This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS95.61 196.36 194.73 296.84 1998.15 297.08 392.92 295.64 291.84 495.98 495.33 192.83 696.00 194.94 396.90 498.45 2
DVP-MVS95.56 296.26 294.73 296.93 1698.19 196.62 692.81 496.15 191.73 595.01 795.31 293.41 195.95 294.77 796.90 498.46 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.53 396.13 394.82 196.81 2298.05 397.42 193.09 194.31 891.49 697.12 195.03 393.27 395.55 594.58 1196.86 698.25 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS95.23 495.69 594.70 497.12 1097.81 597.19 292.83 395.06 590.98 1096.47 292.77 1093.38 295.34 894.21 1596.68 898.17 4
MSP-MVS95.12 595.83 494.30 596.82 2197.94 496.98 492.37 1195.40 390.59 1396.16 393.71 592.70 794.80 1594.77 796.37 1497.99 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft94.70 695.35 693.93 1297.57 297.57 795.98 1191.91 1394.50 690.35 1493.46 1792.72 1191.89 1895.89 395.22 195.88 2798.10 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS94.61 794.96 994.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 592.54 1291.93 1594.40 2593.56 2897.04 297.27 16
HPM-MVS++copyleft94.60 894.91 1094.24 797.86 196.53 3296.14 892.51 893.87 1590.76 1293.45 1893.84 492.62 895.11 1194.08 1895.58 5097.48 13
SD-MVS94.53 995.22 793.73 1595.69 3697.03 1495.77 2291.95 1294.41 791.35 794.97 893.34 791.80 2094.72 1893.99 1995.82 3498.07 6
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.48 1094.97 893.90 1395.53 3797.01 1596.69 590.71 2494.24 990.92 1194.97 892.19 1593.03 494.83 1493.60 2696.51 1397.97 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft94.37 1194.47 1594.26 697.18 896.99 1696.53 792.68 592.45 2489.96 1794.53 1191.63 2092.89 594.58 2093.82 2296.31 1797.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS94.37 1194.65 1194.04 1197.29 697.11 1096.00 1092.43 1093.45 1689.85 1990.92 2593.04 892.59 995.77 494.82 596.11 2197.42 15
SteuartSystems-ACMMP94.06 1394.65 1193.38 1996.97 1597.36 896.12 991.78 1492.05 2887.34 3094.42 1290.87 2491.87 1995.47 794.59 1096.21 1997.77 10
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS94.02 1494.22 1793.78 1497.25 796.85 2095.81 2090.94 2394.12 1090.29 1694.09 1489.98 3192.52 1093.94 3293.49 3395.87 2997.10 23
ACMMP_NAP93.94 1594.49 1493.30 2097.03 1397.31 995.96 1291.30 1893.41 1888.55 2493.00 1990.33 2891.43 2695.53 694.41 1395.53 5297.47 14
MCST-MVS93.81 1694.06 1893.53 1796.79 2396.85 2095.95 1391.69 1692.20 2687.17 3290.83 2793.41 691.96 1494.49 2393.50 3197.61 197.12 22
zzz-MVS93.80 1793.45 2594.20 897.53 396.43 3695.88 1791.12 2094.09 1192.74 387.68 3390.77 2592.04 1394.74 1793.56 2895.91 2696.85 27
ACMMPR93.72 1893.94 1993.48 1897.07 1196.93 1795.78 2190.66 2693.88 1489.24 2193.53 1689.08 3892.24 1193.89 3493.50 3195.88 2796.73 31
NCCC93.69 1993.66 2293.72 1697.37 596.66 2995.93 1692.50 993.40 1988.35 2587.36 3592.33 1492.18 1294.89 1394.09 1796.00 2396.91 26
MP-MVScopyleft93.35 2093.59 2393.08 2397.39 496.82 2295.38 2590.71 2490.82 3688.07 2792.83 2190.29 2991.32 2794.03 2993.19 3895.61 4897.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS93.25 2193.26 2693.24 2196.84 1996.51 3395.52 2490.61 2792.37 2588.88 2290.91 2689.52 3491.91 1793.64 3692.78 4495.69 4197.09 24
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2297.13 996.51 3395.35 2691.19 1993.14 2188.14 2685.26 4189.49 3591.45 2395.17 995.07 295.85 3296.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM92.97 2394.51 1391.16 3795.88 3496.59 3095.09 2990.45 3093.42 1783.01 5394.68 1090.74 2688.74 4094.75 1693.78 2393.82 12997.63 11
xxxxxxxxxxxxxcwj92.95 2491.88 3394.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 571.01 12691.93 1594.40 2593.56 2897.04 297.27 16
train_agg92.87 2593.53 2492.09 3096.88 1895.38 4995.94 1490.59 2890.65 3883.65 5194.31 1391.87 1990.30 3193.38 3992.42 4695.17 6996.73 31
PGM-MVS92.76 2693.03 2892.45 2897.03 1396.67 2895.73 2387.92 4290.15 4386.53 3692.97 2088.33 4491.69 2193.62 3793.03 3995.83 3396.41 37
CSCG92.76 2693.16 2792.29 2996.30 2897.74 694.67 3388.98 3692.46 2389.73 2086.67 3792.15 1788.69 4292.26 5492.92 4295.40 5797.89 9
TSAR-MVS + GP.92.71 2893.91 2091.30 3591.96 7296.00 4193.43 4187.94 4192.53 2286.27 4093.57 1591.94 1891.44 2593.29 4092.89 4396.78 797.15 21
DeepPCF-MVS88.51 292.64 2994.42 1690.56 4194.84 4496.92 1891.31 6189.61 3295.16 484.55 4689.91 2991.45 2190.15 3395.12 1094.81 692.90 14897.58 12
X-MVS92.36 3092.75 3091.90 3396.89 1796.70 2595.25 2790.48 2991.50 3383.95 4888.20 3188.82 4089.11 3693.75 3593.43 3495.75 3996.83 29
DeepC-MVS87.86 392.26 3191.86 3492.73 2596.18 2996.87 1995.19 2891.76 1592.17 2786.58 3581.79 5085.85 5090.88 2994.57 2194.61 995.80 3597.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS92.05 3293.74 2190.08 4494.96 4197.06 1393.11 4587.71 4490.71 3780.78 6892.40 2291.03 2287.68 5394.32 2794.48 1296.21 1996.16 40
ACMMPcopyleft92.03 3392.16 3191.87 3495.88 3496.55 3194.47 3589.49 3391.71 3185.26 4291.52 2484.48 5590.21 3292.82 4891.63 5295.92 2596.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSLP-MVS++92.02 3491.40 3792.75 2496.01 3295.88 4493.73 4089.00 3489.89 4490.31 1581.28 5688.85 3991.45 2392.88 4794.24 1496.00 2396.76 30
DPM-MVS91.72 3591.48 3592.00 3195.53 3795.75 4595.94 1491.07 2191.20 3485.58 4181.63 5490.74 2688.40 4593.40 3893.75 2495.45 5693.85 82
3Dnovator+86.06 491.60 3690.86 4292.47 2796.00 3396.50 3594.70 3287.83 4390.49 3989.92 1874.68 9089.35 3690.66 3094.02 3094.14 1695.67 4396.85 27
CPTT-MVS91.39 3790.95 4091.91 3295.06 3995.24 5195.02 3088.98 3691.02 3586.71 3484.89 4388.58 4391.60 2290.82 8189.67 9294.08 11696.45 35
CANet91.33 3891.46 3691.18 3695.01 4096.71 2493.77 3887.39 4687.72 5187.26 3181.77 5189.73 3287.32 5994.43 2493.86 2196.31 1796.02 43
CDPH-MVS91.14 3992.01 3290.11 4396.18 2996.18 3994.89 3188.80 3888.76 4877.88 8489.18 3087.71 4787.29 6093.13 4293.31 3695.62 4695.84 45
MVS_030490.88 4091.35 3890.34 4293.91 5296.79 2394.49 3486.54 5086.57 5582.85 5581.68 5389.70 3387.57 5594.64 1993.93 2096.67 1096.15 41
MVS_111021_HR90.56 4191.29 3989.70 4994.71 4695.63 4791.81 5786.38 5187.53 5281.29 6287.96 3285.43 5287.69 5293.90 3392.93 4196.33 1595.69 48
3Dnovator85.17 590.48 4289.90 4691.16 3794.88 4395.74 4693.82 3785.36 5789.28 4587.81 2874.34 9287.40 4888.56 4393.07 4393.74 2596.53 1295.71 47
AdaColmapbinary90.29 4388.38 5792.53 2696.10 3195.19 5392.98 4691.40 1789.08 4788.65 2378.35 7181.44 6991.30 2890.81 8290.21 7694.72 8993.59 88
OMC-MVS90.23 4490.40 4390.03 4593.45 5795.29 5091.89 5686.34 5293.25 2084.94 4581.72 5286.65 4988.90 3791.69 6290.27 7594.65 9393.95 80
MVS_111021_LR90.14 4590.89 4189.26 5393.23 5994.05 7090.43 6684.65 6290.16 4284.52 4790.14 2883.80 5987.99 4992.50 5290.92 6194.74 8794.70 67
DELS-MVS89.71 4689.68 4889.74 4793.75 5496.22 3893.76 3985.84 5382.53 7385.05 4478.96 6884.24 5684.25 7594.91 1294.91 495.78 3896.02 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet89.60 4789.91 4589.24 5496.45 2793.61 7592.95 4788.03 4085.74 5983.36 5287.29 3683.05 6280.98 9492.22 5591.85 5093.69 13495.58 51
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM89.49 4889.58 4989.38 5294.73 4595.94 4292.35 4985.00 6085.69 6080.03 7276.97 7887.81 4687.87 5092.18 5892.10 4896.33 1596.40 38
canonicalmvs89.36 4989.92 4488.70 5891.38 7695.92 4391.81 5782.61 9490.37 4082.73 5782.09 4879.28 8488.30 4791.17 7093.59 2795.36 6097.04 25
ETV-MVS89.22 5089.76 4788.60 6091.60 7394.61 6389.48 8183.46 8185.20 6281.58 6082.75 4682.59 6488.80 3894.57 2193.28 3796.68 895.31 55
HQP-MVS89.13 5189.58 4988.60 6093.53 5693.67 7393.29 4387.58 4588.53 4975.50 8987.60 3480.32 7487.07 6190.66 8789.95 8494.62 9596.35 39
CS-MVS88.97 5289.44 5188.41 6491.45 7595.24 5190.03 7082.43 9684.08 6881.16 6481.02 5883.83 5888.74 4094.25 2892.73 4596.67 1094.95 60
TAPA-MVS84.37 788.91 5388.93 5388.89 5593.00 6394.85 5992.00 5384.84 6191.68 3280.05 7179.77 6384.56 5488.17 4890.11 9189.00 10995.30 6492.57 110
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS84.60 688.66 5487.75 6789.73 4893.06 6296.02 4093.22 4490.00 3182.44 7680.02 7377.96 7485.16 5387.36 5888.54 11088.54 11494.72 8995.61 50
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS88.66 5488.52 5588.82 5691.37 7794.22 6692.82 4882.08 9888.27 5085.14 4381.86 4978.53 8885.93 6991.17 7090.61 6995.55 5195.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PLCcopyleft83.76 988.61 5686.83 7390.70 3994.22 4992.63 9291.50 5987.19 4789.16 4686.87 3375.51 8580.87 7189.98 3490.01 9289.20 10394.41 10890.45 142
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + COLMAP88.40 5789.09 5287.60 7092.72 6793.92 7292.21 5085.57 5691.73 3073.72 9991.75 2373.22 11887.64 5491.49 6489.71 9193.73 13291.82 123
CNLPA88.40 5787.00 7190.03 4593.73 5594.28 6589.56 7985.81 5491.87 2987.55 2969.53 11881.49 6889.23 3589.45 10188.59 11394.31 11293.82 83
MAR-MVS88.39 5988.44 5688.33 6594.90 4295.06 5590.51 6583.59 7585.27 6179.07 7677.13 7682.89 6387.70 5192.19 5792.32 4794.23 11394.20 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ACMP83.90 888.32 6088.06 6088.62 5992.18 7093.98 7191.28 6285.24 5886.69 5481.23 6385.62 3975.13 10287.01 6389.83 9489.77 8994.79 8395.43 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train88.25 6188.55 5487.89 6692.84 6693.66 7493.35 4285.22 5985.77 5874.03 9886.60 3876.29 9886.62 6591.20 6890.58 7195.29 6595.75 46
PVSNet_BlendedMVS88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8293.05 4491.10 5695.86 3094.86 63
PVSNet_Blended88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8293.05 4491.10 5695.86 3094.86 63
EIA-MVS87.94 6488.05 6187.81 6791.46 7495.00 5788.67 9382.81 8682.53 7380.81 6780.04 6180.20 7587.48 5692.58 5191.61 5395.63 4594.36 72
OpenMVScopyleft82.53 1187.71 6586.84 7288.73 5794.42 4895.06 5591.02 6383.49 7882.50 7582.24 5967.62 12985.48 5185.56 7091.19 6991.30 5595.67 4394.75 65
ACMM83.27 1087.68 6686.09 7989.54 5193.26 5892.19 9891.43 6086.74 4986.02 5782.85 5575.63 8475.14 10188.41 4490.68 8689.99 8194.59 9692.97 95
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS87.56 6785.80 8389.62 5093.90 5394.09 6994.12 3688.18 3975.40 12777.30 8776.41 7977.93 9188.79 3992.20 5690.82 6395.40 5793.72 86
casdiffmvs87.45 6887.15 7087.79 6990.15 9694.22 6689.96 7283.93 6985.08 6380.91 6575.81 8377.88 9286.08 6791.86 6190.86 6295.74 4094.37 71
PVSNet_Blended_VisFu87.40 6987.80 6486.92 7392.86 6495.40 4888.56 9783.45 8279.55 10382.26 5874.49 9184.03 5779.24 12492.97 4691.53 5495.15 7196.65 33
MVS_Test86.93 7087.24 6986.56 7490.10 9793.47 7790.31 6780.12 11783.55 7078.12 8079.58 6479.80 7985.45 7190.17 9090.59 7095.29 6593.53 89
EPP-MVSNet86.55 7187.76 6685.15 8390.52 8794.41 6487.24 11382.32 9781.79 8273.60 10078.57 7082.41 6582.07 8891.23 6690.39 7395.14 7295.48 52
diffmvs86.52 7286.76 7586.23 7688.31 11292.63 9289.58 7881.61 10286.14 5680.26 7079.00 6777.27 9483.58 7688.94 10689.06 10694.05 11894.29 73
DI_MVS_plusplus_trai86.41 7385.54 8587.42 7189.24 10293.13 8192.16 5282.65 9282.30 7780.75 6968.30 12580.41 7385.01 7290.56 8890.07 7994.70 9194.01 79
IS_MVSNet86.18 7488.18 5983.85 10191.02 8094.72 6287.48 10782.46 9581.05 9070.28 11376.98 7782.20 6776.65 14093.97 3193.38 3595.18 6894.97 59
UA-Net86.07 7587.78 6584.06 9892.85 6595.11 5487.73 10484.38 6373.22 14773.18 10279.99 6289.22 3771.47 16893.22 4193.03 3994.76 8690.69 137
MVSTER86.03 7686.12 7885.93 7888.62 10889.93 12489.33 8379.91 12281.87 8181.35 6181.07 5774.91 10380.66 9992.13 5990.10 7895.68 4292.80 100
LS3D85.96 7784.37 9287.81 6794.13 5093.27 8090.26 6989.00 3484.91 6572.84 10671.74 10472.47 12087.45 5789.53 10089.09 10593.20 14489.60 145
UGNet85.90 7888.23 5883.18 10888.96 10694.10 6887.52 10683.60 7481.66 8377.90 8380.76 5983.19 6166.70 18591.13 7590.71 6794.39 10996.06 42
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DCV-MVSNet85.88 7986.17 7785.54 8189.10 10589.85 12689.34 8280.70 10883.04 7178.08 8276.19 8179.00 8582.42 8589.67 9790.30 7493.63 13795.12 56
CANet_DTU85.43 8087.72 6882.76 11290.95 8393.01 8589.99 7175.46 16382.67 7264.91 14383.14 4580.09 7680.68 9892.03 6091.03 5894.57 9892.08 118
Effi-MVS+85.33 8185.08 8785.63 8089.69 9993.42 7889.90 7380.31 11579.32 10472.48 10873.52 9874.03 10986.55 6690.99 7789.98 8294.83 8294.27 77
FC-MVSNet-train85.18 8285.31 8685.03 8490.67 8491.62 10287.66 10583.61 7379.75 10174.37 9678.69 6971.21 12478.91 12591.23 6689.96 8394.96 7794.69 68
thisisatest053085.15 8385.86 8184.33 9189.19 10492.57 9587.22 11480.11 11882.15 7974.41 9578.15 7273.80 11279.90 11290.99 7789.58 9395.13 7393.75 85
tttt051785.11 8485.81 8284.30 9289.24 10292.68 9187.12 11880.11 11881.98 8074.31 9778.08 7373.57 11479.90 11291.01 7689.58 9395.11 7593.77 84
baseline84.89 8586.06 8083.52 10687.25 12389.67 13387.76 10375.68 16284.92 6478.40 7880.10 6080.98 7080.20 10886.69 13587.05 12991.86 16092.99 94
ET-MVSNet_ETH3D84.65 8685.58 8483.56 10574.99 20692.62 9490.29 6880.38 11082.16 7873.01 10583.41 4471.10 12587.05 6287.77 11990.17 7795.62 4691.82 123
GeoE84.62 8783.98 9485.35 8289.34 10192.83 8888.34 9878.95 13279.29 10577.16 8868.10 12674.56 10583.40 7889.31 10389.23 10294.92 7894.57 70
baseline184.54 8884.43 9184.67 8690.62 8591.16 10588.63 9583.75 7279.78 10071.16 10975.14 8774.10 10877.84 13391.56 6390.67 6896.04 2288.58 151
GBi-Net84.51 8984.80 8884.17 9584.20 15889.95 12189.70 7580.37 11181.17 8675.50 8969.63 11479.69 8179.75 11690.73 8390.72 6495.52 5391.71 125
test184.51 8984.80 8884.17 9584.20 15889.95 12189.70 7580.37 11181.17 8675.50 8969.63 11479.69 8179.75 11690.73 8390.72 6495.52 5391.71 125
FMVSNet384.44 9184.64 9084.21 9484.32 15790.13 11989.85 7480.37 11181.17 8675.50 8969.63 11479.69 8179.62 11989.72 9690.52 7295.59 4991.58 131
Anonymous2023121184.42 9283.02 9886.05 7788.85 10792.70 9088.92 9283.40 8379.99 9878.31 7955.83 18578.92 8683.33 7989.06 10589.76 9093.50 13994.90 61
Vis-MVSNetpermissive84.38 9386.68 7681.70 12287.65 11994.89 5888.14 10080.90 10774.48 13368.23 12577.53 7580.72 7269.98 17292.68 4991.90 4995.33 6394.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FMVSNet283.87 9483.73 9684.05 9984.20 15889.95 12189.70 7580.21 11679.17 10774.89 9365.91 13477.49 9379.75 11690.87 8091.00 6095.52 5391.71 125
MSDG83.87 9481.02 11687.19 7292.17 7189.80 12889.15 8485.72 5580.61 9579.24 7566.66 13268.75 13682.69 8187.95 11787.44 12394.19 11485.92 174
Fast-Effi-MVS+83.77 9682.98 9984.69 8587.98 11391.87 10088.10 10177.70 14678.10 11373.04 10469.13 12068.51 13786.66 6490.49 8989.85 8794.67 9292.88 97
Vis-MVSNet (Re-imp)83.65 9786.81 7479.96 14290.46 9092.71 8984.84 14382.00 9980.93 9262.44 15876.29 8082.32 6665.54 18892.29 5391.66 5194.49 10391.47 132
RPSCF83.46 9883.36 9783.59 10487.75 11587.35 16084.82 14479.46 12783.84 6978.12 8082.69 4779.87 7782.60 8482.47 18081.13 18388.78 18586.13 172
PatchMatch-RL83.34 9981.36 11185.65 7990.33 9389.52 13684.36 14781.82 10080.87 9479.29 7474.04 9362.85 15786.05 6888.40 11387.04 13092.04 15786.77 167
IterMVS-LS83.28 10082.95 10083.65 10288.39 11188.63 15186.80 12278.64 13776.56 11973.43 10172.52 10375.35 10080.81 9686.43 14188.51 11593.84 12892.66 105
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_part183.23 10180.55 12386.35 7588.60 10990.61 11090.78 6481.13 10670.89 15883.01 5355.72 18674.60 10482.19 8687.79 11889.26 10092.39 15395.01 57
tfpn200view982.86 10281.46 10984.48 8890.30 9493.09 8289.05 8882.71 8875.14 12869.56 11665.72 13663.13 15280.38 10591.15 7289.51 9594.91 7992.50 114
baseline282.80 10382.86 10182.73 11387.68 11890.50 11284.92 14278.93 13378.07 11473.06 10375.08 8869.77 13177.31 13688.90 10786.94 13194.50 10190.74 136
thres20082.77 10481.25 11384.54 8790.38 9193.05 8389.13 8582.67 9074.40 13469.53 11865.69 13863.03 15580.63 10091.15 7289.42 9794.88 8092.04 120
thres40082.68 10581.15 11484.47 8990.52 8792.89 8788.95 9182.71 8874.33 13569.22 12165.31 14062.61 15880.63 10090.96 7989.50 9694.79 8392.45 116
IB-MVS79.09 1282.60 10682.19 10483.07 10991.08 7993.55 7680.90 17481.35 10376.56 11980.87 6664.81 14669.97 13068.87 17585.64 14990.06 8095.36 6094.74 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres100view90082.55 10781.01 11884.34 9090.30 9492.27 9689.04 8982.77 8775.14 12869.56 11665.72 13663.13 15279.62 11989.97 9389.26 10094.73 8891.61 130
thres600view782.53 10881.02 11684.28 9390.61 8693.05 8388.57 9682.67 9074.12 13868.56 12465.09 14362.13 16380.40 10491.15 7289.02 10894.88 8092.59 108
CHOSEN 1792x268882.16 10980.91 11983.61 10391.14 7892.01 9989.55 8079.15 13179.87 9970.29 11252.51 19472.56 11981.39 9088.87 10888.17 11790.15 17892.37 117
Effi-MVS+-dtu82.05 11081.76 10682.38 11687.72 11690.56 11186.90 12178.05 14273.85 14166.85 13071.29 10671.90 12282.00 8986.64 13685.48 15592.76 15092.58 109
EPNet_dtu81.98 11183.82 9579.83 14494.10 5185.97 16987.29 11184.08 6880.61 9559.96 17681.62 5577.19 9562.91 19287.21 12386.38 14290.66 17487.77 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet_NR-MVSNet81.87 11281.33 11282.50 11485.31 14491.30 10385.70 13284.25 6475.89 12364.21 14566.95 13164.65 14880.22 10687.07 12589.18 10495.27 6794.29 73
ACMH78.52 1481.86 11380.45 12483.51 10790.51 8991.22 10485.62 13584.23 6570.29 16462.21 15969.04 12264.05 15084.48 7487.57 12188.45 11694.01 12092.54 112
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+79.08 1381.84 11480.06 12983.91 10089.92 9890.62 10986.21 12783.48 8073.88 14065.75 13666.38 13365.30 14684.63 7385.90 14687.25 12693.45 14091.13 135
MS-PatchMatch81.79 11581.44 11082.19 11990.35 9289.29 14088.08 10275.36 16477.60 11569.00 12264.37 14978.87 8777.14 13988.03 11685.70 15393.19 14586.24 171
PMMVS81.65 11684.05 9378.86 14978.56 19782.63 19183.10 15567.22 19381.39 8470.11 11584.91 4279.74 8082.12 8787.31 12285.70 15392.03 15886.67 170
FMVSNet181.64 11780.61 12182.84 11182.36 18389.20 14288.67 9379.58 12570.79 15972.63 10758.95 17672.26 12179.34 12290.73 8390.72 6494.47 10491.62 129
CDS-MVSNet81.63 11882.09 10581.09 13187.21 12490.28 11587.46 10980.33 11469.06 16870.66 11071.30 10573.87 11067.99 17889.58 9889.87 8692.87 14990.69 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HyFIR lowres test81.62 11979.45 13984.14 9791.00 8193.38 7988.27 9978.19 14076.28 12170.18 11448.78 19873.69 11383.52 7787.05 12687.83 12193.68 13589.15 148
UniMVSNet (Re)81.22 12081.08 11581.39 12685.35 14391.76 10184.93 14182.88 8576.13 12265.02 14264.94 14463.09 15475.17 14887.71 12089.04 10794.97 7694.88 62
DU-MVS81.20 12180.30 12582.25 11784.98 15190.94 10785.70 13283.58 7675.74 12464.21 14565.30 14159.60 17680.22 10686.89 12889.31 9894.77 8594.29 73
CostFormer80.94 12280.21 12681.79 12187.69 11788.58 15287.47 10870.66 17980.02 9777.88 8473.03 9971.40 12378.24 12979.96 18979.63 18588.82 18488.84 149
USDC80.69 12379.89 13281.62 12486.48 13089.11 14586.53 12478.86 13481.15 8963.48 15172.98 10059.12 18181.16 9287.10 12485.01 15993.23 14384.77 179
TranMVSNet+NR-MVSNet80.52 12479.84 13381.33 12884.92 15390.39 11385.53 13784.22 6674.27 13660.68 17464.93 14559.96 17177.48 13586.75 13389.28 9995.12 7493.29 90
COLMAP_ROBcopyleft76.78 1580.50 12578.49 14482.85 11090.96 8289.65 13486.20 12883.40 8377.15 11766.54 13162.27 15465.62 14577.89 13285.23 15684.70 16392.11 15684.83 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CHOSEN 280x42080.28 12681.66 10778.67 15382.92 17679.24 20385.36 13866.79 19578.11 11270.32 11175.03 8979.87 7781.09 9389.07 10483.16 17385.54 20087.17 164
NR-MVSNet80.25 12779.98 13180.56 13785.20 14690.94 10785.65 13483.58 7675.74 12461.36 16965.30 14156.75 18972.38 16488.46 11288.80 11195.16 7093.87 81
pmmvs479.99 12878.08 15082.22 11883.04 17387.16 16384.95 14078.80 13678.64 11074.53 9464.61 14759.41 17779.45 12184.13 16984.54 16692.53 15288.08 157
Fast-Effi-MVS+-dtu79.95 12980.69 12079.08 14786.36 13189.14 14485.85 13072.28 17372.85 15059.32 17970.43 11268.42 13877.57 13486.14 14386.44 14193.11 14691.39 133
v879.90 13078.39 14781.66 12383.97 16289.81 12787.16 11677.40 14871.49 15367.71 12661.24 15962.49 15979.83 11585.48 15386.17 14593.89 12592.02 122
v2v48279.84 13178.07 15181.90 12083.75 16390.21 11887.17 11579.85 12370.65 16065.93 13561.93 15660.07 17080.82 9585.25 15586.71 13493.88 12691.70 128
Baseline_NR-MVSNet79.84 13178.37 14881.55 12584.98 15186.66 16585.06 13983.49 7875.57 12663.31 15258.22 18060.97 16678.00 13186.89 12887.13 12794.47 10493.15 92
thisisatest051579.76 13380.59 12278.80 15084.40 15688.91 14979.48 18076.94 15272.29 15167.33 12867.82 12865.99 14370.80 17088.50 11187.84 11993.86 12792.75 103
v1079.62 13478.19 14981.28 12983.73 16489.69 13287.27 11276.86 15370.50 16265.46 13760.58 16660.47 16880.44 10386.91 12786.63 13793.93 12292.55 111
V4279.59 13578.43 14680.94 13282.79 17989.71 13186.66 12376.73 15571.38 15467.42 12761.01 16162.30 16178.39 12885.56 15186.48 13993.65 13692.60 107
GA-MVS79.52 13679.71 13679.30 14685.68 13890.36 11484.55 14578.44 13870.47 16357.87 18468.52 12461.38 16476.21 14289.40 10287.89 11893.04 14789.96 144
SCA79.51 13780.15 12878.75 15186.58 12987.70 15783.07 15668.53 18881.31 8566.40 13273.83 9475.38 9979.30 12380.49 18779.39 18888.63 18782.96 186
test-LLR79.47 13879.84 13379.03 14887.47 12082.40 19481.24 17178.05 14273.72 14262.69 15573.76 9574.42 10673.49 15984.61 16582.99 17591.25 16887.01 165
IterMVS-SCA-FT79.41 13980.20 12778.49 15585.88 13486.26 16783.95 15071.94 17473.55 14561.94 16270.48 11170.50 12775.23 14685.81 14884.61 16591.99 15990.18 143
v114479.38 14077.83 15481.18 13083.62 16590.23 11687.15 11778.35 13969.13 16764.02 14860.20 16859.41 17780.14 11086.78 13186.57 13893.81 13092.53 113
UniMVSNet_ETH3D79.24 14176.47 16782.48 11585.66 13990.97 10686.08 12981.63 10164.48 18868.94 12354.47 18857.65 18478.83 12685.20 15988.91 11093.72 13393.60 87
MDTV_nov1_ep1379.14 14279.49 13878.74 15285.40 14286.89 16484.32 14970.29 18178.85 10869.42 11975.37 8673.29 11775.64 14580.61 18679.48 18787.36 19181.91 188
TDRefinement79.05 14377.05 16281.39 12688.45 11089.00 14786.92 11982.65 9274.21 13764.41 14459.17 17359.16 17974.52 15485.23 15685.09 15891.37 16687.51 163
v119278.94 14477.33 15880.82 13383.25 16989.90 12586.91 12077.72 14568.63 17162.61 15759.17 17357.53 18580.62 10286.89 12886.47 14093.79 13192.75 103
v14419278.81 14577.22 16080.67 13582.95 17489.79 12986.40 12577.42 14768.26 17363.13 15359.50 17158.13 18280.08 11185.93 14586.08 14794.06 11792.83 99
IterMVS78.79 14679.71 13677.71 15985.26 14585.91 17084.54 14669.84 18573.38 14661.25 17070.53 11070.35 12874.43 15585.21 15883.80 17090.95 17288.77 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet78.71 14778.86 14178.55 15485.85 13785.15 17882.30 16368.23 18974.71 13165.37 13964.39 14869.59 13377.18 13785.10 16184.87 16092.34 15588.21 155
PatchmatchNetpermissive78.67 14878.85 14278.46 15686.85 12886.03 16883.77 15268.11 19180.88 9366.19 13372.90 10173.40 11678.06 13079.25 19377.71 19387.75 19081.75 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14878.59 14976.84 16580.62 13683.61 16689.16 14383.65 15379.24 13069.38 16669.34 12059.88 17060.41 16975.19 14783.81 17184.63 16492.70 15190.63 139
v192192078.57 15076.99 16380.41 14082.93 17589.63 13586.38 12677.14 15068.31 17261.80 16558.89 17756.79 18880.19 10986.50 14086.05 14994.02 11992.76 102
pm-mvs178.51 15177.75 15679.40 14584.83 15489.30 13983.55 15479.38 12862.64 19263.68 15058.73 17864.68 14770.78 17189.79 9587.84 11994.17 11591.28 134
v124078.15 15276.53 16680.04 14182.85 17889.48 13885.61 13676.77 15467.05 17561.18 17258.37 17956.16 19279.89 11486.11 14486.08 14793.92 12392.47 115
dps78.02 15375.94 17580.44 13986.06 13386.62 16682.58 15869.98 18375.14 12877.76 8669.08 12159.93 17278.47 12779.47 19177.96 19287.78 18983.40 183
anonymousdsp77.94 15479.00 14076.71 16779.03 19587.83 15679.58 17972.87 17165.80 18358.86 18365.82 13562.48 16075.99 14386.77 13288.66 11293.92 12395.68 49
test-mter77.79 15580.02 13075.18 17881.18 19182.85 18980.52 17762.03 20773.62 14462.16 16073.55 9773.83 11173.81 15784.67 16483.34 17291.37 16688.31 154
TESTMET0.1,177.78 15679.84 13375.38 17780.86 19282.40 19481.24 17162.72 20673.72 14262.69 15573.76 9574.42 10673.49 15984.61 16582.99 17591.25 16887.01 165
tpm cat177.78 15675.28 18280.70 13487.14 12585.84 17185.81 13170.40 18077.44 11678.80 7763.72 15064.01 15176.55 14175.60 20175.21 19985.51 20185.12 176
EPMVS77.53 15878.07 15176.90 16686.89 12784.91 18182.18 16666.64 19681.00 9164.11 14772.75 10269.68 13274.42 15679.36 19278.13 19187.14 19380.68 195
tfpnnormal77.46 15974.86 18480.49 13886.34 13288.92 14884.33 14881.26 10461.39 19661.70 16651.99 19553.66 20174.84 15188.63 10987.38 12594.50 10192.08 118
v7n77.22 16076.23 17078.38 15781.89 18689.10 14682.24 16576.36 15665.96 18261.21 17156.56 18355.79 19375.07 15086.55 13786.68 13593.52 13892.95 96
RPMNet77.07 16177.63 15776.42 16985.56 14185.15 17881.37 16865.27 20074.71 13160.29 17563.71 15166.59 14273.64 15882.71 17882.12 18092.38 15488.39 153
pmmvs576.93 16276.33 16977.62 16081.97 18588.40 15481.32 17074.35 16765.42 18661.42 16863.07 15257.95 18373.23 16285.60 15085.35 15793.41 14188.55 152
TinyColmap76.73 16373.95 18779.96 14285.16 14885.64 17482.34 16278.19 14070.63 16162.06 16160.69 16549.61 20680.81 9685.12 16083.69 17191.22 17082.27 187
CVMVSNet76.70 16478.46 14574.64 18383.34 16884.48 18281.83 16774.58 16568.88 16951.23 19769.77 11370.05 12967.49 18184.27 16883.81 16989.38 18287.96 159
WR-MVS76.63 16578.02 15375.02 17984.14 16189.76 13078.34 18780.64 10969.56 16552.32 19361.26 15861.24 16560.66 19384.45 16787.07 12893.99 12192.77 101
TransMVSNet (Re)76.57 16675.16 18378.22 15885.60 14087.24 16182.46 15981.23 10559.80 20059.05 18257.07 18259.14 18066.60 18688.09 11586.82 13294.37 11087.95 160
tpmrst76.55 16775.99 17477.20 16287.32 12283.05 18782.86 15765.62 19878.61 11167.22 12969.19 11965.71 14475.87 14476.75 19975.33 19884.31 20383.28 184
FC-MVSNet-test76.53 16881.62 10870.58 19384.99 15085.73 17274.81 19578.85 13577.00 11839.13 21175.90 8273.50 11554.08 20086.54 13885.99 15091.65 16286.68 168
PatchT76.42 16977.81 15574.80 18178.46 19884.30 18371.82 20165.03 20273.89 13965.37 13961.58 15766.70 14177.18 13785.10 16184.87 16090.94 17388.21 155
TAMVS76.42 16977.16 16175.56 17583.05 17285.55 17580.58 17671.43 17665.40 18761.04 17367.27 13069.22 13567.99 17884.88 16384.78 16289.28 18383.01 185
EG-PatchMatch MVS76.40 17175.47 18077.48 16185.86 13690.22 11782.45 16073.96 16959.64 20159.60 17852.75 19362.20 16268.44 17788.23 11487.50 12294.55 9987.78 161
CP-MVSNet76.36 17276.41 16876.32 17182.73 18088.64 15079.39 18179.62 12467.21 17453.70 18960.72 16455.22 19567.91 18083.52 17386.34 14394.55 9993.19 91
tpm76.30 17376.05 17376.59 16886.97 12683.01 18883.83 15167.06 19471.83 15263.87 14969.56 11762.88 15673.41 16179.79 19078.59 18984.41 20286.68 168
test0.0.03 176.03 17478.51 14373.12 18987.47 12085.13 18076.32 19278.05 14273.19 14950.98 19870.64 10869.28 13455.53 19685.33 15484.38 16790.39 17681.63 190
PEN-MVS76.02 17576.07 17175.95 17483.17 17187.97 15579.65 17880.07 12166.57 17851.45 19560.94 16255.47 19466.81 18482.72 17786.80 13394.59 9692.03 121
SixPastTwentyTwo76.02 17575.72 17776.36 17083.38 16787.54 15875.50 19476.22 15765.50 18557.05 18570.64 10853.97 20074.54 15380.96 18582.12 18091.44 16489.35 147
PS-CasMVS75.90 17775.86 17675.96 17382.59 18188.46 15379.23 18479.56 12666.00 18152.77 19159.48 17254.35 19967.14 18383.37 17486.23 14494.47 10493.10 93
WR-MVS_H75.84 17876.93 16474.57 18482.86 17789.50 13778.34 18779.36 12966.90 17652.51 19260.20 16859.71 17359.73 19483.61 17285.77 15294.65 9392.84 98
LTVRE_ROB74.41 1675.78 17974.72 18577.02 16585.88 13489.22 14182.44 16177.17 14950.57 21045.45 20465.44 13952.29 20381.25 9185.50 15287.42 12489.94 18092.62 106
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
gg-mvs-nofinetune75.64 18077.26 15973.76 18587.92 11492.20 9787.32 11064.67 20351.92 20935.35 21346.44 20177.05 9671.97 16592.64 5091.02 5995.34 6289.53 146
FMVSNet575.50 18176.07 17174.83 18076.16 20281.19 19781.34 16970.21 18273.20 14861.59 16758.97 17568.33 13968.50 17685.87 14785.85 15191.18 17179.11 198
DTE-MVSNet75.14 18275.44 18174.80 18183.18 17087.19 16278.25 18980.11 11866.05 18048.31 20060.88 16354.67 19664.54 18982.57 17986.17 14594.43 10790.53 141
pmmvs674.83 18372.89 19077.09 16382.11 18487.50 15980.88 17576.97 15152.79 20861.91 16446.66 20060.49 16769.28 17486.74 13485.46 15691.39 16590.56 140
MIMVSNet74.69 18475.60 17973.62 18676.02 20485.31 17781.21 17367.43 19271.02 15659.07 18154.48 18764.07 14966.14 18786.52 13986.64 13691.83 16181.17 192
ADS-MVSNet74.53 18575.69 17873.17 18881.57 18980.71 19979.27 18363.03 20579.27 10659.94 17767.86 12768.32 14071.08 16977.33 19776.83 19584.12 20579.53 196
pmmvs-eth3d74.32 18671.96 19277.08 16477.33 20082.71 19078.41 18676.02 16066.65 17765.98 13454.23 19049.02 20873.14 16382.37 18182.69 17791.61 16386.05 173
PM-MVS74.17 18773.10 18875.41 17676.07 20382.53 19277.56 19071.69 17571.04 15561.92 16361.23 16047.30 20974.82 15281.78 18379.80 18490.42 17588.05 158
CMPMVSbinary56.49 1773.84 18871.73 19476.31 17285.20 14685.67 17375.80 19373.23 17062.26 19365.40 13853.40 19259.70 17471.77 16780.25 18879.56 18686.45 19781.28 191
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep13_2view73.21 18972.91 18973.56 18780.01 19384.28 18478.62 18566.43 19768.64 17059.12 18060.39 16759.69 17569.81 17378.82 19577.43 19487.36 19181.11 193
pmnet_mix0271.95 19071.83 19372.10 19081.40 19080.63 20073.78 19772.85 17270.90 15754.89 18762.17 15557.42 18662.92 19176.80 19873.98 20286.74 19680.87 194
testgi71.92 19174.20 18669.27 19584.58 15583.06 18673.40 19874.39 16664.04 19046.17 20368.90 12357.15 18748.89 20484.07 17083.08 17488.18 18879.09 199
Anonymous2023120670.80 19270.59 19671.04 19281.60 18882.49 19374.64 19675.87 16164.17 18949.27 19944.85 20453.59 20254.68 19983.07 17582.34 17990.17 17783.65 182
gm-plane-assit70.29 19370.65 19569.88 19485.03 14978.50 20458.41 21165.47 19950.39 21140.88 20949.60 19750.11 20575.14 14991.43 6589.78 8894.32 11184.73 180
EU-MVSNet69.98 19472.30 19167.28 19875.67 20579.39 20273.12 19969.94 18463.59 19142.80 20762.93 15356.71 19055.07 19879.13 19478.55 19087.06 19485.82 175
MVS-HIRNet68.83 19566.39 19971.68 19177.58 19975.52 20666.45 20665.05 20162.16 19462.84 15444.76 20556.60 19171.96 16678.04 19675.06 20086.18 19972.56 205
test20.0368.31 19670.05 19766.28 20082.41 18280.84 19867.35 20576.11 15958.44 20340.80 21053.77 19154.54 19742.28 20783.07 17581.96 18288.73 18677.76 201
N_pmnet66.85 19766.63 19867.11 19978.73 19674.66 20770.53 20271.07 17766.46 17946.54 20251.68 19651.91 20455.48 19774.68 20272.38 20380.29 20874.65 204
MDA-MVSNet-bldmvs66.22 19864.49 20168.24 19661.67 21082.11 19670.07 20376.16 15859.14 20247.94 20154.35 18935.82 21667.33 18264.94 20875.68 19786.30 19879.36 197
MIMVSNet165.00 19966.24 20063.55 20258.41 21380.01 20169.00 20474.03 16855.81 20641.88 20836.81 20949.48 20747.89 20581.32 18482.40 17890.08 17977.88 200
new-patchmatchnet63.80 20063.31 20264.37 20176.49 20175.99 20563.73 20870.99 17857.27 20443.08 20645.86 20243.80 21045.13 20673.20 20370.68 20686.80 19576.34 203
FPMVS63.63 20160.08 20667.78 19780.01 19371.50 20972.88 20069.41 18761.82 19553.11 19045.12 20342.11 21350.86 20266.69 20663.84 20780.41 20769.46 207
pmmvs361.89 20261.74 20462.06 20364.30 20970.83 21064.22 20752.14 21148.78 21244.47 20541.67 20741.70 21463.03 19076.06 20076.02 19684.18 20477.14 202
new_pmnet59.28 20361.47 20556.73 20561.66 21168.29 21159.57 21054.91 20860.83 19734.38 21444.66 20643.65 21149.90 20371.66 20471.56 20579.94 20969.67 206
GG-mvs-BLEND57.56 20482.61 10328.34 2120.22 22090.10 12079.37 1820.14 21879.56 1020.40 22171.25 10783.40 600.30 21886.27 14283.87 16889.59 18183.83 181
PMVScopyleft50.48 1855.81 20551.93 20760.33 20472.90 20749.34 21348.78 21269.51 18643.49 21354.25 18836.26 21041.04 21539.71 20965.07 20760.70 20876.85 21067.58 208
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft49.17 20647.05 20951.65 20659.67 21248.39 21441.98 21563.47 20455.64 20733.33 21514.90 21313.78 22041.34 20869.31 20572.30 20470.11 21155.00 212
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method41.78 20748.10 20834.42 21010.74 21919.78 22044.64 21417.73 21559.83 19938.67 21235.82 21154.41 19834.94 21062.87 20943.13 21259.81 21360.82 210
PMMVS241.68 20844.74 21038.10 20746.97 21652.32 21240.63 21648.08 21235.51 2147.36 22026.86 21224.64 21816.72 21455.24 21159.03 20968.85 21259.59 211
E-PMN31.40 20926.80 21236.78 20851.39 21529.96 21720.20 21854.17 20925.93 21612.75 21814.73 2148.58 22234.10 21227.36 21437.83 21348.07 21643.18 214
MVEpermissive30.17 1930.88 21033.52 21127.80 21323.78 21839.16 21618.69 22046.90 21321.88 21715.39 21714.37 2157.31 22324.41 21341.63 21356.22 21037.64 21854.07 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS30.49 21125.44 21336.39 20951.47 21429.89 21820.17 21954.00 21026.49 21512.02 21913.94 2168.84 22134.37 21125.04 21534.37 21446.29 21739.53 215
testmvs1.03 2121.63 2140.34 2140.09 2210.35 2210.61 2220.16 2171.49 2180.10 2223.15 2170.15 2240.86 2171.32 2161.18 2150.20 2193.76 217
test1230.87 2131.40 2150.25 2150.03 2220.25 2220.35 2230.08 2191.21 2190.05 2232.84 2180.03 2250.89 2160.43 2171.16 2160.13 2203.87 216
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def56.08 186
9.1492.16 16
SR-MVS96.58 2690.99 2292.40 13
Anonymous20240521182.75 10289.58 10092.97 8689.04 8984.13 6778.72 10957.18 18176.64 9783.13 8089.55 9989.92 8593.38 14294.28 76
our_test_381.81 18783.96 18576.61 191
ambc61.92 20370.98 20873.54 20863.64 20960.06 19852.23 19438.44 20819.17 21957.12 19582.33 18275.03 20183.21 20684.89 177
MTAPA92.97 291.03 22
MTMP93.14 190.21 30
Patchmatch-RL test8.55 221
tmp_tt32.73 21143.96 21721.15 21926.71 2178.99 21665.67 18451.39 19656.01 18442.64 21211.76 21556.60 21050.81 21153.55 215
XVS93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
X-MVStestdata93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
abl_690.66 4094.65 4796.27 3792.21 5086.94 4890.23 4186.38 3785.50 4092.96 988.37 4695.40 5795.46 53
mPP-MVS97.06 1288.08 45
NP-MVS87.47 53
Patchmtry85.54 17682.30 16368.23 18965.37 139
DeepMVS_CXcopyleft48.31 21548.03 21326.08 21456.42 20525.77 21647.51 19931.31 21751.30 20148.49 21253.61 21461.52 209