SMA-MVS |  | | 98.66 7 | 98.89 7 | 98.39 10 | 99.60 1 | 99.41 12 | 99.00 21 | 97.63 13 | 97.78 18 | 95.83 20 | 98.33 11 | 99.83 4 | 98.85 10 | 98.93 8 | 98.56 6 | 99.41 49 | 99.40 18 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APDe-MVS | | | 98.87 3 | 98.96 4 | 98.77 1 | 99.58 2 | 99.53 7 | 99.44 1 | 97.81 2 | 98.22 10 | 97.33 4 | 98.70 5 | 99.33 10 | 98.86 8 | 98.96 6 | 98.40 13 | 99.63 4 | 99.57 9 |
|
PGM-MVS | | | 97.81 26 | 98.11 29 | 97.46 31 | 99.55 3 | 99.34 21 | 99.32 9 | 94.51 47 | 96.21 64 | 93.07 39 | 98.05 15 | 97.95 43 | 98.82 12 | 98.22 37 | 97.89 37 | 99.48 27 | 99.09 56 |
|
ACMMP_NAP | | | 98.20 19 | 98.49 13 | 97.85 27 | 99.50 4 | 99.40 13 | 99.26 12 | 97.64 12 | 97.47 35 | 92.62 49 | 97.59 21 | 99.09 22 | 98.71 16 | 98.82 12 | 97.86 38 | 99.40 52 | 99.19 43 |
|
zzz-MVS | | | 98.43 12 | 98.31 24 | 98.57 5 | 99.48 5 | 99.40 13 | 99.32 9 | 97.62 14 | 97.70 23 | 96.67 12 | 96.59 33 | 99.09 22 | 98.86 8 | 98.65 13 | 97.56 50 | 99.45 35 | 99.17 49 |
|
DVP-MVS++ | | | 98.92 1 | 99.18 1 | 98.61 4 | 99.47 6 | 99.61 2 | 99.39 3 | 97.82 1 | 98.80 1 | 96.86 9 | 98.90 2 | 99.92 1 | 98.67 18 | 99.02 2 | 98.20 19 | 99.43 46 | 99.82 1 |
|
APD-MVS |  | | 98.36 16 | 98.32 23 | 98.41 9 | 99.47 6 | 99.26 27 | 99.12 16 | 97.77 7 | 96.73 52 | 96.12 18 | 97.27 29 | 98.88 25 | 98.46 26 | 98.47 19 | 98.39 14 | 99.52 19 | 99.22 39 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CSCG | | | 97.44 33 | 97.18 44 | 97.75 29 | 99.47 6 | 99.52 8 | 98.55 32 | 95.41 42 | 97.69 25 | 95.72 21 | 94.29 57 | 95.53 64 | 98.10 35 | 96.20 108 | 97.38 57 | 99.24 78 | 99.62 4 |
|
HPM-MVS++ |  | | 98.34 17 | 98.47 15 | 98.18 18 | 99.46 9 | 99.15 35 | 99.10 17 | 97.69 8 | 97.67 26 | 94.93 28 | 97.62 20 | 99.70 7 | 98.60 21 | 98.45 21 | 97.46 53 | 99.31 67 | 99.26 33 |
|
xxxxxxxxxxxxxcwj | | | 97.07 39 | 95.99 63 | 98.33 11 | 99.45 10 | 99.05 38 | 98.27 38 | 97.65 9 | 97.73 19 | 97.02 7 | 98.18 12 | 81.99 147 | 98.11 33 | 98.15 39 | 97.62 46 | 99.45 35 | 99.19 43 |
|
SF-MVS | | | 98.39 14 | 98.45 17 | 98.33 11 | 99.45 10 | 99.05 38 | 98.27 38 | 97.65 9 | 97.73 19 | 97.02 7 | 98.18 12 | 99.25 15 | 98.11 33 | 98.15 39 | 97.62 46 | 99.45 35 | 99.19 43 |
|
SR-MVS | | | | | | 99.45 10 | | | 97.61 16 | | | | 99.20 16 | | | | | |
|
MSP-MVS | | | 98.73 6 | 98.93 5 | 98.50 7 | 99.44 13 | 99.57 4 | 99.36 4 | 97.65 9 | 98.14 12 | 96.51 16 | 98.49 7 | 99.65 8 | 98.67 18 | 98.60 15 | 98.42 11 | 99.40 52 | 99.63 2 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DVP-MVS |  | | 98.86 4 | 98.97 3 | 98.75 2 | 99.43 14 | 99.63 1 | 99.25 13 | 97.81 2 | 98.62 2 | 97.69 1 | 97.59 21 | 99.90 2 | 98.93 5 | 98.99 4 | 98.42 11 | 99.37 58 | 99.62 4 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
ACMMPR | | | 98.40 13 | 98.49 13 | 98.28 15 | 99.41 15 | 99.40 13 | 99.36 4 | 97.35 23 | 98.30 6 | 95.02 27 | 97.79 18 | 98.39 38 | 99.04 2 | 98.26 34 | 98.10 23 | 99.50 26 | 99.22 39 |
|
X-MVS | | | 97.84 25 | 98.19 28 | 97.42 32 | 99.40 16 | 99.35 18 | 99.06 18 | 97.25 27 | 97.38 36 | 90.85 64 | 96.06 38 | 98.72 30 | 98.53 25 | 98.41 25 | 98.15 22 | 99.46 31 | 99.28 28 |
|
MCST-MVS | | | 98.20 19 | 98.36 19 | 98.01 24 | 99.40 16 | 99.05 38 | 99.00 21 | 97.62 14 | 97.59 30 | 93.70 36 | 97.42 28 | 99.30 11 | 98.77 14 | 98.39 27 | 97.48 52 | 99.59 6 | 99.31 27 |
|
CNVR-MVS | | | 98.47 11 | 98.46 16 | 98.48 8 | 99.40 16 | 99.05 38 | 99.02 20 | 97.54 18 | 97.73 19 | 96.65 13 | 97.20 30 | 99.13 20 | 98.85 10 | 98.91 9 | 98.10 23 | 99.41 49 | 99.08 57 |
|
HFP-MVS | | | 98.48 10 | 98.62 11 | 98.32 13 | 99.39 19 | 99.33 22 | 99.27 11 | 97.42 20 | 98.27 7 | 95.25 25 | 98.34 10 | 98.83 27 | 99.08 1 | 98.26 34 | 98.08 25 | 99.48 27 | 99.26 33 |
|
SED-MVS | | | 98.90 2 | 99.07 2 | 98.69 3 | 99.38 20 | 99.61 2 | 99.33 8 | 97.80 4 | 98.25 8 | 97.60 2 | 98.87 4 | 99.89 3 | 98.67 18 | 99.02 2 | 98.26 17 | 99.36 60 | 99.61 6 |
|
NCCC | | | 98.10 22 | 98.05 31 | 98.17 20 | 99.38 20 | 99.05 38 | 99.00 21 | 97.53 19 | 98.04 14 | 95.12 26 | 94.80 53 | 99.18 18 | 98.58 23 | 98.49 18 | 97.78 42 | 99.39 54 | 98.98 75 |
|
MP-MVS |  | | 98.09 23 | 98.30 25 | 97.84 28 | 99.34 22 | 99.19 33 | 99.23 14 | 97.40 21 | 97.09 45 | 93.03 42 | 97.58 23 | 98.85 26 | 98.57 24 | 98.44 23 | 97.69 44 | 99.48 27 | 99.23 37 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CP-MVS | | | 98.32 18 | 98.34 22 | 98.29 14 | 99.34 22 | 99.30 23 | 99.15 15 | 97.35 23 | 97.49 33 | 95.58 23 | 97.72 19 | 98.62 34 | 98.82 12 | 98.29 29 | 97.67 45 | 99.51 24 | 99.28 28 |
|
SteuartSystems-ACMMP | | | 98.38 15 | 98.71 10 | 97.99 25 | 99.34 22 | 99.46 10 | 99.34 6 | 97.33 26 | 97.31 37 | 94.25 32 | 98.06 14 | 99.17 19 | 98.13 32 | 98.98 5 | 98.46 9 | 99.55 17 | 99.54 11 |
Skip Steuart: Steuart Systems R&D Blog. |
DPE-MVS |  | | 98.75 5 | 98.91 6 | 98.57 5 | 99.21 25 | 99.54 6 | 99.42 2 | 97.78 6 | 97.49 33 | 96.84 10 | 98.94 1 | 99.82 5 | 98.59 22 | 98.90 10 | 98.22 18 | 99.56 16 | 99.48 14 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
mPP-MVS | | | | | | 99.21 25 | | | | | | | 98.29 39 | | | | | |
|
AdaColmap |  | | 97.53 31 | 96.93 48 | 98.24 16 | 99.21 25 | 98.77 67 | 98.47 35 | 97.34 25 | 96.68 54 | 96.52 15 | 95.11 50 | 96.12 59 | 98.72 15 | 97.19 70 | 96.24 84 | 99.17 93 | 98.39 115 |
|
DeepC-MVS_fast | | 96.13 1 | 98.13 21 | 98.27 26 | 97.97 26 | 99.16 28 | 99.03 45 | 99.05 19 | 97.24 28 | 98.22 10 | 94.17 34 | 95.82 41 | 98.07 40 | 98.69 17 | 98.83 11 | 98.80 2 | 99.52 19 | 99.10 54 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSLP-MVS++ | | | 98.04 24 | 97.93 33 | 98.18 18 | 99.10 29 | 99.09 37 | 98.34 37 | 96.99 34 | 97.54 31 | 96.60 14 | 94.82 52 | 98.45 36 | 98.89 6 | 97.46 62 | 98.77 4 | 99.17 93 | 99.37 20 |
|
3Dnovator | | 93.79 8 | 97.08 38 | 97.20 42 | 96.95 39 | 99.09 30 | 99.03 45 | 98.20 41 | 93.33 55 | 97.99 15 | 93.82 35 | 90.61 94 | 96.80 50 | 97.82 39 | 97.90 50 | 98.78 3 | 99.47 30 | 99.26 33 |
|
QAPM | | | 96.78 49 | 97.14 45 | 96.36 45 | 99.05 31 | 99.14 36 | 98.02 44 | 93.26 57 | 97.27 39 | 90.84 67 | 91.16 86 | 97.31 45 | 97.64 44 | 97.70 56 | 98.20 19 | 99.33 62 | 99.18 47 |
|
OpenMVS |  | 92.33 11 | 95.50 58 | 95.22 75 | 95.82 56 | 98.98 32 | 98.97 51 | 97.67 52 | 93.04 65 | 94.64 106 | 89.18 95 | 84.44 140 | 94.79 66 | 96.79 63 | 97.23 67 | 97.61 48 | 99.24 78 | 98.88 86 |
|
PLC |  | 94.95 3 | 97.37 34 | 96.77 52 | 98.07 22 | 98.97 33 | 98.21 91 | 97.94 47 | 96.85 37 | 97.66 27 | 97.58 3 | 93.33 61 | 96.84 49 | 98.01 38 | 97.13 72 | 96.20 86 | 99.09 105 | 98.01 131 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
train_agg | | | 97.65 30 | 98.06 30 | 97.18 35 | 98.94 34 | 98.91 58 | 98.98 25 | 97.07 33 | 96.71 53 | 90.66 69 | 97.43 27 | 99.08 24 | 98.20 28 | 97.96 48 | 97.14 63 | 99.22 84 | 99.19 43 |
|
CDPH-MVS | | | 96.84 47 | 97.49 37 | 96.09 50 | 98.92 35 | 98.85 63 | 98.61 29 | 95.09 43 | 96.00 72 | 87.29 108 | 95.45 47 | 97.42 44 | 97.16 53 | 97.83 52 | 97.94 34 | 99.44 43 | 98.92 81 |
|
CPTT-MVS | | | 97.78 27 | 97.54 36 | 98.05 23 | 98.91 36 | 99.05 38 | 99.00 21 | 96.96 35 | 97.14 43 | 95.92 19 | 95.50 45 | 98.78 29 | 98.99 4 | 97.20 68 | 96.07 88 | 98.54 159 | 99.04 67 |
|
3Dnovator+ | | 93.91 7 | 97.23 36 | 97.22 41 | 97.24 34 | 98.89 37 | 98.85 63 | 98.26 40 | 93.25 59 | 97.99 15 | 95.56 24 | 90.01 100 | 98.03 42 | 98.05 36 | 97.91 49 | 98.43 10 | 99.44 43 | 99.35 22 |
|
ACMMP |  | | 97.37 34 | 97.48 38 | 97.25 33 | 98.88 38 | 99.28 25 | 98.47 35 | 96.86 36 | 97.04 47 | 92.15 52 | 97.57 24 | 96.05 61 | 97.67 42 | 97.27 66 | 95.99 93 | 99.46 31 | 99.14 53 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PHI-MVS | | | 97.78 27 | 98.44 18 | 97.02 38 | 98.73 39 | 99.25 29 | 98.11 42 | 95.54 41 | 96.66 55 | 92.79 46 | 98.52 6 | 99.38 9 | 97.50 46 | 97.84 51 | 98.39 14 | 99.45 35 | 99.03 68 |
|
OMC-MVS | | | 97.00 41 | 96.92 49 | 97.09 36 | 98.69 40 | 98.66 75 | 97.85 48 | 95.02 44 | 98.09 13 | 94.47 29 | 93.15 62 | 96.90 47 | 97.38 48 | 97.16 71 | 96.82 73 | 99.13 100 | 97.65 144 |
|
MAR-MVS | | | 95.50 58 | 95.60 67 | 95.39 64 | 98.67 41 | 98.18 94 | 95.89 101 | 89.81 109 | 94.55 108 | 91.97 55 | 92.99 64 | 90.21 92 | 97.30 49 | 96.79 81 | 97.49 51 | 98.72 145 | 98.99 73 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
TSAR-MVS + ACMM | | | 97.71 29 | 98.60 12 | 96.66 42 | 98.64 42 | 99.05 38 | 98.85 26 | 97.23 29 | 98.45 4 | 89.40 91 | 97.51 25 | 99.27 14 | 96.88 62 | 98.53 16 | 97.81 41 | 98.96 122 | 99.59 8 |
|
abl_6 | | | | | 96.82 41 | 98.60 43 | 98.74 68 | 97.74 50 | 93.73 51 | 96.25 62 | 94.37 31 | 94.55 56 | 98.60 35 | 97.25 50 | | | 99.27 73 | 98.61 100 |
|
CNLPA | | | 96.90 44 | 96.28 58 | 97.64 30 | 98.56 44 | 98.63 80 | 96.85 68 | 96.60 38 | 97.73 19 | 97.08 6 | 89.78 102 | 96.28 57 | 97.80 41 | 96.73 84 | 96.63 75 | 98.94 124 | 98.14 127 |
|
EPNet | | | 96.27 55 | 96.97 47 | 95.46 62 | 98.47 45 | 98.28 88 | 97.41 55 | 93.67 52 | 95.86 77 | 92.86 45 | 97.51 25 | 93.79 72 | 91.76 142 | 97.03 75 | 97.03 65 | 98.61 155 | 99.28 28 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_111021_LR | | | 97.16 37 | 98.01 32 | 96.16 49 | 98.47 45 | 98.98 50 | 96.94 65 | 93.89 50 | 97.64 28 | 91.44 57 | 98.89 3 | 96.41 53 | 97.20 52 | 98.02 47 | 97.29 62 | 99.04 116 | 98.85 90 |
|
MVS_111021_HR | | | 97.04 40 | 98.20 27 | 95.69 57 | 98.44 47 | 99.29 24 | 96.59 79 | 93.20 60 | 97.70 23 | 89.94 83 | 98.46 8 | 96.89 48 | 96.71 66 | 98.11 44 | 97.95 33 | 99.27 73 | 99.01 71 |
|
MSDG | | | 94.82 71 | 93.73 104 | 96.09 50 | 98.34 48 | 97.43 110 | 97.06 60 | 96.05 39 | 95.84 78 | 90.56 70 | 86.30 129 | 89.10 102 | 95.55 86 | 96.13 111 | 95.61 104 | 99.00 117 | 95.73 179 |
|
TAPA-MVS | | 94.18 5 | 96.38 52 | 96.49 56 | 96.25 46 | 98.26 49 | 98.66 75 | 98.00 45 | 94.96 45 | 97.17 41 | 89.48 88 | 92.91 66 | 96.35 54 | 97.53 45 | 96.59 89 | 95.90 96 | 99.28 71 | 97.82 135 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DeepC-MVS | | 94.87 4 | 96.76 50 | 96.50 55 | 97.05 37 | 98.21 50 | 99.28 25 | 98.67 28 | 97.38 22 | 97.31 37 | 90.36 76 | 89.19 104 | 93.58 73 | 98.19 29 | 98.31 28 | 98.50 7 | 99.51 24 | 99.36 21 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SD-MVS | | | 98.52 8 | 98.77 9 | 98.23 17 | 98.15 51 | 99.26 27 | 98.79 27 | 97.59 17 | 98.52 3 | 96.25 17 | 97.99 16 | 99.75 6 | 99.01 3 | 98.27 33 | 97.97 31 | 99.59 6 | 99.63 2 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 98.49 9 | 98.78 8 | 98.15 21 | 98.14 52 | 99.17 34 | 99.34 6 | 97.18 31 | 98.44 5 | 95.72 21 | 97.84 17 | 99.28 12 | 98.87 7 | 99.05 1 | 98.05 26 | 99.66 2 | 99.60 7 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DPM-MVS | | | 96.86 46 | 96.82 51 | 96.91 40 | 98.08 53 | 98.20 92 | 98.52 34 | 97.20 30 | 97.24 40 | 91.42 58 | 91.84 78 | 98.45 36 | 97.25 50 | 97.07 73 | 97.40 56 | 98.95 123 | 97.55 147 |
|
EPNet_dtu | | | 92.45 118 | 95.02 81 | 89.46 147 | 98.02 54 | 95.47 168 | 94.79 121 | 92.62 69 | 94.97 101 | 70.11 193 | 94.76 55 | 92.61 79 | 84.07 203 | 95.94 114 | 95.56 105 | 97.15 189 | 95.82 178 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CANet | | | 96.84 47 | 97.20 42 | 96.42 43 | 97.92 55 | 99.24 31 | 98.60 30 | 93.51 54 | 97.11 44 | 93.07 39 | 91.16 86 | 97.24 46 | 96.21 74 | 98.24 36 | 98.05 26 | 99.22 84 | 99.35 22 |
|
LS3D | | | 95.46 61 | 95.14 77 | 95.84 55 | 97.91 56 | 98.90 60 | 98.58 31 | 97.79 5 | 97.07 46 | 83.65 123 | 88.71 107 | 88.64 105 | 97.82 39 | 97.49 61 | 97.42 54 | 99.26 77 | 97.72 143 |
|
CS-MVS-test | | | 97.00 41 | 97.85 34 | 96.00 53 | 97.77 57 | 99.56 5 | 96.35 87 | 91.95 78 | 97.54 31 | 92.20 51 | 96.14 37 | 96.00 62 | 98.19 29 | 98.46 20 | 97.78 42 | 99.57 13 | 99.45 16 |
|
DELS-MVS | | | 96.06 56 | 96.04 62 | 96.07 52 | 97.77 57 | 99.25 29 | 98.10 43 | 93.26 57 | 94.42 110 | 92.79 46 | 88.52 111 | 93.48 74 | 95.06 95 | 98.51 17 | 98.83 1 | 99.45 35 | 99.28 28 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
COLMAP_ROB |  | 90.49 14 | 93.27 110 | 92.71 119 | 93.93 92 | 97.75 59 | 97.44 109 | 96.07 94 | 93.17 61 | 95.40 87 | 83.86 121 | 83.76 144 | 88.72 104 | 93.87 115 | 94.25 152 | 94.11 147 | 98.87 130 | 95.28 185 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PCF-MVS | | 93.95 6 | 95.65 57 | 95.14 77 | 96.25 46 | 97.73 60 | 98.73 70 | 97.59 53 | 97.13 32 | 92.50 139 | 89.09 97 | 89.85 101 | 96.65 51 | 96.90 61 | 94.97 140 | 94.89 124 | 99.08 106 | 98.38 116 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PatchMatch-RL | | | 94.69 77 | 94.41 88 | 95.02 70 | 97.63 61 | 98.15 95 | 94.50 127 | 91.99 77 | 95.32 90 | 91.31 60 | 95.47 46 | 83.44 139 | 96.02 77 | 96.56 90 | 95.23 115 | 98.69 148 | 96.67 171 |
|
CS-MVS | | | 96.87 45 | 97.41 40 | 96.24 48 | 97.42 62 | 99.48 9 | 97.30 58 | 91.83 83 | 97.17 41 | 93.02 43 | 94.80 53 | 94.45 68 | 98.16 31 | 98.61 14 | 97.85 39 | 99.69 1 | 99.50 12 |
|
PVSNet_BlendedMVS | | | 95.41 63 | 95.28 73 | 95.57 59 | 97.42 62 | 99.02 47 | 95.89 101 | 93.10 62 | 96.16 65 | 93.12 37 | 91.99 74 | 85.27 124 | 94.66 101 | 98.09 45 | 97.34 58 | 99.24 78 | 99.08 57 |
|
PVSNet_Blended | | | 95.41 63 | 95.28 73 | 95.57 59 | 97.42 62 | 99.02 47 | 95.89 101 | 93.10 62 | 96.16 65 | 93.12 37 | 91.99 74 | 85.27 124 | 94.66 101 | 98.09 45 | 97.34 58 | 99.24 78 | 99.08 57 |
|
DeepPCF-MVS | | 95.28 2 | 97.00 41 | 98.35 21 | 95.42 63 | 97.30 65 | 98.94 53 | 94.82 120 | 96.03 40 | 98.24 9 | 92.11 53 | 95.80 42 | 98.64 33 | 95.51 87 | 98.95 7 | 98.66 5 | 96.78 192 | 99.20 42 |
|
CHOSEN 280x420 | | | 95.46 61 | 97.01 46 | 93.66 97 | 97.28 66 | 97.98 99 | 96.40 85 | 85.39 161 | 96.10 69 | 91.07 61 | 96.53 34 | 96.34 56 | 95.61 84 | 97.65 57 | 96.95 68 | 96.21 193 | 97.49 148 |
|
MVS_0304 | | | 96.31 53 | 96.91 50 | 95.62 58 | 97.21 67 | 99.20 32 | 98.55 32 | 93.10 62 | 97.04 47 | 89.73 85 | 90.30 96 | 96.35 54 | 95.71 80 | 98.14 41 | 97.93 36 | 99.38 55 | 99.40 18 |
|
CHOSEN 1792x2688 | | | 92.66 115 | 92.49 125 | 92.85 108 | 97.13 68 | 98.89 61 | 95.90 99 | 88.50 126 | 95.32 90 | 83.31 124 | 71.99 198 | 88.96 103 | 94.10 112 | 96.69 85 | 96.49 77 | 98.15 172 | 99.10 54 |
|
HyFIR lowres test | | | 92.03 119 | 91.55 143 | 92.58 109 | 97.13 68 | 98.72 71 | 94.65 124 | 86.54 146 | 93.58 124 | 82.56 127 | 67.75 209 | 90.47 90 | 95.67 81 | 95.87 116 | 95.54 106 | 98.91 127 | 98.93 80 |
|
OPM-MVS | | | 93.61 103 | 92.43 129 | 95.00 71 | 96.94 70 | 97.34 111 | 97.78 49 | 94.23 48 | 89.64 171 | 85.53 115 | 88.70 108 | 82.81 143 | 96.28 73 | 96.28 104 | 95.00 123 | 99.24 78 | 97.22 156 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
XVS | | | | | | 96.60 71 | 99.35 18 | 96.82 69 | | | 90.85 64 | | 98.72 30 | | | | 99.46 31 | |
|
X-MVStestdata | | | | | | 96.60 71 | 99.35 18 | 96.82 69 | | | 90.85 64 | | 98.72 30 | | | | 99.46 31 | |
|
TSAR-MVS + COLMAP | | | 94.79 73 | 94.51 86 | 95.11 68 | 96.50 73 | 97.54 105 | 97.99 46 | 94.54 46 | 97.81 17 | 85.88 114 | 96.73 32 | 81.28 151 | 96.99 59 | 96.29 103 | 95.21 116 | 98.76 144 | 96.73 170 |
|
PVSNet_Blended_VisFu | | | 94.77 75 | 95.54 69 | 93.87 93 | 96.48 74 | 98.97 51 | 94.33 129 | 91.84 81 | 94.93 102 | 90.37 75 | 85.04 135 | 94.99 65 | 90.87 157 | 98.12 43 | 97.30 60 | 99.30 69 | 99.45 16 |
|
LGP-MVS_train | | | 94.12 90 | 94.62 84 | 93.53 98 | 96.44 75 | 97.54 105 | 97.40 56 | 91.84 81 | 94.66 105 | 81.09 136 | 95.70 44 | 83.36 140 | 95.10 94 | 96.36 101 | 95.71 102 | 99.32 64 | 99.03 68 |
|
HQP-MVS | | | 94.43 83 | 94.57 85 | 94.27 88 | 96.41 76 | 97.23 114 | 96.89 66 | 93.98 49 | 95.94 74 | 83.68 122 | 95.01 51 | 84.46 131 | 95.58 85 | 95.47 128 | 94.85 128 | 99.07 108 | 99.00 72 |
|
ACMM | | 92.75 10 | 94.41 85 | 93.84 102 | 95.09 69 | 96.41 76 | 96.80 123 | 94.88 119 | 93.54 53 | 96.41 58 | 90.16 77 | 92.31 72 | 83.11 141 | 96.32 72 | 96.22 106 | 94.65 130 | 99.22 84 | 97.35 153 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
RPSCF | | | 94.05 91 | 94.00 98 | 94.12 90 | 96.20 78 | 96.41 137 | 96.61 78 | 91.54 87 | 95.83 79 | 89.73 85 | 96.94 31 | 92.80 77 | 95.35 91 | 91.63 191 | 90.44 193 | 95.27 205 | 93.94 196 |
|
test2506 | | | 94.32 87 | 93.00 116 | 95.87 54 | 96.16 79 | 99.39 16 | 96.96 63 | 92.80 67 | 95.22 96 | 94.47 29 | 91.55 83 | 70.45 196 | 95.25 92 | 98.29 29 | 97.98 29 | 99.59 6 | 98.10 129 |
|
ECVR-MVS |  | | 94.14 89 | 92.96 117 | 95.52 61 | 96.16 79 | 99.39 16 | 96.96 63 | 92.80 67 | 95.22 96 | 92.38 50 | 81.48 154 | 80.31 152 | 95.25 92 | 98.29 29 | 97.98 29 | 99.59 6 | 98.05 130 |
|
test1111 | | | 93.94 94 | 92.78 118 | 95.29 66 | 96.14 81 | 99.42 11 | 96.79 72 | 92.85 66 | 95.08 100 | 91.39 59 | 80.69 159 | 79.86 155 | 95.00 96 | 98.28 32 | 98.00 28 | 99.58 10 | 98.11 128 |
|
UA-Net | | | 93.96 93 | 95.95 64 | 91.64 119 | 96.06 82 | 98.59 82 | 95.29 110 | 90.00 104 | 91.06 159 | 82.87 125 | 90.64 93 | 98.06 41 | 86.06 190 | 98.14 41 | 98.20 19 | 99.58 10 | 96.96 164 |
|
UGNet | | | 94.92 68 | 96.63 53 | 92.93 107 | 96.03 83 | 98.63 80 | 94.53 126 | 91.52 88 | 96.23 63 | 90.03 80 | 92.87 67 | 96.10 60 | 86.28 189 | 96.68 86 | 96.60 76 | 99.16 96 | 99.32 26 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
ACMP | | 92.88 9 | 94.43 83 | 94.38 89 | 94.50 84 | 96.01 84 | 97.69 103 | 95.85 104 | 92.09 76 | 95.74 80 | 89.12 96 | 95.14 49 | 82.62 145 | 94.77 97 | 95.73 122 | 94.67 129 | 99.14 99 | 99.06 62 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
IB-MVS | | 89.56 15 | 91.71 124 | 92.50 124 | 90.79 131 | 95.94 85 | 98.44 85 | 87.05 201 | 91.38 91 | 93.15 128 | 92.98 44 | 84.78 136 | 85.14 127 | 78.27 208 | 92.47 179 | 94.44 142 | 99.10 104 | 99.08 57 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MS-PatchMatch | | | 91.82 122 | 92.51 123 | 91.02 125 | 95.83 86 | 96.88 119 | 95.05 114 | 84.55 174 | 93.85 119 | 82.01 129 | 82.51 150 | 91.71 81 | 90.52 164 | 95.07 138 | 93.03 169 | 98.13 173 | 94.52 187 |
|
CANet_DTU | | | 93.92 96 | 96.57 54 | 90.83 129 | 95.63 87 | 98.39 86 | 96.99 62 | 87.38 137 | 96.26 61 | 71.97 182 | 96.31 35 | 93.02 75 | 94.53 104 | 97.38 64 | 96.83 72 | 98.49 162 | 97.79 136 |
|
ACMH | | 90.77 13 | 91.51 129 | 91.63 142 | 91.38 122 | 95.62 88 | 96.87 121 | 91.76 174 | 89.66 111 | 91.58 154 | 78.67 145 | 86.73 119 | 78.12 161 | 93.77 118 | 94.59 143 | 94.54 138 | 98.78 142 | 98.98 75 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TSAR-MVS + GP. | | | 97.45 32 | 98.36 19 | 96.39 44 | 95.56 89 | 98.93 55 | 97.74 50 | 93.31 56 | 97.61 29 | 94.24 33 | 98.44 9 | 99.19 17 | 98.03 37 | 97.60 58 | 97.41 55 | 99.44 43 | 99.33 24 |
|
thres600view7 | | | 93.49 106 | 92.37 132 | 94.79 79 | 95.42 90 | 98.93 55 | 96.58 80 | 92.31 71 | 93.04 129 | 87.88 104 | 86.62 121 | 76.94 169 | 97.09 57 | 96.82 78 | 95.63 103 | 99.45 35 | 98.63 99 |
|
thres400 | | | 93.56 104 | 92.43 129 | 94.87 76 | 95.40 91 | 98.91 58 | 96.70 76 | 92.38 70 | 92.93 131 | 88.19 103 | 86.69 120 | 77.35 166 | 97.13 54 | 96.75 83 | 95.85 98 | 99.42 48 | 98.56 102 |
|
thres200 | | | 93.62 102 | 92.54 122 | 94.88 75 | 95.36 92 | 98.93 55 | 96.75 74 | 92.31 71 | 92.84 132 | 88.28 101 | 86.99 117 | 77.81 165 | 97.13 54 | 96.82 78 | 95.92 94 | 99.45 35 | 98.49 108 |
|
thres100view900 | | | 93.55 105 | 92.47 128 | 94.81 78 | 95.33 93 | 98.74 68 | 96.78 73 | 92.30 74 | 92.63 135 | 88.29 99 | 87.21 115 | 78.01 163 | 96.78 64 | 96.38 98 | 95.92 94 | 99.38 55 | 98.40 114 |
|
tfpn200view9 | | | 93.64 101 | 92.57 121 | 94.89 74 | 95.33 93 | 98.94 53 | 96.82 69 | 92.31 71 | 92.63 135 | 88.29 99 | 87.21 115 | 78.01 163 | 97.12 56 | 96.82 78 | 95.85 98 | 99.45 35 | 98.56 102 |
|
IS_MVSNet | | | 95.28 65 | 96.43 57 | 93.94 91 | 95.30 95 | 99.01 49 | 95.90 99 | 91.12 93 | 94.13 115 | 87.50 107 | 91.23 85 | 94.45 68 | 94.17 110 | 98.45 21 | 98.50 7 | 99.65 3 | 99.23 37 |
|
CMPMVS |  | 65.18 17 | 84.76 199 | 83.10 205 | 86.69 188 | 95.29 96 | 95.05 181 | 88.37 196 | 85.51 160 | 80.27 214 | 71.31 186 | 68.37 207 | 73.85 181 | 85.25 194 | 87.72 206 | 87.75 203 | 94.38 213 | 88.70 213 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
canonicalmvs | | | 95.25 67 | 95.45 71 | 95.00 71 | 95.27 97 | 98.72 71 | 96.89 66 | 89.82 108 | 96.51 56 | 90.84 67 | 93.72 60 | 86.01 119 | 97.66 43 | 95.78 120 | 97.94 34 | 99.54 18 | 99.50 12 |
|
Vis-MVSNet (Re-imp) | | | 94.46 82 | 96.24 59 | 92.40 111 | 95.23 98 | 98.64 78 | 95.56 107 | 90.99 94 | 94.42 110 | 85.02 117 | 90.88 92 | 94.65 67 | 88.01 179 | 98.17 38 | 98.37 16 | 99.57 13 | 98.53 105 |
|
CLD-MVS | | | 94.79 73 | 94.36 90 | 95.30 65 | 95.21 99 | 97.46 108 | 97.23 59 | 92.24 75 | 96.43 57 | 91.77 56 | 92.69 68 | 84.31 132 | 96.06 75 | 95.52 126 | 95.03 120 | 99.31 67 | 99.06 62 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
baseline1 | | | 94.59 79 | 94.47 87 | 94.72 80 | 95.16 100 | 97.97 100 | 96.07 94 | 91.94 79 | 94.86 103 | 89.98 81 | 91.60 82 | 85.87 121 | 95.64 82 | 97.07 73 | 96.90 69 | 99.52 19 | 97.06 163 |
|
TDRefinement | | | 89.07 162 | 88.15 171 | 90.14 140 | 95.16 100 | 96.88 119 | 95.55 108 | 90.20 102 | 89.68 170 | 76.42 158 | 76.67 171 | 74.30 179 | 84.85 197 | 93.11 169 | 91.91 187 | 98.64 154 | 94.47 188 |
|
ACMH+ | | 90.88 12 | 91.41 130 | 91.13 146 | 91.74 118 | 95.11 102 | 96.95 118 | 93.13 146 | 89.48 115 | 92.42 141 | 79.93 140 | 85.13 134 | 78.02 162 | 93.82 117 | 93.49 163 | 93.88 153 | 98.94 124 | 97.99 132 |
|
DCV-MVSNet | | | 94.76 76 | 95.12 79 | 94.35 87 | 95.10 103 | 95.81 157 | 96.46 84 | 89.49 114 | 96.33 60 | 90.16 77 | 92.55 70 | 90.26 91 | 95.83 79 | 95.52 126 | 96.03 91 | 99.06 111 | 99.33 24 |
|
Anonymous202405211 | | | | 92.18 134 | | 95.04 104 | 98.20 92 | 96.14 91 | 91.79 84 | 93.93 116 | | 74.60 180 | 88.38 108 | 96.48 70 | 95.17 136 | 95.82 101 | 99.00 117 | 99.15 51 |
|
FC-MVSNet-train | | | 93.85 97 | 93.91 99 | 93.78 95 | 94.94 105 | 96.79 126 | 94.29 130 | 91.13 92 | 93.84 120 | 88.26 102 | 90.40 95 | 85.23 126 | 94.65 103 | 96.54 92 | 95.31 112 | 99.38 55 | 99.28 28 |
|
EPP-MVSNet | | | 95.27 66 | 96.18 61 | 94.20 89 | 94.88 106 | 98.64 78 | 94.97 116 | 90.70 97 | 95.34 89 | 89.67 87 | 91.66 81 | 93.84 71 | 95.42 90 | 97.32 65 | 97.00 66 | 99.58 10 | 99.47 15 |
|
FA-MVS(training) | | | 93.94 94 | 95.16 76 | 92.53 110 | 94.87 107 | 98.57 83 | 95.42 109 | 79.49 194 | 95.37 88 | 90.98 62 | 86.54 122 | 94.26 70 | 95.44 89 | 97.80 55 | 95.19 117 | 98.97 120 | 98.38 116 |
|
EIA-MVS | | | 95.50 58 | 96.19 60 | 94.69 81 | 94.83 108 | 98.88 62 | 95.93 98 | 91.50 89 | 94.47 109 | 89.43 89 | 93.14 63 | 92.72 78 | 97.05 58 | 97.82 54 | 97.13 64 | 99.43 46 | 99.15 51 |
|
ETV-MVS | | | 96.31 53 | 97.47 39 | 94.96 73 | 94.79 109 | 98.78 66 | 96.08 93 | 91.41 90 | 96.16 65 | 90.50 71 | 95.76 43 | 96.20 58 | 97.39 47 | 98.42 24 | 97.82 40 | 99.57 13 | 99.18 47 |
|
MVS_Test | | | 94.82 71 | 95.66 66 | 93.84 94 | 94.79 109 | 98.35 87 | 96.49 83 | 89.10 119 | 96.12 68 | 87.09 110 | 92.58 69 | 90.61 89 | 96.48 70 | 96.51 96 | 96.89 70 | 99.11 103 | 98.54 104 |
|
Anonymous20231211 | | | 93.49 106 | 92.33 133 | 94.84 77 | 94.78 111 | 98.00 98 | 96.11 92 | 91.85 80 | 94.86 103 | 90.91 63 | 74.69 179 | 89.18 100 | 96.73 65 | 94.82 141 | 95.51 107 | 98.67 149 | 99.24 36 |
|
baseline | | | 94.83 70 | 95.82 65 | 93.68 96 | 94.75 112 | 97.80 101 | 96.51 82 | 88.53 125 | 97.02 49 | 89.34 93 | 92.93 65 | 92.18 80 | 94.69 100 | 95.78 120 | 96.08 87 | 98.27 170 | 98.97 79 |
|
DROMVSNet | | | 96.49 51 | 97.63 35 | 95.16 67 | 94.75 112 | 98.69 73 | 97.39 57 | 88.97 120 | 96.34 59 | 92.02 54 | 96.04 39 | 96.46 52 | 98.21 27 | 98.41 25 | 97.96 32 | 99.61 5 | 99.55 10 |
|
MVSTER | | | 94.89 69 | 95.07 80 | 94.68 82 | 94.71 114 | 96.68 129 | 97.00 61 | 90.57 99 | 95.18 98 | 93.05 41 | 95.21 48 | 86.41 116 | 93.72 119 | 97.59 59 | 95.88 97 | 99.00 117 | 98.50 107 |
|
EPMVS | | | 90.88 136 | 92.12 135 | 89.44 148 | 94.71 114 | 97.24 113 | 93.55 137 | 76.81 201 | 95.89 75 | 81.77 131 | 91.49 84 | 86.47 115 | 93.87 115 | 90.21 198 | 90.07 195 | 95.92 196 | 93.49 202 |
|
casdiffmvs | | | 94.38 86 | 94.15 97 | 94.64 83 | 94.70 116 | 98.51 84 | 96.03 96 | 91.66 85 | 95.70 81 | 89.36 92 | 86.48 124 | 85.03 129 | 96.60 69 | 97.40 63 | 97.30 60 | 99.52 19 | 98.67 97 |
|
diffmvs | | | 94.31 88 | 94.21 92 | 94.42 86 | 94.64 117 | 98.28 88 | 96.36 86 | 91.56 86 | 96.77 51 | 88.89 98 | 88.97 105 | 84.23 133 | 96.01 78 | 96.05 112 | 96.41 79 | 99.05 115 | 98.79 94 |
|
DI_MVS_plusplus_trai | | | 94.01 92 | 93.63 106 | 94.44 85 | 94.54 118 | 98.26 90 | 97.51 54 | 90.63 98 | 95.88 76 | 89.34 93 | 80.54 161 | 89.36 97 | 95.48 88 | 96.33 102 | 96.27 83 | 99.17 93 | 98.78 95 |
|
thisisatest0530 | | | 94.54 80 | 95.47 70 | 93.46 100 | 94.51 119 | 98.65 77 | 94.66 123 | 90.72 95 | 95.69 83 | 86.90 111 | 93.80 58 | 89.44 96 | 94.74 98 | 96.98 77 | 94.86 125 | 99.19 91 | 98.85 90 |
|
tttt0517 | | | 94.52 81 | 95.44 72 | 93.44 101 | 94.51 119 | 98.68 74 | 94.61 125 | 90.72 95 | 95.61 85 | 86.84 112 | 93.78 59 | 89.26 99 | 94.74 98 | 97.02 76 | 94.86 125 | 99.20 90 | 98.87 88 |
|
ADS-MVSNet | | | 89.80 151 | 91.33 145 | 88.00 169 | 94.43 121 | 96.71 128 | 92.29 162 | 74.95 211 | 96.07 70 | 77.39 150 | 88.67 109 | 86.09 118 | 93.26 127 | 88.44 204 | 89.57 198 | 95.68 199 | 93.81 199 |
|
tpmrst | | | 88.86 166 | 89.62 157 | 87.97 170 | 94.33 122 | 95.98 147 | 92.62 154 | 76.36 204 | 94.62 107 | 76.94 154 | 85.98 130 | 82.80 144 | 92.80 132 | 86.90 210 | 87.15 206 | 94.77 210 | 93.93 197 |
|
PMMVS | | | 94.61 78 | 95.56 68 | 93.50 99 | 94.30 123 | 96.74 127 | 94.91 118 | 89.56 113 | 95.58 86 | 87.72 105 | 96.15 36 | 92.86 76 | 96.06 75 | 95.47 128 | 95.02 121 | 98.43 167 | 97.09 159 |
|
test_part1 | | | 91.21 131 | 89.47 159 | 93.24 105 | 94.26 124 | 95.45 169 | 95.26 111 | 88.36 127 | 88.49 181 | 90.04 79 | 72.61 195 | 82.82 142 | 93.69 121 | 93.25 167 | 94.62 132 | 97.84 180 | 99.06 62 |
|
CostFormer | | | 90.69 137 | 90.48 154 | 90.93 127 | 94.18 125 | 96.08 145 | 94.03 132 | 78.20 197 | 93.47 125 | 89.96 82 | 90.97 91 | 80.30 153 | 93.72 119 | 87.66 208 | 88.75 200 | 95.51 202 | 96.12 175 |
|
USDC | | | 90.69 137 | 90.52 153 | 90.88 128 | 94.17 126 | 96.43 136 | 95.82 105 | 86.76 143 | 93.92 117 | 76.27 160 | 86.49 123 | 74.30 179 | 93.67 122 | 95.04 139 | 93.36 162 | 98.61 155 | 94.13 192 |
|
Vis-MVSNet |  | | 92.77 113 | 95.00 82 | 90.16 138 | 94.10 127 | 98.79 65 | 94.76 122 | 88.26 128 | 92.37 144 | 79.95 139 | 88.19 113 | 91.58 82 | 84.38 200 | 97.59 59 | 97.58 49 | 99.52 19 | 98.91 84 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Effi-MVS+ | | | 92.93 112 | 93.86 101 | 91.86 115 | 94.07 128 | 98.09 97 | 95.59 106 | 85.98 153 | 94.27 113 | 79.54 143 | 91.12 89 | 81.81 148 | 96.71 66 | 96.67 87 | 96.06 89 | 99.27 73 | 98.98 75 |
|
GeoE | | | 92.52 117 | 92.64 120 | 92.39 112 | 93.96 129 | 97.76 102 | 96.01 97 | 85.60 158 | 93.23 127 | 83.94 120 | 81.56 153 | 84.80 130 | 95.63 83 | 96.22 106 | 95.83 100 | 99.19 91 | 99.07 61 |
|
IterMVS-LS | | | 92.56 116 | 93.18 113 | 91.84 116 | 93.90 130 | 94.97 183 | 94.99 115 | 86.20 150 | 94.18 114 | 82.68 126 | 85.81 131 | 87.36 112 | 94.43 105 | 95.31 132 | 96.02 92 | 98.87 130 | 98.60 101 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
dps | | | 90.11 149 | 89.37 162 | 90.98 126 | 93.89 131 | 96.21 142 | 93.49 139 | 77.61 199 | 91.95 150 | 92.74 48 | 88.85 106 | 78.77 160 | 92.37 135 | 87.71 207 | 87.71 204 | 95.80 198 | 94.38 190 |
|
tpm cat1 | | | 88.90 164 | 87.78 180 | 90.22 137 | 93.88 132 | 95.39 172 | 93.79 135 | 78.11 198 | 92.55 138 | 89.43 89 | 81.31 155 | 79.84 156 | 91.40 145 | 84.95 211 | 86.34 209 | 94.68 212 | 94.09 193 |
|
PatchmatchNet |  | | 90.56 139 | 92.49 125 | 88.31 160 | 93.83 133 | 96.86 122 | 92.42 158 | 76.50 203 | 95.96 73 | 78.31 146 | 91.96 76 | 89.66 95 | 93.48 124 | 90.04 200 | 89.20 199 | 95.32 203 | 93.73 200 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TinyColmap | | | 89.42 154 | 88.58 166 | 90.40 135 | 93.80 134 | 95.45 169 | 93.96 134 | 86.54 146 | 92.24 147 | 76.49 157 | 80.83 157 | 70.44 197 | 93.37 125 | 94.45 147 | 93.30 165 | 98.26 171 | 93.37 203 |
|
SCA | | | 90.92 135 | 93.04 115 | 88.45 157 | 93.72 135 | 97.33 112 | 92.77 150 | 76.08 206 | 96.02 71 | 78.26 147 | 91.96 76 | 90.86 86 | 93.99 114 | 90.98 195 | 90.04 196 | 95.88 197 | 94.06 195 |
|
RPMNet | | | 90.19 146 | 92.03 138 | 88.05 166 | 93.46 136 | 95.95 150 | 93.41 140 | 74.59 212 | 92.40 142 | 75.91 162 | 84.22 141 | 86.41 116 | 92.49 133 | 94.42 148 | 93.85 155 | 98.44 165 | 96.96 164 |
|
gg-mvs-nofinetune | | | 86.17 193 | 88.57 167 | 83.36 201 | 93.44 137 | 98.15 95 | 96.58 80 | 72.05 215 | 74.12 219 | 49.23 223 | 64.81 213 | 90.85 87 | 89.90 172 | 97.83 52 | 96.84 71 | 98.97 120 | 97.41 151 |
|
MDTV_nov1_ep13 | | | 91.57 127 | 93.18 113 | 89.70 144 | 93.39 138 | 96.97 117 | 93.53 138 | 80.91 191 | 95.70 81 | 81.86 130 | 92.40 71 | 89.93 93 | 93.25 128 | 91.97 188 | 90.80 191 | 95.25 206 | 94.46 189 |
|
CR-MVSNet | | | 90.16 147 | 91.96 139 | 88.06 165 | 93.32 139 | 95.95 150 | 93.36 142 | 75.99 207 | 92.40 142 | 75.19 168 | 83.18 146 | 85.37 123 | 92.05 137 | 95.21 134 | 94.56 136 | 98.47 164 | 97.08 161 |
|
test-LLR | | | 91.62 126 | 93.56 109 | 89.35 150 | 93.31 140 | 96.57 132 | 92.02 170 | 87.06 141 | 92.34 145 | 75.05 171 | 90.20 97 | 88.64 105 | 90.93 153 | 96.19 109 | 94.07 148 | 97.75 183 | 96.90 167 |
|
test0.0.03 1 | | | 91.97 120 | 93.91 99 | 89.72 143 | 93.31 140 | 96.40 138 | 91.34 179 | 87.06 141 | 93.86 118 | 81.67 132 | 91.15 88 | 89.16 101 | 86.02 191 | 95.08 137 | 95.09 118 | 98.91 127 | 96.64 173 |
|
CVMVSNet | | | 89.77 152 | 91.66 141 | 87.56 179 | 93.21 142 | 95.45 169 | 91.94 173 | 89.22 117 | 89.62 172 | 69.34 199 | 83.99 143 | 85.90 120 | 84.81 198 | 94.30 151 | 95.28 113 | 96.85 191 | 97.09 159 |
|
PatchT | | | 89.13 161 | 91.71 140 | 86.11 193 | 92.92 143 | 95.59 164 | 83.64 209 | 75.09 210 | 91.87 151 | 75.19 168 | 82.63 149 | 85.06 128 | 92.05 137 | 95.21 134 | 94.56 136 | 97.76 182 | 97.08 161 |
|
Fast-Effi-MVS+ | | | 91.87 121 | 92.08 136 | 91.62 121 | 92.91 144 | 97.21 115 | 94.93 117 | 84.60 172 | 93.61 123 | 81.49 134 | 83.50 145 | 78.95 158 | 96.62 68 | 96.55 91 | 96.22 85 | 99.16 96 | 98.51 106 |
|
IterMVS-SCA-FT | | | 90.24 144 | 92.48 127 | 87.63 176 | 92.85 145 | 94.30 199 | 93.79 135 | 81.47 190 | 92.66 134 | 69.95 194 | 84.66 138 | 88.38 108 | 89.99 170 | 95.39 131 | 94.34 143 | 97.74 185 | 97.63 145 |
|
baseline2 | | | 93.01 111 | 94.17 95 | 91.64 119 | 92.83 146 | 97.49 107 | 93.40 141 | 87.53 135 | 93.67 122 | 86.07 113 | 91.83 79 | 86.58 113 | 91.36 146 | 96.38 98 | 95.06 119 | 98.67 149 | 98.20 125 |
|
IterMVS | | | 90.20 145 | 92.43 129 | 87.61 177 | 92.82 147 | 94.31 198 | 94.11 131 | 81.54 188 | 92.97 130 | 69.90 195 | 84.71 137 | 88.16 111 | 89.96 171 | 95.25 133 | 94.17 146 | 97.31 187 | 97.46 149 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CDS-MVSNet | | | 92.77 113 | 93.60 107 | 91.80 117 | 92.63 148 | 96.80 123 | 95.24 112 | 89.14 118 | 90.30 168 | 84.58 118 | 86.76 118 | 90.65 88 | 90.42 165 | 95.89 115 | 96.49 77 | 98.79 141 | 98.32 121 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tpm | | | 87.95 174 | 89.44 161 | 86.21 192 | 92.53 149 | 94.62 193 | 91.40 177 | 76.36 204 | 91.46 155 | 69.80 197 | 87.43 114 | 75.14 174 | 91.55 144 | 89.85 202 | 90.60 192 | 95.61 200 | 96.96 164 |
|
Effi-MVS+-dtu | | | 91.78 123 | 93.59 108 | 89.68 146 | 92.44 150 | 97.11 116 | 94.40 128 | 84.94 168 | 92.43 140 | 75.48 164 | 91.09 90 | 83.75 137 | 93.55 123 | 96.61 88 | 95.47 108 | 97.24 188 | 98.67 97 |
|
testgi | | | 89.42 154 | 91.50 144 | 87.00 186 | 92.40 151 | 95.59 164 | 89.15 195 | 85.27 165 | 92.78 133 | 72.42 180 | 91.75 80 | 76.00 172 | 84.09 202 | 94.38 149 | 93.82 157 | 98.65 153 | 96.15 174 |
|
Fast-Effi-MVS+-dtu | | | 91.19 132 | 93.64 105 | 88.33 159 | 92.19 152 | 96.46 135 | 93.99 133 | 81.52 189 | 92.59 137 | 71.82 183 | 92.17 73 | 85.54 122 | 91.68 143 | 95.73 122 | 94.64 131 | 98.80 139 | 98.34 118 |
|
FC-MVSNet-test | | | 91.63 125 | 93.82 103 | 89.08 151 | 92.02 153 | 96.40 138 | 93.26 144 | 87.26 138 | 93.72 121 | 77.26 151 | 88.61 110 | 89.86 94 | 85.50 193 | 95.72 124 | 95.02 121 | 99.16 96 | 97.44 150 |
|
GA-MVS | | | 89.28 157 | 90.75 152 | 87.57 178 | 91.77 154 | 96.48 134 | 92.29 162 | 87.58 134 | 90.61 165 | 65.77 204 | 84.48 139 | 76.84 170 | 89.46 173 | 95.84 117 | 93.68 158 | 98.52 160 | 97.34 154 |
|
UniMVSNet_ETH3D | | | 88.47 168 | 86.00 198 | 91.35 123 | 91.55 155 | 96.29 140 | 92.53 155 | 88.81 121 | 85.58 202 | 82.33 128 | 67.63 210 | 66.87 211 | 94.04 113 | 91.49 192 | 95.24 114 | 98.84 133 | 98.92 81 |
|
TAMVS | | | 90.54 141 | 90.87 151 | 90.16 138 | 91.48 156 | 96.61 131 | 93.26 144 | 86.08 151 | 87.71 188 | 81.66 133 | 83.11 148 | 84.04 134 | 90.42 165 | 94.54 144 | 94.60 133 | 98.04 177 | 95.48 183 |
|
tfpnnormal | | | 88.50 167 | 87.01 189 | 90.23 136 | 91.36 157 | 95.78 159 | 92.74 151 | 90.09 103 | 83.65 207 | 76.33 159 | 71.46 201 | 69.58 202 | 91.84 140 | 95.54 125 | 94.02 150 | 99.06 111 | 99.03 68 |
|
GBi-Net | | | 93.81 98 | 94.18 93 | 93.38 102 | 91.34 158 | 95.86 153 | 96.22 88 | 88.68 122 | 95.23 93 | 90.40 72 | 86.39 125 | 91.16 83 | 94.40 107 | 96.52 93 | 96.30 80 | 99.21 87 | 97.79 136 |
|
test1 | | | 93.81 98 | 94.18 93 | 93.38 102 | 91.34 158 | 95.86 153 | 96.22 88 | 88.68 122 | 95.23 93 | 90.40 72 | 86.39 125 | 91.16 83 | 94.40 107 | 96.52 93 | 96.30 80 | 99.21 87 | 97.79 136 |
|
FMVSNet2 | | | 93.30 109 | 93.36 112 | 93.22 106 | 91.34 158 | 95.86 153 | 96.22 88 | 88.24 129 | 95.15 99 | 89.92 84 | 81.64 152 | 89.36 97 | 94.40 107 | 96.77 82 | 96.98 67 | 99.21 87 | 97.79 136 |
|
FMVSNet3 | | | 93.79 100 | 94.17 95 | 93.35 104 | 91.21 161 | 95.99 146 | 96.62 77 | 88.68 122 | 95.23 93 | 90.40 72 | 86.39 125 | 91.16 83 | 94.11 111 | 95.96 113 | 96.67 74 | 99.07 108 | 97.79 136 |
|
TransMVSNet (Re) | | | 87.73 180 | 86.79 191 | 88.83 153 | 90.76 162 | 94.40 196 | 91.33 180 | 89.62 112 | 84.73 204 | 75.41 166 | 72.73 193 | 71.41 192 | 86.80 185 | 94.53 145 | 93.93 152 | 99.06 111 | 95.83 177 |
|
LTVRE_ROB | | 87.32 16 | 87.55 181 | 88.25 170 | 86.73 187 | 90.66 163 | 95.80 158 | 93.05 147 | 84.77 169 | 83.35 208 | 60.32 216 | 83.12 147 | 67.39 209 | 93.32 126 | 94.36 150 | 94.86 125 | 98.28 169 | 98.87 88 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
EG-PatchMatch MVS | | | 86.68 189 | 87.24 185 | 86.02 194 | 90.58 164 | 96.26 141 | 91.08 183 | 81.59 187 | 84.96 203 | 69.80 197 | 71.35 202 | 75.08 176 | 84.23 201 | 94.24 153 | 93.35 163 | 98.82 134 | 95.46 184 |
|
TESTMET0.1,1 | | | 91.07 133 | 93.56 109 | 88.17 161 | 90.43 165 | 96.57 132 | 92.02 170 | 82.83 183 | 92.34 145 | 75.05 171 | 90.20 97 | 88.64 105 | 90.93 153 | 96.19 109 | 94.07 148 | 97.75 183 | 96.90 167 |
|
pm-mvs1 | | | 89.19 160 | 89.02 163 | 89.38 149 | 90.40 166 | 95.74 160 | 92.05 168 | 88.10 131 | 86.13 198 | 77.70 148 | 73.72 188 | 79.44 157 | 88.97 176 | 95.81 119 | 94.51 140 | 99.08 106 | 97.78 141 |
|
NR-MVSNet | | | 89.34 156 | 88.66 165 | 90.13 141 | 90.40 166 | 95.61 162 | 93.04 148 | 89.91 105 | 91.22 157 | 78.96 144 | 77.72 169 | 68.90 205 | 89.16 175 | 94.24 153 | 93.95 151 | 99.32 64 | 98.99 73 |
|
FMVSNet1 | | | 91.54 128 | 90.93 149 | 92.26 113 | 90.35 168 | 95.27 176 | 95.22 113 | 87.16 140 | 91.37 156 | 87.62 106 | 75.45 174 | 83.84 136 | 94.43 105 | 96.52 93 | 96.30 80 | 98.82 134 | 97.74 142 |
|
test-mter | | | 90.95 134 | 93.54 111 | 87.93 171 | 90.28 169 | 96.80 123 | 91.44 176 | 82.68 184 | 92.15 149 | 74.37 175 | 89.57 103 | 88.23 110 | 90.88 156 | 96.37 100 | 94.31 144 | 97.93 179 | 97.37 152 |
|
pmmvs4 | | | 90.55 140 | 89.91 156 | 91.30 124 | 90.26 170 | 94.95 184 | 92.73 152 | 87.94 132 | 93.44 126 | 85.35 116 | 82.28 151 | 76.09 171 | 93.02 131 | 93.56 161 | 92.26 185 | 98.51 161 | 96.77 169 |
|
MVS-HIRNet | | | 85.36 197 | 86.89 190 | 83.57 200 | 90.13 171 | 94.51 194 | 83.57 210 | 72.61 214 | 88.27 184 | 71.22 187 | 68.97 205 | 81.81 148 | 88.91 177 | 93.08 170 | 91.94 186 | 94.97 209 | 89.64 212 |
|
thisisatest0515 | | | 90.12 148 | 92.06 137 | 87.85 172 | 90.03 172 | 96.17 143 | 87.83 198 | 87.45 136 | 91.71 153 | 77.15 152 | 85.40 133 | 84.01 135 | 85.74 192 | 95.41 130 | 93.30 165 | 98.88 129 | 98.43 110 |
|
SixPastTwentyTwo | | | 88.37 169 | 89.47 159 | 87.08 184 | 90.01 173 | 95.93 152 | 87.41 199 | 85.32 162 | 90.26 169 | 70.26 191 | 86.34 128 | 71.95 189 | 90.93 153 | 92.89 174 | 91.72 188 | 98.55 158 | 97.22 156 |
|
UniMVSNet (Re) | | | 90.03 150 | 89.61 158 | 90.51 134 | 89.97 174 | 96.12 144 | 92.32 160 | 89.26 116 | 90.99 160 | 80.95 137 | 78.25 168 | 75.08 176 | 91.14 149 | 93.78 156 | 93.87 154 | 99.41 49 | 99.21 41 |
|
pmnet_mix02 | | | 86.12 194 | 87.12 188 | 84.96 197 | 89.82 175 | 94.12 200 | 84.88 207 | 86.63 145 | 91.78 152 | 65.60 205 | 80.76 158 | 76.98 168 | 86.61 187 | 87.29 209 | 84.80 212 | 96.21 193 | 94.09 193 |
|
our_test_3 | | | | | | 89.78 176 | 93.84 202 | 85.59 204 | | | | | | | | | | |
|
UniMVSNet_NR-MVSNet | | | 90.35 143 | 89.96 155 | 90.80 130 | 89.66 177 | 95.83 156 | 92.48 156 | 90.53 100 | 90.96 161 | 79.57 141 | 79.33 165 | 77.14 167 | 93.21 129 | 92.91 173 | 94.50 141 | 99.37 58 | 99.05 65 |
|
v8 | | | 88.21 172 | 87.94 177 | 88.51 156 | 89.62 178 | 95.01 182 | 92.31 161 | 84.99 167 | 88.94 174 | 74.70 173 | 75.03 176 | 73.51 183 | 90.67 161 | 92.11 184 | 92.74 177 | 98.80 139 | 98.24 123 |
|
WR-MVS_H | | | 87.93 175 | 87.85 178 | 88.03 168 | 89.62 178 | 95.58 166 | 90.47 188 | 85.55 159 | 87.20 193 | 76.83 155 | 74.42 183 | 72.67 187 | 86.37 188 | 93.22 168 | 93.04 168 | 99.33 62 | 98.83 92 |
|
pmmvs5 | | | 87.83 179 | 88.09 172 | 87.51 181 | 89.59 180 | 95.48 167 | 89.75 193 | 84.73 170 | 86.07 200 | 71.44 185 | 80.57 160 | 70.09 200 | 90.74 160 | 94.47 146 | 92.87 173 | 98.82 134 | 97.10 158 |
|
gm-plane-assit | | | 83.26 203 | 85.29 200 | 80.89 204 | 89.52 181 | 89.89 214 | 70.26 220 | 78.24 196 | 77.11 217 | 58.01 220 | 74.16 185 | 66.90 210 | 90.63 163 | 97.20 68 | 96.05 90 | 98.66 152 | 95.68 180 |
|
v10 | | | 88.00 173 | 87.96 175 | 88.05 166 | 89.44 182 | 94.68 190 | 92.36 159 | 83.35 179 | 89.37 173 | 72.96 179 | 73.98 186 | 72.79 186 | 91.35 147 | 93.59 158 | 92.88 172 | 98.81 137 | 98.42 112 |
|
V42 | | | 88.31 170 | 87.95 176 | 88.73 154 | 89.44 182 | 95.34 173 | 92.23 164 | 87.21 139 | 88.83 176 | 74.49 174 | 74.89 178 | 73.43 184 | 90.41 167 | 92.08 186 | 92.77 176 | 98.60 157 | 98.33 119 |
|
v148 | | | 87.51 182 | 86.79 191 | 88.36 158 | 89.39 184 | 95.21 178 | 89.84 192 | 88.20 130 | 87.61 190 | 77.56 149 | 73.38 191 | 70.32 199 | 86.80 185 | 90.70 196 | 92.31 183 | 98.37 168 | 97.98 134 |
|
CP-MVSNet | | | 87.89 178 | 87.27 184 | 88.62 155 | 89.30 185 | 95.06 180 | 90.60 187 | 85.78 155 | 87.43 192 | 75.98 161 | 74.60 180 | 68.14 208 | 90.76 158 | 93.07 171 | 93.60 159 | 99.30 69 | 98.98 75 |
|
v1144 | | | 87.92 177 | 87.79 179 | 88.07 163 | 89.27 186 | 95.15 179 | 92.17 165 | 85.62 157 | 88.52 180 | 71.52 184 | 73.80 187 | 72.40 188 | 91.06 151 | 93.54 162 | 92.80 174 | 98.81 137 | 98.33 119 |
|
DU-MVS | | | 89.67 153 | 88.84 164 | 90.63 133 | 89.26 187 | 95.61 162 | 92.48 156 | 89.91 105 | 91.22 157 | 79.57 141 | 77.72 169 | 71.18 193 | 93.21 129 | 92.53 177 | 94.57 135 | 99.35 61 | 99.05 65 |
|
WR-MVS | | | 87.93 175 | 88.09 172 | 87.75 173 | 89.26 187 | 95.28 174 | 90.81 185 | 86.69 144 | 88.90 175 | 75.29 167 | 74.31 184 | 73.72 182 | 85.19 196 | 92.26 180 | 93.32 164 | 99.27 73 | 98.81 93 |
|
Baseline_NR-MVSNet | | | 89.27 158 | 88.01 174 | 90.73 132 | 89.26 187 | 93.71 203 | 92.71 153 | 89.78 110 | 90.73 162 | 81.28 135 | 73.53 189 | 72.85 185 | 92.30 136 | 92.53 177 | 93.84 156 | 99.07 108 | 98.88 86 |
|
N_pmnet | | | 84.80 198 | 85.10 202 | 84.45 198 | 89.25 190 | 92.86 206 | 84.04 208 | 86.21 148 | 88.78 177 | 66.73 203 | 72.41 197 | 74.87 178 | 85.21 195 | 88.32 205 | 86.45 207 | 95.30 204 | 92.04 206 |
|
v2v482 | | | 88.25 171 | 87.71 181 | 88.88 152 | 89.23 191 | 95.28 174 | 92.10 166 | 87.89 133 | 88.69 179 | 73.31 178 | 75.32 175 | 71.64 190 | 91.89 139 | 92.10 185 | 92.92 171 | 98.86 132 | 97.99 132 |
|
PS-CasMVS | | | 87.33 185 | 86.68 194 | 88.10 162 | 89.22 192 | 94.93 185 | 90.35 190 | 85.70 156 | 86.44 197 | 74.01 176 | 73.43 190 | 66.59 214 | 90.04 169 | 92.92 172 | 93.52 160 | 99.28 71 | 98.91 84 |
|
TranMVSNet+NR-MVSNet | | | 89.23 159 | 88.48 168 | 90.11 142 | 89.07 193 | 95.25 177 | 92.91 149 | 90.43 101 | 90.31 167 | 77.10 153 | 76.62 172 | 71.57 191 | 91.83 141 | 92.12 183 | 94.59 134 | 99.32 64 | 98.92 81 |
|
v1192 | | | 87.51 182 | 87.31 183 | 87.74 174 | 89.04 194 | 94.87 188 | 92.07 167 | 85.03 166 | 88.49 181 | 70.32 190 | 72.65 194 | 70.35 198 | 91.21 148 | 93.59 158 | 92.80 174 | 98.78 142 | 98.42 112 |
|
v144192 | | | 87.40 184 | 87.20 186 | 87.64 175 | 88.89 195 | 94.88 187 | 91.65 175 | 84.70 171 | 87.80 187 | 71.17 188 | 73.20 192 | 70.91 194 | 90.75 159 | 92.69 175 | 92.49 180 | 98.71 146 | 98.43 110 |
|
PEN-MVS | | | 87.22 187 | 86.50 196 | 88.07 163 | 88.88 196 | 94.44 195 | 90.99 184 | 86.21 148 | 86.53 196 | 73.66 177 | 74.97 177 | 66.56 215 | 89.42 174 | 91.20 194 | 93.48 161 | 99.24 78 | 98.31 122 |
|
v1921920 | | | 87.31 186 | 87.13 187 | 87.52 180 | 88.87 197 | 94.72 189 | 91.96 172 | 84.59 173 | 88.28 183 | 69.86 196 | 72.50 196 | 70.03 201 | 91.10 150 | 93.33 165 | 92.61 179 | 98.71 146 | 98.44 109 |
|
pmmvs6 | | | 85.98 195 | 84.89 203 | 87.25 183 | 88.83 198 | 94.35 197 | 89.36 194 | 85.30 164 | 78.51 216 | 75.44 165 | 62.71 215 | 75.41 173 | 87.65 181 | 93.58 160 | 92.40 182 | 96.89 190 | 97.29 155 |
|
v1240 | | | 86.89 188 | 86.75 193 | 87.06 185 | 88.75 199 | 94.65 192 | 91.30 181 | 84.05 175 | 87.49 191 | 68.94 200 | 71.96 199 | 68.86 206 | 90.65 162 | 93.33 165 | 92.72 178 | 98.67 149 | 98.24 123 |
|
anonymousdsp | | | 88.90 164 | 91.00 148 | 86.44 190 | 88.74 200 | 95.97 148 | 90.40 189 | 82.86 182 | 88.77 178 | 67.33 202 | 81.18 156 | 81.44 150 | 90.22 168 | 96.23 105 | 94.27 145 | 99.12 102 | 99.16 50 |
|
EU-MVSNet | | | 85.62 196 | 87.65 182 | 83.24 202 | 88.54 201 | 92.77 207 | 87.12 200 | 85.32 162 | 86.71 194 | 64.54 207 | 78.52 167 | 75.11 175 | 78.35 207 | 92.25 181 | 92.28 184 | 95.58 201 | 95.93 176 |
|
DTE-MVSNet | | | 86.67 190 | 86.09 197 | 87.35 182 | 88.45 202 | 94.08 201 | 90.65 186 | 86.05 152 | 86.13 198 | 72.19 181 | 74.58 182 | 66.77 213 | 87.61 182 | 90.31 197 | 93.12 167 | 99.13 100 | 97.62 146 |
|
FMVSNet5 | | | 90.36 142 | 90.93 149 | 89.70 144 | 87.99 203 | 92.25 208 | 92.03 169 | 83.51 178 | 92.20 148 | 84.13 119 | 85.59 132 | 86.48 114 | 92.43 134 | 94.61 142 | 94.52 139 | 98.13 173 | 90.85 209 |
|
v7n | | | 86.43 191 | 86.52 195 | 86.33 191 | 87.91 204 | 94.93 185 | 90.15 191 | 83.05 180 | 86.57 195 | 70.21 192 | 71.48 200 | 66.78 212 | 87.72 180 | 94.19 155 | 92.96 170 | 98.92 126 | 98.76 96 |
|
test20.03 | | | 82.92 204 | 85.52 199 | 79.90 207 | 87.75 205 | 91.84 209 | 82.80 211 | 82.99 181 | 82.65 212 | 60.32 216 | 78.90 166 | 70.50 195 | 67.10 215 | 92.05 187 | 90.89 190 | 98.44 165 | 91.80 207 |
|
MDTV_nov1_ep13_2view | | | 86.30 192 | 88.27 169 | 84.01 199 | 87.71 206 | 94.67 191 | 88.08 197 | 76.78 202 | 90.59 166 | 68.66 201 | 80.46 162 | 80.12 154 | 87.58 183 | 89.95 201 | 88.20 202 | 95.25 206 | 93.90 198 |
|
Anonymous20231206 | | | 83.84 202 | 85.19 201 | 82.26 203 | 87.38 207 | 92.87 205 | 85.49 205 | 83.65 177 | 86.07 200 | 63.44 211 | 68.42 206 | 69.01 204 | 75.45 211 | 93.34 164 | 92.44 181 | 98.12 175 | 94.20 191 |
|
FPMVS | | | 75.84 210 | 74.59 213 | 77.29 211 | 86.92 208 | 83.89 219 | 85.01 206 | 80.05 193 | 82.91 210 | 60.61 215 | 65.25 212 | 60.41 218 | 63.86 216 | 75.60 216 | 73.60 218 | 87.29 220 | 80.47 217 |
|
MIMVSNet | | | 88.99 163 | 91.07 147 | 86.57 189 | 86.78 209 | 95.62 161 | 91.20 182 | 75.40 209 | 90.65 164 | 76.57 156 | 84.05 142 | 82.44 146 | 91.01 152 | 95.84 117 | 95.38 110 | 98.48 163 | 93.50 201 |
|
tmp_tt | | | | | 66.88 214 | 86.07 210 | 73.86 221 | 68.22 221 | 33.38 223 | 96.88 50 | 80.67 138 | 88.23 112 | 78.82 159 | 49.78 220 | 82.68 214 | 77.47 216 | 83.19 222 | |
|
PM-MVS | | | 84.72 200 | 84.47 204 | 85.03 196 | 84.67 211 | 91.57 210 | 86.27 203 | 82.31 186 | 87.65 189 | 70.62 189 | 76.54 173 | 56.41 222 | 88.75 178 | 92.59 176 | 89.85 197 | 97.54 186 | 96.66 172 |
|
pmmvs-eth3d | | | 84.33 201 | 82.94 206 | 85.96 195 | 84.16 212 | 90.94 211 | 86.55 202 | 83.79 176 | 84.25 205 | 75.85 163 | 70.64 203 | 56.43 221 | 87.44 184 | 92.20 182 | 90.41 194 | 97.97 178 | 95.68 180 |
|
new-patchmatchnet | | | 78.49 209 | 78.19 212 | 78.84 209 | 84.13 213 | 90.06 213 | 77.11 218 | 80.39 192 | 79.57 215 | 59.64 219 | 66.01 211 | 55.65 223 | 75.62 210 | 84.55 212 | 80.70 214 | 96.14 195 | 90.77 210 |
|
new_pmnet | | | 81.53 205 | 82.68 207 | 80.20 205 | 83.47 214 | 89.47 215 | 82.21 213 | 78.36 195 | 87.86 186 | 60.14 218 | 67.90 208 | 69.43 203 | 82.03 205 | 89.22 203 | 87.47 205 | 94.99 208 | 87.39 214 |
|
ET-MVSNet_ETH3D | | | 93.34 108 | 94.33 91 | 92.18 114 | 83.26 215 | 97.66 104 | 96.72 75 | 89.89 107 | 95.62 84 | 87.17 109 | 96.00 40 | 83.69 138 | 96.99 59 | 93.78 156 | 95.34 111 | 99.06 111 | 98.18 126 |
|
pmmvs3 | | | 79.16 208 | 80.12 210 | 78.05 210 | 79.36 216 | 86.59 217 | 78.13 217 | 73.87 213 | 76.42 218 | 57.51 221 | 70.59 204 | 57.02 220 | 84.66 199 | 90.10 199 | 88.32 201 | 94.75 211 | 91.77 208 |
|
PMVS |  | 63.12 18 | 67.27 213 | 66.39 216 | 68.30 213 | 77.98 217 | 60.24 224 | 59.53 224 | 76.82 200 | 66.65 220 | 60.74 214 | 54.39 217 | 59.82 219 | 51.24 219 | 73.92 219 | 70.52 219 | 83.48 221 | 79.17 219 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MDA-MVSNet-bldmvs | | | 80.11 206 | 80.24 209 | 79.94 206 | 77.01 218 | 93.21 204 | 78.86 216 | 85.94 154 | 82.71 211 | 60.86 213 | 79.71 164 | 51.77 224 | 83.71 204 | 75.60 216 | 86.37 208 | 93.28 214 | 92.35 204 |
|
ambc | | | | 73.83 214 | | 76.23 219 | 85.13 218 | 82.27 212 | | 84.16 206 | 65.58 206 | 52.82 218 | 23.31 229 | 73.55 212 | 91.41 193 | 85.26 211 | 92.97 215 | 94.70 186 |
|
Gipuma |  | | 68.35 212 | 66.71 215 | 70.27 212 | 74.16 220 | 68.78 222 | 63.93 223 | 71.77 216 | 83.34 209 | 54.57 222 | 34.37 220 | 31.88 226 | 68.69 214 | 83.30 213 | 85.53 210 | 88.48 218 | 79.78 218 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MIMVSNet1 | | | 80.03 207 | 80.93 208 | 78.97 208 | 72.46 221 | 90.73 212 | 80.81 214 | 82.44 185 | 80.39 213 | 63.64 209 | 57.57 216 | 64.93 216 | 76.37 209 | 91.66 190 | 91.55 189 | 98.07 176 | 89.70 211 |
|
PMMVS2 | | | 64.36 215 | 65.94 217 | 62.52 216 | 67.37 222 | 77.44 220 | 64.39 222 | 69.32 220 | 61.47 221 | 34.59 224 | 46.09 219 | 41.03 225 | 48.02 222 | 74.56 218 | 78.23 215 | 91.43 216 | 82.76 216 |
|
EMVS | | | 49.98 217 | 46.76 220 | 53.74 218 | 64.96 223 | 51.29 226 | 37.81 226 | 69.35 219 | 51.83 222 | 22.69 227 | 29.57 222 | 25.06 227 | 57.28 217 | 44.81 222 | 56.11 221 | 70.32 224 | 68.64 222 |
|
E-PMN | | | 50.67 216 | 47.85 219 | 53.96 217 | 64.13 224 | 50.98 227 | 38.06 225 | 69.51 218 | 51.40 223 | 24.60 226 | 29.46 223 | 24.39 228 | 56.07 218 | 48.17 221 | 59.70 220 | 71.40 223 | 70.84 221 |
|
test_method | | | 72.96 211 | 78.68 211 | 66.28 215 | 50.17 225 | 64.90 223 | 75.45 219 | 50.90 222 | 87.89 185 | 62.54 212 | 62.98 214 | 68.34 207 | 70.45 213 | 91.90 189 | 82.41 213 | 88.19 219 | 92.35 204 |
|
MVE |  | 50.86 19 | 49.54 218 | 51.43 218 | 47.33 219 | 44.14 226 | 59.20 225 | 36.45 227 | 60.59 221 | 41.47 224 | 31.14 225 | 29.58 221 | 17.06 230 | 48.52 221 | 62.22 220 | 74.63 217 | 63.12 225 | 75.87 220 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 12.09 219 | 16.94 221 | 6.42 221 | 3.15 227 | 6.08 228 | 9.51 229 | 3.84 224 | 21.46 225 | 5.31 228 | 27.49 224 | 6.76 231 | 10.89 223 | 17.06 223 | 15.01 222 | 5.84 226 | 24.75 223 |
|
GG-mvs-BLEND | | | 66.17 214 | 94.91 83 | 32.63 220 | 1.32 228 | 96.64 130 | 91.40 177 | 0.85 226 | 94.39 112 | 2.20 229 | 90.15 99 | 95.70 63 | 2.27 225 | 96.39 97 | 95.44 109 | 97.78 181 | 95.68 180 |
|
test123 | | | 9.58 220 | 13.53 222 | 4.97 222 | 1.31 229 | 5.47 229 | 8.32 230 | 2.95 225 | 18.14 226 | 2.03 230 | 20.82 225 | 2.34 232 | 10.60 224 | 10.00 224 | 14.16 223 | 4.60 227 | 23.77 224 |
|
uanet_test | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
sosnet-low-res | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
sosnet | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
RE-MVS-def | | | | | | | | | | | 63.50 210 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.28 12 | | | | | |
|
MTAPA | | | | | | | | | | | 96.83 11 | | 99.12 21 | | | | | |
|
MTMP | | | | | | | | | | | 97.18 5 | | 98.83 27 | | | | | |
|
Patchmatch-RL test | | | | | | | | 34.61 228 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 95.32 90 | | | | | | | | |
|
Patchmtry | | | | | | | 95.96 149 | 93.36 142 | 75.99 207 | | 75.19 168 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 86.86 216 | 79.50 215 | 70.43 217 | 90.73 162 | 63.66 208 | 80.36 163 | 60.83 217 | 79.68 206 | 76.23 215 | | 89.46 217 | 86.53 215 |
|