This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++98.92 199.18 198.61 499.47 699.61 299.39 397.82 198.80 196.86 998.90 299.92 198.67 1899.02 298.20 1999.43 4699.82 1
SED-MVS98.90 299.07 298.69 399.38 2099.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1899.02 298.26 1799.36 6099.61 6
APDe-MVS98.87 398.96 498.77 199.58 299.53 699.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 399.57 9
DVP-MVScopyleft98.86 498.97 398.75 299.43 1499.63 199.25 1397.81 298.62 297.69 197.59 2199.90 298.93 598.99 498.42 1199.37 5899.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft98.75 598.91 698.57 599.21 2599.54 599.42 297.78 697.49 3296.84 1098.94 199.82 598.59 2298.90 1098.22 1899.56 1599.48 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS98.73 698.93 598.50 799.44 1399.57 499.36 497.65 998.14 1296.51 1698.49 799.65 898.67 1898.60 1498.42 1199.40 5299.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft98.66 798.89 798.39 1099.60 199.41 1099.00 2197.63 1397.78 1895.83 2098.33 1199.83 498.85 1098.93 898.56 699.41 4999.40 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS98.52 898.77 998.23 1798.15 5199.26 2598.79 2797.59 1798.52 396.25 1797.99 1699.75 699.01 398.27 3397.97 3299.59 699.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.98.49 998.78 898.15 2198.14 5299.17 3299.34 697.18 3198.44 595.72 2197.84 1799.28 1298.87 799.05 198.05 2799.66 199.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS98.48 1098.62 1198.32 1399.39 1999.33 2099.27 1197.42 2098.27 795.25 2598.34 1098.83 2799.08 198.26 3498.08 2699.48 2799.26 33
CNVR-MVS98.47 1198.46 1698.48 899.40 1699.05 3699.02 2097.54 1897.73 1996.65 1397.20 3099.13 2098.85 1098.91 998.10 2499.41 4999.08 57
zzz-MVS98.43 1298.31 2498.57 599.48 599.40 1199.32 997.62 1497.70 2396.67 1296.59 3399.09 2298.86 898.65 1397.56 5099.45 3599.17 49
ACMMPR98.40 1398.49 1398.28 1599.41 1599.40 1199.36 497.35 2398.30 695.02 2797.79 1898.39 3899.04 298.26 3498.10 2499.50 2699.22 39
SF-MVS98.39 1498.45 1798.33 1199.45 1099.05 3698.27 3897.65 997.73 1997.02 798.18 1299.25 1598.11 3398.15 3997.62 4699.45 3599.19 43
SteuartSystems-ACMMP98.38 1598.71 1097.99 2599.34 2299.46 899.34 697.33 2697.31 3694.25 3298.06 1499.17 1998.13 3298.98 598.46 999.55 1799.54 11
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft98.36 1698.32 2398.41 999.47 699.26 2599.12 1697.77 796.73 5296.12 1897.27 2998.88 2598.46 2698.47 1898.39 1499.52 1999.22 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.34 1798.47 1598.18 1899.46 999.15 3399.10 1797.69 897.67 2694.93 2897.62 2099.70 798.60 2198.45 1997.46 5399.31 6799.26 33
CP-MVS98.32 1898.34 2298.29 1499.34 2299.30 2199.15 1597.35 2397.49 3295.58 2397.72 1998.62 3498.82 1298.29 2997.67 4599.51 2499.28 28
ACMMP_NAP98.20 1998.49 1397.85 2799.50 499.40 1199.26 1297.64 1297.47 3492.62 4897.59 2199.09 2298.71 1698.82 1297.86 3999.40 5299.19 43
MCST-MVS98.20 1998.36 1998.01 2499.40 1699.05 3699.00 2197.62 1497.59 3093.70 3697.42 2899.30 1198.77 1498.39 2797.48 5299.59 699.31 27
DeepC-MVS_fast96.13 198.13 2198.27 2697.97 2699.16 2899.03 4399.05 1997.24 2898.22 1094.17 3495.82 4098.07 4098.69 1798.83 1198.80 299.52 1999.10 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC98.10 2298.05 3198.17 2099.38 2099.05 3699.00 2197.53 1998.04 1495.12 2694.80 5399.18 1898.58 2398.49 1797.78 4299.39 5498.98 75
MP-MVScopyleft98.09 2398.30 2597.84 2899.34 2299.19 3199.23 1497.40 2197.09 4393.03 4297.58 2398.85 2698.57 2498.44 2197.69 4499.48 2799.23 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSLP-MVS++98.04 2497.93 3398.18 1899.10 2999.09 3598.34 3796.99 3497.54 3196.60 1494.82 5298.45 3698.89 697.46 6198.77 499.17 9399.37 20
X-MVS97.84 2598.19 2897.42 3299.40 1699.35 1699.06 1897.25 2797.38 3590.85 6196.06 3798.72 3098.53 2598.41 2498.15 2299.46 3199.28 28
PGM-MVS97.81 2698.11 2997.46 3199.55 399.34 1999.32 994.51 4796.21 6493.07 3998.05 1597.95 4398.82 1298.22 3797.89 3899.48 2799.09 56
CPTT-MVS97.78 2797.54 3598.05 2398.91 3699.05 3699.00 2196.96 3597.14 4195.92 1995.50 4498.78 2998.99 497.20 6796.07 8898.54 15899.04 67
PHI-MVS97.78 2798.44 1897.02 3898.73 3999.25 2798.11 4295.54 4196.66 5592.79 4598.52 699.38 997.50 4697.84 5198.39 1499.45 3599.03 68
TSAR-MVS + ACMM97.71 2998.60 1296.66 4298.64 4299.05 3698.85 2697.23 2998.45 489.40 8997.51 2599.27 1496.88 6298.53 1597.81 4198.96 12199.59 8
train_agg97.65 3098.06 3097.18 3598.94 3498.91 5698.98 2597.07 3396.71 5390.66 6697.43 2799.08 2498.20 3097.96 4897.14 6399.22 8499.19 43
AdaColmapbinary97.53 3196.93 4898.24 1699.21 2598.77 6698.47 3597.34 2596.68 5496.52 1595.11 5096.12 6098.72 1597.19 6996.24 8499.17 9398.39 115
TSAR-MVS + GP.97.45 3298.36 1996.39 4495.56 8798.93 5397.74 5093.31 5697.61 2994.24 3398.44 999.19 1798.03 3797.60 5797.41 5599.44 4399.33 24
CSCG97.44 3397.18 4497.75 2999.47 699.52 798.55 3295.41 4297.69 2595.72 2194.29 5695.53 6498.10 3596.20 10797.38 5799.24 7899.62 4
ACMMPcopyleft97.37 3497.48 3797.25 3398.88 3899.28 2398.47 3596.86 3697.04 4592.15 5097.57 2496.05 6297.67 4297.27 6595.99 9399.46 3199.14 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PLCcopyleft94.95 397.37 3496.77 5298.07 2298.97 3398.21 8997.94 4796.85 3797.66 2797.58 393.33 6196.84 4998.01 3897.13 7196.20 8699.09 10598.01 130
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator+93.91 797.23 3697.22 4197.24 3498.89 3798.85 6298.26 4093.25 5997.99 1595.56 2490.01 10098.03 4298.05 3697.91 4998.43 1099.44 4399.35 22
MVS_111021_LR97.16 3798.01 3296.16 4898.47 4598.98 4896.94 6593.89 5097.64 2891.44 5598.89 396.41 5397.20 5298.02 4797.29 6299.04 11698.85 90
3Dnovator93.79 897.08 3897.20 4296.95 3999.09 3099.03 4398.20 4193.33 5597.99 1593.82 3590.61 9496.80 5097.82 3997.90 5098.78 399.47 3099.26 33
xxxxxxxxxxxxxcwj97.07 3995.99 6398.33 1199.45 1099.05 3698.27 3897.65 997.73 1997.02 798.18 1281.99 14698.11 3398.15 3997.62 4699.45 3599.19 43
MVS_111021_HR97.04 4098.20 2795.69 5598.44 4799.29 2296.59 7993.20 6097.70 2389.94 8198.46 896.89 4896.71 6698.11 4497.95 3499.27 7399.01 71
DeepPCF-MVS95.28 297.00 4198.35 2195.42 6197.30 6398.94 5194.82 11996.03 4098.24 992.11 5195.80 4198.64 3395.51 8798.95 798.66 596.78 19199.20 42
OMC-MVS97.00 4196.92 4997.09 3698.69 4098.66 7497.85 4895.02 4498.09 1394.47 2993.15 6296.90 4797.38 4897.16 7096.82 7399.13 10097.65 143
CNLPA96.90 4396.28 5897.64 3098.56 4498.63 7996.85 6896.60 3897.73 1997.08 689.78 10296.28 5797.80 4196.73 8396.63 7598.94 12398.14 126
DPM-MVS96.86 4496.82 5196.91 4098.08 5398.20 9098.52 3497.20 3097.24 3991.42 5691.84 7898.45 3697.25 5097.07 7297.40 5698.95 12297.55 146
CANet96.84 4597.20 4296.42 4397.92 5599.24 2998.60 3093.51 5497.11 4293.07 3991.16 8697.24 4696.21 7498.24 3698.05 2799.22 8499.35 22
CDPH-MVS96.84 4597.49 3696.09 4998.92 3598.85 6298.61 2995.09 4396.00 7287.29 10795.45 4697.42 4497.16 5397.83 5297.94 3599.44 4398.92 81
QAPM96.78 4797.14 4596.36 4599.05 3199.14 3498.02 4493.26 5797.27 3890.84 6491.16 8697.31 4597.64 4497.70 5598.20 1999.33 6299.18 47
DeepC-MVS94.87 496.76 4896.50 5597.05 3798.21 5099.28 2398.67 2897.38 2297.31 3690.36 7489.19 10493.58 7298.19 3198.31 2898.50 799.51 2499.36 21
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DROMVSNet96.49 4997.63 3495.16 6594.75 10998.69 7297.39 5788.97 11996.34 5992.02 5296.04 3896.46 5298.21 2898.41 2497.96 3399.61 599.55 10
TAPA-MVS94.18 596.38 5096.49 5696.25 4698.26 4998.66 7498.00 4594.96 4597.17 4089.48 8692.91 6696.35 5497.53 4596.59 8895.90 9699.28 7197.82 134
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETV-MVS96.31 5197.47 3894.96 7194.79 10698.78 6596.08 9391.41 8896.16 6590.50 6895.76 4296.20 5997.39 4798.42 2397.82 4099.57 1399.18 47
MVS_030496.31 5196.91 5095.62 5697.21 6599.20 3098.55 3293.10 6297.04 4589.73 8390.30 9696.35 5495.71 8098.14 4197.93 3799.38 5599.40 18
EPNet96.27 5396.97 4795.46 6098.47 4598.28 8697.41 5593.67 5295.86 7792.86 4497.51 2593.79 7191.76 14197.03 7497.03 6598.61 15499.28 28
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS-test96.19 5497.34 4094.85 7594.52 11798.20 9097.39 5788.97 11996.83 5090.45 6995.29 4795.41 6598.21 2898.41 2497.73 4399.56 1599.47 15
CS-MVS96.14 5597.39 3994.68 8194.63 11598.89 5996.46 8490.44 9996.88 4888.52 9793.58 6096.27 5898.41 2798.43 2298.14 2399.63 399.52 12
DELS-MVS96.06 5696.04 6296.07 5197.77 5799.25 2798.10 4393.26 5794.42 10992.79 4588.52 11193.48 7395.06 9498.51 1698.83 199.45 3599.28 28
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS93.95 695.65 5795.14 7696.25 4697.73 5998.73 6997.59 5397.13 3292.50 13889.09 9589.85 10196.65 5196.90 6194.97 13994.89 12399.08 10698.38 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EIA-MVS95.50 5896.19 6094.69 8094.83 10598.88 6195.93 9891.50 8794.47 10889.43 8793.14 6392.72 7797.05 5897.82 5497.13 6499.43 4699.15 51
MAR-MVS95.50 5895.60 6795.39 6298.67 4198.18 9395.89 10189.81 10894.55 10791.97 5392.99 6490.21 9197.30 4996.79 8097.49 5198.72 14498.99 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft92.33 1195.50 5895.22 7595.82 5498.98 3298.97 4997.67 5293.04 6594.64 10589.18 9384.44 13994.79 6796.79 6397.23 6697.61 4899.24 7898.88 86
CHOSEN 280x42095.46 6197.01 4693.66 9797.28 6497.98 9896.40 8685.39 16196.10 6991.07 5996.53 3496.34 5695.61 8497.65 5696.95 6896.21 19297.49 147
LS3D95.46 6195.14 7695.84 5397.91 5698.90 5898.58 3197.79 597.07 4483.65 12288.71 10788.64 10497.82 3997.49 6097.42 5499.26 7797.72 142
PVSNet_BlendedMVS95.41 6395.28 7395.57 5797.42 6199.02 4595.89 10193.10 6296.16 6593.12 3791.99 7485.27 12394.66 10098.09 4597.34 5899.24 7899.08 57
PVSNet_Blended95.41 6395.28 7395.57 5797.42 6199.02 4595.89 10193.10 6296.16 6593.12 3791.99 7485.27 12394.66 10098.09 4597.34 5899.24 7899.08 57
IS_MVSNet95.28 6596.43 5793.94 9195.30 9399.01 4795.90 9991.12 9194.13 11487.50 10691.23 8594.45 6994.17 10998.45 1998.50 799.65 299.23 37
EPP-MVSNet95.27 6696.18 6194.20 8994.88 10498.64 7794.97 11590.70 9595.34 8889.67 8591.66 8193.84 7095.42 8997.32 6497.00 6699.58 1099.47 15
canonicalmvs95.25 6795.45 7195.00 6995.27 9598.72 7096.89 6689.82 10796.51 5690.84 6493.72 5986.01 11897.66 4395.78 11997.94 3599.54 1899.50 13
UGNet94.92 6896.63 5392.93 10796.03 8198.63 7994.53 12591.52 8696.23 6390.03 7892.87 6796.10 6186.28 18896.68 8596.60 7699.16 9699.32 26
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSTER94.89 6995.07 7994.68 8194.71 11196.68 12897.00 6190.57 9795.18 9793.05 4195.21 4886.41 11593.72 11897.59 5895.88 9799.00 11798.50 107
baseline94.83 7095.82 6593.68 9694.75 10997.80 10096.51 8288.53 12597.02 4789.34 9192.93 6592.18 7994.69 9995.78 11996.08 8798.27 16998.97 79
MVS_Test94.82 7195.66 6693.84 9494.79 10698.35 8596.49 8389.10 11896.12 6887.09 10992.58 6990.61 8896.48 7096.51 9596.89 7099.11 10398.54 104
MSDG94.82 7193.73 10396.09 4998.34 4897.43 10997.06 6096.05 3995.84 7890.56 6786.30 12889.10 10195.55 8696.13 11095.61 10499.00 11795.73 178
TSAR-MVS + COLMAP94.79 7394.51 8595.11 6696.50 7197.54 10497.99 4694.54 4697.81 1785.88 11396.73 3281.28 15096.99 5996.29 10295.21 11698.76 14396.73 169
CLD-MVS94.79 7394.36 8995.30 6395.21 9797.46 10797.23 5992.24 7596.43 5791.77 5492.69 6884.31 13196.06 7595.52 12595.03 11999.31 6799.06 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PVSNet_Blended_VisFu94.77 7595.54 6993.87 9396.48 7298.97 4994.33 12891.84 8094.93 10190.37 7385.04 13494.99 6690.87 15698.12 4397.30 6099.30 6999.45 17
DCV-MVSNet94.76 7695.12 7894.35 8795.10 10195.81 15696.46 8489.49 11396.33 6090.16 7592.55 7090.26 9095.83 7995.52 12596.03 9199.06 11199.33 24
PatchMatch-RL94.69 7794.41 8795.02 6897.63 6098.15 9494.50 12691.99 7795.32 8991.31 5895.47 4583.44 13896.02 7796.56 8995.23 11598.69 14796.67 170
PMMVS94.61 7895.56 6893.50 9994.30 12296.74 12694.91 11789.56 11295.58 8687.72 10496.15 3692.86 7596.06 7595.47 12795.02 12098.43 16697.09 158
baseline194.59 7994.47 8694.72 7995.16 9897.97 9996.07 9491.94 7894.86 10289.98 7991.60 8285.87 12095.64 8297.07 7296.90 6999.52 1997.06 162
thisisatest053094.54 8095.47 7093.46 10094.51 11898.65 7694.66 12290.72 9395.69 8386.90 11093.80 5789.44 9594.74 9796.98 7694.86 12499.19 9198.85 90
tttt051794.52 8195.44 7293.44 10194.51 11898.68 7394.61 12490.72 9395.61 8586.84 11193.78 5889.26 9894.74 9797.02 7594.86 12499.20 9098.87 88
Vis-MVSNet (Re-imp)94.46 8296.24 5992.40 11095.23 9698.64 7795.56 10790.99 9294.42 10985.02 11690.88 9294.65 6888.01 17898.17 3898.37 1699.57 1398.53 105
HQP-MVS94.43 8394.57 8494.27 8896.41 7497.23 11396.89 6693.98 4995.94 7483.68 12195.01 5184.46 13095.58 8595.47 12794.85 12799.07 10899.00 72
ACMP92.88 994.43 8394.38 8894.50 8496.01 8297.69 10295.85 10492.09 7695.74 8089.12 9495.14 4982.62 14494.77 9695.73 12194.67 12899.14 9999.06 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM92.75 1094.41 8593.84 10195.09 6796.41 7496.80 12294.88 11893.54 5396.41 5890.16 7592.31 7283.11 14096.32 7296.22 10594.65 12999.22 8497.35 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
casdiffmvs94.38 8694.15 9694.64 8394.70 11398.51 8296.03 9691.66 8395.70 8189.36 9086.48 12385.03 12896.60 6997.40 6297.30 6099.52 1998.67 97
test250694.32 8793.00 11595.87 5296.16 7799.39 1496.96 6392.80 6795.22 9594.47 2991.55 8370.45 19595.25 9198.29 2997.98 3099.59 698.10 128
diffmvs94.31 8894.21 9194.42 8694.64 11498.28 8696.36 8791.56 8496.77 5188.89 9688.97 10584.23 13296.01 7896.05 11196.41 7999.05 11598.79 94
ECVR-MVScopyleft94.14 8992.96 11695.52 5996.16 7799.39 1496.96 6392.80 6795.22 9592.38 4981.48 15380.31 15195.25 9198.29 2997.98 3099.59 698.05 129
LGP-MVS_train94.12 9094.62 8393.53 9896.44 7397.54 10497.40 5691.84 8094.66 10481.09 13595.70 4383.36 13995.10 9396.36 10095.71 10299.32 6499.03 68
RPSCF94.05 9194.00 9794.12 9096.20 7696.41 13696.61 7891.54 8595.83 7989.73 8396.94 3192.80 7695.35 9091.63 19090.44 19295.27 20493.94 195
DI_MVS_plusplus_trai94.01 9293.63 10594.44 8594.54 11698.26 8897.51 5490.63 9695.88 7689.34 9180.54 16089.36 9695.48 8896.33 10196.27 8399.17 9398.78 95
UA-Net93.96 9395.95 6491.64 11896.06 8098.59 8195.29 10990.00 10391.06 15882.87 12490.64 9398.06 4186.06 18998.14 4198.20 1999.58 1096.96 163
test111193.94 9492.78 11795.29 6496.14 7999.42 996.79 7292.85 6695.08 9991.39 5780.69 15879.86 15495.00 9598.28 3298.00 2999.58 1098.11 127
CANet_DTU93.92 9596.57 5490.83 12895.63 8598.39 8496.99 6287.38 13796.26 6171.97 18196.31 3593.02 7494.53 10397.38 6396.83 7298.49 16197.79 135
FC-MVSNet-train93.85 9693.91 9893.78 9594.94 10396.79 12594.29 12991.13 9093.84 11988.26 10190.40 9585.23 12594.65 10296.54 9195.31 11299.38 5599.28 28
GBi-Net93.81 9794.18 9293.38 10291.34 15795.86 15296.22 8888.68 12295.23 9290.40 7086.39 12491.16 8294.40 10696.52 9296.30 8099.21 8797.79 135
test193.81 9794.18 9293.38 10291.34 15795.86 15296.22 8888.68 12295.23 9290.40 7086.39 12491.16 8294.40 10696.52 9296.30 8099.21 8797.79 135
FMVSNet393.79 9994.17 9493.35 10491.21 16095.99 14596.62 7788.68 12295.23 9290.40 7086.39 12491.16 8294.11 11095.96 11296.67 7499.07 10897.79 135
tfpn200view993.64 10092.57 12094.89 7295.33 9198.94 5196.82 6992.31 7192.63 13488.29 9887.21 11578.01 16297.12 5696.82 7795.85 9899.45 3598.56 102
thres20093.62 10192.54 12194.88 7395.36 9098.93 5396.75 7492.31 7192.84 13188.28 10086.99 11777.81 16497.13 5496.82 7795.92 9499.45 3598.49 108
OPM-MVS93.61 10292.43 12895.00 6996.94 6897.34 11097.78 4994.23 4889.64 17085.53 11488.70 10882.81 14296.28 7396.28 10395.00 12299.24 7897.22 155
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
thres40093.56 10392.43 12894.87 7495.40 8998.91 5696.70 7692.38 7092.93 13088.19 10286.69 12077.35 16597.13 5496.75 8295.85 9899.42 4898.56 102
thres100view90093.55 10492.47 12794.81 7795.33 9198.74 6796.78 7392.30 7492.63 13488.29 9887.21 11578.01 16296.78 6496.38 9795.92 9499.38 5598.40 114
Anonymous2023121193.49 10592.33 13294.84 7694.78 10898.00 9796.11 9291.85 7994.86 10290.91 6074.69 17889.18 9996.73 6594.82 14095.51 10798.67 14899.24 36
thres600view793.49 10592.37 13194.79 7895.42 8898.93 5396.58 8092.31 7193.04 12887.88 10386.62 12176.94 16897.09 5796.82 7795.63 10399.45 3598.63 99
ET-MVSNet_ETH3D93.34 10794.33 9092.18 11383.26 21497.66 10396.72 7589.89 10695.62 8487.17 10896.00 3983.69 13796.99 5993.78 15595.34 11199.06 11198.18 125
FMVSNet293.30 10893.36 11193.22 10691.34 15795.86 15296.22 8888.24 12995.15 9889.92 8281.64 15189.36 9694.40 10696.77 8196.98 6799.21 8797.79 135
COLMAP_ROBcopyleft90.49 1493.27 10992.71 11893.93 9297.75 5897.44 10896.07 9493.17 6195.40 8783.86 12083.76 14388.72 10393.87 11494.25 15194.11 14698.87 12995.28 184
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
baseline293.01 11094.17 9491.64 11892.83 14597.49 10693.40 14087.53 13593.67 12186.07 11291.83 7986.58 11291.36 14596.38 9795.06 11898.67 14898.20 124
Effi-MVS+92.93 11193.86 10091.86 11494.07 12798.09 9695.59 10685.98 15394.27 11279.54 14291.12 8981.81 14796.71 6696.67 8696.06 8999.27 7398.98 75
CDS-MVSNet92.77 11293.60 10691.80 11692.63 14796.80 12295.24 11189.14 11790.30 16784.58 11786.76 11890.65 8790.42 16495.89 11496.49 7798.79 14098.32 120
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Vis-MVSNetpermissive92.77 11295.00 8190.16 13794.10 12698.79 6494.76 12188.26 12892.37 14379.95 13888.19 11391.58 8184.38 19997.59 5897.58 4999.52 1998.91 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268892.66 11492.49 12492.85 10897.13 6698.89 5995.90 9988.50 12695.32 8983.31 12371.99 19788.96 10294.10 11196.69 8496.49 7798.15 17199.10 54
IterMVS-LS92.56 11593.18 11291.84 11593.90 12994.97 18294.99 11486.20 15094.18 11382.68 12585.81 13087.36 11194.43 10495.31 13196.02 9298.87 12998.60 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GeoE92.52 11692.64 11992.39 11193.96 12897.76 10196.01 9785.60 15893.23 12683.94 11981.56 15284.80 12995.63 8396.22 10595.83 10099.19 9199.07 61
EPNet_dtu92.45 11795.02 8089.46 14698.02 5495.47 16794.79 12092.62 6994.97 10070.11 19294.76 5492.61 7884.07 20295.94 11395.56 10597.15 18895.82 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test92.03 11891.55 14292.58 10997.13 6698.72 7094.65 12386.54 14693.58 12382.56 12667.75 20890.47 8995.67 8195.87 11595.54 10698.91 12698.93 80
test0.0.03 191.97 11993.91 9889.72 14293.31 13996.40 13791.34 17887.06 14193.86 11781.67 13191.15 8889.16 10086.02 19095.08 13695.09 11798.91 12696.64 172
Fast-Effi-MVS+91.87 12092.08 13591.62 12092.91 14397.21 11494.93 11684.60 17293.61 12281.49 13383.50 14478.95 15796.62 6896.55 9096.22 8599.16 9698.51 106
MS-PatchMatch91.82 12192.51 12291.02 12495.83 8496.88 11895.05 11384.55 17493.85 11882.01 12882.51 14991.71 8090.52 16395.07 13793.03 16898.13 17294.52 186
Effi-MVS+-dtu91.78 12293.59 10789.68 14592.44 14997.11 11594.40 12784.94 16892.43 13975.48 16391.09 9083.75 13693.55 12296.61 8795.47 10897.24 18798.67 97
IB-MVS89.56 1591.71 12392.50 12390.79 13095.94 8398.44 8387.05 20091.38 8993.15 12792.98 4384.78 13585.14 12678.27 20792.47 17894.44 14199.10 10499.08 57
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FC-MVSNet-test91.63 12493.82 10289.08 15092.02 15296.40 13793.26 14387.26 13893.72 12077.26 15088.61 11089.86 9385.50 19295.72 12395.02 12099.16 9697.44 149
test-LLR91.62 12593.56 10889.35 14993.31 13996.57 13192.02 16987.06 14192.34 14475.05 17090.20 9788.64 10490.93 15296.19 10894.07 14797.75 18296.90 166
MDTV_nov1_ep1391.57 12693.18 11289.70 14393.39 13796.97 11693.53 13780.91 19195.70 8181.86 12992.40 7189.93 9293.25 12791.97 18790.80 19095.25 20594.46 188
FMVSNet191.54 12790.93 14892.26 11290.35 16795.27 17595.22 11287.16 14091.37 15587.62 10575.45 17383.84 13594.43 10496.52 9296.30 8098.82 13397.74 141
ACMH90.77 1391.51 12891.63 14191.38 12195.62 8696.87 12091.76 17389.66 11091.58 15378.67 14486.73 11978.12 16093.77 11794.59 14294.54 13798.78 14198.98 75
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+90.88 1291.41 12991.13 14591.74 11795.11 10096.95 11793.13 14589.48 11492.42 14079.93 13985.13 13378.02 16193.82 11693.49 16293.88 15298.94 12397.99 131
test_part191.21 13089.47 15893.24 10594.26 12395.45 16895.26 11088.36 12788.49 18090.04 7772.61 19482.82 14193.69 12093.25 16694.62 13197.84 17999.06 62
Fast-Effi-MVS+-dtu91.19 13193.64 10488.33 15892.19 15196.46 13493.99 13281.52 18992.59 13671.82 18292.17 7385.54 12191.68 14295.73 12194.64 13098.80 13898.34 117
TESTMET0.1,191.07 13293.56 10888.17 16090.43 16496.57 13192.02 16982.83 18392.34 14475.05 17090.20 9788.64 10490.93 15296.19 10894.07 14797.75 18296.90 166
test-mter90.95 13393.54 11087.93 17090.28 16896.80 12291.44 17582.68 18492.15 14874.37 17489.57 10388.23 10990.88 15596.37 9994.31 14397.93 17897.37 151
SCA90.92 13493.04 11488.45 15693.72 13497.33 11192.77 14976.08 20596.02 7178.26 14691.96 7690.86 8593.99 11390.98 19490.04 19595.88 19694.06 194
EPMVS90.88 13592.12 13489.44 14794.71 11197.24 11293.55 13676.81 20095.89 7581.77 13091.49 8486.47 11493.87 11490.21 19790.07 19495.92 19593.49 201
CostFormer90.69 13690.48 15390.93 12694.18 12496.08 14494.03 13178.20 19693.47 12489.96 8090.97 9180.30 15293.72 11887.66 20788.75 19995.51 20196.12 174
USDC90.69 13690.52 15290.88 12794.17 12596.43 13595.82 10586.76 14393.92 11676.27 15986.49 12274.30 17893.67 12195.04 13893.36 16198.61 15494.13 191
PatchmatchNetpermissive90.56 13892.49 12488.31 15993.83 13296.86 12192.42 15776.50 20295.96 7378.31 14591.96 7689.66 9493.48 12390.04 19989.20 19895.32 20293.73 199
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs490.55 13989.91 15591.30 12390.26 16994.95 18392.73 15187.94 13293.44 12585.35 11582.28 15076.09 17093.02 13093.56 16092.26 18498.51 16096.77 168
TAMVS90.54 14090.87 15090.16 13791.48 15596.61 13093.26 14386.08 15187.71 18781.66 13283.11 14784.04 13390.42 16494.54 14394.60 13298.04 17695.48 182
FMVSNet590.36 14190.93 14889.70 14387.99 20292.25 20792.03 16883.51 17892.20 14784.13 11885.59 13186.48 11392.43 13394.61 14194.52 13898.13 17290.85 208
UniMVSNet_NR-MVSNet90.35 14289.96 15490.80 12989.66 17695.83 15592.48 15590.53 9890.96 16079.57 14079.33 16477.14 16693.21 12892.91 17294.50 14099.37 5899.05 65
IterMVS-SCA-FT90.24 14392.48 12687.63 17592.85 14494.30 19893.79 13481.47 19092.66 13369.95 19384.66 13788.38 10789.99 16995.39 13094.34 14297.74 18497.63 144
IterMVS90.20 14492.43 12887.61 17692.82 14694.31 19794.11 13081.54 18892.97 12969.90 19484.71 13688.16 11089.96 17095.25 13294.17 14597.31 18697.46 148
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RPMNet90.19 14592.03 13788.05 16593.46 13595.95 14993.41 13974.59 21192.40 14175.91 16184.22 14086.41 11592.49 13294.42 14793.85 15498.44 16496.96 163
CR-MVSNet90.16 14691.96 13888.06 16493.32 13895.95 14993.36 14175.99 20692.40 14175.19 16783.18 14585.37 12292.05 13695.21 13394.56 13598.47 16397.08 160
thisisatest051590.12 14792.06 13687.85 17190.03 17196.17 14287.83 19787.45 13691.71 15277.15 15185.40 13284.01 13485.74 19195.41 12993.30 16498.88 12898.43 110
dps90.11 14889.37 16190.98 12593.89 13096.21 14193.49 13877.61 19891.95 14992.74 4788.85 10678.77 15992.37 13487.71 20687.71 20395.80 19794.38 189
UniMVSNet (Re)90.03 14989.61 15790.51 13389.97 17396.12 14392.32 15989.26 11590.99 15980.95 13678.25 16775.08 17591.14 14893.78 15593.87 15399.41 4999.21 41
ADS-MVSNet89.80 15091.33 14488.00 16894.43 12096.71 12792.29 16174.95 21096.07 7077.39 14988.67 10986.09 11793.26 12688.44 20389.57 19795.68 19893.81 198
CVMVSNet89.77 15191.66 14087.56 17893.21 14195.45 16891.94 17289.22 11689.62 17169.34 19883.99 14285.90 11984.81 19794.30 15095.28 11396.85 19097.09 158
DU-MVS89.67 15288.84 16390.63 13289.26 18695.61 16192.48 15589.91 10491.22 15679.57 14077.72 16871.18 19293.21 12892.53 17694.57 13499.35 6199.05 65
testgi89.42 15391.50 14387.00 18592.40 15095.59 16389.15 19485.27 16592.78 13272.42 17991.75 8076.00 17184.09 20194.38 14893.82 15698.65 15296.15 173
TinyColmap89.42 15388.58 16590.40 13493.80 13395.45 16893.96 13386.54 14692.24 14676.49 15680.83 15670.44 19693.37 12494.45 14693.30 16498.26 17093.37 202
NR-MVSNet89.34 15588.66 16490.13 14090.40 16595.61 16193.04 14789.91 10491.22 15678.96 14377.72 16868.90 20489.16 17494.24 15293.95 15099.32 6498.99 73
GA-MVS89.28 15690.75 15187.57 17791.77 15396.48 13392.29 16187.58 13490.61 16465.77 20384.48 13876.84 16989.46 17295.84 11693.68 15798.52 15997.34 153
Baseline_NR-MVSNet89.27 15788.01 17390.73 13189.26 18693.71 20292.71 15289.78 10990.73 16181.28 13473.53 18872.85 18492.30 13592.53 17693.84 15599.07 10898.88 86
TranMVSNet+NR-MVSNet89.23 15888.48 16790.11 14189.07 19295.25 17692.91 14890.43 10090.31 16677.10 15276.62 17171.57 19091.83 14092.12 18294.59 13399.32 6498.92 81
pm-mvs189.19 15989.02 16289.38 14890.40 16595.74 15992.05 16788.10 13186.13 19777.70 14773.72 18779.44 15688.97 17595.81 11894.51 13999.08 10697.78 140
PatchT89.13 16091.71 13986.11 19292.92 14295.59 16383.64 20875.09 20991.87 15075.19 16782.63 14885.06 12792.05 13695.21 13394.56 13597.76 18197.08 160
TDRefinement89.07 16188.15 17090.14 13995.16 9896.88 11895.55 10890.20 10189.68 16976.42 15776.67 17074.30 17884.85 19693.11 16891.91 18698.64 15394.47 187
MIMVSNet88.99 16291.07 14686.57 18886.78 20895.62 16091.20 18175.40 20890.65 16376.57 15584.05 14182.44 14591.01 15195.84 11695.38 11098.48 16293.50 200
anonymousdsp88.90 16391.00 14786.44 18988.74 19995.97 14790.40 18882.86 18288.77 17767.33 20181.18 15581.44 14990.22 16796.23 10494.27 14499.12 10299.16 50
tpm cat188.90 16387.78 17990.22 13693.88 13195.39 17193.79 13478.11 19792.55 13789.43 8781.31 15479.84 15591.40 14484.95 21086.34 20894.68 21194.09 192
tpmrst88.86 16589.62 15687.97 16994.33 12195.98 14692.62 15376.36 20394.62 10676.94 15385.98 12982.80 14392.80 13186.90 20987.15 20594.77 20993.93 196
tfpnnormal88.50 16687.01 18890.23 13591.36 15695.78 15892.74 15090.09 10283.65 20676.33 15871.46 20069.58 20191.84 13995.54 12494.02 14999.06 11199.03 68
UniMVSNet_ETH3D88.47 16786.00 19791.35 12291.55 15496.29 13992.53 15488.81 12185.58 20182.33 12767.63 20966.87 21094.04 11291.49 19195.24 11498.84 13298.92 81
SixPastTwentyTwo88.37 16889.47 15887.08 18390.01 17295.93 15187.41 19885.32 16290.26 16870.26 19086.34 12771.95 18890.93 15292.89 17391.72 18798.55 15797.22 155
V4288.31 16987.95 17588.73 15389.44 18195.34 17292.23 16387.21 13988.83 17574.49 17374.89 17773.43 18390.41 16692.08 18592.77 17598.60 15698.33 118
v2v48288.25 17087.71 18088.88 15189.23 19095.28 17392.10 16587.89 13388.69 17873.31 17775.32 17471.64 18991.89 13892.10 18492.92 17098.86 13197.99 131
v888.21 17187.94 17688.51 15589.62 17795.01 18192.31 16084.99 16788.94 17374.70 17275.03 17573.51 18290.67 16092.11 18392.74 17698.80 13898.24 122
v1088.00 17287.96 17488.05 16589.44 18194.68 18992.36 15883.35 17989.37 17272.96 17873.98 18572.79 18591.35 14693.59 15792.88 17198.81 13698.42 112
tpm87.95 17389.44 16086.21 19192.53 14894.62 19291.40 17676.36 20391.46 15469.80 19687.43 11475.14 17391.55 14389.85 20190.60 19195.61 19996.96 163
WR-MVS_H87.93 17487.85 17788.03 16789.62 17795.58 16590.47 18785.55 15987.20 19276.83 15474.42 18272.67 18686.37 18793.22 16793.04 16799.33 6298.83 92
WR-MVS87.93 17488.09 17187.75 17289.26 18695.28 17390.81 18486.69 14488.90 17475.29 16674.31 18373.72 18185.19 19592.26 17993.32 16399.27 7398.81 93
v114487.92 17687.79 17888.07 16289.27 18595.15 17892.17 16485.62 15788.52 17971.52 18373.80 18672.40 18791.06 15093.54 16192.80 17398.81 13698.33 118
CP-MVSNet87.89 17787.27 18388.62 15489.30 18495.06 17990.60 18685.78 15587.43 19175.98 16074.60 17968.14 20790.76 15793.07 17093.60 15899.30 6998.98 75
pmmvs587.83 17888.09 17187.51 18089.59 17995.48 16689.75 19284.73 17086.07 19971.44 18480.57 15970.09 19990.74 15994.47 14592.87 17298.82 13397.10 157
TransMVSNet (Re)87.73 17986.79 19088.83 15290.76 16194.40 19591.33 17989.62 11184.73 20375.41 16572.73 19271.41 19186.80 18494.53 14493.93 15199.06 11195.83 176
LTVRE_ROB87.32 1687.55 18088.25 16986.73 18690.66 16295.80 15793.05 14684.77 16983.35 20760.32 21583.12 14667.39 20893.32 12594.36 14994.86 12498.28 16898.87 88
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v119287.51 18187.31 18287.74 17389.04 19394.87 18792.07 16685.03 16688.49 18070.32 18972.65 19370.35 19791.21 14793.59 15792.80 17398.78 14198.42 112
v14887.51 18186.79 19088.36 15789.39 18395.21 17789.84 19188.20 13087.61 18977.56 14873.38 19070.32 19886.80 18490.70 19592.31 18298.37 16797.98 133
v14419287.40 18387.20 18587.64 17488.89 19494.88 18691.65 17484.70 17187.80 18671.17 18773.20 19170.91 19390.75 15892.69 17492.49 17998.71 14598.43 110
PS-CasMVS87.33 18486.68 19388.10 16189.22 19194.93 18490.35 18985.70 15686.44 19674.01 17573.43 18966.59 21390.04 16892.92 17193.52 15999.28 7198.91 84
v192192087.31 18587.13 18687.52 17988.87 19694.72 18891.96 17184.59 17388.28 18269.86 19572.50 19570.03 20091.10 14993.33 16492.61 17898.71 14598.44 109
PEN-MVS87.22 18686.50 19588.07 16288.88 19594.44 19490.99 18386.21 14886.53 19573.66 17674.97 17666.56 21489.42 17391.20 19393.48 16099.24 7898.31 121
v124086.89 18786.75 19287.06 18488.75 19894.65 19191.30 18084.05 17587.49 19068.94 19971.96 19868.86 20590.65 16193.33 16492.72 17798.67 14898.24 122
EG-PatchMatch MVS86.68 18887.24 18486.02 19390.58 16396.26 14091.08 18281.59 18784.96 20269.80 19671.35 20175.08 17584.23 20094.24 15293.35 16298.82 13395.46 183
DTE-MVSNet86.67 18986.09 19687.35 18188.45 20194.08 20090.65 18586.05 15286.13 19772.19 18074.58 18166.77 21287.61 18190.31 19693.12 16699.13 10097.62 145
v7n86.43 19086.52 19486.33 19087.91 20394.93 18490.15 19083.05 18086.57 19470.21 19171.48 19966.78 21187.72 17994.19 15492.96 16998.92 12598.76 96
MDTV_nov1_ep13_2view86.30 19188.27 16884.01 19887.71 20594.67 19088.08 19676.78 20190.59 16568.66 20080.46 16180.12 15387.58 18289.95 20088.20 20195.25 20593.90 197
gg-mvs-nofinetune86.17 19288.57 16683.36 20093.44 13698.15 9496.58 8072.05 21474.12 21849.23 22264.81 21290.85 8689.90 17197.83 5296.84 7198.97 12097.41 150
pmnet_mix0286.12 19387.12 18784.96 19689.82 17494.12 19984.88 20686.63 14591.78 15165.60 20480.76 15776.98 16786.61 18687.29 20884.80 21196.21 19294.09 192
pmmvs685.98 19484.89 20287.25 18288.83 19794.35 19689.36 19385.30 16478.51 21575.44 16462.71 21475.41 17287.65 18093.58 15992.40 18196.89 18997.29 154
EU-MVSNet85.62 19587.65 18183.24 20188.54 20092.77 20687.12 19985.32 16286.71 19364.54 20678.52 16675.11 17478.35 20692.25 18092.28 18395.58 20095.93 175
MVS-HIRNet85.36 19686.89 18983.57 19990.13 17094.51 19383.57 20972.61 21388.27 18371.22 18668.97 20481.81 14788.91 17693.08 16991.94 18594.97 20889.64 211
N_pmnet84.80 19785.10 20184.45 19789.25 18992.86 20584.04 20786.21 14888.78 17666.73 20272.41 19674.87 17785.21 19488.32 20486.45 20695.30 20392.04 205
CMPMVSbinary65.18 1784.76 19883.10 20486.69 18795.29 9495.05 18088.37 19585.51 16080.27 21371.31 18568.37 20673.85 18085.25 19387.72 20587.75 20294.38 21288.70 212
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS84.72 19984.47 20385.03 19584.67 21091.57 20986.27 20282.31 18687.65 18870.62 18876.54 17256.41 22188.75 17792.59 17589.85 19697.54 18596.66 171
pmmvs-eth3d84.33 20082.94 20585.96 19484.16 21190.94 21086.55 20183.79 17684.25 20475.85 16270.64 20256.43 22087.44 18392.20 18190.41 19397.97 17795.68 179
Anonymous2023120683.84 20185.19 20082.26 20287.38 20692.87 20485.49 20483.65 17786.07 19963.44 21068.42 20569.01 20375.45 21093.34 16392.44 18098.12 17494.20 190
gm-plane-assit83.26 20285.29 19980.89 20389.52 18089.89 21370.26 21978.24 19577.11 21658.01 21974.16 18466.90 20990.63 16297.20 6796.05 9098.66 15195.68 179
test20.0382.92 20385.52 19879.90 20687.75 20491.84 20882.80 21082.99 18182.65 21160.32 21578.90 16570.50 19467.10 21492.05 18690.89 18998.44 16491.80 206
new_pmnet81.53 20482.68 20680.20 20483.47 21389.47 21482.21 21278.36 19487.86 18560.14 21767.90 20769.43 20282.03 20489.22 20287.47 20494.99 20787.39 213
MDA-MVSNet-bldmvs80.11 20580.24 20879.94 20577.01 21793.21 20378.86 21585.94 15482.71 21060.86 21279.71 16351.77 22383.71 20375.60 21586.37 20793.28 21392.35 203
MIMVSNet180.03 20680.93 20778.97 20772.46 22090.73 21180.81 21382.44 18580.39 21263.64 20857.57 21564.93 21576.37 20891.66 18991.55 18898.07 17589.70 210
pmmvs379.16 20780.12 20978.05 20979.36 21586.59 21678.13 21673.87 21276.42 21757.51 22070.59 20357.02 21984.66 19890.10 19888.32 20094.75 21091.77 207
new-patchmatchnet78.49 20878.19 21178.84 20884.13 21290.06 21277.11 21780.39 19279.57 21459.64 21866.01 21055.65 22275.62 20984.55 21180.70 21396.14 19490.77 209
FPMVS75.84 20974.59 21277.29 21086.92 20783.89 21885.01 20580.05 19382.91 20960.61 21465.25 21160.41 21763.86 21575.60 21573.60 21787.29 21980.47 216
test_method72.96 21078.68 21066.28 21450.17 22464.90 22275.45 21850.90 22187.89 18462.54 21162.98 21368.34 20670.45 21291.90 18882.41 21288.19 21892.35 203
Gipumacopyleft68.35 21166.71 21470.27 21174.16 21968.78 22163.93 22271.77 21583.34 20854.57 22134.37 21931.88 22568.69 21383.30 21285.53 20988.48 21779.78 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft63.12 1867.27 21266.39 21568.30 21277.98 21660.24 22359.53 22376.82 19966.65 21960.74 21354.39 21659.82 21851.24 21873.92 21870.52 21883.48 22079.17 218
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND66.17 21394.91 8232.63 2191.32 22796.64 12991.40 1760.85 22594.39 1112.20 22890.15 9995.70 632.27 22496.39 9695.44 10997.78 18095.68 179
PMMVS264.36 21465.94 21662.52 21567.37 22177.44 21964.39 22169.32 21961.47 22034.59 22346.09 21841.03 22448.02 22174.56 21778.23 21491.43 21582.76 215
E-PMN50.67 21547.85 21853.96 21664.13 22350.98 22638.06 22469.51 21751.40 22224.60 22529.46 22224.39 22756.07 21748.17 22059.70 21971.40 22270.84 220
EMVS49.98 21646.76 21953.74 21764.96 22251.29 22537.81 22569.35 21851.83 22122.69 22629.57 22125.06 22657.28 21644.81 22156.11 22070.32 22368.64 221
MVEpermissive50.86 1949.54 21751.43 21747.33 21844.14 22559.20 22436.45 22660.59 22041.47 22331.14 22429.58 22017.06 22948.52 22062.22 21974.63 21663.12 22475.87 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs12.09 21816.94 2206.42 2203.15 2266.08 2279.51 2283.84 22321.46 2245.31 22727.49 2236.76 23010.89 22217.06 22215.01 2215.84 22524.75 222
test1239.58 21913.53 2214.97 2211.31 2285.47 2288.32 2292.95 22418.14 2252.03 22920.82 2242.34 23110.60 22310.00 22314.16 2224.60 22623.77 223
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def63.50 209
9.1499.28 12
SR-MVS99.45 1097.61 1699.20 16
Anonymous20240521192.18 13395.04 10298.20 9096.14 9191.79 8293.93 11574.60 17988.38 10796.48 7095.17 13595.82 10199.00 11799.15 51
our_test_389.78 17593.84 20185.59 203
ambc73.83 21376.23 21885.13 21782.27 21184.16 20565.58 20552.82 21723.31 22873.55 21191.41 19285.26 21092.97 21494.70 185
MTAPA96.83 1199.12 21
MTMP97.18 598.83 27
Patchmatch-RL test34.61 227
tmp_tt66.88 21386.07 20973.86 22068.22 22033.38 22296.88 4880.67 13788.23 11278.82 15849.78 21982.68 21377.47 21583.19 221
XVS96.60 6999.35 1696.82 6990.85 6198.72 3099.46 31
X-MVStestdata96.60 6999.35 1696.82 6990.85 6198.72 3099.46 31
abl_696.82 4198.60 4398.74 6797.74 5093.73 5196.25 6294.37 3194.55 5598.60 3597.25 5099.27 7398.61 100
mPP-MVS99.21 2598.29 39
NP-MVS95.32 89
Patchmtry95.96 14893.36 14175.99 20675.19 167
DeepMVS_CXcopyleft86.86 21579.50 21470.43 21690.73 16163.66 20780.36 16260.83 21679.68 20576.23 21489.46 21686.53 214