This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++81.24 3582.74 3776.76 8283.14 9560.90 14491.64 185.49 3074.03 2184.93 5690.38 6466.82 11085.90 3877.43 3090.78 11383.49 139
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7275.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 7081.53 11581.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5871.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 175
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2671.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2777.48 1281.98 9089.95 7769.14 8885.26 5466.15 10991.24 9587.61 52
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 94
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 94
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10374.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 4064.94 8981.05 10588.38 11357.10 21287.10 879.75 783.87 23084.31 120
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8472.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 177
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6470.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6170.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6570.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 123
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3777.42 1386.15 3890.24 7081.69 585.94 3577.77 2693.58 6183.09 155
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 8190.39 6273.86 5286.31 1978.84 1994.03 5384.64 103
X-MVStestdata76.81 7874.79 10182.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 819.95 40573.86 5286.31 1978.84 1994.03 5384.64 103
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10851.71 22377.15 14791.42 3265.49 12687.20 679.44 1387.17 18684.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7466.72 9086.54 2085.11 3972.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9668.80 5380.92 10788.52 10972.00 6582.39 10174.80 4493.04 6881.14 195
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7471.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2567.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 108
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3868.58 5784.14 6790.21 7273.37 5686.41 1679.09 1893.98 5684.30 122
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4670.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10673.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4763.53 10284.23 6691.47 3072.02 6487.16 779.74 994.36 4584.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12672.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 205
MTMP84.83 3119.26 412
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11984.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8897.05 196.93 1
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 14075.34 1579.80 11894.91 269.79 8580.25 14272.63 6394.46 3688.78 42
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12472.03 4584.38 3486.23 2377.28 1480.65 11190.18 7359.80 18387.58 573.06 5991.34 9389.01 34
EGC-MVSNET64.77 23661.17 26975.60 9886.90 4274.47 3084.04 3568.62 2660.60 4071.13 40991.61 2865.32 12974.15 23364.01 12688.28 16078.17 247
MVSFormer69.93 17069.03 18272.63 15074.93 20959.19 15883.98 3675.72 20252.27 21663.53 32076.74 29043.19 29180.56 13572.28 6778.67 28778.14 248
test_djsdf78.88 5978.27 6980.70 3581.42 12371.24 5283.98 3675.72 20252.27 21687.37 2692.25 1668.04 9980.56 13572.28 6791.15 9890.32 22
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 7970.53 5983.85 3883.70 7269.43 5283.67 7388.96 9975.89 3486.41 1672.62 6492.95 6981.14 195
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test072686.16 5160.78 14783.81 3985.10 4072.48 3285.27 5389.96 7678.57 17
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14783.77 4080.58 12872.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 233
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND76.57 8586.20 4860.57 15083.77 4085.49 3085.90 3875.86 3994.39 4183.25 150
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14083.62 4284.72 4972.61 3087.38 2489.70 8077.48 2385.89 4075.29 4294.39 4183.08 156
OPU-MVS78.65 6283.44 9366.85 8983.62 4286.12 16266.82 11086.01 3161.72 14789.79 13483.08 156
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4264.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13764.71 9178.11 13688.39 11265.46 12783.14 8977.64 2991.20 9678.94 237
SF-MVS80.72 4381.80 4277.48 7482.03 11664.40 11183.41 4688.46 565.28 8184.29 6589.18 9173.73 5583.22 8876.01 3893.77 5884.81 100
SD-MVS80.28 4981.55 4776.47 8883.57 8967.83 8083.39 4785.35 3664.42 9286.14 3987.07 12974.02 5180.97 12977.70 2892.32 8080.62 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
RRT_MVS78.18 6877.69 7379.66 4683.14 9561.34 13583.29 4880.34 13557.43 15486.65 3191.79 2350.52 24786.01 3171.36 7094.65 3291.62 11
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5766.40 6987.45 2289.16 9381.02 880.52 13874.27 5195.73 780.98 201
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4273.52 2485.43 5190.03 7476.37 2986.97 1174.56 4794.02 5582.62 172
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 3065.45 7678.23 13389.11 9460.83 17286.15 2771.09 7190.94 10584.82 98
plane_prior282.74 5165.45 76
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2466.80 6586.70 3089.99 7581.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15374.08 2087.16 2891.97 1984.80 276.97 19764.98 11993.61 6072.28 305
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6188.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3467.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
F-COLMAP75.29 9273.99 11279.18 5281.73 12071.90 4681.86 5882.98 8159.86 13172.27 22884.00 18964.56 13583.07 9251.48 23687.19 18582.56 174
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1963.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PAPM_NR73.91 10974.16 11073.16 13081.90 11853.50 19781.28 6081.40 10766.17 7073.30 21583.31 20259.96 17983.10 9158.45 17881.66 25782.87 162
API-MVS70.97 15871.51 15969.37 19675.20 20655.94 18080.99 6176.84 19262.48 11371.24 24477.51 28561.51 16180.96 13252.04 23285.76 20371.22 315
MM78.15 7077.68 7479.55 4880.10 13665.47 10080.94 6278.74 16371.22 4072.40 22788.70 10460.51 17487.70 377.40 3289.13 15185.48 84
OMC-MVS79.41 5578.79 6381.28 2980.62 13170.71 5880.91 6384.76 4762.54 11281.77 9386.65 14471.46 6883.53 8267.95 9292.44 7689.60 24
CS-MVS76.51 8076.00 9078.06 7177.02 18064.77 10880.78 6482.66 8760.39 12674.15 20183.30 20369.65 8682.07 10869.27 8186.75 19287.36 55
mvs_tets78.93 5878.67 6579.72 4384.81 7373.93 3580.65 6576.50 19551.98 22187.40 2391.86 2176.09 3378.53 16868.58 8390.20 12286.69 66
mvsmamba77.20 7576.37 8579.69 4580.34 13461.52 13280.58 6682.12 9453.54 20783.93 7091.03 3749.49 25385.97 3373.26 5793.08 6791.59 12
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12862.39 12480.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 10064.82 12096.10 487.21 57
EPP-MVSNet73.86 11173.38 12375.31 10178.19 16453.35 19980.45 6877.32 18665.11 8576.47 16986.80 13449.47 25483.77 7753.89 22392.72 7488.81 41
jajsoiax78.51 6378.16 7079.59 4784.65 7673.83 3780.42 6976.12 19751.33 23187.19 2791.51 2973.79 5478.44 17268.27 8690.13 12686.49 68
PHI-MVS74.92 10074.36 10776.61 8476.40 19162.32 12580.38 7083.15 7954.16 19773.23 21680.75 23662.19 15483.86 7668.02 8990.92 10883.65 136
QAPM69.18 18269.26 17868.94 20971.61 26152.58 20380.37 7178.79 16249.63 25073.51 21085.14 17653.66 23079.12 15855.11 20875.54 31175.11 277
9.1480.22 5380.68 13080.35 7287.69 1059.90 12983.00 7888.20 11674.57 4781.75 11373.75 5493.78 57
EC-MVSNet77.08 7777.39 7776.14 9276.86 18856.87 17680.32 7387.52 1163.45 10474.66 19384.52 18269.87 8484.94 6169.76 7889.59 13886.60 67
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13264.16 11280.24 7482.06 9561.89 11688.77 1293.32 457.15 21082.60 9970.08 7692.80 7189.25 28
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2966.56 6885.64 4589.57 8269.12 8980.55 13772.51 6593.37 6383.48 141
MVS_030476.32 8275.96 9277.42 7679.33 14560.86 14680.18 7674.88 20966.93 6269.11 26688.95 10057.84 20686.12 2976.63 3789.77 13585.28 86
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19750.51 24089.19 1090.88 4271.45 6977.78 19073.38 5690.60 11890.90 18
Gipumacopyleft69.55 17672.83 13759.70 29963.63 34653.97 19480.08 7875.93 20064.24 9473.49 21188.93 10157.89 20562.46 32759.75 17091.55 9062.67 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
plane_prior65.18 10480.06 7961.88 11789.91 131
DeepC-MVS_fast69.89 777.17 7676.33 8779.70 4483.90 8767.94 7880.06 7983.75 7156.73 16174.88 18885.32 17365.54 12587.79 265.61 11691.14 9983.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11965.77 7275.55 17986.25 15767.42 10385.42 5070.10 7590.88 11181.81 187
IS-MVSNet75.10 9675.42 9874.15 11579.23 14848.05 24179.43 8278.04 17770.09 4979.17 12488.02 12153.04 23383.60 8058.05 18193.76 5990.79 19
AdaColmapbinary74.22 10774.56 10373.20 12981.95 11760.97 14279.43 8280.90 12065.57 7472.54 22581.76 22470.98 7585.26 5447.88 27190.00 12773.37 291
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 7065.64 7385.54 4989.28 8676.32 3183.47 8374.03 5293.57 6284.35 119
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
save fliter87.00 3967.23 8679.24 8577.94 17956.65 163
v7n79.37 5680.41 5276.28 9078.67 16155.81 18279.22 8682.51 9070.72 4487.54 2192.44 1468.00 10081.34 11772.84 6191.72 8491.69 10
DP-MVS78.44 6679.29 6075.90 9481.86 11965.33 10279.05 8784.63 5574.83 1880.41 11386.27 15571.68 6683.45 8462.45 14392.40 7778.92 238
CS-MVS-test74.89 10374.23 10976.86 8177.01 18162.94 12278.98 8884.61 5658.62 14170.17 25680.80 23566.74 11481.96 10961.74 14689.40 14585.69 81
ACMH63.62 1477.50 7380.11 5469.68 19379.61 14056.28 17878.81 8983.62 7363.41 10687.14 2990.23 7176.11 3273.32 23967.58 9494.44 3979.44 231
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSLP-MVS++74.48 10675.78 9370.59 17584.66 7562.40 12378.65 9084.24 6360.55 12577.71 14281.98 22063.12 14277.64 19262.95 14088.14 16271.73 310
AllTest77.66 7177.43 7678.35 6679.19 15070.81 5578.60 9188.64 365.37 7980.09 11688.17 11770.33 7878.43 17355.60 20390.90 10985.81 76
PS-MVSNAJss77.54 7277.35 7878.13 7084.88 7166.37 9278.55 9279.59 14753.48 20886.29 3692.43 1562.39 15180.25 14267.90 9390.61 11787.77 49
Effi-MVS+-dtu75.43 9172.28 14784.91 277.05 17883.58 178.47 9377.70 18157.68 14974.89 18778.13 27964.80 13384.26 7456.46 19485.32 20986.88 62
3Dnovator65.95 1171.50 15271.22 16272.34 15673.16 24363.09 12078.37 9478.32 17157.67 15072.22 23084.61 18054.77 22378.47 17060.82 15781.07 26175.45 272
OpenMVScopyleft62.51 1568.76 18768.75 18768.78 21470.56 27453.91 19578.29 9577.35 18548.85 25870.22 25483.52 19552.65 23576.93 19855.31 20781.99 24775.49 271
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29678.24 9682.24 9278.21 989.57 992.10 1868.05 9885.59 4866.04 11295.62 994.88 5
114514_t73.40 11773.33 12773.64 12284.15 8557.11 17478.20 9780.02 13943.76 29972.55 22486.07 16564.00 13883.35 8660.14 16491.03 10480.45 216
PLCcopyleft62.01 1671.79 14970.28 17076.33 8980.31 13568.63 7578.18 9881.24 11154.57 18767.09 29480.63 23859.44 18481.74 11446.91 27884.17 22778.63 239
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 9981.50 10463.92 9677.51 14486.56 14868.43 9584.82 6573.83 5391.61 8882.26 181
TAPA-MVS65.27 1275.16 9574.29 10877.77 7274.86 21268.08 7777.89 10084.04 6955.15 17676.19 17483.39 19766.91 10880.11 14660.04 16690.14 12585.13 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_prior470.14 6377.57 101
EPNet69.10 18367.32 20874.46 10768.33 30461.27 13777.56 10263.57 29960.95 12256.62 36082.75 21051.53 24281.24 12054.36 21990.20 12280.88 204
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FE-MVS68.29 19566.96 21472.26 15874.16 22754.24 19277.55 10373.42 21857.65 15272.66 22284.91 17832.02 35381.49 11648.43 26481.85 25081.04 197
RPSCF75.76 8674.37 10679.93 4074.81 21377.53 1677.53 10479.30 15259.44 13378.88 12689.80 7971.26 7173.09 24157.45 18480.89 26289.17 31
CSCG74.12 10874.39 10573.33 12779.35 14461.66 13177.45 10581.98 9762.47 11479.06 12580.19 24661.83 15678.79 16559.83 16887.35 17679.54 230
HQP-NCC82.37 11077.32 10659.08 13471.58 236
ACMP_Plane82.37 11077.32 10659.08 13471.58 236
HQP-MVS75.24 9475.01 10075.94 9382.37 11058.80 16677.32 10684.12 6659.08 13471.58 23685.96 16758.09 19985.30 5367.38 10189.16 14783.73 135
DTE-MVSNet80.35 4882.89 3572.74 14689.84 737.34 33977.16 10981.81 10080.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
PS-CasMVS80.41 4782.86 3673.07 13389.93 639.21 31977.15 11081.28 11079.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11085.39 3566.73 6680.39 11488.85 10274.43 5078.33 17874.73 4685.79 20282.35 177
PEN-MVS80.46 4682.91 3473.11 13289.83 839.02 32277.06 11282.61 8880.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
CP-MVSNet79.48 5481.65 4572.98 13689.66 1239.06 32176.76 11380.46 13078.91 790.32 791.70 2568.49 9384.89 6363.40 13695.12 1895.01 4
tt080576.12 8478.43 6869.20 20181.32 12541.37 30476.72 11477.64 18263.78 9982.06 8987.88 12279.78 1179.05 15964.33 12492.40 7787.17 60
SixPastTwentyTwo75.77 8576.34 8674.06 11681.69 12154.84 18776.47 11575.49 20464.10 9587.73 1792.24 1750.45 24981.30 11967.41 9791.46 9186.04 73
APD_test175.04 9875.38 9974.02 11769.89 28570.15 6276.46 11679.71 14365.50 7582.99 7988.60 10866.94 10772.35 25259.77 16988.54 15879.56 227
FA-MVS(test-final)71.27 15371.06 16371.92 16173.96 22952.32 20476.45 11776.12 19759.07 13774.04 20686.18 15852.18 23779.43 15559.75 17081.76 25284.03 126
TEST985.47 6369.32 7076.42 11878.69 16453.73 20576.97 14986.74 13866.84 10981.10 123
train_agg76.38 8176.55 8475.86 9585.47 6369.32 7076.42 11878.69 16454.00 20076.97 14986.74 13866.60 11581.10 12372.50 6691.56 8977.15 260
Vis-MVSNetpermissive74.85 10574.56 10375.72 9681.63 12264.64 10976.35 12079.06 15562.85 11073.33 21488.41 11162.54 14979.59 15363.94 13082.92 24082.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DeepPCF-MVS71.07 578.48 6577.14 8082.52 1684.39 8277.04 2176.35 12084.05 6856.66 16280.27 11585.31 17468.56 9287.03 1067.39 9991.26 9483.50 138
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12284.95 4466.89 6382.75 8488.99 9866.82 11078.37 17674.80 4490.76 11682.40 176
test_885.09 6967.89 7976.26 12378.66 16654.00 20076.89 15386.72 14066.60 11580.89 133
testf175.66 8876.57 8272.95 13767.07 32067.62 8176.10 12480.68 12464.95 8786.58 3390.94 4071.20 7271.68 26260.46 15991.13 10079.56 227
APD_test275.66 8876.57 8272.95 13767.07 32067.62 8176.10 12480.68 12464.95 8786.58 3390.94 4071.20 7271.68 26260.46 15991.13 10079.56 227
CDPH-MVS77.33 7477.06 8178.14 6984.21 8363.98 11476.07 12683.45 7554.20 19577.68 14387.18 12569.98 8285.37 5168.01 9092.72 7485.08 91
CNLPA73.44 11573.03 13474.66 10578.27 16375.29 2675.99 12778.49 16865.39 7875.67 17783.22 20861.23 16566.77 30753.70 22585.33 20881.92 186
test_fmvsmconf0.01_n73.91 10973.64 11974.71 10469.79 29066.25 9375.90 12879.90 14146.03 27976.48 16885.02 17767.96 10173.97 23474.47 4987.22 18383.90 129
UGNet70.20 16569.05 18173.65 12176.24 19363.64 11575.87 12972.53 22761.48 11860.93 33686.14 16152.37 23677.12 19650.67 24385.21 21080.17 221
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v1075.69 8776.20 8874.16 11474.44 22248.69 23275.84 13082.93 8359.02 13885.92 4189.17 9258.56 19382.74 9770.73 7389.14 15091.05 15
bld_raw_dy_0_6469.94 16969.64 17470.84 17173.28 23946.85 25975.82 13186.52 1640.43 33081.41 10074.77 30348.70 26483.01 9356.25 19689.59 13882.66 169
test_prior275.57 13258.92 13976.53 16786.78 13667.83 10269.81 7792.76 73
PAPR69.20 18168.66 19070.82 17275.15 20847.77 24675.31 13381.11 11449.62 25166.33 29679.27 26161.53 16082.96 9448.12 26881.50 25981.74 189
v875.07 9775.64 9573.35 12673.42 23647.46 25175.20 13481.45 10660.05 12885.64 4589.26 8758.08 20181.80 11269.71 8087.97 16790.79 19
tttt051769.46 17767.79 20374.46 10775.34 20452.72 20175.05 13563.27 30154.69 18378.87 12784.37 18426.63 38081.15 12163.95 12887.93 16889.51 25
TSAR-MVS + GP.73.08 12471.60 15777.54 7378.99 15770.73 5774.96 13669.38 26060.73 12474.39 19878.44 27357.72 20782.78 9660.16 16389.60 13779.11 235
MAR-MVS67.72 20266.16 22072.40 15574.45 22164.99 10774.87 13777.50 18448.67 25965.78 30068.58 36257.01 21477.79 18946.68 28181.92 24874.42 284
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
无先验74.82 13870.94 25047.75 26876.85 20154.47 21572.09 307
CANet73.00 12971.84 15176.48 8775.82 20161.28 13674.81 13980.37 13363.17 10862.43 32680.50 24061.10 16985.16 6064.00 12784.34 22683.01 159
PVSNet_Blended_VisFu70.04 16668.88 18473.53 12582.71 10763.62 11674.81 13981.95 9848.53 26067.16 29379.18 26451.42 24378.38 17554.39 21879.72 27878.60 240
MCST-MVS73.42 11673.34 12673.63 12381.28 12659.17 16074.80 14183.13 8045.50 28272.84 22083.78 19365.15 13080.99 12764.54 12189.09 15380.73 209
原ACMM274.78 142
Anonymous2023121175.54 9077.19 7970.59 17577.67 17445.70 27274.73 14380.19 13668.80 5382.95 8092.91 866.26 11876.76 20258.41 17992.77 7289.30 27
Effi-MVS+72.10 14672.28 14771.58 16374.21 22650.33 21574.72 14482.73 8562.62 11170.77 24876.83 28969.96 8380.97 12960.20 16178.43 28983.45 144
K. test v373.67 11273.61 12073.87 11979.78 13855.62 18574.69 14562.04 30866.16 7184.76 6093.23 549.47 25480.97 12965.66 11586.67 19385.02 93
MG-MVS70.47 16371.34 16167.85 22579.26 14740.42 31474.67 14675.15 20858.41 14268.74 27888.14 12056.08 22183.69 7959.90 16781.71 25679.43 232
test_fmvsmconf0.1_n73.26 12172.82 13874.56 10669.10 29666.18 9574.65 14779.34 15145.58 28175.54 18083.91 19067.19 10573.88 23773.26 5786.86 18883.63 137
UniMVSNet_ETH3D76.74 7979.02 6169.92 19189.27 1943.81 28374.47 14871.70 23272.33 3585.50 5093.65 377.98 2176.88 20054.60 21491.64 8689.08 32
GeoE73.14 12273.77 11771.26 16878.09 16652.64 20274.32 14979.56 14856.32 16576.35 17283.36 20170.76 7677.96 18663.32 13781.84 25183.18 153
DP-MVS Recon73.57 11472.69 13976.23 9182.85 10563.39 11774.32 14982.96 8257.75 14870.35 25281.98 22064.34 13784.41 7349.69 25089.95 12980.89 203
ambc70.10 18777.74 17250.21 21774.28 15177.93 18079.26 12388.29 11554.11 22979.77 14964.43 12291.10 10280.30 218
test_fmvsmconf_n72.91 13372.40 14574.46 10768.62 30066.12 9674.21 15278.80 16145.64 28074.62 19483.25 20566.80 11373.86 23872.97 6086.66 19483.39 145
nrg03074.87 10475.99 9171.52 16574.90 21149.88 22674.10 15382.58 8954.55 18883.50 7589.21 8971.51 6775.74 21061.24 15092.34 7988.94 37
fmvsm_s_conf0.1_n_a67.37 20966.36 21870.37 17970.86 26761.17 13874.00 15457.18 32740.77 32568.83 27780.88 23463.11 14367.61 29466.94 10674.72 31882.33 180
sasdasda72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18976.61 16281.64 22672.03 6275.34 21457.12 18687.28 18084.40 116
canonicalmvs72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18976.61 16281.64 22672.03 6275.34 21457.12 18687.28 18084.40 116
CANet_DTU64.04 24763.83 24764.66 25368.39 30142.97 29473.45 15774.50 21352.05 22054.78 36975.44 30043.99 28670.42 27353.49 22778.41 29080.59 214
fmvsm_s_conf0.5_n_a67.00 21565.95 22570.17 18469.72 29161.16 13973.34 15856.83 33040.96 32268.36 28080.08 24962.84 14467.57 29566.90 10874.50 32281.78 188
ETV-MVS72.72 13672.16 14974.38 11276.90 18655.95 17973.34 15884.67 5262.04 11572.19 23170.81 33765.90 12285.24 5658.64 17684.96 21681.95 185
PCF-MVS63.80 1372.70 13771.69 15375.72 9678.10 16560.01 15473.04 16081.50 10445.34 28679.66 11984.35 18565.15 13082.65 9848.70 26089.38 14684.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
casdiffmvs_mvgpermissive75.26 9376.18 8972.52 15172.87 25349.47 22772.94 16184.71 5159.49 13280.90 10988.81 10370.07 8179.71 15067.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmvis_n_192072.36 14272.49 14271.96 16071.29 26564.06 11372.79 16281.82 9940.23 33181.25 10381.04 23270.62 7768.69 28369.74 7983.60 23683.14 154
test_040278.17 6979.48 5974.24 11383.50 9059.15 16172.52 16374.60 21275.34 1588.69 1391.81 2275.06 4282.37 10265.10 11788.68 15781.20 193
EU-MVSNet60.82 27560.80 27460.86 29368.37 30241.16 30572.27 16468.27 26826.96 38869.08 26775.71 29532.09 35067.44 29655.59 20578.90 28473.97 286
EI-MVSNet-Vis-set72.78 13571.87 15075.54 9974.77 21459.02 16472.24 16571.56 23563.92 9678.59 12871.59 33266.22 11978.60 16767.58 9480.32 26989.00 35
v119273.40 11773.42 12173.32 12874.65 21948.67 23372.21 16681.73 10152.76 21381.85 9184.56 18157.12 21182.24 10668.58 8387.33 17889.06 33
iter_conf0567.34 21065.62 22672.50 15269.82 28647.06 25772.19 16776.86 19145.32 28772.86 21982.85 20920.53 39883.73 7861.13 15389.02 15486.70 65
fmvsm_s_conf0.1_n66.60 21865.54 22769.77 19268.99 29759.15 16172.12 16856.74 33240.72 32768.25 28380.14 24861.18 16866.92 30167.34 10374.40 32383.23 152
baseline73.10 12373.96 11370.51 17771.46 26346.39 26672.08 16984.40 5955.95 16976.62 16186.46 15167.20 10478.03 18564.22 12587.27 18287.11 61
MGCFI-Net71.70 15073.10 13267.49 22973.23 24243.08 29272.06 17082.43 9154.58 18675.97 17582.00 21872.42 6075.22 21657.84 18387.34 17784.18 123
EI-MVSNet-UG-set72.63 13871.68 15475.47 10074.67 21658.64 16972.02 17171.50 23663.53 10278.58 13071.39 33665.98 12078.53 16867.30 10480.18 27189.23 29
v114473.29 12073.39 12273.01 13474.12 22848.11 23972.01 17281.08 11753.83 20481.77 9384.68 17958.07 20281.91 11068.10 8786.86 18888.99 36
dcpmvs_271.02 15772.65 14066.16 24476.06 19950.49 21371.97 17379.36 15050.34 24182.81 8383.63 19464.38 13667.27 29861.54 14883.71 23480.71 211
GBi-Net68.30 19368.79 18566.81 23773.14 24440.68 31071.96 17473.03 21954.81 17874.72 19090.36 6748.63 26575.20 21847.12 27585.37 20584.54 110
test168.30 19368.79 18566.81 23773.14 24440.68 31071.96 17473.03 21954.81 17874.72 19090.36 6748.63 26575.20 21847.12 27585.37 20584.54 110
FMVSNet171.06 15572.48 14366.81 23777.65 17540.68 31071.96 17473.03 21961.14 12079.45 12290.36 6760.44 17575.20 21850.20 24788.05 16484.54 110
v192192072.96 13272.98 13572.89 14274.67 21647.58 24971.92 17780.69 12351.70 22481.69 9783.89 19156.58 21782.25 10568.34 8587.36 17588.82 40
v14419272.99 13073.06 13372.77 14474.58 22047.48 25071.90 17880.44 13151.57 22581.46 9984.11 18858.04 20382.12 10767.98 9187.47 17388.70 43
v124073.06 12673.14 12972.84 14374.74 21547.27 25571.88 17981.11 11451.80 22282.28 8884.21 18656.22 22082.34 10368.82 8287.17 18688.91 38
FC-MVSNet-test73.32 11974.78 10268.93 21079.21 14936.57 34171.82 18079.54 14957.63 15382.57 8690.38 6459.38 18678.99 16157.91 18294.56 3491.23 14
fmvsm_s_conf0.5_n66.34 22365.27 23069.57 19568.20 30559.14 16371.66 18156.48 33340.92 32367.78 28579.46 25761.23 16566.90 30267.39 9974.32 32682.66 169
IterMVS-LS73.01 12873.12 13172.66 14873.79 23249.90 22271.63 18278.44 16958.22 14380.51 11286.63 14558.15 19779.62 15162.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EG-PatchMatch MVS70.70 16070.88 16570.16 18582.64 10958.80 16671.48 18373.64 21654.98 17776.55 16581.77 22361.10 16978.94 16254.87 21080.84 26472.74 300
LF4IMVS67.50 20467.31 20968.08 22358.86 37261.93 12771.43 18475.90 20144.67 29372.42 22680.20 24557.16 20970.44 27258.99 17586.12 19871.88 308
v2v48272.55 14172.58 14172.43 15472.92 25246.72 26171.41 18579.13 15455.27 17481.17 10485.25 17555.41 22281.13 12267.25 10585.46 20489.43 26
Fast-Effi-MVS+-dtu70.00 16768.74 18873.77 12073.47 23564.53 11071.36 18678.14 17655.81 17168.84 27674.71 30665.36 12875.75 20952.00 23379.00 28381.03 198
新几何271.33 187
EI-MVSNet69.61 17569.01 18371.41 16773.94 23049.90 22271.31 18871.32 24158.22 14375.40 18370.44 33958.16 19675.85 20662.51 14179.81 27588.48 44
CVMVSNet59.21 28858.44 29161.51 28573.94 23047.76 24771.31 18864.56 29226.91 39060.34 33870.44 33936.24 33367.65 29253.57 22668.66 36369.12 335
thisisatest053067.05 21465.16 23472.73 14773.10 24750.55 21271.26 19063.91 29750.22 24474.46 19780.75 23626.81 37980.25 14259.43 17286.50 19587.37 54
旧先验271.17 19145.11 28978.54 13161.28 33359.19 174
FIs72.56 13973.80 11568.84 21378.74 16037.74 33571.02 19279.83 14256.12 16680.88 11089.45 8458.18 19578.28 17956.63 19093.36 6490.51 21
TranMVSNet+NR-MVSNet76.13 8377.66 7571.56 16484.61 7742.57 29870.98 19378.29 17368.67 5683.04 7789.26 8772.99 5880.75 13455.58 20695.47 1091.35 13
casdiffmvspermissive73.06 12673.84 11470.72 17371.32 26446.71 26270.93 19484.26 6255.62 17277.46 14587.10 12667.09 10677.81 18863.95 12886.83 19087.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CR-MVSNet58.96 28958.49 29060.36 29666.37 32348.24 23770.93 19456.40 33532.87 37161.35 33086.66 14233.19 34263.22 32648.50 26370.17 35569.62 330
RPMNet65.77 22665.08 24067.84 22666.37 32348.24 23770.93 19486.27 2054.66 18461.35 33086.77 13733.29 34185.67 4755.93 20070.17 35569.62 330
LFMVS67.06 21367.89 20064.56 25478.02 16738.25 33070.81 19759.60 31565.18 8371.06 24686.56 14843.85 28775.22 21646.35 28289.63 13680.21 220
fmvsm_l_conf0.5_n67.48 20566.88 21669.28 20067.41 31562.04 12670.69 19869.85 25739.46 33469.59 26281.09 23158.15 19768.73 28267.51 9678.16 29477.07 264
DPM-MVS69.98 16869.22 18072.26 15882.69 10858.82 16570.53 19981.23 11247.79 26764.16 31080.21 24451.32 24483.12 9060.14 16484.95 21774.83 278
h-mvs3373.08 12471.61 15677.48 7483.89 8872.89 4470.47 20071.12 24854.28 19177.89 13783.41 19649.04 25880.98 12863.62 13390.77 11578.58 241
MVS_111021_LR72.10 14671.82 15272.95 13779.53 14273.90 3670.45 20166.64 27456.87 15876.81 15781.76 22468.78 9071.76 26061.81 14483.74 23273.18 293
UniMVSNet (Re)75.00 9975.48 9773.56 12483.14 9547.92 24370.41 20281.04 11863.67 10079.54 12086.37 15362.83 14581.82 11157.10 18895.25 1490.94 17
test_fmvsm_n_192069.63 17368.45 19173.16 13070.56 27465.86 9870.26 20378.35 17037.69 34774.29 19978.89 26961.10 16968.10 28965.87 11479.07 28285.53 83
TinyColmap67.98 19869.28 17764.08 25867.98 30946.82 26070.04 20475.26 20653.05 21077.36 14686.79 13559.39 18572.59 24945.64 28888.01 16672.83 298
fmvsm_l_conf0.5_n_a66.66 21665.97 22468.72 21567.09 31861.38 13470.03 20569.15 26238.59 34168.41 27980.36 24256.56 21868.32 28766.10 11077.45 29876.46 265
VDDNet71.60 15173.13 13067.02 23686.29 4741.11 30669.97 20666.50 27568.72 5574.74 18991.70 2559.90 18075.81 20848.58 26291.72 8484.15 125
EPNet_dtu58.93 29058.52 28960.16 29867.91 31047.70 24869.97 20658.02 31949.73 24947.28 39173.02 32438.14 32162.34 32836.57 34785.99 20170.43 322
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_Test69.84 17170.71 16767.24 23267.49 31443.25 29169.87 20881.22 11352.69 21471.57 23986.68 14162.09 15574.51 22766.05 11178.74 28583.96 127
alignmvs70.54 16271.00 16469.15 20373.50 23448.04 24269.85 20979.62 14453.94 20376.54 16682.00 21859.00 18974.68 22557.32 18587.21 18484.72 101
GG-mvs-BLEND52.24 33760.64 36029.21 38469.73 21042.41 39045.47 39452.33 39820.43 39968.16 28825.52 39465.42 37359.36 380
pmmvs-eth3d64.41 24363.27 25467.82 22775.81 20260.18 15369.49 21162.05 30738.81 34074.13 20282.23 21743.76 28868.65 28442.53 30480.63 26874.63 279
DU-MVS74.91 10175.57 9672.93 14083.50 9045.79 26969.47 21280.14 13865.22 8281.74 9587.08 12761.82 15781.07 12556.21 19894.98 2091.93 8
EIA-MVS68.59 19067.16 21072.90 14175.18 20755.64 18469.39 21381.29 10952.44 21564.53 30670.69 33860.33 17682.30 10454.27 22076.31 30580.75 208
PAPM61.79 26860.37 27766.05 24576.09 19641.87 30169.30 21476.79 19440.64 32853.80 37479.62 25644.38 28482.92 9529.64 37973.11 33473.36 292
UniMVSNet_NR-MVSNet74.90 10275.65 9472.64 14983.04 10145.79 26969.26 21578.81 15966.66 6781.74 9586.88 13363.26 14181.07 12556.21 19894.98 2091.05 15
MVP-Stereo61.56 27059.22 28368.58 21779.28 14660.44 15169.20 21671.57 23443.58 30256.42 36178.37 27439.57 31576.46 20534.86 35860.16 38668.86 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
hse-mvs272.32 14370.66 16877.31 7983.10 10071.77 4769.19 21771.45 23854.28 19177.89 13778.26 27549.04 25879.23 15663.62 13389.13 15180.92 202
AUN-MVS70.22 16467.88 20177.22 8082.96 10471.61 4869.08 21871.39 23949.17 25571.70 23478.07 28037.62 32779.21 15761.81 14489.15 14980.82 205
gg-mvs-nofinetune55.75 30456.75 30352.72 33662.87 34828.04 38768.92 21941.36 39771.09 4150.80 38392.63 1220.74 39766.86 30429.97 37772.41 33863.25 366
Baseline_NR-MVSNet70.62 16173.19 12862.92 27476.97 18234.44 35768.84 22070.88 25160.25 12779.50 12190.53 5361.82 15769.11 28054.67 21395.27 1385.22 87
v14869.38 18069.39 17669.36 19769.14 29544.56 27868.83 22172.70 22554.79 18178.59 12884.12 18754.69 22476.74 20359.40 17382.20 24586.79 63
FMVSNet267.48 20568.21 19665.29 24973.14 24438.94 32368.81 22271.21 24754.81 17876.73 15986.48 15048.63 26574.60 22647.98 27086.11 19982.35 177
MVS_111021_HR72.98 13172.97 13672.99 13580.82 12965.47 10068.81 22272.77 22457.67 15075.76 17682.38 21671.01 7477.17 19561.38 14986.15 19776.32 266
Anonymous2024052972.56 13973.79 11668.86 21276.89 18745.21 27468.80 22477.25 18867.16 6176.89 15390.44 5665.95 12174.19 23250.75 24290.00 12787.18 59
Anonymous2024052163.55 24966.07 22255.99 32066.18 32844.04 28268.77 22568.80 26346.99 27272.57 22385.84 16939.87 31250.22 35953.40 23092.23 8173.71 290
CLD-MVS72.88 13472.36 14674.43 11077.03 17954.30 19168.77 22583.43 7652.12 21876.79 15874.44 30969.54 8783.91 7555.88 20193.25 6685.09 90
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
131459.83 28458.86 28762.74 27565.71 33144.78 27768.59 22772.63 22633.54 37061.05 33467.29 37043.62 28971.26 26549.49 25367.84 36872.19 306
MVS60.62 27859.97 27962.58 27668.13 30747.28 25468.59 22773.96 21532.19 37259.94 34168.86 35950.48 24877.64 19241.85 30975.74 30862.83 367
OpenMVS_ROBcopyleft54.93 1763.23 25463.28 25363.07 27069.81 28745.34 27368.52 22967.14 27143.74 30070.61 25079.22 26247.90 26972.66 24548.75 25973.84 33071.21 316
PM-MVS64.49 24063.61 25067.14 23576.68 18975.15 2768.49 23042.85 38951.17 23477.85 13980.51 23945.76 27466.31 31052.83 23176.35 30459.96 378
BH-untuned69.39 17969.46 17569.18 20277.96 16956.88 17568.47 23177.53 18356.77 16077.79 14079.63 25560.30 17780.20 14546.04 28580.65 26670.47 321
testdata168.34 23257.24 156
tpm256.12 30254.64 31860.55 29566.24 32636.01 34568.14 23356.77 33133.60 36958.25 35075.52 29930.25 36874.33 23033.27 36569.76 35971.32 313
c3_l69.82 17269.89 17269.61 19466.24 32643.48 28768.12 23479.61 14651.43 22777.72 14180.18 24754.61 22678.15 18463.62 13387.50 17287.20 58
CMPMVSbinary48.73 2061.54 27160.89 27263.52 26561.08 35751.55 20668.07 23568.00 26933.88 36565.87 29881.25 22937.91 32467.71 29149.32 25582.60 24371.31 314
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test22287.30 3769.15 7367.85 23659.59 31641.06 32073.05 21885.72 17148.03 26880.65 26666.92 346
VDD-MVS70.81 15971.44 16068.91 21179.07 15546.51 26367.82 23770.83 25261.23 11974.07 20488.69 10559.86 18175.62 21151.11 23990.28 12184.61 106
ab-mvs64.11 24665.13 23761.05 29071.99 25938.03 33467.59 23868.79 26449.08 25765.32 30286.26 15658.02 20466.85 30539.33 32279.79 27778.27 245
eth_miper_zixun_eth69.42 17868.73 18971.50 16667.99 30846.42 26467.58 23978.81 15950.72 23878.13 13580.34 24350.15 25180.34 14060.18 16284.65 22087.74 50
CostFormer57.35 29956.14 30760.97 29163.76 34538.43 32767.50 24060.22 31337.14 35159.12 34776.34 29232.78 34571.99 25739.12 32569.27 36072.47 302
Patchmtry60.91 27463.01 25754.62 32766.10 32926.27 39467.47 24156.40 33554.05 19972.04 23286.66 14233.19 34260.17 33643.69 29887.45 17477.42 255
USDC62.80 25963.10 25661.89 28165.19 33443.30 29067.42 24274.20 21435.80 35772.25 22984.48 18345.67 27571.95 25837.95 33584.97 21370.42 323
xiu_mvs_v1_base_debu67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
xiu_mvs_v1_base67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
xiu_mvs_v1_base_debi67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
test250661.23 27260.85 27362.38 27878.80 15827.88 38867.33 24637.42 40254.23 19367.55 28988.68 10617.87 40674.39 22946.33 28389.41 14384.86 96
Vis-MVSNet (Re-imp)62.74 26063.21 25561.34 28872.19 25731.56 37167.31 24753.87 34653.60 20669.88 25983.37 19940.52 30870.98 26741.40 31286.78 19181.48 192
jason64.47 24162.84 25869.34 19976.91 18459.20 15767.15 24865.67 28035.29 35865.16 30376.74 29044.67 28270.68 26854.74 21279.28 28178.14 248
jason: jason.
miper_ehance_all_eth68.36 19268.16 19868.98 20765.14 33743.34 28967.07 24978.92 15849.11 25676.21 17377.72 28253.48 23177.92 18761.16 15284.59 22285.68 82
pmmvs671.82 14873.66 11866.31 24375.94 20042.01 30066.99 25072.53 22763.45 10476.43 17092.78 1072.95 5969.69 27651.41 23790.46 11987.22 56
ECVR-MVScopyleft64.82 23465.22 23163.60 26378.80 15831.14 37466.97 25156.47 33454.23 19369.94 25888.68 10637.23 32874.81 22445.28 29389.41 14384.86 96
PatchmatchNetpermissive54.60 31354.27 32055.59 32365.17 33639.08 32066.92 25251.80 36039.89 33258.39 34873.12 32331.69 35658.33 34343.01 30358.38 39269.38 333
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MSDG67.47 20767.48 20767.46 23070.70 27054.69 18966.90 25378.17 17460.88 12370.41 25174.76 30461.22 16773.18 24047.38 27476.87 30174.49 282
cl2267.14 21166.51 21769.03 20663.20 34743.46 28866.88 25476.25 19649.22 25474.48 19677.88 28145.49 27777.40 19460.64 15884.59 22286.24 69
TAMVS65.31 22963.75 24869.97 19082.23 11459.76 15666.78 25563.37 30045.20 28869.79 26079.37 26047.42 27172.17 25334.48 35985.15 21277.99 252
test_post166.63 2562.08 40730.66 36659.33 33940.34 319
FMVSNet365.00 23365.16 23464.52 25569.47 29237.56 33866.63 25670.38 25451.55 22674.72 19083.27 20437.89 32574.44 22847.12 27585.37 20581.57 191
mvs_anonymous65.08 23265.49 22863.83 26163.79 34437.60 33766.52 25869.82 25843.44 30473.46 21286.08 16458.79 19271.75 26151.90 23475.63 31082.15 182
wuyk23d61.97 26566.25 21949.12 35558.19 37660.77 14966.32 25952.97 35455.93 17090.62 586.91 13273.07 5735.98 40020.63 40491.63 8750.62 390
tpm cat154.02 31852.63 32958.19 30964.85 34039.86 31766.26 26057.28 32432.16 37356.90 35670.39 34132.75 34665.30 31634.29 36058.79 38969.41 332
iter_conf05_1166.64 21765.20 23270.94 17073.28 23946.89 25866.09 26177.03 19043.44 30463.43 32274.09 31747.19 27283.26 8756.25 19686.01 20082.66 169
Fast-Effi-MVS+68.81 18668.30 19370.35 18074.66 21848.61 23466.06 26278.32 17150.62 23971.48 24275.54 29768.75 9179.59 15350.55 24578.73 28682.86 163
V4271.06 15570.83 16671.72 16267.25 31647.14 25665.94 26380.35 13451.35 23083.40 7683.23 20659.25 18778.80 16465.91 11380.81 26589.23 29
cl____68.26 19768.26 19468.29 22064.98 33843.67 28565.89 26474.67 21050.04 24776.86 15582.42 21548.74 26275.38 21260.92 15689.81 13285.80 80
DIV-MVS_self_test68.27 19668.26 19468.29 22064.98 33843.67 28565.89 26474.67 21050.04 24776.86 15582.43 21448.74 26275.38 21260.94 15589.81 13285.81 76
tpmvs55.84 30355.45 31357.01 31560.33 36133.20 36465.89 26459.29 31747.52 27056.04 36273.60 31831.05 36368.06 29040.64 31764.64 37469.77 328
lupinMVS63.36 25161.49 26768.97 20874.93 20959.19 15865.80 26764.52 29334.68 36363.53 32074.25 31243.19 29170.62 26953.88 22478.67 28777.10 261
TransMVSNet (Re)69.62 17471.63 15563.57 26476.51 19035.93 34765.75 26871.29 24361.05 12175.02 18589.90 7865.88 12370.41 27449.79 24989.48 14184.38 118
NR-MVSNet73.62 11374.05 11172.33 15783.50 9043.71 28465.65 26977.32 18664.32 9375.59 17887.08 12762.45 15081.34 11754.90 20995.63 891.93 8
BH-w/o64.81 23564.29 24366.36 24276.08 19854.71 18865.61 27075.23 20750.10 24671.05 24771.86 33154.33 22779.02 16038.20 33376.14 30665.36 356
PVSNet_BlendedMVS65.38 22864.30 24268.61 21669.81 28749.36 22865.60 27178.96 15645.50 28259.98 33978.61 27151.82 23978.20 18144.30 29484.11 22878.27 245
test111164.62 23765.19 23362.93 27379.01 15629.91 38065.45 27254.41 34454.09 19871.47 24388.48 11037.02 32974.29 23146.83 28089.94 13084.58 109
thres100view90061.17 27361.09 27061.39 28772.14 25835.01 35365.42 27356.99 32855.23 17570.71 24979.90 25132.07 35172.09 25435.61 35481.73 25377.08 262
CDS-MVSNet64.33 24462.66 26069.35 19880.44 13358.28 17065.26 27465.66 28144.36 29467.30 29275.54 29743.27 29071.77 25937.68 33684.44 22578.01 251
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
SCA58.57 29358.04 29460.17 29770.17 28241.07 30765.19 27553.38 35243.34 30861.00 33573.48 31945.20 27869.38 27840.34 31970.31 35470.05 324
HY-MVS49.31 1957.96 29657.59 29759.10 30466.85 32236.17 34465.13 27665.39 28539.24 33754.69 37178.14 27844.28 28567.18 30033.75 36470.79 35073.95 287
ET-MVSNet_ETH3D63.32 25260.69 27571.20 16970.15 28355.66 18365.02 27764.32 29443.28 30968.99 26972.05 33025.46 38678.19 18354.16 22282.80 24179.74 226
diffmvspermissive67.42 20867.50 20667.20 23362.26 35145.21 27464.87 27877.04 18948.21 26171.74 23379.70 25458.40 19471.17 26664.99 11880.27 27085.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
miper_enhance_ethall65.86 22565.05 24168.28 22261.62 35542.62 29764.74 27977.97 17842.52 31073.42 21372.79 32549.66 25277.68 19158.12 18084.59 22284.54 110
thres600view761.82 26761.38 26863.12 26971.81 26034.93 35464.64 28056.99 32854.78 18270.33 25379.74 25332.07 35172.42 25138.61 32983.46 23782.02 183
BH-RMVSNet68.69 18968.20 19770.14 18676.40 19153.90 19664.62 28173.48 21758.01 14573.91 20881.78 22259.09 18878.22 18048.59 26177.96 29578.31 244
pm-mvs168.40 19169.85 17364.04 26073.10 24739.94 31664.61 28270.50 25355.52 17373.97 20789.33 8563.91 13968.38 28649.68 25188.02 16583.81 131
pmmvs460.78 27659.04 28566.00 24673.06 24957.67 17364.53 28360.22 31336.91 35265.96 29777.27 28639.66 31468.54 28538.87 32674.89 31771.80 309
WR-MVS71.20 15472.48 14367.36 23184.98 7035.70 34964.43 28468.66 26565.05 8681.49 9886.43 15257.57 20876.48 20450.36 24693.32 6589.90 23
tpmrst50.15 34451.38 33846.45 36556.05 38324.77 39764.40 28549.98 36536.14 35453.32 37569.59 35135.16 33548.69 36439.24 32358.51 39165.89 352
VPA-MVSNet68.71 18870.37 16963.72 26276.13 19538.06 33364.10 28671.48 23756.60 16474.10 20388.31 11464.78 13469.72 27547.69 27390.15 12483.37 147
MIMVSNet166.57 21969.23 17958.59 30781.26 12737.73 33664.06 28757.62 32057.02 15778.40 13290.75 4662.65 14658.10 34641.77 31089.58 14079.95 222
IterMVS63.12 25562.48 26165.02 25266.34 32552.86 20063.81 28862.25 30346.57 27571.51 24180.40 24144.60 28366.82 30651.38 23875.47 31275.38 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT67.68 20366.07 22272.49 15373.34 23858.20 17163.80 28965.55 28348.10 26276.91 15282.64 21345.20 27878.84 16361.20 15177.89 29680.44 217
DELS-MVS68.83 18568.31 19270.38 17870.55 27648.31 23563.78 29082.13 9354.00 20068.96 27075.17 30158.95 19080.06 14758.55 17782.74 24282.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
xiu_mvs_v2_base64.43 24263.96 24665.85 24877.72 17351.32 20863.63 29172.31 23045.06 29161.70 32769.66 35062.56 14773.93 23649.06 25773.91 32872.31 304
tfpnnormal66.48 22067.93 19962.16 28073.40 23736.65 34063.45 29264.99 28755.97 16872.82 22187.80 12357.06 21369.10 28148.31 26687.54 17080.72 210
TR-MVS64.59 23863.54 25167.73 22875.75 20350.83 21163.39 29370.29 25549.33 25371.55 24074.55 30750.94 24578.46 17140.43 31875.69 30973.89 288
PS-MVSNAJ64.27 24563.73 24965.90 24777.82 17151.42 20763.33 29472.33 22945.09 29061.60 32868.04 36462.39 15173.95 23549.07 25673.87 32972.34 303
tfpn200view960.35 28059.97 27961.51 28570.78 26835.35 35163.27 29557.47 32153.00 21168.31 28177.09 28732.45 34872.09 25435.61 35481.73 25377.08 262
thres40060.77 27759.97 27963.15 26870.78 26835.35 35163.27 29557.47 32153.00 21168.31 28177.09 28732.45 34872.09 25435.61 35481.73 25382.02 183
test_yl65.11 23065.09 23865.18 25070.59 27240.86 30863.22 29772.79 22257.91 14668.88 27479.07 26742.85 29474.89 22245.50 29084.97 21379.81 223
DCV-MVSNet65.11 23065.09 23865.18 25070.59 27240.86 30863.22 29772.79 22257.91 14668.88 27479.07 26742.85 29474.89 22245.50 29084.97 21379.81 223
baseline157.82 29758.36 29356.19 31969.17 29430.76 37762.94 29955.21 33946.04 27863.83 31578.47 27241.20 30263.68 32339.44 32168.99 36174.13 285
baseline255.57 30852.74 32764.05 25965.26 33344.11 28162.38 30054.43 34339.03 33851.21 38167.35 36933.66 34072.45 25037.14 34164.22 37675.60 270
FPMVS59.43 28760.07 27857.51 31377.62 17671.52 4962.33 30150.92 36157.40 15569.40 26480.00 25039.14 31761.92 33137.47 33966.36 37139.09 401
PatchMatch-RL58.68 29257.72 29661.57 28476.21 19473.59 3961.83 30249.00 37047.30 27161.08 33268.97 35550.16 25059.01 34036.06 35368.84 36252.10 388
cascas64.59 23862.77 25970.05 18875.27 20550.02 21961.79 30371.61 23342.46 31163.68 31768.89 35849.33 25680.35 13947.82 27284.05 22979.78 225
LCM-MVSNet-Re69.10 18371.57 15861.70 28370.37 27934.30 35961.45 30479.62 14456.81 15989.59 888.16 11968.44 9472.94 24242.30 30587.33 17877.85 254
1112_ss59.48 28658.99 28660.96 29277.84 17042.39 29961.42 30568.45 26737.96 34559.93 34267.46 36745.11 28065.07 31740.89 31671.81 34475.41 273
IB-MVS49.67 1859.69 28556.96 30167.90 22468.19 30650.30 21661.42 30565.18 28647.57 26955.83 36467.15 37123.77 39279.60 15243.56 30079.97 27373.79 289
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet_Blended62.90 25861.64 26466.69 24069.81 28749.36 22861.23 30778.96 15642.04 31259.98 33968.86 35951.82 23978.20 18144.30 29477.77 29772.52 301
GA-MVS62.91 25761.66 26366.66 24167.09 31844.49 27961.18 30869.36 26151.33 23169.33 26574.47 30836.83 33074.94 22150.60 24474.72 31880.57 215
MS-PatchMatch55.59 30754.89 31657.68 31269.18 29349.05 23161.00 30962.93 30235.98 35558.36 34968.93 35736.71 33166.59 30837.62 33863.30 37857.39 384
patch_mono-262.73 26164.08 24558.68 30670.36 28055.87 18160.84 31064.11 29641.23 31864.04 31178.22 27660.00 17848.80 36354.17 22183.71 23471.37 312
testing358.28 29458.38 29258.00 31177.45 17726.12 39560.78 31143.00 38856.02 16770.18 25575.76 29413.27 41367.24 29948.02 26980.89 26280.65 212
MVSTER63.29 25361.60 26668.36 21859.77 36846.21 26760.62 31271.32 24141.83 31375.40 18379.12 26530.25 36875.85 20656.30 19579.81 27583.03 158
thisisatest051560.48 27957.86 29568.34 21967.25 31646.42 26460.58 31362.14 30440.82 32463.58 31969.12 35326.28 38278.34 17748.83 25882.13 24680.26 219
tpm50.60 34052.42 33245.14 37065.18 33526.29 39360.30 31443.50 38537.41 34957.01 35579.09 26630.20 37042.32 38932.77 36766.36 37166.81 349
VPNet65.58 22767.56 20459.65 30079.72 13930.17 37960.27 31562.14 30454.19 19671.24 24486.63 14558.80 19167.62 29344.17 29790.87 11281.18 194
MIMVSNet54.39 31456.12 30849.20 35372.57 25430.91 37559.98 31648.43 37241.66 31455.94 36383.86 19241.19 30350.42 35826.05 38975.38 31466.27 351
HyFIR lowres test63.01 25660.47 27670.61 17483.04 10154.10 19359.93 31772.24 23133.67 36869.00 26875.63 29638.69 31976.93 19836.60 34675.45 31380.81 207
Patchmatch-RL test59.95 28359.12 28462.44 27772.46 25554.61 19059.63 31847.51 37541.05 32174.58 19574.30 31131.06 36265.31 31551.61 23579.85 27467.39 343
PatchT53.35 32256.47 30543.99 37564.19 34217.46 40659.15 31943.10 38752.11 21954.74 37086.95 13129.97 37149.98 36043.62 29974.40 32364.53 364
JIA-IIPM54.03 31751.62 33561.25 28959.14 37155.21 18659.10 32047.72 37350.85 23650.31 38785.81 17020.10 40063.97 32136.16 35155.41 39764.55 363
Anonymous20240521166.02 22466.89 21563.43 26774.22 22538.14 33159.00 32166.13 27763.33 10769.76 26185.95 16851.88 23870.50 27144.23 29687.52 17181.64 190
MDTV_nov1_ep1354.05 32265.54 33229.30 38359.00 32155.22 33835.96 35652.44 37675.98 29330.77 36559.62 33838.21 33273.33 333
thres20057.55 29857.02 30059.17 30267.89 31134.93 35458.91 32357.25 32550.24 24364.01 31271.46 33432.49 34771.39 26431.31 37179.57 27971.19 317
test_fmvs356.78 30055.99 30959.12 30353.96 39548.09 24058.76 32466.22 27627.54 38676.66 16068.69 36125.32 38851.31 35653.42 22973.38 33277.97 253
SDMVSNet66.36 22267.85 20261.88 28273.04 25046.14 26858.54 32571.36 24051.42 22868.93 27282.72 21165.62 12462.22 33054.41 21784.67 21877.28 257
dmvs_testset45.26 35747.51 35538.49 38459.96 36514.71 40858.50 32643.39 38641.30 31751.79 38056.48 39339.44 31649.91 36221.42 40255.35 39850.85 389
ANet_high67.08 21269.94 17158.51 30857.55 37727.09 39058.43 32776.80 19363.56 10182.40 8791.93 2059.82 18264.98 31850.10 24888.86 15683.46 143
WB-MVSnew53.94 32054.76 31751.49 34271.53 26228.05 38658.22 32850.36 36437.94 34659.16 34670.17 34449.21 25751.94 35524.49 39671.80 34574.47 283
ppachtmachnet_test60.26 28159.61 28262.20 27967.70 31244.33 28058.18 32960.96 31140.75 32665.80 29972.57 32641.23 30163.92 32246.87 27982.42 24478.33 243
KD-MVS_self_test66.38 22167.51 20562.97 27261.76 35334.39 35858.11 33075.30 20550.84 23777.12 14885.42 17256.84 21569.44 27751.07 24091.16 9785.08 91
Test_1112_low_res58.78 29158.69 28859.04 30579.41 14338.13 33257.62 33166.98 27334.74 36159.62 34577.56 28442.92 29363.65 32438.66 32870.73 35175.35 275
VNet64.01 24865.15 23660.57 29473.28 23935.61 35057.60 33267.08 27254.61 18566.76 29583.37 19956.28 21966.87 30342.19 30685.20 21179.23 234
sd_testset63.55 24965.38 22958.07 31073.04 25038.83 32557.41 33365.44 28451.42 22868.93 27282.72 21163.76 14058.11 34541.05 31484.67 21877.28 257
UWE-MVS52.94 32552.70 32853.65 33073.56 23327.49 38957.30 33449.57 36738.56 34262.79 32471.42 33519.49 40260.41 33424.33 39877.33 29973.06 294
DSMNet-mixed43.18 36644.66 36638.75 38354.75 39028.88 38557.06 33527.42 40813.47 40447.27 39277.67 28338.83 31839.29 39725.32 39560.12 38748.08 392
test_vis1_n51.27 33850.41 34853.83 32856.99 37950.01 22056.75 33660.53 31225.68 39259.74 34457.86 39229.40 37347.41 37043.10 30263.66 37764.08 365
test_fmvs254.80 31254.11 32156.88 31751.76 39949.95 22156.70 33765.80 27926.22 39169.42 26365.25 37431.82 35449.98 36049.63 25270.36 35370.71 320
CL-MVSNet_self_test62.44 26363.40 25259.55 30172.34 25632.38 36656.39 33864.84 28951.21 23367.46 29081.01 23350.75 24663.51 32538.47 33188.12 16382.75 166
D2MVS62.58 26261.05 27167.20 23363.85 34347.92 24356.29 33969.58 25939.32 33570.07 25778.19 27734.93 33672.68 24453.44 22883.74 23281.00 200
FMVSNet555.08 31155.54 31253.71 32965.80 33033.50 36356.22 34052.50 35643.72 30161.06 33383.38 19825.46 38654.87 35130.11 37681.64 25872.75 299
testing22253.37 32152.50 33155.98 32170.51 27729.68 38156.20 34151.85 35946.19 27756.76 35868.94 35619.18 40365.39 31425.87 39276.98 30072.87 297
test_vis1_n_192052.96 32453.50 32351.32 34359.15 37044.90 27656.13 34264.29 29530.56 38259.87 34360.68 38740.16 31047.47 36948.25 26762.46 38061.58 375
MVS-HIRNet45.53 35647.29 35640.24 38162.29 35026.82 39156.02 34337.41 40329.74 38343.69 40181.27 22833.96 33855.48 34924.46 39756.79 39338.43 402
test_fmvs1_n52.70 32752.01 33454.76 32553.83 39650.36 21455.80 34465.90 27824.96 39465.39 30160.64 38827.69 37748.46 36545.88 28767.99 36665.46 355
pmmvs346.71 35345.09 36351.55 34156.76 38148.25 23655.78 34539.53 40124.13 39750.35 38663.40 37815.90 40951.08 35729.29 38170.69 35255.33 387
pmmvs552.49 33052.58 33052.21 33854.99 38932.38 36655.45 34653.84 34732.15 37455.49 36674.81 30238.08 32257.37 34834.02 36174.40 32366.88 347
our_test_356.46 30156.51 30456.30 31867.70 31239.66 31855.36 34752.34 35840.57 32963.85 31469.91 34940.04 31158.22 34443.49 30175.29 31671.03 319
Syy-MVS54.13 31555.45 31350.18 34768.77 29823.59 39955.02 34844.55 38243.80 29758.05 35164.07 37646.22 27358.83 34146.16 28472.36 33968.12 339
myMVS_eth3d50.36 34250.52 34749.88 34868.77 29822.69 40155.02 34844.55 38243.80 29758.05 35164.07 37614.16 41258.83 34133.90 36372.36 33968.12 339
EPMVS45.74 35546.53 35843.39 37654.14 39322.33 40355.02 34835.00 40534.69 36251.09 38270.20 34325.92 38442.04 39137.19 34055.50 39665.78 353
testing9155.74 30555.29 31557.08 31470.63 27130.85 37654.94 35156.31 33750.34 24157.08 35470.10 34624.50 39065.86 31136.98 34476.75 30274.53 281
testing1153.13 32352.26 33355.75 32270.44 27831.73 37054.75 35252.40 35744.81 29252.36 37868.40 36321.83 39565.74 31332.64 36872.73 33669.78 327
dp44.09 36344.88 36541.72 38058.53 37423.18 40054.70 35342.38 39234.80 36044.25 39965.61 37324.48 39144.80 38029.77 37849.42 40057.18 385
testing9955.16 31054.56 31956.98 31670.13 28430.58 37854.55 35454.11 34549.53 25256.76 35870.14 34522.76 39465.79 31236.99 34376.04 30774.57 280
test_fmvs151.51 33750.86 34453.48 33149.72 40249.35 23054.11 35564.96 28824.64 39663.66 31859.61 39128.33 37648.45 36645.38 29267.30 37062.66 370
CHOSEN 1792x268858.09 29556.30 30663.45 26679.95 13750.93 21054.07 35665.59 28228.56 38461.53 32974.33 31041.09 30466.52 30933.91 36267.69 36972.92 296
MDTV_nov1_ep13_2view18.41 40553.74 35731.57 37844.89 39629.90 37232.93 36671.48 311
SSC-MVS61.79 26866.08 22148.89 35776.91 18410.00 41153.56 35847.37 37668.20 5876.56 16489.21 8954.13 22857.59 34754.75 21174.07 32779.08 236
dmvs_re49.91 34650.77 34547.34 36059.98 36338.86 32453.18 35953.58 34939.75 33355.06 36761.58 38536.42 33244.40 38329.15 38468.23 36458.75 381
test-LLR50.43 34150.69 34649.64 35160.76 35841.87 30153.18 35945.48 38043.41 30649.41 38860.47 38929.22 37444.73 38142.09 30772.14 34262.33 373
TESTMET0.1,145.17 35844.93 36445.89 36756.02 38438.31 32853.18 35941.94 39527.85 38544.86 39756.47 39417.93 40541.50 39338.08 33468.06 36557.85 382
test-mter48.56 34948.20 35449.64 35160.76 35841.87 30153.18 35945.48 38031.91 37749.41 38860.47 38918.34 40444.73 38142.09 30772.14 34262.33 373
WB-MVS60.04 28264.19 24447.59 35976.09 19610.22 41052.44 36346.74 37765.17 8474.07 20487.48 12453.48 23155.28 35049.36 25472.84 33577.28 257
ETVMVS50.32 34349.87 35151.68 34070.30 28126.66 39252.33 36443.93 38443.54 30354.91 36867.95 36520.01 40160.17 33622.47 40073.40 33168.22 338
Anonymous2023120654.13 31555.82 31049.04 35670.89 26635.96 34651.73 36550.87 36234.86 35962.49 32579.22 26242.52 29744.29 38427.95 38681.88 24966.88 347
XXY-MVS55.19 30957.40 29948.56 35864.45 34134.84 35651.54 36653.59 34838.99 33963.79 31679.43 25856.59 21645.57 37436.92 34571.29 34765.25 357
test_cas_vis1_n_192050.90 33950.92 34350.83 34554.12 39447.80 24551.44 36754.61 34226.95 38963.95 31360.85 38637.86 32644.97 37945.53 28962.97 37959.72 379
test20.0355.74 30557.51 29850.42 34659.89 36732.09 36850.63 36849.01 36950.11 24565.07 30483.23 20645.61 27648.11 36830.22 37583.82 23171.07 318
UnsupCasMVSNet_eth52.26 33153.29 32649.16 35455.08 38833.67 36250.03 36958.79 31837.67 34863.43 32274.75 30541.82 29945.83 37338.59 33059.42 38867.98 342
testgi54.00 31956.86 30245.45 36858.20 37525.81 39649.05 37049.50 36845.43 28567.84 28481.17 23051.81 24143.20 38829.30 38079.41 28067.34 345
Patchmatch-test47.93 35049.96 35041.84 37857.42 37824.26 39848.75 37141.49 39639.30 33656.79 35773.48 31930.48 36733.87 40129.29 38172.61 33767.39 343
UnsupCasMVSNet_bld50.01 34551.03 34246.95 36158.61 37332.64 36548.31 37253.27 35334.27 36460.47 33771.53 33341.40 30047.07 37130.68 37360.78 38561.13 376
PVSNet43.83 2151.56 33651.17 33952.73 33568.34 30338.27 32948.22 37353.56 35036.41 35354.29 37264.94 37534.60 33754.20 35430.34 37469.87 35765.71 354
MDA-MVSNet-bldmvs62.34 26461.73 26264.16 25661.64 35449.90 22248.11 37457.24 32653.31 20980.95 10679.39 25949.00 26061.55 33245.92 28680.05 27281.03 198
PMMVS44.69 36043.95 36846.92 36250.05 40153.47 19848.08 37542.40 39122.36 40044.01 40053.05 39742.60 29645.49 37531.69 37061.36 38441.79 399
miper_lstm_enhance61.97 26561.63 26562.98 27160.04 36245.74 27147.53 37670.95 24944.04 29573.06 21778.84 27039.72 31360.33 33555.82 20284.64 22182.88 161
ADS-MVSNet248.76 34847.25 35753.29 33455.90 38540.54 31347.34 37754.99 34131.41 37950.48 38472.06 32831.23 35954.26 35325.93 39055.93 39465.07 358
ADS-MVSNet44.62 36145.58 36041.73 37955.90 38520.83 40447.34 37739.94 40031.41 37950.48 38472.06 32831.23 35939.31 39625.93 39055.93 39465.07 358
WTY-MVS49.39 34750.31 34946.62 36461.22 35632.00 36946.61 37949.77 36633.87 36654.12 37369.55 35241.96 29845.40 37631.28 37264.42 37562.47 371
test0.0.03 147.72 35148.31 35345.93 36655.53 38729.39 38246.40 38041.21 39843.41 30655.81 36567.65 36629.22 37443.77 38725.73 39369.87 35764.62 362
test1234.43 3785.78 3810.39 3920.97 4140.28 41646.33 3810.45 4150.31 4090.62 4101.50 4090.61 4150.11 4110.56 4090.63 4080.77 407
sss47.59 35248.32 35245.40 36956.73 38233.96 36045.17 38248.51 37132.11 37652.37 37765.79 37240.39 30941.91 39231.85 36961.97 38260.35 377
KD-MVS_2432*160052.05 33351.58 33653.44 33252.11 39731.20 37244.88 38364.83 29041.53 31564.37 30770.03 34715.61 41064.20 31936.25 34874.61 32064.93 360
miper_refine_blended52.05 33351.58 33653.44 33252.11 39731.20 37244.88 38364.83 29041.53 31564.37 30770.03 34715.61 41064.20 31936.25 34874.61 32064.93 360
test_vis3_rt51.94 33551.04 34154.65 32646.32 40650.13 21844.34 38578.17 17423.62 39868.95 27162.81 38021.41 39638.52 39841.49 31172.22 34175.30 276
testmvs4.06 3795.28 3820.41 3910.64 4150.16 41742.54 3860.31 4160.26 4100.50 4111.40 4100.77 4140.17 4100.56 4090.55 4090.90 406
mvsany_test343.76 36541.01 36952.01 33948.09 40457.74 17242.47 38723.85 41123.30 39964.80 30562.17 38327.12 37840.59 39429.17 38348.11 40157.69 383
PVSNet_036.71 2241.12 36840.78 37142.14 37759.97 36440.13 31540.97 38842.24 39430.81 38144.86 39749.41 40140.70 30745.12 37823.15 39934.96 40441.16 400
YYNet152.58 32853.50 32349.85 34954.15 39236.45 34340.53 38946.55 37938.09 34475.52 18173.31 32241.08 30543.88 38541.10 31371.14 34969.21 334
MDA-MVSNet_test_wron52.57 32953.49 32549.81 35054.24 39136.47 34240.48 39046.58 37838.13 34375.47 18273.32 32141.05 30643.85 38640.98 31571.20 34869.10 336
test_vis1_rt46.70 35445.24 36251.06 34444.58 40751.04 20939.91 39167.56 27021.84 40251.94 37950.79 40033.83 33939.77 39535.25 35761.50 38362.38 372
new_pmnet37.55 37139.80 37330.79 38656.83 38016.46 40739.35 39230.65 40625.59 39345.26 39561.60 38424.54 38928.02 40521.60 40152.80 39947.90 393
E-PMN45.17 35845.36 36144.60 37250.07 40042.75 29538.66 39342.29 39346.39 27639.55 40251.15 39926.00 38345.37 37737.68 33676.41 30345.69 396
EMVS44.61 36244.45 36745.10 37148.91 40343.00 29337.92 39441.10 39946.75 27438.00 40448.43 40226.42 38146.27 37237.11 34275.38 31446.03 395
N_pmnet52.06 33251.11 34054.92 32459.64 36971.03 5337.42 39561.62 31033.68 36757.12 35372.10 32737.94 32331.03 40229.13 38571.35 34662.70 368
new-patchmatchnet52.89 32655.76 31144.26 37459.94 3666.31 41237.36 39650.76 36341.10 31964.28 30979.82 25244.77 28148.43 36736.24 35087.61 16978.03 250
mvsany_test137.88 36935.74 37444.28 37347.28 40549.90 22236.54 39724.37 41019.56 40345.76 39353.46 39632.99 34437.97 39926.17 38835.52 40344.99 398
test_f43.79 36445.63 35938.24 38542.29 41038.58 32634.76 39847.68 37422.22 40167.34 29163.15 37931.82 35430.60 40339.19 32462.28 38145.53 397
CHOSEN 280x42041.62 36739.89 37246.80 36361.81 35251.59 20533.56 39935.74 40427.48 38737.64 40553.53 39523.24 39342.09 39027.39 38758.64 39046.72 394
PMMVS237.74 37040.87 37028.36 38742.41 4095.35 41324.61 40027.75 40732.15 37447.85 39070.27 34235.85 33429.51 40419.08 40567.85 36750.22 391
MVEpermissive27.91 2336.69 37235.64 37539.84 38243.37 40835.85 34819.49 40124.61 40924.68 39539.05 40362.63 38238.67 32027.10 40621.04 40347.25 40256.56 386
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt11.98 37514.73 3783.72 3902.28 4134.62 41419.44 40214.50 4130.47 40821.55 4069.58 40625.78 3854.57 40911.61 40727.37 4051.96 405
test_method19.26 37319.12 37719.71 3889.09 4121.91 4157.79 40353.44 3511.42 40610.27 40835.80 40317.42 40725.11 40712.44 40624.38 40632.10 403
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k17.71 37423.62 3760.00 3930.00 4160.00 4180.00 40470.17 2560.00 4110.00 41274.25 31268.16 970.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas5.20 3776.93 3800.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41162.39 1510.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re5.62 3767.50 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41267.46 3670.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS22.69 40136.10 352
MSC_two_6792asdad79.02 5583.14 9567.03 8780.75 12186.24 2277.27 3394.85 2583.78 132
PC_three_145246.98 27381.83 9286.28 15466.55 11784.47 7163.31 13890.78 11383.49 139
No_MVS79.02 5583.14 9567.03 8780.75 12186.24 2277.27 3394.85 2583.78 132
test_one_060185.84 6161.45 13385.63 2875.27 1785.62 4890.38 6476.72 27
eth-test20.00 416
eth-test0.00 416
ZD-MVS83.91 8669.36 6981.09 11658.91 14082.73 8589.11 9475.77 3586.63 1272.73 6292.93 70
IU-MVS86.12 5360.90 14480.38 13245.49 28481.31 10175.64 4194.39 4184.65 102
test_241102_TWO84.80 4572.61 3084.93 5689.70 8077.73 2285.89 4075.29 4294.22 5283.25 150
test_241102_ONE86.12 5361.06 14084.72 4972.64 2987.38 2489.47 8377.48 2385.74 44
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 120
GSMVS70.05 324
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 35770.05 324
sam_mvs31.21 361
MTGPAbinary80.63 126
test_post1.99 40830.91 36454.76 352
patchmatchnet-post68.99 35431.32 35869.38 278
gm-plane-assit62.51 34933.91 36137.25 35062.71 38172.74 24338.70 327
test9_res72.12 6991.37 9277.40 256
agg_prior270.70 7490.93 10778.55 242
agg_prior84.44 8166.02 9778.62 16776.95 15180.34 140
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11770.33 7878.43 17355.60 20390.90 10985.81 76
test_prior75.27 10282.15 11559.85 15584.33 6083.39 8582.58 173
新几何169.99 18988.37 3471.34 5162.08 30643.85 29674.99 18686.11 16352.85 23470.57 27050.99 24183.23 23968.05 341
旧先验184.55 7860.36 15263.69 29887.05 13054.65 22583.34 23869.66 329
原ACMM173.90 11885.90 5765.15 10681.67 10250.97 23574.25 20086.16 16061.60 15983.54 8156.75 18991.08 10373.00 295
testdata267.30 29748.34 265
segment_acmp68.30 96
testdata64.13 25785.87 5963.34 11861.80 30947.83 26676.42 17186.60 14748.83 26162.31 32954.46 21681.26 26066.74 350
test1276.51 8682.28 11360.94 14381.64 10373.60 20964.88 13285.19 5990.42 12083.38 146
plane_prior785.18 6666.21 94
plane_prior684.18 8465.31 10360.83 172
plane_prior585.49 3086.15 2771.09 7190.94 10584.82 98
plane_prior489.11 94
plane_prior365.67 9963.82 9878.23 133
plane_prior184.46 80
n20.00 417
nn0.00 417
door-mid55.02 340
lessismore_v072.75 14579.60 14156.83 17757.37 32383.80 7289.01 9747.45 27078.74 16664.39 12386.49 19682.69 168
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
test1182.71 86
door52.91 355
HQP5-MVS58.80 166
BP-MVS67.38 101
HQP4-MVS71.59 23585.31 5283.74 134
HQP3-MVS84.12 6689.16 147
HQP2-MVS58.09 199
NP-MVS83.34 9463.07 12185.97 166
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 147
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12966.87 6483.64 7486.18 15870.25 8079.90 14861.12 15488.95 15587.56 53
DeepMVS_CXcopyleft11.83 38915.51 41113.86 40911.25 4145.76 40520.85 40726.46 40417.06 4089.22 4089.69 40813.82 40712.42 404