This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
DELS-MVS98.19 5298.77 5997.52 5298.29 6099.71 1599.12 4194.58 6298.80 10595.38 5096.24 11698.24 7397.92 10099.06 4099.52 199.82 1699.79 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS97.63 498.33 4898.57 6298.04 4098.62 5599.65 2299.45 2598.15 2399.51 1792.80 9895.74 12696.44 9199.46 2199.37 1999.50 299.78 3499.81 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator96.92 798.67 3799.05 4498.23 3799.57 2699.45 6899.11 4294.66 5799.69 396.80 3296.55 11199.61 5299.40 2598.87 5799.49 399.85 1099.66 105
MSLP-MVS++99.15 1899.24 3499.04 1599.52 3199.49 6399.09 4498.07 2999.37 2798.47 897.79 7999.89 3499.50 1698.93 4999.45 499.61 12299.76 61
IS_MVSNet97.86 5998.86 5596.68 7796.02 10299.72 1298.35 7993.37 8898.75 11594.01 7596.88 10098.40 7098.48 8499.09 3799.42 599.83 1599.80 35
Vis-MVSNet (Re-imp)97.40 7598.89 5495.66 10495.99 10599.62 3397.82 9893.22 9298.82 10291.40 11396.94 9798.56 6895.70 15799.14 3599.41 699.79 3199.75 68
PHI-MVS99.08 2299.43 1998.67 2899.15 4499.59 4599.11 4297.35 3999.14 6197.30 2799.44 1299.96 1299.32 3298.89 5499.39 799.79 3199.58 121
APD-MVScopyleft99.25 1299.38 2299.09 1199.69 799.58 4899.56 1798.32 898.85 9597.87 1998.91 4299.92 2899.30 3599.45 1599.38 899.79 3199.58 121
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepPCF-MVS97.74 398.34 4799.46 1397.04 6698.82 5099.33 8996.28 14497.47 3899.58 994.70 6198.99 3699.85 3997.24 11899.55 1099.34 997.73 20299.56 127
DeepC-MVS_fast98.34 199.17 1799.45 1498.85 2499.55 2899.37 8099.64 898.05 3199.53 1496.58 3498.93 4099.92 2899.49 1899.46 1499.32 1099.80 3099.64 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft99.38 699.60 399.12 999.76 299.62 3399.39 2998.23 1899.52 1698.03 1799.45 1199.98 299.64 599.58 899.30 1199.68 9399.76 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+96.92 798.71 3699.05 4498.32 3399.53 2999.34 8699.06 4694.61 5899.65 597.49 2496.75 10199.86 3799.44 2398.78 6299.30 1199.81 2299.67 101
QAPM98.62 4099.04 4798.13 3899.57 2699.48 6499.17 3894.78 5499.57 1096.16 3896.73 10299.80 4299.33 3098.79 6199.29 1399.75 4499.64 112
DROMVSNet98.22 5199.44 1796.79 7595.62 12099.56 5199.01 5092.22 9999.17 5394.51 6699.41 1399.62 5199.49 1899.16 3499.26 1499.91 299.94 1
APDe-MVS99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 699.57 799.97 899.53 1599.65 299.25 1599.84 1299.77 56
ACMMPR99.30 999.54 799.03 1699.66 1699.64 2699.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1599.72 6499.77 56
HFP-MVS99.32 899.53 999.07 1399.69 799.59 4599.63 1298.31 999.56 1197.37 2699.27 1999.97 899.70 399.35 2299.24 1799.71 7499.76 61
UA-Net97.13 8499.14 3894.78 11297.21 7999.38 7797.56 10792.04 10298.48 12788.03 12898.39 6499.91 3194.03 18899.33 2499.23 1899.81 2299.25 157
LS3D97.79 6098.25 7397.26 6098.40 5899.63 2999.53 1898.63 199.25 4488.13 12796.93 9894.14 12299.19 4099.14 3599.23 1899.69 8599.42 146
X-MVS98.93 2999.37 2398.42 3199.67 1399.62 3399.60 1598.15 2399.08 7093.81 8198.46 6199.95 1799.59 999.49 1399.21 2099.68 9399.75 68
PGM-MVS98.86 3199.35 2798.29 3499.77 199.63 2999.67 595.63 4598.66 11895.27 5199.11 2899.82 4199.67 499.33 2499.19 2199.73 5799.74 72
SteuartSystems-ACMMP99.20 1599.51 1198.83 2699.66 1699.66 2199.71 398.12 2799.14 6196.62 3399.16 2399.98 299.12 4899.63 399.19 2199.78 3499.83 27
Skip Steuart: Steuart Systems R&D Blog.
test111197.09 8696.83 12997.39 5496.92 8799.81 398.44 7194.45 6499.17 5395.85 4292.10 16288.97 15098.78 7099.02 4399.11 2399.88 499.63 114
test250697.16 8296.68 13297.73 4696.95 8599.79 498.48 6794.42 6599.17 5397.74 2299.15 2480.93 19998.89 6699.03 4199.09 2499.88 499.62 116
ECVR-MVScopyleft97.27 7897.09 11997.48 5396.95 8599.79 498.48 6794.42 6599.17 5396.28 3793.54 14989.39 14998.89 6699.03 4199.09 2499.88 499.61 119
CS-MVS98.56 4399.32 2897.68 4798.28 6199.89 298.71 6094.53 6399.41 2395.43 4899.05 3598.66 6599.19 4099.21 2999.07 2699.93 199.94 1
TSAR-MVS + MP.99.27 1099.57 598.92 2298.78 5299.53 5599.72 298.11 2899.73 297.43 2599.15 2499.96 1299.59 999.73 199.07 2699.88 499.82 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS99.25 1299.50 1298.96 2098.79 5199.55 5399.33 3298.29 1299.75 197.96 1899.15 2499.95 1799.61 699.17 3299.06 2899.81 2299.84 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVScopyleft99.45 299.54 799.35 199.72 699.76 699.63 1298.37 299.63 799.03 398.95 3999.98 299.60 799.60 799.05 2999.74 4999.79 43
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS99.34 799.52 1099.14 799.68 1299.75 999.64 898.31 999.44 2198.10 1399.28 1899.98 299.30 3599.34 2399.05 2999.81 2299.79 43
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
canonicalmvs97.31 7697.81 9596.72 7696.20 10199.45 6898.21 8591.60 11199.22 4695.39 4998.48 5990.95 14099.16 4697.66 13499.05 2999.76 4199.90 6
OpenMVScopyleft96.23 1197.95 5898.45 6797.35 5599.52 3199.42 7398.91 5394.61 5898.87 9292.24 10894.61 13999.05 6399.10 5098.64 7399.05 2999.74 4999.51 138
Vis-MVSNetpermissive96.16 11598.22 7793.75 12995.33 13399.70 1797.27 11690.85 12598.30 13685.51 14695.72 12896.45 8993.69 19498.70 7099.00 3399.84 1299.69 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet98.46 4499.16 3797.64 4998.48 5799.64 2699.35 3194.71 5699.53 1495.17 5397.63 8599.59 5398.38 8698.88 5698.99 3499.74 4999.86 19
CDPH-MVS98.41 4599.10 4097.61 5099.32 4199.36 8199.49 2196.15 4498.82 10291.82 11098.41 6299.66 5099.10 5098.93 4998.97 3599.75 4499.58 121
DPE-MVScopyleft99.39 599.55 699.20 499.63 2099.71 1599.66 698.33 699.29 3798.40 1199.64 599.98 299.31 3399.56 998.96 3699.85 1099.70 91
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + ACMM98.77 3399.45 1497.98 4299.37 3699.46 6699.44 2798.13 2699.65 592.30 10698.91 4299.95 1799.05 5399.42 1798.95 3799.58 14099.82 28
EPP-MVSNet97.75 6398.71 6096.63 8195.68 11899.56 5197.51 10893.10 9599.22 4694.99 5797.18 9397.30 8398.65 7598.83 5898.93 3899.84 1299.92 3
CHOSEN 280x42097.99 5799.24 3496.53 8398.34 5999.61 3898.36 7889.80 14399.27 4095.08 5599.81 198.58 6798.64 7699.02 4398.92 3998.93 18799.48 142
CSCG98.90 3098.93 5398.85 2499.75 399.72 1299.49 2196.58 4299.38 2598.05 1698.97 3797.87 7699.49 1897.78 12798.92 3999.78 3499.90 6
CHOSEN 1792x268896.41 10896.99 12495.74 10298.01 6699.72 1297.70 10490.78 12899.13 6590.03 12087.35 19595.36 10598.33 8798.59 8198.91 4199.59 13699.87 16
MVS_111021_LR98.67 3799.41 2197.81 4599.37 3699.53 5598.51 6695.52 4799.27 4094.85 5899.56 899.69 4999.04 5499.36 2098.88 4299.60 13099.58 121
MVS_030498.14 5499.03 4897.10 6398.05 6599.63 2999.27 3494.33 6899.63 793.06 9497.32 8899.05 6398.09 9498.82 5998.87 4399.81 2299.89 10
DVP-MVS++99.41 499.64 199.14 799.69 799.75 999.64 898.33 699.67 498.10 1399.66 499.99 199.33 3099.62 598.86 4499.74 4999.90 6
CP-MVS99.27 1099.44 1799.08 1299.62 2299.58 4899.53 1898.16 2199.21 4897.79 2099.15 2499.96 1299.59 999.54 1198.86 4499.78 3499.74 72
MAR-MVS97.71 6498.04 8597.32 5699.35 4098.91 11397.65 10691.68 10998.00 14897.01 3197.72 8394.83 11298.85 6998.44 9098.86 4499.41 16999.52 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CS-MVS-test98.58 4299.42 2097.60 5198.52 5699.91 198.60 6394.60 6099.37 2794.62 6299.40 1499.16 6099.39 2699.36 2098.85 4799.90 399.92 3
SF-MVS99.18 1699.32 2899.03 1699.65 1899.41 7598.87 5498.24 1799.14 6198.73 599.11 2899.92 2898.92 6099.22 2898.84 4899.76 4199.56 127
SED-MVS99.44 399.58 499.28 399.69 799.76 699.62 1498.35 399.51 1799.05 299.60 699.98 299.28 3799.61 698.83 4999.70 8299.77 56
MVS_111021_HR98.59 4199.36 2497.68 4799.42 3499.61 3898.14 8894.81 5399.31 3495.00 5699.51 999.79 4499.00 5798.94 4898.83 4999.69 8599.57 126
CNLPA99.03 2799.05 4499.01 1999.27 4299.22 9999.03 4897.98 3299.34 3299.00 498.25 6899.71 4899.31 3398.80 6098.82 5199.48 15999.17 161
FMVSNet296.64 10397.50 10195.63 10593.81 15397.98 16298.09 9090.87 12498.99 8293.48 8893.17 15695.25 10797.89 10198.63 7498.80 5299.68 9399.67 101
MP-MVScopyleft99.07 2399.36 2498.74 2799.63 2099.57 5099.66 698.25 1499.00 8195.62 4498.97 3799.94 2599.54 1499.51 1298.79 5399.71 7499.73 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETV-MVS98.05 5599.25 3396.65 7995.61 12199.61 3898.26 8493.52 8498.90 9193.74 8599.32 1799.20 5898.90 6399.21 2998.72 5499.87 899.79 43
TSAR-MVS + GP.98.66 3999.36 2497.85 4497.16 8199.46 6699.03 4894.59 6199.09 6897.19 2999.73 399.95 1799.39 2698.95 4798.69 5599.75 4499.65 108
ACMMP_NAP99.05 2599.45 1498.58 3099.73 599.60 4399.64 898.28 1399.23 4594.57 6399.35 1699.97 899.55 1399.63 398.66 5699.70 8299.74 72
OMC-MVS98.84 3299.01 5098.65 2999.39 3599.23 9899.22 3596.70 4199.40 2497.77 2197.89 7899.80 4299.21 3899.02 4398.65 5799.57 14499.07 168
FMVSNet397.02 8898.12 8295.73 10393.59 15997.98 16298.34 8091.32 11898.80 10593.92 7797.21 9095.94 10197.63 11098.61 7698.62 5899.61 12299.65 108
CNVR-MVS99.23 1499.28 3199.17 599.65 1899.34 8699.46 2498.21 1999.28 3898.47 898.89 4499.94 2599.50 1699.42 1798.61 5999.73 5799.52 133
baseline97.45 7398.70 6195.99 9895.89 10799.36 8198.29 8191.37 11799.21 4892.99 9698.40 6396.87 8897.96 9998.60 7998.60 6099.42 16899.86 19
MVS_Test97.30 7798.54 6395.87 9995.74 11499.28 9398.19 8691.40 11699.18 5291.59 11298.17 7096.18 9698.63 7798.61 7698.55 6199.66 10699.78 49
EPNet98.05 5598.86 5597.10 6399.02 4799.43 7298.47 6994.73 5599.05 7695.62 4498.93 4097.62 8095.48 16598.59 8198.55 6199.29 17899.84 23
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet95.33 13297.09 11993.27 14495.23 13498.39 15195.49 15792.58 9897.71 16383.00 16194.44 14293.28 13093.92 19197.79 12698.54 6399.41 16999.45 144
casdiffmvspermissive96.93 9197.43 10796.34 8995.70 11699.50 6297.75 10293.22 9298.98 8392.64 9994.97 13591.71 13898.93 5998.62 7598.52 6499.82 1699.72 86
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu97.41 7498.49 6696.15 9297.49 7199.76 696.02 14893.75 8099.26 4293.38 9093.73 14799.35 5696.47 14098.96 4698.46 6599.77 3999.90 6
casdiffmvs_mvgpermissive97.27 7897.97 9096.46 8795.83 11199.51 6198.42 7293.32 8998.34 13492.38 10495.64 12995.35 10698.91 6198.73 6898.45 6699.86 999.80 35
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DCV-MVSNet97.56 6998.36 6996.62 8296.44 9298.36 15398.37 7691.73 10899.11 6694.80 5998.36 6596.28 9498.60 7998.12 10298.44 6799.76 4199.87 16
baseline197.58 6898.05 8497.02 6996.21 10099.45 6897.71 10393.71 8298.47 12895.75 4398.78 4893.20 13298.91 6198.52 8598.44 6799.81 2299.53 130
NCCC99.05 2599.08 4199.02 1899.62 2299.38 7799.43 2898.21 1999.36 3097.66 2397.79 7999.90 3299.45 2299.17 3298.43 6999.77 3999.51 138
PVSNet_BlendedMVS97.51 7197.71 9697.28 5898.06 6399.61 3897.31 11495.02 5199.08 7095.51 4698.05 7290.11 14398.07 9598.91 5298.40 7099.72 6499.78 49
PVSNet_Blended97.51 7197.71 9697.28 5898.06 6399.61 3897.31 11495.02 5199.08 7095.51 4698.05 7290.11 14398.07 9598.91 5298.40 7099.72 6499.78 49
train_agg98.73 3599.11 3998.28 3599.36 3899.35 8499.48 2397.96 3398.83 10093.86 8098.70 5499.86 3799.44 2399.08 3998.38 7299.61 12299.58 121
CDS-MVSNet96.59 10698.02 8794.92 11194.45 14698.96 11197.46 11091.75 10797.86 15790.07 11996.02 11997.25 8496.21 14498.04 11398.38 7299.60 13099.65 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HPM-MVS++copyleft99.10 2199.30 3098.86 2399.69 799.48 6499.59 1698.34 499.26 4296.55 3699.10 3099.96 1299.36 2899.25 2798.37 7499.64 11499.66 105
MCST-MVS99.11 2099.27 3298.93 2199.67 1399.33 8999.51 2098.31 999.28 3896.57 3599.10 3099.90 3299.71 299.19 3198.35 7599.82 1699.71 89
MSDG98.27 5098.29 7198.24 3699.20 4399.22 9999.20 3697.82 3599.37 2794.43 6995.90 12297.31 8299.12 4898.76 6498.35 7599.67 10199.14 165
test0.0.03 196.69 10098.12 8295.01 11095.49 12898.99 10895.86 15090.82 12698.38 13192.54 10396.66 10597.33 8195.75 15597.75 13098.34 7799.60 13099.40 149
GBi-Net96.98 8998.00 8895.78 10093.81 15397.98 16298.09 9091.32 11898.80 10593.92 7797.21 9095.94 10197.89 10198.07 10898.34 7799.68 9399.67 101
test196.98 8998.00 8895.78 10093.81 15397.98 16298.09 9091.32 11898.80 10593.92 7797.21 9095.94 10197.89 10198.07 10898.34 7799.68 9399.67 101
FMVSNet195.77 12296.41 14695.03 10993.42 16097.86 16997.11 12589.89 14098.53 12592.00 10989.17 18093.23 13198.15 9298.07 10898.34 7799.61 12299.69 95
EIA-MVS97.70 6598.78 5896.44 8895.72 11599.65 2298.14 8893.72 8198.30 13692.31 10598.63 5597.90 7598.97 5898.92 5198.30 8199.78 3499.80 35
UGNet97.66 6699.07 4396.01 9797.19 8099.65 2297.09 12693.39 8699.35 3194.40 7198.79 4799.59 5394.24 18598.04 11398.29 8299.73 5799.80 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS96.12 11697.48 10394.53 11595.19 13597.56 18797.15 12289.19 15099.08 7088.23 12694.97 13594.73 11497.84 10697.86 12498.26 8399.60 13099.88 14
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous20240521197.40 10896.45 9199.54 5498.08 9393.79 7798.24 14093.55 14894.41 11898.88 6898.04 11398.24 8499.75 4499.76 61
EPNet_dtu96.30 11198.53 6493.70 13298.97 4898.24 15797.36 11294.23 7098.85 9579.18 18399.19 2198.47 6994.09 18797.89 12298.21 8598.39 19398.85 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CPTT-MVS99.14 1999.20 3699.06 1499.58 2599.53 5599.45 2597.80 3699.19 5198.32 1298.58 5699.95 1799.60 799.28 2698.20 8699.64 11499.69 95
HyFIR lowres test95.99 11896.56 13495.32 10797.99 6799.65 2296.54 13788.86 15298.44 12989.77 12384.14 20597.05 8699.03 5598.55 8398.19 8799.73 5799.86 19
diffmvspermissive96.83 9397.33 11196.25 9095.76 11399.34 8698.06 9493.22 9299.43 2292.30 10696.90 9989.83 14898.55 8198.00 11698.14 8899.64 11499.70 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAPA-MVS97.53 598.41 4598.84 5797.91 4399.08 4699.33 8999.15 3997.13 4099.34 3293.20 9197.75 8199.19 5999.20 3998.66 7198.13 8999.66 10699.48 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft97.93 299.02 2898.94 5299.11 1099.46 3399.24 9799.06 4697.96 3399.31 3499.16 197.90 7799.79 4499.36 2898.71 6998.12 9099.65 11099.52 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS98.31 4998.53 6498.05 3998.76 5398.77 12099.13 4098.07 2999.10 6794.27 7496.70 10399.84 4098.70 7297.90 12198.11 9199.40 17199.28 154
Anonymous2023121197.10 8597.06 12297.14 6296.32 9499.52 5898.16 8793.76 7898.84 9995.98 4090.92 16894.58 11798.90 6397.72 13298.10 9299.71 7499.75 68
gg-mvs-nofinetune90.85 19694.14 17587.02 20194.89 14199.25 9598.64 6176.29 21588.24 21657.50 22079.93 21195.45 10495.18 17498.77 6398.07 9399.62 12099.24 158
CANet_DTU96.64 10399.08 4193.81 12897.10 8299.42 7398.85 5590.01 13799.31 3479.98 17999.78 299.10 6297.42 11598.35 9298.05 9499.47 16199.53 130
Fast-Effi-MVS+95.38 13096.52 13794.05 12594.15 14899.14 10397.24 11886.79 17298.53 12587.62 13394.51 14087.06 15698.76 7198.60 7998.04 9599.72 6499.77 56
GG-mvs-BLEND69.11 21398.13 8135.26 2173.49 22698.20 15994.89 1682.38 22398.42 1305.82 22796.37 11498.60 665.97 22298.75 6697.98 9699.01 18698.61 179
Effi-MVS+95.81 12197.31 11594.06 12495.09 13699.35 8497.24 11888.22 16198.54 12485.38 14798.52 5788.68 15198.70 7298.32 9397.93 9799.74 4999.84 23
GeoE95.98 12097.24 11794.51 11695.02 13899.38 7798.02 9587.86 16698.37 13287.86 13192.99 16193.54 12798.56 8098.61 7697.92 9899.73 5799.85 22
MIMVSNet94.49 15097.59 10090.87 18391.74 18498.70 12994.68 17778.73 20997.98 14983.71 15597.71 8494.81 11396.96 12497.97 11797.92 9899.40 17198.04 191
DI_MVS_plusplus_trai96.90 9297.49 10296.21 9195.61 12199.40 7698.72 5992.11 10099.14 6192.98 9793.08 15995.14 10898.13 9398.05 11297.91 10099.74 4999.73 76
testgi95.67 12497.48 10393.56 13595.07 13799.00 10695.33 16188.47 15898.80 10586.90 13797.30 8992.33 13495.97 15297.66 13497.91 10099.60 13099.38 150
thres100view90096.72 9896.47 14197.00 7296.31 9599.52 5898.28 8294.01 7297.35 16894.52 6495.90 12286.93 15999.09 5298.07 10897.87 10299.81 2299.63 114
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7997.32 5698.84 4999.45 6899.28 3395.43 4899.48 1991.80 11194.83 13898.36 7198.90 6398.09 10597.85 10399.68 9399.15 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AdaColmapbinary99.06 2498.98 5199.15 699.60 2499.30 9299.38 3098.16 2199.02 7998.55 798.71 5399.57 5599.58 1299.09 3797.84 10499.64 11499.36 151
thres20096.76 9596.53 13697.03 6796.31 9599.67 1898.37 7693.99 7497.68 16494.49 6795.83 12586.77 16199.18 4398.26 9597.82 10599.82 1699.66 105
tfpn200view996.75 9696.51 13897.03 6796.31 9599.67 1898.41 7393.99 7497.35 16894.52 6495.90 12286.93 15999.14 4798.26 9597.80 10699.82 1699.70 91
thres40096.71 9996.45 14397.02 6996.28 9899.63 2998.41 7394.00 7397.82 15994.42 7095.74 12686.26 16799.18 4398.20 9997.79 10799.81 2299.70 91
FC-MVSNet-train97.04 8797.91 9296.03 9696.00 10498.41 14996.53 13993.42 8599.04 7893.02 9598.03 7494.32 12097.47 11497.93 11997.77 10899.75 4499.88 14
baseline296.36 11097.82 9494.65 11494.60 14599.09 10496.45 14189.63 14598.36 13391.29 11597.60 8694.13 12396.37 14198.45 8897.70 10999.54 15399.41 147
IterMVS-SCA-FT94.89 13997.87 9391.42 17194.86 14297.70 17397.24 11884.88 18698.93 8875.74 19594.26 14398.25 7296.69 13198.52 8597.68 11099.10 18599.73 76
thres600view796.69 10096.43 14597.00 7296.28 9899.67 1898.41 7393.99 7497.85 15894.29 7395.96 12085.91 17099.19 4098.26 9597.63 11199.82 1699.73 76
PMMVS97.52 7098.39 6896.51 8595.82 11298.73 12797.80 9993.05 9698.76 11294.39 7299.07 3397.03 8798.55 8198.31 9497.61 11299.43 16699.21 160
IterMVS94.81 14197.71 9691.42 17194.83 14397.63 18097.38 11185.08 18398.93 8875.67 19694.02 14497.64 7896.66 13498.45 8897.60 11398.90 18899.72 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu95.74 12398.04 8593.06 14693.92 14999.16 10197.90 9688.16 16399.07 7582.02 16798.02 7594.32 12096.74 13098.53 8497.56 11499.61 12299.62 116
gm-plane-assit89.44 20392.82 20085.49 20591.37 19795.34 21179.55 21982.12 19391.68 21564.79 21787.98 19180.26 20395.66 15898.51 8797.56 11499.45 16398.41 184
LGP-MVS_train96.23 11296.89 12695.46 10697.32 7598.77 12098.81 5793.60 8398.58 12185.52 14599.08 3286.67 16397.83 10797.87 12397.51 11699.69 8599.73 76
ACMMPcopyleft98.74 3499.03 4898.40 3299.36 3899.64 2699.20 3697.75 3798.82 10295.24 5298.85 4599.87 3699.17 4598.74 6797.50 11799.71 7499.76 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CR-MVSNet94.57 14997.34 11091.33 17494.90 14098.59 13697.15 12279.14 20597.98 14980.42 17596.59 11093.50 12996.85 12798.10 10397.49 11899.50 15899.15 162
PatchT93.96 15897.36 10990.00 19094.76 14498.65 13190.11 20578.57 21097.96 15280.42 17596.07 11894.10 12496.85 12798.10 10397.49 11899.26 17999.15 162
FC-MVSNet-test96.07 11797.94 9193.89 12693.60 15898.67 13096.62 13690.30 13698.76 11288.62 12495.57 13297.63 7994.48 18197.97 11797.48 12099.71 7499.52 133
UniMVSNet_ETH3D93.15 16992.33 20294.11 12393.91 15098.61 13594.81 17290.98 12397.06 17787.51 13482.27 20976.33 21597.87 10594.79 19997.47 12199.56 14799.81 33
PCF-MVS97.50 698.18 5398.35 7097.99 4198.65 5499.36 8198.94 5298.14 2598.59 12093.62 8696.61 10799.76 4799.03 5597.77 12897.45 12299.57 14498.89 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchMatch-RL97.77 6298.25 7397.21 6199.11 4599.25 9597.06 12894.09 7198.72 11695.14 5498.47 6096.29 9398.43 8598.65 7297.44 12399.45 16398.94 171
TAMVS95.53 12696.50 14094.39 12093.86 15299.03 10596.67 13489.55 14797.33 17090.64 11793.02 16091.58 13996.21 14497.72 13297.43 12499.43 16699.36 151
LTVRE_ROB93.20 1692.84 17494.92 16190.43 18792.83 16298.63 13297.08 12787.87 16597.91 15468.42 21393.54 14979.46 20996.62 13597.55 14097.40 12599.74 4999.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVSTER97.16 8297.71 9696.52 8495.97 10698.48 14298.63 6292.10 10198.68 11795.96 4199.23 2091.79 13796.87 12698.76 6497.37 12699.57 14499.68 100
Baseline_NR-MVSNet93.87 16093.98 18293.75 12991.66 18697.02 20095.53 15691.52 11597.16 17687.77 13287.93 19383.69 18296.35 14295.10 19597.23 12799.68 9399.73 76
FMVSNet595.42 12896.47 14194.20 12192.26 17295.99 20895.66 15387.15 17097.87 15693.46 8996.68 10493.79 12697.52 11197.10 15797.21 12899.11 18496.62 208
pm-mvs194.27 15195.57 15692.75 14992.58 16598.13 16094.87 17090.71 13096.70 18783.78 15289.94 17689.85 14794.96 17897.58 13997.07 12999.61 12299.72 86
Fast-Effi-MVS+-dtu95.38 13098.20 7892.09 15793.91 15098.87 11497.35 11385.01 18599.08 7081.09 17198.10 7196.36 9295.62 16098.43 9197.03 13099.55 14999.50 140
TransMVSNet (Re)93.45 16594.08 17892.72 15092.83 16297.62 18394.94 16691.54 11495.65 20483.06 16088.93 18383.53 18494.25 18497.41 14497.03 13099.67 10198.40 187
DU-MVS93.98 15794.44 17293.44 13991.66 18697.77 17095.03 16391.57 11297.17 17486.12 13993.13 15781.13 19896.60 13695.10 19597.01 13299.67 10199.80 35
TSAR-MVS + COLMAP96.79 9496.55 13597.06 6597.70 7098.46 14499.07 4596.23 4399.38 2591.32 11498.80 4685.61 17298.69 7497.64 13796.92 13399.37 17399.06 169
CLD-MVS96.74 9796.51 13897.01 7196.71 8998.62 13398.73 5894.38 6798.94 8694.46 6897.33 8787.03 15798.07 9597.20 15396.87 13499.72 6499.54 129
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TranMVSNet+NR-MVSNet93.67 16394.14 17593.13 14591.28 20097.58 18595.60 15591.97 10497.06 17784.05 14890.64 17382.22 19396.17 14794.94 19896.78 13599.69 8599.78 49
RPMNet94.66 14397.16 11891.75 16794.98 13998.59 13697.00 12978.37 21197.98 14983.78 15296.27 11594.09 12596.91 12597.36 14696.73 13699.48 15999.09 167
UniMVSNet_NR-MVSNet94.59 14795.47 15793.55 13691.85 18197.89 16895.03 16392.00 10397.33 17086.12 13993.19 15587.29 15596.60 13696.12 17996.70 13799.72 6499.80 35
ET-MVSNet_ETH3D96.17 11496.99 12495.21 10888.53 20998.54 13998.28 8292.61 9798.85 9593.60 8799.06 3490.39 14298.63 7795.98 18496.68 13899.61 12299.41 147
ACMH95.42 1495.27 13395.96 15094.45 11896.83 8898.78 11994.72 17591.67 11098.95 8486.82 13896.42 11383.67 18397.00 12297.48 14396.68 13899.69 8599.76 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS96.22 11395.85 15496.65 7997.75 6898.54 13999.00 5195.53 4696.88 18189.88 12195.95 12186.46 16698.07 9597.65 13696.63 14099.67 10198.83 178
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMP96.25 1096.62 10596.72 13096.50 8696.96 8498.75 12497.80 9994.30 6998.85 9593.12 9398.78 4886.61 16497.23 11997.73 13196.61 14199.62 12099.71 89
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+95.51 1395.40 12996.00 14894.70 11396.33 9398.79 11796.79 13291.32 11898.77 11187.18 13595.60 13185.46 17396.97 12397.15 15496.59 14299.59 13699.65 108
CP-MVSNet93.25 16894.00 18192.38 15291.65 18897.56 18794.38 18489.20 14996.05 19883.16 15989.51 17881.97 19496.16 14896.43 16996.56 14399.71 7499.89 10
HQP-MVS96.37 10996.58 13396.13 9397.31 7798.44 14698.45 7095.22 4998.86 9388.58 12598.33 6687.00 15897.67 10997.23 15196.56 14399.56 14799.62 116
FA-MVS(training)96.52 10798.29 7194.45 11895.88 10999.52 5897.66 10581.47 19498.94 8693.79 8495.54 13399.11 6198.29 8898.89 5496.49 14599.63 11999.52 133
PS-CasMVS92.72 17993.36 19391.98 16191.62 19097.52 18994.13 18888.98 15195.94 20181.51 17087.35 19579.95 20695.91 15396.37 17196.49 14599.70 8299.89 10
Anonymous2023120690.70 19893.93 18386.92 20290.21 20796.79 20390.30 20486.61 17696.05 19869.25 21188.46 18784.86 17985.86 20997.11 15696.47 14799.30 17797.80 195
MVS-HIRNet92.51 18295.97 14988.48 19893.73 15698.37 15290.33 20375.36 21798.32 13577.78 18989.15 18194.87 11195.14 17597.62 13896.39 14898.51 19097.11 201
DTE-MVSNet92.42 18792.85 19891.91 16490.87 20396.97 20194.53 18389.81 14195.86 20381.59 16988.83 18477.88 21395.01 17794.34 20296.35 14999.64 11499.73 76
ACMM96.26 996.67 10296.69 13196.66 7897.29 7898.46 14496.48 14095.09 5099.21 4893.19 9298.78 4886.73 16298.17 8997.84 12596.32 15099.74 4999.49 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EU-MVSNet92.80 17694.76 16690.51 18591.88 17996.74 20592.48 19588.69 15596.21 19379.00 18491.51 16487.82 15391.83 20395.87 18696.27 15199.21 18098.92 175
PEN-MVS92.72 17993.20 19592.15 15691.29 19897.31 19794.67 17889.81 14196.19 19481.83 16888.58 18679.06 21095.61 16195.21 19296.27 15199.72 6499.82 28
TinyColmap94.00 15694.35 17393.60 13395.89 10798.26 15597.49 10988.82 15398.56 12383.21 15891.28 16780.48 20296.68 13297.34 14796.26 15399.53 15598.24 188
test-mter94.86 14097.32 11292.00 16092.41 16998.82 11696.18 14786.35 17898.05 14682.28 16596.48 11294.39 11995.46 16798.17 10196.20 15499.32 17699.13 166
NR-MVSNet94.01 15594.51 17093.44 13992.56 16697.77 17095.67 15291.57 11297.17 17485.84 14293.13 15780.53 20195.29 17197.01 15896.17 15599.69 8599.75 68
tfpnnormal93.85 16294.12 17793.54 13793.22 16198.24 15795.45 15891.96 10594.61 20783.91 15090.74 17081.75 19697.04 12197.49 14296.16 15699.68 9399.84 23
USDC94.26 15294.83 16493.59 13496.02 10298.44 14697.84 9788.65 15698.86 9382.73 16494.02 14480.56 20096.76 12997.28 15096.15 15799.55 14998.50 182
thisisatest053097.23 8098.25 7396.05 9495.60 12399.59 4596.96 13093.23 9099.17 5392.60 10198.75 5196.19 9598.17 8998.19 10096.10 15899.72 6499.77 56
tttt051797.23 8098.24 7696.04 9595.60 12399.60 4396.94 13193.23 9099.15 5892.56 10298.74 5296.12 9898.17 8998.21 9896.10 15899.73 5799.78 49
test-LLR95.50 12797.32 11293.37 14195.49 12898.74 12596.44 14290.82 12698.18 14182.75 16296.60 10894.67 11595.54 16398.09 10596.00 16099.20 18198.93 172
TESTMET0.1,194.95 13797.32 11292.20 15592.62 16498.74 12596.44 14286.67 17498.18 14182.75 16296.60 10894.67 11595.54 16398.09 10596.00 16099.20 18198.93 172
EG-PatchMatch MVS92.45 18393.92 18490.72 18492.56 16698.43 14894.88 16984.54 18897.18 17379.55 18186.12 20283.23 18793.15 19897.22 15296.00 16099.67 10199.27 156
UniMVSNet (Re)94.58 14895.34 15893.71 13192.25 17398.08 16194.97 16591.29 12297.03 17987.94 12993.97 14686.25 16896.07 14996.27 17695.97 16399.72 6499.79 43
anonymousdsp93.12 17095.86 15389.93 19291.09 20198.25 15695.12 16285.08 18397.44 16773.30 20390.89 16990.78 14195.25 17397.91 12095.96 16499.71 7499.82 28
WR-MVS_H93.54 16494.67 16892.22 15391.95 17797.91 16794.58 18188.75 15496.64 18883.88 15190.66 17285.13 17694.40 18296.54 16795.91 16599.73 5799.89 10
WR-MVS93.43 16794.48 17192.21 15491.52 19397.69 17594.66 17989.98 13896.86 18283.43 15690.12 17485.03 17793.94 19096.02 18395.82 16699.71 7499.82 28
IB-MVS93.96 1595.02 13696.44 14493.36 14297.05 8399.28 9390.43 20293.39 8698.02 14796.02 3994.92 13792.07 13683.52 21195.38 18995.82 16699.72 6499.59 120
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs691.90 19492.53 20191.17 17791.81 18297.63 18093.23 19088.37 16093.43 21280.61 17377.32 21387.47 15494.12 18696.58 16595.72 16898.88 18999.53 130
MS-PatchMatch95.99 11897.26 11694.51 11697.46 7298.76 12397.27 11686.97 17199.09 6889.83 12293.51 15197.78 7796.18 14697.53 14195.71 16999.35 17498.41 184
MDTV_nov1_ep1395.57 12597.48 10393.35 14395.43 13098.97 11097.19 12183.72 19298.92 9087.91 13097.75 8196.12 9897.88 10496.84 16295.64 17097.96 19898.10 190
MIMVSNet188.61 20490.68 20686.19 20481.56 21695.30 21287.78 21185.98 18094.19 21072.30 20978.84 21278.90 21190.06 20496.59 16495.47 17199.46 16295.49 210
RPSCF97.61 6798.16 8096.96 7498.10 6299.00 10698.84 5693.76 7899.45 2094.78 6099.39 1599.31 5798.53 8396.61 16395.43 17297.74 20097.93 194
pmmvs495.09 13495.90 15194.14 12292.29 17197.70 17395.45 15890.31 13498.60 11990.70 11693.25 15489.90 14696.67 13397.13 15595.42 17399.44 16599.28 154
GA-MVS93.93 15996.31 14791.16 17893.61 15798.79 11795.39 16090.69 13198.25 13973.28 20496.15 11788.42 15294.39 18397.76 12995.35 17499.58 14099.45 144
v1092.79 17794.06 17991.31 17591.78 18397.29 19994.87 17086.10 17996.97 18079.82 18088.16 18984.56 18095.63 15996.33 17495.31 17599.65 11099.80 35
v119292.43 18693.61 18891.05 17991.53 19297.43 19394.61 18087.99 16496.60 18976.72 19187.11 19782.74 19195.85 15496.35 17395.30 17699.60 13099.74 72
test_method87.27 20791.58 20382.25 20975.65 22087.52 21986.81 21372.60 21897.51 16673.20 20585.07 20479.97 20588.69 20697.31 14895.24 17796.53 21298.41 184
v114492.81 17594.03 18091.40 17391.68 18597.60 18494.73 17488.40 15996.71 18678.48 18688.14 19084.46 18195.45 16896.31 17595.22 17899.65 11099.76 61
v124091.99 19393.33 19490.44 18691.29 19897.30 19894.25 18686.79 17296.43 19275.49 19886.34 20181.85 19595.29 17196.42 17095.22 17899.52 15699.73 76
v14419292.38 18893.55 19191.00 18091.44 19497.47 19294.27 18587.41 16996.52 19178.03 18787.50 19482.65 19295.32 17095.82 18795.15 18099.55 14999.78 49
v192192092.36 19093.57 18990.94 18191.39 19697.39 19594.70 17687.63 16896.60 18976.63 19286.98 19882.89 18995.75 15596.26 17795.14 18199.55 14999.73 76
test20.0390.65 19993.71 18787.09 20090.44 20596.24 20689.74 20885.46 18295.59 20572.99 20790.68 17185.33 17484.41 21095.94 18595.10 18299.52 15697.06 203
pmmvs592.71 18194.27 17490.90 18291.42 19597.74 17293.23 19086.66 17595.99 20078.96 18591.45 16583.44 18595.55 16297.30 14995.05 18399.58 14098.93 172
v7n91.61 19592.95 19690.04 18990.56 20497.69 17593.74 18985.59 18195.89 20276.95 19086.60 20078.60 21293.76 19397.01 15894.99 18499.65 11099.87 16
v2v48292.77 17893.52 19291.90 16591.59 19197.63 18094.57 18290.31 13496.80 18579.22 18288.74 18581.55 19796.04 15195.26 19194.97 18599.66 10699.69 95
SCA94.95 13797.44 10692.04 15895.55 12599.16 10196.26 14579.30 20499.02 7985.73 14498.18 6997.13 8597.69 10896.03 18294.91 18697.69 20397.65 196
v892.87 17393.87 18691.72 16992.05 17597.50 19094.79 17388.20 16296.85 18380.11 17890.01 17582.86 19095.48 16595.15 19494.90 18799.66 10699.80 35
V4293.05 17193.90 18592.04 15891.91 17897.66 17794.91 16789.91 13996.85 18380.58 17489.66 17783.43 18695.37 16995.03 19794.90 18799.59 13699.78 49
SixPastTwentyTwo93.44 16695.32 15991.24 17692.11 17498.40 15092.77 19388.64 15798.09 14577.83 18893.51 15185.74 17196.52 13996.91 16094.89 18999.59 13699.73 76
tpm92.38 18894.79 16589.56 19494.30 14797.50 19094.24 18778.97 20897.72 16274.93 20097.97 7682.91 18896.60 13693.65 20494.81 19098.33 19498.98 170
EPMVS95.05 13596.86 12892.94 14895.84 11098.96 11196.68 13379.87 20099.05 7690.15 11897.12 9495.99 10097.49 11395.17 19394.75 19197.59 20496.96 204
thisisatest051594.61 14696.89 12691.95 16292.00 17698.47 14392.01 19790.73 12998.18 14183.96 14994.51 14095.13 10993.38 19597.38 14594.74 19299.61 12299.79 43
v14892.36 19092.88 19791.75 16791.63 18997.66 17792.64 19490.55 13296.09 19683.34 15788.19 18880.00 20492.74 19993.98 20394.58 19399.58 14099.69 95
TDRefinement93.04 17293.57 18992.41 15196.58 9098.77 12097.78 10191.96 10598.12 14480.84 17289.13 18279.87 20787.78 20796.44 16894.50 19499.54 15398.15 189
ADS-MVSNet94.65 14497.04 12391.88 16695.68 11898.99 10895.89 14979.03 20799.15 5885.81 14396.96 9698.21 7497.10 12094.48 20194.24 19597.74 20097.21 200
PatchmatchNetpermissive94.70 14297.08 12191.92 16395.53 12698.85 11595.77 15179.54 20298.95 8485.98 14198.52 5796.45 8997.39 11695.32 19094.09 19697.32 20697.38 199
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PM-MVS89.55 20290.30 20788.67 19787.06 21095.60 20990.88 20084.51 18996.14 19575.75 19486.89 19963.47 22194.64 18096.85 16193.89 19799.17 18399.29 153
pmmvs-eth3d89.81 20189.65 20890.00 19086.94 21195.38 21091.08 19886.39 17794.57 20882.27 16683.03 20864.94 21893.96 18996.57 16693.82 19899.35 17499.24 158
MDTV_nov1_ep13_2view92.44 18495.66 15588.68 19691.05 20297.92 16692.17 19679.64 20198.83 10076.20 19391.45 16593.51 12895.04 17695.68 18893.70 19997.96 19898.53 181
new_pmnet90.45 20092.84 19987.66 19988.96 20896.16 20788.71 21084.66 18797.56 16571.91 21085.60 20386.58 16593.28 19696.07 18193.54 20098.46 19194.39 212
N_pmnet92.21 19294.60 16989.42 19591.88 17997.38 19689.15 20989.74 14497.89 15573.75 20287.94 19292.23 13593.85 19296.10 18093.20 20198.15 19797.43 198
CostFormer94.25 15394.88 16393.51 13895.43 13098.34 15496.21 14680.64 19797.94 15394.01 7598.30 6786.20 16997.52 11192.71 20692.69 20297.23 20998.02 192
pmmvs388.19 20591.27 20484.60 20785.60 21393.66 21485.68 21481.13 19592.36 21463.66 21989.51 17877.10 21493.22 19796.37 17192.40 20398.30 19597.46 197
tpmrst93.86 16195.88 15291.50 17095.69 11798.62 13395.64 15479.41 20398.80 10583.76 15495.63 13096.13 9797.25 11792.92 20592.31 20497.27 20796.74 205
MDA-MVSNet-bldmvs87.84 20689.22 20986.23 20381.74 21596.77 20483.74 21589.57 14694.50 20972.83 20896.64 10664.47 22092.71 20081.43 21692.28 20596.81 21198.47 183
Gipumacopyleft81.40 21081.78 21280.96 21183.21 21485.61 22079.73 21876.25 21697.33 17064.21 21855.32 21755.55 22286.04 20892.43 20992.20 20696.32 21493.99 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmnet_mix0292.44 18494.68 16789.83 19392.46 16897.65 17989.92 20790.49 13398.76 11273.05 20691.78 16390.08 14594.86 17994.53 20091.94 20798.21 19698.01 193
ambc80.99 21380.04 21890.84 21590.91 19996.09 19674.18 20162.81 21630.59 22782.44 21296.25 17891.77 20895.91 21598.56 180
dps94.63 14595.31 16093.84 12795.53 12698.71 12896.54 13780.12 19997.81 16197.21 2896.98 9592.37 13396.34 14392.46 20891.77 20897.26 20897.08 202
tpm cat194.06 15494.90 16293.06 14695.42 13298.52 14196.64 13580.67 19697.82 15992.63 10093.39 15395.00 11096.06 15091.36 21191.58 21096.98 21096.66 207
CMPMVSbinary70.31 1890.74 19791.06 20590.36 18897.32 7597.43 19392.97 19287.82 16793.50 21175.34 19983.27 20784.90 17892.19 20292.64 20791.21 21196.50 21394.46 211
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new-patchmatchnet86.12 20887.30 21084.74 20686.92 21295.19 21383.57 21684.42 19092.67 21365.66 21480.32 21064.72 21989.41 20592.33 21089.21 21298.43 19296.69 206
PMMVS277.26 21179.47 21474.70 21376.00 21988.37 21874.22 22076.34 21478.31 21854.13 22169.96 21552.50 22370.14 21784.83 21488.71 21397.35 20593.58 214
MVEpermissive67.97 1965.53 21667.43 21863.31 21659.33 22374.20 22153.09 22570.43 21966.27 22143.13 22245.98 22130.62 22670.65 21679.34 21886.30 21483.25 22289.33 215
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt82.25 20997.73 6988.71 21780.18 21768.65 22099.15 5886.98 13699.47 1085.31 17568.35 21887.51 21383.81 21591.64 217
E-PMN68.30 21468.43 21668.15 21474.70 22271.56 22355.64 22377.24 21277.48 22039.46 22351.95 22041.68 22573.28 21570.65 21979.51 21688.61 22086.20 218
FPMVS83.82 20984.61 21182.90 20890.39 20690.71 21690.85 20184.10 19195.47 20665.15 21583.44 20674.46 21675.48 21381.63 21579.42 21791.42 21887.14 216
PMVScopyleft72.60 1776.39 21277.66 21574.92 21281.04 21769.37 22468.47 22180.54 19885.39 21765.07 21673.52 21472.91 21765.67 21980.35 21776.81 21888.71 21985.25 219
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS68.12 21568.11 21768.14 21575.51 22171.76 22255.38 22477.20 21377.78 21937.79 22453.59 21843.61 22474.72 21467.05 22076.70 21988.27 22186.24 217
testmvs31.24 21740.15 21920.86 21812.61 22417.99 22525.16 22613.30 22148.42 22224.82 22553.07 21930.13 22828.47 22042.73 22137.65 22020.79 22351.04 220
test12326.75 21834.25 22018.01 2197.93 22517.18 22624.85 22712.36 22244.83 22316.52 22641.80 22218.10 22928.29 22133.08 22234.79 22118.10 22449.95 221
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def69.05 212
9.1499.79 44
SR-MVS99.67 1398.25 1499.94 25
our_test_392.30 17097.58 18590.09 206
MTAPA98.09 1599.97 8
MTMP98.46 1099.96 12
Patchmatch-RL test66.86 222
XVS97.42 7399.62 3398.59 6493.81 8199.95 1799.69 85
X-MVStestdata97.42 7399.62 3398.59 6493.81 8199.95 1799.69 85
mPP-MVS99.53 2999.89 34
NP-MVS98.57 122
Patchmtry98.59 13697.15 12279.14 20580.42 175
DeepMVS_CXcopyleft96.85 20287.43 21289.27 14898.30 13675.55 19795.05 13479.47 20892.62 20189.48 21295.18 21695.96 209