PGM-MVS | | | 98.86 32 | 99.35 28 | 98.29 36 | 99.77 1 | 99.63 30 | 99.67 5 | 95.63 47 | 98.66 120 | 95.27 54 | 99.11 29 | 99.82 43 | 99.67 4 | 99.33 25 | 99.19 21 | 99.73 57 | 99.74 72 |
|
SMA-MVS |  | | 99.38 6 | 99.60 3 | 99.12 10 | 99.76 2 | 99.62 34 | 99.39 30 | 98.23 20 | 99.52 16 | 98.03 18 | 99.45 11 | 99.98 2 | 99.64 5 | 99.58 9 | 99.30 11 | 99.68 95 | 99.76 61 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CSCG | | | 98.90 31 | 98.93 54 | 98.85 26 | 99.75 3 | 99.72 12 | 99.49 22 | 96.58 44 | 99.38 25 | 98.05 17 | 98.97 39 | 97.87 78 | 99.49 19 | 97.78 128 | 98.92 39 | 99.78 33 | 99.90 6 |
|
APDe-MVS | | | 99.49 1 | 99.64 1 | 99.32 2 | 99.74 4 | 99.74 11 | 99.75 1 | 98.34 4 | 99.56 11 | 98.72 7 | 99.57 7 | 99.97 8 | 99.53 16 | 99.65 2 | 99.25 15 | 99.84 11 | 99.77 56 |
|
ACMMP_NAP | | | 99.05 26 | 99.45 14 | 98.58 32 | 99.73 5 | 99.60 44 | 99.64 8 | 98.28 13 | 99.23 46 | 94.57 66 | 99.35 16 | 99.97 8 | 99.55 14 | 99.63 3 | 98.66 57 | 99.70 83 | 99.74 72 |
|
zzz-MVS | | | 99.31 9 | 99.44 17 | 99.16 6 | 99.73 5 | 99.65 22 | 99.63 12 | 98.26 14 | 99.27 40 | 98.01 19 | 99.27 19 | 99.97 8 | 99.60 7 | 99.59 8 | 98.58 62 | 99.71 74 | 99.73 76 |
|
DVP-MVS |  | | 99.45 2 | 99.54 7 | 99.35 1 | 99.72 7 | 99.76 6 | 99.63 12 | 98.37 2 | 99.63 7 | 99.03 3 | 98.95 41 | 99.98 2 | 99.60 7 | 99.60 7 | 99.05 29 | 99.74 49 | 99.79 42 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 99.41 4 | 99.64 1 | 99.14 8 | 99.69 8 | 99.75 9 | 99.64 8 | 98.33 6 | 99.67 4 | 98.10 14 | 99.66 4 | 99.99 1 | 99.33 31 | 99.62 5 | 98.86 44 | 99.74 49 | 99.90 6 |
|
SED-MVS | | | 99.44 3 | 99.58 4 | 99.28 3 | 99.69 8 | 99.76 6 | 99.62 15 | 98.35 3 | 99.51 17 | 99.05 2 | 99.60 6 | 99.98 2 | 99.28 38 | 99.61 6 | 98.83 50 | 99.70 83 | 99.77 56 |
|
HFP-MVS | | | 99.32 8 | 99.53 9 | 99.07 14 | 99.69 8 | 99.59 46 | 99.63 12 | 98.31 9 | 99.56 11 | 97.37 28 | 99.27 19 | 99.97 8 | 99.70 3 | 99.35 23 | 99.24 17 | 99.71 74 | 99.76 61 |
|
HPM-MVS++ |  | | 99.10 22 | 99.30 31 | 98.86 25 | 99.69 8 | 99.48 64 | 99.59 17 | 98.34 4 | 99.26 43 | 96.55 39 | 99.10 32 | 99.96 13 | 99.36 29 | 99.25 28 | 98.37 75 | 99.64 116 | 99.66 106 |
|
APD-MVS |  | | 99.25 13 | 99.38 23 | 99.09 12 | 99.69 8 | 99.58 49 | 99.56 18 | 98.32 8 | 98.85 97 | 97.87 21 | 98.91 44 | 99.92 29 | 99.30 36 | 99.45 16 | 99.38 8 | 99.79 30 | 99.58 122 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MSP-MVS | | | 99.34 7 | 99.52 10 | 99.14 8 | 99.68 13 | 99.75 9 | 99.64 8 | 98.31 9 | 99.44 21 | 98.10 14 | 99.28 18 | 99.98 2 | 99.30 36 | 99.34 24 | 99.05 29 | 99.81 21 | 99.79 42 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SR-MVS | | | | | | 99.67 14 | | | 98.25 15 | | | | 99.94 26 | | | | | |
|
X-MVS | | | 98.93 30 | 99.37 24 | 98.42 33 | 99.67 14 | 99.62 34 | 99.60 16 | 98.15 25 | 99.08 72 | 93.81 84 | 98.46 63 | 99.95 18 | 99.59 10 | 99.49 14 | 99.21 20 | 99.68 95 | 99.75 68 |
|
MCST-MVS | | | 99.11 21 | 99.27 33 | 98.93 23 | 99.67 14 | 99.33 90 | 99.51 21 | 98.31 9 | 99.28 38 | 96.57 38 | 99.10 32 | 99.90 33 | 99.71 2 | 99.19 33 | 98.35 76 | 99.82 15 | 99.71 90 |
|
ACMMPR | | | 99.30 10 | 99.54 7 | 99.03 17 | 99.66 17 | 99.64 27 | 99.68 4 | 98.25 15 | 99.56 11 | 97.12 32 | 99.19 22 | 99.95 18 | 99.72 1 | 99.43 17 | 99.25 15 | 99.72 64 | 99.77 56 |
|
SteuartSystems-ACMMP | | | 99.20 16 | 99.51 11 | 98.83 28 | 99.66 17 | 99.66 21 | 99.71 3 | 98.12 29 | 99.14 62 | 96.62 36 | 99.16 24 | 99.98 2 | 99.12 49 | 99.63 3 | 99.19 21 | 99.78 33 | 99.83 27 |
Skip Steuart: Steuart Systems R&D Blog. |
xxxxxxxxxxxxxcwj | | | 98.14 55 | 97.38 109 | 99.03 17 | 99.65 19 | 99.41 75 | 98.87 55 | 98.24 18 | 99.14 62 | 98.73 5 | 99.11 29 | 86.38 169 | 98.92 61 | 99.22 29 | 98.84 48 | 99.76 40 | 99.56 128 |
|
SF-MVS | | | 99.18 17 | 99.32 29 | 99.03 17 | 99.65 19 | 99.41 75 | 98.87 55 | 98.24 18 | 99.14 62 | 98.73 5 | 99.11 29 | 99.92 29 | 98.92 61 | 99.22 29 | 98.84 48 | 99.76 40 | 99.56 128 |
|
CNVR-MVS | | | 99.23 15 | 99.28 32 | 99.17 5 | 99.65 19 | 99.34 87 | 99.46 25 | 98.21 21 | 99.28 38 | 98.47 9 | 98.89 46 | 99.94 26 | 99.50 17 | 99.42 18 | 98.61 60 | 99.73 57 | 99.52 135 |
|
DPE-MVS |  | | 99.39 5 | 99.55 6 | 99.20 4 | 99.63 22 | 99.71 15 | 99.66 6 | 98.33 6 | 99.29 37 | 98.40 12 | 99.64 5 | 99.98 2 | 99.31 34 | 99.56 10 | 98.96 36 | 99.85 9 | 99.70 92 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS |  | | 99.07 24 | 99.36 25 | 98.74 29 | 99.63 22 | 99.57 51 | 99.66 6 | 98.25 15 | 99.00 83 | 95.62 47 | 98.97 39 | 99.94 26 | 99.54 15 | 99.51 13 | 98.79 54 | 99.71 74 | 99.73 76 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
NCCC | | | 99.05 26 | 99.08 42 | 99.02 20 | 99.62 24 | 99.38 78 | 99.43 29 | 98.21 21 | 99.36 30 | 97.66 25 | 97.79 81 | 99.90 33 | 99.45 23 | 99.17 34 | 98.43 70 | 99.77 38 | 99.51 140 |
|
CP-MVS | | | 99.27 11 | 99.44 17 | 99.08 13 | 99.62 24 | 99.58 49 | 99.53 19 | 98.16 23 | 99.21 49 | 97.79 22 | 99.15 25 | 99.96 13 | 99.59 10 | 99.54 12 | 98.86 44 | 99.78 33 | 99.74 72 |
|
AdaColmap |  | | 99.06 25 | 98.98 52 | 99.15 7 | 99.60 26 | 99.30 93 | 99.38 31 | 98.16 23 | 99.02 81 | 98.55 8 | 98.71 55 | 99.57 57 | 99.58 13 | 99.09 39 | 97.84 105 | 99.64 116 | 99.36 154 |
|
CPTT-MVS | | | 99.14 20 | 99.20 37 | 99.06 15 | 99.58 27 | 99.53 56 | 99.45 26 | 97.80 38 | 99.19 52 | 98.32 13 | 98.58 58 | 99.95 18 | 99.60 7 | 99.28 27 | 98.20 87 | 99.64 116 | 99.69 96 |
|
QAPM | | | 98.62 41 | 99.04 48 | 98.13 40 | 99.57 28 | 99.48 64 | 99.17 39 | 94.78 57 | 99.57 10 | 96.16 41 | 96.73 105 | 99.80 44 | 99.33 31 | 98.79 63 | 99.29 13 | 99.75 44 | 99.64 113 |
|
3Dnovator | | 96.92 7 | 98.67 38 | 99.05 45 | 98.23 39 | 99.57 28 | 99.45 68 | 99.11 43 | 94.66 60 | 99.69 3 | 96.80 35 | 96.55 114 | 99.61 54 | 99.40 26 | 98.87 59 | 99.49 3 | 99.85 9 | 99.66 106 |
|
DeepC-MVS_fast | | 98.34 1 | 99.17 18 | 99.45 14 | 98.85 26 | 99.55 30 | 99.37 81 | 99.64 8 | 98.05 33 | 99.53 14 | 96.58 37 | 98.93 42 | 99.92 29 | 99.49 19 | 99.46 15 | 99.32 10 | 99.80 29 | 99.64 113 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
mPP-MVS | | | | | | 99.53 31 | | | | | | | 99.89 35 | | | | | |
|
3Dnovator+ | | 96.92 7 | 98.71 37 | 99.05 45 | 98.32 35 | 99.53 31 | 99.34 87 | 99.06 47 | 94.61 61 | 99.65 5 | 97.49 26 | 96.75 104 | 99.86 38 | 99.44 24 | 98.78 64 | 99.30 11 | 99.81 21 | 99.67 102 |
|
MSLP-MVS++ | | | 99.15 19 | 99.24 35 | 99.04 16 | 99.52 33 | 99.49 63 | 99.09 45 | 98.07 31 | 99.37 27 | 98.47 9 | 97.79 81 | 99.89 35 | 99.50 17 | 98.93 51 | 99.45 4 | 99.61 124 | 99.76 61 |
|
OpenMVS |  | 96.23 11 | 97.95 60 | 98.45 68 | 97.35 58 | 99.52 33 | 99.42 73 | 98.91 54 | 94.61 61 | 98.87 94 | 92.24 111 | 94.61 141 | 99.05 65 | 99.10 51 | 98.64 74 | 99.05 29 | 99.74 49 | 99.51 140 |
|
PLC |  | 97.93 2 | 99.02 29 | 98.94 53 | 99.11 11 | 99.46 35 | 99.24 98 | 99.06 47 | 97.96 35 | 99.31 34 | 99.16 1 | 97.90 79 | 99.79 46 | 99.36 29 | 98.71 70 | 98.12 91 | 99.65 112 | 99.52 135 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS_111021_HR | | | 98.59 42 | 99.36 25 | 97.68 50 | 99.42 36 | 99.61 39 | 98.14 90 | 94.81 56 | 99.31 34 | 95.00 59 | 99.51 9 | 99.79 46 | 99.00 58 | 98.94 50 | 98.83 50 | 99.69 86 | 99.57 127 |
|
OMC-MVS | | | 98.84 33 | 99.01 51 | 98.65 31 | 99.39 37 | 99.23 99 | 99.22 36 | 96.70 43 | 99.40 24 | 97.77 23 | 97.89 80 | 99.80 44 | 99.21 39 | 99.02 45 | 98.65 58 | 99.57 146 | 99.07 171 |
|
TSAR-MVS + ACMM | | | 98.77 34 | 99.45 14 | 97.98 45 | 99.37 38 | 99.46 66 | 99.44 28 | 98.13 28 | 99.65 5 | 92.30 109 | 98.91 44 | 99.95 18 | 99.05 54 | 99.42 18 | 98.95 37 | 99.58 142 | 99.82 28 |
|
MVS_111021_LR | | | 98.67 38 | 99.41 22 | 97.81 48 | 99.37 38 | 99.53 56 | 98.51 69 | 95.52 49 | 99.27 40 | 94.85 61 | 99.56 8 | 99.69 51 | 99.04 55 | 99.36 21 | 98.88 42 | 99.60 132 | 99.58 122 |
|
train_agg | | | 98.73 36 | 99.11 40 | 98.28 37 | 99.36 40 | 99.35 85 | 99.48 24 | 97.96 35 | 98.83 102 | 93.86 83 | 98.70 56 | 99.86 38 | 99.44 24 | 99.08 41 | 98.38 73 | 99.61 124 | 99.58 122 |
|
ACMMP |  | | 98.74 35 | 99.03 49 | 98.40 34 | 99.36 40 | 99.64 27 | 99.20 37 | 97.75 39 | 98.82 104 | 95.24 55 | 98.85 47 | 99.87 37 | 99.17 46 | 98.74 69 | 97.50 118 | 99.71 74 | 99.76 61 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MAR-MVS | | | 97.71 66 | 98.04 86 | 97.32 59 | 99.35 42 | 98.91 115 | 97.65 108 | 91.68 111 | 98.00 150 | 97.01 33 | 97.72 85 | 94.83 113 | 98.85 70 | 98.44 91 | 98.86 44 | 99.41 171 | 99.52 135 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
abl_6 | | | | | 98.09 41 | 99.33 43 | 99.22 100 | 98.79 60 | 94.96 55 | 98.52 129 | 97.00 34 | 97.30 91 | 99.86 38 | 98.76 72 | | | 99.69 86 | 99.41 149 |
|
CDPH-MVS | | | 98.41 46 | 99.10 41 | 97.61 53 | 99.32 44 | 99.36 82 | 99.49 22 | 96.15 46 | 98.82 104 | 91.82 113 | 98.41 64 | 99.66 52 | 99.10 51 | 98.93 51 | 98.97 35 | 99.75 44 | 99.58 122 |
|
CNLPA | | | 99.03 28 | 99.05 45 | 99.01 21 | 99.27 45 | 99.22 100 | 99.03 49 | 97.98 34 | 99.34 32 | 99.00 4 | 98.25 70 | 99.71 50 | 99.31 34 | 98.80 62 | 98.82 52 | 99.48 161 | 99.17 164 |
|
MSDG | | | 98.27 51 | 98.29 72 | 98.24 38 | 99.20 46 | 99.22 100 | 99.20 37 | 97.82 37 | 99.37 27 | 94.43 72 | 95.90 125 | 97.31 84 | 99.12 49 | 98.76 66 | 98.35 76 | 99.67 103 | 99.14 168 |
|
PHI-MVS | | | 99.08 23 | 99.43 20 | 98.67 30 | 99.15 47 | 99.59 46 | 99.11 43 | 97.35 41 | 99.14 62 | 97.30 29 | 99.44 12 | 99.96 13 | 99.32 33 | 98.89 56 | 99.39 7 | 99.79 30 | 99.58 122 |
|
PatchMatch-RL | | | 97.77 64 | 98.25 74 | 97.21 64 | 99.11 48 | 99.25 96 | 97.06 131 | 94.09 74 | 98.72 118 | 95.14 57 | 98.47 62 | 96.29 95 | 98.43 87 | 98.65 73 | 97.44 124 | 99.45 165 | 98.94 174 |
|
TAPA-MVS | | 97.53 5 | 98.41 46 | 98.84 58 | 97.91 46 | 99.08 49 | 99.33 90 | 99.15 40 | 97.13 42 | 99.34 32 | 93.20 94 | 97.75 83 | 99.19 61 | 99.20 40 | 98.66 72 | 98.13 90 | 99.66 108 | 99.48 144 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
EPNet | | | 98.05 57 | 98.86 56 | 97.10 66 | 99.02 50 | 99.43 72 | 98.47 72 | 94.73 58 | 99.05 78 | 95.62 47 | 98.93 42 | 97.62 82 | 95.48 168 | 98.59 82 | 98.55 63 | 99.29 180 | 99.84 23 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPNet_dtu | | | 96.30 112 | 98.53 65 | 93.70 135 | 98.97 51 | 98.24 159 | 97.36 115 | 94.23 73 | 98.85 97 | 79.18 186 | 99.19 22 | 98.47 71 | 94.09 190 | 97.89 123 | 98.21 86 | 98.39 196 | 98.85 180 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
COLMAP_ROB |  | 96.15 12 | 97.78 63 | 98.17 80 | 97.32 59 | 98.84 52 | 99.45 68 | 99.28 34 | 95.43 50 | 99.48 19 | 91.80 114 | 94.83 140 | 98.36 73 | 98.90 64 | 98.09 106 | 97.85 104 | 99.68 95 | 99.15 165 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DeepPCF-MVS | | 97.74 3 | 98.34 48 | 99.46 13 | 97.04 69 | 98.82 53 | 99.33 90 | 96.28 147 | 97.47 40 | 99.58 9 | 94.70 64 | 98.99 38 | 99.85 41 | 97.24 121 | 99.55 11 | 99.34 9 | 97.73 205 | 99.56 128 |
|
SD-MVS | | | 99.25 13 | 99.50 12 | 98.96 22 | 98.79 54 | 99.55 54 | 99.33 33 | 98.29 12 | 99.75 1 | 97.96 20 | 99.15 25 | 99.95 18 | 99.61 6 | 99.17 34 | 99.06 28 | 99.81 21 | 99.84 23 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 99.27 11 | 99.57 5 | 98.92 24 | 98.78 55 | 99.53 56 | 99.72 2 | 98.11 30 | 99.73 2 | 97.43 27 | 99.15 25 | 99.96 13 | 99.59 10 | 99.73 1 | 99.07 26 | 99.88 4 | 99.82 28 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DPM-MVS | | | 98.31 50 | 98.53 65 | 98.05 42 | 98.76 56 | 98.77 122 | 99.13 41 | 98.07 31 | 99.10 69 | 94.27 77 | 96.70 106 | 99.84 42 | 98.70 74 | 97.90 122 | 98.11 92 | 99.40 173 | 99.28 157 |
|
PCF-MVS | | 97.50 6 | 98.18 54 | 98.35 71 | 97.99 44 | 98.65 57 | 99.36 82 | 98.94 53 | 98.14 27 | 98.59 122 | 93.62 89 | 96.61 110 | 99.76 49 | 99.03 56 | 97.77 129 | 97.45 123 | 99.57 146 | 98.89 179 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DeepC-MVS | | 97.63 4 | 98.33 49 | 98.57 63 | 98.04 43 | 98.62 58 | 99.65 22 | 99.45 26 | 98.15 25 | 99.51 17 | 92.80 102 | 95.74 129 | 96.44 93 | 99.46 22 | 99.37 20 | 99.50 2 | 99.78 33 | 99.81 33 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CS-MVS-test | | | 98.58 43 | 99.42 21 | 97.60 54 | 98.52 59 | 99.91 1 | 98.60 66 | 94.60 63 | 99.37 27 | 94.62 65 | 99.40 14 | 99.16 62 | 99.39 27 | 99.36 21 | 98.85 47 | 99.90 3 | 99.92 3 |
|
CANet | | | 98.46 45 | 99.16 38 | 97.64 52 | 98.48 60 | 99.64 27 | 99.35 32 | 94.71 59 | 99.53 14 | 95.17 56 | 97.63 87 | 99.59 55 | 98.38 88 | 98.88 58 | 98.99 34 | 99.74 49 | 99.86 19 |
|
LS3D | | | 97.79 62 | 98.25 74 | 97.26 63 | 98.40 61 | 99.63 30 | 99.53 19 | 98.63 1 | 99.25 45 | 88.13 130 | 96.93 101 | 94.14 123 | 99.19 41 | 99.14 37 | 99.23 18 | 99.69 86 | 99.42 148 |
|
CHOSEN 280x420 | | | 97.99 59 | 99.24 35 | 96.53 86 | 98.34 62 | 99.61 39 | 98.36 80 | 89.80 146 | 99.27 40 | 95.08 58 | 99.81 1 | 98.58 69 | 98.64 78 | 99.02 45 | 98.92 39 | 98.93 190 | 99.48 144 |
|
DELS-MVS | | | 98.19 53 | 98.77 60 | 97.52 55 | 98.29 63 | 99.71 15 | 99.12 42 | 94.58 65 | 98.80 107 | 95.38 53 | 96.24 119 | 98.24 75 | 97.92 103 | 99.06 42 | 99.52 1 | 99.82 15 | 99.79 42 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CS-MVS | | | 98.56 44 | 99.32 29 | 97.68 50 | 98.28 64 | 99.89 2 | 98.71 63 | 94.53 66 | 99.41 23 | 95.43 51 | 99.05 37 | 98.66 67 | 99.19 41 | 99.21 31 | 99.07 26 | 99.93 1 | 99.94 1 |
|
RPSCF | | | 97.61 69 | 98.16 81 | 96.96 77 | 98.10 65 | 99.00 108 | 98.84 58 | 93.76 81 | 99.45 20 | 94.78 63 | 99.39 15 | 99.31 59 | 98.53 85 | 96.61 164 | 95.43 174 | 97.74 203 | 97.93 197 |
|
PVSNet_BlendedMVS | | | 97.51 73 | 97.71 96 | 97.28 61 | 98.06 66 | 99.61 39 | 97.31 117 | 95.02 53 | 99.08 72 | 95.51 49 | 98.05 74 | 90.11 144 | 98.07 97 | 98.91 54 | 98.40 71 | 99.72 64 | 99.78 48 |
|
PVSNet_Blended | | | 97.51 73 | 97.71 96 | 97.28 61 | 98.06 66 | 99.61 39 | 97.31 117 | 95.02 53 | 99.08 72 | 95.51 49 | 98.05 74 | 90.11 144 | 98.07 97 | 98.91 54 | 98.40 71 | 99.72 64 | 99.78 48 |
|
MVS_0304 | | | 98.14 55 | 99.03 49 | 97.10 66 | 98.05 68 | 99.63 30 | 99.27 35 | 94.33 71 | 99.63 7 | 93.06 97 | 97.32 90 | 99.05 65 | 98.09 96 | 98.82 61 | 98.87 43 | 99.81 21 | 99.89 10 |
|
CHOSEN 1792x2688 | | | 96.41 109 | 96.99 125 | 95.74 105 | 98.01 69 | 99.72 12 | 97.70 106 | 90.78 130 | 99.13 67 | 90.03 123 | 87.35 198 | 95.36 107 | 98.33 89 | 98.59 82 | 98.91 41 | 99.59 138 | 99.87 16 |
|
HyFIR lowres test | | | 95.99 119 | 96.56 135 | 95.32 110 | 97.99 70 | 99.65 22 | 96.54 140 | 88.86 155 | 98.44 132 | 89.77 126 | 84.14 208 | 97.05 88 | 99.03 56 | 98.55 84 | 98.19 88 | 99.73 57 | 99.86 19 |
|
OPM-MVS | | | 96.22 114 | 95.85 155 | 96.65 82 | 97.75 71 | 98.54 141 | 99.00 52 | 95.53 48 | 96.88 184 | 89.88 124 | 95.95 124 | 86.46 168 | 98.07 97 | 97.65 137 | 96.63 142 | 99.67 103 | 98.83 181 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
tmp_tt | | | | | 82.25 212 | 97.73 72 | 88.71 220 | 80.18 220 | 68.65 223 | 99.15 59 | 86.98 139 | 99.47 10 | 85.31 178 | 68.35 221 | 87.51 215 | 83.81 217 | 91.64 220 | |
|
TSAR-MVS + COLMAP | | | 96.79 95 | 96.55 136 | 97.06 68 | 97.70 73 | 98.46 146 | 99.07 46 | 96.23 45 | 99.38 25 | 91.32 117 | 98.80 48 | 85.61 175 | 98.69 76 | 97.64 138 | 96.92 135 | 99.37 175 | 99.06 172 |
|
PVSNet_Blended_VisFu | | | 97.41 76 | 98.49 67 | 96.15 94 | 97.49 74 | 99.76 6 | 96.02 151 | 93.75 83 | 99.26 43 | 93.38 93 | 93.73 149 | 99.35 58 | 96.47 143 | 98.96 48 | 98.46 67 | 99.77 38 | 99.90 6 |
|
MS-PatchMatch | | | 95.99 119 | 97.26 117 | 94.51 119 | 97.46 75 | 98.76 125 | 97.27 119 | 86.97 174 | 99.09 70 | 89.83 125 | 93.51 153 | 97.78 79 | 96.18 149 | 97.53 142 | 95.71 171 | 99.35 176 | 98.41 187 |
|
XVS | | | | | | 97.42 76 | 99.62 34 | 98.59 67 | | | 93.81 84 | | 99.95 18 | | | | 99.69 86 | |
|
X-MVStestdata | | | | | | 97.42 76 | 99.62 34 | 98.59 67 | | | 93.81 84 | | 99.95 18 | | | | 99.69 86 | |
|
LGP-MVS_train | | | 96.23 113 | 96.89 127 | 95.46 109 | 97.32 78 | 98.77 122 | 98.81 59 | 93.60 86 | 98.58 123 | 85.52 148 | 99.08 34 | 86.67 165 | 97.83 110 | 97.87 124 | 97.51 117 | 99.69 86 | 99.73 76 |
|
CMPMVS |  | 70.31 18 | 90.74 199 | 91.06 207 | 90.36 191 | 97.32 78 | 97.43 196 | 92.97 195 | 87.82 170 | 93.50 214 | 75.34 202 | 83.27 210 | 84.90 181 | 92.19 205 | 92.64 209 | 91.21 213 | 96.50 216 | 94.46 214 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
HQP-MVS | | | 96.37 110 | 96.58 134 | 96.13 95 | 97.31 80 | 98.44 148 | 98.45 73 | 95.22 51 | 98.86 95 | 88.58 128 | 98.33 68 | 87.00 160 | 97.67 112 | 97.23 152 | 96.56 145 | 99.56 149 | 99.62 117 |
|
ACMM | | 96.26 9 | 96.67 103 | 96.69 132 | 96.66 81 | 97.29 81 | 98.46 146 | 96.48 143 | 95.09 52 | 99.21 49 | 93.19 95 | 98.78 50 | 86.73 164 | 98.17 91 | 97.84 126 | 96.32 152 | 99.74 49 | 99.49 143 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UA-Net | | | 97.13 85 | 99.14 39 | 94.78 115 | 97.21 82 | 99.38 78 | 97.56 110 | 92.04 104 | 98.48 130 | 88.03 131 | 98.39 66 | 99.91 32 | 94.03 191 | 99.33 25 | 99.23 18 | 99.81 21 | 99.25 160 |
|
UGNet | | | 97.66 68 | 99.07 44 | 96.01 99 | 97.19 83 | 99.65 22 | 97.09 129 | 93.39 89 | 99.35 31 | 94.40 74 | 98.79 49 | 99.59 55 | 94.24 188 | 98.04 114 | 98.29 83 | 99.73 57 | 99.80 35 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TSAR-MVS + GP. | | | 98.66 40 | 99.36 25 | 97.85 47 | 97.16 84 | 99.46 66 | 99.03 49 | 94.59 64 | 99.09 70 | 97.19 31 | 99.73 3 | 99.95 18 | 99.39 27 | 98.95 49 | 98.69 56 | 99.75 44 | 99.65 109 |
|
CANet_DTU | | | 96.64 104 | 99.08 42 | 93.81 131 | 97.10 85 | 99.42 73 | 98.85 57 | 90.01 140 | 99.31 34 | 79.98 182 | 99.78 2 | 99.10 64 | 97.42 118 | 98.35 93 | 98.05 95 | 99.47 163 | 99.53 132 |
|
IB-MVS | | 93.96 15 | 95.02 138 | 96.44 145 | 93.36 145 | 97.05 86 | 99.28 94 | 90.43 205 | 93.39 89 | 98.02 149 | 96.02 42 | 94.92 139 | 92.07 137 | 83.52 214 | 95.38 191 | 95.82 168 | 99.72 64 | 99.59 121 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ACMP | | 96.25 10 | 96.62 106 | 96.72 131 | 96.50 89 | 96.96 87 | 98.75 126 | 97.80 101 | 94.30 72 | 98.85 97 | 93.12 96 | 98.78 50 | 86.61 166 | 97.23 122 | 97.73 132 | 96.61 143 | 99.62 122 | 99.71 90 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
test2506 | | | 97.16 83 | 96.68 133 | 97.73 49 | 96.95 88 | 99.79 4 | 98.48 70 | 94.42 68 | 99.17 54 | 97.74 24 | 99.15 25 | 80.93 202 | 98.89 67 | 99.03 43 | 99.09 24 | 99.88 4 | 99.62 117 |
|
ECVR-MVS |  | | 97.27 80 | 97.09 120 | 97.48 56 | 96.95 88 | 99.79 4 | 98.48 70 | 94.42 68 | 99.17 54 | 96.28 40 | 93.54 151 | 89.39 151 | 98.89 67 | 99.03 43 | 99.09 24 | 99.88 4 | 99.61 120 |
|
test1111 | | | 97.09 87 | 96.83 130 | 97.39 57 | 96.92 90 | 99.81 3 | 98.44 74 | 94.45 67 | 99.17 54 | 95.85 45 | 92.10 164 | 88.97 152 | 98.78 71 | 99.02 45 | 99.11 23 | 99.88 4 | 99.63 115 |
|
ACMH | | 95.42 14 | 95.27 135 | 95.96 151 | 94.45 121 | 96.83 91 | 98.78 121 | 94.72 178 | 91.67 112 | 98.95 86 | 86.82 141 | 96.42 116 | 83.67 186 | 97.00 125 | 97.48 144 | 96.68 140 | 99.69 86 | 99.76 61 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CLD-MVS | | | 96.74 98 | 96.51 139 | 97.01 74 | 96.71 92 | 98.62 135 | 98.73 61 | 94.38 70 | 98.94 88 | 94.46 71 | 97.33 89 | 87.03 159 | 98.07 97 | 97.20 154 | 96.87 136 | 99.72 64 | 99.54 131 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
TDRefinement | | | 93.04 174 | 93.57 191 | 92.41 154 | 96.58 93 | 98.77 122 | 97.78 103 | 91.96 107 | 98.12 146 | 80.84 175 | 89.13 184 | 79.87 210 | 87.78 210 | 96.44 169 | 94.50 196 | 99.54 155 | 98.15 192 |
|
Anonymous202405211 | | | | 97.40 108 | | 96.45 94 | 99.54 55 | 98.08 95 | 93.79 80 | 98.24 142 | | 93.55 150 | 94.41 119 | 98.88 69 | 98.04 114 | 98.24 85 | 99.75 44 | 99.76 61 |
|
DCV-MVSNet | | | 97.56 71 | 98.36 70 | 96.62 85 | 96.44 95 | 98.36 155 | 98.37 78 | 91.73 110 | 99.11 68 | 94.80 62 | 98.36 67 | 96.28 96 | 98.60 81 | 98.12 103 | 98.44 68 | 99.76 40 | 99.87 16 |
|
ACMH+ | | 95.51 13 | 95.40 131 | 96.00 149 | 94.70 116 | 96.33 96 | 98.79 119 | 96.79 135 | 91.32 120 | 98.77 113 | 87.18 138 | 95.60 133 | 85.46 176 | 96.97 126 | 97.15 155 | 96.59 144 | 99.59 138 | 99.65 109 |
|
Anonymous20231211 | | | 97.10 86 | 97.06 123 | 97.14 65 | 96.32 97 | 99.52 59 | 98.16 89 | 93.76 81 | 98.84 101 | 95.98 43 | 90.92 170 | 94.58 118 | 98.90 64 | 97.72 133 | 98.10 93 | 99.71 74 | 99.75 68 |
|
thres100view900 | | | 96.72 99 | 96.47 142 | 97.00 75 | 96.31 98 | 99.52 59 | 98.28 84 | 94.01 75 | 97.35 171 | 94.52 67 | 95.90 125 | 86.93 161 | 99.09 53 | 98.07 109 | 97.87 103 | 99.81 21 | 99.63 115 |
|
tfpn200view9 | | | 96.75 97 | 96.51 139 | 97.03 70 | 96.31 98 | 99.67 18 | 98.41 75 | 93.99 77 | 97.35 171 | 94.52 67 | 95.90 125 | 86.93 161 | 99.14 48 | 98.26 96 | 97.80 107 | 99.82 15 | 99.70 92 |
|
thres200 | | | 96.76 96 | 96.53 137 | 97.03 70 | 96.31 98 | 99.67 18 | 98.37 78 | 93.99 77 | 97.68 166 | 94.49 70 | 95.83 128 | 86.77 163 | 99.18 44 | 98.26 96 | 97.82 106 | 99.82 15 | 99.66 106 |
|
thres600view7 | | | 96.69 101 | 96.43 146 | 97.00 75 | 96.28 101 | 99.67 18 | 98.41 75 | 93.99 77 | 97.85 160 | 94.29 76 | 95.96 123 | 85.91 173 | 99.19 41 | 98.26 96 | 97.63 112 | 99.82 15 | 99.73 76 |
|
thres400 | | | 96.71 100 | 96.45 144 | 97.02 72 | 96.28 101 | 99.63 30 | 98.41 75 | 94.00 76 | 97.82 161 | 94.42 73 | 95.74 129 | 86.26 170 | 99.18 44 | 98.20 100 | 97.79 108 | 99.81 21 | 99.70 92 |
|
baseline1 | | | 97.58 70 | 98.05 85 | 97.02 72 | 96.21 103 | 99.45 68 | 97.71 105 | 93.71 85 | 98.47 131 | 95.75 46 | 98.78 50 | 93.20 133 | 98.91 63 | 98.52 86 | 98.44 68 | 99.81 21 | 99.53 132 |
|
canonicalmvs | | | 97.31 78 | 97.81 95 | 96.72 79 | 96.20 104 | 99.45 68 | 98.21 87 | 91.60 113 | 99.22 47 | 95.39 52 | 98.48 61 | 90.95 141 | 99.16 47 | 97.66 135 | 99.05 29 | 99.76 40 | 99.90 6 |
|
test_part1 | | | 95.56 127 | 95.38 159 | 95.78 102 | 96.07 105 | 98.16 162 | 97.57 109 | 90.78 130 | 97.43 170 | 93.04 98 | 89.12 185 | 89.41 150 | 97.93 102 | 96.38 172 | 97.38 127 | 99.29 180 | 99.78 48 |
|
IS_MVSNet | | | 97.86 61 | 98.86 56 | 96.68 80 | 96.02 106 | 99.72 12 | 98.35 81 | 93.37 91 | 98.75 117 | 94.01 78 | 96.88 103 | 98.40 72 | 98.48 86 | 99.09 39 | 99.42 5 | 99.83 14 | 99.80 35 |
|
USDC | | | 94.26 154 | 94.83 166 | 93.59 137 | 96.02 106 | 98.44 148 | 97.84 99 | 88.65 159 | 98.86 95 | 82.73 167 | 94.02 146 | 80.56 203 | 96.76 132 | 97.28 151 | 96.15 159 | 99.55 151 | 98.50 185 |
|
FC-MVSNet-train | | | 97.04 88 | 97.91 92 | 96.03 98 | 96.00 108 | 98.41 151 | 96.53 142 | 93.42 88 | 99.04 80 | 93.02 99 | 98.03 76 | 94.32 121 | 97.47 117 | 97.93 120 | 97.77 109 | 99.75 44 | 99.88 14 |
|
Vis-MVSNet (Re-imp) | | | 97.40 77 | 98.89 55 | 95.66 107 | 95.99 109 | 99.62 34 | 97.82 100 | 93.22 94 | 98.82 104 | 91.40 116 | 96.94 100 | 98.56 70 | 95.70 160 | 99.14 37 | 99.41 6 | 99.79 30 | 99.75 68 |
|
MVSTER | | | 97.16 83 | 97.71 96 | 96.52 87 | 95.97 110 | 98.48 144 | 98.63 65 | 92.10 103 | 98.68 119 | 95.96 44 | 99.23 21 | 91.79 138 | 96.87 129 | 98.76 66 | 97.37 128 | 99.57 146 | 99.68 101 |
|
baseline | | | 97.45 75 | 98.70 62 | 95.99 100 | 95.89 111 | 99.36 82 | 98.29 83 | 91.37 119 | 99.21 49 | 92.99 100 | 98.40 65 | 96.87 90 | 97.96 101 | 98.60 80 | 98.60 61 | 99.42 170 | 99.86 19 |
|
TinyColmap | | | 94.00 158 | 94.35 175 | 93.60 136 | 95.89 111 | 98.26 157 | 97.49 112 | 88.82 156 | 98.56 125 | 83.21 161 | 91.28 169 | 80.48 205 | 96.68 135 | 97.34 148 | 96.26 155 | 99.53 157 | 98.24 191 |
|
FA-MVS(training) | | | 96.52 108 | 98.29 72 | 94.45 121 | 95.88 113 | 99.52 59 | 97.66 107 | 81.47 197 | 98.94 88 | 93.79 87 | 95.54 135 | 99.11 63 | 98.29 90 | 98.89 56 | 96.49 147 | 99.63 121 | 99.52 135 |
|
EPMVS | | | 95.05 137 | 96.86 129 | 92.94 151 | 95.84 114 | 98.96 113 | 96.68 136 | 79.87 203 | 99.05 78 | 90.15 121 | 97.12 97 | 95.99 102 | 97.49 116 | 95.17 195 | 94.75 193 | 97.59 207 | 96.96 207 |
|
PMMVS | | | 97.52 72 | 98.39 69 | 96.51 88 | 95.82 115 | 98.73 129 | 97.80 101 | 93.05 98 | 98.76 114 | 94.39 75 | 99.07 35 | 97.03 89 | 98.55 83 | 98.31 95 | 97.61 113 | 99.43 168 | 99.21 163 |
|
diffmvs | | | 96.83 94 | 97.33 112 | 96.25 92 | 95.76 116 | 99.34 87 | 98.06 96 | 93.22 94 | 99.43 22 | 92.30 109 | 96.90 102 | 89.83 149 | 98.55 83 | 98.00 117 | 98.14 89 | 99.64 116 | 99.70 92 |
|
MVS_Test | | | 97.30 79 | 98.54 64 | 95.87 101 | 95.74 117 | 99.28 94 | 98.19 88 | 91.40 118 | 99.18 53 | 91.59 115 | 98.17 72 | 96.18 98 | 98.63 79 | 98.61 77 | 98.55 63 | 99.66 108 | 99.78 48 |
|
EIA-MVS | | | 97.70 67 | 98.78 59 | 96.44 90 | 95.72 118 | 99.65 22 | 98.14 90 | 93.72 84 | 98.30 138 | 92.31 108 | 98.63 57 | 97.90 77 | 98.97 59 | 98.92 53 | 98.30 82 | 99.78 33 | 99.80 35 |
|
casdiffmvs | | | 96.93 92 | 97.43 107 | 96.34 91 | 95.70 119 | 99.50 62 | 97.75 104 | 93.22 94 | 98.98 85 | 92.64 103 | 94.97 137 | 91.71 139 | 98.93 60 | 98.62 76 | 98.52 66 | 99.82 15 | 99.72 87 |
|
tpmrst | | | 93.86 163 | 95.88 153 | 91.50 173 | 95.69 120 | 98.62 135 | 95.64 157 | 79.41 206 | 98.80 107 | 83.76 157 | 95.63 132 | 96.13 99 | 97.25 120 | 92.92 207 | 92.31 206 | 97.27 210 | 96.74 208 |
|
ADS-MVSNet | | | 94.65 146 | 97.04 124 | 91.88 169 | 95.68 121 | 98.99 110 | 95.89 152 | 79.03 210 | 99.15 59 | 85.81 146 | 96.96 99 | 98.21 76 | 97.10 123 | 94.48 203 | 94.24 197 | 97.74 203 | 97.21 203 |
|
EPP-MVSNet | | | 97.75 65 | 98.71 61 | 96.63 84 | 95.68 121 | 99.56 52 | 97.51 111 | 93.10 97 | 99.22 47 | 94.99 60 | 97.18 96 | 97.30 85 | 98.65 77 | 98.83 60 | 98.93 38 | 99.84 11 | 99.92 3 |
|
DROMVSNet | | | 98.22 52 | 99.44 17 | 96.79 78 | 95.62 123 | 99.56 52 | 99.01 51 | 92.22 101 | 99.17 54 | 94.51 69 | 99.41 13 | 99.62 53 | 99.49 19 | 99.16 36 | 99.26 14 | 99.91 2 | 99.94 1 |
|
ETV-MVS | | | 98.05 57 | 99.25 34 | 96.65 82 | 95.61 124 | 99.61 39 | 98.26 86 | 93.52 87 | 98.90 93 | 93.74 88 | 99.32 17 | 99.20 60 | 98.90 64 | 99.21 31 | 98.72 55 | 99.87 8 | 99.79 42 |
|
DI_MVS_plusplus_trai | | | 96.90 93 | 97.49 102 | 96.21 93 | 95.61 124 | 99.40 77 | 98.72 62 | 92.11 102 | 99.14 62 | 92.98 101 | 93.08 161 | 95.14 109 | 98.13 95 | 98.05 113 | 97.91 101 | 99.74 49 | 99.73 76 |
|
thisisatest0530 | | | 97.23 81 | 98.25 74 | 96.05 96 | 95.60 126 | 99.59 46 | 96.96 133 | 93.23 92 | 99.17 54 | 92.60 105 | 98.75 53 | 96.19 97 | 98.17 91 | 98.19 101 | 96.10 160 | 99.72 64 | 99.77 56 |
|
tttt0517 | | | 97.23 81 | 98.24 77 | 96.04 97 | 95.60 126 | 99.60 44 | 96.94 134 | 93.23 92 | 99.15 59 | 92.56 106 | 98.74 54 | 96.12 100 | 98.17 91 | 98.21 99 | 96.10 160 | 99.73 57 | 99.78 48 |
|
SCA | | | 94.95 139 | 97.44 106 | 92.04 161 | 95.55 128 | 99.16 103 | 96.26 148 | 79.30 207 | 99.02 81 | 85.73 147 | 98.18 71 | 97.13 87 | 97.69 111 | 96.03 184 | 94.91 188 | 97.69 206 | 97.65 199 |
|
dps | | | 94.63 147 | 95.31 162 | 93.84 130 | 95.53 129 | 98.71 130 | 96.54 140 | 80.12 202 | 97.81 163 | 97.21 30 | 96.98 98 | 92.37 134 | 96.34 146 | 92.46 210 | 91.77 210 | 97.26 211 | 97.08 205 |
|
PatchmatchNet |  | | 94.70 144 | 97.08 122 | 91.92 166 | 95.53 129 | 98.85 117 | 95.77 154 | 79.54 205 | 98.95 86 | 85.98 144 | 98.52 59 | 96.45 91 | 97.39 119 | 95.32 192 | 94.09 198 | 97.32 209 | 97.38 202 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
test-LLR | | | 95.50 129 | 97.32 113 | 93.37 144 | 95.49 131 | 98.74 127 | 96.44 145 | 90.82 128 | 98.18 143 | 82.75 165 | 96.60 111 | 94.67 116 | 95.54 166 | 98.09 106 | 96.00 162 | 99.20 184 | 98.93 175 |
|
test0.0.03 1 | | | 96.69 101 | 98.12 83 | 95.01 113 | 95.49 131 | 98.99 110 | 95.86 153 | 90.82 128 | 98.38 134 | 92.54 107 | 96.66 108 | 97.33 83 | 95.75 158 | 97.75 131 | 98.34 78 | 99.60 132 | 99.40 152 |
|
CostFormer | | | 94.25 155 | 94.88 165 | 93.51 141 | 95.43 133 | 98.34 156 | 96.21 149 | 80.64 200 | 97.94 155 | 94.01 78 | 98.30 69 | 86.20 172 | 97.52 114 | 92.71 208 | 92.69 204 | 97.23 212 | 98.02 195 |
|
MDTV_nov1_ep13 | | | 95.57 126 | 97.48 103 | 93.35 146 | 95.43 133 | 98.97 112 | 97.19 124 | 83.72 195 | 98.92 92 | 87.91 133 | 97.75 83 | 96.12 100 | 97.88 107 | 96.84 163 | 95.64 172 | 97.96 201 | 98.10 193 |
|
tpm cat1 | | | 94.06 156 | 94.90 164 | 93.06 149 | 95.42 135 | 98.52 143 | 96.64 138 | 80.67 199 | 97.82 161 | 92.63 104 | 93.39 155 | 95.00 111 | 96.06 153 | 91.36 213 | 91.58 212 | 96.98 213 | 96.66 210 |
|
Vis-MVSNet |  | | 96.16 116 | 98.22 78 | 93.75 132 | 95.33 136 | 99.70 17 | 97.27 119 | 90.85 127 | 98.30 138 | 85.51 149 | 95.72 131 | 96.45 91 | 93.69 197 | 98.70 71 | 99.00 33 | 99.84 11 | 99.69 96 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CVMVSNet | | | 95.33 134 | 97.09 120 | 93.27 147 | 95.23 137 | 98.39 153 | 95.49 160 | 92.58 100 | 97.71 165 | 83.00 164 | 94.44 144 | 93.28 131 | 93.92 194 | 97.79 127 | 98.54 65 | 99.41 171 | 99.45 146 |
|
IterMVS-LS | | | 96.12 117 | 97.48 103 | 94.53 118 | 95.19 138 | 97.56 190 | 97.15 125 | 89.19 153 | 99.08 72 | 88.23 129 | 94.97 137 | 94.73 115 | 97.84 109 | 97.86 125 | 98.26 84 | 99.60 132 | 99.88 14 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Effi-MVS+ | | | 95.81 122 | 97.31 116 | 94.06 127 | 95.09 139 | 99.35 85 | 97.24 121 | 88.22 164 | 98.54 126 | 85.38 150 | 98.52 59 | 88.68 153 | 98.70 74 | 98.32 94 | 97.93 98 | 99.74 49 | 99.84 23 |
|
testgi | | | 95.67 125 | 97.48 103 | 93.56 138 | 95.07 140 | 99.00 108 | 95.33 164 | 88.47 161 | 98.80 107 | 86.90 140 | 97.30 91 | 92.33 135 | 95.97 155 | 97.66 135 | 97.91 101 | 99.60 132 | 99.38 153 |
|
GeoE | | | 95.98 121 | 97.24 118 | 94.51 119 | 95.02 141 | 99.38 78 | 98.02 97 | 87.86 169 | 98.37 135 | 87.86 134 | 92.99 163 | 93.54 128 | 98.56 82 | 98.61 77 | 97.92 99 | 99.73 57 | 99.85 22 |
|
RPMNet | | | 94.66 145 | 97.16 119 | 91.75 170 | 94.98 142 | 98.59 138 | 97.00 132 | 78.37 214 | 97.98 151 | 83.78 155 | 96.27 118 | 94.09 126 | 96.91 128 | 97.36 147 | 96.73 138 | 99.48 161 | 99.09 170 |
|
CR-MVSNet | | | 94.57 151 | 97.34 111 | 91.33 177 | 94.90 143 | 98.59 138 | 97.15 125 | 79.14 208 | 97.98 151 | 80.42 178 | 96.59 113 | 93.50 130 | 96.85 130 | 98.10 104 | 97.49 119 | 99.50 160 | 99.15 165 |
|
gg-mvs-nofinetune | | | 90.85 198 | 94.14 177 | 87.02 204 | 94.89 144 | 99.25 96 | 98.64 64 | 76.29 218 | 88.24 219 | 57.50 223 | 79.93 214 | 95.45 106 | 95.18 177 | 98.77 65 | 98.07 94 | 99.62 122 | 99.24 161 |
|
IterMVS-SCA-FT | | | 94.89 141 | 97.87 93 | 91.42 174 | 94.86 145 | 97.70 176 | 97.24 121 | 84.88 189 | 98.93 90 | 75.74 198 | 94.26 145 | 98.25 74 | 96.69 134 | 98.52 86 | 97.68 111 | 99.10 188 | 99.73 76 |
|
IterMVS | | | 94.81 143 | 97.71 96 | 91.42 174 | 94.83 146 | 97.63 183 | 97.38 114 | 85.08 186 | 98.93 90 | 75.67 199 | 94.02 146 | 97.64 80 | 96.66 137 | 98.45 89 | 97.60 114 | 98.90 191 | 99.72 87 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PatchT | | | 93.96 160 | 97.36 110 | 90.00 193 | 94.76 147 | 98.65 133 | 90.11 208 | 78.57 213 | 97.96 154 | 80.42 178 | 96.07 121 | 94.10 125 | 96.85 130 | 98.10 104 | 97.49 119 | 99.26 182 | 99.15 165 |
|
baseline2 | | | 96.36 111 | 97.82 94 | 94.65 117 | 94.60 148 | 99.09 106 | 96.45 144 | 89.63 148 | 98.36 136 | 91.29 118 | 97.60 88 | 94.13 124 | 96.37 144 | 98.45 89 | 97.70 110 | 99.54 155 | 99.41 149 |
|
CDS-MVSNet | | | 96.59 107 | 98.02 88 | 94.92 114 | 94.45 149 | 98.96 113 | 97.46 113 | 91.75 109 | 97.86 159 | 90.07 122 | 96.02 122 | 97.25 86 | 96.21 147 | 98.04 114 | 98.38 73 | 99.60 132 | 99.65 109 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tpm | | | 92.38 190 | 94.79 167 | 89.56 197 | 94.30 150 | 97.50 193 | 94.24 190 | 78.97 211 | 97.72 164 | 74.93 203 | 97.97 78 | 82.91 191 | 96.60 139 | 93.65 206 | 94.81 192 | 98.33 197 | 98.98 173 |
|
Fast-Effi-MVS+ | | | 95.38 132 | 96.52 138 | 94.05 128 | 94.15 151 | 99.14 105 | 97.24 121 | 86.79 175 | 98.53 127 | 87.62 136 | 94.51 142 | 87.06 158 | 98.76 72 | 98.60 80 | 98.04 96 | 99.72 64 | 99.77 56 |
|
Effi-MVS+-dtu | | | 95.74 124 | 98.04 86 | 93.06 149 | 93.92 152 | 99.16 103 | 97.90 98 | 88.16 166 | 99.07 77 | 82.02 170 | 98.02 77 | 94.32 121 | 96.74 133 | 98.53 85 | 97.56 115 | 99.61 124 | 99.62 117 |
|
UniMVSNet_ETH3D | | | 93.15 171 | 92.33 204 | 94.11 126 | 93.91 153 | 98.61 137 | 94.81 175 | 90.98 125 | 97.06 180 | 87.51 137 | 82.27 212 | 76.33 218 | 97.87 108 | 94.79 201 | 97.47 122 | 99.56 149 | 99.81 33 |
|
Fast-Effi-MVS+-dtu | | | 95.38 132 | 98.20 79 | 92.09 160 | 93.91 153 | 98.87 116 | 97.35 116 | 85.01 188 | 99.08 72 | 81.09 174 | 98.10 73 | 96.36 94 | 95.62 163 | 98.43 92 | 97.03 132 | 99.55 151 | 99.50 142 |
|
TAMVS | | | 95.53 128 | 96.50 141 | 94.39 123 | 93.86 155 | 99.03 107 | 96.67 137 | 89.55 150 | 97.33 173 | 90.64 120 | 93.02 162 | 91.58 140 | 96.21 147 | 97.72 133 | 97.43 125 | 99.43 168 | 99.36 154 |
|
GBi-Net | | | 96.98 90 | 98.00 89 | 95.78 102 | 93.81 156 | 97.98 165 | 98.09 92 | 91.32 120 | 98.80 107 | 93.92 80 | 97.21 93 | 95.94 103 | 97.89 104 | 98.07 109 | 98.34 78 | 99.68 95 | 99.67 102 |
|
test1 | | | 96.98 90 | 98.00 89 | 95.78 102 | 93.81 156 | 97.98 165 | 98.09 92 | 91.32 120 | 98.80 107 | 93.92 80 | 97.21 93 | 95.94 103 | 97.89 104 | 98.07 109 | 98.34 78 | 99.68 95 | 99.67 102 |
|
FMVSNet2 | | | 96.64 104 | 97.50 101 | 95.63 108 | 93.81 156 | 97.98 165 | 98.09 92 | 90.87 126 | 98.99 84 | 93.48 91 | 93.17 158 | 95.25 108 | 97.89 104 | 98.63 75 | 98.80 53 | 99.68 95 | 99.67 102 |
|
MVS-HIRNet | | | 92.51 184 | 95.97 150 | 88.48 201 | 93.73 159 | 98.37 154 | 90.33 206 | 75.36 220 | 98.32 137 | 77.78 192 | 89.15 183 | 94.87 112 | 95.14 178 | 97.62 139 | 96.39 150 | 98.51 193 | 97.11 204 |
|
GA-MVS | | | 93.93 161 | 96.31 148 | 91.16 181 | 93.61 160 | 98.79 119 | 95.39 163 | 90.69 134 | 98.25 141 | 73.28 207 | 96.15 120 | 88.42 154 | 94.39 186 | 97.76 130 | 95.35 176 | 99.58 142 | 99.45 146 |
|
FC-MVSNet-test | | | 96.07 118 | 97.94 91 | 93.89 129 | 93.60 161 | 98.67 132 | 96.62 139 | 90.30 139 | 98.76 114 | 88.62 127 | 95.57 134 | 97.63 81 | 94.48 184 | 97.97 118 | 97.48 121 | 99.71 74 | 99.52 135 |
|
FMVSNet3 | | | 97.02 89 | 98.12 83 | 95.73 106 | 93.59 162 | 97.98 165 | 98.34 82 | 91.32 120 | 98.80 107 | 93.92 80 | 97.21 93 | 95.94 103 | 97.63 113 | 98.61 77 | 98.62 59 | 99.61 124 | 99.65 109 |
|
FMVSNet1 | | | 95.77 123 | 96.41 147 | 95.03 112 | 93.42 163 | 97.86 172 | 97.11 128 | 89.89 143 | 98.53 127 | 92.00 112 | 89.17 182 | 93.23 132 | 98.15 94 | 98.07 109 | 98.34 78 | 99.61 124 | 99.69 96 |
|
tfpnnormal | | | 93.85 164 | 94.12 179 | 93.54 140 | 93.22 164 | 98.24 159 | 95.45 161 | 91.96 107 | 94.61 210 | 83.91 153 | 90.74 172 | 81.75 199 | 97.04 124 | 97.49 143 | 96.16 158 | 99.68 95 | 99.84 23 |
|
TransMVSNet (Re) | | | 93.45 167 | 94.08 180 | 92.72 153 | 92.83 165 | 97.62 186 | 94.94 169 | 91.54 116 | 95.65 207 | 83.06 163 | 88.93 186 | 83.53 187 | 94.25 187 | 97.41 145 | 97.03 132 | 99.67 103 | 98.40 190 |
|
LTVRE_ROB | | 93.20 16 | 92.84 176 | 94.92 163 | 90.43 190 | 92.83 165 | 98.63 134 | 97.08 130 | 87.87 168 | 97.91 156 | 68.42 216 | 93.54 151 | 79.46 212 | 96.62 138 | 97.55 141 | 97.40 126 | 99.74 49 | 99.92 3 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TESTMET0.1,1 | | | 94.95 139 | 97.32 113 | 92.20 158 | 92.62 167 | 98.74 127 | 96.44 145 | 86.67 177 | 98.18 143 | 82.75 165 | 96.60 111 | 94.67 116 | 95.54 166 | 98.09 106 | 96.00 162 | 99.20 184 | 98.93 175 |
|
pm-mvs1 | | | 94.27 153 | 95.57 157 | 92.75 152 | 92.58 168 | 98.13 163 | 94.87 173 | 90.71 133 | 96.70 190 | 83.78 155 | 89.94 178 | 89.85 148 | 94.96 181 | 97.58 140 | 97.07 131 | 99.61 124 | 99.72 87 |
|
NR-MVSNet | | | 94.01 157 | 94.51 172 | 93.44 142 | 92.56 169 | 97.77 173 | 95.67 155 | 91.57 114 | 97.17 177 | 85.84 145 | 93.13 159 | 80.53 204 | 95.29 174 | 97.01 159 | 96.17 157 | 99.69 86 | 99.75 68 |
|
EG-PatchMatch MVS | | | 92.45 185 | 93.92 186 | 90.72 187 | 92.56 169 | 98.43 150 | 94.88 172 | 84.54 191 | 97.18 176 | 79.55 184 | 86.12 205 | 83.23 190 | 93.15 201 | 97.22 153 | 96.00 162 | 99.67 103 | 99.27 159 |
|
pmnet_mix02 | | | 92.44 186 | 94.68 169 | 89.83 196 | 92.46 171 | 97.65 182 | 89.92 210 | 90.49 136 | 98.76 114 | 73.05 209 | 91.78 165 | 90.08 146 | 94.86 182 | 94.53 202 | 91.94 209 | 98.21 199 | 98.01 196 |
|
test-mter | | | 94.86 142 | 97.32 113 | 92.00 163 | 92.41 172 | 98.82 118 | 96.18 150 | 86.35 181 | 98.05 148 | 82.28 168 | 96.48 115 | 94.39 120 | 95.46 170 | 98.17 102 | 96.20 156 | 99.32 178 | 99.13 169 |
|
our_test_3 | | | | | | 92.30 173 | 97.58 188 | 90.09 209 | | | | | | | | | | |
|
pmmvs4 | | | 95.09 136 | 95.90 152 | 94.14 125 | 92.29 174 | 97.70 176 | 95.45 161 | 90.31 137 | 98.60 121 | 90.70 119 | 93.25 156 | 89.90 147 | 96.67 136 | 97.13 156 | 95.42 175 | 99.44 167 | 99.28 157 |
|
FMVSNet5 | | | 95.42 130 | 96.47 142 | 94.20 124 | 92.26 175 | 95.99 211 | 95.66 156 | 87.15 173 | 97.87 158 | 93.46 92 | 96.68 107 | 93.79 127 | 97.52 114 | 97.10 158 | 97.21 130 | 99.11 187 | 96.62 211 |
|
UniMVSNet (Re) | | | 94.58 150 | 95.34 160 | 93.71 134 | 92.25 176 | 98.08 164 | 94.97 168 | 91.29 124 | 97.03 182 | 87.94 132 | 93.97 148 | 86.25 171 | 96.07 152 | 96.27 178 | 95.97 165 | 99.72 64 | 99.79 42 |
|
SixPastTwentyTwo | | | 93.44 168 | 95.32 161 | 91.24 179 | 92.11 177 | 98.40 152 | 92.77 196 | 88.64 160 | 98.09 147 | 77.83 191 | 93.51 153 | 85.74 174 | 96.52 142 | 96.91 161 | 94.89 191 | 99.59 138 | 99.73 76 |
|
v8 | | | 92.87 175 | 93.87 188 | 91.72 172 | 92.05 178 | 97.50 193 | 94.79 176 | 88.20 165 | 96.85 186 | 80.11 181 | 90.01 177 | 82.86 193 | 95.48 168 | 95.15 196 | 94.90 189 | 99.66 108 | 99.80 35 |
|
thisisatest0515 | | | 94.61 148 | 96.89 127 | 91.95 165 | 92.00 179 | 98.47 145 | 92.01 200 | 90.73 132 | 98.18 143 | 83.96 152 | 94.51 142 | 95.13 110 | 93.38 198 | 97.38 146 | 94.74 194 | 99.61 124 | 99.79 42 |
|
WR-MVS_H | | | 93.54 166 | 94.67 170 | 92.22 156 | 91.95 180 | 97.91 170 | 94.58 184 | 88.75 157 | 96.64 191 | 83.88 154 | 90.66 174 | 85.13 179 | 94.40 185 | 96.54 168 | 95.91 167 | 99.73 57 | 99.89 10 |
|
V42 | | | 93.05 173 | 93.90 187 | 92.04 161 | 91.91 181 | 97.66 180 | 94.91 170 | 89.91 142 | 96.85 186 | 80.58 177 | 89.66 179 | 83.43 189 | 95.37 172 | 95.03 199 | 94.90 189 | 99.59 138 | 99.78 48 |
|
EU-MVSNet | | | 92.80 178 | 94.76 168 | 90.51 188 | 91.88 182 | 96.74 208 | 92.48 198 | 88.69 158 | 96.21 196 | 79.00 187 | 91.51 166 | 87.82 155 | 91.83 206 | 95.87 188 | 96.27 153 | 99.21 183 | 98.92 178 |
|
N_pmnet | | | 92.21 194 | 94.60 171 | 89.42 198 | 91.88 182 | 97.38 199 | 89.15 212 | 89.74 147 | 97.89 157 | 73.75 205 | 87.94 195 | 92.23 136 | 93.85 195 | 96.10 182 | 93.20 203 | 98.15 200 | 97.43 201 |
|
UniMVSNet_NR-MVSNet | | | 94.59 149 | 95.47 158 | 93.55 139 | 91.85 184 | 97.89 171 | 95.03 166 | 92.00 105 | 97.33 173 | 86.12 142 | 93.19 157 | 87.29 157 | 96.60 139 | 96.12 181 | 96.70 139 | 99.72 64 | 99.80 35 |
|
pmmvs6 | | | 91.90 196 | 92.53 203 | 91.17 180 | 91.81 185 | 97.63 183 | 93.23 193 | 88.37 163 | 93.43 215 | 80.61 176 | 77.32 216 | 87.47 156 | 94.12 189 | 96.58 166 | 95.72 170 | 98.88 192 | 99.53 132 |
|
v10 | | | 92.79 179 | 94.06 181 | 91.31 178 | 91.78 186 | 97.29 202 | 94.87 173 | 86.10 182 | 96.97 183 | 79.82 183 | 88.16 192 | 84.56 183 | 95.63 162 | 96.33 176 | 95.31 177 | 99.65 112 | 99.80 35 |
|
MIMVSNet | | | 94.49 152 | 97.59 100 | 90.87 186 | 91.74 187 | 98.70 131 | 94.68 180 | 78.73 212 | 97.98 151 | 83.71 158 | 97.71 86 | 94.81 114 | 96.96 127 | 97.97 118 | 97.92 99 | 99.40 173 | 98.04 194 |
|
v1144 | | | 92.81 177 | 94.03 182 | 91.40 176 | 91.68 188 | 97.60 187 | 94.73 177 | 88.40 162 | 96.71 189 | 78.48 189 | 88.14 193 | 84.46 184 | 95.45 171 | 96.31 177 | 95.22 180 | 99.65 112 | 99.76 61 |
|
DU-MVS | | | 93.98 159 | 94.44 174 | 93.44 142 | 91.66 189 | 97.77 173 | 95.03 166 | 91.57 114 | 97.17 177 | 86.12 142 | 93.13 159 | 81.13 201 | 96.60 139 | 95.10 197 | 97.01 134 | 99.67 103 | 99.80 35 |
|
Baseline_NR-MVSNet | | | 93.87 162 | 93.98 184 | 93.75 132 | 91.66 189 | 97.02 203 | 95.53 159 | 91.52 117 | 97.16 179 | 87.77 135 | 87.93 196 | 83.69 185 | 96.35 145 | 95.10 197 | 97.23 129 | 99.68 95 | 99.73 76 |
|
CP-MVSNet | | | 93.25 170 | 94.00 183 | 92.38 155 | 91.65 191 | 97.56 190 | 94.38 187 | 89.20 152 | 96.05 201 | 83.16 162 | 89.51 180 | 81.97 197 | 96.16 151 | 96.43 170 | 96.56 145 | 99.71 74 | 99.89 10 |
|
v148 | | | 92.36 192 | 92.88 199 | 91.75 170 | 91.63 192 | 97.66 180 | 92.64 197 | 90.55 135 | 96.09 199 | 83.34 160 | 88.19 191 | 80.00 207 | 92.74 202 | 93.98 205 | 94.58 195 | 99.58 142 | 99.69 96 |
|
PS-CasMVS | | | 92.72 181 | 93.36 195 | 91.98 164 | 91.62 193 | 97.52 192 | 94.13 191 | 88.98 154 | 95.94 204 | 81.51 173 | 87.35 198 | 79.95 209 | 95.91 156 | 96.37 173 | 96.49 147 | 99.70 83 | 99.89 10 |
|
v2v482 | | | 92.77 180 | 93.52 194 | 91.90 168 | 91.59 194 | 97.63 183 | 94.57 185 | 90.31 137 | 96.80 188 | 79.22 185 | 88.74 188 | 81.55 200 | 96.04 154 | 95.26 193 | 94.97 187 | 99.66 108 | 99.69 96 |
|
v1192 | | | 92.43 188 | 93.61 190 | 91.05 182 | 91.53 195 | 97.43 196 | 94.61 183 | 87.99 167 | 96.60 192 | 76.72 194 | 87.11 200 | 82.74 194 | 95.85 157 | 96.35 175 | 95.30 178 | 99.60 132 | 99.74 72 |
|
WR-MVS | | | 93.43 169 | 94.48 173 | 92.21 157 | 91.52 196 | 97.69 178 | 94.66 182 | 89.98 141 | 96.86 185 | 83.43 159 | 90.12 176 | 85.03 180 | 93.94 193 | 96.02 185 | 95.82 168 | 99.71 74 | 99.82 28 |
|
v144192 | | | 92.38 190 | 93.55 193 | 91.00 183 | 91.44 197 | 97.47 195 | 94.27 188 | 87.41 172 | 96.52 194 | 78.03 190 | 87.50 197 | 82.65 195 | 95.32 173 | 95.82 189 | 95.15 182 | 99.55 151 | 99.78 48 |
|
pmmvs5 | | | 92.71 183 | 94.27 176 | 90.90 185 | 91.42 198 | 97.74 175 | 93.23 193 | 86.66 178 | 95.99 203 | 78.96 188 | 91.45 167 | 83.44 188 | 95.55 165 | 97.30 150 | 95.05 185 | 99.58 142 | 98.93 175 |
|
v1921920 | | | 92.36 192 | 93.57 191 | 90.94 184 | 91.39 199 | 97.39 198 | 94.70 179 | 87.63 171 | 96.60 192 | 76.63 195 | 86.98 201 | 82.89 192 | 95.75 158 | 96.26 179 | 95.14 183 | 99.55 151 | 99.73 76 |
|
gm-plane-assit | | | 89.44 205 | 92.82 202 | 85.49 208 | 91.37 200 | 95.34 214 | 79.55 222 | 82.12 196 | 91.68 218 | 64.79 220 | 87.98 194 | 80.26 206 | 95.66 161 | 98.51 88 | 97.56 115 | 99.45 165 | 98.41 187 |
|
v1240 | | | 91.99 195 | 93.33 196 | 90.44 189 | 91.29 201 | 97.30 201 | 94.25 189 | 86.79 175 | 96.43 195 | 75.49 201 | 86.34 204 | 81.85 198 | 95.29 174 | 96.42 171 | 95.22 180 | 99.52 158 | 99.73 76 |
|
PEN-MVS | | | 92.72 181 | 93.20 197 | 92.15 159 | 91.29 201 | 97.31 200 | 94.67 181 | 89.81 144 | 96.19 197 | 81.83 171 | 88.58 189 | 79.06 213 | 95.61 164 | 95.21 194 | 96.27 153 | 99.72 64 | 99.82 28 |
|
TranMVSNet+NR-MVSNet | | | 93.67 165 | 94.14 177 | 93.13 148 | 91.28 203 | 97.58 188 | 95.60 158 | 91.97 106 | 97.06 180 | 84.05 151 | 90.64 175 | 82.22 196 | 96.17 150 | 94.94 200 | 96.78 137 | 99.69 86 | 99.78 48 |
|
anonymousdsp | | | 93.12 172 | 95.86 154 | 89.93 195 | 91.09 204 | 98.25 158 | 95.12 165 | 85.08 186 | 97.44 169 | 73.30 206 | 90.89 171 | 90.78 142 | 95.25 176 | 97.91 121 | 95.96 166 | 99.71 74 | 99.82 28 |
|
MDTV_nov1_ep13_2view | | | 92.44 186 | 95.66 156 | 88.68 199 | 91.05 205 | 97.92 169 | 92.17 199 | 79.64 204 | 98.83 102 | 76.20 196 | 91.45 167 | 93.51 129 | 95.04 179 | 95.68 190 | 93.70 201 | 97.96 201 | 98.53 184 |
|
DTE-MVSNet | | | 92.42 189 | 92.85 200 | 91.91 167 | 90.87 206 | 96.97 204 | 94.53 186 | 89.81 144 | 95.86 206 | 81.59 172 | 88.83 187 | 77.88 216 | 95.01 180 | 94.34 204 | 96.35 151 | 99.64 116 | 99.73 76 |
|
v7n | | | 91.61 197 | 92.95 198 | 90.04 192 | 90.56 207 | 97.69 178 | 93.74 192 | 85.59 184 | 95.89 205 | 76.95 193 | 86.60 203 | 78.60 215 | 93.76 196 | 97.01 159 | 94.99 186 | 99.65 112 | 99.87 16 |
|
test20.03 | | | 90.65 201 | 93.71 189 | 87.09 203 | 90.44 208 | 96.24 209 | 89.74 211 | 85.46 185 | 95.59 208 | 72.99 210 | 90.68 173 | 85.33 177 | 84.41 213 | 95.94 187 | 95.10 184 | 99.52 158 | 97.06 206 |
|
FPMVS | | | 83.82 211 | 84.61 213 | 82.90 211 | 90.39 209 | 90.71 219 | 90.85 204 | 84.10 194 | 95.47 209 | 65.15 218 | 83.44 209 | 74.46 219 | 75.48 216 | 81.63 217 | 79.42 219 | 91.42 221 | 87.14 219 |
|
Anonymous20231206 | | | 90.70 200 | 93.93 185 | 86.92 205 | 90.21 210 | 96.79 206 | 90.30 207 | 86.61 179 | 96.05 201 | 69.25 214 | 88.46 190 | 84.86 182 | 85.86 212 | 97.11 157 | 96.47 149 | 99.30 179 | 97.80 198 |
|
new_pmnet | | | 90.45 202 | 92.84 201 | 87.66 202 | 88.96 211 | 96.16 210 | 88.71 213 | 84.66 190 | 97.56 167 | 71.91 213 | 85.60 206 | 86.58 167 | 93.28 199 | 96.07 183 | 93.54 202 | 98.46 194 | 94.39 215 |
|
ET-MVSNet_ETH3D | | | 96.17 115 | 96.99 125 | 95.21 111 | 88.53 212 | 98.54 141 | 98.28 84 | 92.61 99 | 98.85 97 | 93.60 90 | 99.06 36 | 90.39 143 | 98.63 79 | 95.98 186 | 96.68 140 | 99.61 124 | 99.41 149 |
|
PM-MVS | | | 89.55 204 | 90.30 209 | 88.67 200 | 87.06 213 | 95.60 212 | 90.88 203 | 84.51 192 | 96.14 198 | 75.75 197 | 86.89 202 | 63.47 224 | 94.64 183 | 96.85 162 | 93.89 199 | 99.17 186 | 99.29 156 |
|
pmmvs-eth3d | | | 89.81 203 | 89.65 210 | 90.00 193 | 86.94 214 | 95.38 213 | 91.08 201 | 86.39 180 | 94.57 211 | 82.27 169 | 83.03 211 | 64.94 221 | 93.96 192 | 96.57 167 | 93.82 200 | 99.35 176 | 99.24 161 |
|
new-patchmatchnet | | | 86.12 210 | 87.30 212 | 84.74 209 | 86.92 215 | 95.19 216 | 83.57 219 | 84.42 193 | 92.67 216 | 65.66 217 | 80.32 213 | 64.72 222 | 89.41 208 | 92.33 212 | 89.21 214 | 98.43 195 | 96.69 209 |
|
pmmvs3 | | | 88.19 207 | 91.27 206 | 84.60 210 | 85.60 216 | 93.66 217 | 85.68 217 | 81.13 198 | 92.36 217 | 63.66 222 | 89.51 180 | 77.10 217 | 93.22 200 | 96.37 173 | 92.40 205 | 98.30 198 | 97.46 200 |
|
Gipuma |  | | 81.40 212 | 81.78 214 | 80.96 214 | 83.21 217 | 85.61 223 | 79.73 221 | 76.25 219 | 97.33 173 | 64.21 221 | 55.32 220 | 55.55 225 | 86.04 211 | 92.43 211 | 92.20 208 | 96.32 217 | 93.99 216 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDA-MVSNet-bldmvs | | | 87.84 208 | 89.22 211 | 86.23 206 | 81.74 218 | 96.77 207 | 83.74 218 | 89.57 149 | 94.50 212 | 72.83 211 | 96.64 109 | 64.47 223 | 92.71 203 | 81.43 218 | 92.28 207 | 96.81 214 | 98.47 186 |
|
MIMVSNet1 | | | 88.61 206 | 90.68 208 | 86.19 207 | 81.56 219 | 95.30 215 | 87.78 214 | 85.98 183 | 94.19 213 | 72.30 212 | 78.84 215 | 78.90 214 | 90.06 207 | 96.59 165 | 95.47 173 | 99.46 164 | 95.49 213 |
|
PMVS |  | 72.60 17 | 76.39 214 | 77.66 217 | 74.92 215 | 81.04 220 | 69.37 227 | 68.47 224 | 80.54 201 | 85.39 220 | 65.07 219 | 73.52 217 | 72.91 220 | 65.67 222 | 80.35 219 | 76.81 220 | 88.71 222 | 85.25 222 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ambc | | | | 80.99 215 | | 80.04 221 | 90.84 218 | 90.91 202 | | 96.09 199 | 74.18 204 | 62.81 219 | 30.59 230 | 82.44 215 | 96.25 180 | 91.77 210 | 95.91 218 | 98.56 183 |
|
PMMVS2 | | | 77.26 213 | 79.47 216 | 74.70 216 | 76.00 222 | 88.37 221 | 74.22 223 | 76.34 217 | 78.31 221 | 54.13 224 | 69.96 218 | 52.50 226 | 70.14 220 | 84.83 216 | 88.71 215 | 97.35 208 | 93.58 217 |
|
test_method | | | 87.27 209 | 91.58 205 | 82.25 212 | 75.65 223 | 87.52 222 | 86.81 216 | 72.60 221 | 97.51 168 | 73.20 208 | 85.07 207 | 79.97 208 | 88.69 209 | 97.31 149 | 95.24 179 | 96.53 215 | 98.41 187 |
|
EMVS | | | 68.12 217 | 68.11 219 | 68.14 218 | 75.51 224 | 71.76 225 | 55.38 227 | 77.20 216 | 77.78 222 | 37.79 227 | 53.59 221 | 43.61 227 | 74.72 217 | 67.05 222 | 76.70 221 | 88.27 224 | 86.24 220 |
|
E-PMN | | | 68.30 216 | 68.43 218 | 68.15 217 | 74.70 225 | 71.56 226 | 55.64 226 | 77.24 215 | 77.48 223 | 39.46 226 | 51.95 223 | 41.68 228 | 73.28 218 | 70.65 221 | 79.51 218 | 88.61 223 | 86.20 221 |
|
MVE |  | 67.97 19 | 65.53 218 | 67.43 220 | 63.31 219 | 59.33 226 | 74.20 224 | 53.09 228 | 70.43 222 | 66.27 224 | 43.13 225 | 45.98 224 | 30.62 229 | 70.65 219 | 79.34 220 | 86.30 216 | 83.25 225 | 89.33 218 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 31.24 219 | 40.15 221 | 20.86 221 | 12.61 227 | 17.99 228 | 25.16 229 | 13.30 224 | 48.42 225 | 24.82 228 | 53.07 222 | 30.13 231 | 28.47 223 | 42.73 223 | 37.65 222 | 20.79 226 | 51.04 223 |
|
test123 | | | 26.75 220 | 34.25 222 | 18.01 222 | 7.93 228 | 17.18 229 | 24.85 230 | 12.36 225 | 44.83 226 | 16.52 229 | 41.80 225 | 18.10 232 | 28.29 224 | 33.08 224 | 34.79 223 | 18.10 227 | 49.95 224 |
|
GG-mvs-BLEND | | | 69.11 215 | 98.13 82 | 35.26 220 | 3.49 229 | 98.20 161 | 94.89 171 | 2.38 226 | 98.42 133 | 5.82 230 | 96.37 117 | 98.60 68 | 5.97 225 | 98.75 68 | 97.98 97 | 99.01 189 | 98.61 182 |
|
uanet_test | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
sosnet-low-res | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
sosnet | | | 0.00 221 | 0.00 223 | 0.00 223 | 0.00 230 | 0.00 230 | 0.00 231 | 0.00 227 | 0.00 227 | 0.00 231 | 0.00 226 | 0.00 233 | 0.00 226 | 0.00 225 | 0.00 224 | 0.00 228 | 0.00 225 |
|
RE-MVS-def | | | | | | | | | | | 69.05 215 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.79 46 | | | | | |
|
MTAPA | | | | | | | | | | | 98.09 16 | | 99.97 8 | | | | | |
|
MTMP | | | | | | | | | | | 98.46 11 | | 99.96 13 | | | | | |
|
Patchmatch-RL test | | | | | | | | 66.86 225 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 98.57 124 | | | | | | | | |
|
Patchmtry | | | | | | | 98.59 138 | 97.15 125 | 79.14 208 | | 80.42 178 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 96.85 205 | 87.43 215 | 89.27 151 | 98.30 138 | 75.55 200 | 95.05 136 | 79.47 211 | 92.62 204 | 89.48 214 | | 95.18 219 | 95.96 212 |
|