xxxxxxxxxxxxxcwj | | | 74.63 17 | 77.07 28 | 71.79 3 | 79.32 1 | 80.76 5 | 82.96 2 | 57.49 11 | 82.82 9 | 64.79 6 | 83.69 10 | 52.03 123 | 62.83 14 | 77.13 27 | 75.21 32 | 83.35 7 | 87.85 16 |
|
SF-MVS | | | 77.13 8 | 81.70 8 | 71.79 3 | 79.32 1 | 80.76 5 | 82.96 2 | 57.49 11 | 82.82 9 | 64.79 6 | 83.69 10 | 84.46 5 | 62.83 14 | 77.13 27 | 75.21 32 | 83.35 7 | 87.85 16 |
|
SED-MVS | | | 79.21 1 | 84.74 2 | 72.75 1 | 78.66 3 | 81.96 2 | 82.94 5 | 58.16 4 | 86.82 2 | 67.66 1 | 88.29 4 | 86.15 3 | 66.42 2 | 80.41 4 | 78.65 6 | 82.65 17 | 90.92 2 |
|
DVP-MVS |  | | 78.77 2 | 84.89 1 | 71.62 5 | 78.04 4 | 82.05 1 | 81.64 11 | 57.96 7 | 87.53 1 | 66.64 2 | 88.77 1 | 86.31 1 | 63.16 10 | 79.99 7 | 78.56 7 | 82.31 23 | 91.03 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 77.58 6 | 82.93 6 | 71.35 7 | 77.86 5 | 80.55 7 | 83.38 1 | 57.61 10 | 85.57 5 | 61.11 22 | 86.10 7 | 82.98 8 | 64.76 4 | 78.29 15 | 76.78 23 | 83.40 6 | 90.20 5 |
|
DPE-MVS |  | | 78.11 4 | 83.84 4 | 71.42 6 | 77.82 6 | 81.32 4 | 82.92 6 | 57.81 9 | 84.04 8 | 63.19 14 | 88.63 2 | 86.00 4 | 64.52 5 | 78.71 11 | 77.63 16 | 82.26 24 | 90.57 3 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SteuartSystems-ACMMP | | | 75.23 13 | 79.60 15 | 70.13 14 | 76.81 7 | 78.92 13 | 81.74 9 | 57.99 6 | 75.30 31 | 59.83 27 | 75.69 19 | 78.45 25 | 60.48 31 | 80.58 2 | 79.77 2 | 83.94 3 | 88.52 10 |
Skip Steuart: Steuart Systems R&D Blog. |
DVP-MVS++ | | | 78.76 3 | 84.44 3 | 72.14 2 | 76.63 8 | 81.93 3 | 82.92 6 | 58.10 5 | 85.86 4 | 66.53 3 | 87.86 5 | 86.16 2 | 66.45 1 | 80.46 3 | 78.53 9 | 82.19 28 | 90.29 4 |
|
HPM-MVS++ |  | | 76.01 10 | 80.47 12 | 70.81 10 | 76.60 9 | 74.96 37 | 80.18 18 | 58.36 2 | 81.96 11 | 63.50 13 | 78.80 15 | 82.53 11 | 64.40 6 | 78.74 10 | 78.84 5 | 81.81 34 | 87.46 19 |
|
MCST-MVS | | | 73.67 26 | 77.39 26 | 69.33 20 | 76.26 10 | 78.19 18 | 78.77 27 | 54.54 32 | 75.33 29 | 59.99 26 | 67.96 33 | 79.23 23 | 62.43 18 | 78.00 19 | 75.71 30 | 84.02 2 | 87.30 20 |
|
CNVR-MVS | | | 75.62 12 | 79.91 14 | 70.61 11 | 75.76 11 | 78.82 15 | 81.66 10 | 57.12 14 | 79.77 18 | 63.04 15 | 70.69 25 | 81.15 16 | 62.99 11 | 80.23 5 | 79.54 3 | 83.11 9 | 89.16 8 |
|
NCCC | | | 74.27 20 | 77.83 25 | 70.13 14 | 75.70 12 | 77.41 24 | 80.51 16 | 57.09 15 | 78.25 22 | 62.28 19 | 65.54 39 | 78.26 26 | 62.18 20 | 79.13 8 | 78.51 10 | 83.01 11 | 87.68 18 |
|
CSCG | | | 74.68 16 | 79.22 16 | 69.40 19 | 75.69 13 | 80.01 10 | 79.12 25 | 52.83 43 | 79.34 19 | 63.99 11 | 70.49 26 | 82.02 12 | 60.35 34 | 77.48 25 | 77.22 20 | 84.38 1 | 87.97 15 |
|
DPM-MVS | | | 72.80 28 | 75.90 31 | 69.19 22 | 75.51 14 | 77.68 21 | 81.62 12 | 54.83 28 | 75.96 27 | 62.06 20 | 63.96 47 | 76.58 31 | 58.55 42 | 76.66 34 | 76.77 24 | 82.60 19 | 83.68 43 |
|
SMA-MVS |  | | 77.32 7 | 82.51 7 | 71.26 8 | 75.43 15 | 80.19 9 | 82.22 8 | 58.26 3 | 84.83 7 | 64.36 9 | 78.19 16 | 83.46 6 | 63.61 8 | 81.00 1 | 80.28 1 | 83.66 4 | 89.62 6 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APD-MVS |  | | 75.80 11 | 80.90 11 | 69.86 17 | 75.42 16 | 78.48 17 | 81.43 14 | 57.44 13 | 80.45 16 | 59.32 28 | 85.28 8 | 80.82 18 | 63.96 7 | 76.89 30 | 76.08 28 | 81.58 40 | 88.30 12 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MSP-MVS | | | 77.82 5 | 83.46 5 | 71.24 9 | 75.26 17 | 80.22 8 | 82.95 4 | 57.85 8 | 85.90 3 | 64.79 6 | 88.54 3 | 83.43 7 | 66.24 3 | 78.21 18 | 78.56 7 | 80.34 49 | 89.39 7 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
train_agg | | | 73.89 23 | 78.25 22 | 68.80 25 | 75.25 18 | 72.27 53 | 79.75 19 | 56.05 22 | 74.87 34 | 58.97 29 | 81.83 12 | 79.76 22 | 61.05 27 | 77.39 26 | 76.01 29 | 81.71 37 | 85.61 31 |
|
TSAR-MVS + MP. | | | 75.22 14 | 80.06 13 | 69.56 18 | 74.61 19 | 72.74 51 | 80.59 15 | 55.70 25 | 80.80 14 | 62.65 17 | 86.25 6 | 82.92 9 | 62.07 21 | 76.89 30 | 75.66 31 | 81.77 36 | 85.19 34 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SD-MVS | | | 74.43 18 | 78.87 18 | 69.26 21 | 74.39 20 | 73.70 47 | 79.06 26 | 55.24 27 | 81.04 13 | 62.71 16 | 80.18 13 | 82.61 10 | 61.70 23 | 75.43 42 | 73.92 45 | 82.44 22 | 85.22 33 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ACMMP_NAP | | | 76.15 9 | 81.17 9 | 70.30 12 | 74.09 21 | 79.47 11 | 81.59 13 | 57.09 15 | 81.38 12 | 63.89 12 | 79.02 14 | 80.48 19 | 62.24 19 | 80.05 6 | 79.12 4 | 82.94 12 | 88.64 9 |
|
HFP-MVS | | | 74.87 15 | 78.86 20 | 70.21 13 | 73.99 22 | 77.91 19 | 80.36 17 | 56.63 17 | 78.41 21 | 64.27 10 | 74.54 21 | 77.75 29 | 62.96 12 | 78.70 12 | 77.82 13 | 83.02 10 | 86.91 22 |
|
AdaColmap |  | | 67.89 47 | 68.85 59 | 66.77 31 | 73.73 23 | 74.30 44 | 75.28 41 | 53.58 38 | 70.24 47 | 57.59 36 | 51.19 104 | 59.19 93 | 60.74 30 | 75.33 44 | 73.72 47 | 79.69 57 | 77.96 72 |
|
MP-MVS |  | | 74.31 19 | 78.87 18 | 68.99 23 | 73.49 24 | 78.56 16 | 79.25 24 | 56.51 18 | 75.33 29 | 60.69 24 | 75.30 20 | 79.12 24 | 61.81 22 | 77.78 22 | 77.93 12 | 82.18 30 | 88.06 14 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
zzz-MVS | | | 74.25 21 | 77.97 24 | 69.91 16 | 73.43 25 | 74.06 45 | 79.69 20 | 56.44 19 | 80.74 15 | 64.98 5 | 68.72 31 | 79.98 21 | 62.92 13 | 78.24 17 | 77.77 15 | 81.99 32 | 86.30 24 |
|
TSAR-MVS + ACMM | | | 72.56 30 | 79.07 17 | 64.96 42 | 73.24 26 | 73.16 50 | 78.50 28 | 48.80 69 | 79.34 19 | 55.32 42 | 85.04 9 | 81.49 15 | 58.57 41 | 75.06 45 | 73.75 46 | 75.35 109 | 85.61 31 |
|
CDPH-MVS | | | 71.47 33 | 75.82 33 | 66.41 33 | 72.97 27 | 77.15 26 | 78.14 31 | 54.71 29 | 69.88 49 | 53.07 58 | 70.98 24 | 74.83 38 | 56.95 54 | 76.22 35 | 76.57 25 | 82.62 18 | 85.09 35 |
|
PGM-MVS | | | 72.89 27 | 77.13 27 | 67.94 27 | 72.47 28 | 77.25 25 | 79.27 23 | 54.63 31 | 73.71 36 | 57.95 35 | 72.38 23 | 75.33 36 | 60.75 29 | 78.25 16 | 77.36 19 | 82.57 20 | 85.62 30 |
|
ACMMPR | | | 73.79 25 | 78.41 21 | 68.40 26 | 72.35 29 | 77.79 20 | 79.32 22 | 56.38 20 | 77.67 25 | 58.30 33 | 74.16 22 | 76.66 30 | 61.40 24 | 78.32 14 | 77.80 14 | 82.68 16 | 86.51 23 |
|
OPM-MVS | | | 69.33 39 | 71.05 47 | 67.32 29 | 72.34 30 | 75.70 34 | 79.57 21 | 56.34 21 | 55.21 76 | 53.81 55 | 59.51 65 | 68.96 56 | 59.67 36 | 77.61 24 | 76.44 26 | 82.19 28 | 83.88 41 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
X-MVS | | | 71.18 34 | 75.66 34 | 65.96 37 | 71.71 31 | 76.96 27 | 77.26 34 | 55.88 24 | 72.75 39 | 54.48 50 | 64.39 44 | 74.47 39 | 54.19 68 | 77.84 21 | 77.37 18 | 82.21 27 | 85.85 28 |
|
HQP-MVS | | | 70.88 35 | 75.02 35 | 66.05 36 | 71.69 32 | 74.47 42 | 77.51 33 | 53.17 40 | 72.89 38 | 54.88 46 | 70.03 28 | 70.48 51 | 57.26 50 | 76.02 37 | 75.01 37 | 81.78 35 | 86.21 25 |
|
MAR-MVS | | | 68.04 46 | 70.74 49 | 64.90 43 | 71.68 33 | 76.33 32 | 74.63 45 | 50.48 57 | 63.81 57 | 55.52 41 | 54.88 84 | 69.90 53 | 57.39 49 | 75.42 43 | 74.79 39 | 79.71 54 | 80.03 59 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
mPP-MVS | | | | | | 71.67 34 | | | | | | | 74.36 42 | | | | | |
|
SR-MVS | | | | | | 71.46 35 | | | 54.67 30 | | | | 81.54 14 | | | | | |
|
CLD-MVS | | | 67.02 51 | 71.57 44 | 61.71 54 | 71.01 36 | 74.81 39 | 71.62 54 | 38.91 161 | 71.86 42 | 60.70 23 | 64.97 42 | 67.88 64 | 51.88 93 | 76.77 33 | 74.98 38 | 76.11 97 | 69.75 125 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CP-MVS | | | 72.63 29 | 76.95 29 | 67.59 28 | 70.67 37 | 75.53 35 | 77.95 32 | 56.01 23 | 75.65 28 | 58.82 30 | 69.16 30 | 76.48 32 | 60.46 32 | 77.66 23 | 77.20 21 | 81.65 38 | 86.97 21 |
|
ACMM | | 60.30 7 | 67.58 49 | 68.82 60 | 66.13 35 | 70.59 38 | 72.01 55 | 76.54 36 | 54.26 34 | 65.64 55 | 54.78 48 | 50.35 107 | 61.72 82 | 58.74 40 | 75.79 40 | 75.03 35 | 81.88 33 | 81.17 54 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVS | | | | | | 70.49 39 | 76.96 27 | 74.36 46 | | | 54.48 50 | | 74.47 39 | | | | 82.24 25 | |
|
X-MVStestdata | | | | | | 70.49 39 | 76.96 27 | 74.36 46 | | | 54.48 50 | | 74.47 39 | | | | 82.24 25 | |
|
ACMMP |  | | 71.57 32 | 75.84 32 | 66.59 32 | 70.30 41 | 76.85 30 | 78.46 29 | 53.95 36 | 73.52 37 | 55.56 40 | 70.13 27 | 71.36 49 | 58.55 42 | 77.00 29 | 76.23 27 | 82.71 15 | 85.81 29 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
abl_6 | | | | | 64.36 46 | 70.08 42 | 77.45 23 | 72.88 51 | 50.15 58 | 71.31 44 | 54.77 49 | 62.79 52 | 77.99 28 | 56.80 55 | | | 81.50 41 | 83.91 40 |
|
MVS_111021_HR | | | 67.62 48 | 70.39 51 | 64.39 45 | 69.77 43 | 70.45 60 | 71.44 56 | 51.72 49 | 60.77 65 | 55.06 44 | 62.14 57 | 66.40 67 | 58.13 45 | 76.13 36 | 74.79 39 | 80.19 51 | 82.04 51 |
|
MSLP-MVS++ | | | 68.17 45 | 70.72 50 | 65.19 40 | 69.41 44 | 70.64 57 | 74.99 42 | 45.76 80 | 70.20 48 | 60.17 25 | 56.42 76 | 73.01 45 | 61.14 25 | 72.80 56 | 70.54 61 | 79.70 55 | 81.42 53 |
|
LGP-MVS_train | | | 68.87 41 | 72.03 43 | 65.18 41 | 69.33 45 | 74.03 46 | 76.67 35 | 53.88 37 | 68.46 50 | 52.05 62 | 63.21 49 | 63.89 71 | 56.31 58 | 75.99 38 | 74.43 41 | 82.83 14 | 84.18 37 |
|
ACMP | | 61.42 5 | 68.72 44 | 71.37 45 | 65.64 39 | 69.06 46 | 74.45 43 | 75.88 39 | 53.30 39 | 68.10 51 | 55.74 39 | 61.53 60 | 62.29 78 | 56.97 53 | 74.70 48 | 74.23 43 | 82.88 13 | 84.31 36 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DeepC-MVS_fast | | 65.08 3 | 72.00 31 | 76.11 30 | 67.21 30 | 68.93 47 | 77.46 22 | 76.54 36 | 54.35 33 | 74.92 33 | 58.64 32 | 65.18 41 | 74.04 44 | 62.62 16 | 77.92 20 | 77.02 22 | 82.16 31 | 86.21 25 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CANet | | | 68.77 42 | 73.01 39 | 63.83 48 | 68.30 48 | 75.19 36 | 73.73 49 | 47.90 70 | 63.86 56 | 54.84 47 | 67.51 35 | 74.36 42 | 57.62 46 | 74.22 50 | 73.57 49 | 80.56 47 | 82.36 48 |
|
TSAR-MVS + GP. | | | 69.71 36 | 73.92 38 | 64.80 44 | 68.27 49 | 70.56 58 | 71.90 52 | 50.75 53 | 71.38 43 | 57.46 37 | 68.68 32 | 75.42 35 | 60.10 35 | 73.47 53 | 73.99 44 | 80.32 50 | 83.97 39 |
|
3Dnovator+ | | 62.63 4 | 69.51 37 | 72.62 41 | 65.88 38 | 68.21 50 | 76.47 31 | 73.50 50 | 52.74 44 | 70.85 45 | 58.65 31 | 55.97 78 | 69.95 52 | 61.11 26 | 76.80 32 | 75.09 34 | 81.09 44 | 83.23 46 |
|
MVS_0304 | | | 69.49 38 | 73.96 37 | 64.28 47 | 67.92 51 | 76.13 33 | 74.90 43 | 47.60 71 | 63.29 59 | 54.09 54 | 67.44 36 | 76.35 33 | 59.53 37 | 75.81 39 | 75.03 35 | 81.62 39 | 83.70 42 |
|
DeepC-MVS | | 66.32 2 | 73.85 24 | 78.10 23 | 68.90 24 | 67.92 51 | 79.31 12 | 78.16 30 | 59.28 1 | 78.24 23 | 61.13 21 | 67.36 37 | 76.10 34 | 63.40 9 | 79.11 9 | 78.41 11 | 83.52 5 | 88.16 13 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepPCF-MVS | | 66.49 1 | 74.25 21 | 80.97 10 | 66.41 33 | 67.75 53 | 78.87 14 | 75.61 40 | 54.16 35 | 84.86 6 | 58.22 34 | 77.94 17 | 81.01 17 | 62.52 17 | 78.34 13 | 77.38 17 | 80.16 52 | 88.40 11 |
|
DROMVSNet | | | 67.01 52 | 70.27 54 | 63.21 50 | 67.21 54 | 70.47 59 | 69.01 58 | 46.96 74 | 59.16 68 | 53.23 57 | 64.01 46 | 69.71 54 | 60.37 33 | 74.92 46 | 71.24 57 | 82.50 21 | 82.41 47 |
|
UA-Net | | | 58.50 92 | 64.68 80 | 51.30 122 | 66.97 55 | 67.13 86 | 53.68 162 | 45.65 83 | 49.51 109 | 31.58 149 | 62.91 51 | 68.47 58 | 35.85 172 | 68.20 101 | 67.28 98 | 74.03 120 | 69.24 135 |
|
PHI-MVS | | | 69.27 40 | 74.84 36 | 62.76 53 | 66.83 56 | 74.83 38 | 73.88 48 | 49.32 63 | 70.61 46 | 50.93 64 | 69.62 29 | 74.84 37 | 57.25 51 | 75.53 41 | 74.32 42 | 78.35 69 | 84.17 38 |
|
3Dnovator | | 60.86 6 | 66.99 53 | 70.32 52 | 63.11 51 | 66.63 57 | 74.52 40 | 71.56 55 | 45.76 80 | 67.37 53 | 55.00 45 | 54.31 89 | 68.19 60 | 58.49 44 | 73.97 51 | 73.63 48 | 81.22 43 | 80.23 58 |
|
EPNet | | | 65.14 60 | 69.54 57 | 60.00 61 | 66.61 58 | 67.67 78 | 67.53 66 | 55.32 26 | 62.67 61 | 46.22 82 | 67.74 34 | 65.93 68 | 48.07 112 | 72.17 59 | 72.12 51 | 76.28 93 | 78.47 69 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
OpenMVS |  | 57.13 9 | 62.81 67 | 65.75 71 | 59.39 65 | 66.47 59 | 69.52 63 | 64.26 99 | 43.07 131 | 61.34 64 | 50.19 67 | 47.29 125 | 64.41 70 | 54.60 67 | 70.18 79 | 68.62 81 | 77.73 71 | 78.89 65 |
|
ACMH | | 52.42 13 | 58.24 99 | 59.56 119 | 56.70 87 | 66.34 60 | 69.59 62 | 66.71 75 | 49.12 64 | 46.08 142 | 28.90 162 | 42.67 172 | 41.20 189 | 52.60 85 | 71.39 63 | 70.28 63 | 76.51 89 | 75.72 92 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MSDG | | | 58.46 94 | 58.97 125 | 57.85 79 | 66.27 61 | 66.23 95 | 67.72 63 | 42.33 135 | 53.43 84 | 43.68 94 | 43.39 163 | 45.35 166 | 49.75 100 | 68.66 92 | 67.77 90 | 77.38 77 | 67.96 140 |
|
test_part1 | | | 63.06 65 | 65.27 74 | 60.47 58 | 66.24 62 | 70.17 61 | 71.86 53 | 45.36 86 | 53.75 82 | 49.61 68 | 44.85 151 | 65.53 69 | 48.93 103 | 71.39 63 | 70.65 59 | 80.82 46 | 80.59 56 |
|
QAPM | | | 65.27 57 | 69.49 58 | 60.35 59 | 65.43 63 | 72.20 54 | 65.69 87 | 47.23 72 | 63.46 58 | 49.14 70 | 53.56 90 | 71.04 50 | 57.01 52 | 72.60 58 | 71.41 55 | 77.62 73 | 82.14 50 |
|
CPTT-MVS | | | 68.76 43 | 73.01 39 | 63.81 49 | 65.42 64 | 73.66 48 | 76.39 38 | 52.08 45 | 72.61 40 | 50.33 66 | 60.73 61 | 72.65 47 | 59.43 38 | 73.32 54 | 72.12 51 | 79.19 62 | 85.99 27 |
|
MS-PatchMatch | | | 58.19 101 | 60.20 106 | 55.85 92 | 65.17 65 | 64.16 114 | 64.82 94 | 41.48 143 | 50.95 99 | 42.17 103 | 45.38 146 | 56.42 105 | 48.08 111 | 68.30 97 | 66.70 106 | 73.39 128 | 69.46 133 |
|
PCF-MVS | | 59.98 8 | 67.32 50 | 71.04 48 | 62.97 52 | 64.77 66 | 74.49 41 | 74.78 44 | 49.54 60 | 67.44 52 | 54.39 53 | 58.35 70 | 72.81 46 | 55.79 64 | 71.54 62 | 69.24 72 | 78.57 64 | 83.41 44 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EG-PatchMatch MVS | | | 56.98 108 | 58.24 132 | 55.50 94 | 64.66 67 | 68.62 66 | 61.48 108 | 43.63 117 | 38.44 194 | 41.44 105 | 38.05 184 | 46.18 161 | 43.95 130 | 71.71 61 | 70.61 60 | 77.87 70 | 74.08 105 |
|
Effi-MVS+-dtu | | | 60.34 79 | 62.32 89 | 58.03 74 | 64.31 68 | 67.44 82 | 65.99 82 | 42.26 136 | 49.55 107 | 42.00 104 | 48.92 115 | 59.79 91 | 56.27 59 | 68.07 105 | 67.03 99 | 77.35 78 | 75.45 95 |
|
FC-MVSNet-train | | | 58.40 95 | 63.15 86 | 52.85 113 | 64.29 69 | 61.84 126 | 55.98 146 | 46.47 76 | 53.06 88 | 34.96 137 | 61.95 59 | 56.37 107 | 39.49 150 | 68.67 91 | 68.36 83 | 75.92 103 | 71.81 113 |
|
Effi-MVS+ | | | 63.28 63 | 65.96 70 | 60.17 60 | 64.26 70 | 68.06 72 | 68.78 61 | 45.71 82 | 54.08 79 | 46.64 79 | 55.92 79 | 63.13 75 | 55.94 62 | 70.38 77 | 71.43 54 | 79.68 58 | 78.70 66 |
|
LS3D | | | 60.20 80 | 61.70 90 | 58.45 70 | 64.18 71 | 67.77 75 | 67.19 68 | 48.84 68 | 61.67 63 | 41.27 108 | 45.89 140 | 51.81 125 | 54.18 69 | 68.78 89 | 66.50 113 | 75.03 112 | 69.48 131 |
|
ACMH+ | | 53.71 12 | 59.26 84 | 60.28 103 | 58.06 72 | 64.17 72 | 68.46 67 | 67.51 67 | 50.93 52 | 52.46 94 | 35.83 134 | 40.83 177 | 45.12 170 | 52.32 88 | 69.88 81 | 69.00 77 | 77.59 75 | 76.21 89 |
|
GeoE | | | 62.43 70 | 64.79 79 | 59.68 64 | 64.15 73 | 67.17 85 | 68.80 60 | 44.42 99 | 55.65 75 | 47.38 74 | 51.54 101 | 62.51 76 | 54.04 71 | 69.99 80 | 68.07 85 | 79.28 60 | 78.57 67 |
|
DELS-MVS | | | 65.87 55 | 70.30 53 | 60.71 57 | 64.05 74 | 72.68 52 | 70.90 57 | 45.43 84 | 57.49 71 | 49.05 72 | 64.43 43 | 68.66 57 | 55.11 66 | 74.31 49 | 73.02 50 | 79.70 55 | 81.51 52 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
canonicalmvs | | | 65.62 56 | 72.06 42 | 58.11 71 | 63.94 75 | 71.05 56 | 64.49 97 | 43.18 129 | 74.08 35 | 47.35 75 | 64.17 45 | 71.97 48 | 51.17 96 | 71.87 60 | 70.74 58 | 78.51 67 | 80.56 57 |
|
EIA-MVS | | | 61.53 76 | 63.79 84 | 58.89 68 | 63.82 76 | 67.61 79 | 65.35 90 | 42.15 139 | 49.98 104 | 45.66 85 | 57.47 74 | 56.62 103 | 56.59 57 | 70.91 71 | 69.15 73 | 79.78 53 | 74.80 99 |
|
Anonymous202405211 | | | | 60.60 99 | | 63.44 77 | 66.71 92 | 61.00 113 | 47.23 72 | 50.62 102 | | 36.85 187 | 60.63 88 | 43.03 138 | 69.17 85 | 67.72 92 | 75.41 106 | 72.54 110 |
|
ETV-MVS | | | 63.23 64 | 66.08 69 | 59.91 62 | 63.13 78 | 68.13 71 | 67.62 65 | 44.62 95 | 53.39 85 | 46.23 81 | 58.74 67 | 58.19 96 | 57.45 48 | 73.60 52 | 71.38 56 | 80.39 48 | 79.13 63 |
|
gg-mvs-nofinetune | | | 49.07 168 | 52.56 168 | 45.00 169 | 61.99 79 | 59.78 145 | 53.55 164 | 41.63 141 | 31.62 210 | 12.08 205 | 29.56 204 | 53.28 118 | 29.57 187 | 66.27 135 | 64.49 140 | 71.19 157 | 62.92 173 |
|
CS-MVS-test | | | 65.18 58 | 68.70 61 | 61.07 56 | 61.92 80 | 68.06 72 | 67.09 72 | 45.18 88 | 58.47 70 | 52.02 63 | 65.76 38 | 66.44 66 | 59.24 39 | 72.71 57 | 70.05 66 | 80.98 45 | 79.40 62 |
|
DCV-MVSNet | | | 59.49 82 | 64.00 83 | 54.23 99 | 61.81 81 | 64.33 112 | 61.42 109 | 43.77 111 | 52.85 91 | 38.94 122 | 55.62 81 | 62.15 80 | 43.24 137 | 69.39 84 | 67.66 94 | 76.22 95 | 75.97 90 |
|
casdiffmvs | | | 64.09 61 | 68.13 62 | 59.37 66 | 61.81 81 | 68.32 69 | 68.48 62 | 44.45 98 | 61.95 62 | 49.12 71 | 63.04 50 | 69.67 55 | 53.83 72 | 70.46 74 | 66.06 118 | 78.55 65 | 77.43 74 |
|
CS-MVS | | | 65.88 54 | 69.71 56 | 61.41 55 | 61.76 83 | 68.14 70 | 67.65 64 | 44.00 108 | 59.14 69 | 52.69 59 | 65.19 40 | 68.13 61 | 60.90 28 | 74.74 47 | 71.58 53 | 81.46 42 | 81.04 55 |
|
Anonymous20231211 | | | 57.71 104 | 60.79 96 | 54.13 101 | 61.68 84 | 65.81 98 | 60.81 114 | 43.70 115 | 51.97 97 | 39.67 117 | 34.82 192 | 63.59 72 | 43.31 135 | 68.55 95 | 66.63 109 | 75.59 104 | 74.13 104 |
|
IS_MVSNet | | | 57.95 102 | 64.26 82 | 50.60 124 | 61.62 85 | 65.25 104 | 57.18 133 | 45.42 85 | 50.79 100 | 26.49 175 | 57.81 72 | 60.05 90 | 34.51 176 | 71.24 67 | 70.20 65 | 78.36 68 | 74.44 101 |
|
NR-MVSNet | | | 55.35 125 | 59.46 120 | 50.56 125 | 61.33 86 | 62.97 120 | 57.91 130 | 51.80 47 | 48.62 124 | 20.59 189 | 51.99 99 | 44.73 176 | 34.10 179 | 68.58 93 | 68.64 80 | 77.66 72 | 70.67 122 |
|
MVS_111021_LR | | | 63.05 66 | 66.43 66 | 59.10 67 | 61.33 86 | 63.77 117 | 65.87 84 | 43.58 118 | 60.20 66 | 53.70 56 | 62.09 58 | 62.38 77 | 55.84 63 | 70.24 78 | 68.08 84 | 74.30 117 | 78.28 71 |
|
EPP-MVSNet | | | 59.39 83 | 65.45 73 | 52.32 117 | 60.96 88 | 67.70 77 | 58.42 127 | 44.75 93 | 49.71 106 | 27.23 170 | 59.03 66 | 62.20 79 | 43.34 134 | 70.71 72 | 69.13 74 | 79.25 61 | 79.63 61 |
|
TransMVSNet (Re) | | | 51.92 150 | 55.38 149 | 47.88 155 | 60.95 89 | 59.90 144 | 53.95 159 | 45.14 89 | 39.47 188 | 24.85 179 | 43.87 158 | 46.51 157 | 29.15 188 | 67.55 115 | 65.23 131 | 73.26 133 | 65.16 164 |
|
gm-plane-assit | | | 44.74 188 | 45.95 196 | 43.33 177 | 60.88 90 | 46.79 202 | 36.97 211 | 32.24 201 | 24.15 216 | 11.79 206 | 29.26 205 | 32.97 211 | 46.64 117 | 65.09 149 | 62.95 153 | 71.45 154 | 60.42 184 |
|
baseline1 | | | 54.48 134 | 58.69 126 | 49.57 131 | 60.63 91 | 58.29 160 | 55.70 148 | 44.95 91 | 49.20 112 | 29.62 158 | 54.77 85 | 54.75 112 | 35.29 173 | 67.15 123 | 64.08 142 | 71.21 156 | 62.58 177 |
|
test2506 | | | 55.82 120 | 59.57 118 | 51.46 120 | 60.39 92 | 64.55 110 | 58.69 125 | 48.87 66 | 53.91 80 | 26.99 171 | 48.97 113 | 41.72 188 | 37.71 160 | 70.96 69 | 69.49 69 | 76.08 98 | 67.37 145 |
|
ECVR-MVS |  | | 56.44 115 | 60.74 97 | 51.42 121 | 60.39 92 | 64.55 110 | 58.69 125 | 48.87 66 | 53.91 80 | 26.76 173 | 45.55 145 | 53.43 117 | 37.71 160 | 70.96 69 | 69.49 69 | 76.08 98 | 67.32 147 |
|
DI_MVS_plusplus_trai | | | 61.88 72 | 65.17 76 | 58.06 72 | 60.05 94 | 65.26 102 | 66.03 81 | 44.22 100 | 55.75 74 | 46.73 77 | 54.64 87 | 68.12 62 | 54.13 70 | 69.13 86 | 66.66 107 | 77.18 80 | 76.61 82 |
|
PVSNet_Blended_VisFu | | | 63.65 62 | 66.92 63 | 59.83 63 | 60.03 95 | 73.44 49 | 66.33 78 | 48.95 65 | 52.20 96 | 50.81 65 | 56.07 77 | 60.25 89 | 53.56 74 | 73.23 55 | 70.01 67 | 79.30 59 | 83.24 45 |
|
UniMVSNet_NR-MVSNet | | | 56.94 110 | 61.14 93 | 52.05 119 | 60.02 96 | 65.21 105 | 57.44 131 | 52.93 42 | 49.37 110 | 24.31 182 | 54.62 88 | 50.54 131 | 39.04 152 | 68.69 90 | 68.84 78 | 78.53 66 | 70.72 118 |
|
IterMVS-LS | | | 58.30 98 | 61.39 92 | 54.71 97 | 59.92 97 | 58.40 157 | 59.42 119 | 43.64 116 | 48.71 121 | 40.25 115 | 57.53 73 | 58.55 95 | 52.15 90 | 65.42 147 | 65.34 128 | 72.85 135 | 75.77 91 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test1111 | | | 55.24 126 | 59.98 111 | 49.71 130 | 59.80 98 | 64.10 115 | 56.48 140 | 49.34 62 | 52.27 95 | 21.56 187 | 44.49 153 | 51.96 124 | 35.93 171 | 70.59 73 | 69.07 75 | 75.13 111 | 67.40 143 |
|
MVS_Test | | | 62.40 71 | 66.23 68 | 57.94 75 | 59.77 99 | 64.77 108 | 66.50 77 | 41.76 140 | 57.26 72 | 49.33 69 | 62.68 54 | 67.47 65 | 53.50 77 | 68.57 94 | 66.25 115 | 76.77 85 | 76.58 83 |
|
FA-MVS(training) | | | 60.00 81 | 63.14 87 | 56.33 89 | 59.50 100 | 64.30 113 | 65.15 92 | 38.75 166 | 56.20 73 | 45.77 83 | 53.08 91 | 56.45 104 | 52.10 91 | 69.04 88 | 67.67 93 | 76.69 86 | 75.27 98 |
|
TranMVSNet+NR-MVSNet | | | 55.87 118 | 60.14 108 | 50.88 123 | 59.46 101 | 63.82 116 | 57.93 129 | 52.98 41 | 48.94 116 | 20.52 190 | 52.87 93 | 47.33 148 | 36.81 168 | 69.12 87 | 69.03 76 | 77.56 76 | 69.89 124 |
|
Fast-Effi-MVS+ | | | 60.36 78 | 63.35 85 | 56.87 85 | 58.70 102 | 65.86 97 | 65.08 93 | 37.11 175 | 53.00 90 | 45.36 87 | 52.12 98 | 56.07 109 | 56.27 59 | 71.28 66 | 69.42 71 | 78.71 63 | 75.69 93 |
|
IB-MVS | | 54.11 11 | 58.36 97 | 60.70 98 | 55.62 93 | 58.67 103 | 68.02 74 | 61.56 106 | 43.15 130 | 46.09 141 | 44.06 93 | 44.24 155 | 50.99 130 | 48.71 106 | 66.70 129 | 70.33 62 | 77.60 74 | 78.50 68 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
Fast-Effi-MVS+-dtu | | | 56.30 116 | 59.29 122 | 52.82 114 | 58.64 104 | 64.89 106 | 65.56 88 | 32.89 198 | 45.80 144 | 35.04 136 | 45.89 140 | 54.14 114 | 49.41 101 | 67.16 122 | 66.45 114 | 75.37 108 | 70.69 120 |
|
CNLPA | | | 62.78 68 | 66.31 67 | 58.65 69 | 58.47 105 | 68.41 68 | 65.98 83 | 41.22 146 | 78.02 24 | 56.04 38 | 46.65 128 | 59.50 92 | 57.50 47 | 69.67 82 | 65.27 130 | 72.70 141 | 76.67 81 |
|
tpm cat1 | | | 53.30 139 | 53.41 161 | 53.17 110 | 58.16 106 | 59.15 151 | 63.73 102 | 38.27 170 | 50.73 101 | 46.98 76 | 45.57 144 | 44.00 182 | 49.20 102 | 55.90 195 | 54.02 194 | 62.65 186 | 64.50 168 |
|
v1144 | | | 58.88 87 | 60.16 107 | 57.39 81 | 58.03 107 | 67.26 83 | 67.14 70 | 44.46 97 | 45.17 147 | 44.33 92 | 47.81 122 | 49.92 135 | 53.20 83 | 67.77 111 | 66.62 110 | 77.15 81 | 76.58 83 |
|
v10 | | | 59.17 86 | 60.60 99 | 57.50 80 | 57.95 108 | 66.73 89 | 67.09 72 | 44.11 101 | 46.85 135 | 45.42 86 | 48.18 121 | 51.07 127 | 53.63 73 | 67.84 109 | 66.59 111 | 76.79 84 | 76.92 79 |
|
v1192 | | | 58.51 91 | 59.66 114 | 57.17 82 | 57.82 109 | 67.72 76 | 66.21 80 | 44.83 92 | 44.15 155 | 43.49 95 | 46.68 127 | 47.94 139 | 53.55 75 | 67.39 118 | 66.51 112 | 77.13 82 | 77.20 77 |
|
v144192 | | | 58.23 100 | 59.40 121 | 56.87 85 | 57.56 110 | 66.89 87 | 65.70 85 | 45.01 90 | 44.06 156 | 42.88 97 | 46.61 129 | 48.09 138 | 53.49 78 | 66.94 127 | 65.90 122 | 76.61 87 | 77.29 75 |
|
v1921920 | | | 57.89 103 | 59.02 124 | 56.58 88 | 57.55 111 | 66.66 93 | 64.72 96 | 44.70 94 | 43.55 159 | 42.73 98 | 46.17 137 | 46.93 152 | 53.51 76 | 66.78 128 | 65.75 124 | 76.29 92 | 77.28 76 |
|
Vis-MVSNet (Re-imp) | | | 50.37 158 | 57.73 138 | 41.80 184 | 57.53 112 | 54.35 174 | 45.70 192 | 45.24 87 | 49.80 105 | 13.43 203 | 58.23 71 | 56.42 105 | 20.11 204 | 62.96 155 | 63.36 149 | 68.76 165 | 58.96 189 |
|
CostFormer | | | 56.57 113 | 59.13 123 | 53.60 104 | 57.52 113 | 61.12 133 | 66.94 74 | 35.95 180 | 53.44 83 | 44.68 90 | 55.87 80 | 54.44 113 | 48.21 109 | 60.37 168 | 58.33 175 | 68.27 167 | 70.33 123 |
|
thres400 | | | 52.38 145 | 55.51 147 | 48.74 142 | 57.49 114 | 60.10 143 | 55.45 151 | 43.54 119 | 42.90 166 | 26.72 174 | 43.34 165 | 45.03 174 | 36.61 169 | 66.20 137 | 64.53 139 | 72.66 142 | 66.43 150 |
|
thres600view7 | | | 51.91 151 | 55.14 151 | 48.14 151 | 57.43 115 | 60.18 141 | 54.60 157 | 43.73 113 | 42.61 170 | 25.20 178 | 43.10 168 | 44.47 179 | 35.19 174 | 66.36 132 | 63.28 150 | 72.66 142 | 66.01 157 |
|
thres200 | | | 52.39 144 | 55.37 150 | 48.90 140 | 57.39 116 | 60.18 141 | 55.60 149 | 43.73 113 | 42.93 165 | 27.41 168 | 43.35 164 | 45.09 171 | 36.61 169 | 66.36 132 | 63.92 145 | 72.66 142 | 65.78 159 |
|
baseline2 | | | 55.89 117 | 57.82 135 | 53.64 103 | 57.36 117 | 61.09 134 | 59.75 118 | 40.45 153 | 47.38 133 | 41.26 109 | 51.23 103 | 46.90 153 | 48.11 110 | 65.63 144 | 64.38 141 | 74.90 113 | 68.16 139 |
|
v8 | | | 58.88 87 | 60.57 101 | 56.92 84 | 57.35 118 | 65.69 99 | 66.69 76 | 42.64 133 | 47.89 130 | 45.77 83 | 49.04 112 | 52.98 119 | 52.77 84 | 67.51 116 | 65.57 125 | 76.26 94 | 75.30 97 |
|
thres100view900 | | | 52.04 148 | 54.81 154 | 48.80 141 | 57.31 119 | 59.33 148 | 55.30 153 | 42.92 132 | 42.85 167 | 27.81 166 | 43.00 169 | 45.06 172 | 36.99 166 | 64.74 150 | 63.51 147 | 72.47 145 | 65.21 163 |
|
tfpn200view9 | | | 52.53 142 | 55.51 147 | 49.06 138 | 57.31 119 | 60.24 140 | 55.42 152 | 43.77 111 | 42.85 167 | 27.81 166 | 43.00 169 | 45.06 172 | 37.32 164 | 66.38 131 | 64.54 138 | 72.71 140 | 66.54 149 |
|
v1240 | | | 57.55 105 | 58.63 128 | 56.29 90 | 57.30 121 | 66.48 94 | 63.77 101 | 44.56 96 | 42.77 169 | 42.48 100 | 45.64 143 | 46.28 159 | 53.46 79 | 66.32 134 | 65.80 123 | 76.16 96 | 77.13 78 |
|
CHOSEN 1792x2688 | | | 55.85 119 | 58.01 133 | 53.33 106 | 57.26 122 | 62.82 122 | 63.29 105 | 41.55 142 | 46.65 137 | 38.34 123 | 34.55 193 | 53.50 115 | 52.43 87 | 67.10 124 | 67.56 96 | 67.13 171 | 73.92 107 |
|
PVSNet_BlendedMVS | | | 61.63 74 | 64.82 77 | 57.91 77 | 57.21 123 | 67.55 80 | 63.47 103 | 46.08 78 | 54.72 77 | 52.46 60 | 58.59 68 | 60.73 85 | 51.82 94 | 70.46 74 | 65.20 132 | 76.44 90 | 76.50 86 |
|
PVSNet_Blended | | | 61.63 74 | 64.82 77 | 57.91 77 | 57.21 123 | 67.55 80 | 63.47 103 | 46.08 78 | 54.72 77 | 52.46 60 | 58.59 68 | 60.73 85 | 51.82 94 | 70.46 74 | 65.20 132 | 76.44 90 | 76.50 86 |
|
v2v482 | | | 58.69 90 | 60.12 110 | 57.03 83 | 57.16 125 | 66.05 96 | 67.17 69 | 43.52 120 | 46.33 139 | 45.19 88 | 49.46 111 | 51.02 128 | 52.51 86 | 67.30 119 | 66.03 119 | 76.61 87 | 74.62 100 |
|
tfpnnormal | | | 50.16 160 | 52.19 172 | 47.78 157 | 56.86 126 | 58.37 158 | 54.15 158 | 44.01 107 | 38.35 196 | 25.94 176 | 36.10 188 | 37.89 202 | 34.50 177 | 65.93 139 | 63.42 148 | 71.26 155 | 65.28 162 |
|
diffmvs | | | 61.64 73 | 66.55 65 | 55.90 91 | 56.63 127 | 63.71 118 | 67.13 71 | 41.27 145 | 59.49 67 | 46.70 78 | 63.93 48 | 68.01 63 | 50.46 97 | 67.30 119 | 65.51 126 | 73.24 134 | 77.87 73 |
|
HyFIR lowres test | | | 56.87 111 | 58.60 129 | 54.84 96 | 56.62 128 | 69.27 64 | 64.77 95 | 42.21 137 | 45.66 145 | 37.50 129 | 33.08 195 | 57.47 101 | 53.33 80 | 65.46 146 | 67.94 86 | 74.60 114 | 71.35 115 |
|
v7n | | | 55.67 121 | 57.46 140 | 53.59 105 | 56.06 129 | 65.29 101 | 61.06 112 | 43.26 128 | 40.17 185 | 37.99 126 | 40.79 178 | 45.27 169 | 47.09 116 | 67.67 113 | 66.21 116 | 76.08 98 | 76.82 80 |
|
dps | | | 50.42 157 | 51.20 178 | 49.51 132 | 55.88 130 | 56.07 170 | 53.73 160 | 38.89 162 | 43.66 157 | 40.36 114 | 45.66 142 | 37.63 204 | 45.23 125 | 59.05 171 | 56.18 179 | 62.94 185 | 60.16 185 |
|
CANet_DTU | | | 58.88 87 | 64.68 80 | 52.12 118 | 55.77 131 | 66.75 88 | 63.92 100 | 37.04 176 | 53.32 86 | 37.45 130 | 59.81 63 | 61.81 81 | 44.43 129 | 68.25 98 | 67.47 97 | 74.12 119 | 75.33 96 |
|
WR-MVS | | | 48.78 170 | 55.06 152 | 41.45 185 | 55.50 132 | 60.40 139 | 43.77 200 | 49.99 59 | 41.92 173 | 8.10 216 | 45.24 149 | 45.56 164 | 17.47 205 | 61.57 163 | 64.60 137 | 73.85 121 | 66.14 156 |
|
UniMVSNet (Re) | | | 55.15 130 | 60.39 102 | 49.03 139 | 55.31 133 | 64.59 109 | 55.77 147 | 50.63 54 | 48.66 123 | 20.95 188 | 51.47 102 | 50.40 132 | 34.41 178 | 67.81 110 | 67.89 87 | 77.11 83 | 71.88 112 |
|
test-LLR | | | 49.28 164 | 50.29 182 | 48.10 152 | 55.26 134 | 47.16 197 | 49.52 173 | 43.48 123 | 39.22 189 | 31.98 145 | 43.65 161 | 47.93 140 | 41.29 145 | 56.80 186 | 55.36 185 | 67.08 172 | 61.94 178 |
|
test0.0.03 1 | | | 43.15 193 | 46.95 195 | 38.72 193 | 55.26 134 | 50.56 186 | 42.48 203 | 43.48 123 | 38.16 198 | 15.11 199 | 35.07 191 | 44.69 177 | 16.47 207 | 55.95 194 | 54.34 193 | 59.54 193 | 49.87 207 |
|
GA-MVS | | | 55.67 121 | 58.33 130 | 52.58 116 | 55.23 136 | 63.09 119 | 61.08 111 | 40.15 157 | 42.95 164 | 37.02 132 | 52.61 95 | 47.68 143 | 47.51 114 | 65.92 140 | 65.35 127 | 74.49 116 | 70.68 121 |
|
DTE-MVSNet | | | 48.03 176 | 53.28 163 | 41.91 183 | 54.64 137 | 57.50 166 | 44.63 199 | 51.66 50 | 41.02 179 | 7.97 217 | 46.26 134 | 40.90 190 | 20.24 203 | 60.45 167 | 62.89 154 | 72.33 148 | 63.97 169 |
|
pmmvs4 | | | 54.66 133 | 56.07 144 | 53.00 111 | 54.63 138 | 57.08 168 | 60.43 116 | 44.10 102 | 51.69 98 | 40.55 112 | 46.55 132 | 44.79 175 | 45.95 122 | 62.54 157 | 63.66 146 | 72.36 147 | 66.20 154 |
|
DU-MVS | | | 55.41 124 | 59.59 115 | 50.54 126 | 54.60 139 | 62.97 120 | 57.44 131 | 51.80 47 | 48.62 124 | 24.31 182 | 51.99 99 | 47.00 151 | 39.04 152 | 68.11 103 | 67.75 91 | 76.03 102 | 70.72 118 |
|
Baseline_NR-MVSNet | | | 53.50 137 | 57.89 134 | 48.37 149 | 54.60 139 | 59.25 150 | 56.10 142 | 51.84 46 | 49.32 111 | 17.92 197 | 45.38 146 | 47.68 143 | 36.93 167 | 68.11 103 | 65.95 120 | 72.84 136 | 69.57 129 |
|
v148 | | | 55.58 123 | 57.61 139 | 53.20 108 | 54.59 141 | 61.86 125 | 61.18 110 | 38.70 167 | 44.30 154 | 42.25 102 | 47.53 123 | 50.24 134 | 48.73 105 | 65.15 148 | 62.61 158 | 73.79 122 | 71.61 114 |
|
PEN-MVS | | | 49.21 166 | 54.32 156 | 43.24 179 | 54.33 142 | 59.26 149 | 47.04 186 | 51.37 51 | 41.67 175 | 9.97 211 | 46.22 135 | 41.80 187 | 22.97 201 | 60.52 166 | 64.03 143 | 73.73 123 | 66.75 148 |
|
pm-mvs1 | | | 51.02 154 | 55.55 146 | 45.73 164 | 54.16 143 | 58.52 155 | 50.92 169 | 42.56 134 | 40.32 183 | 25.67 177 | 43.66 160 | 50.34 133 | 30.06 186 | 65.85 141 | 63.97 144 | 70.99 158 | 66.21 153 |
|
EPNet_dtu | | | 52.05 147 | 58.26 131 | 44.81 170 | 54.10 144 | 50.09 189 | 52.01 167 | 40.82 149 | 53.03 89 | 27.41 168 | 54.90 83 | 57.96 100 | 26.72 193 | 62.97 154 | 62.70 157 | 67.78 169 | 66.19 155 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
tpm | | | 48.82 169 | 51.27 177 | 45.96 163 | 54.10 144 | 47.35 196 | 56.05 143 | 30.23 202 | 46.70 136 | 43.21 96 | 52.54 96 | 47.55 146 | 37.28 165 | 54.11 200 | 50.50 203 | 54.90 203 | 60.12 186 |
|
CDS-MVSNet | | | 52.42 143 | 57.06 142 | 47.02 160 | 53.92 146 | 58.30 159 | 55.50 150 | 46.47 76 | 42.52 171 | 29.38 160 | 49.50 110 | 52.85 120 | 28.49 191 | 66.70 129 | 66.89 103 | 68.34 166 | 62.63 176 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
test20.03 | | | 40.38 202 | 44.20 202 | 35.92 201 | 53.73 147 | 49.05 190 | 38.54 209 | 43.49 122 | 32.55 207 | 9.54 212 | 27.88 207 | 39.12 198 | 12.24 212 | 56.28 191 | 54.69 190 | 57.96 198 | 49.83 208 |
|
Vis-MVSNet |  | | 58.48 93 | 65.70 72 | 50.06 129 | 53.40 148 | 67.20 84 | 60.24 117 | 43.32 126 | 48.83 118 | 30.23 155 | 62.38 56 | 61.61 83 | 40.35 148 | 71.03 68 | 69.77 68 | 72.82 137 | 79.11 64 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PLC |  | 52.09 14 | 59.21 85 | 62.47 88 | 55.41 95 | 53.24 149 | 64.84 107 | 64.47 98 | 40.41 155 | 65.92 54 | 44.53 91 | 46.19 136 | 55.69 110 | 55.33 65 | 68.24 100 | 65.30 129 | 74.50 115 | 71.09 116 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
thisisatest0530 | | | 56.68 112 | 59.68 113 | 53.19 109 | 52.97 150 | 60.96 136 | 59.41 120 | 40.51 151 | 48.26 127 | 41.06 110 | 52.67 94 | 46.30 158 | 49.78 98 | 67.66 114 | 67.83 88 | 75.39 107 | 74.07 106 |
|
OMC-MVS | | | 65.16 59 | 71.35 46 | 57.94 75 | 52.95 151 | 68.82 65 | 69.00 59 | 38.28 169 | 79.89 17 | 55.20 43 | 62.76 53 | 68.31 59 | 56.14 61 | 71.30 65 | 68.70 79 | 76.06 101 | 79.67 60 |
|
tpmrst | | | 48.08 174 | 49.88 186 | 45.98 162 | 52.71 152 | 48.11 194 | 53.62 163 | 33.70 193 | 48.70 122 | 39.74 116 | 48.96 114 | 46.23 160 | 40.29 149 | 50.14 209 | 49.28 205 | 55.80 200 | 57.71 192 |
|
tttt0517 | | | 56.53 114 | 59.59 115 | 52.95 112 | 52.66 153 | 60.99 135 | 59.21 122 | 40.51 151 | 47.89 130 | 40.40 113 | 52.50 97 | 46.04 162 | 49.78 98 | 67.75 112 | 67.83 88 | 75.15 110 | 74.17 103 |
|
GBi-Net | | | 55.20 127 | 60.25 104 | 49.31 133 | 52.42 154 | 61.44 128 | 57.03 134 | 44.04 104 | 49.18 113 | 30.47 151 | 48.28 117 | 58.19 96 | 38.22 155 | 68.05 106 | 66.96 100 | 73.69 124 | 69.65 126 |
|
test1 | | | 55.20 127 | 60.25 104 | 49.31 133 | 52.42 154 | 61.44 128 | 57.03 134 | 44.04 104 | 49.18 113 | 30.47 151 | 48.28 117 | 58.19 96 | 38.22 155 | 68.05 106 | 66.96 100 | 73.69 124 | 69.65 126 |
|
FMVSNet2 | | | 55.04 131 | 59.95 112 | 49.31 133 | 52.42 154 | 61.44 128 | 57.03 134 | 44.08 103 | 49.55 107 | 30.40 154 | 46.89 126 | 58.84 94 | 38.22 155 | 67.07 125 | 66.21 116 | 73.69 124 | 69.65 126 |
|
FMVSNet3 | | | 54.78 132 | 59.58 117 | 49.17 136 | 52.37 157 | 61.31 132 | 56.72 139 | 44.04 104 | 49.18 113 | 30.47 151 | 48.28 117 | 58.19 96 | 38.09 158 | 65.48 145 | 65.20 132 | 73.31 131 | 69.45 134 |
|
testgi | | | 38.71 204 | 43.64 204 | 32.95 205 | 52.30 158 | 48.63 193 | 35.59 214 | 35.05 183 | 31.58 211 | 9.03 215 | 30.29 200 | 40.75 192 | 11.19 218 | 55.30 196 | 53.47 199 | 54.53 205 | 45.48 211 |
|
Anonymous20231206 | | | 42.28 194 | 45.89 197 | 38.07 195 | 51.96 159 | 48.98 191 | 43.66 201 | 38.81 165 | 38.74 193 | 14.32 202 | 26.74 208 | 40.90 190 | 20.94 202 | 56.64 189 | 54.67 191 | 58.71 194 | 54.59 196 |
|
pmmvs6 | | | 48.35 172 | 51.64 174 | 44.51 172 | 51.92 160 | 57.94 164 | 49.44 175 | 42.17 138 | 34.45 203 | 24.62 181 | 28.87 206 | 46.90 153 | 29.07 190 | 64.60 151 | 63.08 151 | 69.83 162 | 65.68 160 |
|
PatchmatchNet |  | | 49.92 162 | 51.29 176 | 48.32 150 | 51.83 161 | 51.86 183 | 53.38 165 | 37.63 174 | 47.90 129 | 40.83 111 | 48.54 116 | 45.30 167 | 45.19 126 | 56.86 185 | 53.99 196 | 61.08 191 | 54.57 197 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
WR-MVS_H | | | 47.65 177 | 53.67 159 | 40.63 188 | 51.45 162 | 59.74 146 | 44.71 198 | 49.37 61 | 40.69 181 | 7.61 218 | 46.04 138 | 44.34 181 | 17.32 206 | 57.79 182 | 61.18 163 | 73.30 132 | 65.86 158 |
|
LTVRE_ROB | | 44.17 16 | 47.06 182 | 50.15 185 | 43.44 176 | 51.39 163 | 58.42 156 | 42.90 202 | 43.51 121 | 22.27 218 | 14.85 201 | 41.94 176 | 34.57 208 | 45.43 123 | 62.28 160 | 62.77 156 | 62.56 188 | 68.83 137 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
CP-MVSNet | | | 48.37 171 | 53.53 160 | 42.34 181 | 51.35 164 | 58.01 163 | 46.56 187 | 50.54 55 | 41.62 176 | 10.61 207 | 46.53 133 | 40.68 193 | 23.18 199 | 58.71 176 | 61.83 160 | 71.81 151 | 67.36 146 |
|
PS-CasMVS | | | 48.18 173 | 53.25 164 | 42.27 182 | 51.26 165 | 57.94 164 | 46.51 188 | 50.52 56 | 41.30 177 | 10.56 208 | 45.35 148 | 40.34 195 | 23.04 200 | 58.66 177 | 61.79 161 | 71.74 153 | 67.38 144 |
|
our_test_3 | | | | | | 51.15 166 | 57.31 167 | 55.12 154 | | | | | | | | | | |
|
SCA | | | 50.99 155 | 53.22 165 | 48.40 148 | 51.07 167 | 56.78 169 | 50.25 171 | 39.05 160 | 48.31 126 | 41.38 106 | 49.54 109 | 46.70 156 | 46.00 121 | 58.31 178 | 56.28 178 | 62.65 186 | 56.60 194 |
|
UniMVSNet_ETH3D | | | 52.62 141 | 55.98 145 | 48.70 144 | 51.04 168 | 60.71 138 | 56.87 137 | 46.74 75 | 42.52 171 | 26.96 172 | 42.50 173 | 45.95 163 | 37.87 159 | 66.22 136 | 65.15 135 | 72.74 138 | 68.78 138 |
|
IterMVS-SCA-FT | | | 52.18 146 | 57.75 137 | 45.68 165 | 51.01 169 | 62.06 124 | 55.10 155 | 34.75 184 | 44.85 148 | 32.86 143 | 51.13 105 | 51.22 126 | 48.74 104 | 62.47 158 | 61.51 162 | 51.61 210 | 71.02 117 |
|
FMVSNet1 | | | 54.08 135 | 58.68 127 | 48.71 143 | 50.90 170 | 61.35 131 | 56.73 138 | 43.94 109 | 45.91 143 | 29.32 161 | 42.72 171 | 56.26 108 | 37.70 162 | 68.05 106 | 66.96 100 | 73.69 124 | 69.50 130 |
|
pmmvs-eth3d | | | 51.33 152 | 52.25 171 | 50.26 128 | 50.82 171 | 54.65 173 | 56.03 144 | 43.45 125 | 43.51 160 | 37.20 131 | 39.20 181 | 39.04 199 | 42.28 140 | 61.85 162 | 62.78 155 | 71.78 152 | 64.72 166 |
|
MVSTER | | | 57.19 106 | 61.11 94 | 52.62 115 | 50.82 171 | 58.79 153 | 61.55 107 | 37.86 172 | 48.81 119 | 41.31 107 | 57.43 75 | 52.10 122 | 48.60 107 | 68.19 102 | 66.75 105 | 75.56 105 | 75.68 94 |
|
ambc | | | | 45.54 200 | | 50.66 173 | 52.63 181 | 40.99 206 | | 38.36 195 | 24.67 180 | 22.62 213 | 13.94 223 | 29.14 189 | 65.71 143 | 58.06 176 | 58.60 196 | 67.43 142 |
|
thisisatest0515 | | | 53.85 136 | 56.84 143 | 50.37 127 | 50.25 174 | 58.17 161 | 55.99 145 | 39.90 158 | 41.88 174 | 38.16 125 | 45.91 139 | 45.30 167 | 44.58 128 | 66.15 138 | 66.89 103 | 73.36 130 | 73.57 109 |
|
baseline | | | 55.19 129 | 60.88 95 | 48.55 146 | 49.87 175 | 58.10 162 | 58.70 124 | 34.75 184 | 52.82 92 | 39.48 121 | 60.18 62 | 60.86 84 | 45.41 124 | 61.05 164 | 60.74 167 | 63.10 184 | 72.41 111 |
|
MDTV_nov1_ep13 | | | 50.32 159 | 52.43 170 | 47.86 156 | 49.87 175 | 54.70 172 | 58.10 128 | 34.29 188 | 45.59 146 | 37.71 127 | 47.44 124 | 47.42 147 | 41.86 142 | 58.07 181 | 55.21 187 | 65.34 178 | 58.56 190 |
|
IterMVS | | | 53.45 138 | 57.12 141 | 49.17 136 | 49.23 177 | 60.93 137 | 59.05 123 | 34.63 186 | 44.53 150 | 33.22 139 | 51.09 106 | 51.01 129 | 48.38 108 | 62.43 159 | 60.79 166 | 70.54 160 | 69.05 136 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
COLMAP_ROB |  | 46.52 15 | 51.99 149 | 54.86 153 | 48.63 145 | 49.13 178 | 61.73 127 | 60.53 115 | 36.57 177 | 53.14 87 | 32.95 142 | 37.10 185 | 38.68 200 | 40.49 147 | 65.72 142 | 63.08 151 | 72.11 150 | 64.60 167 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CR-MVSNet | | | 50.47 156 | 52.61 167 | 47.98 154 | 49.03 179 | 52.94 178 | 48.27 178 | 38.86 163 | 44.41 151 | 39.59 118 | 44.34 154 | 44.65 178 | 46.63 118 | 58.97 173 | 60.31 168 | 65.48 176 | 62.66 174 |
|
V42 | | | 56.97 109 | 60.14 108 | 53.28 107 | 48.16 180 | 62.78 123 | 66.30 79 | 37.93 171 | 47.44 132 | 42.68 99 | 48.19 120 | 52.59 121 | 51.90 92 | 67.46 117 | 65.94 121 | 72.72 139 | 76.55 85 |
|
MDTV_nov1_ep13_2view | | | 47.62 178 | 49.72 187 | 45.18 168 | 48.05 181 | 53.70 176 | 54.90 156 | 33.80 192 | 39.90 187 | 29.79 157 | 38.85 182 | 41.89 186 | 39.17 151 | 58.99 172 | 55.55 184 | 65.34 178 | 59.17 188 |
|
EPMVS | | | 44.66 189 | 47.86 193 | 40.92 187 | 47.97 182 | 44.70 206 | 47.58 183 | 33.27 195 | 48.11 128 | 29.58 159 | 49.65 108 | 44.38 180 | 34.65 175 | 51.71 204 | 47.90 207 | 52.49 208 | 48.57 209 |
|
RPMNet | | | 46.41 183 | 48.72 189 | 43.72 174 | 47.77 183 | 52.94 178 | 46.02 191 | 33.92 190 | 44.41 151 | 31.82 148 | 36.89 186 | 37.42 205 | 37.41 163 | 53.88 201 | 54.02 194 | 65.37 177 | 61.47 180 |
|
TAPA-MVS | | 54.74 10 | 60.85 77 | 66.61 64 | 54.12 102 | 47.38 184 | 65.33 100 | 65.35 90 | 36.51 178 | 75.16 32 | 48.82 73 | 54.70 86 | 63.51 73 | 53.31 81 | 68.36 96 | 64.97 136 | 73.37 129 | 74.27 102 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
SixPastTwentyTwo | | | 47.55 179 | 50.25 184 | 44.41 173 | 47.30 185 | 54.31 175 | 47.81 181 | 40.36 156 | 33.76 204 | 19.93 192 | 43.75 159 | 32.77 212 | 42.07 141 | 59.82 169 | 60.94 165 | 68.98 163 | 66.37 152 |
|
TAMVS | | | 44.02 191 | 49.18 188 | 37.99 196 | 47.03 186 | 45.97 203 | 45.04 195 | 28.47 206 | 39.11 191 | 20.23 191 | 43.22 167 | 48.52 136 | 28.49 191 | 58.15 180 | 57.95 177 | 58.71 194 | 51.36 200 |
|
UGNet | | | 57.03 107 | 65.25 75 | 47.44 158 | 46.54 187 | 66.73 89 | 56.30 141 | 43.28 127 | 50.06 103 | 32.99 141 | 62.57 55 | 63.26 74 | 33.31 181 | 68.25 98 | 67.58 95 | 72.20 149 | 78.29 70 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TSAR-MVS + COLMAP | | | 62.65 69 | 69.90 55 | 54.19 100 | 46.31 188 | 66.73 89 | 65.49 89 | 41.36 144 | 76.57 26 | 46.31 80 | 76.80 18 | 56.68 102 | 53.27 82 | 69.50 83 | 66.65 108 | 72.40 146 | 76.36 88 |
|
PatchMatch-RL | | | 50.11 161 | 51.56 175 | 48.43 147 | 46.23 189 | 51.94 182 | 50.21 172 | 38.62 168 | 46.62 138 | 37.51 128 | 42.43 174 | 39.38 197 | 52.24 89 | 60.98 165 | 59.56 171 | 65.76 175 | 60.01 187 |
|
CMPMVS |  | 37.70 17 | 49.24 165 | 52.71 166 | 45.19 167 | 45.97 190 | 51.23 185 | 47.44 184 | 29.31 203 | 43.04 163 | 44.69 89 | 34.45 194 | 48.35 137 | 43.64 131 | 62.59 156 | 59.82 170 | 60.08 192 | 69.48 131 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmnet_mix02 | | | 40.48 201 | 43.80 203 | 36.61 199 | 45.79 191 | 40.45 211 | 42.12 204 | 33.18 196 | 40.30 184 | 24.11 184 | 38.76 183 | 37.11 206 | 24.30 197 | 52.97 202 | 46.66 211 | 50.17 211 | 50.33 204 |
|
pmmvs5 | | | 47.07 181 | 51.02 180 | 42.46 180 | 45.18 192 | 51.47 184 | 48.23 180 | 33.09 197 | 38.17 197 | 28.62 164 | 46.60 130 | 43.48 183 | 30.74 184 | 58.28 179 | 58.63 174 | 68.92 164 | 60.48 183 |
|
USDC | | | 51.11 153 | 53.71 158 | 48.08 153 | 44.76 193 | 55.99 171 | 53.01 166 | 40.90 147 | 52.49 93 | 36.14 133 | 44.67 152 | 33.66 210 | 43.27 136 | 63.23 153 | 61.10 164 | 70.39 161 | 64.82 165 |
|
FC-MVSNet-test | | | 39.65 203 | 48.35 191 | 29.49 208 | 44.43 194 | 39.28 214 | 30.23 217 | 40.44 154 | 43.59 158 | 3.12 224 | 53.00 92 | 42.03 185 | 10.02 220 | 55.09 197 | 54.77 189 | 48.66 212 | 50.71 202 |
|
ADS-MVSNet | | | 40.67 199 | 43.38 205 | 37.50 197 | 44.36 195 | 39.79 213 | 42.09 205 | 32.67 200 | 44.34 153 | 28.87 163 | 40.76 179 | 40.37 194 | 30.22 185 | 48.34 213 | 45.87 212 | 46.81 214 | 44.21 213 |
|
new-patchmatchnet | | | 33.24 210 | 37.20 211 | 28.62 210 | 44.32 196 | 38.26 215 | 29.68 218 | 36.05 179 | 31.97 209 | 6.33 220 | 26.59 209 | 27.33 215 | 11.12 219 | 50.08 210 | 41.05 214 | 44.23 215 | 45.15 212 |
|
MVS-HIRNet | | | 42.24 195 | 41.15 208 | 43.51 175 | 44.06 197 | 40.74 209 | 35.77 213 | 35.35 181 | 35.38 202 | 38.34 123 | 25.63 210 | 38.55 201 | 43.48 133 | 50.77 206 | 47.03 209 | 64.07 180 | 49.98 205 |
|
PatchT | | | 48.08 174 | 51.03 179 | 44.64 171 | 42.96 198 | 50.12 188 | 40.36 207 | 35.09 182 | 43.17 162 | 39.59 118 | 42.00 175 | 39.96 196 | 46.63 118 | 58.97 173 | 60.31 168 | 63.21 183 | 62.66 174 |
|
CVMVSNet | | | 46.38 185 | 52.01 173 | 39.81 190 | 42.40 199 | 50.26 187 | 46.15 189 | 37.68 173 | 40.03 186 | 15.09 200 | 46.56 131 | 47.56 145 | 33.72 180 | 56.50 190 | 55.65 183 | 63.80 182 | 67.53 141 |
|
TinyColmap | | | 47.08 180 | 47.56 194 | 46.52 161 | 42.35 200 | 53.44 177 | 51.77 168 | 40.70 150 | 43.44 161 | 31.92 147 | 29.78 203 | 23.72 220 | 45.04 127 | 61.99 161 | 59.54 172 | 67.35 170 | 61.03 181 |
|
ET-MVSNet_ETH3D | | | 58.38 96 | 61.57 91 | 54.67 98 | 42.15 201 | 65.26 102 | 65.70 85 | 43.82 110 | 48.84 117 | 42.34 101 | 59.76 64 | 47.76 142 | 56.68 56 | 67.02 126 | 68.60 82 | 77.33 79 | 73.73 108 |
|
MIMVSNet | | | 43.79 192 | 48.53 190 | 38.27 194 | 41.46 202 | 48.97 192 | 50.81 170 | 32.88 199 | 44.55 149 | 22.07 185 | 32.05 196 | 47.15 149 | 24.76 196 | 58.73 175 | 56.09 181 | 57.63 199 | 52.14 198 |
|
N_pmnet | | | 32.67 211 | 36.85 212 | 27.79 211 | 40.55 203 | 32.13 216 | 35.80 212 | 26.79 209 | 37.24 200 | 9.10 213 | 32.02 197 | 30.94 213 | 16.30 208 | 47.22 214 | 41.21 213 | 38.21 217 | 37.21 214 |
|
anonymousdsp | | | 52.84 140 | 57.78 136 | 47.06 159 | 40.24 204 | 58.95 152 | 53.70 161 | 33.54 194 | 36.51 201 | 32.69 144 | 43.88 157 | 45.40 165 | 47.97 113 | 67.17 121 | 70.28 63 | 74.22 118 | 82.29 49 |
|
EU-MVSNet | | | 40.63 200 | 45.65 199 | 34.78 204 | 39.11 205 | 46.94 200 | 40.02 208 | 34.03 189 | 33.50 205 | 10.37 209 | 35.57 190 | 37.80 203 | 23.65 198 | 51.90 203 | 50.21 204 | 61.49 190 | 63.62 172 |
|
FPMVS | | | 38.36 205 | 40.41 209 | 35.97 200 | 38.92 206 | 39.85 212 | 45.50 193 | 25.79 212 | 41.13 178 | 18.70 194 | 30.10 201 | 24.56 218 | 31.86 183 | 49.42 211 | 46.80 210 | 55.04 201 | 51.03 201 |
|
TESTMET0.1,1 | | | 46.09 186 | 50.29 182 | 41.18 186 | 36.91 207 | 47.16 197 | 49.52 173 | 20.32 216 | 39.22 189 | 31.98 145 | 43.65 161 | 47.93 140 | 41.29 145 | 56.80 186 | 55.36 185 | 67.08 172 | 61.94 178 |
|
FMVSNet5 | | | 40.96 197 | 45.81 198 | 35.29 203 | 34.30 208 | 44.55 207 | 47.28 185 | 28.84 205 | 40.76 180 | 21.62 186 | 29.85 202 | 42.44 184 | 24.77 195 | 57.53 183 | 55.00 188 | 54.93 202 | 50.56 203 |
|
PMMVS | | | 49.20 167 | 54.28 157 | 43.28 178 | 34.13 209 | 45.70 204 | 48.98 176 | 26.09 211 | 46.31 140 | 34.92 138 | 55.22 82 | 53.47 116 | 47.48 115 | 59.43 170 | 59.04 173 | 68.05 168 | 60.77 182 |
|
PMVS |  | 27.84 18 | 33.81 209 | 35.28 213 | 32.09 206 | 34.13 209 | 24.81 219 | 32.51 216 | 26.48 210 | 26.41 214 | 19.37 193 | 23.76 211 | 24.02 219 | 25.18 194 | 50.78 205 | 47.24 208 | 54.89 204 | 49.95 206 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test-mter | | | 45.30 187 | 50.37 181 | 39.38 191 | 33.65 211 | 46.99 199 | 47.59 182 | 18.59 217 | 38.75 192 | 28.00 165 | 43.28 166 | 46.82 155 | 41.50 144 | 57.28 184 | 55.78 182 | 66.93 174 | 63.70 171 |
|
CHOSEN 280x420 | | | 40.80 198 | 45.05 201 | 35.84 202 | 32.95 212 | 29.57 217 | 44.98 196 | 23.71 214 | 37.54 199 | 18.42 195 | 31.36 199 | 47.07 150 | 46.41 120 | 56.71 188 | 54.65 192 | 48.55 213 | 58.47 191 |
|
PM-MVS | | | 44.55 190 | 48.13 192 | 40.37 189 | 32.85 213 | 46.82 201 | 46.11 190 | 29.28 204 | 40.48 182 | 29.99 156 | 39.98 180 | 34.39 209 | 41.80 143 | 56.08 193 | 53.88 198 | 62.19 189 | 65.31 161 |
|
TDRefinement | | | 49.31 163 | 52.44 169 | 45.67 166 | 30.44 214 | 59.42 147 | 59.24 121 | 39.78 159 | 48.76 120 | 31.20 150 | 35.73 189 | 29.90 214 | 42.81 139 | 64.24 152 | 62.59 159 | 70.55 159 | 66.43 150 |
|
Gipuma |  | | 25.87 212 | 26.91 215 | 24.66 212 | 28.98 215 | 20.17 220 | 20.46 219 | 34.62 187 | 29.55 212 | 9.10 213 | 4.91 223 | 5.31 227 | 15.76 209 | 49.37 212 | 49.10 206 | 39.03 216 | 29.95 216 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDA-MVSNet-bldmvs | | | 41.36 196 | 43.15 206 | 39.27 192 | 28.74 216 | 52.68 180 | 44.95 197 | 40.84 148 | 32.89 206 | 18.13 196 | 31.61 198 | 22.09 221 | 38.97 154 | 50.45 208 | 56.11 180 | 64.01 181 | 56.23 195 |
|
E-PMN | | | 15.09 215 | 13.19 219 | 17.30 214 | 27.80 217 | 12.62 223 | 7.81 224 | 27.54 207 | 14.62 222 | 3.19 222 | 6.89 220 | 2.52 230 | 15.09 210 | 15.93 219 | 20.22 218 | 22.38 219 | 19.53 219 |
|
MIMVSNet1 | | | 35.51 207 | 41.41 207 | 28.63 209 | 27.53 218 | 43.36 208 | 38.09 210 | 33.82 191 | 32.01 208 | 6.77 219 | 21.63 214 | 35.43 207 | 11.97 214 | 55.05 198 | 53.99 196 | 53.59 207 | 48.36 210 |
|
EMVS | | | 14.49 216 | 12.45 220 | 16.87 216 | 27.02 219 | 12.56 224 | 8.13 223 | 27.19 208 | 15.05 221 | 3.14 223 | 6.69 221 | 2.67 229 | 15.08 211 | 14.60 221 | 18.05 219 | 20.67 220 | 17.56 221 |
|
pmmvs3 | | | 35.10 208 | 38.47 210 | 31.17 207 | 26.37 220 | 40.47 210 | 34.51 215 | 18.09 218 | 24.75 215 | 16.88 198 | 23.05 212 | 26.69 216 | 32.69 182 | 50.73 207 | 51.60 201 | 58.46 197 | 51.98 199 |
|
RPSCF | | | 46.41 183 | 54.42 155 | 37.06 198 | 25.70 221 | 45.14 205 | 45.39 194 | 20.81 215 | 62.79 60 | 35.10 135 | 44.92 150 | 55.60 111 | 43.56 132 | 56.12 192 | 52.45 200 | 51.80 209 | 63.91 170 |
|
new_pmnet | | | 23.19 213 | 28.17 214 | 17.37 213 | 17.03 222 | 24.92 218 | 19.66 220 | 16.16 220 | 27.05 213 | 4.42 221 | 20.77 215 | 19.20 222 | 12.19 213 | 37.71 215 | 36.38 215 | 34.77 218 | 31.17 215 |
|
PMMVS2 | | | 15.84 214 | 19.68 216 | 11.35 217 | 15.74 223 | 16.95 221 | 13.31 221 | 17.64 219 | 16.08 220 | 0.36 227 | 13.12 217 | 11.47 224 | 1.69 222 | 28.82 216 | 27.24 217 | 19.38 222 | 24.09 218 |
|
MVE |  | 12.28 19 | 13.53 217 | 15.72 217 | 10.96 218 | 7.39 224 | 15.71 222 | 6.05 225 | 23.73 213 | 10.29 224 | 3.01 225 | 5.77 222 | 3.41 228 | 11.91 215 | 20.11 217 | 29.79 216 | 13.67 223 | 24.98 217 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | | | 5.40 220 | 3.97 225 | 2.35 227 | 3.26 227 | 0.44 223 | 17.56 219 | 12.09 204 | 11.48 219 | 7.14 225 | 1.98 221 | 15.68 220 | 15.49 220 | 10.69 224 | |
|
test_method | | | 12.44 218 | 14.66 218 | 9.85 219 | 1.30 226 | 3.32 226 | 13.00 222 | 3.21 221 | 22.42 217 | 10.22 210 | 14.13 216 | 25.64 217 | 11.43 217 | 19.75 218 | 11.61 221 | 19.96 221 | 5.79 222 |
|
GG-mvs-BLEND | | | 36.62 206 | 53.39 162 | 17.06 215 | 0.01 227 | 58.61 154 | 48.63 177 | 0.01 224 | 47.13 134 | 0.02 228 | 43.98 156 | 60.64 87 | 0.03 223 | 54.92 199 | 51.47 202 | 53.64 206 | 56.99 193 |
|
uanet_test | | | 0.00 221 | 0.00 223 | 0.00 221 | 0.00 228 | 0.00 228 | 0.00 230 | 0.00 225 | 0.00 227 | 0.00 229 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 224 | 0.00 224 | 0.00 226 | 0.00 225 |
|
sosnet-low-res | | | 0.00 221 | 0.00 223 | 0.00 221 | 0.00 228 | 0.00 228 | 0.00 230 | 0.00 225 | 0.00 227 | 0.00 229 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 224 | 0.00 224 | 0.00 226 | 0.00 225 |
|
sosnet | | | 0.00 221 | 0.00 223 | 0.00 221 | 0.00 228 | 0.00 228 | 0.00 230 | 0.00 225 | 0.00 227 | 0.00 229 | 0.00 226 | 0.00 231 | 0.00 226 | 0.00 224 | 0.00 224 | 0.00 226 | 0.00 225 |
|
testmvs | | | 0.01 219 | 0.02 221 | 0.00 221 | 0.00 228 | 0.00 228 | 0.01 229 | 0.00 225 | 0.01 225 | 0.00 229 | 0.03 225 | 0.00 231 | 0.01 224 | 0.01 223 | 0.01 222 | 0.00 226 | 0.06 224 |
|
test123 | | | 0.01 219 | 0.02 221 | 0.00 221 | 0.00 228 | 0.00 228 | 0.00 230 | 0.00 225 | 0.01 225 | 0.00 229 | 0.04 224 | 0.00 231 | 0.01 224 | 0.00 224 | 0.01 222 | 0.00 226 | 0.07 223 |
|
RE-MVS-def | | | | | | | | | | | 33.01 140 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 81.81 13 | | | | | |
|
MTAPA | | | | | | | | | | | 65.14 4 | | 80.20 20 | | | | | |
|
MTMP | | | | | | | | | | | 62.63 18 | | 78.04 27 | | | | | |
|
Patchmatch-RL test | | | | | | | | 1.04 228 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 72.00 41 | | | | | | | | |
|
Patchmtry | | | | | | | 47.61 195 | 48.27 178 | 38.86 163 | | 39.59 118 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 6.95 225 | 5.98 226 | 2.25 222 | 11.73 223 | 2.07 226 | 11.85 218 | 5.43 226 | 11.75 216 | 11.40 222 | | 8.10 225 | 18.38 220 |
|