This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
CS-MVS98.56 4399.32 2897.68 4798.28 6199.89 298.71 6094.53 6399.41 2395.43 4899.05 3598.66 6599.19 4099.21 2999.07 2699.93 199.94 1
DROMVSNet98.22 5199.44 1796.79 7595.62 12099.56 5199.01 5092.22 9999.17 5394.51 6699.41 1399.62 5199.49 1899.16 3499.26 1499.91 299.94 1
CS-MVS-test98.58 4299.42 2097.60 5198.52 5699.91 198.60 6394.60 6099.37 2794.62 6299.40 1499.16 6099.39 2699.36 2098.85 4799.90 399.92 3
EPP-MVSNet97.75 6398.71 6096.63 8195.68 11899.56 5197.51 10893.10 9599.22 4694.99 5797.18 9397.30 8398.65 7598.83 5898.93 3899.84 1299.92 3
LTVRE_ROB93.20 1692.84 17494.92 16190.43 18792.83 16298.63 13297.08 12787.87 16597.91 15468.42 21393.54 14979.46 20996.62 13597.55 14097.40 12599.74 4999.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DVP-MVS++99.41 499.64 199.14 799.69 799.75 999.64 898.33 699.67 498.10 1399.66 499.99 199.33 3099.62 598.86 4499.74 4999.90 6
canonicalmvs97.31 7697.81 9596.72 7696.20 10199.45 6898.21 8591.60 11199.22 4695.39 4998.48 5990.95 14099.16 4697.66 13499.05 2999.76 4199.90 6
PVSNet_Blended_VisFu97.41 7498.49 6696.15 9297.49 7199.76 696.02 14893.75 8099.26 4293.38 9093.73 14799.35 5696.47 14098.96 4698.46 6599.77 3999.90 6
CSCG98.90 3098.93 5398.85 2499.75 399.72 1299.49 2196.58 4299.38 2598.05 1698.97 3797.87 7699.49 1897.78 12798.92 3999.78 3499.90 6
MVS_030498.14 5499.03 4897.10 6398.05 6599.63 2999.27 3494.33 6899.63 793.06 9497.32 8899.05 6398.09 9498.82 5998.87 4399.81 2299.89 10
PS-CasMVS92.72 17993.36 19391.98 16191.62 19097.52 18994.13 18888.98 15195.94 20181.51 17087.35 19579.95 20695.91 15396.37 17196.49 14599.70 8299.89 10
CP-MVSNet93.25 16894.00 18192.38 15291.65 18897.56 18794.38 18489.20 14996.05 19883.16 15989.51 17881.97 19496.16 14896.43 16996.56 14399.71 7499.89 10
WR-MVS_H93.54 16494.67 16892.22 15391.95 17797.91 16794.58 18188.75 15496.64 18883.88 15190.66 17285.13 17694.40 18296.54 16795.91 16599.73 5799.89 10
FC-MVSNet-train97.04 8797.91 9296.03 9696.00 10498.41 14996.53 13993.42 8599.04 7893.02 9598.03 7494.32 12097.47 11497.93 11997.77 10899.75 4499.88 14
IterMVS-LS96.12 11697.48 10394.53 11595.19 13597.56 18797.15 12289.19 15099.08 7088.23 12694.97 13594.73 11497.84 10697.86 12498.26 8399.60 13099.88 14
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DCV-MVSNet97.56 6998.36 6996.62 8296.44 9298.36 15398.37 7691.73 10899.11 6694.80 5998.36 6596.28 9498.60 7998.12 10298.44 6799.76 4199.87 16
v7n91.61 19592.95 19690.04 18990.56 20497.69 17593.74 18985.59 18195.89 20276.95 19086.60 20078.60 21293.76 19397.01 15894.99 18499.65 11099.87 16
CHOSEN 1792x268896.41 10896.99 12495.74 10298.01 6699.72 1297.70 10490.78 12899.13 6590.03 12087.35 19595.36 10598.33 8798.59 8198.91 4199.59 13699.87 16
CANet98.46 4499.16 3797.64 4998.48 5799.64 2699.35 3194.71 5699.53 1495.17 5397.63 8599.59 5398.38 8698.88 5698.99 3499.74 4999.86 19
baseline97.45 7398.70 6195.99 9895.89 10799.36 8198.29 8191.37 11799.21 4892.99 9698.40 6396.87 8897.96 9998.60 7998.60 6099.42 16899.86 19
HyFIR lowres test95.99 11896.56 13495.32 10797.99 6799.65 2296.54 13788.86 15298.44 12989.77 12384.14 20597.05 8699.03 5598.55 8398.19 8799.73 5799.86 19
GeoE95.98 12097.24 11794.51 11695.02 13899.38 7798.02 9587.86 16698.37 13287.86 13192.99 16193.54 12798.56 8098.61 7697.92 9899.73 5799.85 22
tfpnnormal93.85 16294.12 17793.54 13793.22 16198.24 15795.45 15891.96 10594.61 20783.91 15090.74 17081.75 19697.04 12197.49 14296.16 15699.68 9399.84 23
Effi-MVS+95.81 12197.31 11594.06 12495.09 13699.35 8497.24 11888.22 16198.54 12485.38 14798.52 5788.68 15198.70 7298.32 9397.93 9799.74 4999.84 23
SD-MVS99.25 1299.50 1298.96 2098.79 5199.55 5399.33 3298.29 1299.75 197.96 1899.15 2499.95 1799.61 699.17 3299.06 2899.81 2299.84 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EPNet98.05 5598.86 5597.10 6399.02 4799.43 7298.47 6994.73 5599.05 7695.62 4498.93 4097.62 8095.48 16598.59 8198.55 6199.29 17899.84 23
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SteuartSystems-ACMMP99.20 1599.51 1198.83 2699.66 1699.66 2199.71 398.12 2799.14 6196.62 3399.16 2399.98 299.12 4899.63 399.19 2199.78 3499.83 27
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.99.27 1099.57 598.92 2298.78 5299.53 5599.72 298.11 2899.73 297.43 2599.15 2499.96 1299.59 999.73 199.07 2699.88 499.82 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
anonymousdsp93.12 17095.86 15389.93 19291.09 20198.25 15695.12 16285.08 18397.44 16773.30 20390.89 16990.78 14195.25 17397.91 12095.96 16499.71 7499.82 28
TSAR-MVS + ACMM98.77 3399.45 1497.98 4299.37 3699.46 6699.44 2798.13 2699.65 592.30 10698.91 4299.95 1799.05 5399.42 1798.95 3799.58 14099.82 28
PEN-MVS92.72 17993.20 19592.15 15691.29 19897.31 19794.67 17889.81 14196.19 19481.83 16888.58 18679.06 21095.61 16195.21 19296.27 15199.72 6499.82 28
WR-MVS93.43 16794.48 17192.21 15491.52 19397.69 17594.66 17989.98 13896.86 18283.43 15690.12 17485.03 17793.94 19096.02 18395.82 16699.71 7499.82 28
UniMVSNet_ETH3D93.15 16992.33 20294.11 12393.91 15098.61 13594.81 17290.98 12397.06 17787.51 13482.27 20976.33 21597.87 10594.79 19997.47 12199.56 14799.81 33
DeepC-MVS97.63 498.33 4898.57 6298.04 4098.62 5599.65 2299.45 2598.15 2399.51 1792.80 9895.74 12696.44 9199.46 2199.37 1999.50 299.78 3499.81 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EIA-MVS97.70 6598.78 5896.44 8895.72 11599.65 2298.14 8893.72 8198.30 13692.31 10598.63 5597.90 7598.97 5898.92 5198.30 8199.78 3499.80 35
v892.87 17393.87 18691.72 16992.05 17597.50 19094.79 17388.20 16296.85 18380.11 17890.01 17582.86 19095.48 16595.15 19494.90 18799.66 10699.80 35
v1092.79 17794.06 17991.31 17591.78 18397.29 19994.87 17086.10 17996.97 18079.82 18088.16 18984.56 18095.63 15996.33 17495.31 17599.65 11099.80 35
UniMVSNet_NR-MVSNet94.59 14795.47 15793.55 13691.85 18197.89 16895.03 16392.00 10397.33 17086.12 13993.19 15587.29 15596.60 13696.12 17996.70 13799.72 6499.80 35
DU-MVS93.98 15794.44 17293.44 13991.66 18697.77 17095.03 16391.57 11297.17 17486.12 13993.13 15781.13 19896.60 13695.10 19597.01 13299.67 10199.80 35
casdiffmvs_mvgpermissive97.27 7897.97 9096.46 8795.83 11199.51 6198.42 7293.32 8998.34 13492.38 10495.64 12995.35 10698.91 6198.73 6898.45 6699.86 999.80 35
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UGNet97.66 6699.07 4396.01 9797.19 8099.65 2297.09 12693.39 8699.35 3194.40 7198.79 4799.59 5394.24 18598.04 11398.29 8299.73 5799.80 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IS_MVSNet97.86 5998.86 5596.68 7796.02 10299.72 1298.35 7993.37 8898.75 11594.01 7596.88 10098.40 7098.48 8499.09 3799.42 599.83 1599.80 35
ETV-MVS98.05 5599.25 3396.65 7995.61 12199.61 3898.26 8493.52 8498.90 9193.74 8599.32 1799.20 5898.90 6399.21 2998.72 5499.87 899.79 43
DVP-MVScopyleft99.45 299.54 799.35 199.72 699.76 699.63 1298.37 299.63 799.03 398.95 3999.98 299.60 799.60 799.05 2999.74 4999.79 43
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
thisisatest051594.61 14696.89 12691.95 16292.00 17698.47 14392.01 19790.73 12998.18 14183.96 14994.51 14095.13 10993.38 19597.38 14594.74 19299.61 12299.79 43
MSP-MVS99.34 799.52 1099.14 799.68 1299.75 999.64 898.31 999.44 2198.10 1399.28 1899.98 299.30 3599.34 2399.05 2999.81 2299.79 43
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
UniMVSNet (Re)94.58 14895.34 15893.71 13192.25 17398.08 16194.97 16591.29 12297.03 17987.94 12993.97 14686.25 16896.07 14996.27 17695.97 16399.72 6499.79 43
DELS-MVS98.19 5298.77 5997.52 5298.29 6099.71 1599.12 4194.58 6298.80 10595.38 5096.24 11698.24 7397.92 10099.06 4099.52 199.82 1699.79 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tttt051797.23 8098.24 7696.04 9595.60 12399.60 4396.94 13193.23 9099.15 5892.56 10298.74 5296.12 9898.17 8998.21 9896.10 15899.73 5799.78 49
v14419292.38 18893.55 19191.00 18091.44 19497.47 19294.27 18587.41 16996.52 19178.03 18787.50 19482.65 19295.32 17095.82 18795.15 18099.55 14999.78 49
V4293.05 17193.90 18592.04 15891.91 17897.66 17794.91 16789.91 13996.85 18380.58 17489.66 17783.43 18695.37 16995.03 19794.90 18799.59 13699.78 49
MVS_Test97.30 7798.54 6395.87 9995.74 11499.28 9398.19 8691.40 11699.18 5291.59 11298.17 7096.18 9698.63 7798.61 7698.55 6199.66 10699.78 49
TranMVSNet+NR-MVSNet93.67 16394.14 17593.13 14591.28 20097.58 18595.60 15591.97 10497.06 17784.05 14890.64 17382.22 19396.17 14794.94 19896.78 13599.69 8599.78 49
PVSNet_BlendedMVS97.51 7197.71 9697.28 5898.06 6399.61 3897.31 11495.02 5199.08 7095.51 4698.05 7290.11 14398.07 9598.91 5298.40 7099.72 6499.78 49
PVSNet_Blended97.51 7197.71 9697.28 5898.06 6399.61 3897.31 11495.02 5199.08 7095.51 4698.05 7290.11 14398.07 9598.91 5298.40 7099.72 6499.78 49
SED-MVS99.44 399.58 499.28 399.69 799.76 699.62 1498.35 399.51 1799.05 299.60 699.98 299.28 3799.61 698.83 4999.70 8299.77 56
thisisatest053097.23 8098.25 7396.05 9495.60 12399.59 4596.96 13093.23 9099.17 5392.60 10198.75 5196.19 9598.17 8998.19 10096.10 15899.72 6499.77 56
Fast-Effi-MVS+95.38 13096.52 13794.05 12594.15 14899.14 10397.24 11886.79 17298.53 12587.62 13394.51 14087.06 15698.76 7198.60 7998.04 9599.72 6499.77 56
APDe-MVS99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 699.57 799.97 899.53 1599.65 299.25 1599.84 1299.77 56
ACMMPR99.30 999.54 799.03 1699.66 1699.64 2699.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1599.72 6499.77 56
Anonymous20240521197.40 10896.45 9199.54 5498.08 9393.79 7798.24 14093.55 14894.41 11898.88 6898.04 11398.24 8499.75 4499.76 61
SMA-MVScopyleft99.38 699.60 399.12 999.76 299.62 3399.39 2998.23 1899.52 1698.03 1799.45 1199.98 299.64 599.58 899.30 1199.68 9399.76 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v114492.81 17594.03 18091.40 17391.68 18597.60 18494.73 17488.40 15996.71 18678.48 18688.14 19084.46 18195.45 16896.31 17595.22 17899.65 11099.76 61
HFP-MVS99.32 899.53 999.07 1399.69 799.59 4599.63 1298.31 999.56 1197.37 2699.27 1999.97 899.70 399.35 2299.24 1799.71 7499.76 61
MSLP-MVS++99.15 1899.24 3499.04 1599.52 3199.49 6399.09 4498.07 2999.37 2798.47 897.79 7999.89 3499.50 1698.93 4999.45 499.61 12299.76 61
ACMMPcopyleft98.74 3499.03 4898.40 3299.36 3899.64 2699.20 3697.75 3798.82 10295.24 5298.85 4599.87 3699.17 4598.74 6797.50 11799.71 7499.76 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMH95.42 1495.27 13395.96 15094.45 11896.83 8898.78 11994.72 17591.67 11098.95 8486.82 13896.42 11383.67 18397.00 12297.48 14396.68 13899.69 8599.76 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121197.10 8597.06 12297.14 6296.32 9499.52 5898.16 8793.76 7898.84 9995.98 4090.92 16894.58 11798.90 6397.72 13298.10 9299.71 7499.75 68
X-MVS98.93 2999.37 2398.42 3199.67 1399.62 3399.60 1598.15 2399.08 7093.81 8198.46 6199.95 1799.59 999.49 1399.21 2099.68 9399.75 68
NR-MVSNet94.01 15594.51 17093.44 13992.56 16697.77 17095.67 15291.57 11297.17 17485.84 14293.13 15780.53 20195.29 17197.01 15896.17 15599.69 8599.75 68
Vis-MVSNet (Re-imp)97.40 7598.89 5495.66 10495.99 10599.62 3397.82 9893.22 9298.82 10291.40 11396.94 9798.56 6895.70 15799.14 3599.41 699.79 3199.75 68
ACMMP_NAP99.05 2599.45 1498.58 3099.73 599.60 4399.64 898.28 1399.23 4594.57 6399.35 1699.97 899.55 1399.63 398.66 5699.70 8299.74 72
v119292.43 18693.61 18891.05 17991.53 19297.43 19394.61 18087.99 16496.60 18976.72 19187.11 19782.74 19195.85 15496.35 17395.30 17699.60 13099.74 72
PGM-MVS98.86 3199.35 2798.29 3499.77 199.63 2999.67 595.63 4598.66 11895.27 5199.11 2899.82 4199.67 499.33 2499.19 2199.73 5799.74 72
CP-MVS99.27 1099.44 1799.08 1299.62 2299.58 4899.53 1898.16 2199.21 4897.79 2099.15 2499.96 1299.59 999.54 1198.86 4499.78 3499.74 72
IterMVS-SCA-FT94.89 13997.87 9391.42 17194.86 14297.70 17397.24 11884.88 18698.93 8875.74 19594.26 14398.25 7296.69 13198.52 8597.68 11099.10 18599.73 76
v192192092.36 19093.57 18990.94 18191.39 19697.39 19594.70 17687.63 16896.60 18976.63 19286.98 19882.89 18995.75 15596.26 17795.14 18199.55 14999.73 76
DI_MVS_plusplus_trai96.90 9297.49 10296.21 9195.61 12199.40 7698.72 5992.11 10099.14 6192.98 9793.08 15995.14 10898.13 9398.05 11297.91 10099.74 4999.73 76
v124091.99 19393.33 19490.44 18691.29 19897.30 19894.25 18686.79 17296.43 19275.49 19886.34 20181.85 19595.29 17196.42 17095.22 17899.52 15699.73 76
thres600view796.69 10096.43 14597.00 7296.28 9899.67 1898.41 7393.99 7497.85 15894.29 7395.96 12085.91 17099.19 4098.26 9597.63 11199.82 1699.73 76
MP-MVScopyleft99.07 2399.36 2498.74 2799.63 2099.57 5099.66 698.25 1499.00 8195.62 4498.97 3799.94 2599.54 1499.51 1298.79 5399.71 7499.73 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DTE-MVSNet92.42 18792.85 19891.91 16490.87 20396.97 20194.53 18389.81 14195.86 20381.59 16988.83 18477.88 21395.01 17794.34 20296.35 14999.64 11499.73 76
Baseline_NR-MVSNet93.87 16093.98 18293.75 12991.66 18697.02 20095.53 15691.52 11597.16 17687.77 13287.93 19383.69 18296.35 14295.10 19597.23 12799.68 9399.73 76
SixPastTwentyTwo93.44 16695.32 15991.24 17692.11 17498.40 15092.77 19388.64 15798.09 14577.83 18893.51 15185.74 17196.52 13996.91 16094.89 18999.59 13699.73 76
LGP-MVS_train96.23 11296.89 12695.46 10697.32 7598.77 12098.81 5793.60 8398.58 12185.52 14599.08 3286.67 16397.83 10797.87 12397.51 11699.69 8599.73 76
pm-mvs194.27 15195.57 15692.75 14992.58 16598.13 16094.87 17090.71 13096.70 18783.78 15289.94 17689.85 14794.96 17897.58 13997.07 12999.61 12299.72 86
casdiffmvspermissive96.93 9197.43 10796.34 8995.70 11699.50 6297.75 10293.22 9298.98 8392.64 9994.97 13591.71 13898.93 5998.62 7598.52 6499.82 1699.72 86
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS94.81 14197.71 9691.42 17194.83 14397.63 18097.38 11185.08 18398.93 8875.67 19694.02 14497.64 7896.66 13498.45 8897.60 11398.90 18899.72 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MCST-MVS99.11 2099.27 3298.93 2199.67 1399.33 8999.51 2098.31 999.28 3896.57 3599.10 3099.90 3299.71 299.19 3198.35 7599.82 1699.71 89
ACMP96.25 1096.62 10596.72 13096.50 8696.96 8498.75 12497.80 9994.30 6998.85 9593.12 9398.78 4886.61 16497.23 11997.73 13196.61 14199.62 12099.71 89
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft99.39 599.55 699.20 499.63 2099.71 1599.66 698.33 699.29 3798.40 1199.64 599.98 299.31 3399.56 998.96 3699.85 1099.70 91
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
tfpn200view996.75 9696.51 13897.03 6796.31 9599.67 1898.41 7393.99 7497.35 16894.52 6495.90 12286.93 15999.14 4798.26 9597.80 10699.82 1699.70 91
thres40096.71 9996.45 14397.02 6996.28 9899.63 2998.41 7394.00 7397.82 15994.42 7095.74 12686.26 16799.18 4398.20 9997.79 10799.81 2299.70 91
diffmvspermissive96.83 9397.33 11196.25 9095.76 11399.34 8698.06 9493.22 9299.43 2292.30 10696.90 9989.83 14898.55 8198.00 11698.14 8899.64 11499.70 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v14892.36 19092.88 19791.75 16791.63 18997.66 17792.64 19490.55 13296.09 19683.34 15788.19 18880.00 20492.74 19993.98 20394.58 19399.58 14099.69 95
v2v48292.77 17893.52 19291.90 16591.59 19197.63 18094.57 18290.31 13496.80 18579.22 18288.74 18581.55 19796.04 15195.26 19194.97 18599.66 10699.69 95
CPTT-MVS99.14 1999.20 3699.06 1499.58 2599.53 5599.45 2597.80 3699.19 5198.32 1298.58 5699.95 1799.60 799.28 2698.20 8699.64 11499.69 95
FMVSNet195.77 12296.41 14695.03 10993.42 16097.86 16997.11 12589.89 14098.53 12592.00 10989.17 18093.23 13198.15 9298.07 10898.34 7799.61 12299.69 95
Vis-MVSNetpermissive96.16 11598.22 7793.75 12995.33 13399.70 1797.27 11690.85 12598.30 13685.51 14695.72 12896.45 8993.69 19498.70 7099.00 3399.84 1299.69 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVSTER97.16 8297.71 9696.52 8495.97 10698.48 14298.63 6292.10 10198.68 11795.96 4199.23 2091.79 13796.87 12698.76 6497.37 12699.57 14499.68 100
GBi-Net96.98 8998.00 8895.78 10093.81 15397.98 16298.09 9091.32 11898.80 10593.92 7797.21 9095.94 10197.89 10198.07 10898.34 7799.68 9399.67 101
test196.98 8998.00 8895.78 10093.81 15397.98 16298.09 9091.32 11898.80 10593.92 7797.21 9095.94 10197.89 10198.07 10898.34 7799.68 9399.67 101
FMVSNet296.64 10397.50 10195.63 10593.81 15397.98 16298.09 9090.87 12498.99 8293.48 8893.17 15695.25 10797.89 10198.63 7498.80 5299.68 9399.67 101
3Dnovator+96.92 798.71 3699.05 4498.32 3399.53 2999.34 8699.06 4694.61 5899.65 597.49 2496.75 10199.86 3799.44 2398.78 6299.30 1199.81 2299.67 101
HPM-MVS++copyleft99.10 2199.30 3098.86 2399.69 799.48 6499.59 1698.34 499.26 4296.55 3699.10 3099.96 1299.36 2899.25 2798.37 7499.64 11499.66 105
thres20096.76 9596.53 13697.03 6796.31 9599.67 1898.37 7693.99 7497.68 16494.49 6795.83 12586.77 16199.18 4398.26 9597.82 10599.82 1699.66 105
3Dnovator96.92 798.67 3799.05 4498.23 3799.57 2699.45 6899.11 4294.66 5799.69 396.80 3296.55 11199.61 5299.40 2598.87 5799.49 399.85 1099.66 105
TSAR-MVS + GP.98.66 3999.36 2497.85 4497.16 8199.46 6699.03 4894.59 6199.09 6897.19 2999.73 399.95 1799.39 2698.95 4798.69 5599.75 4499.65 108
FMVSNet397.02 8898.12 8295.73 10393.59 15997.98 16298.34 8091.32 11898.80 10593.92 7797.21 9095.94 10197.63 11098.61 7698.62 5899.61 12299.65 108
CDS-MVSNet96.59 10698.02 8794.92 11194.45 14698.96 11197.46 11091.75 10797.86 15790.07 11996.02 11997.25 8496.21 14498.04 11398.38 7299.60 13099.65 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH+95.51 1395.40 12996.00 14894.70 11396.33 9398.79 11796.79 13291.32 11898.77 11187.18 13595.60 13185.46 17396.97 12397.15 15496.59 14299.59 13699.65 108
QAPM98.62 4099.04 4798.13 3899.57 2699.48 6499.17 3894.78 5499.57 1096.16 3896.73 10299.80 4299.33 3098.79 6199.29 1399.75 4499.64 112
DeepC-MVS_fast98.34 199.17 1799.45 1498.85 2499.55 2899.37 8099.64 898.05 3199.53 1496.58 3498.93 4099.92 2899.49 1899.46 1499.32 1099.80 3099.64 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test111197.09 8696.83 12997.39 5496.92 8799.81 398.44 7194.45 6499.17 5395.85 4292.10 16288.97 15098.78 7099.02 4399.11 2399.88 499.63 114
thres100view90096.72 9896.47 14197.00 7296.31 9599.52 5898.28 8294.01 7297.35 16894.52 6495.90 12286.93 15999.09 5298.07 10897.87 10299.81 2299.63 114
test250697.16 8296.68 13297.73 4696.95 8599.79 498.48 6794.42 6599.17 5397.74 2299.15 2480.93 19998.89 6699.03 4199.09 2499.88 499.62 116
Effi-MVS+-dtu95.74 12398.04 8593.06 14693.92 14999.16 10197.90 9688.16 16399.07 7582.02 16798.02 7594.32 12096.74 13098.53 8497.56 11499.61 12299.62 116
HQP-MVS96.37 10996.58 13396.13 9397.31 7798.44 14698.45 7095.22 4998.86 9388.58 12598.33 6687.00 15897.67 10997.23 15196.56 14399.56 14799.62 116
ECVR-MVScopyleft97.27 7897.09 11997.48 5396.95 8599.79 498.48 6794.42 6599.17 5396.28 3793.54 14989.39 14998.89 6699.03 4199.09 2499.88 499.61 119
IB-MVS93.96 1595.02 13696.44 14493.36 14297.05 8399.28 9390.43 20293.39 8698.02 14796.02 3994.92 13792.07 13683.52 21195.38 18995.82 16699.72 6499.59 120
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
train_agg98.73 3599.11 3998.28 3599.36 3899.35 8499.48 2397.96 3398.83 10093.86 8098.70 5499.86 3799.44 2399.08 3998.38 7299.61 12299.58 121
CDPH-MVS98.41 4599.10 4097.61 5099.32 4199.36 8199.49 2196.15 4498.82 10291.82 11098.41 6299.66 5099.10 5098.93 4998.97 3599.75 4499.58 121
APD-MVScopyleft99.25 1299.38 2299.09 1199.69 799.58 4899.56 1798.32 898.85 9597.87 1998.91 4299.92 2899.30 3599.45 1599.38 899.79 3199.58 121
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR98.67 3799.41 2197.81 4599.37 3699.53 5598.51 6695.52 4799.27 4094.85 5899.56 899.69 4999.04 5499.36 2098.88 4299.60 13099.58 121
PHI-MVS99.08 2299.43 1998.67 2899.15 4499.59 4599.11 4297.35 3999.14 6197.30 2799.44 1299.96 1299.32 3298.89 5499.39 799.79 3199.58 121
MVS_111021_HR98.59 4199.36 2497.68 4799.42 3499.61 3898.14 8894.81 5399.31 3495.00 5699.51 999.79 4499.00 5798.94 4898.83 4999.69 8599.57 126
SF-MVS99.18 1699.32 2899.03 1699.65 1899.41 7598.87 5498.24 1799.14 6198.73 599.11 2899.92 2898.92 6099.22 2898.84 4899.76 4199.56 127
DeepPCF-MVS97.74 398.34 4799.46 1397.04 6698.82 5099.33 8996.28 14497.47 3899.58 994.70 6198.99 3699.85 3997.24 11899.55 1099.34 997.73 20299.56 127
CLD-MVS96.74 9796.51 13897.01 7196.71 8998.62 13398.73 5894.38 6798.94 8694.46 6897.33 8787.03 15798.07 9597.20 15396.87 13499.72 6499.54 129
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CANet_DTU96.64 10399.08 4193.81 12897.10 8299.42 7398.85 5590.01 13799.31 3479.98 17999.78 299.10 6297.42 11598.35 9298.05 9499.47 16199.53 130
pmmvs691.90 19492.53 20191.17 17791.81 18297.63 18093.23 19088.37 16093.43 21280.61 17377.32 21387.47 15494.12 18696.58 16595.72 16898.88 18999.53 130
baseline197.58 6898.05 8497.02 6996.21 10099.45 6897.71 10393.71 8298.47 12895.75 4398.78 4893.20 13298.91 6198.52 8598.44 6799.81 2299.53 130
FA-MVS(training)96.52 10798.29 7194.45 11895.88 10999.52 5897.66 10581.47 19498.94 8693.79 8495.54 13399.11 6198.29 8898.89 5496.49 14599.63 11999.52 133
FC-MVSNet-test96.07 11797.94 9193.89 12693.60 15898.67 13096.62 13690.30 13698.76 11288.62 12495.57 13297.63 7994.48 18197.97 11797.48 12099.71 7499.52 133
CNVR-MVS99.23 1499.28 3199.17 599.65 1899.34 8699.46 2498.21 1999.28 3898.47 898.89 4499.94 2599.50 1699.42 1798.61 5999.73 5799.52 133
PLCcopyleft97.93 299.02 2898.94 5299.11 1099.46 3399.24 9799.06 4697.96 3399.31 3499.16 197.90 7799.79 4499.36 2898.71 6998.12 9099.65 11099.52 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS97.71 6498.04 8597.32 5699.35 4098.91 11397.65 10691.68 10998.00 14897.01 3197.72 8394.83 11298.85 6998.44 9098.86 4499.41 16999.52 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
NCCC99.05 2599.08 4199.02 1899.62 2299.38 7799.43 2898.21 1999.36 3097.66 2397.79 7999.90 3299.45 2299.17 3298.43 6999.77 3999.51 138
OpenMVScopyleft96.23 1197.95 5898.45 6797.35 5599.52 3199.42 7398.91 5394.61 5898.87 9292.24 10894.61 13999.05 6399.10 5098.64 7399.05 2999.74 4999.51 138
Fast-Effi-MVS+-dtu95.38 13098.20 7892.09 15793.91 15098.87 11497.35 11385.01 18599.08 7081.09 17198.10 7196.36 9295.62 16098.43 9197.03 13099.55 14999.50 140
ACMM96.26 996.67 10296.69 13196.66 7897.29 7898.46 14496.48 14095.09 5099.21 4893.19 9298.78 4886.73 16298.17 8997.84 12596.32 15099.74 4999.49 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42097.99 5799.24 3496.53 8398.34 5999.61 3898.36 7889.80 14399.27 4095.08 5599.81 198.58 6798.64 7699.02 4398.92 3998.93 18799.48 142
TAPA-MVS97.53 598.41 4598.84 5797.91 4399.08 4699.33 8999.15 3997.13 4099.34 3293.20 9197.75 8199.19 5999.20 3998.66 7198.13 8999.66 10699.48 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GA-MVS93.93 15996.31 14791.16 17893.61 15798.79 11795.39 16090.69 13198.25 13973.28 20496.15 11788.42 15294.39 18397.76 12995.35 17499.58 14099.45 144
CVMVSNet95.33 13297.09 11993.27 14495.23 13498.39 15195.49 15792.58 9897.71 16383.00 16194.44 14293.28 13093.92 19197.79 12698.54 6399.41 16999.45 144
LS3D97.79 6098.25 7397.26 6098.40 5899.63 2999.53 1898.63 199.25 4488.13 12796.93 9894.14 12299.19 4099.14 3599.23 1899.69 8599.42 146
ET-MVSNet_ETH3D96.17 11496.99 12495.21 10888.53 20998.54 13998.28 8292.61 9798.85 9593.60 8799.06 3490.39 14298.63 7795.98 18496.68 13899.61 12299.41 147
baseline296.36 11097.82 9494.65 11494.60 14599.09 10496.45 14189.63 14598.36 13391.29 11597.60 8694.13 12396.37 14198.45 8897.70 10999.54 15399.41 147
test0.0.03 196.69 10098.12 8295.01 11095.49 12898.99 10895.86 15090.82 12698.38 13192.54 10396.66 10597.33 8195.75 15597.75 13098.34 7799.60 13099.40 149
testgi95.67 12497.48 10393.56 13595.07 13799.00 10695.33 16188.47 15898.80 10586.90 13797.30 8992.33 13495.97 15297.66 13497.91 10099.60 13099.38 150
TAMVS95.53 12696.50 14094.39 12093.86 15299.03 10596.67 13489.55 14797.33 17090.64 11793.02 16091.58 13996.21 14497.72 13297.43 12499.43 16699.36 151
AdaColmapbinary99.06 2498.98 5199.15 699.60 2499.30 9299.38 3098.16 2199.02 7998.55 798.71 5399.57 5599.58 1299.09 3797.84 10499.64 11499.36 151
PM-MVS89.55 20290.30 20788.67 19787.06 21095.60 20990.88 20084.51 18996.14 19575.75 19486.89 19963.47 22194.64 18096.85 16193.89 19799.17 18399.29 153
DPM-MVS98.31 4998.53 6498.05 3998.76 5398.77 12099.13 4098.07 2999.10 6794.27 7496.70 10399.84 4098.70 7297.90 12198.11 9199.40 17199.28 154
pmmvs495.09 13495.90 15194.14 12292.29 17197.70 17395.45 15890.31 13498.60 11990.70 11693.25 15489.90 14696.67 13397.13 15595.42 17399.44 16599.28 154
EG-PatchMatch MVS92.45 18393.92 18490.72 18492.56 16698.43 14894.88 16984.54 18897.18 17379.55 18186.12 20283.23 18793.15 19897.22 15296.00 16099.67 10199.27 156
UA-Net97.13 8499.14 3894.78 11297.21 7999.38 7797.56 10792.04 10298.48 12788.03 12898.39 6499.91 3194.03 18899.33 2499.23 1899.81 2299.25 157
pmmvs-eth3d89.81 20189.65 20890.00 19086.94 21195.38 21091.08 19886.39 17794.57 20882.27 16683.03 20864.94 21893.96 18996.57 16693.82 19899.35 17499.24 158
gg-mvs-nofinetune90.85 19694.14 17587.02 20194.89 14199.25 9598.64 6176.29 21588.24 21657.50 22079.93 21195.45 10495.18 17498.77 6398.07 9399.62 12099.24 158
PMMVS97.52 7098.39 6896.51 8595.82 11298.73 12797.80 9993.05 9698.76 11294.39 7299.07 3397.03 8798.55 8198.31 9497.61 11299.43 16699.21 160
CNLPA99.03 2799.05 4499.01 1999.27 4299.22 9999.03 4897.98 3299.34 3299.00 498.25 6899.71 4899.31 3398.80 6098.82 5199.48 15999.17 161
CR-MVSNet94.57 14997.34 11091.33 17494.90 14098.59 13697.15 12279.14 20597.98 14980.42 17596.59 11093.50 12996.85 12798.10 10397.49 11899.50 15899.15 162
PatchT93.96 15897.36 10990.00 19094.76 14498.65 13190.11 20578.57 21097.96 15280.42 17596.07 11894.10 12496.85 12798.10 10397.49 11899.26 17999.15 162
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7997.32 5698.84 4999.45 6899.28 3395.43 4899.48 1991.80 11194.83 13898.36 7198.90 6398.09 10597.85 10399.68 9399.15 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MSDG98.27 5098.29 7198.24 3699.20 4399.22 9999.20 3697.82 3599.37 2794.43 6995.90 12297.31 8299.12 4898.76 6498.35 7599.67 10199.14 165
test-mter94.86 14097.32 11292.00 16092.41 16998.82 11696.18 14786.35 17898.05 14682.28 16596.48 11294.39 11995.46 16798.17 10196.20 15499.32 17699.13 166
RPMNet94.66 14397.16 11891.75 16794.98 13998.59 13697.00 12978.37 21197.98 14983.78 15296.27 11594.09 12596.91 12597.36 14696.73 13699.48 15999.09 167
OMC-MVS98.84 3299.01 5098.65 2999.39 3599.23 9899.22 3596.70 4199.40 2497.77 2197.89 7899.80 4299.21 3899.02 4398.65 5799.57 14499.07 168
TSAR-MVS + COLMAP96.79 9496.55 13597.06 6597.70 7098.46 14499.07 4596.23 4399.38 2591.32 11498.80 4685.61 17298.69 7497.64 13796.92 13399.37 17399.06 169
tpm92.38 18894.79 16589.56 19494.30 14797.50 19094.24 18778.97 20897.72 16274.93 20097.97 7682.91 18896.60 13693.65 20494.81 19098.33 19498.98 170
PatchMatch-RL97.77 6298.25 7397.21 6199.11 4599.25 9597.06 12894.09 7198.72 11695.14 5498.47 6096.29 9398.43 8598.65 7297.44 12399.45 16398.94 171
pmmvs592.71 18194.27 17490.90 18291.42 19597.74 17293.23 19086.66 17595.99 20078.96 18591.45 16583.44 18595.55 16297.30 14995.05 18399.58 14098.93 172
test-LLR95.50 12797.32 11293.37 14195.49 12898.74 12596.44 14290.82 12698.18 14182.75 16296.60 10894.67 11595.54 16398.09 10596.00 16099.20 18198.93 172
TESTMET0.1,194.95 13797.32 11292.20 15592.62 16498.74 12596.44 14286.67 17498.18 14182.75 16296.60 10894.67 11595.54 16398.09 10596.00 16099.20 18198.93 172
EU-MVSNet92.80 17694.76 16690.51 18591.88 17996.74 20592.48 19588.69 15596.21 19379.00 18491.51 16487.82 15391.83 20395.87 18696.27 15199.21 18098.92 175
PCF-MVS97.50 698.18 5398.35 7097.99 4198.65 5499.36 8198.94 5298.14 2598.59 12093.62 8696.61 10799.76 4799.03 5597.77 12897.45 12299.57 14498.89 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet_dtu96.30 11198.53 6493.70 13298.97 4898.24 15797.36 11294.23 7098.85 9579.18 18399.19 2198.47 6994.09 18797.89 12298.21 8598.39 19398.85 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS96.22 11395.85 15496.65 7997.75 6898.54 13999.00 5195.53 4696.88 18189.88 12195.95 12186.46 16698.07 9597.65 13696.63 14099.67 10198.83 178
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
GG-mvs-BLEND69.11 21398.13 8135.26 2173.49 22698.20 15994.89 1682.38 22398.42 1305.82 22796.37 11498.60 665.97 22298.75 6697.98 9699.01 18698.61 179
ambc80.99 21380.04 21890.84 21590.91 19996.09 19674.18 20162.81 21630.59 22782.44 21296.25 17891.77 20895.91 21598.56 180
MDTV_nov1_ep13_2view92.44 18495.66 15588.68 19691.05 20297.92 16692.17 19679.64 20198.83 10076.20 19391.45 16593.51 12895.04 17695.68 18893.70 19997.96 19898.53 181
USDC94.26 15294.83 16493.59 13496.02 10298.44 14697.84 9788.65 15698.86 9382.73 16494.02 14480.56 20096.76 12997.28 15096.15 15799.55 14998.50 182
MDA-MVSNet-bldmvs87.84 20689.22 20986.23 20381.74 21596.77 20483.74 21589.57 14694.50 20972.83 20896.64 10664.47 22092.71 20081.43 21692.28 20596.81 21198.47 183
test_method87.27 20791.58 20382.25 20975.65 22087.52 21986.81 21372.60 21897.51 16673.20 20585.07 20479.97 20588.69 20697.31 14895.24 17796.53 21298.41 184
gm-plane-assit89.44 20392.82 20085.49 20591.37 19795.34 21179.55 21982.12 19391.68 21564.79 21787.98 19180.26 20395.66 15898.51 8797.56 11499.45 16398.41 184
MS-PatchMatch95.99 11897.26 11694.51 11697.46 7298.76 12397.27 11686.97 17199.09 6889.83 12293.51 15197.78 7796.18 14697.53 14195.71 16999.35 17498.41 184
TransMVSNet (Re)93.45 16594.08 17892.72 15092.83 16297.62 18394.94 16691.54 11495.65 20483.06 16088.93 18383.53 18494.25 18497.41 14497.03 13099.67 10198.40 187
TinyColmap94.00 15694.35 17393.60 13395.89 10798.26 15597.49 10988.82 15398.56 12383.21 15891.28 16780.48 20296.68 13297.34 14796.26 15399.53 15598.24 188
TDRefinement93.04 17293.57 18992.41 15196.58 9098.77 12097.78 10191.96 10598.12 14480.84 17289.13 18279.87 20787.78 20796.44 16894.50 19499.54 15398.15 189
MDTV_nov1_ep1395.57 12597.48 10393.35 14395.43 13098.97 11097.19 12183.72 19298.92 9087.91 13097.75 8196.12 9897.88 10496.84 16295.64 17097.96 19898.10 190
MIMVSNet94.49 15097.59 10090.87 18391.74 18498.70 12994.68 17778.73 20997.98 14983.71 15597.71 8494.81 11396.96 12497.97 11797.92 9899.40 17198.04 191
CostFormer94.25 15394.88 16393.51 13895.43 13098.34 15496.21 14680.64 19797.94 15394.01 7598.30 6786.20 16997.52 11192.71 20692.69 20297.23 20998.02 192
pmnet_mix0292.44 18494.68 16789.83 19392.46 16897.65 17989.92 20790.49 13398.76 11273.05 20691.78 16390.08 14594.86 17994.53 20091.94 20798.21 19698.01 193
RPSCF97.61 6798.16 8096.96 7498.10 6299.00 10698.84 5693.76 7899.45 2094.78 6099.39 1599.31 5798.53 8396.61 16395.43 17297.74 20097.93 194
Anonymous2023120690.70 19893.93 18386.92 20290.21 20796.79 20390.30 20486.61 17696.05 19869.25 21188.46 18784.86 17985.86 20997.11 15696.47 14799.30 17797.80 195
SCA94.95 13797.44 10692.04 15895.55 12599.16 10196.26 14579.30 20499.02 7985.73 14498.18 6997.13 8597.69 10896.03 18294.91 18697.69 20397.65 196
pmmvs388.19 20591.27 20484.60 20785.60 21393.66 21485.68 21481.13 19592.36 21463.66 21989.51 17877.10 21493.22 19796.37 17192.40 20398.30 19597.46 197
N_pmnet92.21 19294.60 16989.42 19591.88 17997.38 19689.15 20989.74 14497.89 15573.75 20287.94 19292.23 13593.85 19296.10 18093.20 20198.15 19797.43 198
PatchmatchNetpermissive94.70 14297.08 12191.92 16395.53 12698.85 11595.77 15179.54 20298.95 8485.98 14198.52 5796.45 8997.39 11695.32 19094.09 19697.32 20697.38 199
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ADS-MVSNet94.65 14497.04 12391.88 16695.68 11898.99 10895.89 14979.03 20799.15 5885.81 14396.96 9698.21 7497.10 12094.48 20194.24 19597.74 20097.21 200
MVS-HIRNet92.51 18295.97 14988.48 19893.73 15698.37 15290.33 20375.36 21798.32 13577.78 18989.15 18194.87 11195.14 17597.62 13896.39 14898.51 19097.11 201
dps94.63 14595.31 16093.84 12795.53 12698.71 12896.54 13780.12 19997.81 16197.21 2896.98 9592.37 13396.34 14392.46 20891.77 20897.26 20897.08 202
test20.0390.65 19993.71 18787.09 20090.44 20596.24 20689.74 20885.46 18295.59 20572.99 20790.68 17185.33 17484.41 21095.94 18595.10 18299.52 15697.06 203
EPMVS95.05 13596.86 12892.94 14895.84 11098.96 11196.68 13379.87 20099.05 7690.15 11897.12 9495.99 10097.49 11395.17 19394.75 19197.59 20496.96 204
tpmrst93.86 16195.88 15291.50 17095.69 11798.62 13395.64 15479.41 20398.80 10583.76 15495.63 13096.13 9797.25 11792.92 20592.31 20497.27 20796.74 205
new-patchmatchnet86.12 20887.30 21084.74 20686.92 21295.19 21383.57 21684.42 19092.67 21365.66 21480.32 21064.72 21989.41 20592.33 21089.21 21298.43 19296.69 206
tpm cat194.06 15494.90 16293.06 14695.42 13298.52 14196.64 13580.67 19697.82 15992.63 10093.39 15395.00 11096.06 15091.36 21191.58 21096.98 21096.66 207
FMVSNet595.42 12896.47 14194.20 12192.26 17295.99 20895.66 15387.15 17097.87 15693.46 8996.68 10493.79 12697.52 11197.10 15797.21 12899.11 18496.62 208
DeepMVS_CXcopyleft96.85 20287.43 21289.27 14898.30 13675.55 19795.05 13479.47 20892.62 20189.48 21295.18 21695.96 209
MIMVSNet188.61 20490.68 20686.19 20481.56 21695.30 21287.78 21185.98 18094.19 21072.30 20978.84 21278.90 21190.06 20496.59 16495.47 17199.46 16295.49 210
CMPMVSbinary70.31 1890.74 19791.06 20590.36 18897.32 7597.43 19392.97 19287.82 16793.50 21175.34 19983.27 20784.90 17892.19 20292.64 20791.21 21196.50 21394.46 211
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet90.45 20092.84 19987.66 19988.96 20896.16 20788.71 21084.66 18797.56 16571.91 21085.60 20386.58 16593.28 19696.07 18193.54 20098.46 19194.39 212
Gipumacopyleft81.40 21081.78 21280.96 21183.21 21485.61 22079.73 21876.25 21697.33 17064.21 21855.32 21755.55 22286.04 20892.43 20992.20 20696.32 21493.99 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.26 21179.47 21474.70 21376.00 21988.37 21874.22 22076.34 21478.31 21854.13 22169.96 21552.50 22370.14 21784.83 21488.71 21397.35 20593.58 214
MVEpermissive67.97 1965.53 21667.43 21863.31 21659.33 22374.20 22153.09 22570.43 21966.27 22143.13 22245.98 22130.62 22670.65 21679.34 21886.30 21483.25 22289.33 215
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
FPMVS83.82 20984.61 21182.90 20890.39 20690.71 21690.85 20184.10 19195.47 20665.15 21583.44 20674.46 21675.48 21381.63 21579.42 21791.42 21887.14 216
EMVS68.12 21568.11 21768.14 21575.51 22171.76 22255.38 22477.20 21377.78 21937.79 22453.59 21843.61 22474.72 21467.05 22076.70 21988.27 22186.24 217
E-PMN68.30 21468.43 21668.15 21474.70 22271.56 22355.64 22377.24 21277.48 22039.46 22351.95 22041.68 22573.28 21570.65 21979.51 21688.61 22086.20 218
PMVScopyleft72.60 1776.39 21277.66 21574.92 21281.04 21769.37 22468.47 22180.54 19885.39 21765.07 21673.52 21472.91 21765.67 21980.35 21776.81 21888.71 21985.25 219
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs31.24 21740.15 21920.86 21812.61 22417.99 22525.16 22613.30 22148.42 22224.82 22553.07 21930.13 22828.47 22042.73 22137.65 22020.79 22351.04 220
test12326.75 21834.25 22018.01 2197.93 22517.18 22624.85 22712.36 22244.83 22316.52 22641.80 22218.10 22928.29 22133.08 22234.79 22118.10 22449.95 221
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def69.05 212
9.1499.79 44
SR-MVS99.67 1398.25 1499.94 25
our_test_392.30 17097.58 18590.09 206
MTAPA98.09 1599.97 8
MTMP98.46 1099.96 12
Patchmatch-RL test66.86 222
tmp_tt82.25 20997.73 6988.71 21780.18 21768.65 22099.15 5886.98 13699.47 1085.31 17568.35 21887.51 21383.81 21591.64 217
XVS97.42 7399.62 3398.59 6493.81 8199.95 1799.69 85
X-MVStestdata97.42 7399.62 3398.59 6493.81 8199.95 1799.69 85
mPP-MVS99.53 2999.89 34
NP-MVS98.57 122
Patchmtry98.59 13697.15 12279.14 20580.42 175