This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVS++copyleft94.60 994.91 1194.24 897.86 196.53 3396.14 992.51 993.87 1690.76 1393.45 1993.84 592.62 995.11 1294.08 1995.58 5697.48 14
DVP-MVS++95.79 196.42 195.06 197.84 298.17 297.03 492.84 396.68 192.83 395.90 594.38 492.90 595.98 294.85 596.93 498.99 1
SMA-MVScopyleft94.70 795.35 793.93 1397.57 397.57 895.98 1291.91 1494.50 790.35 1593.46 1892.72 1291.89 1995.89 495.22 195.88 3398.10 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS93.80 1893.45 2694.20 997.53 496.43 3795.88 1891.12 2194.09 1292.74 487.68 3490.77 2692.04 1494.74 2093.56 2995.91 3296.85 28
MP-MVScopyleft93.35 2193.59 2493.08 2497.39 596.82 2395.38 2690.71 2590.82 3788.07 2892.83 2290.29 3091.32 2994.03 3293.19 4195.61 5497.16 21
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
NCCC93.69 2093.66 2393.72 1797.37 696.66 3095.93 1792.50 1093.40 2088.35 2687.36 3692.33 1592.18 1394.89 1594.09 1896.00 2896.91 27
CNVR-MVS94.37 1294.65 1294.04 1297.29 797.11 1196.00 1192.43 1193.45 1789.85 2090.92 2693.04 992.59 1095.77 594.82 696.11 2697.42 16
HFP-MVS94.02 1594.22 1893.78 1597.25 896.85 2195.81 2190.94 2494.12 1190.29 1794.09 1589.98 3292.52 1193.94 3593.49 3495.87 3597.10 24
APD-MVScopyleft94.37 1294.47 1694.26 797.18 996.99 1796.53 892.68 692.45 2589.96 1894.53 1291.63 2192.89 694.58 2393.82 2396.31 1997.26 19
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast88.76 193.10 2393.02 3093.19 2397.13 1096.51 3495.35 2791.19 2093.14 2288.14 2785.26 4289.49 3691.45 2495.17 1095.07 295.85 3896.48 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS95.23 595.69 694.70 597.12 1197.81 697.19 292.83 495.06 690.98 1196.47 292.77 1193.38 295.34 994.21 1696.68 1098.17 5
ACMMPR93.72 1993.94 2093.48 1997.07 1296.93 1895.78 2290.66 2793.88 1589.24 2293.53 1789.08 3992.24 1293.89 3793.50 3295.88 3396.73 32
mPP-MVS97.06 1388.08 46
ACMMP_NAP93.94 1694.49 1593.30 2197.03 1497.31 1095.96 1391.30 1993.41 1988.55 2593.00 2090.33 2991.43 2795.53 794.41 1495.53 5897.47 15
PGM-MVS92.76 2793.03 2992.45 2997.03 1496.67 2995.73 2487.92 4390.15 4486.53 3792.97 2188.33 4591.69 2293.62 4393.03 4295.83 3996.41 39
SteuartSystems-ACMMP94.06 1494.65 1293.38 2096.97 1697.36 996.12 1091.78 1592.05 2987.34 3194.42 1390.87 2591.87 2095.47 894.59 1196.21 2497.77 11
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVScopyleft95.56 396.26 394.73 396.93 1798.19 196.62 792.81 596.15 291.73 695.01 895.31 293.41 195.95 394.77 896.90 598.46 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
X-MVS92.36 3192.75 3191.90 3496.89 1896.70 2695.25 2890.48 3091.50 3483.95 5188.20 3288.82 4189.11 4093.75 4093.43 3595.75 4596.83 30
train_agg92.87 2693.53 2592.09 3196.88 1995.38 5295.94 1590.59 2990.65 3983.65 5494.31 1491.87 2090.30 3493.38 4592.42 5295.17 7696.73 32
SED-MVS95.61 296.36 294.73 396.84 2098.15 397.08 392.92 295.64 391.84 595.98 495.33 192.83 796.00 194.94 396.90 598.45 3
CP-MVS93.25 2293.26 2793.24 2296.84 2096.51 3495.52 2590.61 2892.37 2688.88 2390.91 2789.52 3591.91 1893.64 4292.78 4795.69 4797.09 25
MSP-MVS95.12 695.83 594.30 696.82 2297.94 596.98 592.37 1295.40 490.59 1496.16 393.71 692.70 894.80 1794.77 896.37 1597.99 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.53 496.13 494.82 296.81 2398.05 497.42 193.09 194.31 991.49 797.12 195.03 393.27 395.55 694.58 1296.86 798.25 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MCST-MVS93.81 1794.06 1993.53 1896.79 2496.85 2195.95 1491.69 1792.20 2787.17 3390.83 2893.41 791.96 1594.49 2693.50 3297.61 197.12 23
xxxxxxxxxxxxxcwj92.95 2591.88 3494.20 996.75 2597.07 1295.82 1992.60 793.98 1391.09 995.89 671.01 13091.93 1694.40 2893.56 2997.04 297.27 17
SF-MVS94.61 894.96 1094.20 996.75 2597.07 1295.82 1992.60 793.98 1391.09 995.89 692.54 1391.93 1694.40 2893.56 2997.04 297.27 17
SR-MVS96.58 2790.99 2392.40 14
EPNet89.60 5189.91 4989.24 5796.45 2893.61 8192.95 4888.03 4185.74 6283.36 5587.29 3783.05 6580.98 10192.22 6191.85 5693.69 14195.58 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CSCG92.76 2793.16 2892.29 3096.30 2997.74 794.67 3488.98 3792.46 2489.73 2186.67 3892.15 1888.69 4592.26 6092.92 4595.40 6397.89 10
CDPH-MVS91.14 4092.01 3390.11 4496.18 3096.18 4094.89 3288.80 3988.76 4977.88 8889.18 3187.71 4887.29 6393.13 4893.31 3995.62 5295.84 48
DeepC-MVS87.86 392.26 3291.86 3592.73 2696.18 3096.87 2095.19 2991.76 1692.17 2886.58 3681.79 5485.85 5290.88 3294.57 2494.61 1095.80 4197.18 20
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary90.29 4588.38 6092.53 2796.10 3295.19 5792.98 4791.40 1889.08 4888.65 2478.35 7481.44 7291.30 3090.81 8990.21 8294.72 9693.59 91
MSLP-MVS++92.02 3591.40 3892.75 2596.01 3395.88 4593.73 4189.00 3589.89 4590.31 1681.28 6088.85 4091.45 2492.88 5394.24 1596.00 2896.76 31
3Dnovator+86.06 491.60 3790.86 4492.47 2896.00 3496.50 3694.70 3387.83 4490.49 4089.92 1974.68 9389.35 3790.66 3394.02 3394.14 1795.67 4996.85 28
TSAR-MVS + ACMM92.97 2494.51 1491.16 3895.88 3596.59 3195.09 3090.45 3193.42 1883.01 5794.68 1190.74 2788.74 4494.75 1993.78 2493.82 13697.63 12
ACMMPcopyleft92.03 3492.16 3291.87 3595.88 3596.55 3294.47 3689.49 3491.71 3285.26 4491.52 2584.48 5890.21 3692.82 5491.63 5895.92 3196.42 38
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS94.53 1095.22 893.73 1695.69 3797.03 1595.77 2391.95 1394.41 891.35 894.97 993.34 891.80 2194.72 2193.99 2095.82 4098.07 7
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPM-MVS91.72 3691.48 3692.00 3295.53 3895.75 4895.94 1591.07 2291.20 3585.58 4281.63 5890.74 2788.40 4893.40 4493.75 2595.45 6293.85 85
TSAR-MVS + MP.94.48 1194.97 993.90 1495.53 3897.01 1696.69 690.71 2594.24 1090.92 1294.97 992.19 1693.03 494.83 1693.60 2796.51 1497.97 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CPTT-MVS91.39 3890.95 4291.91 3395.06 4095.24 5695.02 3188.98 3791.02 3686.71 3584.89 4488.58 4491.60 2390.82 8889.67 9894.08 12396.45 37
CANet91.33 3991.46 3791.18 3795.01 4196.71 2593.77 3987.39 4787.72 5387.26 3281.77 5589.73 3387.32 6294.43 2793.86 2296.31 1996.02 46
PHI-MVS92.05 3393.74 2290.08 4594.96 4297.06 1493.11 4687.71 4590.71 3880.78 7292.40 2391.03 2387.68 5694.32 3094.48 1396.21 2496.16 43
MAR-MVS88.39 6288.44 5988.33 6894.90 4395.06 6190.51 6883.59 8185.27 6479.07 8077.13 7982.89 6687.70 5492.19 6392.32 5394.23 12094.20 81
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
3Dnovator85.17 590.48 4389.90 5091.16 3894.88 4495.74 4993.82 3885.36 5889.28 4687.81 2974.34 9687.40 4988.56 4693.07 4993.74 2696.53 1395.71 50
DeepPCF-MVS88.51 292.64 3094.42 1790.56 4294.84 4596.92 1991.31 6389.61 3395.16 584.55 4989.91 3091.45 2290.15 3795.12 1194.81 792.90 15597.58 13
QAPM89.49 5289.58 5389.38 5594.73 4695.94 4392.35 5085.00 6185.69 6380.03 7676.97 8187.81 4787.87 5392.18 6492.10 5496.33 1796.40 41
MVS_111021_HR90.56 4291.29 4089.70 5194.71 4795.63 5091.81 5886.38 5287.53 5481.29 6787.96 3385.43 5487.69 5593.90 3692.93 4496.33 1795.69 51
abl_690.66 4194.65 4896.27 3892.21 5186.94 4990.23 4286.38 3885.50 4192.96 1088.37 4995.40 6395.46 57
OpenMVScopyleft82.53 1187.71 6886.84 7588.73 6194.42 4995.06 6191.02 6583.49 8482.50 8182.24 6467.62 13485.48 5385.56 7391.19 7591.30 6195.67 4994.75 68
PLCcopyleft83.76 988.61 5986.83 7690.70 4094.22 5092.63 9991.50 6087.19 4889.16 4786.87 3475.51 8880.87 7489.98 3890.01 9989.20 11094.41 11590.45 149
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D85.96 8084.37 9787.81 7094.13 5193.27 8790.26 7289.00 3584.91 6972.84 11271.74 10972.47 12487.45 6089.53 10789.09 11293.20 15189.60 152
EPNet_dtu81.98 11883.82 10279.83 15194.10 5285.97 17687.29 11884.08 7280.61 10259.96 18381.62 5977.19 9962.91 19987.21 13086.38 14990.66 18187.77 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_030490.88 4191.35 3990.34 4393.91 5396.79 2494.49 3586.54 5186.57 5882.85 5981.68 5789.70 3487.57 5894.64 2293.93 2196.67 1296.15 44
OPM-MVS87.56 7085.80 8689.62 5293.90 5494.09 7594.12 3788.18 4075.40 13477.30 9176.41 8277.93 9588.79 4392.20 6290.82 6995.40 6393.72 89
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DELS-MVS89.71 5089.68 5289.74 4993.75 5596.22 3993.76 4085.84 5482.53 7985.05 4678.96 7184.24 5984.25 7894.91 1494.91 495.78 4496.02 46
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNLPA88.40 6087.00 7490.03 4793.73 5694.28 7189.56 8185.81 5591.87 3087.55 3069.53 12381.49 7189.23 3989.45 10888.59 12094.31 11993.82 86
HQP-MVS89.13 5589.58 5388.60 6493.53 5793.67 7993.29 4487.58 4688.53 5075.50 9387.60 3580.32 7787.07 6490.66 9489.95 9094.62 10296.35 42
OMC-MVS90.23 4790.40 4790.03 4793.45 5895.29 5391.89 5786.34 5393.25 2184.94 4781.72 5686.65 5188.90 4191.69 6890.27 8194.65 10093.95 83
ACMM83.27 1087.68 6986.09 8289.54 5393.26 5992.19 10591.43 6186.74 5086.02 6082.85 5975.63 8775.14 10588.41 4790.68 9389.99 8794.59 10392.97 99
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_111021_LR90.14 4890.89 4389.26 5693.23 6094.05 7690.43 6984.65 6390.16 4384.52 5090.14 2983.80 6187.99 5292.50 5890.92 6794.74 9494.70 70
CS-MVS-test90.29 4590.96 4189.51 5493.18 6195.87 4689.18 8683.72 7788.32 5184.82 4884.89 4485.23 5590.25 3594.04 3192.66 5195.94 3095.69 51
CS-MVS90.34 4490.58 4690.07 4693.11 6295.82 4790.57 6783.62 7887.07 5685.35 4382.98 4883.47 6291.37 2894.94 1393.37 3896.37 1596.41 39
XVS93.11 6296.70 2691.91 5583.95 5188.82 4195.79 42
X-MVStestdata93.11 6296.70 2691.91 5583.95 5188.82 4195.79 42
PCF-MVS84.60 688.66 5787.75 7089.73 5093.06 6596.02 4193.22 4590.00 3282.44 8280.02 7777.96 7785.16 5687.36 6188.54 11788.54 12194.72 9695.61 54
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS84.37 788.91 5688.93 5688.89 5993.00 6694.85 6592.00 5484.84 6291.68 3380.05 7579.77 6684.56 5788.17 5190.11 9889.00 11695.30 7092.57 114
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet_Blended_VisFu87.40 7287.80 6786.92 7692.86 6795.40 5188.56 10483.45 8879.55 11082.26 6274.49 9584.03 6079.24 13192.97 5291.53 6095.15 7896.65 35
UA-Net86.07 7887.78 6884.06 10592.85 6895.11 6087.73 11184.38 6773.22 15473.18 10879.99 6589.22 3871.47 17593.22 4793.03 4294.76 9390.69 144
LGP-MVS_train88.25 6488.55 5787.89 6992.84 6993.66 8093.35 4385.22 6085.77 6174.03 10386.60 3976.29 10286.62 6891.20 7490.58 7795.29 7195.75 49
TSAR-MVS + COLMAP88.40 6089.09 5587.60 7392.72 7093.92 7892.21 5185.57 5791.73 3173.72 10491.75 2473.22 12287.64 5791.49 7089.71 9793.73 13991.82 128
PVSNet_BlendedMVS88.19 6588.00 6588.42 6692.71 7194.82 6689.08 9183.81 7484.91 6986.38 3879.14 6878.11 9382.66 8693.05 5091.10 6295.86 3694.86 66
PVSNet_Blended88.19 6588.00 6588.42 6692.71 7194.82 6689.08 9183.81 7484.91 6986.38 3879.14 6878.11 9382.66 8693.05 5091.10 6295.86 3694.86 66
ACMP83.90 888.32 6388.06 6388.62 6392.18 7393.98 7791.28 6485.24 5986.69 5781.23 6885.62 4075.13 10687.01 6689.83 10189.77 9594.79 9095.43 58
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSDG83.87 10181.02 12387.19 7592.17 7489.80 13589.15 8985.72 5680.61 10279.24 7966.66 13768.75 14182.69 8587.95 12487.44 13094.19 12185.92 181
TSAR-MVS + GP.92.71 2993.91 2191.30 3691.96 7596.00 4293.43 4287.94 4292.53 2386.27 4193.57 1691.94 1991.44 2693.29 4692.89 4696.78 897.15 22
test250685.20 8784.11 9986.47 7891.84 7695.28 5489.18 8684.49 6582.59 7775.34 9774.66 9458.07 18981.68 9493.76 3892.71 4896.28 2291.71 130
ECVR-MVScopyleft85.25 8684.47 9586.16 8191.84 7695.28 5489.18 8684.49 6582.59 7773.49 10666.12 13969.28 13881.68 9493.76 3892.71 4896.28 2291.58 137
test111184.86 9284.21 9885.61 8691.75 7895.14 5988.63 10184.57 6481.88 8771.21 11565.66 14568.51 14281.19 9893.74 4192.68 5096.31 1991.86 127
ETV-MVS89.22 5489.76 5188.60 6491.60 7994.61 6989.48 8383.46 8785.20 6681.58 6582.75 5082.59 6788.80 4294.57 2493.28 4096.68 1095.31 59
EIA-MVS87.94 6788.05 6487.81 7091.46 8095.00 6388.67 9882.81 9282.53 7980.81 7180.04 6480.20 7887.48 5992.58 5791.61 5995.63 5194.36 75
canonicalmvs89.36 5389.92 4888.70 6291.38 8195.92 4491.81 5882.61 10090.37 4182.73 6182.09 5279.28 8788.30 5091.17 7693.59 2895.36 6697.04 26
CLD-MVS88.66 5788.52 5888.82 6091.37 8294.22 7292.82 4982.08 10388.27 5285.14 4581.86 5378.53 9185.93 7291.17 7690.61 7595.55 5795.00 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 1792x268882.16 11680.91 12683.61 11091.14 8392.01 10689.55 8279.15 13779.87 10670.29 11952.51 20172.56 12381.39 9688.87 11588.17 12490.15 18592.37 121
IB-MVS79.09 1282.60 11382.19 11183.07 11691.08 8493.55 8280.90 18181.35 10976.56 12680.87 7064.81 15369.97 13468.87 18285.64 15690.06 8695.36 6694.74 69
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IS_MVSNet86.18 7788.18 6283.85 10891.02 8594.72 6887.48 11482.46 10181.05 9770.28 12076.98 8082.20 7076.65 14793.97 3493.38 3695.18 7594.97 63
HyFIR lowres test81.62 12679.45 14684.14 10491.00 8693.38 8688.27 10678.19 14676.28 12870.18 12148.78 20573.69 11783.52 8087.05 13387.83 12893.68 14289.15 155
COLMAP_ROBcopyleft76.78 1580.50 13278.49 15182.85 11790.96 8789.65 14186.20 13583.40 8977.15 12466.54 13862.27 16165.62 15177.89 13985.23 16384.70 17092.11 16384.83 185
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CANet_DTU85.43 8487.72 7182.76 11990.95 8893.01 9289.99 7375.46 16982.67 7664.91 15083.14 4780.09 7980.68 10592.03 6691.03 6494.57 10592.08 122
FC-MVSNet-train85.18 8885.31 9085.03 9190.67 8991.62 10987.66 11283.61 7979.75 10874.37 10178.69 7271.21 12878.91 13291.23 7289.96 8994.96 8494.69 71
baseline184.54 9584.43 9684.67 9390.62 9091.16 11288.63 10183.75 7679.78 10771.16 11675.14 9074.10 11277.84 14091.56 6990.67 7496.04 2788.58 158
thres600view782.53 11581.02 12384.28 10090.61 9193.05 9088.57 10382.67 9674.12 14568.56 13165.09 15062.13 16980.40 11191.15 7889.02 11594.88 8792.59 112
DROMVSNet89.96 4990.77 4589.01 5890.54 9295.15 5891.34 6281.43 10885.27 6483.08 5682.83 4987.22 5090.97 3194.79 1893.38 3696.73 996.71 34
thres40082.68 11281.15 12184.47 9690.52 9392.89 9488.95 9682.71 9474.33 14269.22 12865.31 14762.61 16480.63 10790.96 8689.50 10294.79 9092.45 120
EPP-MVSNet86.55 7487.76 6985.15 9090.52 9394.41 7087.24 12082.32 10281.79 8973.60 10578.57 7382.41 6882.07 9291.23 7290.39 7995.14 7995.48 56
ACMH78.52 1481.86 12080.45 13183.51 11490.51 9591.22 11185.62 14284.23 6970.29 17162.21 16669.04 12764.05 15684.48 7787.57 12888.45 12394.01 12792.54 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)83.65 10486.81 7779.96 14990.46 9692.71 9684.84 15082.00 10480.93 9962.44 16576.29 8382.32 6965.54 19592.29 5991.66 5794.49 11091.47 139
FA-MVS(training)85.65 8385.79 8785.48 8890.44 9793.47 8388.66 10073.11 17783.34 7482.26 6271.79 10878.39 9283.14 8391.00 8389.47 10395.28 7393.06 97
thres20082.77 11181.25 12084.54 9490.38 9893.05 9089.13 9082.67 9674.40 14169.53 12565.69 14463.03 16180.63 10791.15 7889.42 10494.88 8792.04 124
MS-PatchMatch81.79 12281.44 11782.19 12690.35 9989.29 14788.08 10975.36 17077.60 12269.00 12964.37 15678.87 9077.14 14688.03 12385.70 16093.19 15286.24 178
PatchMatch-RL83.34 10681.36 11885.65 8490.33 10089.52 14384.36 15481.82 10580.87 10179.29 7874.04 9762.85 16386.05 7188.40 12087.04 13792.04 16486.77 174
thres100view90082.55 11481.01 12584.34 9790.30 10192.27 10389.04 9482.77 9375.14 13569.56 12365.72 14263.13 15879.62 12689.97 10089.26 10794.73 9591.61 136
tfpn200view982.86 10981.46 11684.48 9590.30 10193.09 8989.05 9382.71 9475.14 13569.56 12365.72 14263.13 15880.38 11291.15 7889.51 10194.91 8692.50 118
casdiffmvs87.45 7187.15 7387.79 7290.15 10394.22 7289.96 7483.93 7385.08 6780.91 6975.81 8677.88 9686.08 7091.86 6790.86 6895.74 4694.37 74
MVS_Test86.93 7387.24 7286.56 7790.10 10493.47 8390.31 7080.12 12383.55 7378.12 8479.58 6779.80 8285.45 7490.17 9790.59 7695.29 7193.53 92
ACMH+79.08 1381.84 12180.06 13683.91 10789.92 10590.62 11686.21 13483.48 8673.88 14765.75 14366.38 13865.30 15284.63 7685.90 15387.25 13393.45 14791.13 142
Effi-MVS+85.33 8585.08 9185.63 8589.69 10693.42 8589.90 7580.31 12179.32 11172.48 11473.52 10274.03 11386.55 6990.99 8489.98 8894.83 8994.27 80
Anonymous20240521182.75 10989.58 10792.97 9389.04 9484.13 7178.72 11657.18 18876.64 10183.13 8489.55 10689.92 9193.38 14994.28 79
GeoE84.62 9483.98 10185.35 8989.34 10892.83 9588.34 10578.95 13879.29 11277.16 9268.10 13174.56 10983.40 8189.31 11089.23 10994.92 8594.57 73
tttt051785.11 9085.81 8584.30 9989.24 10992.68 9887.12 12580.11 12481.98 8674.31 10278.08 7673.57 11879.90 11991.01 8289.58 9995.11 8293.77 87
DI_MVS_plusplus_trai86.41 7685.54 8987.42 7489.24 10993.13 8892.16 5382.65 9882.30 8380.75 7368.30 13080.41 7685.01 7590.56 9590.07 8594.70 9894.01 82
thisisatest053085.15 8985.86 8484.33 9889.19 11192.57 10287.22 12180.11 12482.15 8574.41 10078.15 7573.80 11679.90 11990.99 8489.58 9995.13 8093.75 88
DCV-MVSNet85.88 8286.17 8085.54 8789.10 11289.85 13389.34 8480.70 11483.04 7578.08 8676.19 8479.00 8882.42 8989.67 10490.30 8093.63 14495.12 60
UGNet85.90 8188.23 6183.18 11588.96 11394.10 7487.52 11383.60 8081.66 9077.90 8780.76 6283.19 6466.70 19291.13 8190.71 7394.39 11696.06 45
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121184.42 9983.02 10586.05 8288.85 11492.70 9788.92 9783.40 8979.99 10578.31 8355.83 19278.92 8983.33 8289.06 11289.76 9693.50 14694.90 64
MVSTER86.03 7986.12 8185.93 8388.62 11589.93 13189.33 8579.91 12881.87 8881.35 6681.07 6174.91 10780.66 10692.13 6590.10 8495.68 4892.80 104
test_part183.23 10880.55 13086.35 7988.60 11690.61 11790.78 6681.13 11270.89 16583.01 5755.72 19374.60 10882.19 9087.79 12589.26 10792.39 16095.01 61
TDRefinement79.05 15077.05 16981.39 13388.45 11789.00 15486.92 12682.65 9874.21 14464.41 15159.17 18059.16 18574.52 16185.23 16385.09 16591.37 17387.51 170
IterMVS-LS83.28 10782.95 10783.65 10988.39 11888.63 15886.80 12978.64 14376.56 12673.43 10772.52 10775.35 10480.81 10386.43 14888.51 12293.84 13592.66 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvs86.52 7586.76 7886.23 8088.31 11992.63 9989.58 8081.61 10786.14 5980.26 7479.00 7077.27 9883.58 7988.94 11389.06 11394.05 12594.29 76
Fast-Effi-MVS+83.77 10382.98 10684.69 9287.98 12091.87 10788.10 10877.70 15278.10 12073.04 11069.13 12568.51 14286.66 6790.49 9689.85 9394.67 9992.88 101
gg-mvs-nofinetune75.64 18777.26 16673.76 19287.92 12192.20 10487.32 11764.67 21051.92 21635.35 22046.44 20877.05 10071.97 17292.64 5691.02 6595.34 6889.53 153
RPSCF83.46 10583.36 10483.59 11187.75 12287.35 16784.82 15179.46 13383.84 7278.12 8482.69 5179.87 8082.60 8882.47 18781.13 19088.78 19286.13 179
Effi-MVS+-dtu82.05 11781.76 11382.38 12387.72 12390.56 11886.90 12878.05 14873.85 14866.85 13771.29 11171.90 12682.00 9386.64 14385.48 16292.76 15792.58 113
CostFormer80.94 12980.21 13381.79 12887.69 12488.58 15987.47 11570.66 18680.02 10477.88 8873.03 10371.40 12778.24 13679.96 19679.63 19288.82 19188.84 156
baseline282.80 11082.86 10882.73 12087.68 12590.50 11984.92 14978.93 13978.07 12173.06 10975.08 9169.77 13577.31 14388.90 11486.94 13894.50 10890.74 143
Vis-MVSNetpermissive84.38 10086.68 7981.70 12987.65 12694.89 6488.14 10780.90 11374.48 14068.23 13277.53 7880.72 7569.98 17992.68 5591.90 5595.33 6994.58 72
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-LLR79.47 14579.84 14079.03 15587.47 12782.40 20181.24 17878.05 14873.72 14962.69 16273.76 9974.42 11073.49 16684.61 17282.99 18291.25 17587.01 172
test0.0.03 176.03 18178.51 15073.12 19687.47 12785.13 18776.32 19978.05 14873.19 15650.98 20570.64 11369.28 13855.53 20385.33 16184.38 17490.39 18381.63 197
tpmrst76.55 17475.99 18177.20 16987.32 12983.05 19482.86 16465.62 20578.61 11867.22 13669.19 12465.71 15075.87 15176.75 20675.33 20584.31 21083.28 191
baseline84.89 9186.06 8383.52 11387.25 13089.67 14087.76 11075.68 16884.92 6878.40 8280.10 6380.98 7380.20 11586.69 14287.05 13691.86 16792.99 98
CDS-MVSNet81.63 12582.09 11281.09 13887.21 13190.28 12287.46 11680.33 12069.06 17570.66 11771.30 11073.87 11467.99 18589.58 10589.87 9292.87 15690.69 144
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm cat177.78 16375.28 18980.70 14187.14 13285.84 17885.81 13870.40 18777.44 12378.80 8163.72 15764.01 15776.55 14875.60 20875.21 20685.51 20885.12 183
tpm76.30 18076.05 18076.59 17586.97 13383.01 19583.83 15867.06 20171.83 15963.87 15669.56 12262.88 16273.41 16879.79 19778.59 19684.41 20986.68 175
EPMVS77.53 16578.07 15876.90 17386.89 13484.91 18882.18 17366.64 20381.00 9864.11 15472.75 10669.68 13674.42 16379.36 19978.13 19887.14 20080.68 202
PatchmatchNetpermissive78.67 15578.85 14978.46 16386.85 13586.03 17583.77 15968.11 19880.88 10066.19 14072.90 10573.40 12078.06 13779.25 20077.71 20087.75 19781.75 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA79.51 14480.15 13578.75 15886.58 13687.70 16483.07 16368.53 19581.31 9266.40 13973.83 9875.38 10379.30 13080.49 19479.39 19588.63 19482.96 193
USDC80.69 13079.89 13981.62 13186.48 13789.11 15286.53 13178.86 14081.15 9663.48 15872.98 10459.12 18781.16 9987.10 13185.01 16693.23 15084.77 186
Fast-Effi-MVS+-dtu79.95 13680.69 12779.08 15486.36 13889.14 15185.85 13772.28 18072.85 15759.32 18670.43 11768.42 14477.57 14186.14 15086.44 14893.11 15391.39 140
tfpnnormal77.46 16674.86 19180.49 14586.34 13988.92 15584.33 15581.26 11061.39 20361.70 17351.99 20253.66 20874.84 15888.63 11687.38 13294.50 10892.08 122
dps78.02 16075.94 18280.44 14686.06 14086.62 17382.58 16569.98 19075.14 13577.76 9069.08 12659.93 17878.47 13479.47 19877.96 19987.78 19683.40 190
IterMVS-SCA-FT79.41 14680.20 13478.49 16285.88 14186.26 17483.95 15771.94 18173.55 15261.94 16970.48 11670.50 13175.23 15385.81 15584.61 17291.99 16690.18 150
LTVRE_ROB74.41 1675.78 18674.72 19277.02 17285.88 14189.22 14882.44 16877.17 15550.57 21745.45 21165.44 14652.29 21081.25 9785.50 15987.42 13189.94 18792.62 110
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EG-PatchMatch MVS76.40 17875.47 18777.48 16885.86 14390.22 12482.45 16773.96 17559.64 20859.60 18552.75 20062.20 16868.44 18488.23 12187.50 12994.55 10687.78 168
CR-MVSNet78.71 15478.86 14878.55 16185.85 14485.15 18582.30 17068.23 19674.71 13865.37 14664.39 15569.59 13777.18 14485.10 16884.87 16792.34 16288.21 162
GA-MVS79.52 14379.71 14379.30 15385.68 14590.36 12184.55 15278.44 14470.47 17057.87 19168.52 12961.38 17076.21 14989.40 10987.89 12593.04 15489.96 151
UniMVSNet_ETH3D79.24 14876.47 17482.48 12285.66 14690.97 11386.08 13681.63 10664.48 19568.94 13054.47 19557.65 19178.83 13385.20 16688.91 11793.72 14093.60 90
TransMVSNet (Re)76.57 17375.16 19078.22 16585.60 14787.24 16882.46 16681.23 11159.80 20759.05 18957.07 18959.14 18666.60 19388.09 12286.82 13994.37 11787.95 167
RPMNet77.07 16877.63 16476.42 17685.56 14885.15 18581.37 17565.27 20774.71 13860.29 18263.71 15866.59 14873.64 16582.71 18582.12 18792.38 16188.39 160
MDTV_nov1_ep1379.14 14979.49 14578.74 15985.40 14986.89 17184.32 15670.29 18878.85 11569.42 12675.37 8973.29 12175.64 15280.61 19379.48 19487.36 19881.91 195
UniMVSNet (Re)81.22 12781.08 12281.39 13385.35 15091.76 10884.93 14882.88 9176.13 12965.02 14964.94 15163.09 16075.17 15587.71 12789.04 11494.97 8394.88 65
UniMVSNet_NR-MVSNet81.87 11981.33 11982.50 12185.31 15191.30 11085.70 13984.25 6875.89 13064.21 15266.95 13664.65 15480.22 11387.07 13289.18 11195.27 7494.29 76
IterMVS78.79 15379.71 14377.71 16685.26 15285.91 17784.54 15369.84 19273.38 15361.25 17770.53 11570.35 13274.43 16285.21 16583.80 17790.95 17988.77 157
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NR-MVSNet80.25 13479.98 13880.56 14485.20 15390.94 11485.65 14183.58 8275.74 13161.36 17665.30 14856.75 19672.38 17188.46 11988.80 11895.16 7793.87 84
CMPMVSbinary56.49 1773.84 19571.73 20176.31 17985.20 15385.67 18075.80 20073.23 17662.26 20065.40 14553.40 19959.70 18071.77 17480.25 19579.56 19386.45 20481.28 198
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap76.73 17073.95 19479.96 14985.16 15585.64 18182.34 16978.19 14670.63 16862.06 16860.69 17249.61 21380.81 10385.12 16783.69 17891.22 17782.27 194
gm-plane-assit70.29 20070.65 20269.88 20185.03 15678.50 21158.41 21865.47 20650.39 21840.88 21649.60 20450.11 21275.14 15691.43 7189.78 9494.32 11884.73 187
FC-MVSNet-test76.53 17581.62 11570.58 20084.99 15785.73 17974.81 20278.85 14177.00 12539.13 21875.90 8573.50 11954.08 20786.54 14585.99 15791.65 16986.68 175
DU-MVS81.20 12880.30 13282.25 12484.98 15890.94 11485.70 13983.58 8275.74 13164.21 15265.30 14859.60 18280.22 11386.89 13589.31 10594.77 9294.29 76
Baseline_NR-MVSNet79.84 13878.37 15581.55 13284.98 15886.66 17285.06 14683.49 8475.57 13363.31 15958.22 18760.97 17278.00 13886.89 13587.13 13494.47 11193.15 95
TranMVSNet+NR-MVSNet80.52 13179.84 14081.33 13584.92 16090.39 12085.53 14484.22 7074.27 14360.68 18164.93 15259.96 17777.48 14286.75 14089.28 10695.12 8193.29 93
pm-mvs178.51 15877.75 16379.40 15284.83 16189.30 14683.55 16179.38 13462.64 19963.68 15758.73 18564.68 15370.78 17889.79 10287.84 12694.17 12291.28 141
testgi71.92 19874.20 19369.27 20284.58 16283.06 19373.40 20574.39 17264.04 19746.17 21068.90 12857.15 19448.89 21184.07 17783.08 18188.18 19579.09 206
thisisatest051579.76 14080.59 12978.80 15784.40 16388.91 15679.48 18776.94 15872.29 15867.33 13567.82 13365.99 14970.80 17788.50 11887.84 12693.86 13492.75 107
FMVSNet384.44 9884.64 9484.21 10184.32 16490.13 12689.85 7680.37 11781.17 9375.50 9369.63 11979.69 8479.62 12689.72 10390.52 7895.59 5591.58 137
GBi-Net84.51 9684.80 9284.17 10284.20 16589.95 12889.70 7780.37 11781.17 9375.50 9369.63 11979.69 8479.75 12390.73 9090.72 7095.52 5991.71 130
test184.51 9684.80 9284.17 10284.20 16589.95 12889.70 7780.37 11781.17 9375.50 9369.63 11979.69 8479.75 12390.73 9090.72 7095.52 5991.71 130
FMVSNet283.87 10183.73 10384.05 10684.20 16589.95 12889.70 7780.21 12279.17 11474.89 9865.91 14077.49 9779.75 12390.87 8791.00 6695.52 5991.71 130
WR-MVS76.63 17278.02 16075.02 18684.14 16889.76 13778.34 19480.64 11569.56 17252.32 20061.26 16561.24 17160.66 20084.45 17487.07 13593.99 12892.77 105
v879.90 13778.39 15481.66 13083.97 16989.81 13487.16 12377.40 15471.49 16067.71 13361.24 16662.49 16579.83 12285.48 16086.17 15293.89 13292.02 126
v2v48279.84 13878.07 15881.90 12783.75 17090.21 12587.17 12279.85 12970.65 16765.93 14261.93 16360.07 17680.82 10285.25 16286.71 14193.88 13391.70 134
v1079.62 14178.19 15681.28 13683.73 17189.69 13987.27 11976.86 15970.50 16965.46 14460.58 17360.47 17480.44 11086.91 13486.63 14493.93 12992.55 115
v114479.38 14777.83 16181.18 13783.62 17290.23 12387.15 12478.35 14569.13 17464.02 15560.20 17559.41 18380.14 11786.78 13886.57 14593.81 13792.53 117
v14878.59 15676.84 17280.62 14383.61 17389.16 15083.65 16079.24 13669.38 17369.34 12759.88 17760.41 17575.19 15483.81 17884.63 17192.70 15890.63 146
SixPastTwentyTwo76.02 18275.72 18476.36 17783.38 17487.54 16575.50 20176.22 16365.50 19257.05 19270.64 11353.97 20774.54 16080.96 19282.12 18791.44 17189.35 154
CVMVSNet76.70 17178.46 15274.64 19083.34 17584.48 18981.83 17474.58 17168.88 17651.23 20469.77 11870.05 13367.49 18884.27 17583.81 17689.38 18987.96 166
v119278.94 15177.33 16580.82 14083.25 17689.90 13286.91 12777.72 15168.63 17862.61 16459.17 18057.53 19280.62 10986.89 13586.47 14793.79 13892.75 107
DTE-MVSNet75.14 18975.44 18874.80 18883.18 17787.19 16978.25 19680.11 12466.05 18748.31 20760.88 17054.67 20364.54 19682.57 18686.17 15294.43 11490.53 148
PEN-MVS76.02 18276.07 17875.95 18183.17 17887.97 16279.65 18580.07 12766.57 18551.45 20260.94 16955.47 20166.81 19182.72 18486.80 14094.59 10392.03 125
TAMVS76.42 17677.16 16875.56 18283.05 17985.55 18280.58 18371.43 18365.40 19461.04 18067.27 13569.22 14067.99 18584.88 17084.78 16989.28 19083.01 192
pmmvs479.99 13578.08 15782.22 12583.04 18087.16 17084.95 14778.80 14278.64 11774.53 9964.61 15459.41 18379.45 12884.13 17684.54 17392.53 15988.08 164
v14419278.81 15277.22 16780.67 14282.95 18189.79 13686.40 13277.42 15368.26 18063.13 16059.50 17858.13 18880.08 11885.93 15286.08 15494.06 12492.83 103
v192192078.57 15776.99 17080.41 14782.93 18289.63 14286.38 13377.14 15668.31 17961.80 17258.89 18456.79 19580.19 11686.50 14786.05 15694.02 12692.76 106
CHOSEN 280x42080.28 13381.66 11478.67 16082.92 18379.24 21085.36 14566.79 20278.11 11970.32 11875.03 9279.87 8081.09 10089.07 11183.16 18085.54 20787.17 171
WR-MVS_H75.84 18576.93 17174.57 19182.86 18489.50 14478.34 19479.36 13566.90 18352.51 19960.20 17559.71 17959.73 20183.61 17985.77 15994.65 10092.84 102
v124078.15 15976.53 17380.04 14882.85 18589.48 14585.61 14376.77 16067.05 18261.18 17958.37 18656.16 19979.89 12186.11 15186.08 15493.92 13092.47 119
V4279.59 14278.43 15380.94 13982.79 18689.71 13886.66 13076.73 16171.38 16167.42 13461.01 16862.30 16778.39 13585.56 15886.48 14693.65 14392.60 111
CP-MVSNet76.36 17976.41 17576.32 17882.73 18788.64 15779.39 18879.62 13067.21 18153.70 19660.72 17155.22 20267.91 18783.52 18086.34 15094.55 10693.19 94
PS-CasMVS75.90 18475.86 18375.96 18082.59 18888.46 16079.23 19179.56 13266.00 18852.77 19859.48 17954.35 20667.14 19083.37 18186.23 15194.47 11193.10 96
test20.0368.31 20370.05 20466.28 20782.41 18980.84 20567.35 21276.11 16558.44 21040.80 21753.77 19854.54 20442.28 21483.07 18281.96 18988.73 19377.76 208
FMVSNet181.64 12480.61 12882.84 11882.36 19089.20 14988.67 9879.58 13170.79 16672.63 11358.95 18372.26 12579.34 12990.73 9090.72 7094.47 11191.62 135
pmmvs674.83 19072.89 19777.09 17082.11 19187.50 16680.88 18276.97 15752.79 21561.91 17146.66 20760.49 17369.28 18186.74 14185.46 16391.39 17290.56 147
pmmvs576.93 16976.33 17677.62 16781.97 19288.40 16181.32 17774.35 17365.42 19361.42 17563.07 15957.95 19073.23 16985.60 15785.35 16493.41 14888.55 159
v7n77.22 16776.23 17778.38 16481.89 19389.10 15382.24 17276.36 16265.96 18961.21 17856.56 19055.79 20075.07 15786.55 14486.68 14293.52 14592.95 100
our_test_381.81 19483.96 19276.61 198
Anonymous2023120670.80 19970.59 20371.04 19981.60 19582.49 20074.64 20375.87 16764.17 19649.27 20644.85 21153.59 20954.68 20683.07 18282.34 18690.17 18483.65 189
ADS-MVSNet74.53 19275.69 18573.17 19581.57 19680.71 20679.27 19063.03 21279.27 11359.94 18467.86 13268.32 14671.08 17677.33 20476.83 20284.12 21279.53 203
pmnet_mix0271.95 19771.83 20072.10 19781.40 19780.63 20773.78 20472.85 17970.90 16454.89 19462.17 16257.42 19362.92 19876.80 20573.98 20986.74 20380.87 201
test-mter77.79 16280.02 13775.18 18581.18 19882.85 19680.52 18462.03 21473.62 15162.16 16773.55 10173.83 11573.81 16484.67 17183.34 17991.37 17388.31 161
TESTMET0.1,177.78 16379.84 14075.38 18480.86 19982.40 20181.24 17862.72 21373.72 14962.69 16273.76 9974.42 11073.49 16684.61 17282.99 18291.25 17587.01 172
MDTV_nov1_ep13_2view73.21 19672.91 19673.56 19480.01 20084.28 19178.62 19266.43 20468.64 17759.12 18760.39 17459.69 18169.81 18078.82 20277.43 20187.36 19881.11 200
FPMVS63.63 20860.08 21367.78 20480.01 20071.50 21672.88 20769.41 19461.82 20253.11 19745.12 21042.11 22050.86 20966.69 21363.84 21480.41 21469.46 214
anonymousdsp77.94 16179.00 14776.71 17479.03 20287.83 16379.58 18672.87 17865.80 19058.86 19065.82 14162.48 16675.99 15086.77 13988.66 11993.92 13095.68 53
N_pmnet66.85 20466.63 20567.11 20678.73 20374.66 21470.53 20971.07 18466.46 18646.54 20951.68 20351.91 21155.48 20474.68 20972.38 21080.29 21574.65 211
PMMVS81.65 12384.05 10078.86 15678.56 20482.63 19883.10 16267.22 20081.39 9170.11 12284.91 4379.74 8382.12 9187.31 12985.70 16092.03 16586.67 177
PatchT76.42 17677.81 16274.80 18878.46 20584.30 19071.82 20865.03 20973.89 14665.37 14661.58 16466.70 14777.18 14485.10 16884.87 16790.94 18088.21 162
MVS-HIRNet68.83 20266.39 20671.68 19877.58 20675.52 21366.45 21365.05 20862.16 20162.84 16144.76 21256.60 19871.96 17378.04 20375.06 20786.18 20672.56 212
pmmvs-eth3d74.32 19371.96 19977.08 17177.33 20782.71 19778.41 19376.02 16666.65 18465.98 14154.23 19749.02 21573.14 17082.37 18882.69 18491.61 17086.05 180
new-patchmatchnet63.80 20763.31 20964.37 20876.49 20875.99 21263.73 21570.99 18557.27 21143.08 21345.86 20943.80 21745.13 21373.20 21070.68 21386.80 20276.34 210
FMVSNet575.50 18876.07 17874.83 18776.16 20981.19 20481.34 17670.21 18973.20 15561.59 17458.97 18268.33 14568.50 18385.87 15485.85 15891.18 17879.11 205
PM-MVS74.17 19473.10 19575.41 18376.07 21082.53 19977.56 19771.69 18271.04 16261.92 17061.23 16747.30 21674.82 15981.78 19079.80 19190.42 18288.05 165
MIMVSNet74.69 19175.60 18673.62 19376.02 21185.31 18481.21 18067.43 19971.02 16359.07 18854.48 19464.07 15566.14 19486.52 14686.64 14391.83 16881.17 199
EU-MVSNet69.98 20172.30 19867.28 20575.67 21279.39 20973.12 20669.94 19163.59 19842.80 21462.93 16056.71 19755.07 20579.13 20178.55 19787.06 20185.82 182
ET-MVSNet_ETH3D84.65 9385.58 8883.56 11274.99 21392.62 10190.29 7180.38 11682.16 8473.01 11183.41 4671.10 12987.05 6587.77 12690.17 8395.62 5291.82 128
PMVScopyleft50.48 1855.81 21251.93 21460.33 21172.90 21449.34 22048.78 21969.51 19343.49 22054.25 19536.26 21741.04 22239.71 21665.07 21460.70 21576.85 21767.58 215
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ambc61.92 21070.98 21573.54 21563.64 21660.06 20552.23 20138.44 21519.17 22657.12 20282.33 18975.03 20883.21 21384.89 184
pmmvs361.89 20961.74 21162.06 21064.30 21670.83 21764.22 21452.14 21848.78 21944.47 21241.67 21441.70 22163.03 19776.06 20776.02 20384.18 21177.14 209
MDA-MVSNet-bldmvs66.22 20564.49 20868.24 20361.67 21782.11 20370.07 21076.16 16459.14 20947.94 20854.35 19635.82 22367.33 18964.94 21575.68 20486.30 20579.36 204
new_pmnet59.28 21061.47 21256.73 21261.66 21868.29 21859.57 21754.91 21560.83 20434.38 22144.66 21343.65 21849.90 21071.66 21171.56 21279.94 21669.67 213
Gipumacopyleft49.17 21347.05 21651.65 21359.67 21948.39 22141.98 22263.47 21155.64 21433.33 22214.90 22013.78 22741.34 21569.31 21272.30 21170.11 21855.00 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MIMVSNet165.00 20666.24 20763.55 20958.41 22080.01 20869.00 21174.03 17455.81 21341.88 21536.81 21649.48 21447.89 21281.32 19182.40 18590.08 18677.88 207
EMVS30.49 21825.44 22036.39 21651.47 22129.89 22520.17 22654.00 21726.49 22212.02 22613.94 2238.84 22834.37 21825.04 22234.37 22146.29 22439.53 222
E-PMN31.40 21626.80 21936.78 21551.39 22229.96 22420.20 22554.17 21625.93 22312.75 22514.73 2218.58 22934.10 21927.36 22137.83 22048.07 22343.18 221
PMMVS241.68 21544.74 21738.10 21446.97 22352.32 21940.63 22348.08 21935.51 2217.36 22726.86 21924.64 22516.72 22155.24 21859.03 21668.85 21959.59 218
tmp_tt32.73 21843.96 22421.15 22626.71 2248.99 22365.67 19151.39 20356.01 19142.64 21911.76 22256.60 21750.81 21853.55 222
MVEpermissive30.17 1930.88 21733.52 21827.80 22023.78 22539.16 22318.69 22746.90 22021.88 22415.39 22414.37 2227.31 23024.41 22041.63 22056.22 21737.64 22554.07 220
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method41.78 21448.10 21534.42 21710.74 22619.78 22744.64 22117.73 22259.83 20638.67 21935.82 21854.41 20534.94 21762.87 21643.13 21959.81 22060.82 217
GG-mvs-BLEND57.56 21182.61 11028.34 2190.22 22790.10 12779.37 1890.14 22579.56 1090.40 22871.25 11283.40 630.30 22586.27 14983.87 17589.59 18883.83 188
testmvs1.03 2191.63 2210.34 2210.09 2280.35 2280.61 2290.16 2241.49 2250.10 2293.15 2240.15 2310.86 2241.32 2231.18 2220.20 2263.76 224
test1230.87 2201.40 2220.25 2220.03 2290.25 2290.35 2300.08 2261.21 2260.05 2302.84 2250.03 2320.89 2230.43 2241.16 2230.13 2273.87 223
uanet_test0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet-low-res0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
sosnet0.00 2210.00 2230.00 2230.00 2300.00 2300.00 2310.00 2270.00 2270.00 2310.00 2260.00 2330.00 2260.00 2250.00 2240.00 2280.00 225
RE-MVS-def56.08 193
9.1492.16 17
MTAPA92.97 291.03 23
MTMP93.14 190.21 31
Patchmatch-RL test8.55 228
NP-MVS87.47 55
Patchmtry85.54 18382.30 17068.23 19665.37 146
DeepMVS_CXcopyleft48.31 22248.03 22026.08 22156.42 21225.77 22347.51 20631.31 22451.30 20848.49 21953.61 22161.52 216