HPM-MVS++ |  | | 94.60 9 | 94.91 11 | 94.24 8 | 97.86 1 | 96.53 33 | 96.14 9 | 92.51 9 | 93.87 16 | 90.76 13 | 93.45 19 | 93.84 5 | 92.62 9 | 95.11 12 | 94.08 19 | 95.58 56 | 97.48 14 |
|
DVP-MVS++ | | | 95.79 1 | 96.42 1 | 95.06 1 | 97.84 2 | 98.17 2 | 97.03 4 | 92.84 3 | 96.68 1 | 92.83 3 | 95.90 5 | 94.38 4 | 92.90 5 | 95.98 2 | 94.85 5 | 96.93 4 | 98.99 1 |
|
SMA-MVS |  | | 94.70 7 | 95.35 7 | 93.93 13 | 97.57 3 | 97.57 8 | 95.98 12 | 91.91 14 | 94.50 7 | 90.35 15 | 93.46 18 | 92.72 12 | 91.89 19 | 95.89 4 | 95.22 1 | 95.88 33 | 98.10 6 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
zzz-MVS | | | 93.80 18 | 93.45 26 | 94.20 9 | 97.53 4 | 96.43 37 | 95.88 18 | 91.12 21 | 94.09 12 | 92.74 4 | 87.68 34 | 90.77 26 | 92.04 14 | 94.74 20 | 93.56 29 | 95.91 32 | 96.85 28 |
|
MP-MVS |  | | 93.35 21 | 93.59 24 | 93.08 24 | 97.39 5 | 96.82 23 | 95.38 26 | 90.71 25 | 90.82 37 | 88.07 28 | 92.83 22 | 90.29 30 | 91.32 29 | 94.03 32 | 93.19 41 | 95.61 54 | 97.16 21 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
NCCC | | | 93.69 20 | 93.66 23 | 93.72 17 | 97.37 6 | 96.66 30 | 95.93 17 | 92.50 10 | 93.40 20 | 88.35 26 | 87.36 36 | 92.33 15 | 92.18 13 | 94.89 15 | 94.09 18 | 96.00 28 | 96.91 27 |
|
CNVR-MVS | | | 94.37 12 | 94.65 12 | 94.04 12 | 97.29 7 | 97.11 11 | 96.00 11 | 92.43 11 | 93.45 17 | 89.85 20 | 90.92 26 | 93.04 9 | 92.59 10 | 95.77 5 | 94.82 6 | 96.11 26 | 97.42 16 |
|
HFP-MVS | | | 94.02 15 | 94.22 18 | 93.78 15 | 97.25 8 | 96.85 21 | 95.81 21 | 90.94 24 | 94.12 11 | 90.29 17 | 94.09 15 | 89.98 32 | 92.52 11 | 93.94 35 | 93.49 34 | 95.87 35 | 97.10 24 |
|
APD-MVS |  | | 94.37 12 | 94.47 16 | 94.26 7 | 97.18 9 | 96.99 17 | 96.53 8 | 92.68 6 | 92.45 25 | 89.96 18 | 94.53 12 | 91.63 21 | 92.89 6 | 94.58 23 | 93.82 23 | 96.31 19 | 97.26 19 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DeepC-MVS_fast | | 88.76 1 | 93.10 23 | 93.02 30 | 93.19 23 | 97.13 10 | 96.51 34 | 95.35 27 | 91.19 20 | 93.14 22 | 88.14 27 | 85.26 42 | 89.49 36 | 91.45 24 | 95.17 10 | 95.07 2 | 95.85 38 | 96.48 36 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
APDe-MVS | | | 95.23 5 | 95.69 6 | 94.70 5 | 97.12 11 | 97.81 6 | 97.19 2 | 92.83 4 | 95.06 6 | 90.98 11 | 96.47 2 | 92.77 11 | 93.38 2 | 95.34 9 | 94.21 16 | 96.68 10 | 98.17 5 |
|
ACMMPR | | | 93.72 19 | 93.94 20 | 93.48 19 | 97.07 12 | 96.93 18 | 95.78 22 | 90.66 27 | 93.88 15 | 89.24 22 | 93.53 17 | 89.08 39 | 92.24 12 | 93.89 37 | 93.50 32 | 95.88 33 | 96.73 32 |
|
mPP-MVS | | | | | | 97.06 13 | | | | | | | 88.08 46 | | | | | |
|
ACMMP_NAP | | | 93.94 16 | 94.49 15 | 93.30 21 | 97.03 14 | 97.31 10 | 95.96 13 | 91.30 19 | 93.41 19 | 88.55 25 | 93.00 20 | 90.33 29 | 91.43 27 | 95.53 7 | 94.41 14 | 95.53 58 | 97.47 15 |
|
PGM-MVS | | | 92.76 27 | 93.03 29 | 92.45 29 | 97.03 14 | 96.67 29 | 95.73 24 | 87.92 43 | 90.15 44 | 86.53 37 | 92.97 21 | 88.33 45 | 91.69 22 | 93.62 43 | 93.03 42 | 95.83 39 | 96.41 39 |
|
SteuartSystems-ACMMP | | | 94.06 14 | 94.65 12 | 93.38 20 | 96.97 16 | 97.36 9 | 96.12 10 | 91.78 15 | 92.05 29 | 87.34 31 | 94.42 13 | 90.87 25 | 91.87 20 | 95.47 8 | 94.59 11 | 96.21 24 | 97.77 11 |
Skip Steuart: Steuart Systems R&D Blog. |
DVP-MVS |  | | 95.56 3 | 96.26 3 | 94.73 3 | 96.93 17 | 98.19 1 | 96.62 7 | 92.81 5 | 96.15 2 | 91.73 6 | 95.01 8 | 95.31 2 | 93.41 1 | 95.95 3 | 94.77 8 | 96.90 5 | 98.46 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
X-MVS | | | 92.36 31 | 92.75 31 | 91.90 34 | 96.89 18 | 96.70 26 | 95.25 28 | 90.48 30 | 91.50 34 | 83.95 51 | 88.20 32 | 88.82 41 | 89.11 40 | 93.75 40 | 93.43 35 | 95.75 45 | 96.83 30 |
|
train_agg | | | 92.87 26 | 93.53 25 | 92.09 31 | 96.88 19 | 95.38 52 | 95.94 15 | 90.59 29 | 90.65 39 | 83.65 54 | 94.31 14 | 91.87 20 | 90.30 34 | 93.38 45 | 92.42 52 | 95.17 76 | 96.73 32 |
|
SED-MVS | | | 95.61 2 | 96.36 2 | 94.73 3 | 96.84 20 | 98.15 3 | 97.08 3 | 92.92 2 | 95.64 3 | 91.84 5 | 95.98 4 | 95.33 1 | 92.83 7 | 96.00 1 | 94.94 3 | 96.90 5 | 98.45 3 |
|
CP-MVS | | | 93.25 22 | 93.26 27 | 93.24 22 | 96.84 20 | 96.51 34 | 95.52 25 | 90.61 28 | 92.37 26 | 88.88 23 | 90.91 27 | 89.52 35 | 91.91 18 | 93.64 42 | 92.78 47 | 95.69 47 | 97.09 25 |
|
MSP-MVS | | | 95.12 6 | 95.83 5 | 94.30 6 | 96.82 22 | 97.94 5 | 96.98 5 | 92.37 12 | 95.40 4 | 90.59 14 | 96.16 3 | 93.71 6 | 92.70 8 | 94.80 17 | 94.77 8 | 96.37 15 | 97.99 8 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 95.53 4 | 96.13 4 | 94.82 2 | 96.81 23 | 98.05 4 | 97.42 1 | 93.09 1 | 94.31 9 | 91.49 7 | 97.12 1 | 95.03 3 | 93.27 3 | 95.55 6 | 94.58 12 | 96.86 7 | 98.25 4 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MCST-MVS | | | 93.81 17 | 94.06 19 | 93.53 18 | 96.79 24 | 96.85 21 | 95.95 14 | 91.69 17 | 92.20 27 | 87.17 33 | 90.83 28 | 93.41 7 | 91.96 15 | 94.49 26 | 93.50 32 | 97.61 1 | 97.12 23 |
|
xxxxxxxxxxxxxcwj | | | 92.95 25 | 91.88 34 | 94.20 9 | 96.75 25 | 97.07 12 | 95.82 19 | 92.60 7 | 93.98 13 | 91.09 9 | 95.89 6 | 71.01 130 | 91.93 16 | 94.40 28 | 93.56 29 | 97.04 2 | 97.27 17 |
|
SF-MVS | | | 94.61 8 | 94.96 10 | 94.20 9 | 96.75 25 | 97.07 12 | 95.82 19 | 92.60 7 | 93.98 13 | 91.09 9 | 95.89 6 | 92.54 13 | 91.93 16 | 94.40 28 | 93.56 29 | 97.04 2 | 97.27 17 |
|
SR-MVS | | | | | | 96.58 27 | | | 90.99 23 | | | | 92.40 14 | | | | | |
|
EPNet | | | 89.60 51 | 89.91 49 | 89.24 57 | 96.45 28 | 93.61 81 | 92.95 48 | 88.03 41 | 85.74 62 | 83.36 55 | 87.29 37 | 83.05 65 | 80.98 101 | 92.22 61 | 91.85 56 | 93.69 141 | 95.58 55 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CSCG | | | 92.76 27 | 93.16 28 | 92.29 30 | 96.30 29 | 97.74 7 | 94.67 34 | 88.98 37 | 92.46 24 | 89.73 21 | 86.67 38 | 92.15 18 | 88.69 45 | 92.26 60 | 92.92 45 | 95.40 63 | 97.89 10 |
|
CDPH-MVS | | | 91.14 40 | 92.01 33 | 90.11 44 | 96.18 30 | 96.18 40 | 94.89 32 | 88.80 39 | 88.76 49 | 77.88 88 | 89.18 31 | 87.71 48 | 87.29 63 | 93.13 48 | 93.31 39 | 95.62 52 | 95.84 48 |
|
DeepC-MVS | | 87.86 3 | 92.26 32 | 91.86 35 | 92.73 26 | 96.18 30 | 96.87 20 | 95.19 29 | 91.76 16 | 92.17 28 | 86.58 36 | 81.79 54 | 85.85 52 | 90.88 32 | 94.57 24 | 94.61 10 | 95.80 41 | 97.18 20 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap |  | | 90.29 45 | 88.38 60 | 92.53 27 | 96.10 32 | 95.19 57 | 92.98 47 | 91.40 18 | 89.08 48 | 88.65 24 | 78.35 74 | 81.44 72 | 91.30 30 | 90.81 89 | 90.21 82 | 94.72 96 | 93.59 91 |
|
MSLP-MVS++ | | | 92.02 35 | 91.40 38 | 92.75 25 | 96.01 33 | 95.88 45 | 93.73 41 | 89.00 35 | 89.89 45 | 90.31 16 | 81.28 60 | 88.85 40 | 91.45 24 | 92.88 53 | 94.24 15 | 96.00 28 | 96.76 31 |
|
3Dnovator+ | | 86.06 4 | 91.60 37 | 90.86 44 | 92.47 28 | 96.00 34 | 96.50 36 | 94.70 33 | 87.83 44 | 90.49 40 | 89.92 19 | 74.68 93 | 89.35 37 | 90.66 33 | 94.02 33 | 94.14 17 | 95.67 49 | 96.85 28 |
|
TSAR-MVS + ACMM | | | 92.97 24 | 94.51 14 | 91.16 38 | 95.88 35 | 96.59 31 | 95.09 30 | 90.45 31 | 93.42 18 | 83.01 57 | 94.68 11 | 90.74 27 | 88.74 44 | 94.75 19 | 93.78 24 | 93.82 136 | 97.63 12 |
|
ACMMP |  | | 92.03 34 | 92.16 32 | 91.87 35 | 95.88 35 | 96.55 32 | 94.47 36 | 89.49 34 | 91.71 32 | 85.26 44 | 91.52 25 | 84.48 58 | 90.21 36 | 92.82 54 | 91.63 58 | 95.92 31 | 96.42 38 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SD-MVS | | | 94.53 10 | 95.22 8 | 93.73 16 | 95.69 37 | 97.03 15 | 95.77 23 | 91.95 13 | 94.41 8 | 91.35 8 | 94.97 9 | 93.34 8 | 91.80 21 | 94.72 21 | 93.99 20 | 95.82 40 | 98.07 7 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DPM-MVS | | | 91.72 36 | 91.48 36 | 92.00 32 | 95.53 38 | 95.75 48 | 95.94 15 | 91.07 22 | 91.20 35 | 85.58 42 | 81.63 58 | 90.74 27 | 88.40 48 | 93.40 44 | 93.75 25 | 95.45 62 | 93.85 85 |
|
TSAR-MVS + MP. | | | 94.48 11 | 94.97 9 | 93.90 14 | 95.53 38 | 97.01 16 | 96.69 6 | 90.71 25 | 94.24 10 | 90.92 12 | 94.97 9 | 92.19 16 | 93.03 4 | 94.83 16 | 93.60 27 | 96.51 14 | 97.97 9 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CPTT-MVS | | | 91.39 38 | 90.95 42 | 91.91 33 | 95.06 40 | 95.24 56 | 95.02 31 | 88.98 37 | 91.02 36 | 86.71 35 | 84.89 44 | 88.58 44 | 91.60 23 | 90.82 88 | 89.67 98 | 94.08 123 | 96.45 37 |
|
CANet | | | 91.33 39 | 91.46 37 | 91.18 37 | 95.01 41 | 96.71 25 | 93.77 39 | 87.39 47 | 87.72 53 | 87.26 32 | 81.77 55 | 89.73 33 | 87.32 62 | 94.43 27 | 93.86 22 | 96.31 19 | 96.02 46 |
|
PHI-MVS | | | 92.05 33 | 93.74 22 | 90.08 45 | 94.96 42 | 97.06 14 | 93.11 46 | 87.71 45 | 90.71 38 | 80.78 72 | 92.40 23 | 91.03 23 | 87.68 56 | 94.32 30 | 94.48 13 | 96.21 24 | 96.16 43 |
|
MAR-MVS | | | 88.39 62 | 88.44 59 | 88.33 68 | 94.90 43 | 95.06 61 | 90.51 68 | 83.59 81 | 85.27 64 | 79.07 80 | 77.13 79 | 82.89 66 | 87.70 54 | 92.19 63 | 92.32 53 | 94.23 120 | 94.20 81 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
3Dnovator | | 85.17 5 | 90.48 43 | 89.90 50 | 91.16 38 | 94.88 44 | 95.74 49 | 93.82 38 | 85.36 58 | 89.28 46 | 87.81 29 | 74.34 96 | 87.40 49 | 88.56 46 | 93.07 49 | 93.74 26 | 96.53 13 | 95.71 50 |
|
DeepPCF-MVS | | 88.51 2 | 92.64 30 | 94.42 17 | 90.56 42 | 94.84 45 | 96.92 19 | 91.31 63 | 89.61 33 | 95.16 5 | 84.55 49 | 89.91 30 | 91.45 22 | 90.15 37 | 95.12 11 | 94.81 7 | 92.90 155 | 97.58 13 |
|
QAPM | | | 89.49 52 | 89.58 53 | 89.38 55 | 94.73 46 | 95.94 43 | 92.35 50 | 85.00 61 | 85.69 63 | 80.03 76 | 76.97 81 | 87.81 47 | 87.87 53 | 92.18 64 | 92.10 54 | 96.33 17 | 96.40 41 |
|
MVS_111021_HR | | | 90.56 42 | 91.29 40 | 89.70 51 | 94.71 47 | 95.63 50 | 91.81 58 | 86.38 52 | 87.53 54 | 81.29 67 | 87.96 33 | 85.43 54 | 87.69 55 | 93.90 36 | 92.93 44 | 96.33 17 | 95.69 51 |
|
abl_6 | | | | | 90.66 41 | 94.65 48 | 96.27 38 | 92.21 51 | 86.94 49 | 90.23 42 | 86.38 38 | 85.50 41 | 92.96 10 | 88.37 49 | | | 95.40 63 | 95.46 57 |
|
OpenMVS |  | 82.53 11 | 87.71 68 | 86.84 75 | 88.73 61 | 94.42 49 | 95.06 61 | 91.02 65 | 83.49 84 | 82.50 81 | 82.24 64 | 67.62 134 | 85.48 53 | 85.56 73 | 91.19 75 | 91.30 61 | 95.67 49 | 94.75 68 |
|
PLC |  | 83.76 9 | 88.61 59 | 86.83 76 | 90.70 40 | 94.22 50 | 92.63 99 | 91.50 60 | 87.19 48 | 89.16 47 | 86.87 34 | 75.51 88 | 80.87 74 | 89.98 38 | 90.01 99 | 89.20 110 | 94.41 115 | 90.45 149 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
LS3D | | | 85.96 80 | 84.37 97 | 87.81 70 | 94.13 51 | 93.27 87 | 90.26 72 | 89.00 35 | 84.91 69 | 72.84 112 | 71.74 109 | 72.47 124 | 87.45 60 | 89.53 107 | 89.09 112 | 93.20 151 | 89.60 152 |
|
EPNet_dtu | | | 81.98 118 | 83.82 102 | 79.83 151 | 94.10 52 | 85.97 176 | 87.29 118 | 84.08 72 | 80.61 102 | 59.96 183 | 81.62 59 | 77.19 99 | 62.91 199 | 87.21 130 | 86.38 149 | 90.66 181 | 87.77 169 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_0304 | | | 90.88 41 | 91.35 39 | 90.34 43 | 93.91 53 | 96.79 24 | 94.49 35 | 86.54 51 | 86.57 58 | 82.85 59 | 81.68 57 | 89.70 34 | 87.57 58 | 94.64 22 | 93.93 21 | 96.67 12 | 96.15 44 |
|
OPM-MVS | | | 87.56 70 | 85.80 86 | 89.62 52 | 93.90 54 | 94.09 75 | 94.12 37 | 88.18 40 | 75.40 134 | 77.30 91 | 76.41 82 | 77.93 95 | 88.79 43 | 92.20 62 | 90.82 69 | 95.40 63 | 93.72 89 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
DELS-MVS | | | 89.71 50 | 89.68 52 | 89.74 49 | 93.75 55 | 96.22 39 | 93.76 40 | 85.84 54 | 82.53 79 | 85.05 46 | 78.96 71 | 84.24 59 | 84.25 78 | 94.91 14 | 94.91 4 | 95.78 44 | 96.02 46 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CNLPA | | | 88.40 60 | 87.00 74 | 90.03 47 | 93.73 56 | 94.28 71 | 89.56 81 | 85.81 55 | 91.87 30 | 87.55 30 | 69.53 123 | 81.49 71 | 89.23 39 | 89.45 108 | 88.59 120 | 94.31 119 | 93.82 86 |
|
HQP-MVS | | | 89.13 55 | 89.58 53 | 88.60 64 | 93.53 57 | 93.67 79 | 93.29 44 | 87.58 46 | 88.53 50 | 75.50 93 | 87.60 35 | 80.32 77 | 87.07 64 | 90.66 94 | 89.95 90 | 94.62 102 | 96.35 42 |
|
OMC-MVS | | | 90.23 47 | 90.40 47 | 90.03 47 | 93.45 58 | 95.29 53 | 91.89 57 | 86.34 53 | 93.25 21 | 84.94 47 | 81.72 56 | 86.65 51 | 88.90 41 | 91.69 68 | 90.27 81 | 94.65 100 | 93.95 83 |
|
ACMM | | 83.27 10 | 87.68 69 | 86.09 82 | 89.54 53 | 93.26 59 | 92.19 105 | 91.43 61 | 86.74 50 | 86.02 60 | 82.85 59 | 75.63 87 | 75.14 105 | 88.41 47 | 90.68 93 | 89.99 87 | 94.59 103 | 92.97 99 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MVS_111021_LR | | | 90.14 48 | 90.89 43 | 89.26 56 | 93.23 60 | 94.05 76 | 90.43 69 | 84.65 63 | 90.16 43 | 84.52 50 | 90.14 29 | 83.80 61 | 87.99 52 | 92.50 58 | 90.92 67 | 94.74 94 | 94.70 70 |
|
CS-MVS-test | | | 90.29 45 | 90.96 41 | 89.51 54 | 93.18 61 | 95.87 46 | 89.18 86 | 83.72 77 | 88.32 51 | 84.82 48 | 84.89 44 | 85.23 55 | 90.25 35 | 94.04 31 | 92.66 51 | 95.94 30 | 95.69 51 |
|
CS-MVS | | | 90.34 44 | 90.58 46 | 90.07 46 | 93.11 62 | 95.82 47 | 90.57 67 | 83.62 78 | 87.07 56 | 85.35 43 | 82.98 48 | 83.47 62 | 91.37 28 | 94.94 13 | 93.37 38 | 96.37 15 | 96.41 39 |
|
XVS | | | | | | 93.11 62 | 96.70 26 | 91.91 55 | | | 83.95 51 | | 88.82 41 | | | | 95.79 42 | |
|
X-MVStestdata | | | | | | 93.11 62 | 96.70 26 | 91.91 55 | | | 83.95 51 | | 88.82 41 | | | | 95.79 42 | |
|
PCF-MVS | | 84.60 6 | 88.66 57 | 87.75 70 | 89.73 50 | 93.06 65 | 96.02 41 | 93.22 45 | 90.00 32 | 82.44 82 | 80.02 77 | 77.96 77 | 85.16 56 | 87.36 61 | 88.54 117 | 88.54 121 | 94.72 96 | 95.61 54 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
TAPA-MVS | | 84.37 7 | 88.91 56 | 88.93 56 | 88.89 59 | 93.00 66 | 94.85 65 | 92.00 54 | 84.84 62 | 91.68 33 | 80.05 75 | 79.77 66 | 84.56 57 | 88.17 51 | 90.11 98 | 89.00 116 | 95.30 70 | 92.57 114 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PVSNet_Blended_VisFu | | | 87.40 72 | 87.80 67 | 86.92 76 | 92.86 67 | 95.40 51 | 88.56 104 | 83.45 88 | 79.55 110 | 82.26 62 | 74.49 95 | 84.03 60 | 79.24 131 | 92.97 52 | 91.53 60 | 95.15 78 | 96.65 35 |
|
UA-Net | | | 86.07 78 | 87.78 68 | 84.06 105 | 92.85 68 | 95.11 60 | 87.73 111 | 84.38 67 | 73.22 154 | 73.18 108 | 79.99 65 | 89.22 38 | 71.47 175 | 93.22 47 | 93.03 42 | 94.76 93 | 90.69 144 |
|
LGP-MVS_train | | | 88.25 64 | 88.55 57 | 87.89 69 | 92.84 69 | 93.66 80 | 93.35 43 | 85.22 60 | 85.77 61 | 74.03 103 | 86.60 39 | 76.29 102 | 86.62 68 | 91.20 74 | 90.58 77 | 95.29 71 | 95.75 49 |
|
TSAR-MVS + COLMAP | | | 88.40 60 | 89.09 55 | 87.60 73 | 92.72 70 | 93.92 78 | 92.21 51 | 85.57 57 | 91.73 31 | 73.72 104 | 91.75 24 | 73.22 122 | 87.64 57 | 91.49 70 | 89.71 97 | 93.73 139 | 91.82 128 |
|
PVSNet_BlendedMVS | | | 88.19 65 | 88.00 65 | 88.42 66 | 92.71 71 | 94.82 66 | 89.08 91 | 83.81 74 | 84.91 69 | 86.38 38 | 79.14 68 | 78.11 93 | 82.66 86 | 93.05 50 | 91.10 62 | 95.86 36 | 94.86 66 |
|
PVSNet_Blended | | | 88.19 65 | 88.00 65 | 88.42 66 | 92.71 71 | 94.82 66 | 89.08 91 | 83.81 74 | 84.91 69 | 86.38 38 | 79.14 68 | 78.11 93 | 82.66 86 | 93.05 50 | 91.10 62 | 95.86 36 | 94.86 66 |
|
ACMP | | 83.90 8 | 88.32 63 | 88.06 63 | 88.62 63 | 92.18 73 | 93.98 77 | 91.28 64 | 85.24 59 | 86.69 57 | 81.23 68 | 85.62 40 | 75.13 106 | 87.01 66 | 89.83 101 | 89.77 95 | 94.79 90 | 95.43 58 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MSDG | | | 83.87 101 | 81.02 123 | 87.19 75 | 92.17 74 | 89.80 135 | 89.15 89 | 85.72 56 | 80.61 102 | 79.24 79 | 66.66 137 | 68.75 141 | 82.69 85 | 87.95 124 | 87.44 130 | 94.19 121 | 85.92 181 |
|
TSAR-MVS + GP. | | | 92.71 29 | 93.91 21 | 91.30 36 | 91.96 75 | 96.00 42 | 93.43 42 | 87.94 42 | 92.53 23 | 86.27 41 | 93.57 16 | 91.94 19 | 91.44 26 | 93.29 46 | 92.89 46 | 96.78 8 | 97.15 22 |
|
test2506 | | | 85.20 87 | 84.11 99 | 86.47 78 | 91.84 76 | 95.28 54 | 89.18 86 | 84.49 65 | 82.59 77 | 75.34 97 | 74.66 94 | 58.07 189 | 81.68 94 | 93.76 38 | 92.71 48 | 96.28 22 | 91.71 130 |
|
ECVR-MVS |  | | 85.25 86 | 84.47 95 | 86.16 81 | 91.84 76 | 95.28 54 | 89.18 86 | 84.49 65 | 82.59 77 | 73.49 106 | 66.12 139 | 69.28 138 | 81.68 94 | 93.76 38 | 92.71 48 | 96.28 22 | 91.58 137 |
|
test1111 | | | 84.86 92 | 84.21 98 | 85.61 86 | 91.75 78 | 95.14 59 | 88.63 101 | 84.57 64 | 81.88 87 | 71.21 115 | 65.66 145 | 68.51 142 | 81.19 98 | 93.74 41 | 92.68 50 | 96.31 19 | 91.86 127 |
|
ETV-MVS | | | 89.22 54 | 89.76 51 | 88.60 64 | 91.60 79 | 94.61 69 | 89.48 83 | 83.46 87 | 85.20 66 | 81.58 65 | 82.75 50 | 82.59 67 | 88.80 42 | 94.57 24 | 93.28 40 | 96.68 10 | 95.31 59 |
|
EIA-MVS | | | 87.94 67 | 88.05 64 | 87.81 70 | 91.46 80 | 95.00 63 | 88.67 98 | 82.81 92 | 82.53 79 | 80.81 71 | 80.04 64 | 80.20 78 | 87.48 59 | 92.58 57 | 91.61 59 | 95.63 51 | 94.36 75 |
|
canonicalmvs | | | 89.36 53 | 89.92 48 | 88.70 62 | 91.38 81 | 95.92 44 | 91.81 58 | 82.61 100 | 90.37 41 | 82.73 61 | 82.09 52 | 79.28 87 | 88.30 50 | 91.17 76 | 93.59 28 | 95.36 66 | 97.04 26 |
|
CLD-MVS | | | 88.66 57 | 88.52 58 | 88.82 60 | 91.37 82 | 94.22 72 | 92.82 49 | 82.08 103 | 88.27 52 | 85.14 45 | 81.86 53 | 78.53 91 | 85.93 72 | 91.17 76 | 90.61 75 | 95.55 57 | 95.00 62 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CHOSEN 1792x2688 | | | 82.16 116 | 80.91 126 | 83.61 110 | 91.14 83 | 92.01 106 | 89.55 82 | 79.15 137 | 79.87 106 | 70.29 119 | 52.51 201 | 72.56 123 | 81.39 96 | 88.87 115 | 88.17 124 | 90.15 185 | 92.37 121 |
|
IB-MVS | | 79.09 12 | 82.60 113 | 82.19 111 | 83.07 116 | 91.08 84 | 93.55 82 | 80.90 181 | 81.35 109 | 76.56 126 | 80.87 70 | 64.81 153 | 69.97 134 | 68.87 182 | 85.64 156 | 90.06 86 | 95.36 66 | 94.74 69 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
IS_MVSNet | | | 86.18 77 | 88.18 62 | 83.85 108 | 91.02 85 | 94.72 68 | 87.48 114 | 82.46 101 | 81.05 97 | 70.28 120 | 76.98 80 | 82.20 70 | 76.65 147 | 93.97 34 | 93.38 36 | 95.18 75 | 94.97 63 |
|
HyFIR lowres test | | | 81.62 126 | 79.45 146 | 84.14 104 | 91.00 86 | 93.38 86 | 88.27 106 | 78.19 146 | 76.28 128 | 70.18 121 | 48.78 205 | 73.69 117 | 83.52 80 | 87.05 133 | 87.83 128 | 93.68 142 | 89.15 155 |
|
COLMAP_ROB |  | 76.78 15 | 80.50 132 | 78.49 151 | 82.85 117 | 90.96 87 | 89.65 141 | 86.20 135 | 83.40 89 | 77.15 124 | 66.54 138 | 62.27 161 | 65.62 151 | 77.89 139 | 85.23 163 | 84.70 170 | 92.11 163 | 84.83 185 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CANet_DTU | | | 85.43 84 | 87.72 71 | 82.76 119 | 90.95 88 | 93.01 92 | 89.99 73 | 75.46 169 | 82.67 76 | 64.91 150 | 83.14 47 | 80.09 79 | 80.68 105 | 92.03 66 | 91.03 64 | 94.57 105 | 92.08 122 |
|
FC-MVSNet-train | | | 85.18 88 | 85.31 90 | 85.03 91 | 90.67 89 | 91.62 109 | 87.66 112 | 83.61 79 | 79.75 108 | 74.37 101 | 78.69 72 | 71.21 128 | 78.91 132 | 91.23 72 | 89.96 89 | 94.96 84 | 94.69 71 |
|
baseline1 | | | 84.54 95 | 84.43 96 | 84.67 93 | 90.62 90 | 91.16 112 | 88.63 101 | 83.75 76 | 79.78 107 | 71.16 116 | 75.14 90 | 74.10 112 | 77.84 140 | 91.56 69 | 90.67 74 | 96.04 27 | 88.58 158 |
|
thres600view7 | | | 82.53 115 | 81.02 123 | 84.28 100 | 90.61 91 | 93.05 90 | 88.57 103 | 82.67 96 | 74.12 145 | 68.56 131 | 65.09 150 | 62.13 169 | 80.40 111 | 91.15 78 | 89.02 115 | 94.88 87 | 92.59 112 |
|
DROMVSNet | | | 89.96 49 | 90.77 45 | 89.01 58 | 90.54 92 | 95.15 58 | 91.34 62 | 81.43 108 | 85.27 64 | 83.08 56 | 82.83 49 | 87.22 50 | 90.97 31 | 94.79 18 | 93.38 36 | 96.73 9 | 96.71 34 |
|
thres400 | | | 82.68 112 | 81.15 121 | 84.47 96 | 90.52 93 | 92.89 94 | 88.95 96 | 82.71 94 | 74.33 142 | 69.22 128 | 65.31 147 | 62.61 164 | 80.63 107 | 90.96 86 | 89.50 102 | 94.79 90 | 92.45 120 |
|
EPP-MVSNet | | | 86.55 74 | 87.76 69 | 85.15 90 | 90.52 93 | 94.41 70 | 87.24 120 | 82.32 102 | 81.79 89 | 73.60 105 | 78.57 73 | 82.41 68 | 82.07 92 | 91.23 72 | 90.39 79 | 95.14 79 | 95.48 56 |
|
ACMH | | 78.52 14 | 81.86 120 | 80.45 131 | 83.51 114 | 90.51 95 | 91.22 111 | 85.62 142 | 84.23 69 | 70.29 171 | 62.21 166 | 69.04 127 | 64.05 156 | 84.48 77 | 87.57 128 | 88.45 123 | 94.01 127 | 92.54 116 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Vis-MVSNet (Re-imp) | | | 83.65 104 | 86.81 77 | 79.96 149 | 90.46 96 | 92.71 96 | 84.84 150 | 82.00 104 | 80.93 99 | 62.44 165 | 76.29 83 | 82.32 69 | 65.54 195 | 92.29 59 | 91.66 57 | 94.49 110 | 91.47 139 |
|
FA-MVS(training) | | | 85.65 83 | 85.79 87 | 85.48 88 | 90.44 97 | 93.47 83 | 88.66 100 | 73.11 177 | 83.34 74 | 82.26 62 | 71.79 108 | 78.39 92 | 83.14 83 | 91.00 83 | 89.47 103 | 95.28 73 | 93.06 97 |
|
thres200 | | | 82.77 111 | 81.25 120 | 84.54 94 | 90.38 98 | 93.05 90 | 89.13 90 | 82.67 96 | 74.40 141 | 69.53 125 | 65.69 144 | 63.03 161 | 80.63 107 | 91.15 78 | 89.42 104 | 94.88 87 | 92.04 124 |
|
MS-PatchMatch | | | 81.79 122 | 81.44 117 | 82.19 126 | 90.35 99 | 89.29 147 | 88.08 109 | 75.36 170 | 77.60 122 | 69.00 129 | 64.37 156 | 78.87 90 | 77.14 146 | 88.03 123 | 85.70 160 | 93.19 152 | 86.24 178 |
|
PatchMatch-RL | | | 83.34 106 | 81.36 118 | 85.65 84 | 90.33 100 | 89.52 143 | 84.36 154 | 81.82 105 | 80.87 101 | 79.29 78 | 74.04 97 | 62.85 163 | 86.05 71 | 88.40 120 | 87.04 137 | 92.04 164 | 86.77 174 |
|
thres100view900 | | | 82.55 114 | 81.01 125 | 84.34 97 | 90.30 101 | 92.27 103 | 89.04 94 | 82.77 93 | 75.14 135 | 69.56 123 | 65.72 142 | 63.13 158 | 79.62 126 | 89.97 100 | 89.26 107 | 94.73 95 | 91.61 136 |
|
tfpn200view9 | | | 82.86 109 | 81.46 116 | 84.48 95 | 90.30 101 | 93.09 89 | 89.05 93 | 82.71 94 | 75.14 135 | 69.56 123 | 65.72 142 | 63.13 158 | 80.38 112 | 91.15 78 | 89.51 101 | 94.91 86 | 92.50 118 |
|
casdiffmvs | | | 87.45 71 | 87.15 73 | 87.79 72 | 90.15 103 | 94.22 72 | 89.96 74 | 83.93 73 | 85.08 67 | 80.91 69 | 75.81 86 | 77.88 96 | 86.08 70 | 91.86 67 | 90.86 68 | 95.74 46 | 94.37 74 |
|
MVS_Test | | | 86.93 73 | 87.24 72 | 86.56 77 | 90.10 104 | 93.47 83 | 90.31 70 | 80.12 123 | 83.55 73 | 78.12 84 | 79.58 67 | 79.80 82 | 85.45 74 | 90.17 97 | 90.59 76 | 95.29 71 | 93.53 92 |
|
ACMH+ | | 79.08 13 | 81.84 121 | 80.06 136 | 83.91 107 | 89.92 105 | 90.62 116 | 86.21 134 | 83.48 86 | 73.88 147 | 65.75 143 | 66.38 138 | 65.30 152 | 84.63 76 | 85.90 153 | 87.25 133 | 93.45 147 | 91.13 142 |
|
Effi-MVS+ | | | 85.33 85 | 85.08 91 | 85.63 85 | 89.69 106 | 93.42 85 | 89.90 75 | 80.31 121 | 79.32 111 | 72.48 114 | 73.52 102 | 74.03 113 | 86.55 69 | 90.99 84 | 89.98 88 | 94.83 89 | 94.27 80 |
|
Anonymous202405211 | | | | 82.75 109 | | 89.58 107 | 92.97 93 | 89.04 94 | 84.13 71 | 78.72 116 | | 57.18 188 | 76.64 101 | 83.13 84 | 89.55 106 | 89.92 91 | 93.38 149 | 94.28 79 |
|
GeoE | | | 84.62 94 | 83.98 101 | 85.35 89 | 89.34 108 | 92.83 95 | 88.34 105 | 78.95 138 | 79.29 112 | 77.16 92 | 68.10 131 | 74.56 109 | 83.40 81 | 89.31 110 | 89.23 109 | 94.92 85 | 94.57 73 |
|
tttt0517 | | | 85.11 90 | 85.81 85 | 84.30 99 | 89.24 109 | 92.68 98 | 87.12 125 | 80.11 124 | 81.98 86 | 74.31 102 | 78.08 76 | 73.57 118 | 79.90 119 | 91.01 82 | 89.58 99 | 95.11 82 | 93.77 87 |
|
DI_MVS_plusplus_trai | | | 86.41 76 | 85.54 89 | 87.42 74 | 89.24 109 | 93.13 88 | 92.16 53 | 82.65 98 | 82.30 83 | 80.75 73 | 68.30 130 | 80.41 76 | 85.01 75 | 90.56 95 | 90.07 85 | 94.70 98 | 94.01 82 |
|
thisisatest0530 | | | 85.15 89 | 85.86 84 | 84.33 98 | 89.19 111 | 92.57 102 | 87.22 121 | 80.11 124 | 82.15 85 | 74.41 100 | 78.15 75 | 73.80 116 | 79.90 119 | 90.99 84 | 89.58 99 | 95.13 80 | 93.75 88 |
|
DCV-MVSNet | | | 85.88 82 | 86.17 80 | 85.54 87 | 89.10 112 | 89.85 133 | 89.34 84 | 80.70 114 | 83.04 75 | 78.08 86 | 76.19 84 | 79.00 88 | 82.42 89 | 89.67 104 | 90.30 80 | 93.63 144 | 95.12 60 |
|
UGNet | | | 85.90 81 | 88.23 61 | 83.18 115 | 88.96 113 | 94.10 74 | 87.52 113 | 83.60 80 | 81.66 90 | 77.90 87 | 80.76 62 | 83.19 64 | 66.70 192 | 91.13 81 | 90.71 73 | 94.39 116 | 96.06 45 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous20231211 | | | 84.42 99 | 83.02 105 | 86.05 82 | 88.85 114 | 92.70 97 | 88.92 97 | 83.40 89 | 79.99 105 | 78.31 83 | 55.83 192 | 78.92 89 | 83.33 82 | 89.06 112 | 89.76 96 | 93.50 146 | 94.90 64 |
|
MVSTER | | | 86.03 79 | 86.12 81 | 85.93 83 | 88.62 115 | 89.93 131 | 89.33 85 | 79.91 128 | 81.87 88 | 81.35 66 | 81.07 61 | 74.91 107 | 80.66 106 | 92.13 65 | 90.10 84 | 95.68 48 | 92.80 104 |
|
test_part1 | | | 83.23 108 | 80.55 130 | 86.35 79 | 88.60 116 | 90.61 117 | 90.78 66 | 81.13 112 | 70.89 165 | 83.01 57 | 55.72 193 | 74.60 108 | 82.19 90 | 87.79 125 | 89.26 107 | 92.39 160 | 95.01 61 |
|
TDRefinement | | | 79.05 150 | 77.05 169 | 81.39 133 | 88.45 117 | 89.00 154 | 86.92 126 | 82.65 98 | 74.21 144 | 64.41 151 | 59.17 180 | 59.16 185 | 74.52 161 | 85.23 163 | 85.09 165 | 91.37 173 | 87.51 170 |
|
IterMVS-LS | | | 83.28 107 | 82.95 107 | 83.65 109 | 88.39 118 | 88.63 158 | 86.80 129 | 78.64 143 | 76.56 126 | 73.43 107 | 72.52 107 | 75.35 104 | 80.81 103 | 86.43 148 | 88.51 122 | 93.84 135 | 92.66 109 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
diffmvs | | | 86.52 75 | 86.76 78 | 86.23 80 | 88.31 119 | 92.63 99 | 89.58 80 | 81.61 107 | 86.14 59 | 80.26 74 | 79.00 70 | 77.27 98 | 83.58 79 | 88.94 113 | 89.06 113 | 94.05 125 | 94.29 76 |
|
Fast-Effi-MVS+ | | | 83.77 103 | 82.98 106 | 84.69 92 | 87.98 120 | 91.87 107 | 88.10 108 | 77.70 152 | 78.10 120 | 73.04 110 | 69.13 125 | 68.51 142 | 86.66 67 | 90.49 96 | 89.85 93 | 94.67 99 | 92.88 101 |
|
gg-mvs-nofinetune | | | 75.64 187 | 77.26 166 | 73.76 192 | 87.92 121 | 92.20 104 | 87.32 117 | 64.67 210 | 51.92 216 | 35.35 220 | 46.44 208 | 77.05 100 | 71.97 172 | 92.64 56 | 91.02 65 | 95.34 68 | 89.53 153 |
|
RPSCF | | | 83.46 105 | 83.36 104 | 83.59 111 | 87.75 122 | 87.35 167 | 84.82 151 | 79.46 133 | 83.84 72 | 78.12 84 | 82.69 51 | 79.87 80 | 82.60 88 | 82.47 187 | 81.13 190 | 88.78 192 | 86.13 179 |
|
Effi-MVS+-dtu | | | 82.05 117 | 81.76 113 | 82.38 123 | 87.72 123 | 90.56 118 | 86.90 128 | 78.05 148 | 73.85 148 | 66.85 137 | 71.29 111 | 71.90 126 | 82.00 93 | 86.64 143 | 85.48 162 | 92.76 157 | 92.58 113 |
|
CostFormer | | | 80.94 129 | 80.21 133 | 81.79 128 | 87.69 124 | 88.58 159 | 87.47 115 | 70.66 186 | 80.02 104 | 77.88 88 | 73.03 103 | 71.40 127 | 78.24 136 | 79.96 196 | 79.63 192 | 88.82 191 | 88.84 156 |
|
baseline2 | | | 82.80 110 | 82.86 108 | 82.73 120 | 87.68 125 | 90.50 119 | 84.92 149 | 78.93 139 | 78.07 121 | 73.06 109 | 75.08 91 | 69.77 135 | 77.31 143 | 88.90 114 | 86.94 138 | 94.50 108 | 90.74 143 |
|
Vis-MVSNet |  | | 84.38 100 | 86.68 79 | 81.70 129 | 87.65 126 | 94.89 64 | 88.14 107 | 80.90 113 | 74.48 140 | 68.23 132 | 77.53 78 | 80.72 75 | 69.98 179 | 92.68 55 | 91.90 55 | 95.33 69 | 94.58 72 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
test-LLR | | | 79.47 145 | 79.84 140 | 79.03 155 | 87.47 127 | 82.40 201 | 81.24 178 | 78.05 148 | 73.72 149 | 62.69 162 | 73.76 99 | 74.42 110 | 73.49 166 | 84.61 172 | 82.99 182 | 91.25 175 | 87.01 172 |
|
test0.0.03 1 | | | 76.03 181 | 78.51 150 | 73.12 196 | 87.47 127 | 85.13 187 | 76.32 199 | 78.05 148 | 73.19 156 | 50.98 205 | 70.64 113 | 69.28 138 | 55.53 203 | 85.33 161 | 84.38 174 | 90.39 183 | 81.63 197 |
|
tpmrst | | | 76.55 174 | 75.99 181 | 77.20 169 | 87.32 129 | 83.05 194 | 82.86 164 | 65.62 205 | 78.61 118 | 67.22 136 | 69.19 124 | 65.71 150 | 75.87 151 | 76.75 206 | 75.33 205 | 84.31 210 | 83.28 191 |
|
baseline | | | 84.89 91 | 86.06 83 | 83.52 113 | 87.25 130 | 89.67 140 | 87.76 110 | 75.68 168 | 84.92 68 | 78.40 82 | 80.10 63 | 80.98 73 | 80.20 115 | 86.69 142 | 87.05 136 | 91.86 167 | 92.99 98 |
|
CDS-MVSNet | | | 81.63 125 | 82.09 112 | 81.09 138 | 87.21 131 | 90.28 122 | 87.46 116 | 80.33 120 | 69.06 175 | 70.66 117 | 71.30 110 | 73.87 114 | 67.99 185 | 89.58 105 | 89.87 92 | 92.87 156 | 90.69 144 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tpm cat1 | | | 77.78 163 | 75.28 189 | 80.70 141 | 87.14 132 | 85.84 178 | 85.81 138 | 70.40 187 | 77.44 123 | 78.80 81 | 63.72 157 | 64.01 157 | 76.55 148 | 75.60 208 | 75.21 206 | 85.51 208 | 85.12 183 |
|
tpm | | | 76.30 180 | 76.05 180 | 76.59 175 | 86.97 133 | 83.01 195 | 83.83 158 | 67.06 201 | 71.83 159 | 63.87 156 | 69.56 122 | 62.88 162 | 73.41 168 | 79.79 197 | 78.59 196 | 84.41 209 | 86.68 175 |
|
EPMVS | | | 77.53 165 | 78.07 158 | 76.90 173 | 86.89 134 | 84.91 188 | 82.18 173 | 66.64 203 | 81.00 98 | 64.11 154 | 72.75 106 | 69.68 136 | 74.42 163 | 79.36 199 | 78.13 198 | 87.14 200 | 80.68 202 |
|
PatchmatchNet |  | | 78.67 155 | 78.85 149 | 78.46 163 | 86.85 135 | 86.03 175 | 83.77 159 | 68.11 198 | 80.88 100 | 66.19 140 | 72.90 105 | 73.40 120 | 78.06 137 | 79.25 200 | 77.71 200 | 87.75 197 | 81.75 196 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
SCA | | | 79.51 144 | 80.15 135 | 78.75 158 | 86.58 136 | 87.70 164 | 83.07 163 | 68.53 195 | 81.31 92 | 66.40 139 | 73.83 98 | 75.38 103 | 79.30 130 | 80.49 194 | 79.39 195 | 88.63 194 | 82.96 193 |
|
USDC | | | 80.69 130 | 79.89 139 | 81.62 131 | 86.48 137 | 89.11 152 | 86.53 131 | 78.86 140 | 81.15 96 | 63.48 158 | 72.98 104 | 59.12 187 | 81.16 99 | 87.10 131 | 85.01 166 | 93.23 150 | 84.77 186 |
|
Fast-Effi-MVS+-dtu | | | 79.95 136 | 80.69 127 | 79.08 154 | 86.36 138 | 89.14 151 | 85.85 137 | 72.28 180 | 72.85 157 | 59.32 186 | 70.43 117 | 68.42 144 | 77.57 141 | 86.14 150 | 86.44 148 | 93.11 153 | 91.39 140 |
|
tfpnnormal | | | 77.46 166 | 74.86 191 | 80.49 145 | 86.34 139 | 88.92 155 | 84.33 155 | 81.26 110 | 61.39 203 | 61.70 173 | 51.99 202 | 53.66 208 | 74.84 158 | 88.63 116 | 87.38 132 | 94.50 108 | 92.08 122 |
|
dps | | | 78.02 160 | 75.94 182 | 80.44 146 | 86.06 140 | 86.62 173 | 82.58 165 | 69.98 190 | 75.14 135 | 77.76 90 | 69.08 126 | 59.93 178 | 78.47 134 | 79.47 198 | 77.96 199 | 87.78 196 | 83.40 190 |
|
IterMVS-SCA-FT | | | 79.41 146 | 80.20 134 | 78.49 162 | 85.88 141 | 86.26 174 | 83.95 157 | 71.94 181 | 73.55 152 | 61.94 169 | 70.48 116 | 70.50 131 | 75.23 153 | 85.81 155 | 84.61 172 | 91.99 166 | 90.18 150 |
|
LTVRE_ROB | | 74.41 16 | 75.78 186 | 74.72 192 | 77.02 172 | 85.88 141 | 89.22 148 | 82.44 168 | 77.17 155 | 50.57 217 | 45.45 211 | 65.44 146 | 52.29 210 | 81.25 97 | 85.50 159 | 87.42 131 | 89.94 187 | 92.62 110 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
EG-PatchMatch MVS | | | 76.40 178 | 75.47 187 | 77.48 168 | 85.86 143 | 90.22 124 | 82.45 167 | 73.96 175 | 59.64 208 | 59.60 185 | 52.75 200 | 62.20 168 | 68.44 184 | 88.23 121 | 87.50 129 | 94.55 106 | 87.78 168 |
|
CR-MVSNet | | | 78.71 154 | 78.86 148 | 78.55 161 | 85.85 144 | 85.15 185 | 82.30 170 | 68.23 196 | 74.71 138 | 65.37 146 | 64.39 155 | 69.59 137 | 77.18 144 | 85.10 168 | 84.87 167 | 92.34 162 | 88.21 162 |
|
GA-MVS | | | 79.52 143 | 79.71 143 | 79.30 153 | 85.68 145 | 90.36 121 | 84.55 152 | 78.44 144 | 70.47 170 | 57.87 191 | 68.52 129 | 61.38 170 | 76.21 149 | 89.40 109 | 87.89 125 | 93.04 154 | 89.96 151 |
|
UniMVSNet_ETH3D | | | 79.24 148 | 76.47 174 | 82.48 122 | 85.66 146 | 90.97 113 | 86.08 136 | 81.63 106 | 64.48 195 | 68.94 130 | 54.47 195 | 57.65 191 | 78.83 133 | 85.20 166 | 88.91 117 | 93.72 140 | 93.60 90 |
|
TransMVSNet (Re) | | | 76.57 173 | 75.16 190 | 78.22 165 | 85.60 147 | 87.24 168 | 82.46 166 | 81.23 111 | 59.80 207 | 59.05 189 | 57.07 189 | 59.14 186 | 66.60 193 | 88.09 122 | 86.82 139 | 94.37 117 | 87.95 167 |
|
RPMNet | | | 77.07 168 | 77.63 164 | 76.42 176 | 85.56 148 | 85.15 185 | 81.37 175 | 65.27 207 | 74.71 138 | 60.29 182 | 63.71 158 | 66.59 148 | 73.64 165 | 82.71 185 | 82.12 187 | 92.38 161 | 88.39 160 |
|
MDTV_nov1_ep13 | | | 79.14 149 | 79.49 145 | 78.74 159 | 85.40 149 | 86.89 171 | 84.32 156 | 70.29 188 | 78.85 115 | 69.42 126 | 75.37 89 | 73.29 121 | 75.64 152 | 80.61 193 | 79.48 194 | 87.36 198 | 81.91 195 |
|
UniMVSNet (Re) | | | 81.22 127 | 81.08 122 | 81.39 133 | 85.35 150 | 91.76 108 | 84.93 148 | 82.88 91 | 76.13 129 | 65.02 149 | 64.94 151 | 63.09 160 | 75.17 155 | 87.71 127 | 89.04 114 | 94.97 83 | 94.88 65 |
|
UniMVSNet_NR-MVSNet | | | 81.87 119 | 81.33 119 | 82.50 121 | 85.31 151 | 91.30 110 | 85.70 139 | 84.25 68 | 75.89 130 | 64.21 152 | 66.95 136 | 64.65 154 | 80.22 113 | 87.07 132 | 89.18 111 | 95.27 74 | 94.29 76 |
|
IterMVS | | | 78.79 153 | 79.71 143 | 77.71 166 | 85.26 152 | 85.91 177 | 84.54 153 | 69.84 192 | 73.38 153 | 61.25 177 | 70.53 115 | 70.35 132 | 74.43 162 | 85.21 165 | 83.80 177 | 90.95 179 | 88.77 157 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
NR-MVSNet | | | 80.25 134 | 79.98 138 | 80.56 144 | 85.20 153 | 90.94 114 | 85.65 141 | 83.58 82 | 75.74 131 | 61.36 176 | 65.30 148 | 56.75 196 | 72.38 171 | 88.46 119 | 88.80 118 | 95.16 77 | 93.87 84 |
|
CMPMVS |  | 56.49 17 | 73.84 195 | 71.73 201 | 76.31 179 | 85.20 153 | 85.67 180 | 75.80 200 | 73.23 176 | 62.26 200 | 65.40 145 | 53.40 199 | 59.70 180 | 71.77 174 | 80.25 195 | 79.56 193 | 86.45 204 | 81.28 198 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
TinyColmap | | | 76.73 170 | 73.95 194 | 79.96 149 | 85.16 155 | 85.64 181 | 82.34 169 | 78.19 146 | 70.63 168 | 62.06 168 | 60.69 172 | 49.61 213 | 80.81 103 | 85.12 167 | 83.69 178 | 91.22 177 | 82.27 194 |
|
gm-plane-assit | | | 70.29 200 | 70.65 202 | 69.88 201 | 85.03 156 | 78.50 211 | 58.41 218 | 65.47 206 | 50.39 218 | 40.88 216 | 49.60 204 | 50.11 212 | 75.14 156 | 91.43 71 | 89.78 94 | 94.32 118 | 84.73 187 |
|
FC-MVSNet-test | | | 76.53 175 | 81.62 115 | 70.58 200 | 84.99 157 | 85.73 179 | 74.81 202 | 78.85 141 | 77.00 125 | 39.13 218 | 75.90 85 | 73.50 119 | 54.08 207 | 86.54 145 | 85.99 157 | 91.65 169 | 86.68 175 |
|
DU-MVS | | | 81.20 128 | 80.30 132 | 82.25 124 | 84.98 158 | 90.94 114 | 85.70 139 | 83.58 82 | 75.74 131 | 64.21 152 | 65.30 148 | 59.60 182 | 80.22 113 | 86.89 135 | 89.31 105 | 94.77 92 | 94.29 76 |
|
Baseline_NR-MVSNet | | | 79.84 138 | 78.37 155 | 81.55 132 | 84.98 158 | 86.66 172 | 85.06 146 | 83.49 84 | 75.57 133 | 63.31 159 | 58.22 187 | 60.97 172 | 78.00 138 | 86.89 135 | 87.13 134 | 94.47 111 | 93.15 95 |
|
TranMVSNet+NR-MVSNet | | | 80.52 131 | 79.84 140 | 81.33 135 | 84.92 160 | 90.39 120 | 85.53 144 | 84.22 70 | 74.27 143 | 60.68 181 | 64.93 152 | 59.96 177 | 77.48 142 | 86.75 140 | 89.28 106 | 95.12 81 | 93.29 93 |
|
pm-mvs1 | | | 78.51 158 | 77.75 163 | 79.40 152 | 84.83 161 | 89.30 146 | 83.55 161 | 79.38 134 | 62.64 199 | 63.68 157 | 58.73 185 | 64.68 153 | 70.78 178 | 89.79 102 | 87.84 126 | 94.17 122 | 91.28 141 |
|
testgi | | | 71.92 198 | 74.20 193 | 69.27 202 | 84.58 162 | 83.06 193 | 73.40 205 | 74.39 172 | 64.04 197 | 46.17 210 | 68.90 128 | 57.15 194 | 48.89 211 | 84.07 177 | 83.08 181 | 88.18 195 | 79.09 206 |
|
thisisatest0515 | | | 79.76 140 | 80.59 129 | 78.80 157 | 84.40 163 | 88.91 156 | 79.48 187 | 76.94 158 | 72.29 158 | 67.33 135 | 67.82 133 | 65.99 149 | 70.80 177 | 88.50 118 | 87.84 126 | 93.86 134 | 92.75 107 |
|
FMVSNet3 | | | 84.44 98 | 84.64 94 | 84.21 101 | 84.32 164 | 90.13 126 | 89.85 76 | 80.37 117 | 81.17 93 | 75.50 93 | 69.63 119 | 79.69 84 | 79.62 126 | 89.72 103 | 90.52 78 | 95.59 55 | 91.58 137 |
|
GBi-Net | | | 84.51 96 | 84.80 92 | 84.17 102 | 84.20 165 | 89.95 128 | 89.70 77 | 80.37 117 | 81.17 93 | 75.50 93 | 69.63 119 | 79.69 84 | 79.75 123 | 90.73 90 | 90.72 70 | 95.52 59 | 91.71 130 |
|
test1 | | | 84.51 96 | 84.80 92 | 84.17 102 | 84.20 165 | 89.95 128 | 89.70 77 | 80.37 117 | 81.17 93 | 75.50 93 | 69.63 119 | 79.69 84 | 79.75 123 | 90.73 90 | 90.72 70 | 95.52 59 | 91.71 130 |
|
FMVSNet2 | | | 83.87 101 | 83.73 103 | 84.05 106 | 84.20 165 | 89.95 128 | 89.70 77 | 80.21 122 | 79.17 114 | 74.89 98 | 65.91 140 | 77.49 97 | 79.75 123 | 90.87 87 | 91.00 66 | 95.52 59 | 91.71 130 |
|
WR-MVS | | | 76.63 172 | 78.02 160 | 75.02 186 | 84.14 168 | 89.76 137 | 78.34 194 | 80.64 115 | 69.56 172 | 52.32 200 | 61.26 165 | 61.24 171 | 60.66 200 | 84.45 174 | 87.07 135 | 93.99 128 | 92.77 105 |
|
v8 | | | 79.90 137 | 78.39 154 | 81.66 130 | 83.97 169 | 89.81 134 | 87.16 123 | 77.40 154 | 71.49 160 | 67.71 133 | 61.24 166 | 62.49 165 | 79.83 122 | 85.48 160 | 86.17 152 | 93.89 132 | 92.02 126 |
|
v2v482 | | | 79.84 138 | 78.07 158 | 81.90 127 | 83.75 170 | 90.21 125 | 87.17 122 | 79.85 129 | 70.65 167 | 65.93 142 | 61.93 163 | 60.07 176 | 80.82 102 | 85.25 162 | 86.71 141 | 93.88 133 | 91.70 134 |
|
v10 | | | 79.62 141 | 78.19 156 | 81.28 136 | 83.73 171 | 89.69 139 | 87.27 119 | 76.86 159 | 70.50 169 | 65.46 144 | 60.58 173 | 60.47 174 | 80.44 110 | 86.91 134 | 86.63 144 | 93.93 129 | 92.55 115 |
|
v1144 | | | 79.38 147 | 77.83 161 | 81.18 137 | 83.62 172 | 90.23 123 | 87.15 124 | 78.35 145 | 69.13 174 | 64.02 155 | 60.20 175 | 59.41 183 | 80.14 117 | 86.78 138 | 86.57 145 | 93.81 137 | 92.53 117 |
|
v148 | | | 78.59 156 | 76.84 172 | 80.62 143 | 83.61 173 | 89.16 150 | 83.65 160 | 79.24 136 | 69.38 173 | 69.34 127 | 59.88 177 | 60.41 175 | 75.19 154 | 83.81 178 | 84.63 171 | 92.70 158 | 90.63 146 |
|
SixPastTwentyTwo | | | 76.02 182 | 75.72 184 | 76.36 177 | 83.38 174 | 87.54 165 | 75.50 201 | 76.22 163 | 65.50 192 | 57.05 192 | 70.64 113 | 53.97 207 | 74.54 160 | 80.96 192 | 82.12 187 | 91.44 171 | 89.35 154 |
|
CVMVSNet | | | 76.70 171 | 78.46 152 | 74.64 190 | 83.34 175 | 84.48 189 | 81.83 174 | 74.58 171 | 68.88 176 | 51.23 204 | 69.77 118 | 70.05 133 | 67.49 188 | 84.27 175 | 83.81 176 | 89.38 189 | 87.96 166 |
|
v1192 | | | 78.94 151 | 77.33 165 | 80.82 140 | 83.25 176 | 89.90 132 | 86.91 127 | 77.72 151 | 68.63 178 | 62.61 164 | 59.17 180 | 57.53 192 | 80.62 109 | 86.89 135 | 86.47 147 | 93.79 138 | 92.75 107 |
|
DTE-MVSNet | | | 75.14 189 | 75.44 188 | 74.80 188 | 83.18 177 | 87.19 169 | 78.25 196 | 80.11 124 | 66.05 187 | 48.31 207 | 60.88 170 | 54.67 203 | 64.54 196 | 82.57 186 | 86.17 152 | 94.43 114 | 90.53 148 |
|
PEN-MVS | | | 76.02 182 | 76.07 178 | 75.95 181 | 83.17 178 | 87.97 162 | 79.65 185 | 80.07 127 | 66.57 185 | 51.45 202 | 60.94 169 | 55.47 201 | 66.81 191 | 82.72 184 | 86.80 140 | 94.59 103 | 92.03 125 |
|
TAMVS | | | 76.42 176 | 77.16 168 | 75.56 182 | 83.05 179 | 85.55 182 | 80.58 183 | 71.43 183 | 65.40 194 | 61.04 180 | 67.27 135 | 69.22 140 | 67.99 185 | 84.88 170 | 84.78 169 | 89.28 190 | 83.01 192 |
|
pmmvs4 | | | 79.99 135 | 78.08 157 | 82.22 125 | 83.04 180 | 87.16 170 | 84.95 147 | 78.80 142 | 78.64 117 | 74.53 99 | 64.61 154 | 59.41 183 | 79.45 128 | 84.13 176 | 84.54 173 | 92.53 159 | 88.08 164 |
|
v144192 | | | 78.81 152 | 77.22 167 | 80.67 142 | 82.95 181 | 89.79 136 | 86.40 132 | 77.42 153 | 68.26 180 | 63.13 160 | 59.50 178 | 58.13 188 | 80.08 118 | 85.93 152 | 86.08 154 | 94.06 124 | 92.83 103 |
|
v1921920 | | | 78.57 157 | 76.99 170 | 80.41 147 | 82.93 182 | 89.63 142 | 86.38 133 | 77.14 156 | 68.31 179 | 61.80 172 | 58.89 184 | 56.79 195 | 80.19 116 | 86.50 147 | 86.05 156 | 94.02 126 | 92.76 106 |
|
CHOSEN 280x420 | | | 80.28 133 | 81.66 114 | 78.67 160 | 82.92 183 | 79.24 210 | 85.36 145 | 66.79 202 | 78.11 119 | 70.32 118 | 75.03 92 | 79.87 80 | 81.09 100 | 89.07 111 | 83.16 180 | 85.54 207 | 87.17 171 |
|
WR-MVS_H | | | 75.84 185 | 76.93 171 | 74.57 191 | 82.86 184 | 89.50 144 | 78.34 194 | 79.36 135 | 66.90 183 | 52.51 199 | 60.20 175 | 59.71 179 | 59.73 201 | 83.61 179 | 85.77 159 | 94.65 100 | 92.84 102 |
|
v1240 | | | 78.15 159 | 76.53 173 | 80.04 148 | 82.85 185 | 89.48 145 | 85.61 143 | 76.77 160 | 67.05 182 | 61.18 179 | 58.37 186 | 56.16 199 | 79.89 121 | 86.11 151 | 86.08 154 | 93.92 130 | 92.47 119 |
|
V42 | | | 79.59 142 | 78.43 153 | 80.94 139 | 82.79 186 | 89.71 138 | 86.66 130 | 76.73 161 | 71.38 161 | 67.42 134 | 61.01 168 | 62.30 167 | 78.39 135 | 85.56 158 | 86.48 146 | 93.65 143 | 92.60 111 |
|
CP-MVSNet | | | 76.36 179 | 76.41 175 | 76.32 178 | 82.73 187 | 88.64 157 | 79.39 188 | 79.62 130 | 67.21 181 | 53.70 196 | 60.72 171 | 55.22 202 | 67.91 187 | 83.52 180 | 86.34 150 | 94.55 106 | 93.19 94 |
|
PS-CasMVS | | | 75.90 184 | 75.86 183 | 75.96 180 | 82.59 188 | 88.46 160 | 79.23 191 | 79.56 132 | 66.00 188 | 52.77 198 | 59.48 179 | 54.35 206 | 67.14 190 | 83.37 181 | 86.23 151 | 94.47 111 | 93.10 96 |
|
test20.03 | | | 68.31 203 | 70.05 204 | 66.28 207 | 82.41 189 | 80.84 205 | 67.35 212 | 76.11 165 | 58.44 210 | 40.80 217 | 53.77 198 | 54.54 204 | 42.28 214 | 83.07 182 | 81.96 189 | 88.73 193 | 77.76 208 |
|
FMVSNet1 | | | 81.64 124 | 80.61 128 | 82.84 118 | 82.36 190 | 89.20 149 | 88.67 98 | 79.58 131 | 70.79 166 | 72.63 113 | 58.95 183 | 72.26 125 | 79.34 129 | 90.73 90 | 90.72 70 | 94.47 111 | 91.62 135 |
|
pmmvs6 | | | 74.83 190 | 72.89 197 | 77.09 170 | 82.11 191 | 87.50 166 | 80.88 182 | 76.97 157 | 52.79 215 | 61.91 171 | 46.66 207 | 60.49 173 | 69.28 181 | 86.74 141 | 85.46 163 | 91.39 172 | 90.56 147 |
|
pmmvs5 | | | 76.93 169 | 76.33 176 | 77.62 167 | 81.97 192 | 88.40 161 | 81.32 177 | 74.35 173 | 65.42 193 | 61.42 175 | 63.07 159 | 57.95 190 | 73.23 169 | 85.60 157 | 85.35 164 | 93.41 148 | 88.55 159 |
|
v7n | | | 77.22 167 | 76.23 177 | 78.38 164 | 81.89 193 | 89.10 153 | 82.24 172 | 76.36 162 | 65.96 189 | 61.21 178 | 56.56 190 | 55.79 200 | 75.07 157 | 86.55 144 | 86.68 142 | 93.52 145 | 92.95 100 |
|
our_test_3 | | | | | | 81.81 194 | 83.96 192 | 76.61 198 | | | | | | | | | | |
|
Anonymous20231206 | | | 70.80 199 | 70.59 203 | 71.04 199 | 81.60 195 | 82.49 200 | 74.64 203 | 75.87 167 | 64.17 196 | 49.27 206 | 44.85 211 | 53.59 209 | 54.68 206 | 83.07 182 | 82.34 186 | 90.17 184 | 83.65 189 |
|
ADS-MVSNet | | | 74.53 192 | 75.69 185 | 73.17 195 | 81.57 196 | 80.71 206 | 79.27 190 | 63.03 212 | 79.27 113 | 59.94 184 | 67.86 132 | 68.32 146 | 71.08 176 | 77.33 204 | 76.83 202 | 84.12 212 | 79.53 203 |
|
pmnet_mix02 | | | 71.95 197 | 71.83 200 | 72.10 197 | 81.40 197 | 80.63 207 | 73.78 204 | 72.85 179 | 70.90 164 | 54.89 194 | 62.17 162 | 57.42 193 | 62.92 198 | 76.80 205 | 73.98 209 | 86.74 203 | 80.87 201 |
|
test-mter | | | 77.79 162 | 80.02 137 | 75.18 185 | 81.18 198 | 82.85 196 | 80.52 184 | 62.03 214 | 73.62 151 | 62.16 167 | 73.55 101 | 73.83 115 | 73.81 164 | 84.67 171 | 83.34 179 | 91.37 173 | 88.31 161 |
|
TESTMET0.1,1 | | | 77.78 163 | 79.84 140 | 75.38 184 | 80.86 199 | 82.40 201 | 81.24 178 | 62.72 213 | 73.72 149 | 62.69 162 | 73.76 99 | 74.42 110 | 73.49 166 | 84.61 172 | 82.99 182 | 91.25 175 | 87.01 172 |
|
MDTV_nov1_ep13_2view | | | 73.21 196 | 72.91 196 | 73.56 194 | 80.01 200 | 84.28 191 | 78.62 192 | 66.43 204 | 68.64 177 | 59.12 187 | 60.39 174 | 59.69 181 | 69.81 180 | 78.82 202 | 77.43 201 | 87.36 198 | 81.11 200 |
|
FPMVS | | | 63.63 208 | 60.08 213 | 67.78 204 | 80.01 200 | 71.50 216 | 72.88 207 | 69.41 194 | 61.82 202 | 53.11 197 | 45.12 210 | 42.11 220 | 50.86 209 | 66.69 213 | 63.84 214 | 80.41 214 | 69.46 214 |
|
anonymousdsp | | | 77.94 161 | 79.00 147 | 76.71 174 | 79.03 202 | 87.83 163 | 79.58 186 | 72.87 178 | 65.80 190 | 58.86 190 | 65.82 141 | 62.48 166 | 75.99 150 | 86.77 139 | 88.66 119 | 93.92 130 | 95.68 53 |
|
N_pmnet | | | 66.85 204 | 66.63 205 | 67.11 206 | 78.73 203 | 74.66 214 | 70.53 209 | 71.07 184 | 66.46 186 | 46.54 209 | 51.68 203 | 51.91 211 | 55.48 204 | 74.68 209 | 72.38 210 | 80.29 215 | 74.65 211 |
|
PMMVS | | | 81.65 123 | 84.05 100 | 78.86 156 | 78.56 204 | 82.63 198 | 83.10 162 | 67.22 200 | 81.39 91 | 70.11 122 | 84.91 43 | 79.74 83 | 82.12 91 | 87.31 129 | 85.70 160 | 92.03 165 | 86.67 177 |
|
PatchT | | | 76.42 176 | 77.81 162 | 74.80 188 | 78.46 205 | 84.30 190 | 71.82 208 | 65.03 209 | 73.89 146 | 65.37 146 | 61.58 164 | 66.70 147 | 77.18 144 | 85.10 168 | 84.87 167 | 90.94 180 | 88.21 162 |
|
MVS-HIRNet | | | 68.83 202 | 66.39 206 | 71.68 198 | 77.58 206 | 75.52 213 | 66.45 213 | 65.05 208 | 62.16 201 | 62.84 161 | 44.76 212 | 56.60 198 | 71.96 173 | 78.04 203 | 75.06 207 | 86.18 206 | 72.56 212 |
|
pmmvs-eth3d | | | 74.32 193 | 71.96 199 | 77.08 171 | 77.33 207 | 82.71 197 | 78.41 193 | 76.02 166 | 66.65 184 | 65.98 141 | 54.23 197 | 49.02 215 | 73.14 170 | 82.37 188 | 82.69 184 | 91.61 170 | 86.05 180 |
|
new-patchmatchnet | | | 63.80 207 | 63.31 209 | 64.37 208 | 76.49 208 | 75.99 212 | 63.73 215 | 70.99 185 | 57.27 211 | 43.08 213 | 45.86 209 | 43.80 217 | 45.13 213 | 73.20 210 | 70.68 213 | 86.80 202 | 76.34 210 |
|
FMVSNet5 | | | 75.50 188 | 76.07 178 | 74.83 187 | 76.16 209 | 81.19 204 | 81.34 176 | 70.21 189 | 73.20 155 | 61.59 174 | 58.97 182 | 68.33 145 | 68.50 183 | 85.87 154 | 85.85 158 | 91.18 178 | 79.11 205 |
|
PM-MVS | | | 74.17 194 | 73.10 195 | 75.41 183 | 76.07 210 | 82.53 199 | 77.56 197 | 71.69 182 | 71.04 162 | 61.92 170 | 61.23 167 | 47.30 216 | 74.82 159 | 81.78 190 | 79.80 191 | 90.42 182 | 88.05 165 |
|
MIMVSNet | | | 74.69 191 | 75.60 186 | 73.62 193 | 76.02 211 | 85.31 184 | 81.21 180 | 67.43 199 | 71.02 163 | 59.07 188 | 54.48 194 | 64.07 155 | 66.14 194 | 86.52 146 | 86.64 143 | 91.83 168 | 81.17 199 |
|
EU-MVSNet | | | 69.98 201 | 72.30 198 | 67.28 205 | 75.67 212 | 79.39 209 | 73.12 206 | 69.94 191 | 63.59 198 | 42.80 214 | 62.93 160 | 56.71 197 | 55.07 205 | 79.13 201 | 78.55 197 | 87.06 201 | 85.82 182 |
|
ET-MVSNet_ETH3D | | | 84.65 93 | 85.58 88 | 83.56 112 | 74.99 213 | 92.62 101 | 90.29 71 | 80.38 116 | 82.16 84 | 73.01 111 | 83.41 46 | 71.10 129 | 87.05 65 | 87.77 126 | 90.17 83 | 95.62 52 | 91.82 128 |
|
PMVS |  | 50.48 18 | 55.81 212 | 51.93 214 | 60.33 211 | 72.90 214 | 49.34 220 | 48.78 219 | 69.51 193 | 43.49 220 | 54.25 195 | 36.26 217 | 41.04 222 | 39.71 216 | 65.07 214 | 60.70 215 | 76.85 217 | 67.58 215 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ambc | | | | 61.92 210 | | 70.98 215 | 73.54 215 | 63.64 216 | | 60.06 205 | 52.23 201 | 38.44 215 | 19.17 226 | 57.12 202 | 82.33 189 | 75.03 208 | 83.21 213 | 84.89 184 |
|
pmmvs3 | | | 61.89 209 | 61.74 211 | 62.06 210 | 64.30 216 | 70.83 217 | 64.22 214 | 52.14 218 | 48.78 219 | 44.47 212 | 41.67 214 | 41.70 221 | 63.03 197 | 76.06 207 | 76.02 203 | 84.18 211 | 77.14 209 |
|
MDA-MVSNet-bldmvs | | | 66.22 205 | 64.49 208 | 68.24 203 | 61.67 217 | 82.11 203 | 70.07 210 | 76.16 164 | 59.14 209 | 47.94 208 | 54.35 196 | 35.82 223 | 67.33 189 | 64.94 215 | 75.68 204 | 86.30 205 | 79.36 204 |
|
new_pmnet | | | 59.28 210 | 61.47 212 | 56.73 212 | 61.66 218 | 68.29 218 | 59.57 217 | 54.91 215 | 60.83 204 | 34.38 221 | 44.66 213 | 43.65 218 | 49.90 210 | 71.66 211 | 71.56 212 | 79.94 216 | 69.67 213 |
|
Gipuma |  | | 49.17 213 | 47.05 216 | 51.65 213 | 59.67 219 | 48.39 221 | 41.98 222 | 63.47 211 | 55.64 214 | 33.33 222 | 14.90 220 | 13.78 227 | 41.34 215 | 69.31 212 | 72.30 211 | 70.11 218 | 55.00 219 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MIMVSNet1 | | | 65.00 206 | 66.24 207 | 63.55 209 | 58.41 220 | 80.01 208 | 69.00 211 | 74.03 174 | 55.81 213 | 41.88 215 | 36.81 216 | 49.48 214 | 47.89 212 | 81.32 191 | 82.40 185 | 90.08 186 | 77.88 207 |
|
EMVS | | | 30.49 218 | 25.44 220 | 36.39 216 | 51.47 221 | 29.89 225 | 20.17 226 | 54.00 217 | 26.49 222 | 12.02 226 | 13.94 223 | 8.84 228 | 34.37 218 | 25.04 222 | 34.37 221 | 46.29 224 | 39.53 222 |
|
E-PMN | | | 31.40 216 | 26.80 219 | 36.78 215 | 51.39 222 | 29.96 224 | 20.20 225 | 54.17 216 | 25.93 223 | 12.75 225 | 14.73 221 | 8.58 229 | 34.10 219 | 27.36 221 | 37.83 220 | 48.07 223 | 43.18 221 |
|
PMMVS2 | | | 41.68 215 | 44.74 217 | 38.10 214 | 46.97 223 | 52.32 219 | 40.63 223 | 48.08 219 | 35.51 221 | 7.36 227 | 26.86 219 | 24.64 225 | 16.72 221 | 55.24 218 | 59.03 216 | 68.85 219 | 59.59 218 |
|
tmp_tt | | | | | 32.73 218 | 43.96 224 | 21.15 226 | 26.71 224 | 8.99 223 | 65.67 191 | 51.39 203 | 56.01 191 | 42.64 219 | 11.76 222 | 56.60 217 | 50.81 218 | 53.55 222 | |
|
MVE |  | 30.17 19 | 30.88 217 | 33.52 218 | 27.80 220 | 23.78 225 | 39.16 223 | 18.69 227 | 46.90 220 | 21.88 224 | 15.39 224 | 14.37 222 | 7.31 230 | 24.41 220 | 41.63 220 | 56.22 217 | 37.64 225 | 54.07 220 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 41.78 214 | 48.10 215 | 34.42 217 | 10.74 226 | 19.78 227 | 44.64 221 | 17.73 222 | 59.83 206 | 38.67 219 | 35.82 218 | 54.41 205 | 34.94 217 | 62.87 216 | 43.13 219 | 59.81 220 | 60.82 217 |
|
GG-mvs-BLEND | | | 57.56 211 | 82.61 110 | 28.34 219 | 0.22 227 | 90.10 127 | 79.37 189 | 0.14 225 | 79.56 109 | 0.40 228 | 71.25 112 | 83.40 63 | 0.30 225 | 86.27 149 | 83.87 175 | 89.59 188 | 83.83 188 |
|
testmvs | | | 1.03 219 | 1.63 221 | 0.34 221 | 0.09 228 | 0.35 228 | 0.61 229 | 0.16 224 | 1.49 225 | 0.10 229 | 3.15 224 | 0.15 231 | 0.86 224 | 1.32 223 | 1.18 222 | 0.20 226 | 3.76 224 |
|
test123 | | | 0.87 220 | 1.40 222 | 0.25 222 | 0.03 229 | 0.25 229 | 0.35 230 | 0.08 226 | 1.21 226 | 0.05 230 | 2.84 225 | 0.03 232 | 0.89 223 | 0.43 224 | 1.16 223 | 0.13 227 | 3.87 223 |
|
uanet_test | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
sosnet-low-res | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
sosnet | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
RE-MVS-def | | | | | | | | | | | 56.08 193 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 92.16 17 | | | | | |
|
MTAPA | | | | | | | | | | | 92.97 2 | | 91.03 23 | | | | | |
|
MTMP | | | | | | | | | | | 93.14 1 | | 90.21 31 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.55 228 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 87.47 55 | | | | | | | | |
|
Patchmtry | | | | | | | 85.54 183 | 82.30 170 | 68.23 196 | | 65.37 146 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 48.31 222 | 48.03 220 | 26.08 221 | 56.42 212 | 25.77 223 | 47.51 206 | 31.31 224 | 51.30 208 | 48.49 219 | | 53.61 221 | 61.52 216 |
|