 32453.18 35953.58 34939.75 33355.06 36761.58 38536.42 33244.40 38329.15 38468.23 36458.75 381
PVSNet_036.71 2241.12 36840.78 37142.14 37759.97 36440.13 31540.97 38842.24 39430.81 38144.86 39749.41 40140.70 30745.12 37823.15 39934.96 40441.16 400
dmvs_testset45.26 35747.51 35538.49 38459.96 36514.71 40858.50 32643.39 38641.30 31751.79 38056.48 39339.44 31649.91 36221.42 40255.35 39850.85 389
new-patchmatchnet52.89 32655.76 31144.26 37459.94 3666.31 41237.36 39650.76 36341.10 31964.28 30979.82 25244.77 28148.43 36736.24 35087.61 16978.03 250
test20.0355.74 30557.51 29850.42 34659.89 36732.09 36850.63 36849.01 36950.11 24565.07 30483.23 20645.61 27648.11 36830.22 37583.82 23171.07 318
MVSTER63.29 25361.60 26668.36 21859.77 36846.21 26760.62 31271.32 24141.83 31375.40 18379.12 26530.25 36875.85 20656.30 19579.81 27583.03 158
N_pmnet52.06 33251.11 34054.92 32459.64 36971.03 5337.42 39561.62 31033.68 36757.12 35372.10 32737.94 32331.03 40229.13 38571.35 34662.70 368
test_vis1_n_192052.96 32453.50 32351.32 34359.15 37044.90 27656.13 34264.29 29530.56 38259.87 34360.68 38740.16 31047.47 36948.25 26762.46 38061.58 375
JIA-IIPM54.03 31751.62 33561.25 28959.14 37155.21 18659.10 32047.72 37350.85 23650.31 38785.81 17020.10 40063.97 32136.16 35155.41 39764.55 363
LF4IMVS67.50 20467.31 20968.08 22358.86 37261.93 12771.43 18475.90 20144.67 29372.42 22680.20 24557.16 20970.44 27258.99 17586.12 19871.88 308
UnsupCasMVSNet_bld50.01 34551.03 34246.95 36158.61 37332.64 36548.31 37253.27 35334.27 36460.47 33771.53 33341.40 30047.07 37130.68 37360.78 38561.13 376
dp44.09 36344.88 36541.72 38058.53 37423.18 40054.70 35342.38 39234.80 36044.25 39965.61 37324.48 39144.80 38029.77 37849.42 40057.18 385
testgi54.00 31956.86 30245.45 36858.20 37525.81 39649.05 37049.50 36845.43 28567.84 28481.17 23051.81 24143.20 38829.30 38079.41 28067.34 345
wuyk23d61.97 26566.25 21949.12 35558.19 37660.77 14966.32 25952.97 35455.93 17090.62 586.91 13273.07 5735.98 40020.63 40491.63 8750.62 390
ANet_high67.08 21269.94 17158.51 30857.55 37727.09 39058.43 32776.80 19363.56 10182.40 8791.93 2059.82 18264.98 31850.10 24888.86 15683.46 143
Patchmatch-test47.93 35049.96 35041.84 37857.42 37824.26 39848.75 37141.49 39639.30 33656.79 35773.48 31930.48 36733.87 40129.29 38172.61 33767.39 343
test_vis1_n51.27 33850.41 34853.83 32856.99 37950.01 22056.75 33660.53 31225.68 39259.74 34457.86 39229.40 37347.41 37043.10 30263.66 37764.08 365
new_pmnet37.55 37139.80 37330.79 38656.83 38016.46 40739.35 39230.65 40625.59 39345.26 39561.60 38424.54 38928.02 40521.60 40152.80 39947.90 393
pmmvs346.71 35345.09 36351.55 34156.76 38148.25 23655.78 34539.53 40124.13 39750.35 38663.40 37815.90 40951.08 35729.29 38170.69 35255.33 387
sss47.59 35248.32 35245.40 36956.73 38233.96 36045.17 38248.51 37132.11 37652.37 37765.79 37240.39 30941.91 39231.85 36961.97 38260.35 377
tpmrst50.15 34451.38 33846.45 36556.05 38324.77 39764.40 28549.98 36536.14 35453.32 37569.59 35135.16 33548.69 36439.24 32358.51 39165.89 352
TESTMET0.1,145.17 35844.93 36445.89 36756.02 38438.31 32853.18 35941.94 39527.85 38544.86 39756.47 39417.93 40541.50 39338.08 33468.06 36557.85 382
ADS-MVSNet248.76 34847.25 35753.29 33455.90 38540.54 31347.34 37754.99 34131.41 37950.48 38472.06 32831.23 35954.26 35325.93 39055.93 39465.07 358
ADS-MVSNet44.62 36145.58 36041.73 37955.90 38520.83 40447.34 37739.94 40031.41 37950.48 38472.06 32831.23 35939.31 39625.93 39055.93 39465.07 358
test0.0.03 147.72 35148.31 35345.93 36655.53 38729.39 38246.40 38041.21 39843.41 30655.81 36567.65 36629.22 37443.77 38725.73 39369.87 35764.62 362
UnsupCasMVSNet_eth52.26 33153.29 32649.16 35455.08 38833.67 36250.03 36958.79 31837.67 34863.43 32274.75 30541.82 29945.83 37338.59 33059.42 38867.98 342
pmmvs552.49 33052.58 33052.21 33854.99 38932.38 36655.45 34653.84 34732.15 37455.49 36674.81 30238.08 32257.37 34834.02 36174.40 32366.88 347
DSMNet-mixed43.18 36644.66 36638.75 38354.75 39028.88 38557.06 33527.42 40813.47 40447.27 39277.67 28338.83 31839.29 39725.32 39560.12 38748.08 392
MDA-MVSNet_test_wron52.57 32953.49 32549.81 35054.24 39136.47 34240.48 39046.58 37838.13 34375.47 18273.32 32141.05 30643.85 38640.98 31571.20 34869.10 336
YYNet152.58 32853.50 32349.85 34954.15 39236.45 34340.53 38946.55 37938.09 34475.52 18173.31 32241.08 30543.88 38541.10 31371.14 34969.21 334
EPMVS45.74 35546.53 35843.39 37654.14 39322.33 40355.02 34835.00 40534.69 36251.09 38270.20 34325.92 38442.04 39137.19 34055.50 39665.78 353
test_cas_vis1_n_192050.90 33950.92 34350.83 34554.12 39447.80 24551.44 36754.61 34226.95 38963.95 31360.85 38637.86 32644.97 37945.53 28962.97 37959.72 379
test_fmvs356.78 30055.99 30959.12 30353.96 39548.09 24058.76 32466.22 27627.54 38676.66 16068.69 36125.32 38851.31 35653.42 22973.38 33277.97 253
test_fmvs1_n52.70 32752.01 33454.76 32553.83 39650.36 21455.80 34465.90 27824.96 39465.39 30160.64 38827.69 37748.46 36545.88 28767.99 36665.46 355
KD-MVS_2432*160052.05 33351.58 33653.44 33252.11 39731.20 37244.88 38364.83 29041.53 31564.37 30770.03 34715.61 41064.20 31936.25 34874.61 32064.93 360
miper_refine_blended52.05 33351.58 33653.44 33252.11 39731.20 37244.88 38364.83 29041.53 31564.37 30770.03 34715.61 41064.20 31936.25 34874.61 32064.93 360
test_fmvs254.80 31254.11 32156.88 31751.76 39949.95 22156.70 33765.80 27926.22 39169.42 26365.25 37431.82 35449.98 36049.63 25270.36 35370.71 320
E-PMN45.17 35845.36 36144.60 37250.07 40042.75 29538.66 39342.29 39346.39 27639.55 40251.15 39926.00 38345.37 37737.68 33676.41 30345.69 396
PMMVS44.69 36043.95 36846.92 36250.05 40153.47 19848.08 37542.40 39122.36 40044.01 40053.05 39742.60 29645.49 37531.69 37061.36 38441.79 399
test_fmvs151.51 33750.86 34453.48 33149.72 40249.35 23054.11 35564.96 28824.64 39663.66 31859.61 39128.33 37648.45 36645.38 29267.30 37062.66 370
EMVS44.61 36244.45 36745.10 37148.91 40343.00 29337.92 39441.10 39946.75 27438.00 40448.43 40226.42 38146.27 37237.11 34275.38 31446.03 395
mvsany_test343.76 36541.01 36952.01 33948.09 40457.74 17242.47 38723.85 41123.30 39964.80 30562.17 38327.12 37840.59 39429.17 38348.11 40157.69 383
mvsany_test137.88 36935.74 37444.28 37347.28 40549.90 22236.54 39724.37 41019.56 40345.76 39353.46 39632.99 34437.97 39926.17 38835.52 40344.99 398
test_vis3_rt51.94 33551.04 34154.65 32646.32 40650.13 21844.34 38578.17 17423.62 39868.95 27162.81 38021.41 39638.52 39841.49 31172.22 34175.30 276
test_vis1_rt46.70 35445.24 36251.06 34444.58 40751.04 20939.91 39167.56 27021.84 40251.94 37950.79 40033.83 33939.77 39535.25 35761.50 38362.38 372
MVEpermissive27.91 2336.69 37235.64 37539.84 38243.37 40835.85 34819.49 40124.61 40924.68 39539.05 40362.63 38238.67 32027.10 40621.04 40347.25 40256.56 386
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS237.74 37040.87 37028.36 38742.41 4095.35 41324.61 40027.75 40732.15 37447.85 39070.27 34235.85 33429.51 40419.08 40567.85 36750.22 391
test_f43.79 36445.63 35938.24 38542.29 41038.58 32634.76 39847.68 37422.22 40167.34 29163.15 37931.82 35430.60 40339.19 32462.28 38145.53 397
DeepMVS_CXcopyleft11.83 38915.51 41113.86 40911.25 4145.76 40520.85 40726.46 40417.06 4089.22 4089.69 40813.82 40712.42 404
test_method19.26 37319.12 37719.71 3889.09 4121.91 4157.79 40353.44 3511.42 40610.27 40835.80 40317.42 40725.11 40712.44 40624.38 40632.10 403
tmp_tt11.98 37514.73 3783.72 3902.28 4134.62 41419.44 40214.50 4130.47 40821.55 4069.58 40625.78 3854.57 40911.61 40727.37 4051.96 405
test1234.43 3785.78 3810.39 3920.97 4140.28 41646.33 3810.45 4150.31 4090.62 4101.50 4090.61 4150.11 4110.56 4090.63 4080.77 407
testmvs4.06 3795.28 3820.41 3910.64 4150.16 41742.54 3860.31 4160.26 4100.50 4111.40 4100.77 4140.17 4100.56 4090.55 4090.90 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
eth-test20.00 416
eth-test0.00 416
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k17.71 37423.62 3760.00 3930.00 4160.00 4180.00 40470.17 2560.00 4110.00 41274.25 31268.16 970.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas5.20 3776.93 3800.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41162.39 1510.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re5.62 3767.50 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41267.46 3670.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS22.69 40136.10 352
PC_three_145246.98 27381.83 9286.28 15466.55 11784.47 7163.31 13890.78 11383.49 139
test_241102_TWO84.80 4572.61 3084.93 5689.70 8077.73 2285.89 4075.29 4294.22 5283.25 150
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 120
GSMVS70.05 324
sam_mvs131.41 35770.05 324
sam_mvs31.21 361
MTGPAbinary80.63 126
test_post166.63 2562.08 40730.66 36659.33 33940.34 319
test_post1.99 40830.91 36454.76 352
patchmatchnet-post68.99 35431.32 35869.38 278
MTMP84.83 3119.26 412
test9_res72.12 6991.37 9277.40 256
agg_prior270.70 7490.93 10778.55 242
test_prior470.14 6377.57 101
test_prior275.57 13258.92 13976.53 16786.78 13667.83 10269.81 7792.76 73
旧先验271.17 19145.11 28978.54 13161.28 33359.19 174
新几何271.33 187
无先验74.82 13870.94 25047.75 26876.85 20154.47 21572.09 307
原ACMM274.78 142
testdata267.30 29748.34 265
segment_acmp68.30 96
testdata168.34 23257.24 156
plane_prior585.49 3086.15 2771.09 7190.94 10584.82 98
plane_prior489.11 94
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior65.18 10480.06 7961.88 11789.91 131
n20.00 417
nn0.00 417
door-mid55.02 340
test1182.71 86
door52.91 355
HQP5-MVS58.80 166
BP-MVS67.38 101
HQP4-MVS71.59 23585.31 5283.74 134
HQP3-MVS84.12 6689.16 147
HQP2-MVS58.09 199
MDTV_nov1_ep13_2view18.41 40553.74 35731.57 37844.89 39629.90 37232.93 36671.48 311
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 147