This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
DELS-MVS96.06 5496.04 6196.07 4997.77 5599.25 2898.10 4193.26 5494.42 10992.79 4388.52 11193.48 7395.06 9698.51 1698.83 199.45 3899.28 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2499.16 2699.03 4399.05 1897.24 2698.22 1094.17 3195.82 4098.07 3998.69 1698.83 1198.80 299.52 2299.10 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator93.79 897.08 3797.20 4196.95 3799.09 2899.03 4398.20 3993.33 5297.99 1593.82 3290.61 9496.80 4997.82 3797.90 4898.78 399.47 3399.26 35
MSLP-MVS++98.04 2397.93 3298.18 1699.10 2799.09 3698.34 3696.99 3297.54 2996.60 1294.82 5198.45 3598.89 697.46 6198.77 499.17 9499.37 22
DeepPCF-MVS95.28 297.00 3998.35 2195.42 6097.30 6398.94 5194.82 12196.03 3898.24 992.11 5195.80 4198.64 3395.51 8898.95 798.66 596.78 19399.20 44
SMA-MVScopyleft98.66 798.89 798.39 999.60 199.41 1299.00 2097.63 1297.78 1895.83 1898.33 1199.83 498.85 998.93 898.56 699.41 5099.40 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IS_MVSNet95.28 6396.43 5693.94 9195.30 9399.01 4795.90 10091.12 9294.13 11587.50 10791.23 8594.45 6794.17 11198.45 2098.50 799.65 399.23 39
DeepC-MVS94.87 496.76 4896.50 5497.05 3598.21 4899.28 2498.67 2797.38 2097.31 3590.36 7589.19 10493.58 7298.19 2898.31 2798.50 799.51 2799.36 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP98.38 1498.71 1097.99 2399.34 2099.46 1099.34 697.33 2497.31 3594.25 2998.06 1399.17 1998.13 3198.98 598.46 999.55 1899.54 11
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+93.91 797.23 3597.22 4097.24 3298.89 3698.85 6198.26 3893.25 5697.99 1595.56 2290.01 10098.03 4198.05 3497.91 4798.43 1099.44 4499.35 24
DVP-MVScopyleft98.86 498.97 398.75 299.43 1299.63 199.25 1297.81 298.62 297.69 197.59 2099.90 298.93 598.99 498.42 1199.37 5999.62 4
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS98.73 698.93 598.50 699.44 1199.57 499.36 497.65 998.14 1296.51 1498.49 799.65 898.67 1798.60 1498.42 1199.40 5399.63 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft98.87 398.96 498.77 199.58 299.53 799.44 197.81 298.22 1097.33 498.70 599.33 1098.86 898.96 698.40 1399.63 599.57 9
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVScopyleft98.36 1598.32 2398.41 899.47 599.26 2699.12 1597.77 796.73 5096.12 1697.27 2898.88 2498.46 2598.47 1898.39 1499.52 2299.22 41
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS97.78 2698.44 1897.02 3698.73 3899.25 2898.11 4095.54 3996.66 5392.79 4398.52 699.38 997.50 4597.84 4998.39 1499.45 3899.03 67
Vis-MVSNet (Re-imp)94.46 8396.24 5892.40 11095.23 9898.64 7795.56 10890.99 9394.42 10985.02 11790.88 9294.65 6688.01 18098.17 3798.37 1699.57 1498.53 105
SED-MVS98.90 299.07 298.69 399.38 1899.61 299.33 897.80 498.25 897.60 298.87 499.89 398.67 1799.02 298.26 1799.36 6199.61 6
DPE-MVScopyleft98.75 598.91 698.57 599.21 2399.54 699.42 297.78 697.49 3196.84 998.94 199.82 598.59 2198.90 1098.22 1899.56 1799.48 16
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++98.92 199.18 198.61 499.47 599.61 299.39 397.82 198.80 196.86 898.90 299.92 198.67 1799.02 298.20 1999.43 4799.82 1
UA-Net93.96 9495.95 6291.64 11996.06 8098.59 8195.29 11190.00 10391.06 15982.87 12590.64 9398.06 4086.06 19198.14 3998.20 1999.58 1196.96 165
QAPM96.78 4797.14 4496.36 4299.05 2999.14 3598.02 4393.26 5497.27 3790.84 6591.16 8697.31 4497.64 4397.70 5498.20 1999.33 6399.18 48
X-MVS97.84 2498.19 2797.42 3099.40 1499.35 1799.06 1797.25 2597.38 3490.85 6296.06 3798.72 3098.53 2498.41 2498.15 2299.46 3499.28 30
ACMMPR98.40 1298.49 1398.28 1399.41 1399.40 1399.36 497.35 2198.30 695.02 2597.79 1798.39 3799.04 298.26 3398.10 2399.50 2999.22 41
CNVR-MVS98.47 1198.46 1698.48 799.40 1499.05 3799.02 1997.54 1697.73 1996.65 1197.20 2999.13 2098.85 998.91 998.10 2399.41 5099.08 57
HFP-MVS98.48 1098.62 1198.32 1199.39 1799.33 2199.27 1097.42 1898.27 795.25 2398.34 1098.83 2699.08 198.26 3398.08 2599.48 3099.26 35
CANet96.84 4597.20 4196.42 4097.92 5399.24 3098.60 2993.51 5197.11 4293.07 3691.16 8697.24 4596.21 7498.24 3598.05 2699.22 8499.35 24
TSAR-MVS + MP.98.49 998.78 898.15 1998.14 5099.17 3399.34 697.18 2998.44 595.72 1997.84 1699.28 1298.87 799.05 198.05 2699.66 299.60 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test111193.94 9592.78 11995.29 6396.14 7999.42 1196.79 7392.85 6395.08 9991.39 5780.69 16179.86 15595.00 9798.28 3198.00 2899.58 1198.11 128
test250694.32 8893.00 11795.87 5196.16 7799.39 1596.96 6292.80 6495.22 9594.47 2791.55 8370.45 19795.25 9398.29 2897.98 2999.59 798.10 129
ECVR-MVScopyleft94.14 9092.96 11895.52 5896.16 7799.39 1596.96 6292.80 6495.22 9592.38 4881.48 15680.31 15295.25 9398.29 2897.98 2999.59 798.05 130
SD-MVS98.52 898.77 998.23 1598.15 4999.26 2698.79 2697.59 1598.52 396.25 1597.99 1599.75 699.01 398.27 3297.97 3199.59 799.63 2
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EC-MVSNet96.49 4997.63 3495.16 6494.75 11398.69 7197.39 5588.97 12196.34 5992.02 5296.04 3896.46 5198.21 2698.41 2497.96 3299.61 699.55 10
MVS_111021_HR97.04 3898.20 2695.69 5498.44 4599.29 2396.59 8093.20 5797.70 2289.94 8298.46 896.89 4796.71 6598.11 4297.95 3399.27 7499.01 70
sasdasda95.25 6595.45 6995.00 6895.27 9598.72 6896.89 6589.82 10796.51 5490.84 6593.72 5886.01 11997.66 4195.78 11997.94 3499.54 1999.50 12
canonicalmvs95.25 6595.45 6995.00 6895.27 9598.72 6896.89 6589.82 10796.51 5490.84 6593.72 5886.01 11997.66 4195.78 11997.94 3499.54 1999.50 12
CDPH-MVS96.84 4597.49 3696.09 4798.92 3498.85 6198.61 2895.09 4196.00 7187.29 10895.45 4697.42 4397.16 5297.83 5097.94 3499.44 4498.92 80
MVS_030496.31 5196.91 4995.62 5597.21 6599.20 3198.55 3193.10 5997.04 4589.73 8490.30 9696.35 5395.71 8198.14 3997.93 3799.38 5699.40 20
MGCFI-Net95.12 6795.39 7294.79 7895.24 9798.68 7296.80 7289.72 11196.48 5690.11 7893.64 6085.86 12397.36 4895.69 12597.92 3899.53 2199.49 15
PGM-MVS97.81 2598.11 2897.46 2999.55 399.34 2099.32 994.51 4596.21 6393.07 3698.05 1497.95 4298.82 1198.22 3697.89 3999.48 3099.09 56
ACMMP_NAP98.20 1898.49 1397.85 2599.50 499.40 1399.26 1197.64 1197.47 3392.62 4697.59 2099.09 2298.71 1598.82 1297.86 4099.40 5399.19 45
CS-MVS96.87 4397.41 3996.24 4597.42 6099.48 997.30 5691.83 8197.17 3993.02 4094.80 5294.45 6798.16 3098.61 1397.85 4199.69 199.50 12
ETV-MVS96.31 5197.47 3894.96 7194.79 11098.78 6496.08 9491.41 8996.16 6490.50 7095.76 4296.20 5797.39 4698.42 2397.82 4299.57 1499.18 48
TSAR-MVS + ACMM97.71 2898.60 1296.66 3998.64 4199.05 3798.85 2597.23 2798.45 489.40 9097.51 2499.27 1496.88 6198.53 1597.81 4398.96 12399.59 8
CS-MVS-test97.00 3997.85 3396.00 5097.77 5599.56 596.35 8891.95 7697.54 2992.20 4996.14 3696.00 6198.19 2898.46 1997.78 4499.57 1499.45 18
NCCC98.10 2198.05 3098.17 1899.38 1899.05 3799.00 2097.53 1798.04 1495.12 2494.80 5299.18 1898.58 2298.49 1797.78 4499.39 5598.98 74
MP-MVScopyleft98.09 2298.30 2497.84 2699.34 2099.19 3299.23 1397.40 1997.09 4393.03 3997.58 2298.85 2598.57 2398.44 2297.69 4699.48 3099.23 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS98.32 1798.34 2298.29 1299.34 2099.30 2299.15 1497.35 2197.49 3195.58 2197.72 1898.62 3498.82 1198.29 2897.67 4799.51 2799.28 30
SF-MVS98.39 1398.45 1798.33 1099.45 999.05 3798.27 3797.65 997.73 1997.02 798.18 1299.25 1598.11 3298.15 3897.62 4899.45 3899.19 45
OpenMVScopyleft92.33 1195.50 5695.22 7595.82 5398.98 3098.97 4997.67 5093.04 6294.64 10589.18 9584.44 14294.79 6596.79 6297.23 6697.61 4999.24 7898.88 85
Vis-MVSNetpermissive92.77 11495.00 8290.16 13894.10 12798.79 6394.76 12388.26 12892.37 14479.95 14088.19 11391.58 8184.38 20197.59 5797.58 5099.52 2298.91 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MAR-MVS95.50 5695.60 6595.39 6198.67 4098.18 9595.89 10289.81 10994.55 10791.97 5392.99 6490.21 9197.30 4996.79 8097.49 5198.72 14798.99 72
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MCST-MVS98.20 1898.36 1998.01 2299.40 1499.05 3799.00 2097.62 1397.59 2893.70 3397.42 2799.30 1198.77 1398.39 2697.48 5299.59 799.31 29
HPM-MVS++copyleft98.34 1698.47 1598.18 1699.46 899.15 3499.10 1697.69 897.67 2494.93 2697.62 1999.70 798.60 2098.45 2097.46 5399.31 6899.26 35
LS3D95.46 5995.14 7795.84 5297.91 5498.90 5898.58 3097.79 597.07 4483.65 12388.71 10788.64 10497.82 3797.49 5997.42 5499.26 7797.72 143
TSAR-MVS + GP.97.45 3198.36 1996.39 4195.56 8798.93 5397.74 4993.31 5397.61 2794.24 3098.44 999.19 1798.03 3597.60 5697.41 5599.44 4499.33 26
DPM-MVS96.86 4496.82 5096.91 3898.08 5198.20 9398.52 3397.20 2897.24 3891.42 5691.84 7898.45 3597.25 5097.07 7297.40 5698.95 12497.55 147
CSCG97.44 3297.18 4397.75 2799.47 599.52 898.55 3195.41 4097.69 2395.72 1994.29 5595.53 6398.10 3396.20 10797.38 5799.24 7899.62 4
PVSNet_BlendedMVS95.41 6195.28 7395.57 5697.42 6099.02 4595.89 10293.10 5996.16 6493.12 3491.99 7485.27 12694.66 10298.09 4397.34 5899.24 7899.08 57
PVSNet_Blended95.41 6195.28 7395.57 5697.42 6099.02 4595.89 10293.10 5996.16 6493.12 3491.99 7485.27 12694.66 10298.09 4397.34 5899.24 7899.08 57
casdiffmvspermissive94.38 8794.15 9894.64 8394.70 11798.51 8396.03 9791.66 8495.70 8089.36 9186.48 12685.03 13196.60 6897.40 6297.30 6099.52 2298.67 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu94.77 7595.54 6793.87 9396.48 7298.97 4994.33 13091.84 7994.93 10190.37 7485.04 13794.99 6490.87 15898.12 4197.30 6099.30 7099.45 18
MVS_111021_LR97.16 3698.01 3196.16 4698.47 4398.98 4896.94 6493.89 4897.64 2691.44 5598.89 396.41 5297.20 5198.02 4597.29 6299.04 11798.85 89
casdiffmvs_mvgpermissive94.55 8094.26 9294.88 7394.96 10598.51 8397.11 5891.82 8294.28 11289.20 9486.60 12286.85 11296.56 6997.47 6097.25 6399.64 498.83 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
train_agg97.65 2998.06 2997.18 3398.94 3298.91 5698.98 2497.07 3196.71 5190.66 6897.43 2699.08 2398.20 2797.96 4697.14 6499.22 8499.19 45
EIA-MVS95.50 5696.19 5994.69 8194.83 10998.88 6095.93 9991.50 8894.47 10889.43 8893.14 6392.72 7797.05 5797.82 5297.13 6599.43 4799.15 51
EPNet96.27 5396.97 4695.46 5998.47 4398.28 8997.41 5393.67 4995.86 7692.86 4297.51 2493.79 7191.76 14397.03 7497.03 6698.61 15799.28 30
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPP-MVSNet95.27 6496.18 6094.20 8994.88 10798.64 7794.97 11790.70 9695.34 8889.67 8691.66 8193.84 7095.42 9197.32 6497.00 6799.58 1199.47 17
FMVSNet293.30 11093.36 11393.22 10591.34 15995.86 15596.22 8988.24 12995.15 9889.92 8381.64 15489.36 9694.40 10896.77 8196.98 6899.21 8897.79 136
CHOSEN 280x42095.46 5997.01 4593.66 9797.28 6497.98 10096.40 8685.39 16196.10 6891.07 5996.53 3296.34 5595.61 8597.65 5596.95 6996.21 19497.49 149
baseline194.59 7994.47 8794.72 8095.16 10097.97 10196.07 9591.94 7794.86 10289.98 8091.60 8285.87 12295.64 8397.07 7296.90 7099.52 2297.06 164
MVS_Test94.82 7195.66 6493.84 9494.79 11098.35 8896.49 8489.10 12096.12 6787.09 11092.58 6990.61 8896.48 7096.51 9596.89 7199.11 10498.54 104
gg-mvs-nofinetune86.17 19488.57 16883.36 20193.44 13798.15 9696.58 8172.05 21674.12 22049.23 22464.81 21590.85 8689.90 17397.83 5096.84 7298.97 12197.41 152
CANet_DTU93.92 9796.57 5390.83 12995.63 8598.39 8796.99 6187.38 13796.26 6171.97 18396.31 3493.02 7494.53 10597.38 6396.83 7398.49 16497.79 136
OMC-MVS97.00 3996.92 4897.09 3498.69 3998.66 7497.85 4795.02 4298.09 1394.47 2793.15 6296.90 4697.38 4797.16 7096.82 7499.13 10197.65 144
FMVSNet393.79 10194.17 9693.35 10491.21 16295.99 14896.62 7888.68 12395.23 9290.40 7186.39 12791.16 8294.11 11295.96 11296.67 7599.07 10997.79 136
CNLPA96.90 4296.28 5797.64 2898.56 4298.63 7996.85 6896.60 3697.73 1997.08 689.78 10296.28 5697.80 3996.73 8396.63 7698.94 12598.14 127
UGNet94.92 6896.63 5292.93 10696.03 8198.63 7994.53 12791.52 8796.23 6290.03 7992.87 6796.10 5986.28 19096.68 8596.60 7799.16 9799.32 28
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268892.66 11692.49 12692.85 10797.13 6698.89 5995.90 10088.50 12795.32 8983.31 12471.99 20088.96 10294.10 11396.69 8496.49 7898.15 17499.10 54
CDS-MVSNet92.77 11493.60 10891.80 11792.63 14896.80 12595.24 11289.14 11990.30 16984.58 11886.76 11890.65 8790.42 16695.89 11496.49 7898.79 14398.32 121
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
diffmvspermissive94.31 8994.21 9394.42 8694.64 11898.28 8996.36 8791.56 8596.77 4988.89 9888.97 10584.23 13596.01 7896.05 11196.41 8099.05 11698.79 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GBi-Net93.81 9994.18 9493.38 10291.34 15995.86 15596.22 8988.68 12395.23 9290.40 7186.39 12791.16 8294.40 10896.52 9296.30 8199.21 8897.79 136
test193.81 9994.18 9493.38 10291.34 15995.86 15596.22 8988.68 12395.23 9290.40 7186.39 12791.16 8294.40 10896.52 9296.30 8199.21 8897.79 136
FMVSNet191.54 13090.93 15192.26 11290.35 16995.27 17795.22 11387.16 14091.37 15687.62 10675.45 17783.84 13894.43 10696.52 9296.30 8198.82 13697.74 142
DI_MVS_plusplus_trai94.01 9393.63 10794.44 8594.54 11998.26 9197.51 5290.63 9795.88 7589.34 9280.54 16389.36 9695.48 8996.33 10196.27 8499.17 9498.78 95
AdaColmapbinary97.53 3096.93 4798.24 1499.21 2398.77 6598.47 3497.34 2396.68 5296.52 1395.11 4996.12 5898.72 1497.19 6996.24 8599.17 9498.39 115
Fast-Effi-MVS+91.87 12292.08 13791.62 12192.91 14497.21 11794.93 11884.60 17393.61 12381.49 13483.50 14778.95 15896.62 6796.55 9096.22 8699.16 9798.51 106
PLCcopyleft94.95 397.37 3396.77 5198.07 2098.97 3198.21 9297.94 4696.85 3597.66 2597.58 393.33 6196.84 4898.01 3697.13 7196.20 8799.09 10698.01 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
baseline94.83 7095.82 6393.68 9694.75 11397.80 10296.51 8388.53 12697.02 4789.34 9292.93 6592.18 7994.69 10195.78 11996.08 8898.27 17298.97 78
CPTT-MVS97.78 2697.54 3598.05 2198.91 3599.05 3799.00 2096.96 3397.14 4195.92 1795.50 4498.78 2898.99 497.20 6796.07 8998.54 16199.04 66
Effi-MVS+92.93 11393.86 10291.86 11594.07 12898.09 9895.59 10785.98 15394.27 11379.54 14491.12 8981.81 14896.71 6596.67 8696.06 9099.27 7498.98 74
gm-plane-assit83.26 20485.29 20180.89 20489.52 18289.89 21570.26 22178.24 19777.11 21858.01 22174.16 18866.90 21190.63 16497.20 6796.05 9198.66 15495.68 181
DCV-MVSNet94.76 7695.12 7994.35 8795.10 10395.81 15996.46 8589.49 11596.33 6090.16 7692.55 7090.26 9095.83 8095.52 12796.03 9299.06 11299.33 26
IterMVS-LS92.56 11793.18 11491.84 11693.90 13094.97 18494.99 11686.20 15094.18 11482.68 12685.81 13387.36 11194.43 10695.31 13396.02 9398.87 13298.60 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMMPcopyleft97.37 3397.48 3797.25 3198.88 3799.28 2498.47 3496.86 3497.04 4592.15 5097.57 2396.05 6097.67 4097.27 6595.99 9499.46 3499.14 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thres100view90093.55 10692.47 12994.81 7795.33 9198.74 6696.78 7492.30 7192.63 13588.29 9987.21 11578.01 16396.78 6396.38 9795.92 9599.38 5698.40 114
thres20093.62 10392.54 12394.88 7395.36 9098.93 5396.75 7592.31 6892.84 13288.28 10186.99 11777.81 16697.13 5396.82 7795.92 9599.45 3898.49 108
TAPA-MVS94.18 596.38 5096.49 5596.25 4398.26 4798.66 7498.00 4494.96 4397.17 3989.48 8792.91 6696.35 5397.53 4496.59 8895.90 9799.28 7297.82 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVSTER94.89 6995.07 8094.68 8294.71 11596.68 13197.00 6090.57 9895.18 9793.05 3895.21 4786.41 11693.72 12197.59 5795.88 9899.00 11898.50 107
tfpn200view993.64 10292.57 12294.89 7295.33 9198.94 5196.82 6992.31 6892.63 13588.29 9987.21 11578.01 16397.12 5596.82 7795.85 9999.45 3898.56 102
thres40093.56 10592.43 13094.87 7595.40 8998.91 5696.70 7792.38 6792.93 13188.19 10386.69 12077.35 16797.13 5396.75 8295.85 9999.42 4998.56 102
GeoE92.52 11892.64 12192.39 11193.96 12997.76 10396.01 9885.60 15893.23 12783.94 12081.56 15584.80 13295.63 8496.22 10595.83 10199.19 9299.07 61
Anonymous20240521192.18 13595.04 10498.20 9396.14 9291.79 8393.93 11674.60 18388.38 10796.48 7095.17 13795.82 10299.00 11899.15 51
LGP-MVS_train94.12 9194.62 8493.53 9896.44 7397.54 10697.40 5491.84 7994.66 10481.09 13695.70 4383.36 14295.10 9596.36 10095.71 10399.32 6599.03 67
thres600view793.49 10792.37 13394.79 7895.42 8898.93 5396.58 8192.31 6893.04 12987.88 10486.62 12176.94 17097.09 5696.82 7795.63 10499.45 3898.63 99
MSDG94.82 7193.73 10596.09 4798.34 4697.43 11197.06 5996.05 3795.84 7790.56 6986.30 13189.10 10195.55 8796.13 11095.61 10599.00 11895.73 180
EPNet_dtu92.45 11995.02 8189.46 14798.02 5295.47 17094.79 12292.62 6694.97 10070.11 19494.76 5492.61 7884.07 20495.94 11395.56 10697.15 19095.82 179
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test92.03 12091.55 14592.58 10897.13 6698.72 6894.65 12586.54 14693.58 12482.56 12767.75 21190.47 8995.67 8295.87 11595.54 10798.91 12998.93 79
Anonymous2023121193.49 10792.33 13494.84 7694.78 11298.00 9996.11 9391.85 7894.86 10290.91 6174.69 18289.18 9996.73 6494.82 14295.51 10898.67 15199.24 38
Effi-MVS+-dtu91.78 12593.59 10989.68 14692.44 15097.11 11894.40 12984.94 16992.43 14075.48 16591.09 9083.75 13993.55 12496.61 8795.47 10997.24 18998.67 97
GG-mvs-BLEND66.17 21694.91 8332.63 2211.32 23096.64 13291.40 1780.85 22794.39 1112.20 23190.15 9995.70 622.27 22796.39 9695.44 11097.78 18295.68 181
MIMVSNet88.99 16491.07 14986.57 18986.78 21095.62 16391.20 18375.40 21090.65 16576.57 15784.05 14482.44 14791.01 15395.84 11695.38 11198.48 16593.50 202
ET-MVSNet_ETH3D93.34 10994.33 9192.18 11383.26 21797.66 10596.72 7689.89 10695.62 8387.17 10996.00 3983.69 14096.99 5893.78 15895.34 11299.06 11298.18 126
FC-MVSNet-train93.85 9893.91 10093.78 9594.94 10696.79 12894.29 13191.13 9193.84 12088.26 10290.40 9585.23 12894.65 10496.54 9195.31 11399.38 5699.28 30
CVMVSNet89.77 15391.66 14287.56 17993.21 14295.45 17191.94 17489.22 11889.62 17369.34 20083.99 14585.90 12184.81 19994.30 15395.28 11496.85 19297.09 160
UniMVSNet_ETH3D88.47 16986.00 19991.35 12391.55 15696.29 14292.53 15688.81 12285.58 20282.33 12867.63 21266.87 21294.04 11491.49 19395.24 11598.84 13598.92 80
PatchMatch-RL94.69 7794.41 8895.02 6797.63 5998.15 9694.50 12891.99 7495.32 8991.31 5895.47 4583.44 14196.02 7796.56 8995.23 11698.69 15096.67 172
TSAR-MVS + COLMAP94.79 7394.51 8695.11 6596.50 7197.54 10697.99 4594.54 4497.81 1785.88 11496.73 3181.28 15196.99 5896.29 10295.21 11798.76 14696.73 171
FA-MVS(training)93.94 9595.16 7692.53 10994.87 10898.57 8295.42 11079.49 19595.37 8790.98 6086.54 12494.26 6995.44 9097.80 5395.19 11898.97 12198.38 116
test0.0.03 191.97 12193.91 10089.72 14393.31 14096.40 14091.34 18087.06 14193.86 11881.67 13291.15 8889.16 10086.02 19295.08 13895.09 11998.91 12996.64 174
dmvs_re91.84 12391.60 14492.12 11491.60 15597.26 11495.14 11491.96 7591.02 16080.98 13786.56 12377.96 16593.84 11894.71 14395.08 12099.22 8498.62 100
baseline293.01 11294.17 9691.64 11992.83 14697.49 10893.40 14287.53 13593.67 12286.07 11391.83 7986.58 11391.36 14796.38 9795.06 12198.67 15198.20 125
CLD-MVS94.79 7394.36 9095.30 6295.21 9997.46 10997.23 5792.24 7296.43 5791.77 5492.69 6884.31 13496.06 7595.52 12795.03 12299.31 6899.06 62
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FC-MVSNet-test91.63 12793.82 10489.08 15192.02 15396.40 14093.26 14587.26 13893.72 12177.26 15288.61 11089.86 9385.50 19495.72 12495.02 12399.16 9797.44 151
PMMVS94.61 7895.56 6693.50 9994.30 12496.74 12994.91 11989.56 11495.58 8587.72 10596.15 3592.86 7596.06 7595.47 12995.02 12398.43 16997.09 160
OPM-MVS93.61 10492.43 13095.00 6896.94 6897.34 11297.78 4894.23 4689.64 17285.53 11588.70 10882.81 14496.28 7396.28 10395.00 12599.24 7897.22 157
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PCF-MVS93.95 695.65 5595.14 7796.25 4397.73 5898.73 6797.59 5197.13 3092.50 13989.09 9789.85 10196.65 5096.90 6094.97 14194.89 12699.08 10798.38 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053094.54 8195.47 6893.46 10094.51 12098.65 7694.66 12490.72 9495.69 8286.90 11193.80 5689.44 9594.74 9996.98 7694.86 12799.19 9298.85 89
tttt051794.52 8295.44 7193.44 10194.51 12098.68 7294.61 12690.72 9495.61 8486.84 11293.78 5789.26 9894.74 9997.02 7594.86 12799.20 9198.87 87
LTVRE_ROB87.32 1687.55 18288.25 17186.73 18790.66 16495.80 16093.05 14884.77 17083.35 20860.32 21783.12 14967.39 21093.32 12794.36 15294.86 12798.28 17198.87 87
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HQP-MVS94.43 8494.57 8594.27 8896.41 7497.23 11696.89 6593.98 4795.94 7383.68 12295.01 5084.46 13395.58 8695.47 12994.85 13099.07 10999.00 71
ACMP92.88 994.43 8494.38 8994.50 8496.01 8297.69 10495.85 10592.09 7395.74 7989.12 9695.14 4882.62 14694.77 9895.73 12294.67 13199.14 10099.06 62
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM92.75 1094.41 8693.84 10395.09 6696.41 7496.80 12594.88 12093.54 5096.41 5890.16 7692.31 7283.11 14396.32 7296.22 10594.65 13299.22 8497.35 154
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+-dtu91.19 13393.64 10688.33 15992.19 15296.46 13793.99 13481.52 19092.59 13771.82 18492.17 7385.54 12491.68 14495.73 12294.64 13398.80 14198.34 118
TAMVS90.54 14290.87 15390.16 13891.48 15796.61 13393.26 14586.08 15187.71 18881.66 13383.11 15084.04 13690.42 16694.54 14694.60 13498.04 17995.48 184
TranMVSNet+NR-MVSNet89.23 16088.48 16990.11 14289.07 19495.25 17892.91 15090.43 10090.31 16877.10 15476.62 17571.57 19291.83 14292.12 18494.59 13599.32 6598.92 80
DU-MVS89.67 15488.84 16590.63 13389.26 18895.61 16492.48 15789.91 10491.22 15779.57 14277.72 17171.18 19493.21 13092.53 17894.57 13699.35 6299.05 64
CR-MVSNet90.16 14891.96 14088.06 16593.32 13995.95 15293.36 14375.99 20892.40 14275.19 16983.18 14885.37 12592.05 13895.21 13594.56 13798.47 16697.08 162
PatchT89.13 16291.71 14186.11 19392.92 14395.59 16683.64 21075.09 21191.87 15175.19 16982.63 15185.06 13092.05 13895.21 13594.56 13797.76 18397.08 162
ACMH90.77 1391.51 13191.63 14391.38 12295.62 8696.87 12391.76 17589.66 11291.58 15478.67 14686.73 11978.12 16193.77 12094.59 14594.54 13998.78 14498.98 74
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet590.36 14390.93 15189.70 14487.99 20492.25 20992.03 17083.51 17992.20 14884.13 11985.59 13486.48 11492.43 13594.61 14494.52 14098.13 17590.85 210
pm-mvs189.19 16189.02 16489.38 14990.40 16795.74 16292.05 16988.10 13186.13 19877.70 14973.72 19179.44 15788.97 17795.81 11894.51 14199.08 10797.78 141
UniMVSNet_NR-MVSNet90.35 14489.96 15790.80 13089.66 17895.83 15892.48 15790.53 9990.96 16279.57 14279.33 16777.14 16893.21 13092.91 17494.50 14299.37 5999.05 64
IB-MVS89.56 1591.71 12692.50 12590.79 13195.94 8398.44 8687.05 20291.38 9093.15 12892.98 4184.78 13885.14 12978.27 20992.47 18094.44 14399.10 10599.08 57
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IterMVS-SCA-FT90.24 14592.48 12887.63 17692.85 14594.30 20093.79 13681.47 19192.66 13469.95 19584.66 14088.38 10789.99 17195.39 13294.34 14497.74 18697.63 145
test-mter90.95 13593.54 11287.93 17190.28 17096.80 12591.44 17782.68 18592.15 14974.37 17689.57 10388.23 10990.88 15796.37 9994.31 14597.93 18197.37 153
anonymousdsp88.90 16591.00 15086.44 19088.74 20195.97 15090.40 19082.86 18388.77 17967.33 20381.18 15881.44 15090.22 16996.23 10494.27 14699.12 10399.16 50
IterMVS90.20 14692.43 13087.61 17792.82 14794.31 19994.11 13281.54 18992.97 13069.90 19684.71 13988.16 11089.96 17295.25 13494.17 14797.31 18897.46 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
COLMAP_ROBcopyleft90.49 1493.27 11192.71 12093.93 9297.75 5797.44 11096.07 9593.17 5895.40 8683.86 12183.76 14688.72 10393.87 11694.25 15494.11 14898.87 13295.28 186
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-LLR91.62 12893.56 11089.35 15093.31 14096.57 13492.02 17187.06 14192.34 14575.05 17290.20 9788.64 10490.93 15496.19 10894.07 14997.75 18496.90 168
TESTMET0.1,191.07 13493.56 11088.17 16190.43 16696.57 13492.02 17182.83 18492.34 14575.05 17290.20 9788.64 10490.93 15496.19 10894.07 14997.75 18496.90 168
tfpnnormal88.50 16887.01 19090.23 13691.36 15895.78 16192.74 15290.09 10283.65 20776.33 16071.46 20369.58 20391.84 14195.54 12694.02 15199.06 11299.03 67
NR-MVSNet89.34 15788.66 16690.13 14190.40 16795.61 16493.04 14989.91 10491.22 15778.96 14577.72 17168.90 20689.16 17694.24 15593.95 15299.32 6598.99 72
TransMVSNet (Re)87.73 18186.79 19288.83 15390.76 16394.40 19791.33 18189.62 11384.73 20475.41 16772.73 19671.41 19386.80 18694.53 14793.93 15399.06 11295.83 178
ACMH+90.88 1291.41 13291.13 14891.74 11895.11 10296.95 12093.13 14789.48 11692.42 14179.93 14185.13 13678.02 16293.82 11993.49 16593.88 15498.94 12597.99 132
UniMVSNet (Re)90.03 15189.61 16090.51 13489.97 17596.12 14692.32 16189.26 11790.99 16180.95 13878.25 17075.08 17791.14 15093.78 15893.87 15599.41 5099.21 43
RPMNet90.19 14792.03 13988.05 16693.46 13695.95 15293.41 14174.59 21392.40 14275.91 16384.22 14386.41 11692.49 13494.42 15093.85 15698.44 16796.96 165
Baseline_NR-MVSNet89.27 15988.01 17590.73 13289.26 18893.71 20492.71 15489.78 11090.73 16381.28 13573.53 19272.85 18692.30 13792.53 17893.84 15799.07 10998.88 85
testgi89.42 15591.50 14687.00 18692.40 15195.59 16689.15 19685.27 16592.78 13372.42 18191.75 8076.00 17384.09 20394.38 15193.82 15898.65 15596.15 175
GA-MVS89.28 15890.75 15487.57 17891.77 15496.48 13692.29 16387.58 13490.61 16665.77 20584.48 14176.84 17189.46 17495.84 11693.68 15998.52 16297.34 155
CP-MVSNet87.89 17987.27 18588.62 15589.30 18695.06 18190.60 18885.78 15587.43 19275.98 16274.60 18368.14 20990.76 15993.07 17293.60 16099.30 7098.98 74
PS-CasMVS87.33 18686.68 19588.10 16289.22 19394.93 18690.35 19185.70 15686.44 19774.01 17773.43 19366.59 21590.04 17092.92 17393.52 16199.28 7298.91 83
PEN-MVS87.22 18886.50 19788.07 16388.88 19794.44 19690.99 18586.21 14886.53 19673.66 17874.97 18066.56 21689.42 17591.20 19593.48 16299.24 7898.31 122
USDC90.69 13890.52 15590.88 12894.17 12696.43 13895.82 10686.76 14393.92 11776.27 16186.49 12574.30 18093.67 12395.04 14093.36 16398.61 15794.13 193
EG-PatchMatch MVS86.68 19087.24 18686.02 19490.58 16596.26 14391.08 18481.59 18884.96 20369.80 19871.35 20475.08 17784.23 20294.24 15593.35 16498.82 13695.46 185
WR-MVS87.93 17688.09 17387.75 17389.26 18895.28 17590.81 18686.69 14488.90 17675.29 16874.31 18773.72 18385.19 19792.26 18193.32 16599.27 7498.81 93
thisisatest051590.12 14992.06 13887.85 17290.03 17396.17 14587.83 19987.45 13691.71 15377.15 15385.40 13584.01 13785.74 19395.41 13193.30 16698.88 13198.43 110
TinyColmap89.42 15588.58 16790.40 13593.80 13495.45 17193.96 13586.54 14692.24 14776.49 15880.83 15970.44 19893.37 12694.45 14993.30 16698.26 17393.37 204
DTE-MVSNet86.67 19186.09 19887.35 18288.45 20394.08 20290.65 18786.05 15286.13 19872.19 18274.58 18566.77 21487.61 18390.31 19893.12 16899.13 10197.62 146
WR-MVS_H87.93 17687.85 17988.03 16889.62 17995.58 16890.47 18985.55 15987.20 19376.83 15674.42 18672.67 18886.37 18993.22 16993.04 16999.33 6398.83 91
MS-PatchMatch91.82 12492.51 12491.02 12595.83 8496.88 12195.05 11584.55 17593.85 11982.01 12982.51 15291.71 8090.52 16595.07 13993.03 17098.13 17594.52 188
v7n86.43 19286.52 19686.33 19187.91 20594.93 18690.15 19283.05 18186.57 19570.21 19371.48 20266.78 21387.72 18194.19 15792.96 17198.92 12798.76 96
v2v48288.25 17287.71 18288.88 15289.23 19295.28 17592.10 16787.89 13388.69 18073.31 17975.32 17871.64 19191.89 14092.10 18692.92 17298.86 13497.99 132
v1088.00 17487.96 17688.05 16689.44 18394.68 19192.36 16083.35 18089.37 17472.96 18073.98 18972.79 18791.35 14893.59 16092.88 17398.81 13998.42 112
pmmvs587.83 18088.09 17387.51 18189.59 18195.48 16989.75 19484.73 17186.07 20071.44 18680.57 16270.09 20190.74 16194.47 14892.87 17498.82 13697.10 159
v119287.51 18387.31 18487.74 17489.04 19594.87 18992.07 16885.03 16688.49 18270.32 19172.65 19770.35 19991.21 14993.59 16092.80 17598.78 14498.42 112
v114487.92 17887.79 18088.07 16389.27 18795.15 18092.17 16685.62 15788.52 18171.52 18573.80 19072.40 18991.06 15293.54 16492.80 17598.81 13998.33 119
V4288.31 17187.95 17788.73 15489.44 18395.34 17492.23 16587.21 13988.83 17774.49 17574.89 18173.43 18590.41 16892.08 18792.77 17798.60 15998.33 119
v888.21 17387.94 17888.51 15689.62 17995.01 18392.31 16284.99 16788.94 17574.70 17475.03 17973.51 18490.67 16292.11 18592.74 17898.80 14198.24 123
v124086.89 18986.75 19487.06 18588.75 20094.65 19391.30 18284.05 17687.49 19168.94 20171.96 20168.86 20790.65 16393.33 16792.72 17998.67 15198.24 123
v192192087.31 18787.13 18887.52 18088.87 19894.72 19091.96 17384.59 17488.28 18369.86 19772.50 19870.03 20291.10 15193.33 16792.61 18098.71 14898.44 109
v14419287.40 18587.20 18787.64 17588.89 19694.88 18891.65 17684.70 17287.80 18771.17 18973.20 19570.91 19590.75 16092.69 17692.49 18198.71 14898.43 110
Anonymous2023120683.84 20385.19 20282.26 20387.38 20892.87 20685.49 20683.65 17886.07 20063.44 21268.42 20869.01 20575.45 21293.34 16692.44 18298.12 17794.20 192
pmmvs685.98 19684.89 20487.25 18388.83 19994.35 19889.36 19585.30 16478.51 21775.44 16662.71 21775.41 17487.65 18293.58 16292.40 18396.89 19197.29 156
v14887.51 18386.79 19288.36 15889.39 18595.21 17989.84 19388.20 13087.61 19077.56 15073.38 19470.32 20086.80 18690.70 19792.31 18498.37 17097.98 134
EU-MVSNet85.62 19787.65 18383.24 20288.54 20292.77 20887.12 20185.32 16286.71 19464.54 20878.52 16975.11 17678.35 20892.25 18292.28 18595.58 20295.93 177
pmmvs490.55 14189.91 15891.30 12490.26 17194.95 18592.73 15387.94 13293.44 12685.35 11682.28 15376.09 17293.02 13293.56 16392.26 18698.51 16396.77 170
MVS-HIRNet85.36 19886.89 19183.57 20090.13 17294.51 19583.57 21172.61 21588.27 18471.22 18868.97 20781.81 14888.91 17893.08 17191.94 18794.97 21089.64 213
TDRefinement89.07 16388.15 17290.14 14095.16 10096.88 12195.55 10990.20 10189.68 17176.42 15976.67 17474.30 18084.85 19893.11 17091.91 18898.64 15694.47 189
SixPastTwentyTwo88.37 17089.47 16187.08 18490.01 17495.93 15487.41 20085.32 16290.26 17070.26 19286.34 13071.95 19090.93 15492.89 17591.72 18998.55 16097.22 157
MIMVSNet180.03 20880.93 20978.97 20872.46 22390.73 21380.81 21582.44 18680.39 21463.64 21057.57 21864.93 21776.37 21091.66 19191.55 19098.07 17889.70 212
test20.0382.92 20585.52 20079.90 20787.75 20691.84 21082.80 21282.99 18282.65 21260.32 21778.90 16870.50 19667.10 21692.05 18890.89 19198.44 16791.80 208
MDTV_nov1_ep1391.57 12993.18 11489.70 14493.39 13896.97 11993.53 13980.91 19295.70 8081.86 13092.40 7189.93 9293.25 12991.97 18990.80 19295.25 20794.46 190
tpm87.95 17589.44 16286.21 19292.53 14994.62 19491.40 17876.36 20591.46 15569.80 19887.43 11475.14 17591.55 14589.85 20390.60 19395.61 20196.96 165
RPSCF94.05 9294.00 9994.12 9096.20 7696.41 13996.61 7991.54 8695.83 7889.73 8496.94 3092.80 7695.35 9291.63 19290.44 19495.27 20693.94 197
pmmvs-eth3d84.33 20282.94 20785.96 19584.16 21490.94 21286.55 20383.79 17784.25 20575.85 16470.64 20556.43 22387.44 18592.20 18390.41 19597.97 18095.68 181
EPMVS90.88 13792.12 13689.44 14894.71 11597.24 11593.55 13876.81 20295.89 7481.77 13191.49 8486.47 11593.87 11690.21 19990.07 19695.92 19793.49 203
SCA90.92 13693.04 11688.45 15793.72 13597.33 11392.77 15176.08 20796.02 7078.26 14891.96 7690.86 8593.99 11590.98 19690.04 19795.88 19894.06 196
PM-MVS84.72 20184.47 20585.03 19684.67 21391.57 21186.27 20482.31 18787.65 18970.62 19076.54 17656.41 22488.75 17992.59 17789.85 19897.54 18796.66 173
ADS-MVSNet89.80 15291.33 14788.00 16994.43 12296.71 13092.29 16374.95 21296.07 6977.39 15188.67 10986.09 11893.26 12888.44 20589.57 19995.68 20093.81 200
PatchmatchNetpermissive90.56 14092.49 12688.31 16093.83 13396.86 12492.42 15976.50 20495.96 7278.31 14791.96 7689.66 9493.48 12590.04 20189.20 20095.32 20493.73 201
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer90.69 13890.48 15690.93 12794.18 12596.08 14794.03 13378.20 19893.47 12589.96 8190.97 9180.30 15393.72 12187.66 20988.75 20195.51 20396.12 176
pmmvs379.16 20980.12 21178.05 21079.36 21886.59 21878.13 21873.87 21476.42 21957.51 22270.59 20657.02 22284.66 20090.10 20088.32 20294.75 21291.77 209
MDTV_nov1_ep13_2view86.30 19388.27 17084.01 19987.71 20794.67 19288.08 19876.78 20390.59 16768.66 20280.46 16480.12 15487.58 18489.95 20288.20 20395.25 20793.90 199
CMPMVSbinary65.18 1784.76 20083.10 20686.69 18895.29 9495.05 18288.37 19785.51 16080.27 21571.31 18768.37 20973.85 18285.25 19587.72 20787.75 20494.38 21488.70 214
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dps90.11 15089.37 16390.98 12693.89 13196.21 14493.49 14077.61 20091.95 15092.74 4588.85 10678.77 16092.37 13687.71 20887.71 20595.80 19994.38 191
new_pmnet81.53 20682.68 20880.20 20583.47 21689.47 21682.21 21478.36 19687.86 18660.14 21967.90 21069.43 20482.03 20689.22 20487.47 20694.99 20987.39 215
tpmrst88.86 16789.62 15987.97 17094.33 12395.98 14992.62 15576.36 20594.62 10676.94 15585.98 13282.80 14592.80 13386.90 21187.15 20794.77 21193.93 198
N_pmnet84.80 19985.10 20384.45 19889.25 19192.86 20784.04 20986.21 14888.78 17866.73 20472.41 19974.87 17985.21 19688.32 20686.45 20895.30 20592.04 207
MDA-MVSNet-bldmvs80.11 20780.24 21079.94 20677.01 22093.21 20578.86 21785.94 15482.71 21160.86 21479.71 16651.77 22683.71 20575.60 21886.37 20993.28 21592.35 205
tpm cat188.90 16587.78 18190.22 13793.88 13295.39 17393.79 13678.11 19992.55 13889.43 8881.31 15779.84 15691.40 14684.95 21286.34 21094.68 21394.09 194
Gipumacopyleft68.35 21466.71 21770.27 21274.16 22268.78 22463.93 22471.77 21783.34 20954.57 22334.37 22231.88 22868.69 21583.30 21485.53 21188.48 21979.78 219
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc73.83 21676.23 22185.13 21982.27 21384.16 20665.58 20752.82 22023.31 23173.55 21391.41 19485.26 21292.97 21694.70 187
pmnet_mix0286.12 19587.12 18984.96 19789.82 17694.12 20184.88 20886.63 14591.78 15265.60 20680.76 16076.98 16986.61 18887.29 21084.80 21396.21 19494.09 194
test_method72.96 21278.68 21266.28 21550.17 22764.90 22575.45 22050.90 22387.89 18562.54 21362.98 21668.34 20870.45 21491.90 19082.41 21488.19 22092.35 205
WB-MVS69.22 21376.91 21460.24 21785.80 21279.37 22156.86 22684.96 16881.50 21318.16 22976.85 17361.07 21834.23 22482.46 21681.81 21581.43 22475.31 222
new-patchmatchnet78.49 21078.19 21378.84 20984.13 21590.06 21477.11 21980.39 19379.57 21659.64 22066.01 21355.65 22575.62 21184.55 21380.70 21696.14 19690.77 211
PMMVS264.36 21765.94 21962.52 21667.37 22477.44 22264.39 22369.32 22161.47 22234.59 22546.09 22141.03 22748.02 22374.56 22078.23 21791.43 21782.76 217
tmp_tt66.88 21486.07 21173.86 22368.22 22233.38 22496.88 4880.67 13988.23 11278.82 15949.78 22182.68 21577.47 21883.19 223
MVEpermissive50.86 1949.54 22051.43 22047.33 22044.14 22859.20 22736.45 22960.59 22241.47 22531.14 22629.58 22317.06 23248.52 22262.22 22274.63 21963.12 22775.87 221
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
FPMVS75.84 21174.59 21577.29 21186.92 20983.89 22085.01 20780.05 19482.91 21060.61 21665.25 21460.41 22063.86 21775.60 21873.60 22087.29 22180.47 218
PMVScopyleft63.12 1867.27 21566.39 21868.30 21377.98 21960.24 22659.53 22576.82 20166.65 22160.74 21554.39 21959.82 22151.24 22073.92 22170.52 22183.48 22279.17 220
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN50.67 21847.85 22153.96 21864.13 22650.98 22938.06 22769.51 21951.40 22424.60 22729.46 22524.39 23056.07 21948.17 22359.70 22271.40 22570.84 223
EMVS49.98 21946.76 22253.74 21964.96 22551.29 22837.81 22869.35 22051.83 22322.69 22829.57 22425.06 22957.28 21844.81 22456.11 22370.32 22668.64 224
testmvs12.09 22116.94 2236.42 2223.15 2296.08 2309.51 2313.84 22521.46 2265.31 23027.49 2266.76 23310.89 22517.06 22515.01 2245.84 22824.75 225
test1239.58 22213.53 2244.97 2231.31 2315.47 2318.32 2322.95 22618.14 2272.03 23220.82 2272.34 23410.60 22610.00 22614.16 2254.60 22923.77 226
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
TPM-MVS98.94 3298.47 8598.04 4292.62 4696.51 3398.76 2995.94 7998.92 12797.55 147
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def63.50 211
9.1499.28 12
SR-MVS99.45 997.61 1499.20 16
our_test_389.78 17793.84 20385.59 205
MTAPA96.83 1099.12 21
MTMP97.18 598.83 26
Patchmatch-RL test34.61 230
XVS96.60 6999.35 1796.82 6990.85 6298.72 3099.46 34
X-MVStestdata96.60 6999.35 1796.82 6990.85 6298.72 3099.46 34
mPP-MVS99.21 2398.29 38
NP-MVS95.32 89
Patchmtry95.96 15193.36 14375.99 20875.19 169
DeepMVS_CXcopyleft86.86 21779.50 21670.43 21890.73 16363.66 20980.36 16560.83 21979.68 20776.23 21789.46 21886.53 216