This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS97.98 198.36 197.54 398.94 1799.29 298.81 396.64 397.14 295.16 497.96 299.61 296.92 1198.00 197.24 898.75 1299.25 2
DVP-MVS97.93 298.23 297.58 299.05 699.31 198.64 596.62 497.56 195.08 596.61 1399.64 197.32 197.91 397.31 698.77 1199.26 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft97.83 398.13 397.48 498.83 2399.19 398.99 196.70 196.05 1994.39 1098.30 199.47 397.02 697.75 697.02 1398.98 299.10 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS97.79 497.96 597.60 199.20 299.10 598.88 296.68 296.81 694.64 697.84 398.02 1097.24 397.74 797.02 1398.97 399.16 5
MSP-MVS97.70 598.09 497.24 699.00 1199.17 498.76 496.41 996.91 493.88 1597.72 499.04 696.93 1097.29 1597.31 698.45 3199.23 3
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft97.53 697.93 697.07 1199.21 199.02 798.08 1996.25 1196.36 1193.57 1696.56 1499.27 496.78 1697.91 397.43 398.51 2198.94 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS97.35 797.73 796.90 1597.35 4598.66 1397.85 2596.25 1196.86 594.54 996.75 1199.13 596.99 796.94 2396.58 2298.39 3999.20 4
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.97.31 897.64 896.92 1497.28 4798.56 2298.61 695.48 2996.72 794.03 1496.73 1298.29 897.15 497.61 1196.42 2598.96 499.13 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS97.30 997.41 1097.18 899.02 1098.60 2098.15 1696.24 1396.12 1794.10 1295.54 2597.99 1196.99 797.97 297.17 998.57 1998.50 27
HPM-MVS++copyleft97.22 1097.40 1197.01 1299.08 498.55 2398.19 1496.48 696.02 2093.28 2196.26 1798.71 796.76 1797.30 1496.25 3498.30 4998.68 13
SF-MVS97.20 1197.29 1397.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 597.57 1896.23 2696.78 2696.15 3798.79 998.55 24
APD-MVScopyleft97.12 1297.05 1797.19 799.04 798.63 1898.45 796.54 594.81 3793.50 1796.10 1997.40 2196.81 1397.05 2096.82 1898.80 798.56 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS97.11 1397.19 1597.00 1398.97 1398.73 1198.37 1195.69 2296.60 893.28 2196.87 896.64 2897.27 296.64 3196.33 3298.44 3298.56 19
SteuartSystems-ACMMP97.10 1497.49 996.65 1998.97 1398.95 898.43 895.96 1895.12 2991.46 2996.85 997.60 1796.37 2497.76 597.16 1098.68 1398.97 10
Skip Steuart: Steuart Systems R&D Blog.
zzz-MVS96.98 1596.68 2397.33 599.09 398.71 1298.43 896.01 1696.11 1895.19 392.89 3397.32 2296.84 1297.20 1696.09 4098.44 3298.46 31
ACMMP_NAP96.93 1697.27 1496.53 2499.06 598.95 898.24 1396.06 1595.66 2290.96 3495.63 2497.71 1596.53 2097.66 996.68 1998.30 4998.61 18
ACMMPR96.92 1796.96 1896.87 1698.99 1298.78 1098.38 1095.52 2596.57 992.81 2596.06 2095.90 3697.07 596.60 3396.34 3198.46 2898.42 32
MCST-MVS96.83 1897.06 1696.57 2098.88 2198.47 3198.02 2196.16 1495.58 2490.96 3495.78 2397.84 1396.46 2297.00 2296.17 3698.94 598.55 24
NCCC96.75 1996.67 2496.85 1799.03 998.44 3398.15 1696.28 1096.32 1292.39 2692.16 3597.55 1996.68 1997.32 1296.65 2198.55 2098.26 36
CP-MVS96.68 2096.59 2696.77 1898.85 2298.58 2198.18 1595.51 2795.34 2692.94 2495.21 2896.25 3196.79 1596.44 3895.77 4598.35 4198.56 19
MP-MVScopyleft96.56 2196.72 2296.37 2598.93 1998.48 2998.04 2095.55 2494.32 4190.95 3695.88 2297.02 2596.29 2596.77 2896.01 4298.47 2698.56 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast93.32 196.48 2296.42 2796.56 2198.70 2698.31 3797.97 2295.76 2196.31 1392.01 2891.43 4095.42 4096.46 2297.65 1097.69 198.49 2598.12 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM96.19 2397.39 1294.78 3897.70 4098.41 3497.72 2795.49 2896.47 1086.66 6696.35 1597.85 1293.99 5097.19 1896.37 2797.12 12599.13 6
PGM-MVS96.16 2496.33 2895.95 2799.04 798.63 1898.32 1292.76 4393.42 4890.49 3996.30 1695.31 4196.71 1896.46 3696.02 4198.38 4098.19 40
train_agg96.15 2596.64 2595.58 3498.44 2898.03 4598.14 1895.40 3293.90 4587.72 5596.26 1798.10 995.75 3096.25 4395.45 5098.01 7998.47 29
X-MVS96.07 2696.33 2895.77 3098.94 1798.66 1397.94 2395.41 3195.12 2988.03 5193.00 3296.06 3295.85 2896.65 3096.35 2898.47 2698.48 28
MSLP-MVS++96.05 2795.63 3196.55 2298.33 3098.17 4096.94 3794.61 3594.70 3994.37 1189.20 5195.96 3596.81 1395.57 5497.33 598.24 5798.47 29
TSAR-MVS + GP.95.86 2896.95 2094.60 4394.07 8398.11 4296.30 4491.76 5195.67 2191.07 3296.82 1097.69 1695.71 3195.96 4895.75 4698.68 1398.63 15
PHI-MVS95.86 2896.93 2194.61 4297.60 4298.65 1796.49 4193.13 4194.07 4387.91 5497.12 797.17 2493.90 5396.46 3696.93 1698.64 1598.10 47
CSCG95.68 3095.46 3595.93 2898.71 2599.07 697.13 3693.55 3895.48 2593.35 2090.61 4593.82 4695.16 3594.60 7695.57 4897.70 10099.08 9
xxxxxxxxxxxxxcwj95.62 3194.35 4597.10 998.95 1598.51 2797.51 2996.48 696.17 1594.64 697.32 576.98 13696.23 2696.78 2696.15 3798.79 998.55 24
CPTT-MVS95.54 3295.07 3696.10 2697.88 3697.98 4897.92 2494.86 3394.56 4092.16 2791.01 4295.71 3796.97 994.56 7793.50 8596.81 14898.14 43
ACMMPcopyleft95.54 3295.49 3495.61 3398.27 3198.53 2597.16 3594.86 3394.88 3589.34 4295.36 2791.74 5595.50 3395.51 5594.16 6998.50 2398.22 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS92.65 295.50 3496.96 1893.79 5196.44 5798.21 3893.51 9294.08 3796.94 389.29 4393.08 3196.77 2793.82 5497.68 897.40 495.59 17198.65 14
DeepC-MVS92.10 395.22 3594.77 3995.75 3197.77 3898.54 2497.63 2895.96 1895.07 3288.85 4785.35 7391.85 5495.82 2996.88 2597.10 1198.44 3298.63 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS95.07 3694.84 3895.34 3597.44 4497.49 6297.76 2695.52 2594.88 3588.92 4687.25 5896.44 3094.41 4295.78 5196.11 3997.99 8195.95 120
3Dnovator+90.56 595.06 3794.56 4295.65 3298.11 3298.15 4197.19 3491.59 5395.11 3193.23 2381.99 9994.71 4395.43 3496.48 3596.88 1798.35 4198.63 15
AdaColmapbinary95.02 3893.71 4996.54 2398.51 2797.76 5496.69 4095.94 2093.72 4693.50 1789.01 5290.53 6596.49 2194.51 7993.76 7898.07 7396.69 96
CANet94.85 3994.92 3794.78 3897.25 4898.52 2697.20 3391.81 4993.25 4991.06 3386.29 6594.46 4492.99 6497.02 2196.68 1998.34 4398.20 39
MVS_111021_LR94.84 4095.57 3294.00 4597.11 5097.72 5894.88 6291.16 5795.24 2888.74 4896.03 2191.52 5894.33 4695.96 4895.01 5797.79 9197.49 72
MVS_111021_HR94.84 4095.91 3093.60 5297.35 4598.46 3295.08 5991.19 5694.18 4285.97 7095.38 2692.56 5193.61 5796.61 3296.25 3498.40 3797.92 54
CDPH-MVS94.80 4295.50 3393.98 4798.34 2998.06 4397.41 3193.23 4092.81 5282.98 9392.51 3494.82 4293.53 5896.08 4696.30 3398.42 3597.94 52
3Dnovator90.28 794.70 4394.34 4695.11 3698.06 3398.21 3896.89 3891.03 5994.72 3891.45 3082.87 9093.10 4994.61 3996.24 4497.08 1298.63 1698.16 41
OMC-MVS94.49 4494.36 4494.64 4197.17 4997.73 5695.49 5692.25 4596.18 1490.34 4088.51 5392.88 5094.90 3894.92 6494.17 6897.69 10196.15 115
PLCcopyleft90.69 494.32 4592.99 5695.87 2997.91 3496.49 8695.95 5194.12 3694.94 3394.09 1385.90 6990.77 6295.58 3294.52 7893.32 9197.55 10895.00 140
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS_030494.30 4694.68 4093.86 5096.33 5998.48 2997.41 3191.20 5592.75 5386.96 6386.03 6893.81 4792.64 6896.89 2496.54 2498.61 1798.24 37
QAPM94.13 4794.33 4793.90 4897.82 3798.37 3696.47 4290.89 6092.73 5585.63 7785.35 7393.87 4594.17 4895.71 5395.90 4398.40 3798.42 32
EPNet93.92 4894.40 4393.36 5497.89 3596.55 8496.08 4792.14 4691.65 6389.16 4494.07 3090.17 6987.78 11995.24 5894.97 5897.09 12798.15 42
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETV-MVS93.80 4994.57 4192.91 6493.98 8597.50 6193.62 8988.70 8291.95 5987.57 5690.21 4790.79 6194.56 4097.20 1696.35 2899.02 197.98 49
DELS-MVS93.71 5093.47 5194.00 4596.82 5498.39 3596.80 3991.07 5889.51 9389.94 4183.80 8389.29 7090.95 8597.32 1297.65 298.42 3598.32 35
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNLPA93.69 5192.50 6295.06 3797.11 5097.36 6493.88 8293.30 3995.64 2393.44 1980.32 10790.73 6394.99 3793.58 9593.33 8997.67 10396.57 101
TAPA-MVS90.35 693.69 5193.52 5093.90 4896.89 5397.62 5996.15 4591.67 5294.94 3385.97 7087.72 5791.96 5394.40 4393.76 9393.06 10098.30 4995.58 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS93.68 5394.33 4792.93 6394.15 7998.04 4494.43 6487.99 9191.64 6487.54 5788.22 5592.09 5294.56 4096.77 2895.85 4498.88 697.71 63
canonicalmvs93.08 5493.09 5493.07 6194.24 7897.86 5095.45 5787.86 9994.00 4487.47 5888.32 5482.37 10295.13 3693.96 9296.41 2698.27 5398.73 12
PCF-MVS90.19 892.98 5592.07 7094.04 4496.39 5897.87 4996.03 4895.47 3087.16 11185.09 8784.81 7793.21 4893.46 6091.98 12691.98 12397.78 9297.51 71
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_BlendedMVS92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9296.39 3995.26 5398.34 4397.81 59
PVSNet_Blended92.80 5692.44 6493.23 5596.02 6197.83 5293.74 8690.58 6191.86 6090.69 3785.87 7182.04 10490.01 9296.39 3995.26 5398.34 4397.81 59
EIA-MVS92.72 5892.96 5792.44 6793.86 9297.76 5493.13 9888.65 8489.78 9086.68 6586.69 6287.57 7193.74 5596.07 4795.32 5198.58 1897.53 70
MAR-MVS92.71 5992.63 6092.79 6597.70 4097.15 7093.75 8587.98 9390.71 7085.76 7586.28 6686.38 7694.35 4594.95 6295.49 4997.22 11897.44 73
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft88.18 1192.51 6091.61 7793.55 5397.74 3998.02 4695.66 5490.46 6389.14 9686.50 6775.80 13190.38 6892.69 6794.99 6195.30 5298.27 5397.63 64
CLD-MVS92.50 6191.96 7293.13 5893.93 8996.24 9295.69 5388.77 8192.92 5089.01 4588.19 5681.74 10793.13 6393.63 9493.08 9898.23 5897.91 56
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TSAR-MVS + COLMAP92.39 6292.31 6792.47 6695.35 7396.46 8896.13 4692.04 4895.33 2780.11 10994.95 2977.35 13494.05 4994.49 8093.08 9897.15 12294.53 144
HQP-MVS92.39 6292.49 6392.29 7095.65 6595.94 9895.64 5592.12 4792.46 5779.65 11191.97 3782.68 9892.92 6693.47 10092.77 10597.74 9698.12 45
EPP-MVSNet92.13 6493.06 5591.05 8693.66 9797.30 6592.18 11087.90 9590.24 8083.63 9086.14 6790.52 6790.76 8794.82 6994.38 6598.18 6397.98 49
ACMP89.13 992.03 6591.70 7692.41 6894.92 7496.44 9093.95 7889.96 6691.81 6285.48 8290.97 4379.12 11892.42 7093.28 10692.55 10997.76 9497.74 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LS3D91.97 6690.98 8493.12 5997.03 5297.09 7395.33 5895.59 2392.47 5679.26 11381.60 10282.77 9794.39 4494.28 8194.23 6797.14 12494.45 146
PVSNet_Blended_VisFu91.92 6792.39 6691.36 8495.45 7197.85 5192.25 10989.54 7488.53 10387.47 5879.82 10990.53 6585.47 14496.31 4295.16 5697.99 8198.56 19
IS_MVSNet91.87 6893.35 5390.14 9794.09 8297.73 5693.09 9988.12 9088.71 10079.98 11084.49 7890.63 6487.49 12397.07 1996.96 1598.07 7397.88 58
LGP-MVS_train91.83 6992.04 7191.58 7695.46 6996.18 9495.97 5089.85 6790.45 7677.76 11691.92 3880.07 11592.34 7294.27 8293.47 8698.11 7097.90 57
MVS_Test91.81 7092.19 6891.37 8393.24 9996.95 7794.43 6486.25 11291.45 6783.45 9186.31 6485.15 8492.93 6593.99 8894.71 6297.92 8596.77 94
MVSTER91.73 7191.61 7791.86 7393.18 10094.56 10794.37 6787.90 9590.16 8488.69 4989.23 5081.28 10988.92 11295.75 5293.95 7598.12 6896.37 106
casdiffmvs91.72 7291.16 8292.38 6993.16 10197.15 7093.95 7889.49 7591.58 6686.03 6980.75 10680.95 11093.16 6295.25 5795.22 5598.50 2397.23 81
ACMM88.76 1091.70 7390.43 8793.19 5795.56 6695.14 10493.35 9591.48 5492.26 5887.12 6184.02 8179.34 11793.99 5094.07 8792.68 10697.62 10795.50 129
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UGNet91.52 7493.41 5289.32 10394.13 8097.15 7091.83 11989.01 7890.62 7385.86 7486.83 5991.73 5677.40 18494.68 7394.43 6497.71 9898.40 34
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
diffmvs91.37 7591.09 8391.70 7592.71 11296.47 8794.03 7688.78 8092.74 5485.43 8483.63 8580.37 11291.76 7793.39 10293.78 7797.50 11097.23 81
DCV-MVSNet91.24 7691.26 8091.22 8592.84 10893.44 13493.82 8386.75 10991.33 6885.61 7884.00 8285.46 8391.27 8092.91 10893.62 8097.02 13198.05 48
baseline91.19 7791.89 7390.38 8992.76 10995.04 10593.55 9184.54 13092.92 5085.71 7686.68 6386.96 7389.28 10292.00 12592.62 10896.46 15396.99 88
OPM-MVS91.08 7889.34 9793.11 6096.18 6096.13 9596.39 4392.39 4482.97 15081.74 9682.55 9680.20 11493.97 5294.62 7493.23 9298.00 8095.73 124
DI_MVS_plusplus_trai91.05 7990.15 9192.11 7192.67 11396.61 8296.03 4888.44 8690.25 7985.92 7273.73 13984.89 8691.92 7494.17 8594.07 7397.68 10297.31 79
thisisatest053091.04 8091.74 7490.21 9392.93 10797.00 7592.06 11587.63 10490.74 6981.51 9786.81 6082.48 9989.23 10494.81 7093.03 10297.90 8697.33 78
tttt051791.01 8191.71 7590.19 9592.98 10397.07 7491.96 11887.63 10490.61 7481.42 9886.76 6182.26 10389.23 10494.86 6893.03 10297.90 8697.36 76
UA-Net90.81 8292.58 6188.74 10994.87 7597.44 6392.61 10388.22 8882.35 15378.93 11485.20 7595.61 3879.56 17996.52 3496.57 2398.23 5894.37 147
baseline190.81 8290.29 8891.42 8093.67 9695.86 9993.94 8089.69 7289.29 9582.85 9482.91 8980.30 11389.60 9595.05 6094.79 6198.80 793.82 155
CHOSEN 280x42090.77 8492.14 6989.17 10593.86 9292.81 15793.16 9780.22 17490.21 8184.67 8989.89 4891.38 5990.57 9094.94 6392.11 11892.52 19393.65 157
CANet_DTU90.74 8592.93 5888.19 11494.36 7796.61 8294.34 6984.66 12790.66 7168.75 16390.41 4686.89 7489.78 9495.46 5694.87 5997.25 11795.62 126
FC-MVSNet-train90.55 8690.19 9090.97 8793.78 9495.16 10392.11 11488.85 7987.64 10883.38 9284.36 8078.41 12589.53 9694.69 7293.15 9798.15 6497.92 54
Vis-MVSNet (Re-imp)90.54 8792.76 5987.94 11893.73 9596.94 7892.17 11287.91 9488.77 9976.12 12483.68 8490.80 6079.49 18096.34 4196.35 2898.21 6096.46 103
MSDG90.42 8888.25 10892.94 6296.67 5694.41 11393.96 7792.91 4289.59 9286.26 6876.74 12480.92 11190.43 9192.60 11492.08 12097.44 11391.41 172
PatchMatch-RL90.30 8988.93 10191.89 7295.41 7295.68 10090.94 12288.67 8389.80 8986.95 6485.90 6972.51 14592.46 6993.56 9792.18 11596.93 14092.89 165
GBi-Net90.21 9090.11 9290.32 9188.66 15493.65 13094.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9993.97 8994.16 6998.31 4695.47 130
test190.21 9090.11 9290.32 9188.66 15493.65 13094.25 7285.78 11790.03 8585.56 7977.38 11786.13 7789.38 9993.97 8994.16 6998.31 4695.47 130
FMVSNet390.19 9290.06 9490.34 9088.69 15393.85 12294.58 6385.78 11790.03 8585.56 7977.38 11786.13 7789.22 10693.29 10594.36 6698.20 6195.40 134
ET-MVSNet_ETH3D89.93 9390.84 8588.87 10779.60 20696.19 9394.43 6486.56 11090.63 7280.75 10690.71 4477.78 13093.73 5691.36 13493.45 8798.15 6495.77 123
PMMVS89.88 9491.19 8188.35 11289.73 14491.97 17790.62 12581.92 16190.57 7580.58 10892.16 3586.85 7591.17 8292.31 11891.35 13496.11 15993.11 164
Anonymous2023121189.82 9588.18 10991.74 7492.52 11496.09 9693.38 9489.30 7788.95 9885.90 7364.55 18684.39 8792.41 7192.24 12193.06 10096.93 14097.95 51
Effi-MVS+89.79 9689.83 9589.74 9992.98 10396.45 8993.48 9384.24 13287.62 10976.45 12281.76 10077.56 13393.48 5994.61 7593.59 8197.82 9097.22 83
RPSCF89.68 9789.24 9890.20 9492.97 10592.93 15392.30 10787.69 10190.44 7785.12 8691.68 3985.84 8290.69 8887.34 18286.07 18492.46 19490.37 182
FMVSNet289.61 9889.14 9990.16 9688.66 15493.65 13094.25 7285.44 12188.57 10284.96 8873.53 14183.82 8989.38 9994.23 8394.68 6398.31 4695.47 130
tfpn200view989.55 9987.86 11491.53 7893.90 9097.26 6694.31 7189.74 6985.87 12381.15 10176.46 12670.38 15491.76 7794.92 6493.51 8298.28 5296.61 98
thres20089.49 10087.72 11691.55 7793.95 8797.25 6794.34 6989.74 6985.66 12681.18 10076.12 13070.19 15791.80 7594.92 6493.51 8298.27 5396.40 105
thres40089.40 10187.58 12191.53 7894.06 8497.21 6994.19 7589.83 6885.69 12581.08 10375.50 13369.76 15891.80 7594.79 7193.51 8298.20 6196.60 99
thres100view90089.36 10287.61 11991.39 8193.90 9096.86 8094.35 6889.66 7385.87 12381.15 10176.46 12670.38 15491.17 8294.09 8693.43 8898.13 6796.16 114
Vis-MVSNetpermissive89.36 10291.49 7986.88 12992.10 11897.60 6092.16 11385.89 11484.21 13975.20 12682.58 9487.13 7277.40 18495.90 5095.63 4798.51 2197.36 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE89.29 10488.68 10389.99 9892.75 11196.03 9793.07 10183.79 13986.98 11381.34 9974.72 13678.92 11991.22 8193.31 10493.21 9497.78 9297.60 69
thres600view789.28 10587.47 12491.39 8194.12 8197.25 6793.94 8089.74 6985.62 12880.63 10775.24 13569.33 15991.66 7994.92 6493.23 9298.27 5396.72 95
baseline288.97 10689.50 9688.36 11191.14 13095.30 10190.13 13685.17 12487.24 11080.80 10584.46 7978.44 12485.60 14193.54 9891.87 12497.31 11595.66 125
IterMVS-LS88.60 10788.45 10488.78 10892.02 11992.44 16792.00 11783.57 14386.52 11978.90 11578.61 11481.34 10889.12 10790.68 14793.18 9597.10 12696.35 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268888.57 10887.82 11589.44 10295.46 6996.89 7993.74 8685.87 11589.63 9177.42 11961.38 19383.31 9288.80 11493.44 10193.16 9695.37 17696.95 90
Fast-Effi-MVS+88.56 10987.99 11289.22 10491.56 12595.21 10292.29 10882.69 15086.82 11477.73 11776.24 12973.39 14493.36 6194.22 8493.64 7997.65 10496.43 104
CDS-MVSNet88.34 11088.71 10287.90 11990.70 13894.54 10892.38 10586.02 11380.37 16279.42 11279.30 11083.43 9182.04 16793.39 10294.01 7496.86 14695.93 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EPNet_dtu88.32 11190.61 8685.64 14196.79 5592.27 16992.03 11690.31 6489.05 9765.44 18489.43 4985.90 8174.22 19392.76 10992.09 11995.02 18292.76 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS85.10 1487.98 11287.97 11387.99 11794.55 7696.86 8084.52 18888.21 8986.48 12188.54 5074.41 13877.74 13174.10 19589.65 16592.85 10498.06 7597.80 61
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HyFIR lowres test87.87 11386.42 13089.57 10095.56 6696.99 7692.37 10684.15 13486.64 11677.17 12057.65 19983.97 8891.08 8492.09 12492.44 11097.09 12795.16 137
MS-PatchMatch87.63 11487.61 11987.65 12293.95 8794.09 11892.60 10481.52 16686.64 11676.41 12373.46 14385.94 8085.01 14892.23 12290.00 16396.43 15590.93 178
COLMAP_ROBcopyleft84.39 1587.61 11586.03 13489.46 10195.54 6894.48 11091.77 12090.14 6587.16 11175.50 12573.41 14476.86 13887.33 12590.05 15989.76 16996.48 15290.46 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_part187.53 11684.97 14590.52 8892.11 11793.31 13993.32 9685.79 11679.56 17087.38 6062.89 19078.60 12289.25 10390.65 14892.17 11695.24 17897.62 66
Effi-MVS+-dtu87.51 11788.13 11086.77 13191.10 13194.90 10690.91 12382.67 15183.47 14671.55 14281.11 10577.04 13589.41 9892.65 11391.68 13095.00 18396.09 117
FMVSNet187.33 11886.00 13688.89 10687.13 18092.83 15693.08 10084.46 13181.35 15882.20 9566.33 17377.96 12888.96 10993.97 8994.16 6997.54 10995.38 135
ACMH85.51 1387.31 11986.59 12888.14 11593.96 8694.51 10989.00 15887.99 9181.58 15670.15 15378.41 11571.78 15090.60 8991.30 13591.99 12297.17 12196.58 100
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+85.75 1287.19 12086.02 13588.56 11093.42 9894.41 11389.91 14287.66 10383.45 14772.25 14076.42 12871.99 14990.78 8689.86 16090.94 13797.32 11495.11 139
test-LLR86.88 12188.28 10685.24 14591.22 12892.07 17387.41 17183.62 14184.58 13269.33 15983.00 8782.79 9584.24 15292.26 11989.81 16695.64 16993.44 158
UniMVSNet_NR-MVSNet86.80 12285.86 13987.89 12088.17 16094.07 11990.15 13488.51 8584.20 14073.45 13372.38 14970.30 15688.95 11090.25 15392.21 11498.12 6897.62 66
CostFormer86.78 12386.05 13387.62 12492.15 11693.20 14491.55 12175.83 18888.11 10685.29 8581.76 10076.22 14087.80 11884.45 19485.21 19093.12 18893.42 160
USDC86.73 12485.96 13787.63 12391.64 12293.97 12092.76 10284.58 12988.19 10470.67 15080.10 10867.86 16689.43 9791.81 12789.77 16896.69 15090.05 185
MDTV_nov1_ep1386.64 12587.50 12385.65 14090.73 13693.69 12889.96 14078.03 18389.48 9476.85 12184.92 7682.42 10186.14 13886.85 18686.15 18392.17 19588.97 190
Fast-Effi-MVS+-dtu86.25 12687.70 11784.56 15490.37 14193.70 12790.54 12678.14 18183.50 14565.37 18581.59 10375.83 14286.09 14091.70 12991.70 12896.88 14495.84 122
SCA86.25 12687.52 12284.77 15091.59 12393.90 12189.11 15573.25 20090.38 7872.84 13683.26 8683.79 9088.49 11686.07 18985.56 18793.33 18689.67 187
UniMVSNet (Re)86.22 12885.46 14487.11 12688.34 15894.42 11289.65 14887.10 10884.39 13674.61 12770.41 15768.10 16485.10 14791.17 13891.79 12697.84 8997.94 52
FC-MVSNet-test86.15 12989.10 10082.71 17989.83 14293.18 14587.88 16884.69 12686.54 11862.18 19482.39 9783.31 9274.18 19492.52 11691.86 12597.50 11093.88 154
DU-MVS86.12 13084.81 14887.66 12187.77 16793.78 12490.15 13487.87 9784.40 13473.45 13370.59 15464.82 18488.95 11090.14 15492.33 11197.76 9497.62 66
TESTMET0.1,186.11 13188.28 10683.59 16687.80 16592.07 17387.41 17177.12 18584.58 13269.33 15983.00 8782.79 9584.24 15292.26 11989.81 16695.64 16993.44 158
test-mter86.09 13288.38 10583.43 16987.89 16492.61 16186.89 17677.11 18684.30 13768.62 16582.57 9582.45 10084.34 15192.40 11790.11 16095.74 16494.21 150
pmmvs486.00 13384.28 15288.00 11687.80 16592.01 17689.94 14184.91 12586.79 11580.98 10473.41 14466.34 17588.12 11789.31 16888.90 17796.24 15893.20 163
EPMVS85.77 13486.24 13285.23 14692.76 10993.78 12489.91 14273.60 19690.19 8274.22 12882.18 9878.06 12787.55 12285.61 19185.38 18993.32 18788.48 194
thisisatest051585.70 13587.00 12584.19 15988.16 16193.67 12984.20 19084.14 13583.39 14872.91 13576.79 12374.75 14378.82 18292.57 11591.26 13596.94 13796.56 102
PatchmatchNetpermissive85.70 13586.65 12784.60 15391.79 12093.40 13589.27 15173.62 19590.19 8272.63 13882.74 9381.93 10687.64 12084.99 19284.29 19492.64 19289.00 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test0.0.03 185.58 13787.69 11883.11 17291.22 12892.54 16485.60 18783.62 14185.66 12667.84 17082.79 9279.70 11673.51 19791.15 13990.79 13996.88 14491.23 175
TranMVSNet+NR-MVSNet85.57 13884.41 15186.92 12887.67 17093.34 13790.31 13088.43 8783.07 14970.11 15469.99 16065.28 17986.96 12889.73 16292.27 11298.06 7597.17 85
CR-MVSNet85.48 13986.29 13184.53 15591.08 13392.10 17189.18 15373.30 19884.75 13071.08 14773.12 14777.91 12986.27 13691.48 13190.75 14296.27 15793.94 152
NR-MVSNet85.46 14084.54 15086.52 13488.33 15993.78 12490.45 12787.87 9784.40 13471.61 14170.59 15462.09 19382.79 16391.75 12891.75 12798.10 7197.44 73
IterMVS-SCA-FT85.44 14186.71 12683.97 16390.59 13990.84 19089.73 14678.34 18084.07 14366.40 17977.27 12278.66 12183.06 16091.20 13690.10 16195.72 16694.78 141
Baseline_NR-MVSNet85.28 14283.42 16087.46 12587.77 16790.80 19289.90 14487.69 10183.93 14474.16 12964.72 18466.43 17487.48 12490.14 15490.83 13897.73 9797.11 86
IterMVS85.25 14386.49 12983.80 16490.42 14090.77 19390.02 13878.04 18284.10 14166.27 18077.28 12178.41 12583.01 16190.88 14189.72 17095.04 18194.24 148
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS85.08 14485.65 14184.42 15689.77 14394.25 11689.26 15284.62 12881.19 15962.25 19375.72 13268.44 16384.14 15593.57 9691.68 13096.49 15194.71 143
dps85.00 14583.21 16587.08 12790.73 13692.55 16389.34 15075.29 19084.94 12987.01 6279.27 11167.69 16787.27 12684.22 19583.56 19592.83 19190.25 183
TDRefinement84.97 14683.39 16186.81 13092.97 10594.12 11792.18 11087.77 10082.78 15171.31 14568.43 16368.07 16581.10 17589.70 16489.03 17695.55 17391.62 170
TAMVS84.94 14784.95 14684.93 14988.82 15093.18 14588.44 16481.28 16877.16 18273.76 13275.43 13476.57 13982.04 16790.59 14990.79 13995.22 17990.94 177
RPMNet84.82 14885.90 13883.56 16791.10 13192.10 17188.73 16271.11 20384.75 13068.79 16273.56 14077.62 13285.33 14590.08 15889.43 17296.32 15693.77 156
UniMVSNet_ETH3D84.57 14981.40 18388.28 11389.34 14894.38 11590.33 12886.50 11174.74 19577.52 11859.90 19762.04 19488.78 11588.82 17592.65 10797.22 11897.24 80
pm-mvs184.55 15083.46 15785.82 13788.16 16193.39 13689.05 15785.36 12374.03 19672.43 13965.08 18171.11 15182.30 16693.48 9991.70 12897.64 10595.43 133
anonymousdsp84.51 15185.85 14082.95 17686.30 19193.51 13385.77 18580.38 17378.25 17763.42 19173.51 14272.20 14784.64 15093.21 10792.16 11797.19 12098.14 43
v2v48284.51 15183.05 16786.20 13687.25 17693.28 14190.22 13285.40 12279.94 16869.78 15667.74 16565.15 18187.57 12189.12 17190.55 14896.97 13395.60 127
V4284.48 15383.36 16385.79 13987.14 17993.28 14190.03 13783.98 13780.30 16371.20 14666.90 17067.17 16885.55 14289.35 16690.27 15396.82 14796.27 112
FMVSNet584.47 15484.72 14984.18 16083.30 20188.43 19888.09 16679.42 17784.25 13874.14 13073.15 14678.74 12083.65 15891.19 13791.19 13696.46 15386.07 199
v884.45 15583.30 16485.80 13887.53 17292.95 15190.31 13082.46 15580.46 16171.43 14366.99 16867.16 16986.14 13889.26 16990.22 15596.94 13796.06 118
v1084.18 15683.17 16685.37 14287.34 17492.68 15990.32 12981.33 16779.93 16969.23 16166.33 17365.74 17787.03 12790.84 14290.38 15096.97 13396.29 111
tpm cat184.13 15781.99 17786.63 13391.74 12191.50 18490.68 12475.69 18986.12 12285.44 8372.39 14870.72 15285.16 14680.89 20381.56 19991.07 20190.71 179
ADS-MVSNet84.08 15884.95 14683.05 17591.53 12791.75 18088.16 16570.70 20489.96 8869.51 15878.83 11276.97 13786.29 13584.08 19684.60 19292.13 19788.48 194
TinyColmap84.04 15982.01 17686.42 13590.87 13491.84 17888.89 16084.07 13682.11 15569.89 15571.08 15260.81 19989.04 10890.52 15089.19 17495.76 16388.50 193
v114484.03 16082.88 16885.37 14287.17 17893.15 14890.18 13383.31 14678.83 17367.85 16965.99 17564.99 18286.79 13090.75 14490.33 15296.90 14296.15 115
PatchT83.86 16185.51 14381.94 18588.41 15791.56 18378.79 20271.57 20284.08 14271.08 14770.62 15376.13 14186.27 13691.48 13190.75 14295.52 17493.94 152
CVMVSNet83.83 16285.53 14281.85 18689.60 14590.92 18887.81 16983.21 14780.11 16560.16 19876.47 12578.57 12376.79 18689.76 16190.13 15693.51 18592.75 167
tfpnnormal83.80 16381.26 18586.77 13189.60 14593.26 14389.72 14787.60 10672.78 19770.44 15160.53 19661.15 19885.55 14292.72 11091.44 13297.71 9896.92 91
tpmrst83.72 16483.45 15884.03 16292.21 11591.66 18188.74 16173.58 19788.14 10572.67 13777.37 12072.11 14886.34 13482.94 19982.05 19890.63 20389.86 186
v14883.61 16582.10 17485.37 14287.34 17492.94 15287.48 17085.72 12078.92 17273.87 13165.71 17864.69 18581.78 17187.82 17889.35 17396.01 16095.26 136
v119283.56 16682.35 17184.98 14786.84 18592.84 15490.01 13982.70 14978.54 17466.48 17764.88 18362.91 18886.91 12990.72 14590.25 15496.94 13796.32 109
v14419283.48 16782.23 17284.94 14886.65 18692.84 15489.63 14982.48 15477.87 17867.36 17365.33 18063.50 18786.51 13289.72 16389.99 16497.03 13096.35 107
pmmvs583.37 16882.68 16984.18 16087.13 18093.18 14586.74 17782.08 16076.48 18667.28 17471.26 15162.70 19084.71 14990.77 14390.12 15997.15 12294.24 148
v192192083.30 16982.09 17584.70 15186.59 18992.67 16089.82 14582.23 15878.32 17565.76 18264.64 18562.35 19186.78 13190.34 15290.02 16297.02 13196.31 110
tpm83.16 17083.64 15582.60 18190.75 13591.05 18788.49 16373.99 19382.36 15267.08 17678.10 11668.79 16084.17 15485.95 19085.96 18591.09 20093.23 162
WR-MVS83.14 17183.38 16282.87 17787.55 17193.29 14086.36 18184.21 13380.05 16666.41 17866.91 16966.92 17175.66 19188.96 17390.56 14797.05 12996.96 89
SixPastTwentyTwo83.12 17283.44 15982.74 17887.71 16993.11 14982.30 19582.33 15679.24 17164.33 18878.77 11362.75 18984.11 15688.11 17787.89 17995.70 16794.21 150
CP-MVSNet83.11 17382.15 17384.23 15887.20 17792.70 15886.42 18083.53 14477.83 17967.67 17166.89 17160.53 20182.47 16489.23 17090.65 14698.08 7297.20 84
MIMVSNet82.97 17484.00 15481.77 18782.23 20292.25 17087.40 17372.73 20181.48 15769.55 15768.79 16272.42 14681.82 17092.23 12292.25 11396.89 14388.61 192
v124082.88 17581.66 17984.29 15786.46 19092.52 16689.06 15681.82 16377.16 18265.09 18664.17 18761.50 19686.36 13390.12 15690.13 15696.95 13696.04 119
WR-MVS_H82.86 17682.66 17083.10 17387.44 17393.33 13885.71 18683.20 14877.36 18168.20 16866.37 17265.23 18076.05 19089.35 16690.13 15697.99 8196.89 92
TransMVSNet (Re)82.67 17780.93 18884.69 15288.71 15291.50 18487.90 16787.15 10771.54 20268.24 16763.69 18864.67 18678.51 18391.65 13090.73 14497.64 10592.73 168
PS-CasMVS82.53 17881.54 18183.68 16587.08 18292.54 16486.20 18283.46 14576.46 18765.73 18365.71 17859.41 20681.61 17289.06 17290.55 14898.03 7797.07 87
PEN-MVS82.49 17981.58 18083.56 16786.93 18392.05 17586.71 17883.84 13876.94 18464.68 18767.24 16660.11 20281.17 17487.78 17990.70 14598.02 7896.21 113
LTVRE_ROB81.71 1682.44 18081.84 17883.13 17189.01 14992.99 15088.90 15982.32 15766.26 20854.02 20874.68 13759.62 20588.87 11390.71 14692.02 12195.68 16896.62 97
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n82.25 18181.54 18183.07 17485.55 19592.58 16286.68 17981.10 17176.54 18565.97 18162.91 18960.56 20082.36 16591.07 14090.35 15196.77 14996.80 93
testgi81.94 18284.09 15379.43 19289.53 14790.83 19182.49 19481.75 16480.59 16059.46 20082.82 9165.75 17667.97 19990.10 15789.52 17195.39 17589.03 188
gg-mvs-nofinetune81.83 18383.58 15679.80 19191.57 12496.54 8593.79 8468.80 20762.71 21143.01 21655.28 20285.06 8583.65 15896.13 4594.86 6097.98 8494.46 145
DTE-MVSNet81.76 18481.04 18682.60 18186.63 18791.48 18685.97 18483.70 14076.45 18862.44 19267.16 16759.98 20378.98 18187.15 18389.93 16597.88 8895.12 138
EG-PatchMatch MVS81.70 18581.31 18482.15 18488.75 15193.81 12387.14 17478.89 17971.57 20064.12 19061.20 19568.46 16276.73 18891.48 13190.77 14197.28 11691.90 169
pmmvs680.90 18678.77 19283.38 17085.84 19291.61 18286.01 18382.54 15364.17 20970.43 15254.14 20667.06 17080.73 17690.50 15189.17 17594.74 18494.75 142
MDTV_nov1_ep13_2view80.43 18780.94 18779.84 19084.82 19890.87 18984.23 18973.80 19480.28 16464.33 18870.05 15968.77 16179.67 17784.83 19383.50 19692.17 19588.25 196
PM-MVS80.29 18879.30 19181.45 18881.91 20388.23 19982.61 19379.01 17879.99 16767.15 17569.07 16151.39 21182.92 16287.55 18185.59 18695.08 18093.28 161
pmnet_mix0280.14 18980.21 19080.06 18986.61 18889.66 19580.40 19982.20 15982.29 15461.35 19571.52 15066.67 17376.75 18782.55 20080.18 20393.05 18988.62 191
CMPMVSbinary61.19 1779.86 19077.46 19882.66 18091.54 12691.82 17983.25 19181.57 16570.51 20468.64 16459.89 19866.77 17279.63 17884.00 19784.30 19391.34 19984.89 202
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs-eth3d79.78 19177.58 19682.34 18381.57 20487.46 20282.92 19281.28 16875.33 19471.34 14461.88 19152.41 21081.59 17387.56 18086.90 18295.36 17791.48 171
EU-MVSNet78.43 19280.25 18976.30 19783.81 20087.27 20480.99 19779.52 17676.01 18954.12 20770.44 15664.87 18367.40 20186.23 18885.54 18891.95 19891.41 172
MVS-HIRNet78.16 19377.57 19778.83 19385.83 19387.76 20076.67 20370.22 20575.82 19267.39 17255.61 20170.52 15381.96 16986.67 18785.06 19190.93 20281.58 205
Anonymous2023120678.09 19478.11 19578.07 19585.19 19789.17 19680.99 19781.24 17075.46 19358.25 20254.78 20559.90 20466.73 20288.94 17488.26 17896.01 16090.25 183
gm-plane-assit77.65 19578.50 19376.66 19687.96 16385.43 20664.70 21274.50 19164.15 21051.26 21161.32 19458.17 20784.11 15695.16 5993.83 7697.45 11291.41 172
N_pmnet77.55 19676.68 19978.56 19485.43 19687.30 20378.84 20181.88 16278.30 17660.61 19661.46 19262.15 19274.03 19682.04 20180.69 20290.59 20484.81 203
test20.0376.41 19778.49 19473.98 19985.64 19487.50 20175.89 20480.71 17270.84 20351.07 21268.06 16461.40 19754.99 20888.28 17687.20 18195.58 17286.15 198
MDA-MVSNet-bldmvs73.81 19872.56 20275.28 19872.52 21188.87 19774.95 20682.67 15171.57 20055.02 20565.96 17642.84 21776.11 18970.61 20981.47 20090.38 20586.59 197
MIMVSNet173.19 19973.70 20072.60 20265.42 21486.69 20575.56 20579.65 17567.87 20755.30 20445.24 21056.41 20863.79 20486.98 18487.66 18095.85 16285.04 201
new-patchmatchnet72.32 20071.09 20373.74 20081.17 20584.86 20772.21 20977.48 18468.32 20654.89 20655.10 20349.31 21463.68 20579.30 20576.46 20693.03 19084.32 204
new_pmnet72.29 20173.25 20171.16 20475.35 20881.38 20873.72 20869.27 20675.97 19049.84 21356.27 20056.12 20969.08 19881.73 20280.86 20189.72 20780.44 207
pmmvs371.13 20271.06 20471.21 20373.54 21080.19 20971.69 21064.86 20962.04 21252.10 20954.92 20448.00 21575.03 19283.75 19883.24 19790.04 20685.27 200
FPMVS69.87 20367.10 20673.10 20184.09 19978.35 21179.40 20076.41 18771.92 19857.71 20354.06 20750.04 21256.72 20671.19 20868.70 20884.25 20975.43 209
GG-mvs-BLEND62.84 20490.21 8930.91 2130.57 22194.45 11186.99 1750.34 21988.71 1000.98 22181.55 10491.58 570.86 21892.66 11291.43 13395.73 16591.11 176
PMVScopyleft56.77 1861.27 20558.64 20864.35 20575.66 20754.60 21553.62 21574.23 19253.69 21358.37 20144.27 21149.38 21344.16 21269.51 21065.35 21080.07 21173.66 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft58.52 20656.17 20961.27 20667.14 21358.06 21452.16 21668.40 20869.00 20545.02 21522.79 21320.57 22055.11 20776.27 20679.33 20579.80 21267.16 212
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method58.10 20764.61 20750.51 20828.26 21941.71 21861.28 21332.07 21575.92 19152.04 21047.94 20861.83 19551.80 20979.83 20463.95 21277.60 21381.05 206
PMMVS253.68 20855.72 21051.30 20758.84 21567.02 21354.23 21460.97 21247.50 21419.42 21834.81 21231.97 21830.88 21465.84 21169.99 20783.47 21072.92 211
E-PMN40.00 20935.74 21244.98 21057.69 21739.15 22028.05 21862.70 21035.52 21617.78 21920.90 21414.36 22244.47 21135.89 21447.86 21359.15 21656.47 214
MVEpermissive39.81 1939.52 21041.58 21137.11 21233.93 21849.06 21626.45 22054.22 21329.46 21724.15 21720.77 21510.60 22334.42 21351.12 21365.27 21149.49 21864.81 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS39.04 21134.32 21344.54 21158.25 21639.35 21927.61 21962.55 21135.99 21516.40 22020.04 21614.77 22144.80 21033.12 21544.10 21457.61 21752.89 215
testmvs4.35 2126.54 2141.79 2140.60 2201.82 2213.06 2220.95 2177.22 2180.88 22212.38 2171.25 2243.87 2176.09 2165.58 2151.40 21911.42 217
test1233.48 2135.31 2151.34 2150.20 2221.52 2222.17 2230.58 2186.13 2190.31 2239.85 2180.31 2253.90 2162.65 2175.28 2160.87 22011.46 216
uanet_test0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet-low-res0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
sosnet0.00 2140.00 2160.00 2160.00 2230.00 2230.00 2240.00 2200.00 2200.00 2240.00 2190.00 2260.00 2190.00 2180.00 2170.00 2210.00 218
RE-MVS-def60.19 197
9.1497.28 23
SR-MVS98.93 1996.00 1797.75 14
Anonymous20240521188.00 11193.16 10196.38 9193.58 9089.34 7687.92 10765.04 18283.03 9492.07 7392.67 11193.33 8996.96 13597.63 64
our_test_386.93 18389.77 19481.61 196
ambc67.96 20573.69 20979.79 21073.82 20771.61 19959.80 19946.00 20920.79 21966.15 20386.92 18580.11 20489.13 20890.50 180
MTAPA95.36 297.46 20
MTMP95.70 196.90 26
Patchmatch-RL test18.47 221
tmp_tt50.24 20968.55 21246.86 21748.90 21718.28 21686.51 12068.32 16670.19 15865.33 17826.69 21574.37 20766.80 20970.72 215
XVS95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
X-MVStestdata95.68 6398.66 1394.96 6088.03 5196.06 3298.46 28
abl_694.78 3897.46 4397.99 4795.76 5291.80 5093.72 4691.25 3191.33 4196.47 2994.28 4798.14 6697.39 75
mPP-MVS98.76 2495.49 39
NP-MVS91.63 65
Patchmtry92.39 16889.18 15373.30 19871.08 147
DeepMVS_CXcopyleft71.82 21268.37 21148.05 21477.38 18046.88 21465.77 17747.03 21667.48 20064.27 21276.89 21476.72 208