DVP-MVS++ | | | 89.14 1 | 91.86 1 | 85.97 1 | 92.55 2 | 92.38 1 | 91.69 4 | 76.31 3 | 93.31 1 | 83.11 3 | 92.44 4 | 91.18 1 | 81.17 2 | 89.55 2 | 87.93 8 | 91.01 7 | 96.21 1 |
|
SED-MVS | | | 88.85 2 | 91.59 3 | 85.67 2 | 90.54 15 | 92.29 3 | 91.71 3 | 76.40 2 | 92.41 3 | 83.24 2 | 92.50 3 | 90.64 4 | 81.10 3 | 89.53 3 | 88.02 7 | 91.00 8 | 95.73 3 |
|
DVP-MVS |  | | 88.67 3 | 91.62 2 | 85.22 4 | 90.47 16 | 92.36 2 | 90.69 9 | 76.15 4 | 93.08 2 | 82.75 4 | 92.19 6 | 90.71 3 | 80.45 6 | 89.27 6 | 87.91 9 | 90.82 11 | 95.84 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 88.63 4 | 91.29 4 | 85.53 3 | 90.87 8 | 92.20 4 | 91.98 2 | 76.00 6 | 90.55 8 | 82.09 6 | 93.85 1 | 90.75 2 | 81.25 1 | 88.62 8 | 87.59 14 | 90.96 9 | 95.48 4 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MSP-MVS | | | 88.09 5 | 90.84 5 | 84.88 7 | 90.00 23 | 91.80 6 | 91.63 5 | 75.80 7 | 91.99 4 | 81.23 8 | 92.54 2 | 89.18 6 | 80.89 4 | 87.99 15 | 87.91 9 | 89.70 45 | 94.51 7 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 88.00 6 | 90.50 6 | 85.08 5 | 90.95 7 | 91.58 7 | 92.03 1 | 75.53 12 | 91.15 5 | 80.10 14 | 92.27 5 | 88.34 11 | 80.80 5 | 88.00 14 | 86.99 18 | 91.09 5 | 95.16 6 |
|
SMA-MVS |  | | 87.56 7 | 90.17 7 | 84.52 9 | 91.71 3 | 90.57 9 | 90.77 8 | 75.19 13 | 90.67 7 | 80.50 13 | 86.59 17 | 88.86 8 | 78.09 15 | 89.92 1 | 89.41 1 | 90.84 10 | 95.19 5 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SF-MVS | | | 87.47 8 | 89.70 8 | 84.86 8 | 91.26 6 | 91.10 8 | 90.90 6 | 75.65 8 | 89.21 9 | 81.25 7 | 91.12 8 | 88.93 7 | 78.82 10 | 87.42 19 | 86.23 30 | 91.28 3 | 93.90 13 |
|
HPM-MVS++ |  | | 87.09 9 | 88.92 13 | 84.95 6 | 92.61 1 | 87.91 40 | 90.23 15 | 76.06 5 | 88.85 12 | 81.20 9 | 87.33 13 | 87.93 12 | 79.47 9 | 88.59 9 | 88.23 5 | 90.15 34 | 93.60 20 |
|
SD-MVS | | | 86.96 10 | 89.45 9 | 84.05 14 | 90.13 19 | 89.23 22 | 89.77 18 | 74.59 14 | 89.17 10 | 80.70 10 | 89.93 11 | 89.67 5 | 78.47 12 | 87.57 18 | 86.79 22 | 90.67 17 | 93.76 16 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 86.88 11 | 89.23 10 | 84.14 12 | 89.78 26 | 88.67 30 | 90.59 10 | 73.46 26 | 88.99 11 | 80.52 12 | 91.26 7 | 88.65 9 | 79.91 8 | 86.96 29 | 86.22 31 | 90.59 19 | 93.83 14 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APD-MVS |  | | 86.84 12 | 88.91 14 | 84.41 10 | 90.66 11 | 90.10 12 | 90.78 7 | 75.64 9 | 87.38 16 | 78.72 18 | 90.68 10 | 86.82 17 | 80.15 7 | 87.13 24 | 86.45 28 | 90.51 21 | 93.83 14 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 86.52 13 | 89.01 11 | 83.62 16 | 90.28 18 | 90.09 13 | 90.32 13 | 74.05 19 | 88.32 13 | 79.74 15 | 87.04 15 | 85.59 23 | 76.97 28 | 89.35 4 | 88.44 4 | 90.35 30 | 94.27 11 |
|
CNVR-MVS | | | 86.36 14 | 88.19 17 | 84.23 11 | 91.33 5 | 89.84 14 | 90.34 11 | 75.56 10 | 87.36 17 | 78.97 17 | 81.19 28 | 86.76 18 | 78.74 11 | 89.30 5 | 88.58 2 | 90.45 27 | 94.33 10 |
|
HFP-MVS | | | 86.15 15 | 87.95 18 | 84.06 13 | 90.80 9 | 89.20 23 | 89.62 19 | 74.26 16 | 87.52 14 | 80.63 11 | 86.82 16 | 84.19 28 | 78.22 14 | 87.58 17 | 87.19 16 | 90.81 12 | 93.13 24 |
|
SteuartSystems-ACMMP | | | 85.99 16 | 88.31 16 | 83.27 20 | 90.73 10 | 89.84 14 | 90.27 14 | 74.31 15 | 84.56 29 | 75.88 30 | 87.32 14 | 85.04 24 | 77.31 23 | 89.01 7 | 88.46 3 | 91.14 4 | 93.96 12 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMPR | | | 85.52 17 | 87.53 20 | 83.17 21 | 90.13 19 | 89.27 20 | 89.30 20 | 73.97 20 | 86.89 19 | 77.14 24 | 86.09 18 | 83.18 32 | 77.74 19 | 87.42 19 | 87.20 15 | 90.77 13 | 92.63 25 |
|
MP-MVS |  | | 85.50 18 | 87.40 21 | 83.28 19 | 90.65 12 | 89.51 19 | 89.16 23 | 74.11 18 | 83.70 33 | 78.06 21 | 85.54 20 | 84.89 27 | 77.31 23 | 87.40 21 | 87.14 17 | 90.41 28 | 93.65 19 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
NCCC | | | 85.34 19 | 86.59 24 | 83.88 15 | 91.48 4 | 88.88 25 | 89.79 17 | 75.54 11 | 86.67 20 | 77.94 22 | 76.55 34 | 84.99 25 | 78.07 16 | 88.04 12 | 87.68 12 | 90.46 26 | 93.31 21 |
|
DeepPCF-MVS | | 79.04 1 | 85.30 20 | 88.93 12 | 81.06 31 | 88.77 36 | 90.48 10 | 85.46 46 | 73.08 28 | 90.97 6 | 73.77 37 | 84.81 22 | 85.95 20 | 77.43 22 | 88.22 11 | 87.73 11 | 87.85 84 | 94.34 9 |
|
CSCG | | | 85.28 21 | 87.68 19 | 82.49 24 | 89.95 24 | 91.99 5 | 88.82 24 | 71.20 37 | 86.41 21 | 79.63 16 | 79.26 29 | 88.36 10 | 73.94 41 | 86.64 31 | 86.67 25 | 91.40 2 | 94.41 8 |
|
MCST-MVS | | | 85.13 22 | 86.62 23 | 83.39 17 | 90.55 14 | 89.82 16 | 89.29 21 | 73.89 22 | 84.38 30 | 76.03 29 | 79.01 31 | 85.90 21 | 78.47 12 | 87.81 16 | 86.11 33 | 92.11 1 | 93.29 22 |
|
TSAR-MVS + ACMM | | | 85.10 23 | 88.81 15 | 80.77 34 | 89.55 29 | 88.53 32 | 88.59 27 | 72.55 30 | 87.39 15 | 71.90 42 | 90.95 9 | 87.55 13 | 74.57 36 | 87.08 26 | 86.54 26 | 87.47 91 | 93.67 17 |
|
train_agg | | | 84.86 24 | 87.21 22 | 82.11 26 | 90.59 13 | 85.47 54 | 89.81 16 | 73.55 25 | 83.95 31 | 73.30 38 | 89.84 12 | 87.23 15 | 75.61 33 | 86.47 33 | 85.46 38 | 89.78 40 | 92.06 31 |
|
DeepC-MVS | | 78.47 2 | 84.81 25 | 86.03 28 | 83.37 18 | 89.29 32 | 90.38 11 | 88.61 26 | 76.50 1 | 86.25 22 | 77.22 23 | 75.12 40 | 80.28 45 | 77.59 21 | 88.39 10 | 88.17 6 | 91.02 6 | 93.66 18 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CP-MVS | | | 84.74 26 | 86.43 26 | 82.77 23 | 89.48 30 | 88.13 39 | 88.64 25 | 73.93 21 | 84.92 24 | 76.77 26 | 81.94 26 | 83.50 30 | 77.29 25 | 86.92 30 | 86.49 27 | 90.49 22 | 93.14 23 |
|
PGM-MVS | | | 84.42 27 | 86.29 27 | 82.23 25 | 90.04 22 | 88.82 26 | 89.23 22 | 71.74 35 | 82.82 36 | 74.61 33 | 84.41 23 | 82.09 35 | 77.03 27 | 87.13 24 | 86.73 24 | 90.73 15 | 92.06 31 |
|
DeepC-MVS_fast | | 78.24 3 | 84.27 28 | 85.50 30 | 82.85 22 | 90.46 17 | 89.24 21 | 87.83 33 | 74.24 17 | 84.88 25 | 76.23 28 | 75.26 39 | 81.05 43 | 77.62 20 | 88.02 13 | 87.62 13 | 90.69 16 | 92.41 27 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 83.69 29 | 86.58 25 | 80.32 35 | 85.14 54 | 86.96 44 | 84.91 50 | 70.25 41 | 84.71 28 | 73.91 36 | 85.16 21 | 85.63 22 | 77.92 17 | 85.44 42 | 85.71 36 | 89.77 41 | 92.45 26 |
|
ACMMP |  | | 83.42 30 | 85.27 31 | 81.26 30 | 88.47 37 | 88.49 33 | 88.31 31 | 72.09 32 | 83.42 34 | 72.77 40 | 82.65 24 | 78.22 50 | 75.18 34 | 86.24 38 | 85.76 35 | 90.74 14 | 92.13 30 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DPM-MVS | | | 83.30 31 | 84.33 34 | 82.11 26 | 89.56 28 | 88.49 33 | 90.33 12 | 73.24 27 | 83.85 32 | 76.46 27 | 72.43 50 | 82.65 33 | 73.02 48 | 86.37 35 | 86.91 19 | 90.03 36 | 89.62 51 |
|
X-MVS | | | 83.23 32 | 85.20 32 | 80.92 33 | 89.71 27 | 88.68 27 | 88.21 32 | 73.60 23 | 82.57 37 | 71.81 45 | 77.07 32 | 81.92 37 | 71.72 58 | 86.98 28 | 86.86 20 | 90.47 23 | 92.36 28 |
|
CDPH-MVS | | | 82.64 33 | 85.03 33 | 79.86 38 | 89.41 31 | 88.31 36 | 88.32 30 | 71.84 34 | 80.11 43 | 67.47 64 | 82.09 25 | 81.44 41 | 71.85 56 | 85.89 41 | 86.15 32 | 90.24 32 | 91.25 37 |
|
3Dnovator+ | | 75.73 4 | 82.40 34 | 82.76 39 | 81.97 28 | 88.02 38 | 89.67 17 | 86.60 37 | 71.48 36 | 81.28 41 | 78.18 20 | 64.78 85 | 77.96 52 | 77.13 26 | 87.32 22 | 86.83 21 | 90.41 28 | 91.48 35 |
|
PHI-MVS | | | 82.36 35 | 85.89 29 | 78.24 47 | 86.40 47 | 89.52 18 | 85.52 44 | 69.52 48 | 82.38 39 | 65.67 70 | 81.35 27 | 82.36 34 | 73.07 47 | 87.31 23 | 86.76 23 | 89.24 52 | 91.56 34 |
|
MSLP-MVS++ | | | 82.09 36 | 82.66 40 | 81.42 29 | 87.03 43 | 87.22 43 | 85.82 42 | 70.04 42 | 80.30 42 | 78.66 19 | 68.67 70 | 81.04 44 | 77.81 18 | 85.19 46 | 84.88 43 | 89.19 55 | 91.31 36 |
|
CPTT-MVS | | | 81.77 37 | 83.10 38 | 80.21 36 | 85.93 50 | 86.45 49 | 87.72 34 | 70.98 38 | 82.54 38 | 71.53 48 | 74.23 45 | 81.49 40 | 76.31 31 | 82.85 69 | 81.87 65 | 88.79 63 | 92.26 29 |
|
MVS_0304 | | | 81.73 38 | 83.86 35 | 79.26 41 | 86.22 49 | 89.18 24 | 86.41 38 | 67.15 64 | 75.28 53 | 70.75 52 | 74.59 42 | 83.49 31 | 74.42 38 | 87.05 27 | 86.34 29 | 90.58 20 | 91.08 39 |
|
CANet | | | 81.62 39 | 83.41 36 | 79.53 40 | 87.06 42 | 88.59 31 | 85.47 45 | 67.96 57 | 76.59 51 | 74.05 34 | 74.69 41 | 81.98 36 | 72.98 49 | 86.14 39 | 85.47 37 | 89.68 46 | 90.42 45 |
|
HQP-MVS | | | 81.19 40 | 83.27 37 | 78.76 44 | 87.40 41 | 85.45 55 | 86.95 35 | 70.47 40 | 81.31 40 | 66.91 67 | 79.24 30 | 76.63 54 | 71.67 59 | 84.43 54 | 83.78 51 | 89.19 55 | 92.05 33 |
|
OMC-MVS | | | 80.26 41 | 82.59 41 | 77.54 50 | 83.04 62 | 85.54 53 | 83.25 56 | 65.05 79 | 87.32 18 | 72.42 41 | 72.04 52 | 78.97 47 | 73.30 45 | 83.86 57 | 81.60 69 | 88.15 73 | 88.83 56 |
|
MVS_111021_HR | | | 80.13 42 | 81.46 44 | 78.58 45 | 85.77 51 | 85.17 58 | 83.45 55 | 69.28 49 | 74.08 60 | 70.31 54 | 74.31 44 | 75.26 61 | 73.13 46 | 86.46 34 | 85.15 41 | 89.53 47 | 89.81 49 |
|
LGP-MVS_train | | | 79.83 43 | 81.22 47 | 78.22 48 | 86.28 48 | 85.36 57 | 86.76 36 | 69.59 46 | 77.34 48 | 65.14 73 | 75.68 36 | 70.79 79 | 71.37 62 | 84.60 50 | 84.01 46 | 90.18 33 | 90.74 42 |
|
ACMP | | 73.23 7 | 79.79 44 | 80.53 52 | 78.94 42 | 85.61 52 | 85.68 52 | 85.61 43 | 69.59 46 | 77.33 49 | 71.00 51 | 74.45 43 | 69.16 90 | 71.88 54 | 83.15 66 | 83.37 54 | 89.92 37 | 90.57 44 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
3Dnovator | | 73.76 5 | 79.75 45 | 80.52 53 | 78.84 43 | 84.94 59 | 87.35 41 | 84.43 52 | 65.54 75 | 78.29 47 | 73.97 35 | 63.00 93 | 75.62 60 | 74.07 40 | 85.00 47 | 85.34 39 | 90.11 35 | 89.04 54 |
|
AdaColmap |  | | 79.74 46 | 78.62 62 | 81.05 32 | 89.23 33 | 86.06 51 | 84.95 49 | 71.96 33 | 79.39 46 | 75.51 31 | 63.16 91 | 68.84 95 | 76.51 29 | 83.55 61 | 82.85 58 | 88.13 74 | 86.46 76 |
|
OPM-MVS | | | 79.68 47 | 79.28 60 | 80.15 37 | 87.99 39 | 86.77 46 | 88.52 28 | 72.72 29 | 64.55 98 | 67.65 63 | 67.87 74 | 74.33 65 | 74.31 39 | 86.37 35 | 85.25 40 | 89.73 44 | 89.81 49 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
EC-MVSNet | | | 79.44 48 | 81.35 45 | 77.22 52 | 82.95 63 | 84.67 62 | 81.31 60 | 63.65 92 | 72.47 67 | 68.75 57 | 73.15 47 | 78.33 49 | 75.99 32 | 86.06 40 | 83.96 48 | 90.67 17 | 90.79 41 |
|
PCF-MVS | | 73.28 6 | 79.42 49 | 80.41 54 | 78.26 46 | 84.88 60 | 88.17 37 | 86.08 39 | 69.85 43 | 75.23 55 | 68.43 58 | 68.03 73 | 78.38 48 | 71.76 57 | 81.26 87 | 80.65 87 | 88.56 66 | 91.18 38 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CLD-MVS | | | 79.35 50 | 81.23 46 | 77.16 53 | 85.01 57 | 86.92 45 | 85.87 41 | 60.89 131 | 80.07 45 | 75.35 32 | 72.96 48 | 73.21 69 | 68.43 78 | 85.41 44 | 84.63 44 | 87.41 92 | 85.44 87 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CS-MVS | | | 79.22 51 | 81.11 48 | 77.01 54 | 81.36 75 | 84.03 65 | 80.35 66 | 63.25 96 | 73.43 64 | 70.37 53 | 74.10 46 | 76.03 58 | 76.40 30 | 86.32 37 | 83.95 49 | 90.34 31 | 89.93 47 |
|
MAR-MVS | | | 79.21 52 | 80.32 55 | 77.92 49 | 87.46 40 | 88.15 38 | 83.95 53 | 67.48 63 | 74.28 57 | 68.25 59 | 64.70 86 | 77.04 53 | 72.17 52 | 85.42 43 | 85.00 42 | 88.22 70 | 87.62 65 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
canonicalmvs | | | 79.16 53 | 82.37 42 | 75.41 63 | 82.33 69 | 86.38 50 | 80.80 63 | 63.18 98 | 82.90 35 | 67.34 65 | 72.79 49 | 76.07 57 | 69.62 69 | 83.46 64 | 84.41 45 | 89.20 54 | 90.60 43 |
|
DELS-MVS | | | 79.15 54 | 81.07 49 | 76.91 55 | 83.54 61 | 87.31 42 | 84.45 51 | 64.92 80 | 69.98 69 | 69.34 56 | 71.62 54 | 76.26 55 | 69.84 68 | 86.57 32 | 85.90 34 | 89.39 49 | 89.88 48 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
EPNet | | | 79.08 55 | 80.62 51 | 77.28 51 | 88.90 35 | 83.17 80 | 83.65 54 | 72.41 31 | 74.41 56 | 67.15 66 | 76.78 33 | 74.37 64 | 64.43 98 | 83.70 60 | 83.69 52 | 87.15 95 | 88.19 60 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMM | | 72.26 8 | 78.86 56 | 78.13 64 | 79.71 39 | 86.89 44 | 83.40 75 | 86.02 40 | 70.50 39 | 75.28 53 | 71.49 49 | 63.01 92 | 69.26 89 | 73.57 43 | 84.11 56 | 83.98 47 | 89.76 42 | 87.84 63 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CS-MVS-test | | | 78.79 57 | 80.72 50 | 76.53 57 | 81.11 80 | 83.88 68 | 79.69 75 | 63.72 91 | 73.80 61 | 69.95 55 | 75.40 38 | 76.17 56 | 74.85 35 | 84.50 53 | 82.78 59 | 89.87 39 | 88.54 58 |
|
QAPM | | | 78.47 58 | 80.22 56 | 76.43 58 | 85.03 56 | 86.75 47 | 80.62 65 | 66.00 72 | 73.77 62 | 65.35 72 | 65.54 81 | 78.02 51 | 72.69 50 | 83.71 59 | 83.36 55 | 88.87 61 | 90.41 46 |
|
TSAR-MVS + COLMAP | | | 78.34 59 | 81.64 43 | 74.48 72 | 80.13 92 | 85.01 59 | 81.73 58 | 65.93 74 | 84.75 27 | 61.68 84 | 85.79 19 | 66.27 105 | 71.39 61 | 82.91 68 | 80.78 78 | 86.01 132 | 85.98 78 |
|
MVS_111021_LR | | | 78.13 60 | 79.85 58 | 76.13 59 | 81.12 79 | 81.50 90 | 80.28 67 | 65.25 77 | 76.09 52 | 71.32 50 | 76.49 35 | 72.87 71 | 72.21 51 | 82.79 70 | 81.29 71 | 86.59 117 | 87.91 62 |
|
casdiffmvs_mvg |  | | 77.79 61 | 79.55 59 | 75.73 61 | 81.56 72 | 84.70 61 | 82.12 57 | 64.26 87 | 74.27 58 | 67.93 61 | 70.83 59 | 74.66 63 | 69.19 73 | 83.33 65 | 81.94 64 | 89.29 51 | 87.14 70 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
TAPA-MVS | | 71.42 9 | 77.69 62 | 80.05 57 | 74.94 66 | 80.68 84 | 84.52 63 | 81.36 59 | 63.14 99 | 84.77 26 | 64.82 75 | 68.72 68 | 75.91 59 | 71.86 55 | 81.62 76 | 79.55 104 | 87.80 86 | 85.24 90 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ETV-MVS | | | 77.32 63 | 78.81 61 | 75.58 62 | 82.24 70 | 83.64 73 | 79.98 68 | 64.02 88 | 69.64 74 | 63.90 78 | 70.89 58 | 69.94 85 | 73.41 44 | 85.39 45 | 83.91 50 | 89.92 37 | 88.31 59 |
|
CNLPA | | | 77.20 64 | 77.54 68 | 76.80 56 | 82.63 65 | 84.31 64 | 79.77 72 | 64.64 81 | 85.17 23 | 73.18 39 | 56.37 129 | 69.81 86 | 74.53 37 | 81.12 90 | 78.69 115 | 86.04 131 | 87.29 68 |
|
casdiffmvs |  | | 76.76 65 | 78.46 63 | 74.77 68 | 80.32 89 | 83.73 72 | 80.65 64 | 63.24 97 | 73.58 63 | 66.11 69 | 69.39 65 | 74.09 66 | 69.49 71 | 82.52 72 | 79.35 109 | 88.84 62 | 86.52 75 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PVSNet_Blended_VisFu | | | 76.57 66 | 77.90 65 | 75.02 65 | 80.56 85 | 86.58 48 | 79.24 79 | 66.18 69 | 64.81 95 | 68.18 60 | 65.61 79 | 71.45 74 | 67.05 82 | 84.16 55 | 81.80 66 | 88.90 59 | 90.92 40 |
|
PVSNet_BlendedMVS | | | 76.21 67 | 77.52 69 | 74.69 69 | 79.46 95 | 83.79 70 | 77.50 97 | 64.34 85 | 69.88 70 | 71.88 43 | 68.54 71 | 70.42 81 | 67.05 82 | 83.48 62 | 79.63 100 | 87.89 82 | 86.87 72 |
|
PVSNet_Blended | | | 76.21 67 | 77.52 69 | 74.69 69 | 79.46 95 | 83.79 70 | 77.50 97 | 64.34 85 | 69.88 70 | 71.88 43 | 68.54 71 | 70.42 81 | 67.05 82 | 83.48 62 | 79.63 100 | 87.89 82 | 86.87 72 |
|
OpenMVS |  | 70.44 10 | 76.15 69 | 76.82 77 | 75.37 64 | 85.01 57 | 84.79 60 | 78.99 83 | 62.07 120 | 71.27 68 | 67.88 62 | 57.91 122 | 72.36 72 | 70.15 67 | 82.23 74 | 81.41 70 | 88.12 75 | 87.78 64 |
|
PLC |  | 68.99 11 | 75.68 70 | 75.31 82 | 76.12 60 | 82.94 64 | 81.26 94 | 79.94 70 | 66.10 70 | 77.15 50 | 66.86 68 | 59.13 112 | 68.53 97 | 73.73 42 | 80.38 100 | 79.04 110 | 87.13 99 | 81.68 127 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
EIA-MVS | | | 75.64 71 | 76.60 78 | 74.53 71 | 82.43 68 | 83.84 69 | 78.32 90 | 62.28 119 | 65.96 88 | 63.28 82 | 68.95 66 | 67.54 100 | 71.61 60 | 82.55 71 | 81.63 68 | 89.24 52 | 85.72 81 |
|
MVS_Test | | | 75.37 72 | 77.13 75 | 73.31 77 | 79.07 98 | 81.32 93 | 79.98 68 | 60.12 142 | 69.72 72 | 64.11 77 | 70.53 60 | 73.22 68 | 68.90 74 | 80.14 107 | 79.48 106 | 87.67 88 | 85.50 85 |
|
Effi-MVS+ | | | 75.28 73 | 76.20 79 | 74.20 73 | 81.15 78 | 83.24 78 | 81.11 61 | 63.13 100 | 66.37 84 | 60.27 88 | 64.30 89 | 68.88 94 | 70.93 66 | 81.56 78 | 81.69 67 | 88.61 64 | 87.35 66 |
|
DI_MVS_plusplus_trai | | | 75.13 74 | 76.12 80 | 73.96 74 | 78.18 104 | 81.55 88 | 80.97 62 | 62.54 114 | 68.59 75 | 65.13 74 | 61.43 96 | 74.81 62 | 69.32 72 | 81.01 92 | 79.59 102 | 87.64 89 | 85.89 79 |
|
diffmvs |  | | 74.86 75 | 77.37 72 | 71.93 81 | 75.62 127 | 80.35 106 | 79.42 78 | 60.15 141 | 72.81 66 | 64.63 76 | 71.51 55 | 73.11 70 | 66.53 92 | 79.02 121 | 77.98 123 | 85.25 146 | 86.83 74 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
UA-Net | | | 74.47 76 | 77.80 66 | 70.59 91 | 85.33 53 | 85.40 56 | 73.54 143 | 65.98 73 | 60.65 129 | 56.00 109 | 72.11 51 | 79.15 46 | 54.63 168 | 83.13 67 | 82.25 62 | 88.04 78 | 81.92 125 |
|
GeoE | | | 74.23 77 | 74.84 85 | 73.52 75 | 80.42 88 | 81.46 91 | 79.77 72 | 61.06 129 | 67.23 81 | 63.67 79 | 59.56 109 | 68.74 96 | 67.90 79 | 80.25 105 | 79.37 108 | 88.31 67 | 87.26 69 |
|
LS3D | | | 74.08 78 | 73.39 93 | 74.88 67 | 85.05 55 | 82.62 84 | 79.71 74 | 68.66 52 | 72.82 65 | 58.80 92 | 57.61 123 | 61.31 120 | 71.07 65 | 80.32 101 | 78.87 114 | 86.00 133 | 80.18 142 |
|
EPP-MVSNet | | | 74.00 79 | 77.41 71 | 70.02 99 | 80.53 86 | 83.91 67 | 74.99 119 | 62.68 112 | 65.06 93 | 49.77 145 | 68.68 69 | 72.09 73 | 63.06 106 | 82.49 73 | 80.73 79 | 89.12 57 | 88.91 55 |
|
FA-MVS(training) | | | 73.66 80 | 74.95 84 | 72.15 80 | 78.63 102 | 80.46 104 | 78.92 84 | 54.79 170 | 69.71 73 | 65.37 71 | 62.04 94 | 66.89 103 | 67.10 81 | 80.72 94 | 79.87 97 | 88.10 77 | 84.97 95 |
|
DCV-MVSNet | | | 73.65 81 | 75.78 81 | 71.16 85 | 80.19 90 | 79.27 115 | 77.45 99 | 61.68 126 | 66.73 83 | 58.72 93 | 65.31 82 | 69.96 84 | 62.19 111 | 81.29 86 | 80.97 75 | 86.74 110 | 86.91 71 |
|
IS_MVSNet | | | 73.33 82 | 77.34 73 | 68.65 114 | 81.29 76 | 83.47 74 | 74.45 125 | 63.58 94 | 65.75 90 | 48.49 150 | 67.11 78 | 70.61 80 | 54.63 168 | 84.51 52 | 83.58 53 | 89.48 48 | 86.34 77 |
|
CANet_DTU | | | 73.29 83 | 76.96 76 | 69.00 111 | 77.04 116 | 82.06 86 | 79.49 77 | 56.30 167 | 67.85 79 | 53.29 125 | 71.12 57 | 70.37 83 | 61.81 120 | 81.59 77 | 80.96 76 | 86.09 126 | 84.73 99 |
|
Fast-Effi-MVS+ | | | 73.11 84 | 73.66 90 | 72.48 79 | 77.72 110 | 80.88 100 | 78.55 87 | 58.83 157 | 65.19 92 | 60.36 87 | 59.98 106 | 62.42 117 | 71.22 64 | 81.66 75 | 80.61 89 | 88.20 71 | 84.88 98 |
|
UGNet | | | 72.78 85 | 77.67 67 | 67.07 136 | 71.65 165 | 83.24 78 | 75.20 113 | 63.62 93 | 64.93 94 | 56.72 105 | 71.82 53 | 73.30 67 | 49.02 181 | 81.02 91 | 80.70 85 | 86.22 123 | 88.67 57 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Vis-MVSNet |  | | 72.77 86 | 77.20 74 | 67.59 126 | 74.19 141 | 84.01 66 | 76.61 107 | 61.69 125 | 60.62 130 | 50.61 140 | 70.25 62 | 71.31 77 | 55.57 163 | 83.85 58 | 82.28 61 | 86.90 104 | 88.08 61 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
FC-MVSNet-train | | | 72.60 87 | 75.07 83 | 69.71 102 | 81.10 81 | 78.79 121 | 73.74 142 | 65.23 78 | 66.10 87 | 53.34 124 | 70.36 61 | 63.40 114 | 56.92 152 | 81.44 80 | 80.96 76 | 87.93 80 | 84.46 103 |
|
ET-MVSNet_ETH3D | | | 72.46 88 | 74.19 87 | 70.44 92 | 62.50 200 | 81.17 95 | 79.90 71 | 62.46 117 | 64.52 99 | 57.52 101 | 71.49 56 | 59.15 130 | 72.08 53 | 78.61 126 | 81.11 73 | 88.16 72 | 83.29 113 |
|
ECVR-MVS |  | | 72.20 89 | 73.91 89 | 70.20 96 | 81.49 73 | 83.27 76 | 75.74 108 | 67.59 61 | 68.19 77 | 49.31 148 | 55.77 131 | 62.00 118 | 58.82 134 | 84.76 48 | 82.94 56 | 88.27 68 | 80.41 140 |
|
MVSTER | | | 72.06 90 | 74.24 86 | 69.51 105 | 70.39 176 | 75.97 151 | 76.91 103 | 57.36 164 | 64.64 97 | 61.39 86 | 68.86 67 | 63.76 112 | 63.46 103 | 81.44 80 | 79.70 99 | 87.56 90 | 85.31 89 |
|
Anonymous20231211 | | | 71.90 91 | 72.48 102 | 71.21 84 | 80.14 91 | 81.53 89 | 76.92 102 | 62.89 103 | 64.46 100 | 58.94 90 | 43.80 192 | 70.98 78 | 62.22 110 | 80.70 95 | 80.19 94 | 86.18 124 | 85.73 80 |
|
Effi-MVS+-dtu | | | 71.82 92 | 71.86 107 | 71.78 82 | 78.77 99 | 80.47 103 | 78.55 87 | 61.67 127 | 60.68 128 | 55.49 110 | 58.48 116 | 65.48 107 | 68.85 75 | 76.92 143 | 75.55 155 | 87.35 93 | 85.46 86 |
|
test2506 | | | 71.72 93 | 72.95 97 | 70.29 94 | 81.49 73 | 83.27 76 | 75.74 108 | 67.59 61 | 68.19 77 | 49.81 144 | 61.15 97 | 49.73 191 | 58.82 134 | 84.76 48 | 82.94 56 | 88.27 68 | 80.63 136 |
|
IterMVS-LS | | | 71.69 94 | 72.82 100 | 70.37 93 | 77.54 112 | 76.34 148 | 75.13 117 | 60.46 137 | 61.53 123 | 57.57 100 | 64.89 84 | 67.33 101 | 66.04 95 | 77.09 142 | 77.37 136 | 85.48 142 | 85.18 91 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test1111 | | | 71.56 95 | 73.44 92 | 69.38 107 | 81.16 77 | 82.95 81 | 74.99 119 | 67.68 59 | 66.89 82 | 46.33 164 | 55.19 137 | 60.91 121 | 57.99 142 | 84.59 51 | 82.70 60 | 88.12 75 | 80.85 133 |
|
MSDG | | | 71.52 96 | 69.87 119 | 73.44 76 | 82.21 71 | 79.35 114 | 79.52 76 | 64.59 82 | 66.15 86 | 61.87 83 | 53.21 156 | 56.09 146 | 65.85 96 | 78.94 122 | 78.50 117 | 86.60 116 | 76.85 165 |
|
thisisatest0530 | | | 71.48 97 | 73.01 96 | 69.70 103 | 73.83 146 | 78.62 123 | 74.53 124 | 59.12 151 | 64.13 101 | 58.63 94 | 64.60 87 | 58.63 132 | 64.27 99 | 80.28 103 | 80.17 95 | 87.82 85 | 84.64 101 |
|
tttt0517 | | | 71.41 98 | 72.95 97 | 69.60 104 | 73.70 148 | 78.70 122 | 74.42 128 | 59.12 151 | 63.89 105 | 58.35 97 | 64.56 88 | 58.39 134 | 64.27 99 | 80.29 102 | 80.17 95 | 87.74 87 | 84.69 100 |
|
ACMH+ | | 66.54 13 | 71.36 99 | 70.09 117 | 72.85 78 | 82.59 66 | 81.13 96 | 78.56 86 | 68.04 55 | 61.55 122 | 52.52 131 | 51.50 171 | 54.14 156 | 68.56 77 | 78.85 123 | 79.50 105 | 86.82 107 | 83.94 107 |
|
IB-MVS | | 66.94 12 | 71.21 100 | 71.66 108 | 70.68 88 | 79.18 97 | 82.83 83 | 72.61 149 | 61.77 124 | 59.66 134 | 63.44 81 | 53.26 154 | 59.65 128 | 59.16 133 | 76.78 146 | 82.11 63 | 87.90 81 | 87.33 67 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
GBi-Net | | | 70.78 101 | 73.37 94 | 67.76 119 | 72.95 153 | 78.00 128 | 75.15 114 | 62.72 107 | 64.13 101 | 51.44 133 | 58.37 117 | 69.02 91 | 57.59 144 | 81.33 83 | 80.72 80 | 86.70 111 | 82.02 119 |
|
test1 | | | 70.78 101 | 73.37 94 | 67.76 119 | 72.95 153 | 78.00 128 | 75.15 114 | 62.72 107 | 64.13 101 | 51.44 133 | 58.37 117 | 69.02 91 | 57.59 144 | 81.33 83 | 80.72 80 | 86.70 111 | 82.02 119 |
|
ACMH | | 65.37 14 | 70.71 103 | 70.00 118 | 71.54 83 | 82.51 67 | 82.47 85 | 77.78 94 | 68.13 54 | 56.19 157 | 46.06 167 | 54.30 141 | 51.20 183 | 68.68 76 | 80.66 96 | 80.72 80 | 86.07 127 | 84.45 104 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UniMVSNet_NR-MVSNet | | | 70.59 104 | 72.19 103 | 68.72 112 | 77.72 110 | 80.72 101 | 73.81 140 | 69.65 45 | 61.99 118 | 43.23 177 | 60.54 102 | 57.50 137 | 58.57 136 | 79.56 113 | 81.07 74 | 89.34 50 | 83.97 105 |
|
FMVSNet3 | | | 70.49 105 | 72.90 99 | 67.67 124 | 72.88 156 | 77.98 131 | 74.96 122 | 62.72 107 | 64.13 101 | 51.44 133 | 58.37 117 | 69.02 91 | 57.43 147 | 79.43 116 | 79.57 103 | 86.59 117 | 81.81 126 |
|
baseline | | | 70.45 106 | 74.09 88 | 66.20 145 | 70.95 173 | 75.67 152 | 74.26 132 | 53.57 172 | 68.33 76 | 58.42 95 | 69.87 63 | 71.45 74 | 61.55 121 | 74.84 157 | 74.76 160 | 78.42 179 | 83.72 110 |
|
FMVSNet2 | | | 70.39 107 | 72.67 101 | 67.72 122 | 72.95 153 | 78.00 128 | 75.15 114 | 62.69 111 | 63.29 109 | 51.25 137 | 55.64 132 | 68.49 98 | 57.59 144 | 80.91 93 | 80.35 92 | 86.70 111 | 82.02 119 |
|
v8 | | | 70.23 108 | 69.86 120 | 70.67 89 | 74.69 136 | 79.82 110 | 78.79 85 | 59.18 150 | 58.80 138 | 58.20 98 | 55.00 138 | 57.33 138 | 66.31 94 | 77.51 136 | 76.71 145 | 86.82 107 | 83.88 108 |
|
v10 | | | 70.22 109 | 69.76 122 | 70.74 86 | 74.79 135 | 80.30 108 | 79.22 80 | 59.81 145 | 57.71 145 | 56.58 107 | 54.22 147 | 55.31 149 | 66.95 85 | 78.28 129 | 77.47 133 | 87.12 101 | 85.07 93 |
|
MS-PatchMatch | | | 70.17 110 | 70.49 114 | 69.79 101 | 80.98 82 | 77.97 133 | 77.51 96 | 58.95 154 | 62.33 116 | 55.22 113 | 53.14 157 | 65.90 106 | 62.03 114 | 79.08 120 | 77.11 140 | 84.08 157 | 77.91 157 |
|
baseline1 | | | 70.10 111 | 72.17 104 | 67.69 123 | 79.74 93 | 76.80 143 | 73.91 136 | 64.38 84 | 62.74 114 | 48.30 152 | 64.94 83 | 64.08 111 | 54.17 170 | 81.46 79 | 78.92 112 | 85.66 139 | 76.22 167 |
|
v2v482 | | | 70.05 112 | 69.46 126 | 70.74 86 | 74.62 137 | 80.32 107 | 79.00 82 | 60.62 134 | 57.41 147 | 56.89 104 | 55.43 136 | 55.14 151 | 66.39 93 | 77.25 139 | 77.14 139 | 86.90 104 | 83.57 112 |
|
v1144 | | | 69.93 113 | 69.36 127 | 70.61 90 | 74.89 134 | 80.93 97 | 79.11 81 | 60.64 133 | 55.97 159 | 55.31 112 | 53.85 149 | 54.14 156 | 66.54 91 | 78.10 131 | 77.44 134 | 87.14 98 | 85.09 92 |
|
baseline2 | | | 69.69 114 | 70.27 116 | 69.01 110 | 75.72 126 | 77.13 141 | 73.82 139 | 58.94 155 | 61.35 124 | 57.09 103 | 61.68 95 | 57.17 140 | 61.99 115 | 78.10 131 | 76.58 147 | 86.48 120 | 79.85 144 |
|
DU-MVS | | | 69.63 115 | 70.91 111 | 68.13 118 | 75.99 121 | 79.54 111 | 73.81 140 | 69.20 50 | 61.20 126 | 43.23 177 | 58.52 114 | 53.50 163 | 58.57 136 | 79.22 118 | 80.45 90 | 87.97 79 | 83.97 105 |
|
UniMVSNet (Re) | | | 69.53 116 | 71.90 106 | 66.76 141 | 76.42 119 | 80.93 97 | 72.59 150 | 68.03 56 | 61.75 121 | 41.68 182 | 58.34 120 | 57.23 139 | 53.27 173 | 79.53 114 | 80.62 88 | 88.57 65 | 84.90 97 |
|
v1192 | | | 69.50 117 | 68.83 133 | 70.29 94 | 74.49 138 | 80.92 99 | 78.55 87 | 60.54 135 | 55.04 165 | 54.21 115 | 52.79 163 | 52.33 176 | 66.92 86 | 77.88 133 | 77.35 137 | 87.04 102 | 85.51 84 |
|
HyFIR lowres test | | | 69.47 118 | 68.94 132 | 70.09 98 | 76.77 118 | 82.93 82 | 76.63 106 | 60.17 140 | 59.00 137 | 54.03 118 | 40.54 201 | 65.23 108 | 67.89 80 | 76.54 149 | 78.30 120 | 85.03 149 | 80.07 143 |
|
v144192 | | | 69.34 119 | 68.68 137 | 70.12 97 | 74.06 142 | 80.54 102 | 78.08 93 | 60.54 135 | 54.99 167 | 54.13 117 | 52.92 161 | 52.80 174 | 66.73 89 | 77.13 141 | 76.72 144 | 87.15 95 | 85.63 82 |
|
TranMVSNet+NR-MVSNet | | | 69.25 120 | 70.81 112 | 67.43 127 | 77.23 115 | 79.46 113 | 73.48 145 | 69.66 44 | 60.43 131 | 39.56 185 | 58.82 113 | 53.48 165 | 55.74 161 | 79.59 111 | 81.21 72 | 88.89 60 | 82.70 115 |
|
CHOSEN 1792x2688 | | | 69.20 121 | 69.26 128 | 69.13 108 | 76.86 117 | 78.93 117 | 77.27 100 | 60.12 142 | 61.86 120 | 54.42 114 | 42.54 196 | 61.61 119 | 66.91 87 | 78.55 127 | 78.14 122 | 79.23 177 | 83.23 114 |
|
v1921920 | | | 69.03 122 | 68.32 141 | 69.86 100 | 74.03 143 | 80.37 105 | 77.55 95 | 60.25 139 | 54.62 169 | 53.59 123 | 52.36 167 | 51.50 182 | 66.75 88 | 77.17 140 | 76.69 146 | 86.96 103 | 85.56 83 |
|
CostFormer | | | 68.92 123 | 69.58 124 | 68.15 117 | 75.98 123 | 76.17 150 | 78.22 92 | 51.86 184 | 65.80 89 | 61.56 85 | 63.57 90 | 62.83 115 | 61.85 118 | 70.40 189 | 68.67 186 | 79.42 175 | 79.62 148 |
|
FMVSNet1 | | | 68.84 124 | 70.47 115 | 66.94 138 | 71.35 170 | 77.68 136 | 74.71 123 | 62.35 118 | 56.93 150 | 49.94 143 | 50.01 177 | 64.59 109 | 57.07 149 | 81.33 83 | 80.72 80 | 86.25 122 | 82.00 122 |
|
NR-MVSNet | | | 68.79 125 | 70.56 113 | 66.71 143 | 77.48 113 | 79.54 111 | 73.52 144 | 69.20 50 | 61.20 126 | 39.76 184 | 58.52 114 | 50.11 189 | 51.37 177 | 80.26 104 | 80.71 84 | 88.97 58 | 83.59 111 |
|
V42 | | | 68.76 126 | 69.63 123 | 67.74 121 | 64.93 196 | 78.01 127 | 78.30 91 | 56.48 166 | 58.65 139 | 56.30 108 | 54.26 145 | 57.03 141 | 64.85 97 | 77.47 137 | 77.01 141 | 85.60 140 | 84.96 96 |
|
v1240 | | | 68.64 127 | 67.89 147 | 69.51 105 | 73.89 145 | 80.26 109 | 76.73 105 | 59.97 144 | 53.43 177 | 53.08 126 | 51.82 170 | 50.84 185 | 66.62 90 | 76.79 145 | 76.77 143 | 86.78 109 | 85.34 88 |
|
Fast-Effi-MVS+-dtu | | | 68.34 128 | 69.47 125 | 67.01 137 | 75.15 130 | 77.97 133 | 77.12 101 | 55.40 169 | 57.87 140 | 46.68 162 | 56.17 130 | 60.39 122 | 62.36 109 | 76.32 150 | 76.25 151 | 85.35 145 | 81.34 129 |
|
GA-MVS | | | 68.14 129 | 69.17 130 | 66.93 139 | 73.77 147 | 78.50 125 | 74.45 125 | 58.28 159 | 55.11 164 | 48.44 151 | 60.08 104 | 53.99 159 | 61.50 122 | 78.43 128 | 77.57 130 | 85.13 147 | 80.54 137 |
|
tfpn200view9 | | | 68.11 130 | 68.72 136 | 67.40 128 | 77.83 108 | 78.93 117 | 74.28 130 | 62.81 104 | 56.64 152 | 46.82 160 | 52.65 164 | 53.47 166 | 56.59 153 | 80.41 97 | 78.43 118 | 86.11 125 | 80.52 138 |
|
EPNet_dtu | | | 68.08 131 | 71.00 110 | 64.67 153 | 79.64 94 | 68.62 185 | 75.05 118 | 63.30 95 | 66.36 85 | 45.27 171 | 67.40 76 | 66.84 104 | 43.64 190 | 75.37 153 | 74.98 159 | 81.15 169 | 77.44 160 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres200 | | | 67.98 132 | 68.55 139 | 67.30 131 | 77.89 107 | 78.86 119 | 74.18 134 | 62.75 105 | 56.35 155 | 46.48 163 | 52.98 160 | 53.54 162 | 56.46 154 | 80.41 97 | 77.97 124 | 86.05 129 | 79.78 146 |
|
thres400 | | | 67.95 133 | 68.62 138 | 67.17 133 | 77.90 105 | 78.59 124 | 74.27 131 | 62.72 107 | 56.34 156 | 45.77 169 | 53.00 159 | 53.35 169 | 56.46 154 | 80.21 106 | 78.43 118 | 85.91 136 | 80.43 139 |
|
pmmvs4 | | | 67.89 134 | 67.39 152 | 68.48 115 | 71.60 167 | 73.57 166 | 74.45 125 | 60.98 130 | 64.65 96 | 57.97 99 | 54.95 139 | 51.73 181 | 61.88 117 | 73.78 163 | 75.11 157 | 83.99 159 | 77.91 157 |
|
v148 | | | 67.85 135 | 67.53 148 | 68.23 116 | 73.25 151 | 77.57 139 | 74.26 132 | 57.36 164 | 55.70 160 | 57.45 102 | 53.53 150 | 55.42 148 | 61.96 116 | 75.23 154 | 73.92 163 | 85.08 148 | 81.32 130 |
|
Vis-MVSNet (Re-imp) | | | 67.83 136 | 73.52 91 | 61.19 169 | 78.37 103 | 76.72 145 | 66.80 175 | 62.96 101 | 65.50 91 | 34.17 196 | 67.19 77 | 69.68 87 | 39.20 199 | 79.39 117 | 79.44 107 | 85.68 138 | 76.73 166 |
|
PatchMatch-RL | | | 67.78 137 | 66.65 157 | 69.10 109 | 73.01 152 | 72.69 169 | 68.49 165 | 61.85 123 | 62.93 112 | 60.20 89 | 56.83 128 | 50.42 187 | 69.52 70 | 75.62 152 | 74.46 162 | 81.51 167 | 73.62 184 |
|
thres600view7 | | | 67.68 138 | 68.43 140 | 66.80 140 | 77.90 105 | 78.86 119 | 73.84 138 | 62.75 105 | 56.07 158 | 44.70 175 | 52.85 162 | 52.81 173 | 55.58 162 | 80.41 97 | 77.77 126 | 86.05 129 | 80.28 141 |
|
COLMAP_ROB |  | 62.73 15 | 67.66 139 | 66.76 156 | 68.70 113 | 80.49 87 | 77.98 131 | 75.29 112 | 62.95 102 | 63.62 107 | 49.96 142 | 47.32 187 | 50.72 186 | 58.57 136 | 76.87 144 | 75.50 156 | 84.94 151 | 75.33 176 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CDS-MVSNet | | | 67.65 140 | 69.83 121 | 65.09 149 | 75.39 129 | 76.55 146 | 74.42 128 | 63.75 90 | 53.55 175 | 49.37 147 | 59.41 110 | 62.45 116 | 44.44 188 | 79.71 110 | 79.82 98 | 83.17 163 | 77.36 161 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
RPSCF | | | 67.64 141 | 71.25 109 | 63.43 162 | 61.86 202 | 70.73 176 | 67.26 170 | 50.86 189 | 74.20 59 | 58.91 91 | 67.49 75 | 69.33 88 | 64.10 101 | 71.41 176 | 68.45 190 | 77.61 181 | 77.17 162 |
|
thres100view900 | | | 67.60 142 | 68.02 143 | 67.12 135 | 77.83 108 | 77.75 135 | 73.90 137 | 62.52 115 | 56.64 152 | 46.82 160 | 52.65 164 | 53.47 166 | 55.92 158 | 78.77 124 | 77.62 129 | 85.72 137 | 79.23 150 |
|
Baseline_NR-MVSNet | | | 67.53 143 | 68.77 135 | 66.09 146 | 75.99 121 | 74.75 162 | 72.43 151 | 68.41 53 | 61.33 125 | 38.33 189 | 51.31 172 | 54.13 158 | 56.03 157 | 79.22 118 | 78.19 121 | 85.37 144 | 82.45 117 |
|
thisisatest0515 | | | 67.40 144 | 68.78 134 | 65.80 147 | 70.02 178 | 75.24 158 | 69.36 162 | 57.37 163 | 54.94 168 | 53.67 122 | 55.53 135 | 54.85 152 | 58.00 141 | 78.19 130 | 78.91 113 | 86.39 121 | 83.78 109 |
|
USDC | | | 67.36 145 | 67.90 146 | 66.74 142 | 71.72 163 | 75.23 159 | 71.58 153 | 60.28 138 | 67.45 80 | 50.54 141 | 60.93 98 | 45.20 204 | 62.08 112 | 76.56 148 | 74.50 161 | 84.25 155 | 75.38 175 |
|
EG-PatchMatch MVS | | | 67.24 146 | 66.94 154 | 67.60 125 | 78.73 100 | 81.35 92 | 73.28 147 | 59.49 147 | 46.89 199 | 51.42 136 | 43.65 193 | 53.49 164 | 55.50 164 | 81.38 82 | 80.66 86 | 87.15 95 | 81.17 131 |
|
dmvs_re | | | 67.22 147 | 67.92 145 | 66.40 144 | 75.94 124 | 70.55 178 | 74.97 121 | 63.87 89 | 57.07 149 | 44.75 173 | 54.29 142 | 56.72 143 | 54.65 167 | 79.53 114 | 77.51 132 | 84.20 156 | 79.78 146 |
|
UniMVSNet_ETH3D | | | 67.18 148 | 67.03 153 | 67.36 129 | 74.44 139 | 78.12 126 | 74.07 135 | 66.38 67 | 52.22 182 | 46.87 159 | 48.64 182 | 51.84 180 | 56.96 150 | 77.29 138 | 78.53 116 | 85.42 143 | 82.59 116 |
|
v7n | | | 67.05 149 | 66.94 154 | 67.17 133 | 72.35 158 | 78.97 116 | 73.26 148 | 58.88 156 | 51.16 188 | 50.90 138 | 48.21 184 | 50.11 189 | 60.96 125 | 77.70 134 | 77.38 135 | 86.68 114 | 85.05 94 |
|
IterMVS-SCA-FT | | | 66.89 150 | 69.22 129 | 64.17 155 | 71.30 171 | 75.64 153 | 71.33 154 | 53.17 176 | 57.63 146 | 49.08 149 | 60.72 100 | 60.05 126 | 63.09 105 | 74.99 156 | 73.92 163 | 77.07 185 | 81.57 128 |
|
IterMVS | | | 66.36 151 | 68.30 142 | 64.10 156 | 69.48 183 | 74.61 163 | 73.41 146 | 50.79 190 | 57.30 148 | 48.28 153 | 60.64 101 | 59.92 127 | 60.85 129 | 74.14 161 | 72.66 170 | 81.80 166 | 78.82 153 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TDRefinement | | | 66.09 152 | 65.03 169 | 67.31 130 | 69.73 180 | 76.75 144 | 75.33 110 | 64.55 83 | 60.28 132 | 49.72 146 | 45.63 190 | 42.83 207 | 60.46 130 | 75.75 151 | 75.95 152 | 84.08 157 | 78.04 156 |
|
pm-mvs1 | | | 65.62 153 | 67.42 150 | 63.53 161 | 73.66 149 | 76.39 147 | 69.66 159 | 60.87 132 | 49.73 192 | 43.97 176 | 51.24 173 | 57.00 142 | 48.16 182 | 79.89 108 | 77.84 125 | 84.85 153 | 79.82 145 |
|
tpm cat1 | | | 65.41 154 | 63.81 177 | 67.28 132 | 75.61 128 | 72.88 168 | 75.32 111 | 52.85 178 | 62.97 111 | 63.66 80 | 53.24 155 | 53.29 171 | 61.83 119 | 65.54 200 | 64.14 202 | 74.43 197 | 74.60 178 |
|
SCA | | | 65.40 155 | 66.58 158 | 64.02 157 | 70.65 174 | 73.37 167 | 67.35 169 | 53.46 174 | 63.66 106 | 54.14 116 | 60.84 99 | 60.20 125 | 61.50 122 | 69.96 190 | 68.14 191 | 77.01 186 | 69.91 190 |
|
anonymousdsp | | | 65.28 156 | 67.98 144 | 62.13 165 | 58.73 208 | 73.98 165 | 67.10 172 | 50.69 191 | 48.41 195 | 47.66 158 | 54.27 143 | 52.75 175 | 61.45 124 | 76.71 147 | 80.20 93 | 87.13 99 | 89.53 53 |
|
PMMVS | | | 65.06 157 | 69.17 130 | 60.26 174 | 55.25 214 | 63.43 201 | 66.71 176 | 43.01 209 | 62.41 115 | 50.64 139 | 69.44 64 | 67.04 102 | 63.29 104 | 74.36 160 | 73.54 166 | 82.68 164 | 73.99 183 |
|
CR-MVSNet | | | 64.83 158 | 65.54 163 | 64.01 158 | 70.64 175 | 69.41 180 | 65.97 180 | 52.74 179 | 57.81 142 | 52.65 128 | 54.27 143 | 56.31 145 | 60.92 126 | 72.20 172 | 73.09 168 | 81.12 170 | 75.69 172 |
|
TransMVSNet (Re) | | | 64.74 159 | 65.66 162 | 63.66 160 | 77.40 114 | 75.33 157 | 69.86 158 | 62.67 113 | 47.63 197 | 41.21 183 | 50.01 177 | 52.33 176 | 45.31 187 | 79.57 112 | 77.69 128 | 85.49 141 | 77.07 164 |
|
test-LLR | | | 64.42 160 | 64.36 173 | 64.49 154 | 75.02 132 | 63.93 198 | 66.61 177 | 61.96 121 | 54.41 170 | 47.77 155 | 57.46 124 | 60.25 123 | 55.20 165 | 70.80 183 | 69.33 181 | 80.40 173 | 74.38 180 |
|
MDTV_nov1_ep13 | | | 64.37 161 | 65.24 165 | 63.37 163 | 68.94 185 | 70.81 175 | 72.40 152 | 50.29 193 | 60.10 133 | 53.91 120 | 60.07 105 | 59.15 130 | 57.21 148 | 69.43 193 | 67.30 193 | 77.47 182 | 69.78 192 |
|
tfpnnormal | | | 64.27 162 | 63.64 178 | 65.02 150 | 75.84 125 | 75.61 154 | 71.24 156 | 62.52 115 | 47.79 196 | 42.97 179 | 42.65 195 | 44.49 205 | 52.66 175 | 78.77 124 | 76.86 142 | 84.88 152 | 79.29 149 |
|
PatchmatchNet |  | | 64.21 163 | 64.65 171 | 63.69 159 | 71.29 172 | 68.66 184 | 69.63 160 | 51.70 186 | 63.04 110 | 53.77 121 | 59.83 108 | 58.34 135 | 60.23 131 | 68.54 196 | 66.06 198 | 75.56 192 | 68.08 196 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
dps | | | 64.00 164 | 62.99 180 | 65.18 148 | 73.29 150 | 72.07 171 | 68.98 164 | 53.07 177 | 57.74 144 | 58.41 96 | 55.55 134 | 47.74 197 | 60.89 128 | 69.53 192 | 67.14 195 | 76.44 189 | 71.19 188 |
|
pmmvs-eth3d | | | 63.52 165 | 62.44 187 | 64.77 152 | 66.82 191 | 70.12 179 | 69.41 161 | 59.48 148 | 54.34 173 | 52.71 127 | 46.24 189 | 44.35 206 | 56.93 151 | 72.37 167 | 73.77 165 | 83.30 161 | 75.91 169 |
|
WR-MVS | | | 63.03 166 | 67.40 151 | 57.92 184 | 75.14 131 | 77.60 138 | 60.56 198 | 66.10 70 | 54.11 174 | 23.88 207 | 53.94 148 | 53.58 161 | 34.50 203 | 73.93 162 | 77.71 127 | 87.35 93 | 80.94 132 |
|
PEN-MVS | | | 62.96 167 | 65.77 161 | 59.70 177 | 73.98 144 | 75.45 155 | 63.39 191 | 67.61 60 | 52.49 180 | 25.49 206 | 53.39 151 | 49.12 193 | 40.85 196 | 71.94 174 | 77.26 138 | 86.86 106 | 80.72 135 |
|
TinyColmap | | | 62.84 168 | 61.03 193 | 64.96 151 | 69.61 181 | 71.69 172 | 68.48 166 | 59.76 146 | 55.41 161 | 47.69 157 | 47.33 186 | 34.20 216 | 62.76 108 | 74.52 158 | 72.59 171 | 81.44 168 | 71.47 187 |
|
CP-MVSNet | | | 62.68 169 | 65.49 164 | 59.40 180 | 71.84 161 | 75.34 156 | 62.87 193 | 67.04 65 | 52.64 179 | 27.19 204 | 53.38 152 | 48.15 195 | 41.40 194 | 71.26 177 | 75.68 153 | 86.07 127 | 82.00 122 |
|
gg-mvs-nofinetune | | | 62.55 170 | 65.05 168 | 59.62 178 | 78.72 101 | 77.61 137 | 70.83 157 | 53.63 171 | 39.71 211 | 22.04 213 | 36.36 205 | 64.32 110 | 47.53 183 | 81.16 88 | 79.03 111 | 85.00 150 | 77.17 162 |
|
CVMVSNet | | | 62.55 170 | 65.89 159 | 58.64 182 | 66.95 189 | 69.15 182 | 66.49 179 | 56.29 168 | 52.46 181 | 32.70 197 | 59.27 111 | 58.21 136 | 50.09 179 | 71.77 175 | 71.39 175 | 79.31 176 | 78.99 152 |
|
CMPMVS |  | 47.78 17 | 62.49 172 | 62.52 185 | 62.46 164 | 70.01 179 | 70.66 177 | 62.97 192 | 51.84 185 | 51.98 184 | 56.71 106 | 42.87 194 | 53.62 160 | 57.80 143 | 72.23 170 | 70.37 178 | 75.45 194 | 75.91 169 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs6 | | | 62.41 173 | 62.88 181 | 61.87 166 | 71.38 169 | 75.18 161 | 67.76 168 | 59.45 149 | 41.64 207 | 42.52 181 | 37.33 203 | 52.91 172 | 46.87 184 | 77.67 135 | 76.26 150 | 83.23 162 | 79.18 151 |
|
tpm | | | 62.41 173 | 63.15 179 | 61.55 168 | 72.24 159 | 63.79 200 | 71.31 155 | 46.12 207 | 57.82 141 | 55.33 111 | 59.90 107 | 54.74 153 | 53.63 171 | 67.24 199 | 64.29 201 | 70.65 207 | 74.25 182 |
|
PS-CasMVS | | | 62.38 175 | 65.06 167 | 59.25 181 | 71.73 162 | 75.21 160 | 62.77 194 | 66.99 66 | 51.94 186 | 26.96 205 | 52.00 169 | 47.52 198 | 41.06 195 | 71.16 180 | 75.60 154 | 85.97 134 | 81.97 124 |
|
pmmvs5 | | | 62.37 176 | 64.04 175 | 60.42 172 | 65.03 194 | 71.67 173 | 67.17 171 | 52.70 181 | 50.30 189 | 44.80 172 | 54.23 146 | 51.19 184 | 49.37 180 | 72.88 166 | 73.48 167 | 83.45 160 | 74.55 179 |
|
tpmrst | | | 62.00 177 | 62.35 188 | 61.58 167 | 71.62 166 | 64.14 197 | 69.07 163 | 48.22 203 | 62.21 117 | 53.93 119 | 58.26 121 | 55.30 150 | 55.81 160 | 63.22 205 | 62.62 204 | 70.85 206 | 70.70 189 |
|
PatchT | | | 61.97 178 | 64.04 175 | 59.55 179 | 60.49 204 | 67.40 188 | 56.54 205 | 48.65 199 | 56.69 151 | 52.65 128 | 51.10 174 | 52.14 179 | 60.92 126 | 72.20 172 | 73.09 168 | 78.03 180 | 75.69 172 |
|
DTE-MVSNet | | | 61.85 179 | 64.96 170 | 58.22 183 | 74.32 140 | 74.39 164 | 61.01 197 | 67.85 58 | 51.76 187 | 21.91 214 | 53.28 153 | 48.17 194 | 37.74 200 | 72.22 171 | 76.44 148 | 86.52 119 | 78.49 154 |
|
SixPastTwentyTwo | | | 61.84 180 | 62.45 186 | 61.12 170 | 69.20 184 | 72.20 170 | 62.03 195 | 57.40 162 | 46.54 200 | 38.03 191 | 57.14 127 | 41.72 209 | 58.12 140 | 69.67 191 | 71.58 174 | 81.94 165 | 78.30 155 |
|
WR-MVS_H | | | 61.83 181 | 65.87 160 | 57.12 187 | 71.72 163 | 76.87 142 | 61.45 196 | 66.19 68 | 51.97 185 | 22.92 211 | 53.13 158 | 52.30 178 | 33.80 204 | 71.03 181 | 75.00 158 | 86.65 115 | 80.78 134 |
|
LTVRE_ROB | | 59.44 16 | 61.82 182 | 62.64 184 | 60.87 171 | 72.83 157 | 77.19 140 | 64.37 187 | 58.97 153 | 33.56 216 | 28.00 203 | 52.59 166 | 42.21 208 | 63.93 102 | 74.52 158 | 76.28 149 | 77.15 184 | 82.13 118 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
RPMNet | | | 61.71 183 | 62.88 181 | 60.34 173 | 69.51 182 | 69.41 180 | 63.48 190 | 49.23 195 | 57.81 142 | 45.64 170 | 50.51 175 | 50.12 188 | 53.13 174 | 68.17 198 | 68.49 189 | 81.07 171 | 75.62 174 |
|
TESTMET0.1,1 | | | 61.10 184 | 64.36 173 | 57.29 186 | 57.53 209 | 63.93 198 | 66.61 177 | 36.22 213 | 54.41 170 | 47.77 155 | 57.46 124 | 60.25 123 | 55.20 165 | 70.80 183 | 69.33 181 | 80.40 173 | 74.38 180 |
|
test-mter | | | 60.84 185 | 64.62 172 | 56.42 189 | 55.99 212 | 64.18 196 | 65.39 182 | 34.23 214 | 54.39 172 | 46.21 166 | 57.40 126 | 59.49 129 | 55.86 159 | 71.02 182 | 69.65 180 | 80.87 172 | 76.20 168 |
|
PM-MVS | | | 60.48 186 | 60.94 194 | 59.94 175 | 58.85 207 | 66.83 191 | 64.27 188 | 51.39 187 | 55.03 166 | 48.03 154 | 50.00 179 | 40.79 211 | 58.26 139 | 69.20 194 | 67.13 196 | 78.84 178 | 77.60 159 |
|
MDTV_nov1_ep13_2view | | | 60.16 187 | 60.51 195 | 59.75 176 | 65.39 193 | 69.05 183 | 68.00 167 | 48.29 201 | 51.99 183 | 45.95 168 | 48.01 185 | 49.64 192 | 53.39 172 | 68.83 195 | 66.52 197 | 77.47 182 | 69.55 193 |
|
EPMVS | | | 60.00 188 | 61.97 189 | 57.71 185 | 68.46 186 | 63.17 204 | 64.54 186 | 48.23 202 | 63.30 108 | 44.72 174 | 60.19 103 | 56.05 147 | 50.85 178 | 65.27 203 | 62.02 205 | 69.44 209 | 63.81 203 |
|
TAMVS | | | 59.58 189 | 62.81 183 | 55.81 191 | 66.03 192 | 65.64 195 | 63.86 189 | 48.74 198 | 49.95 191 | 37.07 193 | 54.77 140 | 58.54 133 | 44.44 188 | 72.29 169 | 71.79 172 | 74.70 196 | 66.66 198 |
|
test0.0.03 1 | | | 58.80 190 | 61.58 191 | 55.56 192 | 75.02 132 | 68.45 186 | 59.58 202 | 61.96 121 | 52.74 178 | 29.57 200 | 49.75 180 | 54.56 154 | 31.46 206 | 71.19 178 | 69.77 179 | 75.75 190 | 64.57 201 |
|
CHOSEN 280x420 | | | 58.70 191 | 61.88 190 | 54.98 194 | 55.45 213 | 50.55 216 | 64.92 184 | 40.36 210 | 55.21 162 | 38.13 190 | 48.31 183 | 63.76 112 | 63.03 107 | 73.73 164 | 68.58 188 | 68.00 212 | 73.04 185 |
|
MIMVSNet | | | 58.52 192 | 61.34 192 | 55.22 193 | 60.76 203 | 67.01 190 | 66.81 174 | 49.02 197 | 56.43 154 | 38.90 187 | 40.59 200 | 54.54 155 | 40.57 197 | 73.16 165 | 71.65 173 | 75.30 195 | 66.00 199 |
|
FMVSNet5 | | | 57.24 193 | 60.02 196 | 53.99 197 | 56.45 211 | 62.74 205 | 65.27 183 | 47.03 204 | 55.14 163 | 39.55 186 | 40.88 198 | 53.42 168 | 41.83 191 | 72.35 168 | 71.10 177 | 73.79 199 | 64.50 202 |
|
gm-plane-assit | | | 57.00 194 | 57.62 201 | 56.28 190 | 76.10 120 | 62.43 207 | 47.62 215 | 46.57 205 | 33.84 215 | 23.24 209 | 37.52 202 | 40.19 212 | 59.61 132 | 79.81 109 | 77.55 131 | 84.55 154 | 72.03 186 |
|
FC-MVSNet-test | | | 56.90 195 | 65.20 166 | 47.21 205 | 66.98 188 | 63.20 203 | 49.11 214 | 58.60 158 | 59.38 136 | 11.50 221 | 65.60 80 | 56.68 144 | 24.66 213 | 71.17 179 | 71.36 176 | 72.38 203 | 69.02 194 |
|
Anonymous20231206 | | | 56.36 196 | 57.80 200 | 54.67 195 | 70.08 177 | 66.39 192 | 60.46 199 | 57.54 161 | 49.50 194 | 29.30 201 | 33.86 208 | 46.64 199 | 35.18 202 | 70.44 187 | 68.88 185 | 75.47 193 | 68.88 195 |
|
ADS-MVSNet | | | 55.94 197 | 58.01 198 | 53.54 199 | 62.48 201 | 58.48 210 | 59.12 203 | 46.20 206 | 59.65 135 | 42.88 180 | 52.34 168 | 53.31 170 | 46.31 185 | 62.00 207 | 60.02 208 | 64.23 214 | 60.24 210 |
|
pmnet_mix02 | | | 55.30 198 | 57.01 202 | 53.30 200 | 64.14 197 | 59.09 209 | 58.39 204 | 50.24 194 | 53.47 176 | 38.68 188 | 49.75 180 | 45.86 202 | 40.14 198 | 65.38 202 | 60.22 207 | 68.19 211 | 65.33 200 |
|
EU-MVSNet | | | 54.63 199 | 58.69 197 | 49.90 203 | 56.99 210 | 62.70 206 | 56.41 206 | 50.64 192 | 45.95 202 | 23.14 210 | 50.42 176 | 46.51 200 | 36.63 201 | 65.51 201 | 64.85 200 | 75.57 191 | 74.91 177 |
|
MVS-HIRNet | | | 54.41 200 | 52.10 207 | 57.11 188 | 58.99 206 | 56.10 213 | 49.68 213 | 49.10 196 | 46.18 201 | 52.15 132 | 33.18 209 | 46.11 201 | 56.10 156 | 63.19 206 | 59.70 209 | 76.64 188 | 60.25 209 |
|
testgi | | | 54.39 201 | 57.86 199 | 50.35 202 | 71.59 168 | 67.24 189 | 54.95 207 | 53.25 175 | 43.36 204 | 23.78 208 | 44.64 191 | 47.87 196 | 24.96 211 | 70.45 186 | 68.66 187 | 73.60 200 | 62.78 206 |
|
test20.03 | | | 53.93 202 | 56.28 203 | 51.19 201 | 72.19 160 | 65.83 193 | 53.20 209 | 61.08 128 | 42.74 205 | 22.08 212 | 37.07 204 | 45.76 203 | 24.29 214 | 70.44 187 | 69.04 183 | 74.31 198 | 63.05 205 |
|
MDA-MVSNet-bldmvs | | | 53.37 203 | 53.01 206 | 53.79 198 | 43.67 218 | 67.95 187 | 59.69 201 | 57.92 160 | 43.69 203 | 32.41 198 | 41.47 197 | 27.89 221 | 52.38 176 | 56.97 213 | 65.99 199 | 76.68 187 | 67.13 197 |
|
FPMVS | | | 51.87 204 | 50.00 209 | 54.07 196 | 66.83 190 | 57.25 211 | 60.25 200 | 50.91 188 | 50.25 190 | 34.36 195 | 36.04 206 | 32.02 218 | 41.49 193 | 58.98 211 | 56.07 210 | 70.56 208 | 59.36 211 |
|
MIMVSNet1 | | | 49.27 205 | 53.25 205 | 44.62 207 | 44.61 216 | 61.52 208 | 53.61 208 | 52.18 182 | 41.62 208 | 18.68 217 | 28.14 214 | 41.58 210 | 25.50 209 | 68.46 197 | 69.04 183 | 73.15 201 | 62.37 207 |
|
pmmvs3 | | | 47.65 206 | 49.08 211 | 45.99 206 | 44.61 216 | 54.79 214 | 50.04 211 | 31.95 217 | 33.91 214 | 29.90 199 | 30.37 210 | 33.53 217 | 46.31 185 | 63.50 204 | 63.67 203 | 73.14 202 | 63.77 204 |
|
N_pmnet | | | 47.35 207 | 50.13 208 | 44.11 208 | 59.98 205 | 51.64 215 | 51.86 210 | 44.80 208 | 49.58 193 | 20.76 215 | 40.65 199 | 40.05 213 | 29.64 207 | 59.84 209 | 55.15 211 | 57.63 215 | 54.00 213 |
|
new-patchmatchnet | | | 46.97 208 | 49.47 210 | 44.05 209 | 62.82 199 | 56.55 212 | 45.35 216 | 52.01 183 | 42.47 206 | 17.04 219 | 35.73 207 | 35.21 215 | 21.84 217 | 61.27 208 | 54.83 212 | 65.26 213 | 60.26 208 |
|
GG-mvs-BLEND | | | 46.86 209 | 67.51 149 | 22.75 214 | 0.05 226 | 76.21 149 | 64.69 185 | 0.04 222 | 61.90 119 | 0.09 227 | 55.57 133 | 71.32 76 | 0.08 222 | 70.54 185 | 67.19 194 | 71.58 204 | 69.86 191 |
|
PMVS |  | 39.38 18 | 46.06 210 | 43.30 212 | 49.28 204 | 62.93 198 | 38.75 218 | 41.88 217 | 53.50 173 | 33.33 217 | 35.46 194 | 28.90 213 | 31.01 219 | 33.04 205 | 58.61 212 | 54.63 213 | 68.86 210 | 57.88 212 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 38.40 211 | 42.64 213 | 33.44 211 | 37.54 221 | 45.00 217 | 36.60 218 | 32.72 216 | 40.27 209 | 12.72 220 | 29.89 211 | 28.90 220 | 24.78 212 | 53.17 214 | 52.90 214 | 56.31 216 | 48.34 214 |
|
Gipuma |  | | 36.38 212 | 35.80 214 | 37.07 210 | 45.76 215 | 33.90 219 | 29.81 219 | 48.47 200 | 39.91 210 | 18.02 218 | 8.00 222 | 8.14 226 | 25.14 210 | 59.29 210 | 61.02 206 | 55.19 217 | 40.31 215 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMMVS2 | | | 25.60 213 | 29.75 215 | 20.76 215 | 28.00 222 | 30.93 220 | 23.10 221 | 29.18 218 | 23.14 219 | 1.46 226 | 18.23 218 | 16.54 223 | 5.08 220 | 40.22 215 | 41.40 216 | 37.76 218 | 37.79 217 |
|
test_method | | | 22.26 214 | 25.94 216 | 17.95 216 | 3.24 225 | 7.17 225 | 23.83 220 | 7.27 220 | 37.35 213 | 20.44 216 | 21.87 217 | 39.16 214 | 18.67 218 | 34.56 216 | 20.84 220 | 34.28 219 | 20.64 221 |
|
E-PMN | | | 21.77 215 | 18.24 218 | 25.89 212 | 40.22 219 | 19.58 222 | 12.46 224 | 39.87 211 | 18.68 221 | 6.71 223 | 9.57 219 | 4.31 229 | 22.36 216 | 19.89 220 | 27.28 218 | 33.73 220 | 28.34 219 |
|
EMVS | | | 20.98 216 | 17.15 219 | 25.44 213 | 39.51 220 | 19.37 223 | 12.66 223 | 39.59 212 | 19.10 220 | 6.62 224 | 9.27 220 | 4.40 228 | 22.43 215 | 17.99 221 | 24.40 219 | 31.81 221 | 25.53 220 |
|
MVE |  | 19.12 19 | 20.47 217 | 23.27 217 | 17.20 217 | 12.66 224 | 25.41 221 | 10.52 225 | 34.14 215 | 14.79 222 | 6.53 225 | 8.79 221 | 4.68 227 | 16.64 219 | 29.49 218 | 41.63 215 | 22.73 223 | 38.11 216 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 0.09 218 | 0.15 220 | 0.02 219 | 0.01 227 | 0.02 227 | 0.05 228 | 0.01 223 | 0.11 223 | 0.01 228 | 0.26 224 | 0.01 230 | 0.06 224 | 0.10 222 | 0.10 221 | 0.01 225 | 0.43 223 |
|
test123 | | | 0.09 218 | 0.14 221 | 0.02 219 | 0.00 228 | 0.02 227 | 0.02 229 | 0.01 223 | 0.09 224 | 0.00 229 | 0.30 223 | 0.00 231 | 0.08 222 | 0.03 223 | 0.09 222 | 0.01 225 | 0.45 222 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 228 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 229 | 0.00 225 | 0.00 231 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 228 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 229 | 0.00 225 | 0.00 231 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 221 | 0.00 228 | 0.00 229 | 0.00 230 | 0.00 225 | 0.00 225 | 0.00 229 | 0.00 225 | 0.00 231 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
TPM-MVS | | | | | | 90.07 21 | 88.36 35 | 88.45 29 | | | 77.10 25 | 75.60 37 | 83.98 29 | 71.33 63 | | | 89.75 43 | 89.62 51 |
|
RE-MVS-def | | | | | | | | | | | 46.24 165 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 86.88 16 | | | | | |
|
SR-MVS | | | | | | 88.99 34 | | | 73.57 24 | | | | 87.54 14 | | | | | |
|
Anonymous202405211 | | | | 72.16 105 | | 80.85 83 | 81.85 87 | 76.88 104 | 65.40 76 | 62.89 113 | | 46.35 188 | 67.99 99 | 62.05 113 | 81.15 89 | 80.38 91 | 85.97 134 | 84.50 102 |
|
our_test_3 | | | | | | 67.93 187 | 70.99 174 | 66.89 173 | | | | | | | | | | |
|
ambc | | | | 53.42 204 | | 64.99 195 | 63.36 202 | 49.96 212 | | 47.07 198 | 37.12 192 | 28.97 212 | 16.36 224 | 41.82 192 | 75.10 155 | 67.34 192 | 71.55 205 | 75.72 171 |
|
MTAPA | | | | | | | | | | | 83.48 1 | | 86.45 19 | | | | | |
|
MTMP | | | | | | | | | | | 82.66 5 | | 84.91 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 2.85 227 | | | | | | | | | | |
|
tmp_tt | | | | | 14.50 218 | 14.68 223 | 7.17 225 | 10.46 226 | 2.21 221 | 37.73 212 | 28.71 202 | 25.26 215 | 16.98 222 | 4.37 221 | 31.49 217 | 29.77 217 | 26.56 222 | |
|
XVS | | | | | | 86.63 45 | 88.68 27 | 85.00 47 | | | 71.81 45 | | 81.92 37 | | | | 90.47 23 | |
|
X-MVStestdata | | | | | | 86.63 45 | 88.68 27 | 85.00 47 | | | 71.81 45 | | 81.92 37 | | | | 90.47 23 | |
|
mPP-MVS | | | | | | 89.90 25 | | | | | | | 81.29 42 | | | | | |
|
NP-MVS | | | | | | | | | | 80.10 44 | | | | | | | | |
|
Patchmtry | | | | | | | 65.80 194 | 65.97 180 | 52.74 179 | | 52.65 128 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 18.74 224 | 18.55 222 | 8.02 219 | 26.96 218 | 7.33 222 | 23.81 216 | 13.05 225 | 25.99 208 | 25.17 219 | | 22.45 224 | 36.25 218 |
|