This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS88.09 590.84 584.88 790.00 2391.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4594.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 4090.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2688.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 3087.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3277.74 1987.42 1987.20 1590.77 1392.63 25
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3690.48 1085.46 4673.08 2890.97 673.77 3784.81 2285.95 2077.43 2288.22 1187.73 1187.85 8494.34 9
CSCG85.28 2187.68 1982.49 2489.95 2491.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2979.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2988.53 3288.59 2772.55 3087.39 1571.90 4290.95 987.55 1374.57 3687.08 2686.54 2687.47 9193.67 17
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5489.81 1673.55 2583.95 3173.30 3889.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3290.38 1188.61 2676.50 186.25 2277.22 2375.12 4080.28 4577.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS84.74 2686.43 2682.77 2389.48 3088.13 3988.64 2573.93 2184.92 2476.77 2681.94 2683.50 3077.29 2586.92 3086.49 2790.49 2293.14 23
PGM-MVS84.42 2786.29 2782.23 2590.04 2288.82 2689.23 2271.74 3582.82 3674.61 3384.41 2382.09 3577.03 2787.13 2486.73 2490.73 1592.06 31
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3374.24 1784.88 2576.23 2875.26 3981.05 4377.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5486.96 4484.91 5070.25 4184.71 2873.91 3685.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3788.49 3388.31 3172.09 3283.42 3472.77 4082.65 2478.22 5075.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPM-MVS83.30 3184.33 3482.11 2689.56 2888.49 3390.33 1273.24 2783.85 3276.46 2772.43 5082.65 3373.02 4886.37 3586.91 1990.03 3689.62 51
X-MVS83.23 3285.20 3280.92 3389.71 2788.68 2788.21 3273.60 2382.57 3771.81 4577.07 3281.92 3771.72 5886.98 2886.86 2090.47 2392.36 28
CDPH-MVS82.64 3385.03 3379.86 3889.41 3188.31 3688.32 3071.84 3480.11 4367.47 6482.09 2581.44 4171.85 5685.89 4186.15 3290.24 3291.25 37
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3889.67 1786.60 3771.48 3681.28 4178.18 2064.78 8577.96 5277.13 2687.32 2286.83 2190.41 2891.48 35
PHI-MVS82.36 3585.89 2978.24 4786.40 4789.52 1885.52 4469.52 4882.38 3965.67 7081.35 2782.36 3473.07 4787.31 2386.76 2389.24 5291.56 34
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4387.22 4385.82 4270.04 4280.30 4278.66 1968.67 7081.04 4477.81 1885.19 4684.88 4389.19 5591.31 36
CPTT-MVS81.77 3783.10 3880.21 3685.93 5086.45 4987.72 3470.98 3882.54 3871.53 4874.23 4581.49 4076.31 3182.85 6981.87 6588.79 6392.26 29
MVS_030481.73 3883.86 3579.26 4186.22 4989.18 2486.41 3867.15 6475.28 5370.75 5274.59 4283.49 3174.42 3887.05 2786.34 2990.58 2091.08 39
CANet81.62 3983.41 3679.53 4087.06 4288.59 3185.47 4567.96 5776.59 5174.05 3474.69 4181.98 3672.98 4986.14 3985.47 3789.68 4690.42 45
HQP-MVS81.19 4083.27 3778.76 4487.40 4185.45 5586.95 3570.47 4081.31 4066.91 6779.24 3076.63 5471.67 5984.43 5483.78 5189.19 5592.05 33
OMC-MVS80.26 4182.59 4177.54 5083.04 6285.54 5383.25 5665.05 7987.32 1872.42 4172.04 5278.97 4773.30 4583.86 5781.60 6988.15 7388.83 56
MVS_111021_HR80.13 4281.46 4478.58 4585.77 5185.17 5883.45 5569.28 4974.08 6070.31 5474.31 4475.26 6173.13 4686.46 3485.15 4189.53 4789.81 49
LGP-MVS_train79.83 4381.22 4778.22 4886.28 4885.36 5786.76 3669.59 4677.34 4865.14 7375.68 3670.79 7971.37 6284.60 5084.01 4690.18 3390.74 42
ACMP73.23 779.79 4480.53 5278.94 4285.61 5285.68 5285.61 4369.59 4677.33 4971.00 5174.45 4369.16 9071.88 5483.15 6683.37 5489.92 3790.57 44
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator73.76 579.75 4580.52 5378.84 4384.94 5987.35 4184.43 5265.54 7578.29 4773.97 3563.00 9375.62 6074.07 4085.00 4785.34 3990.11 3589.04 54
AdaColmapbinary79.74 4678.62 6281.05 3289.23 3386.06 5184.95 4971.96 3379.39 4675.51 3163.16 9168.84 9576.51 2983.55 6182.85 5888.13 7486.46 76
OPM-MVS79.68 4779.28 6080.15 3787.99 3986.77 4688.52 2872.72 2964.55 9867.65 6367.87 7474.33 6574.31 3986.37 3585.25 4089.73 4489.81 49
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EC-MVSNet79.44 4881.35 4577.22 5282.95 6384.67 6281.31 6063.65 9272.47 6768.75 5773.15 4778.33 4975.99 3286.06 4083.96 4890.67 1790.79 41
PCF-MVS73.28 679.42 4980.41 5478.26 4684.88 6088.17 3786.08 3969.85 4375.23 5568.43 5868.03 7378.38 4871.76 5781.26 8780.65 8788.56 6691.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS79.35 5081.23 4677.16 5385.01 5786.92 4585.87 4160.89 13180.07 4575.35 3272.96 4873.21 6968.43 7885.41 4484.63 4487.41 9285.44 87
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS79.22 5181.11 4877.01 5481.36 7584.03 6580.35 6663.25 9673.43 6470.37 5374.10 4676.03 5876.40 3086.32 3783.95 4990.34 3189.93 47
MAR-MVS79.21 5280.32 5577.92 4987.46 4088.15 3883.95 5367.48 6374.28 5768.25 5964.70 8677.04 5372.17 5285.42 4385.00 4288.22 7087.62 65
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
canonicalmvs79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3567.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
DELS-MVS79.15 5481.07 4976.91 5583.54 6187.31 4284.45 5164.92 8069.98 6969.34 5671.62 5476.26 5569.84 6886.57 3285.90 3489.39 4989.88 48
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet79.08 5580.62 5177.28 5188.90 3583.17 8083.65 5472.41 3174.41 5667.15 6676.78 3374.37 6464.43 9883.70 6083.69 5287.15 9588.19 60
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMM72.26 878.86 5678.13 6479.71 3986.89 4483.40 7586.02 4070.50 3975.28 5371.49 4963.01 9269.26 8973.57 4384.11 5683.98 4789.76 4287.84 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS-test78.79 5780.72 5076.53 5781.11 8083.88 6879.69 7563.72 9173.80 6169.95 5575.40 3876.17 5674.85 3584.50 5382.78 5989.87 3988.54 58
QAPM78.47 5880.22 5676.43 5885.03 5686.75 4780.62 6566.00 7273.77 6265.35 7265.54 8178.02 5172.69 5083.71 5983.36 5588.87 6190.41 46
TSAR-MVS + COLMAP78.34 5981.64 4374.48 7280.13 9285.01 5981.73 5865.93 7484.75 2761.68 8485.79 1966.27 10571.39 6182.91 6880.78 7886.01 13285.98 78
MVS_111021_LR78.13 6079.85 5876.13 5981.12 7981.50 9080.28 6765.25 7776.09 5271.32 5076.49 3572.87 7172.21 5182.79 7081.29 7186.59 11787.91 62
casdiffmvs_mvgpermissive77.79 6179.55 5975.73 6181.56 7284.70 6182.12 5764.26 8774.27 5867.93 6170.83 5974.66 6369.19 7383.33 6581.94 6489.29 5187.14 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAPA-MVS71.42 977.69 6280.05 5774.94 6680.68 8484.52 6381.36 5963.14 9984.77 2664.82 7568.72 6875.91 5971.86 5581.62 7679.55 10487.80 8685.24 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETV-MVS77.32 6378.81 6175.58 6282.24 7083.64 7379.98 6864.02 8869.64 7463.90 7870.89 5869.94 8573.41 4485.39 4583.91 5089.92 3788.31 59
CNLPA77.20 6477.54 6876.80 5682.63 6584.31 6479.77 7264.64 8185.17 2373.18 3956.37 12969.81 8674.53 3781.12 9078.69 11586.04 13187.29 68
casdiffmvspermissive76.76 6578.46 6374.77 6880.32 8983.73 7280.65 6463.24 9773.58 6366.11 6969.39 6574.09 6669.49 7182.52 7279.35 10988.84 6286.52 75
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu76.57 6677.90 6575.02 6580.56 8586.58 4879.24 7966.18 6964.81 9568.18 6065.61 7971.45 7467.05 8284.16 5581.80 6688.90 5990.92 40
PVSNet_BlendedMVS76.21 6777.52 6974.69 6979.46 9583.79 7077.50 9764.34 8569.88 7071.88 4368.54 7170.42 8167.05 8283.48 6279.63 10087.89 8286.87 72
PVSNet_Blended76.21 6777.52 6974.69 6979.46 9583.79 7077.50 9764.34 8569.88 7071.88 4368.54 7170.42 8167.05 8283.48 6279.63 10087.89 8286.87 72
OpenMVScopyleft70.44 1076.15 6976.82 7775.37 6485.01 5784.79 6078.99 8362.07 12071.27 6867.88 6257.91 12272.36 7270.15 6782.23 7481.41 7088.12 7587.78 64
PLCcopyleft68.99 1175.68 7075.31 8276.12 6082.94 6481.26 9479.94 7066.10 7077.15 5066.86 6859.13 11268.53 9773.73 4280.38 10079.04 11087.13 9981.68 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EIA-MVS75.64 7176.60 7874.53 7182.43 6883.84 6978.32 9062.28 11965.96 8863.28 8268.95 6667.54 10071.61 6082.55 7181.63 6889.24 5285.72 81
MVS_Test75.37 7277.13 7573.31 7779.07 9881.32 9379.98 6860.12 14269.72 7264.11 7770.53 6073.22 6868.90 7480.14 10779.48 10687.67 8885.50 85
Effi-MVS+75.28 7376.20 7974.20 7381.15 7883.24 7881.11 6163.13 10066.37 8460.27 8864.30 8968.88 9470.93 6681.56 7881.69 6788.61 6487.35 66
DI_MVS_plusplus_trai75.13 7476.12 8073.96 7478.18 10481.55 8880.97 6262.54 11468.59 7565.13 7461.43 9674.81 6269.32 7281.01 9279.59 10287.64 8985.89 79
diffmvspermissive74.86 7577.37 7271.93 8175.62 12780.35 10679.42 7860.15 14172.81 6664.63 7671.51 5573.11 7066.53 9279.02 12177.98 12385.25 14686.83 74
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net74.47 7677.80 6670.59 9185.33 5385.40 5673.54 14365.98 7360.65 12956.00 10972.11 5179.15 4654.63 16883.13 6782.25 6288.04 7881.92 125
GeoE74.23 7774.84 8573.52 7580.42 8881.46 9179.77 7261.06 12967.23 8163.67 7959.56 10968.74 9667.90 7980.25 10579.37 10888.31 6787.26 69
LS3D74.08 7873.39 9374.88 6785.05 5582.62 8479.71 7468.66 5272.82 6558.80 9257.61 12361.31 12071.07 6580.32 10178.87 11486.00 13380.18 142
EPP-MVSNet74.00 7977.41 7170.02 9980.53 8683.91 6774.99 11962.68 11265.06 9349.77 14568.68 6972.09 7363.06 10682.49 7380.73 7989.12 5788.91 55
FA-MVS(training)73.66 8074.95 8472.15 8078.63 10280.46 10478.92 8454.79 17069.71 7365.37 7162.04 9466.89 10367.10 8180.72 9479.87 9788.10 7784.97 95
DCV-MVSNet73.65 8175.78 8171.16 8580.19 9079.27 11577.45 9961.68 12666.73 8358.72 9365.31 8269.96 8462.19 11181.29 8680.97 7586.74 11086.91 71
IS_MVSNet73.33 8277.34 7368.65 11481.29 7683.47 7474.45 12563.58 9465.75 9048.49 15067.11 7870.61 8054.63 16884.51 5283.58 5389.48 4886.34 77
CANet_DTU73.29 8376.96 7669.00 11177.04 11682.06 8679.49 7756.30 16767.85 7953.29 12571.12 5770.37 8361.81 12081.59 7780.96 7686.09 12684.73 99
Fast-Effi-MVS+73.11 8473.66 9072.48 7977.72 11080.88 10078.55 8758.83 15765.19 9260.36 8759.98 10662.42 11771.22 6481.66 7580.61 8988.20 7184.88 98
UGNet72.78 8577.67 6767.07 13671.65 16583.24 7875.20 11363.62 9364.93 9456.72 10571.82 5373.30 6749.02 18181.02 9180.70 8586.22 12388.67 57
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNetpermissive72.77 8677.20 7467.59 12674.19 14184.01 6676.61 10761.69 12560.62 13050.61 14070.25 6271.31 7755.57 16383.85 5882.28 6186.90 10488.08 61
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FC-MVSNet-train72.60 8775.07 8369.71 10281.10 8178.79 12173.74 14265.23 7866.10 8753.34 12470.36 6163.40 11456.92 15281.44 8080.96 7687.93 8084.46 103
ET-MVSNet_ETH3D72.46 8874.19 8770.44 9262.50 20081.17 9579.90 7162.46 11764.52 9957.52 10171.49 5659.15 13072.08 5378.61 12681.11 7388.16 7283.29 113
ECVR-MVScopyleft72.20 8973.91 8970.20 9681.49 7383.27 7675.74 10867.59 6168.19 7749.31 14855.77 13162.00 11858.82 13484.76 4882.94 5688.27 6880.41 140
MVSTER72.06 9074.24 8669.51 10570.39 17675.97 15176.91 10357.36 16464.64 9761.39 8668.86 6763.76 11263.46 10381.44 8079.70 9987.56 9085.31 89
Anonymous2023121171.90 9172.48 10271.21 8480.14 9181.53 8976.92 10262.89 10364.46 10058.94 9043.80 19270.98 7862.22 11080.70 9580.19 9486.18 12485.73 80
Effi-MVS+-dtu71.82 9271.86 10771.78 8278.77 9980.47 10378.55 8761.67 12760.68 12855.49 11058.48 11665.48 10768.85 7576.92 14375.55 15587.35 9385.46 86
test250671.72 9372.95 9770.29 9481.49 7383.27 7675.74 10867.59 6168.19 7749.81 14461.15 9749.73 19158.82 13484.76 4882.94 5688.27 6880.63 136
IterMVS-LS71.69 9472.82 10070.37 9377.54 11276.34 14875.13 11760.46 13761.53 12357.57 10064.89 8467.33 10166.04 9577.09 14277.37 13685.48 14285.18 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test111171.56 9573.44 9269.38 10781.16 7782.95 8174.99 11967.68 5966.89 8246.33 16455.19 13760.91 12157.99 14284.59 5182.70 6088.12 7580.85 133
MSDG71.52 9669.87 11973.44 7682.21 7179.35 11479.52 7664.59 8266.15 8661.87 8353.21 15656.09 14665.85 9678.94 12278.50 11786.60 11676.85 165
thisisatest053071.48 9773.01 9669.70 10373.83 14678.62 12374.53 12459.12 15164.13 10158.63 9464.60 8758.63 13264.27 9980.28 10380.17 9587.82 8584.64 101
tttt051771.41 9872.95 9769.60 10473.70 14878.70 12274.42 12859.12 15163.89 10558.35 9764.56 8858.39 13464.27 9980.29 10280.17 9587.74 8784.69 100
ACMH+66.54 1371.36 9970.09 11772.85 7882.59 6681.13 9678.56 8668.04 5561.55 12252.52 13151.50 17154.14 15668.56 7778.85 12379.50 10586.82 10783.94 107
IB-MVS66.94 1271.21 10071.66 10870.68 8879.18 9782.83 8372.61 14961.77 12459.66 13463.44 8153.26 15459.65 12859.16 13376.78 14682.11 6387.90 8187.33 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GBi-Net70.78 10173.37 9467.76 11972.95 15378.00 12875.15 11462.72 10764.13 10151.44 13358.37 11769.02 9157.59 14481.33 8380.72 8086.70 11182.02 119
test170.78 10173.37 9467.76 11972.95 15378.00 12875.15 11462.72 10764.13 10151.44 13358.37 11769.02 9157.59 14481.33 8380.72 8086.70 11182.02 119
ACMH65.37 1470.71 10370.00 11871.54 8382.51 6782.47 8577.78 9468.13 5456.19 15746.06 16754.30 14151.20 18368.68 7680.66 9680.72 8086.07 12784.45 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_NR-MVSNet70.59 10472.19 10368.72 11277.72 11080.72 10173.81 14069.65 4561.99 11843.23 17760.54 10257.50 13758.57 13679.56 11381.07 7489.34 5083.97 105
FMVSNet370.49 10572.90 9967.67 12472.88 15677.98 13174.96 12262.72 10764.13 10151.44 13358.37 11769.02 9157.43 14779.43 11679.57 10386.59 11781.81 126
baseline70.45 10674.09 8866.20 14570.95 17375.67 15274.26 13253.57 17268.33 7658.42 9569.87 6371.45 7461.55 12174.84 15774.76 16078.42 17983.72 110
FMVSNet270.39 10772.67 10167.72 12272.95 15378.00 12875.15 11462.69 11163.29 10951.25 13755.64 13268.49 9857.59 14480.91 9380.35 9286.70 11182.02 119
v870.23 10869.86 12070.67 8974.69 13679.82 11078.79 8559.18 15058.80 13858.20 9855.00 13857.33 13866.31 9477.51 13676.71 14586.82 10783.88 108
v1070.22 10969.76 12270.74 8674.79 13580.30 10879.22 8059.81 14557.71 14556.58 10754.22 14755.31 14966.95 8578.28 12977.47 13387.12 10185.07 93
MS-PatchMatch70.17 11070.49 11469.79 10180.98 8277.97 13377.51 9658.95 15462.33 11655.22 11353.14 15765.90 10662.03 11479.08 12077.11 14084.08 15777.91 157
baseline170.10 11172.17 10467.69 12379.74 9376.80 14373.91 13664.38 8462.74 11448.30 15264.94 8364.08 11154.17 17081.46 7978.92 11285.66 13976.22 167
v2v48270.05 11269.46 12670.74 8674.62 13780.32 10779.00 8260.62 13457.41 14756.89 10455.43 13655.14 15166.39 9377.25 13977.14 13986.90 10483.57 112
v114469.93 11369.36 12770.61 9074.89 13480.93 9779.11 8160.64 13355.97 15955.31 11253.85 14954.14 15666.54 9178.10 13177.44 13487.14 9885.09 92
baseline269.69 11470.27 11669.01 11075.72 12677.13 14173.82 13958.94 15561.35 12457.09 10361.68 9557.17 14061.99 11578.10 13176.58 14786.48 12079.85 144
DU-MVS69.63 11570.91 11168.13 11875.99 12179.54 11173.81 14069.20 5061.20 12643.23 17758.52 11453.50 16358.57 13679.22 11880.45 9087.97 7983.97 105
UniMVSNet (Re)69.53 11671.90 10666.76 14176.42 11980.93 9772.59 15068.03 5661.75 12141.68 18258.34 12057.23 13953.27 17379.53 11480.62 8888.57 6584.90 97
v119269.50 11768.83 13370.29 9474.49 13880.92 9978.55 8760.54 13555.04 16554.21 11552.79 16352.33 17666.92 8677.88 13377.35 13787.04 10285.51 84
HyFIR lowres test69.47 11868.94 13270.09 9876.77 11882.93 8276.63 10660.17 14059.00 13754.03 11840.54 20165.23 10867.89 8076.54 14978.30 12085.03 14980.07 143
v14419269.34 11968.68 13770.12 9774.06 14280.54 10278.08 9360.54 13554.99 16754.13 11752.92 16152.80 17466.73 8977.13 14176.72 14487.15 9585.63 82
TranMVSNet+NR-MVSNet69.25 12070.81 11267.43 12777.23 11579.46 11373.48 14569.66 4460.43 13139.56 18558.82 11353.48 16555.74 16179.59 11181.21 7288.89 6082.70 115
CHOSEN 1792x268869.20 12169.26 12869.13 10876.86 11778.93 11777.27 10060.12 14261.86 12054.42 11442.54 19661.61 11966.91 8778.55 12778.14 12279.23 17783.23 114
v192192069.03 12268.32 14169.86 10074.03 14380.37 10577.55 9560.25 13954.62 16953.59 12352.36 16751.50 18266.75 8877.17 14076.69 14686.96 10385.56 83
CostFormer68.92 12369.58 12468.15 11775.98 12376.17 15078.22 9251.86 18465.80 8961.56 8563.57 9062.83 11561.85 11870.40 18968.67 18679.42 17579.62 148
FMVSNet168.84 12470.47 11566.94 13871.35 17077.68 13674.71 12362.35 11856.93 15049.94 14350.01 17764.59 10957.07 14981.33 8380.72 8086.25 12282.00 122
NR-MVSNet68.79 12570.56 11366.71 14377.48 11379.54 11173.52 14469.20 5061.20 12639.76 18458.52 11450.11 18951.37 17780.26 10480.71 8488.97 5883.59 111
V4268.76 12669.63 12367.74 12164.93 19678.01 12778.30 9156.48 16658.65 13956.30 10854.26 14557.03 14164.85 9777.47 13777.01 14185.60 14084.96 96
v124068.64 12767.89 14769.51 10573.89 14580.26 10976.73 10559.97 14453.43 17753.08 12651.82 17050.84 18566.62 9076.79 14576.77 14386.78 10985.34 88
Fast-Effi-MVS+-dtu68.34 12869.47 12567.01 13775.15 13077.97 13377.12 10155.40 16957.87 14046.68 16256.17 13060.39 12262.36 10976.32 15076.25 15185.35 14581.34 129
GA-MVS68.14 12969.17 13066.93 13973.77 14778.50 12574.45 12558.28 15955.11 16448.44 15160.08 10453.99 15961.50 12278.43 12877.57 13085.13 14780.54 137
tfpn200view968.11 13068.72 13667.40 12877.83 10878.93 11774.28 13062.81 10456.64 15246.82 16052.65 16453.47 16656.59 15380.41 9778.43 11886.11 12580.52 138
EPNet_dtu68.08 13171.00 11064.67 15379.64 9468.62 18575.05 11863.30 9566.36 8545.27 17167.40 7666.84 10443.64 19075.37 15374.98 15981.15 16977.44 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20067.98 13268.55 13967.30 13177.89 10778.86 11974.18 13462.75 10556.35 15546.48 16352.98 16053.54 16256.46 15480.41 9777.97 12486.05 12979.78 146
thres40067.95 13368.62 13867.17 13377.90 10578.59 12474.27 13162.72 10756.34 15645.77 16953.00 15953.35 16956.46 15480.21 10678.43 11885.91 13680.43 139
pmmvs467.89 13467.39 15268.48 11571.60 16773.57 16674.45 12560.98 13064.65 9657.97 9954.95 13951.73 18161.88 11773.78 16375.11 15783.99 15977.91 157
v14867.85 13567.53 14868.23 11673.25 15177.57 13974.26 13257.36 16455.70 16057.45 10253.53 15055.42 14861.96 11675.23 15473.92 16385.08 14881.32 130
Vis-MVSNet (Re-imp)67.83 13673.52 9161.19 16978.37 10376.72 14566.80 17562.96 10165.50 9134.17 19667.19 7769.68 8739.20 19979.39 11779.44 10785.68 13876.73 166
PatchMatch-RL67.78 13766.65 15769.10 10973.01 15272.69 16968.49 16561.85 12362.93 11260.20 8956.83 12850.42 18769.52 7075.62 15274.46 16281.51 16773.62 184
thres600view767.68 13868.43 14066.80 14077.90 10578.86 11973.84 13862.75 10556.07 15844.70 17552.85 16252.81 17355.58 16280.41 9777.77 12686.05 12980.28 141
COLMAP_ROBcopyleft62.73 1567.66 13966.76 15668.70 11380.49 8777.98 13175.29 11262.95 10263.62 10749.96 14247.32 18750.72 18658.57 13676.87 14475.50 15684.94 15175.33 176
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CDS-MVSNet67.65 14069.83 12165.09 14975.39 12976.55 14674.42 12863.75 9053.55 17549.37 14759.41 11062.45 11644.44 18879.71 11079.82 9883.17 16377.36 161
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RPSCF67.64 14171.25 10963.43 16261.86 20270.73 17667.26 17050.86 18974.20 5958.91 9167.49 7569.33 8864.10 10171.41 17668.45 19077.61 18177.17 162
thres100view90067.60 14268.02 14367.12 13577.83 10877.75 13573.90 13762.52 11556.64 15246.82 16052.65 16453.47 16655.92 15878.77 12477.62 12985.72 13779.23 150
Baseline_NR-MVSNet67.53 14368.77 13566.09 14675.99 12174.75 16272.43 15168.41 5361.33 12538.33 18951.31 17254.13 15856.03 15779.22 11878.19 12185.37 14482.45 117
thisisatest051567.40 14468.78 13465.80 14770.02 17875.24 15869.36 16257.37 16354.94 16853.67 12255.53 13554.85 15258.00 14178.19 13078.91 11386.39 12183.78 109
USDC67.36 14567.90 14666.74 14271.72 16375.23 15971.58 15360.28 13867.45 8050.54 14160.93 9845.20 20462.08 11276.56 14874.50 16184.25 15575.38 175
EG-PatchMatch MVS67.24 14666.94 15467.60 12578.73 10081.35 9273.28 14759.49 14746.89 19951.42 13643.65 19353.49 16455.50 16481.38 8280.66 8687.15 9581.17 131
dmvs_re67.22 14767.92 14566.40 14475.94 12470.55 17874.97 12163.87 8957.07 14944.75 17354.29 14256.72 14354.65 16779.53 11477.51 13284.20 15679.78 146
UniMVSNet_ETH3D67.18 14867.03 15367.36 12974.44 13978.12 12674.07 13566.38 6752.22 18246.87 15948.64 18251.84 18056.96 15077.29 13878.53 11685.42 14382.59 116
v7n67.05 14966.94 15467.17 13372.35 15878.97 11673.26 14858.88 15651.16 18850.90 13848.21 18450.11 18960.96 12577.70 13477.38 13586.68 11485.05 94
IterMVS-SCA-FT66.89 15069.22 12964.17 15571.30 17175.64 15371.33 15453.17 17657.63 14649.08 14960.72 10060.05 12663.09 10574.99 15673.92 16377.07 18581.57 128
IterMVS66.36 15168.30 14264.10 15669.48 18374.61 16373.41 14650.79 19057.30 14848.28 15360.64 10159.92 12760.85 12974.14 16172.66 17081.80 16678.82 153
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TDRefinement66.09 15265.03 16967.31 13069.73 18076.75 14475.33 11064.55 8360.28 13249.72 14645.63 19042.83 20760.46 13075.75 15175.95 15284.08 15778.04 156
pm-mvs165.62 15367.42 15063.53 16173.66 14976.39 14769.66 15960.87 13249.73 19243.97 17651.24 17357.00 14248.16 18279.89 10877.84 12584.85 15379.82 145
tpm cat165.41 15463.81 17767.28 13275.61 12872.88 16875.32 11152.85 17862.97 11163.66 8053.24 15553.29 17161.83 11965.54 20064.14 20274.43 19774.60 178
SCA65.40 15566.58 15864.02 15770.65 17473.37 16767.35 16953.46 17463.66 10654.14 11660.84 9960.20 12561.50 12269.96 19068.14 19177.01 18669.91 190
anonymousdsp65.28 15667.98 14462.13 16558.73 20873.98 16567.10 17250.69 19148.41 19547.66 15854.27 14352.75 17561.45 12476.71 14780.20 9387.13 9989.53 53
PMMVS65.06 15769.17 13060.26 17455.25 21463.43 20166.71 17643.01 20962.41 11550.64 13969.44 6467.04 10263.29 10474.36 16073.54 16682.68 16473.99 183
CR-MVSNet64.83 15865.54 16364.01 15870.64 17569.41 18065.97 18052.74 17957.81 14252.65 12854.27 14356.31 14560.92 12672.20 17273.09 16881.12 17075.69 172
TransMVSNet (Re)64.74 15965.66 16263.66 16077.40 11475.33 15769.86 15862.67 11347.63 19741.21 18350.01 17752.33 17645.31 18779.57 11277.69 12885.49 14177.07 164
test-LLR64.42 16064.36 17364.49 15475.02 13263.93 19866.61 17761.96 12154.41 17047.77 15557.46 12460.25 12355.20 16570.80 18369.33 18180.40 17374.38 180
MDTV_nov1_ep1364.37 16165.24 16563.37 16368.94 18570.81 17572.40 15250.29 19360.10 13353.91 12060.07 10559.15 13057.21 14869.43 19367.30 19377.47 18269.78 192
tfpnnormal64.27 16263.64 17865.02 15075.84 12575.61 15471.24 15662.52 11547.79 19642.97 17942.65 19544.49 20552.66 17578.77 12476.86 14284.88 15279.29 149
PatchmatchNetpermissive64.21 16364.65 17163.69 15971.29 17268.66 18469.63 16051.70 18663.04 11053.77 12159.83 10858.34 13560.23 13168.54 19666.06 19875.56 19268.08 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dps64.00 16462.99 18065.18 14873.29 15072.07 17168.98 16453.07 17757.74 14458.41 9655.55 13447.74 19760.89 12869.53 19267.14 19576.44 18971.19 188
pmmvs-eth3d63.52 16562.44 18764.77 15266.82 19170.12 17969.41 16159.48 14854.34 17352.71 12746.24 18944.35 20656.93 15172.37 16773.77 16583.30 16175.91 169
WR-MVS63.03 16667.40 15157.92 18475.14 13177.60 13860.56 19866.10 7054.11 17423.88 20753.94 14853.58 16134.50 20373.93 16277.71 12787.35 9380.94 132
PEN-MVS62.96 16765.77 16159.70 17773.98 14475.45 15563.39 19167.61 6052.49 18025.49 20653.39 15149.12 19340.85 19671.94 17477.26 13886.86 10680.72 135
TinyColmap62.84 16861.03 19364.96 15169.61 18171.69 17268.48 16659.76 14655.41 16147.69 15747.33 18634.20 21662.76 10874.52 15872.59 17181.44 16871.47 187
CP-MVSNet62.68 16965.49 16459.40 18071.84 16175.34 15662.87 19367.04 6552.64 17927.19 20453.38 15248.15 19541.40 19471.26 17775.68 15386.07 12782.00 122
gg-mvs-nofinetune62.55 17065.05 16859.62 17878.72 10177.61 13770.83 15753.63 17139.71 21122.04 21336.36 20564.32 11047.53 18381.16 8879.03 11185.00 15077.17 162
CVMVSNet62.55 17065.89 15958.64 18266.95 18969.15 18266.49 17956.29 16852.46 18132.70 19759.27 11158.21 13650.09 17971.77 17571.39 17579.31 17678.99 152
CMPMVSbinary47.78 1762.49 17262.52 18562.46 16470.01 17970.66 17762.97 19251.84 18551.98 18456.71 10642.87 19453.62 16057.80 14372.23 17070.37 17875.45 19475.91 169
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs662.41 17362.88 18161.87 16671.38 16975.18 16167.76 16859.45 14941.64 20742.52 18137.33 20352.91 17246.87 18477.67 13576.26 15083.23 16279.18 151
tpm62.41 17363.15 17961.55 16872.24 15963.79 20071.31 15546.12 20757.82 14155.33 11159.90 10754.74 15353.63 17167.24 19964.29 20170.65 20774.25 182
PS-CasMVS62.38 17565.06 16759.25 18171.73 16275.21 16062.77 19466.99 6651.94 18626.96 20552.00 16947.52 19841.06 19571.16 18075.60 15485.97 13481.97 124
pmmvs562.37 17664.04 17560.42 17265.03 19471.67 17367.17 17152.70 18150.30 18944.80 17254.23 14651.19 18449.37 18072.88 16673.48 16783.45 16074.55 179
tpmrst62.00 17762.35 18861.58 16771.62 16664.14 19769.07 16348.22 20362.21 11753.93 11958.26 12155.30 15055.81 16063.22 20562.62 20470.85 20670.70 189
PatchT61.97 17864.04 17559.55 17960.49 20467.40 18856.54 20548.65 19956.69 15152.65 12851.10 17452.14 17960.92 12672.20 17273.09 16878.03 18075.69 172
DTE-MVSNet61.85 17964.96 17058.22 18374.32 14074.39 16461.01 19767.85 5851.76 18721.91 21453.28 15348.17 19437.74 20072.22 17176.44 14886.52 11978.49 154
SixPastTwentyTwo61.84 18062.45 18661.12 17069.20 18472.20 17062.03 19557.40 16246.54 20038.03 19157.14 12741.72 20958.12 14069.67 19171.58 17481.94 16578.30 155
WR-MVS_H61.83 18165.87 16057.12 18771.72 16376.87 14261.45 19666.19 6851.97 18522.92 21153.13 15852.30 17833.80 20471.03 18175.00 15886.65 11580.78 134
LTVRE_ROB59.44 1661.82 18262.64 18460.87 17172.83 15777.19 14064.37 18758.97 15333.56 21628.00 20352.59 16642.21 20863.93 10274.52 15876.28 14977.15 18482.13 118
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RPMNet61.71 18362.88 18160.34 17369.51 18269.41 18063.48 19049.23 19557.81 14245.64 17050.51 17550.12 18853.13 17468.17 19868.49 18981.07 17175.62 174
TESTMET0.1,161.10 18464.36 17357.29 18657.53 20963.93 19866.61 17736.22 21354.41 17047.77 15557.46 12460.25 12355.20 16570.80 18369.33 18180.40 17374.38 180
test-mter60.84 18564.62 17256.42 18955.99 21264.18 19665.39 18234.23 21454.39 17246.21 16657.40 12659.49 12955.86 15971.02 18269.65 18080.87 17276.20 168
PM-MVS60.48 18660.94 19459.94 17558.85 20766.83 19164.27 18851.39 18755.03 16648.03 15450.00 17940.79 21158.26 13969.20 19467.13 19678.84 17877.60 159
MDTV_nov1_ep13_2view60.16 18760.51 19559.75 17665.39 19369.05 18368.00 16748.29 20151.99 18345.95 16848.01 18549.64 19253.39 17268.83 19566.52 19777.47 18269.55 193
EPMVS60.00 18861.97 18957.71 18568.46 18663.17 20464.54 18648.23 20263.30 10844.72 17460.19 10356.05 14750.85 17865.27 20362.02 20569.44 20963.81 203
TAMVS59.58 18962.81 18355.81 19166.03 19265.64 19563.86 18948.74 19849.95 19137.07 19354.77 14058.54 13344.44 18872.29 16971.79 17274.70 19666.66 198
test0.0.03 158.80 19061.58 19155.56 19275.02 13268.45 18659.58 20261.96 12152.74 17829.57 20049.75 18054.56 15431.46 20671.19 17869.77 17975.75 19064.57 201
CHOSEN 280x42058.70 19161.88 19054.98 19455.45 21350.55 21664.92 18440.36 21055.21 16238.13 19048.31 18363.76 11263.03 10773.73 16468.58 18868.00 21273.04 185
MIMVSNet58.52 19261.34 19255.22 19360.76 20367.01 19066.81 17449.02 19756.43 15438.90 18740.59 20054.54 15540.57 19773.16 16571.65 17375.30 19566.00 199
FMVSNet557.24 19360.02 19653.99 19756.45 21162.74 20565.27 18347.03 20455.14 16339.55 18640.88 19853.42 16841.83 19172.35 16871.10 17773.79 19964.50 202
gm-plane-assit57.00 19457.62 20156.28 19076.10 12062.43 20747.62 21546.57 20533.84 21523.24 20937.52 20240.19 21259.61 13279.81 10977.55 13184.55 15472.03 186
FC-MVSNet-test56.90 19565.20 16647.21 20566.98 18863.20 20349.11 21458.60 15859.38 13611.50 22165.60 8056.68 14424.66 21371.17 17971.36 17672.38 20369.02 194
Anonymous2023120656.36 19657.80 20054.67 19570.08 17766.39 19260.46 19957.54 16149.50 19429.30 20133.86 20846.64 19935.18 20270.44 18768.88 18575.47 19368.88 195
ADS-MVSNet55.94 19758.01 19853.54 19962.48 20158.48 21059.12 20346.20 20659.65 13542.88 18052.34 16853.31 17046.31 18562.00 20760.02 20864.23 21460.24 210
pmnet_mix0255.30 19857.01 20253.30 20064.14 19759.09 20958.39 20450.24 19453.47 17638.68 18849.75 18045.86 20240.14 19865.38 20260.22 20768.19 21165.33 200
EU-MVSNet54.63 19958.69 19749.90 20356.99 21062.70 20656.41 20650.64 19245.95 20223.14 21050.42 17646.51 20036.63 20165.51 20164.85 20075.57 19174.91 177
MVS-HIRNet54.41 20052.10 20757.11 18858.99 20656.10 21349.68 21349.10 19646.18 20152.15 13233.18 20946.11 20156.10 15663.19 20659.70 20976.64 18860.25 209
testgi54.39 20157.86 19950.35 20271.59 16867.24 18954.95 20753.25 17543.36 20423.78 20844.64 19147.87 19624.96 21170.45 18668.66 18773.60 20062.78 206
test20.0353.93 20256.28 20351.19 20172.19 16065.83 19353.20 20961.08 12842.74 20522.08 21237.07 20445.76 20324.29 21470.44 18769.04 18374.31 19863.05 205
MDA-MVSNet-bldmvs53.37 20353.01 20653.79 19843.67 21867.95 18759.69 20157.92 16043.69 20332.41 19841.47 19727.89 22152.38 17656.97 21365.99 19976.68 18767.13 197
FPMVS51.87 20450.00 20954.07 19666.83 19057.25 21160.25 20050.91 18850.25 19034.36 19536.04 20632.02 21841.49 19358.98 21156.07 21070.56 20859.36 211
MIMVSNet149.27 20553.25 20544.62 20744.61 21661.52 20853.61 20852.18 18241.62 20818.68 21728.14 21441.58 21025.50 20968.46 19769.04 18373.15 20162.37 207
pmmvs347.65 20649.08 21145.99 20644.61 21654.79 21450.04 21131.95 21733.91 21429.90 19930.37 21033.53 21746.31 18563.50 20463.67 20373.14 20263.77 204
N_pmnet47.35 20750.13 20844.11 20859.98 20551.64 21551.86 21044.80 20849.58 19320.76 21540.65 19940.05 21329.64 20759.84 20955.15 21157.63 21554.00 213
new-patchmatchnet46.97 20849.47 21044.05 20962.82 19956.55 21245.35 21652.01 18342.47 20617.04 21935.73 20735.21 21521.84 21761.27 20854.83 21265.26 21360.26 208
GG-mvs-BLEND46.86 20967.51 14922.75 2140.05 22676.21 14964.69 1850.04 22261.90 1190.09 22755.57 13371.32 760.08 22270.54 18567.19 19471.58 20469.86 191
PMVScopyleft39.38 1846.06 21043.30 21249.28 20462.93 19838.75 21841.88 21753.50 17333.33 21735.46 19428.90 21331.01 21933.04 20558.61 21254.63 21368.86 21057.88 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet38.40 21142.64 21333.44 21137.54 22145.00 21736.60 21832.72 21640.27 20912.72 22029.89 21128.90 22024.78 21253.17 21452.90 21456.31 21648.34 214
Gipumacopyleft36.38 21235.80 21437.07 21045.76 21533.90 21929.81 21948.47 20039.91 21018.02 2188.00 2228.14 22625.14 21059.29 21061.02 20655.19 21740.31 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS225.60 21329.75 21520.76 21528.00 22230.93 22023.10 22129.18 21823.14 2191.46 22618.23 21816.54 2235.08 22040.22 21541.40 21637.76 21837.79 217
test_method22.26 21425.94 21617.95 2163.24 2257.17 22523.83 2207.27 22037.35 21320.44 21621.87 21739.16 21418.67 21834.56 21620.84 22034.28 21920.64 221
E-PMN21.77 21518.24 21825.89 21240.22 21919.58 22212.46 22439.87 21118.68 2216.71 2239.57 2194.31 22922.36 21619.89 22027.28 21833.73 22028.34 219
EMVS20.98 21617.15 21925.44 21339.51 22019.37 22312.66 22339.59 21219.10 2206.62 2249.27 2204.40 22822.43 21517.99 22124.40 21931.81 22125.53 220
MVEpermissive19.12 1920.47 21723.27 21717.20 21712.66 22425.41 22110.52 22534.14 21514.79 2226.53 2258.79 2214.68 22716.64 21929.49 21841.63 21522.73 22338.11 216
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs0.09 2180.15 2200.02 2190.01 2270.02 2270.05 2280.01 2230.11 2230.01 2280.26 2240.01 2300.06 2240.10 2220.10 2210.01 2250.43 223
test1230.09 2180.14 2210.02 2190.00 2280.02 2270.02 2290.01 2230.09 2240.00 2290.30 2230.00 2310.08 2220.03 2230.09 2220.01 2250.45 222
uanet_test0.00 2200.00 2220.00 2210.00 2280.00 2290.00 2300.00 2250.00 2250.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2210.00 2280.00 2290.00 2300.00 2250.00 2250.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2210.00 2280.00 2290.00 2300.00 2250.00 2250.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
TPM-MVS90.07 2188.36 3588.45 2977.10 2575.60 3783.98 2971.33 6389.75 4389.62 51
RE-MVS-def46.24 165
9.1486.88 16
SR-MVS88.99 3473.57 2487.54 14
Anonymous20240521172.16 10580.85 8381.85 8776.88 10465.40 7662.89 11346.35 18867.99 9962.05 11381.15 8980.38 9185.97 13484.50 102
our_test_367.93 18770.99 17466.89 173
ambc53.42 20464.99 19563.36 20249.96 21247.07 19837.12 19228.97 21216.36 22441.82 19275.10 15567.34 19271.55 20575.72 171
MTAPA83.48 186.45 19
MTMP82.66 584.91 26
Patchmatch-RL test2.85 227
tmp_tt14.50 21814.68 2237.17 22510.46 2262.21 22137.73 21228.71 20225.26 21516.98 2224.37 22131.49 21729.77 21726.56 222
XVS86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
X-MVStestdata86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
mPP-MVS89.90 2581.29 42
NP-MVS80.10 44
Patchmtry65.80 19465.97 18052.74 17952.65 128
DeepMVS_CXcopyleft18.74 22418.55 2228.02 21926.96 2187.33 22223.81 21613.05 22525.99 20825.17 21922.45 22436.25 218