This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SMA-MVScopyleft77.32 782.51 771.26 775.43 1580.19 882.22 758.26 384.83 764.36 778.19 1583.46 663.61 881.00 180.28 183.66 489.62 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP75.23 1379.60 1570.13 1376.81 678.92 1281.74 857.99 675.30 2959.83 2675.69 1878.45 2460.48 2980.58 279.77 283.94 388.52 10
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS75.62 1279.91 1470.61 1075.76 1078.82 1481.66 957.12 1379.77 1663.04 1370.69 2481.15 1662.99 1180.23 579.54 383.11 889.16 8
ACMMP_NAP76.15 981.17 970.30 1174.09 2179.47 1081.59 1257.09 1481.38 1163.89 1079.02 1380.48 1962.24 1780.05 679.12 482.94 1188.64 9
HPM-MVS++copyleft76.01 1080.47 1270.81 976.60 874.96 3680.18 1758.36 281.96 1063.50 1178.80 1482.53 1164.40 678.74 1078.84 581.81 3387.46 18
SED-MVS79.21 184.74 272.75 178.66 281.96 282.94 458.16 486.82 267.66 188.29 486.15 366.42 280.41 478.65 682.65 1690.92 2
DVP-MVScopyleft78.77 284.89 171.62 478.04 382.05 181.64 1057.96 787.53 166.64 288.77 186.31 163.16 1079.99 778.56 782.31 2291.03 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS77.82 583.46 571.24 875.26 1780.22 782.95 357.85 885.90 364.79 588.54 383.43 766.24 378.21 1778.56 780.34 4689.39 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++78.76 384.44 372.14 276.63 781.93 382.92 558.10 585.86 466.53 387.86 586.16 266.45 180.46 378.53 982.19 2790.29 4
NCCC74.27 1977.83 2470.13 1375.70 1177.41 2280.51 1557.09 1478.25 2062.28 1865.54 3778.26 2562.18 1879.13 878.51 1083.01 1087.68 17
DeepC-MVS66.32 273.85 2278.10 2368.90 2267.92 4979.31 1178.16 2959.28 178.24 2161.13 2067.36 3576.10 3363.40 979.11 978.41 1183.52 588.16 13
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft74.31 1878.87 1868.99 2173.49 2478.56 1579.25 2356.51 1775.33 2760.69 2375.30 1979.12 2361.81 2077.78 2177.93 1282.18 2988.06 14
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS74.87 1578.86 2070.21 1273.99 2277.91 1880.36 1656.63 1678.41 1964.27 874.54 2077.75 2862.96 1278.70 1277.82 1383.02 986.91 21
ACMMPR73.79 2378.41 2168.40 2472.35 2877.79 1979.32 2056.38 1877.67 2358.30 3274.16 2176.66 2961.40 2278.32 1477.80 1482.68 1586.51 22
DPE-MVScopyleft78.11 483.84 471.42 577.82 581.32 482.92 557.81 984.04 863.19 1288.63 286.00 464.52 578.71 1177.63 1582.26 2390.57 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DeepPCF-MVS66.49 174.25 2080.97 1066.41 3167.75 5178.87 1375.61 3954.16 3384.86 658.22 3377.94 1681.01 1762.52 1578.34 1377.38 1680.16 4988.40 11
X-MVS71.18 3275.66 3265.96 3571.71 3076.96 2577.26 3355.88 2272.75 3954.48 4864.39 4474.47 3854.19 6677.84 2077.37 1782.21 2685.85 26
PGM-MVS72.89 2577.13 2667.94 2572.47 2777.25 2379.27 2254.63 2973.71 3657.95 3472.38 2275.33 3560.75 2778.25 1677.36 1882.57 1985.62 28
CSCG74.68 1679.22 1669.40 1775.69 1280.01 979.12 2452.83 4179.34 1763.99 970.49 2582.02 1260.35 3277.48 2477.22 1984.38 187.97 15
CP-MVS72.63 2776.95 2767.59 2670.67 3675.53 3477.95 3156.01 2175.65 2658.82 2969.16 2976.48 3160.46 3077.66 2277.20 2081.65 3786.97 20
DeepC-MVS_fast65.08 372.00 2976.11 2867.21 2868.93 4577.46 2176.54 3554.35 3174.92 3158.64 3165.18 3974.04 4362.62 1477.92 1977.02 2182.16 3086.21 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft77.58 682.93 671.35 677.86 480.55 683.38 157.61 1085.57 561.11 2186.10 782.98 864.76 478.29 1576.78 2283.40 690.20 5
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPM-MVS72.80 2675.90 2969.19 2075.51 1377.68 2081.62 1154.83 2675.96 2562.06 1963.96 4976.58 3058.55 4076.66 3276.77 2382.60 1883.68 40
CDPH-MVS71.47 3175.82 3166.41 3172.97 2677.15 2478.14 3054.71 2769.88 4853.07 5670.98 2374.83 3756.95 5276.22 3376.57 2482.62 1785.09 33
OPM-MVS69.33 3771.05 4667.32 2772.34 2975.70 3379.57 1956.34 1955.21 7653.81 5359.51 6668.96 5859.67 3477.61 2376.44 2582.19 2783.88 38
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMPcopyleft71.57 3075.84 3066.59 3070.30 4076.85 2878.46 2853.95 3473.52 3755.56 3970.13 2671.36 5058.55 4077.00 2776.23 2682.71 1485.81 27
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft75.80 1180.90 1169.86 1575.42 1678.48 1681.43 1357.44 1280.45 1459.32 2785.28 880.82 1863.96 776.89 2876.08 2781.58 3988.30 12
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
train_agg73.89 2178.25 2268.80 2375.25 1872.27 5179.75 1856.05 2074.87 3258.97 2881.83 1179.76 2161.05 2577.39 2576.01 2881.71 3685.61 29
MCST-MVS73.67 2477.39 2569.33 1876.26 978.19 1778.77 2654.54 3075.33 2759.99 2567.96 3179.23 2262.43 1678.00 1875.71 2984.02 287.30 19
TSAR-MVS + MP.75.22 1480.06 1369.56 1674.61 1972.74 4980.59 1455.70 2380.80 1362.65 1586.25 682.92 962.07 1976.89 2875.66 3081.77 3585.19 32
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS77.13 881.70 871.79 379.32 180.76 582.96 257.49 1182.82 964.79 583.69 1084.46 562.83 1377.13 2675.21 3183.35 787.85 16
3Dnovator+62.63 469.51 3572.62 3965.88 3668.21 4876.47 3073.50 4952.74 4270.85 4458.65 3055.97 7969.95 5361.11 2476.80 3075.09 3281.09 4283.23 44
MVS_030469.49 3673.96 3564.28 4467.92 4976.13 3274.90 4247.60 6863.29 5954.09 5267.44 3476.35 3259.53 3575.81 3775.03 3381.62 3883.70 39
ACMM60.30 767.58 4768.82 6166.13 3370.59 3772.01 5376.54 3554.26 3265.64 5454.78 4750.35 10861.72 8358.74 3875.79 3875.03 3381.88 3181.17 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS70.88 3375.02 3366.05 3471.69 3174.47 4177.51 3253.17 3872.89 3854.88 4570.03 2770.48 5257.26 4876.02 3575.01 3581.78 3486.21 23
CLD-MVS67.02 4971.57 4361.71 5171.01 3574.81 3871.62 5138.91 16271.86 4260.70 2264.97 4167.88 6651.88 9276.77 3174.98 3676.11 9669.75 125
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_111021_HR67.62 4670.39 5064.39 4369.77 4170.45 5971.44 5351.72 4760.77 6555.06 4362.14 5866.40 6958.13 4376.13 3474.79 3780.19 4882.04 49
MAR-MVS68.04 4470.74 4864.90 4171.68 3276.33 3174.63 4450.48 5563.81 5655.52 4054.88 8569.90 5457.39 4775.42 4174.79 3779.71 5180.03 57
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LGP-MVS_train68.87 3972.03 4265.18 3969.33 4374.03 4476.67 3453.88 3568.46 4952.05 6063.21 5163.89 7256.31 5675.99 3674.43 3982.83 1384.18 35
PHI-MVS69.27 3874.84 3462.76 5066.83 5474.83 3773.88 4749.32 6070.61 4550.93 6369.62 2874.84 3657.25 4975.53 3974.32 4078.35 6884.17 36
ACMP61.42 568.72 4271.37 4465.64 3769.06 4474.45 4275.88 3853.30 3768.10 5055.74 3861.53 6162.29 7956.97 5174.70 4674.23 4182.88 1284.31 34
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TSAR-MVS + GP.69.71 3473.92 3664.80 4268.27 4770.56 5771.90 5050.75 5171.38 4357.46 3668.68 3075.42 3460.10 3373.47 5173.99 4280.32 4783.97 37
SD-MVS74.43 1778.87 1869.26 1974.39 2073.70 4579.06 2555.24 2581.04 1262.71 1480.18 1282.61 1061.70 2175.43 4073.92 4382.44 2185.22 31
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + ACMM72.56 2879.07 1764.96 4073.24 2573.16 4878.50 2748.80 6679.34 1755.32 4185.04 981.49 1558.57 3975.06 4373.75 4475.35 10885.61 29
AdaColmapbinary67.89 4568.85 6066.77 2973.73 2374.30 4375.28 4053.58 3670.24 4657.59 3551.19 10559.19 9460.74 2875.33 4273.72 4579.69 5477.96 72
3Dnovator60.86 666.99 5170.32 5163.11 4866.63 5574.52 3971.56 5245.76 7767.37 5255.00 4454.31 9068.19 6258.49 4273.97 4973.63 4681.22 4180.23 56
CANet68.77 4073.01 3763.83 4568.30 4675.19 3573.73 4847.90 6763.86 5554.84 4667.51 3374.36 4157.62 4474.22 4873.57 4780.56 4482.36 46
DELS-MVS65.87 5370.30 5260.71 5464.05 7172.68 5070.90 5445.43 8157.49 7149.05 7064.43 4368.66 5955.11 6474.31 4773.02 4879.70 5281.51 50
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet65.14 6069.54 5760.00 5866.61 5667.67 7767.53 6455.32 2462.67 6146.22 8167.74 3265.93 7048.07 11172.17 5772.12 4976.28 9278.47 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CPTT-MVS68.76 4173.01 3763.81 4665.42 6173.66 4676.39 3752.08 4372.61 4050.33 6560.73 6272.65 4659.43 3673.32 5272.12 4979.19 6085.99 25
CS-MVS65.88 5269.71 5661.41 5261.76 8268.14 6967.65 6244.00 10559.14 6952.69 5765.19 3868.13 6360.90 2674.74 4571.58 5181.46 4081.04 53
Effi-MVS+63.28 6365.96 7160.17 5764.26 6768.06 7168.78 5945.71 7954.08 7946.64 7855.92 8063.13 7655.94 6070.38 7671.43 5279.68 5578.70 65
QAPM65.27 5669.49 5860.35 5565.43 6072.20 5265.69 8547.23 6963.46 5749.14 6853.56 9171.04 5157.01 5072.60 5671.41 5377.62 7282.14 48
ETV-MVS63.23 6466.08 7059.91 5963.13 7668.13 7067.62 6344.62 9253.39 8446.23 8058.74 6858.19 9757.45 4673.60 5071.38 5480.39 4579.13 61
EC-MVSNet67.01 5070.27 5363.21 4767.21 5270.47 5869.01 5646.96 7159.16 6853.23 5564.01 4869.71 5660.37 3174.92 4471.24 5582.50 2082.41 45
sasdasda65.62 5472.06 4058.11 6863.94 7271.05 5464.49 9543.18 12674.08 3347.35 7364.17 4671.97 4751.17 9571.87 5870.74 5678.51 6580.56 54
canonicalmvs65.62 5472.06 4058.11 6863.94 7271.05 5464.49 9543.18 12674.08 3347.35 7364.17 4671.97 4751.17 9571.87 5870.74 5678.51 6580.56 54
EG-PatchMatch MVS56.98 10858.24 13255.50 9264.66 6468.62 6561.48 10743.63 11438.44 19441.44 10438.05 18546.18 16243.95 12971.71 6170.61 5877.87 6974.08 105
MSLP-MVS++68.17 4370.72 4965.19 3869.41 4270.64 5674.99 4145.76 7770.20 4760.17 2456.42 7773.01 4461.14 2372.80 5470.54 5979.70 5281.42 51
IB-MVS54.11 1158.36 9760.70 9855.62 9158.67 10368.02 7361.56 10543.15 12846.09 14044.06 9244.24 15650.99 13048.71 10566.70 12970.33 6077.60 7378.50 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
anonymousdsp52.84 14057.78 13647.06 15940.24 20658.95 15253.70 16233.54 19536.51 20132.69 14443.88 15845.40 16647.97 11267.17 12170.28 6174.22 11882.29 47
ACMH52.42 1358.24 9959.56 11956.70 8566.34 5869.59 6066.71 7349.12 6146.08 14128.90 16242.67 17341.20 19052.60 8471.39 6370.28 6176.51 8875.72 92
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IS_MVSNet57.95 10264.26 8250.60 12361.62 8465.25 10457.18 13345.42 8250.79 9926.49 17657.81 7360.05 9134.51 17771.24 6670.20 6378.36 6774.44 101
CS-MVS-test65.18 5868.70 6261.07 5361.92 7968.06 7167.09 7045.18 8558.47 7052.02 6165.76 3666.44 6859.24 3772.71 5570.05 6480.98 4379.40 60
PVSNet_Blended_VisFu63.65 6266.92 6459.83 6060.03 9573.44 4766.33 7648.95 6252.20 9550.81 6456.07 7860.25 9053.56 7273.23 5370.01 6579.30 5783.24 43
Vis-MVSNetpermissive58.48 9365.70 7350.06 12853.40 14967.20 8360.24 11643.32 12348.83 11730.23 15562.38 5761.61 8440.35 14871.03 6769.77 6672.82 13779.11 62
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test250655.82 12059.57 11851.46 11960.39 9264.55 11058.69 12448.87 6353.91 8026.99 17148.97 11441.72 18937.71 16070.96 6869.49 6776.08 9767.37 145
ECVR-MVScopyleft56.44 11560.74 9751.42 12060.39 9264.55 11058.69 12448.87 6353.91 8026.76 17345.55 14653.43 11837.71 16070.96 6869.49 6776.08 9767.32 147
Fast-Effi-MVS+60.36 7863.35 8556.87 8358.70 10265.86 9765.08 9137.11 17653.00 8945.36 8652.12 9956.07 11056.27 5771.28 6569.42 6978.71 6175.69 93
PCF-MVS59.98 867.32 4871.04 4762.97 4964.77 6374.49 4074.78 4349.54 5767.44 5154.39 5158.35 7172.81 4555.79 6271.54 6269.24 7078.57 6283.41 42
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EIA-MVS61.53 7563.79 8458.89 6563.82 7467.61 7865.35 8842.15 13849.98 10345.66 8457.47 7556.62 10456.59 5570.91 7069.15 7179.78 5074.80 99
EPP-MVSNet59.39 8365.45 7452.32 11560.96 8867.70 7658.42 12644.75 9049.71 10527.23 17059.03 6762.20 8043.34 13370.71 7169.13 7279.25 5979.63 59
test111155.24 12659.98 11149.71 12959.80 9864.10 11556.48 14149.34 5952.27 9421.56 18844.49 15451.96 12435.93 17270.59 7269.07 7375.13 11067.40 143
TranMVSNet+NR-MVSNet55.87 11860.14 10850.88 12259.46 10163.82 11657.93 12852.98 3948.94 11520.52 19152.87 9447.33 14936.81 16869.12 8769.03 7477.56 7569.89 124
ACMH+53.71 1259.26 8460.28 10358.06 7064.17 6968.46 6667.51 6550.93 5052.46 9335.83 13340.83 17845.12 17152.32 8769.88 8069.00 7577.59 7476.21 89
casdiffmvs_mvgpermissive65.26 5769.48 5960.33 5662.99 7769.34 6269.80 5545.27 8363.38 5851.11 6265.12 4069.75 5553.51 7471.74 6068.86 7679.33 5678.19 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet56.94 11061.14 9352.05 11760.02 9665.21 10557.44 13152.93 4049.37 10924.31 18354.62 8950.54 13139.04 15268.69 9068.84 7778.53 6470.72 118
OMC-MVS65.16 5971.35 4557.94 7352.95 15268.82 6469.00 5738.28 17079.89 1555.20 4262.76 5468.31 6156.14 5971.30 6468.70 7876.06 10079.67 58
NR-MVSNet55.35 12559.46 12050.56 12461.33 8562.97 12057.91 12951.80 4548.62 12320.59 19051.99 10044.73 17734.10 18068.58 9368.64 7977.66 7170.67 122
OpenMVScopyleft57.13 962.81 6665.75 7259.39 6266.47 5769.52 6164.26 9843.07 13061.34 6450.19 6647.29 12664.41 7154.60 6570.18 7868.62 8077.73 7078.89 64
ET-MVSNet_ETH3D58.38 9661.57 9154.67 9642.15 20265.26 10265.70 8343.82 10748.84 11642.34 10059.76 6547.76 14356.68 5467.02 12668.60 8177.33 7873.73 108
FC-MVSNet-train58.40 9563.15 8652.85 11164.29 6661.84 12655.98 14746.47 7353.06 8734.96 13761.95 6056.37 10839.49 15068.67 9168.36 8275.92 10271.81 113
MVS_111021_LR63.05 6566.43 6759.10 6461.33 8563.77 11765.87 8243.58 11560.20 6653.70 5462.09 5962.38 7855.84 6170.24 7768.08 8374.30 11778.28 70
GeoE62.43 6964.79 7959.68 6164.15 7067.17 8468.80 5844.42 9655.65 7547.38 7251.54 10262.51 7754.04 6969.99 7968.07 8479.28 5878.57 66
HyFIR lowres test56.87 11158.60 12954.84 9456.62 12969.27 6364.77 9342.21 13645.66 14437.50 12833.08 19757.47 10253.33 7965.46 14767.94 8574.60 11471.35 115
UniMVSNet (Re)55.15 13060.39 10249.03 13855.31 13464.59 10955.77 14850.63 5248.66 12220.95 18951.47 10350.40 13234.41 17967.81 11067.89 8677.11 8271.88 112
thisisatest053056.68 11259.68 11353.19 10752.97 15160.96 13659.41 11940.51 15148.26 12641.06 10952.67 9546.30 15949.78 9867.66 11467.83 8775.39 10674.07 106
tttt051756.53 11459.59 11552.95 11052.66 15460.99 13559.21 12140.51 15147.89 12940.40 11252.50 9846.04 16349.78 9867.75 11267.83 8775.15 10974.17 103
MSDG58.46 9458.97 12557.85 7766.27 5966.23 9467.72 6142.33 13453.43 8343.68 9343.39 16445.35 16749.75 10068.66 9267.77 8977.38 7667.96 140
DU-MVS55.41 12459.59 11550.54 12554.60 14062.97 12057.44 13151.80 4548.62 12324.31 18351.99 10047.00 15239.04 15268.11 10367.75 9076.03 10170.72 118
Anonymous20240521160.60 9963.44 7566.71 9161.00 11247.23 6950.62 10136.85 18860.63 8943.03 13769.17 8567.72 9175.41 10572.54 110
FA-MVS(training)60.00 8163.14 8756.33 8759.50 10064.30 11365.15 9038.75 16756.20 7345.77 8253.08 9256.45 10552.10 9069.04 8867.67 9276.69 8575.27 98
DCV-MVSNet59.49 8264.00 8354.23 9761.81 8064.33 11261.42 10843.77 10852.85 9038.94 12155.62 8262.15 8143.24 13669.39 8367.66 9376.22 9475.97 90
UGNet57.03 10765.25 7547.44 15846.54 18866.73 8856.30 14243.28 12450.06 10232.99 14162.57 5663.26 7533.31 18268.25 9867.58 9472.20 14978.29 69
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268855.85 11958.01 13353.33 10457.26 12362.82 12263.29 10441.55 14146.65 13638.34 12234.55 19453.50 11652.43 8667.10 12467.56 9567.13 17273.92 107
CANet_DTU58.88 8764.68 8052.12 11655.77 13266.75 8763.92 9937.04 17753.32 8537.45 12959.81 6461.81 8244.43 12868.25 9867.47 9674.12 11975.33 96
UA-Net58.50 9264.68 8051.30 12166.97 5367.13 8553.68 16345.65 8049.51 10831.58 14962.91 5368.47 6035.85 17368.20 10167.28 9774.03 12069.24 135
Effi-MVS+-dtu60.34 7962.32 8958.03 7264.31 6567.44 8165.99 8042.26 13549.55 10642.00 10348.92 11659.79 9256.27 5768.07 10567.03 9877.35 7775.45 95
GBi-Net55.20 12760.25 10449.31 13252.42 15561.44 12857.03 13444.04 10149.18 11230.47 15148.28 11858.19 9738.22 15568.05 10666.96 9973.69 12469.65 126
test155.20 12760.25 10449.31 13252.42 15561.44 12857.03 13444.04 10149.18 11230.47 15148.28 11858.19 9738.22 15568.05 10666.96 9973.69 12469.65 126
FMVSNet154.08 13558.68 12748.71 14250.90 17161.35 13156.73 13843.94 10645.91 14229.32 16142.72 17256.26 10937.70 16268.05 10666.96 9973.69 12469.50 130
thisisatest051553.85 13656.84 14350.37 12650.25 17558.17 16155.99 14639.90 15941.88 17438.16 12445.91 14045.30 16844.58 12766.15 13966.89 10273.36 13073.57 109
CDS-MVSNet52.42 14357.06 14247.02 16053.92 14758.30 15955.50 15146.47 7342.52 17129.38 16049.50 11152.85 12128.49 19266.70 12966.89 10268.34 16762.63 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER57.19 10661.11 9452.62 11350.82 17258.79 15361.55 10637.86 17348.81 11841.31 10657.43 7652.10 12348.60 10668.19 10266.75 10475.56 10475.68 94
MS-PatchMatch58.19 10160.20 10655.85 9065.17 6264.16 11464.82 9241.48 14250.95 9842.17 10245.38 14756.42 10648.08 11068.30 9766.70 10573.39 12869.46 133
DI_MVS_plusplus_trai61.88 7165.17 7658.06 7060.05 9465.26 10266.03 7944.22 9755.75 7446.73 7654.64 8868.12 6454.13 6869.13 8666.66 10677.18 7976.61 82
TSAR-MVS + COLMAP62.65 6869.90 5454.19 9846.31 18966.73 8865.49 8741.36 14376.57 2446.31 7976.80 1756.68 10353.27 8169.50 8266.65 10772.40 14676.36 88
Anonymous2023121157.71 10460.79 9654.13 9961.68 8365.81 9860.81 11343.70 11251.97 9639.67 11634.82 19363.59 7343.31 13468.55 9566.63 10875.59 10374.13 104
v114458.88 8760.16 10757.39 7958.03 10767.26 8267.14 6844.46 9445.17 14644.33 9147.81 12349.92 13653.20 8267.77 11166.62 10977.15 8076.58 83
v1059.17 8660.60 9957.50 7857.95 10866.73 8867.09 7044.11 9846.85 13445.42 8548.18 12251.07 12753.63 7167.84 10966.59 11076.79 8376.92 79
v119258.51 9159.66 11457.17 8057.82 10967.72 7566.21 7844.83 8944.15 15443.49 9446.68 12847.94 14053.55 7367.39 11866.51 11177.13 8177.20 77
LS3D60.20 8061.70 9058.45 6764.18 6867.77 7467.19 6648.84 6561.67 6341.27 10745.89 14151.81 12554.18 6768.78 8966.50 11275.03 11269.48 131
Fast-Effi-MVS+-dtu56.30 11659.29 12252.82 11258.64 10464.89 10665.56 8632.89 19945.80 14335.04 13645.89 14154.14 11549.41 10167.16 12266.45 11375.37 10770.69 120
MVS_Test62.40 7066.23 6957.94 7359.77 9964.77 10866.50 7541.76 13957.26 7249.33 6762.68 5567.47 6753.50 7668.57 9466.25 11476.77 8476.58 83
v7n55.67 12157.46 14053.59 10356.06 13065.29 10161.06 11143.26 12540.17 18537.99 12540.79 17945.27 17047.09 11567.67 11366.21 11576.08 9776.82 80
FMVSNet255.04 13159.95 11249.31 13252.42 15561.44 12857.03 13444.08 10049.55 10630.40 15446.89 12758.84 9538.22 15567.07 12566.21 11573.69 12469.65 126
casdiffmvspermissive64.09 6168.13 6359.37 6361.81 8068.32 6868.48 6044.45 9561.95 6249.12 6963.04 5269.67 5753.83 7070.46 7366.06 11778.55 6377.43 74
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v2v48258.69 9060.12 11057.03 8157.16 12666.05 9667.17 6743.52 11746.33 13845.19 8749.46 11251.02 12852.51 8567.30 11966.03 11876.61 8674.62 100
Baseline_NR-MVSNet53.50 13757.89 13448.37 14954.60 14059.25 15056.10 14351.84 4449.32 11017.92 19845.38 14747.68 14436.93 16768.11 10365.95 11972.84 13669.57 129
V4256.97 10960.14 10853.28 10548.16 18162.78 12366.30 7737.93 17247.44 13142.68 9848.19 12152.59 12251.90 9167.46 11765.94 12072.72 13976.55 85
v14419258.23 10059.40 12156.87 8357.56 11066.89 8665.70 8345.01 8744.06 15542.88 9646.61 13048.09 13953.49 7766.94 12765.90 12176.61 8677.29 75
v124057.55 10558.63 12856.29 8857.30 12166.48 9363.77 10044.56 9342.77 16942.48 9945.64 14446.28 16053.46 7866.32 13565.80 12276.16 9577.13 78
v192192057.89 10359.02 12456.58 8657.55 11166.66 9264.72 9444.70 9143.55 15942.73 9746.17 13846.93 15353.51 7466.78 12865.75 12376.29 9177.28 76
v858.88 8760.57 10156.92 8257.35 11865.69 9966.69 7442.64 13247.89 12945.77 8249.04 11352.98 12052.77 8367.51 11665.57 12476.26 9375.30 97
diffmvspermissive61.64 7266.55 6655.90 8956.63 12863.71 11867.13 6941.27 14459.49 6746.70 7763.93 5068.01 6550.46 9767.30 11965.51 12573.24 13477.87 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GA-MVS55.67 12158.33 13052.58 11455.23 13763.09 11961.08 11040.15 15842.95 16437.02 13152.61 9647.68 14447.51 11365.92 14165.35 12674.49 11670.68 121
IterMVS-LS58.30 9861.39 9254.71 9559.92 9758.40 15759.42 11843.64 11348.71 12040.25 11457.53 7458.55 9652.15 8965.42 14865.34 12772.85 13575.77 91
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PLCcopyleft52.09 1459.21 8562.47 8855.41 9353.24 15064.84 10764.47 9740.41 15565.92 5344.53 9046.19 13755.69 11155.33 6368.24 10065.30 12874.50 11571.09 116
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA62.78 6766.31 6858.65 6658.47 10568.41 6765.98 8141.22 14578.02 2256.04 3746.65 12959.50 9357.50 4569.67 8165.27 12972.70 14176.67 81
TransMVSNet (Re)51.92 15155.38 14947.88 15560.95 8959.90 14453.95 16045.14 8639.47 18824.85 18043.87 15946.51 15829.15 18967.55 11565.23 13073.26 13365.16 165
PVSNet_BlendedMVS61.63 7364.82 7757.91 7557.21 12467.55 7963.47 10246.08 7554.72 7752.46 5858.59 6960.73 8651.82 9370.46 7365.20 13176.44 8976.50 86
PVSNet_Blended61.63 7364.82 7757.91 7557.21 12467.55 7963.47 10246.08 7554.72 7752.46 5858.59 6960.73 8651.82 9370.46 7365.20 13176.44 8976.50 86
FMVSNet354.78 13259.58 11749.17 13552.37 15861.31 13256.72 13944.04 10149.18 11230.47 15148.28 11858.19 9738.09 15865.48 14665.20 13173.31 13169.45 134
UniMVSNet_ETH3D52.62 14155.98 14548.70 14351.04 16960.71 13856.87 13746.74 7242.52 17126.96 17242.50 17445.95 16437.87 15966.22 13765.15 13472.74 13868.78 138
TAPA-MVS54.74 1060.85 7766.61 6554.12 10047.38 18565.33 10065.35 8836.51 17975.16 3048.82 7154.70 8763.51 7453.31 8068.36 9664.97 13573.37 12974.27 102
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
WR-MVS48.78 17155.06 15341.45 18555.50 13360.40 13943.77 20149.99 5641.92 1738.10 21745.24 15045.56 16517.47 20661.57 16464.60 13673.85 12166.14 157
tfpn200view952.53 14255.51 14749.06 13757.31 11960.24 14055.42 15343.77 10842.85 16727.81 16643.00 17045.06 17337.32 16466.38 13264.54 13772.71 14066.54 150
thres40052.38 14555.51 14748.74 14157.49 11460.10 14355.45 15243.54 11642.90 16626.72 17443.34 16645.03 17536.61 16966.20 13864.53 13872.66 14266.43 151
gg-mvs-nofinetune49.07 16952.56 16945.00 16961.99 7859.78 14553.55 16541.63 14031.62 21012.08 20629.56 20653.28 11929.57 18866.27 13664.49 13971.19 15762.92 174
baseline255.89 11757.82 13553.64 10157.36 11761.09 13459.75 11740.45 15347.38 13241.26 10851.23 10446.90 15448.11 10965.63 14564.38 14074.90 11368.16 139
baseline154.48 13458.69 12649.57 13060.63 9158.29 16055.70 14944.95 8849.20 11129.62 15854.77 8654.75 11335.29 17467.15 12364.08 14171.21 15662.58 178
PEN-MVS49.21 16754.32 15743.24 17954.33 14359.26 14947.04 18751.37 4941.67 1759.97 21246.22 13641.80 18822.97 20260.52 16764.03 14273.73 12366.75 149
MGCFI-Net61.46 7669.72 5551.83 11861.00 8766.16 9556.50 14040.73 14973.98 3535.18 13464.23 4571.42 4942.45 13969.22 8464.01 14375.09 11179.03 63
pm-mvs151.02 15555.55 14645.73 16454.16 14458.52 15550.92 17042.56 13340.32 18325.67 17843.66 16150.34 13330.06 18765.85 14263.97 14470.99 15866.21 154
thres20052.39 14455.37 15048.90 13957.39 11660.18 14155.60 15043.73 11042.93 16527.41 16843.35 16545.09 17236.61 16966.36 13363.92 14572.66 14265.78 160
pmmvs454.66 13356.07 14453.00 10954.63 13957.08 16860.43 11544.10 9951.69 9740.55 11146.55 13344.79 17645.95 12162.54 15863.66 14672.36 14766.20 155
thres100view90052.04 14954.81 15548.80 14057.31 11959.33 14855.30 15442.92 13142.85 16727.81 16643.00 17045.06 17336.99 16664.74 15163.51 14772.47 14565.21 164
tfpnnormal50.16 16152.19 17347.78 15756.86 12758.37 15854.15 15944.01 10438.35 19625.94 17736.10 18937.89 20334.50 17865.93 14063.42 14871.26 15565.28 163
Vis-MVSNet (Re-imp)50.37 15957.73 13841.80 18457.53 11254.35 17445.70 19345.24 8449.80 10413.43 20458.23 7256.42 10620.11 20562.96 15663.36 14968.76 16658.96 190
thres600view751.91 15255.14 15148.14 15157.43 11560.18 14154.60 15843.73 11042.61 17025.20 17943.10 16944.47 18035.19 17566.36 13363.28 15072.66 14266.01 158
pmmvs648.35 17351.64 17544.51 17251.92 16157.94 16449.44 17642.17 13734.45 20324.62 18228.87 20846.90 15429.07 19164.60 15263.08 15169.83 16365.68 161
COLMAP_ROBcopyleft46.52 1551.99 15054.86 15448.63 14449.13 17961.73 12760.53 11436.57 17853.14 8632.95 14237.10 18638.68 20140.49 14765.72 14363.08 15172.11 15064.60 168
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
gm-plane-assit44.74 18945.95 19743.33 17760.88 9046.79 20336.97 21232.24 20224.15 21711.79 20729.26 20732.97 21246.64 11665.09 15062.95 15371.45 15460.42 185
DTE-MVSNet48.03 17753.28 16441.91 18354.64 13857.50 16644.63 20051.66 4841.02 1797.97 21846.26 13540.90 19120.24 20460.45 16862.89 15472.33 14863.97 170
pmmvs-eth3d51.33 15352.25 17250.26 12750.82 17254.65 17356.03 14543.45 12243.51 16037.20 13039.20 18239.04 20042.28 14061.85 16362.78 15571.78 15264.72 167
LTVRE_ROB44.17 1647.06 18350.15 18643.44 17651.39 16458.42 15642.90 20343.51 11822.27 21914.85 20241.94 17734.57 20945.43 12262.28 16162.77 15662.56 18968.83 137
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EPNet_dtu52.05 14858.26 13144.81 17054.10 14550.09 19052.01 16840.82 14853.03 8827.41 16854.90 8457.96 10126.72 19462.97 15562.70 15767.78 17066.19 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v14855.58 12357.61 13953.20 10654.59 14261.86 12561.18 10938.70 16844.30 15342.25 10147.53 12450.24 13448.73 10465.15 14962.61 15873.79 12271.61 114
TDRefinement49.31 16452.44 17045.67 16630.44 21659.42 14759.24 12039.78 16048.76 11931.20 15035.73 19029.90 21542.81 13864.24 15362.59 15970.55 15966.43 151
dmvs_re52.07 14755.11 15248.54 14657.27 12251.93 18357.73 13043.13 12943.65 15726.57 17544.52 15350.00 13536.53 17166.58 13162.15 16069.97 16266.91 148
CP-MVSNet48.37 17253.53 16142.34 18151.35 16558.01 16346.56 18850.54 5341.62 17610.61 20846.53 13440.68 19423.18 20058.71 17761.83 16171.81 15167.36 146
PS-CasMVS48.18 17453.25 16542.27 18251.26 16657.94 16446.51 18950.52 5441.30 17710.56 20945.35 14940.34 19623.04 20158.66 17861.79 16271.74 15367.38 144
IterMVS-SCA-FT52.18 14657.75 13745.68 16551.01 17062.06 12455.10 15634.75 18544.85 14732.86 14351.13 10651.22 12648.74 10362.47 15961.51 16351.61 21171.02 117
WR-MVS_H47.65 17853.67 16040.63 18851.45 16359.74 14644.71 19949.37 5840.69 1817.61 21946.04 13944.34 18217.32 20757.79 18361.18 16473.30 13265.86 159
USDC51.11 15453.71 15948.08 15344.76 19455.99 17153.01 16740.90 14652.49 9236.14 13244.67 15233.66 21143.27 13563.23 15461.10 16570.39 16164.82 166
SixPastTwentyTwo47.55 18050.25 18544.41 17347.30 18654.31 17547.81 18240.36 15633.76 20419.93 19343.75 16032.77 21342.07 14159.82 17060.94 16668.98 16466.37 153
IterMVS53.45 13857.12 14149.17 13549.23 17860.93 13759.05 12234.63 18744.53 14933.22 13951.09 10751.01 12948.38 10762.43 16060.79 16770.54 16069.05 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline55.19 12960.88 9548.55 14549.87 17658.10 16258.70 12334.75 18552.82 9139.48 12060.18 6360.86 8545.41 12361.05 16560.74 16863.10 18572.41 111
CR-MVSNet50.47 15752.61 16847.98 15449.03 18052.94 17848.27 17938.86 16444.41 15039.59 11744.34 15544.65 17946.63 11758.97 17460.31 16965.48 17762.66 175
PatchT48.08 17551.03 18044.64 17142.96 19950.12 18940.36 20835.09 18343.17 16239.59 11742.00 17639.96 19746.63 11758.97 17460.31 16963.21 18462.66 175
CMPMVSbinary37.70 1749.24 16652.71 16745.19 16745.97 19151.23 18647.44 18529.31 20443.04 16344.69 8834.45 19548.35 13843.64 13062.59 15759.82 17160.08 19369.48 131
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PatchMatch-RL50.11 16251.56 17648.43 14746.23 19051.94 18250.21 17338.62 16946.62 13737.51 12742.43 17539.38 19852.24 8860.98 16659.56 17265.76 17660.01 188
TinyColmap47.08 18147.56 19546.52 16142.35 20153.44 17751.77 16940.70 15043.44 16131.92 14729.78 20523.72 22145.04 12661.99 16259.54 17367.35 17161.03 182
PMMVS49.20 16854.28 15843.28 17834.13 21145.70 20548.98 17726.09 21246.31 13934.92 13855.22 8353.47 11747.48 11459.43 17159.04 17468.05 16960.77 183
pmmvs547.07 18251.02 18142.46 18045.18 19351.47 18548.23 18133.09 19838.17 19728.62 16446.60 13143.48 18430.74 18558.28 18058.63 17568.92 16560.48 184
CostFormer56.57 11359.13 12353.60 10257.52 11361.12 13366.94 7235.95 18153.44 8244.68 8955.87 8154.44 11448.21 10860.37 16958.33 17668.27 16870.33 123
ambc45.54 20150.66 17452.63 18140.99 20738.36 19524.67 18122.62 21513.94 22529.14 19065.71 14458.06 17758.60 19767.43 142
TAMVS44.02 19249.18 18937.99 19647.03 18745.97 20445.04 19628.47 20739.11 19120.23 19243.22 16848.52 13728.49 19258.15 18157.95 17858.71 19551.36 201
SCA50.99 15653.22 16648.40 14851.07 16856.78 16950.25 17239.05 16148.31 12541.38 10549.54 11046.70 15746.00 12058.31 17956.28 17962.65 18756.60 195
dps50.42 15851.20 17949.51 13155.88 13156.07 17053.73 16138.89 16343.66 15640.36 11345.66 14337.63 20545.23 12459.05 17256.18 18062.94 18660.16 186
MDA-MVSNet-bldmvs41.36 19743.15 20739.27 19228.74 21852.68 18044.95 19840.84 14732.89 20618.13 19731.61 20022.09 22238.97 15450.45 20956.11 18164.01 18256.23 196
MIMVSNet43.79 19348.53 19138.27 19441.46 20348.97 19350.81 17132.88 20044.55 14822.07 18632.05 19847.15 15024.76 19758.73 17656.09 18257.63 20052.14 199
test-mter45.30 18850.37 18239.38 19133.65 21346.99 20047.59 18318.59 21838.75 19228.00 16543.28 16746.82 15641.50 14457.28 18555.78 18366.93 17563.70 172
CVMVSNet46.38 18652.01 17439.81 19042.40 20050.26 18846.15 19037.68 17440.03 18615.09 20146.56 13247.56 14633.72 18156.50 19155.65 18463.80 18367.53 141
MDTV_nov1_ep13_2view47.62 17949.72 18845.18 16848.05 18253.70 17654.90 15733.80 19339.90 18729.79 15738.85 18341.89 18739.17 15158.99 17355.55 18565.34 17959.17 189
test-LLR49.28 16550.29 18348.10 15255.26 13547.16 19849.52 17443.48 12039.22 18931.98 14543.65 16247.93 14141.29 14556.80 18755.36 18667.08 17361.94 179
TESTMET0.1,146.09 18750.29 18341.18 18636.91 20947.16 19849.52 17420.32 21739.22 18931.98 14543.65 16247.93 14141.29 14556.80 18755.36 18667.08 17361.94 179
MDTV_nov1_ep1350.32 16052.43 17147.86 15649.87 17654.70 17258.10 12734.29 18945.59 14537.71 12647.44 12547.42 14841.86 14258.07 18255.21 18865.34 17958.56 191
FMVSNet540.96 19845.81 19935.29 20334.30 21044.55 20847.28 18628.84 20640.76 18021.62 18729.85 20442.44 18524.77 19657.53 18455.00 18954.93 20350.56 204
FC-MVSNet-test39.65 20448.35 19229.49 20844.43 19539.28 21630.23 21840.44 15443.59 1583.12 22553.00 9342.03 18610.02 22155.09 19854.77 19048.66 21350.71 203
test20.0340.38 20344.20 20335.92 20153.73 14849.05 19138.54 21043.49 11932.55 2079.54 21327.88 20939.12 19912.24 21356.28 19254.69 19157.96 19949.83 209
Anonymous2023120642.28 19545.89 19838.07 19551.96 16048.98 19243.66 20238.81 16638.74 19314.32 20326.74 21040.90 19120.94 20356.64 19054.67 19258.71 19554.59 197
CHOSEN 280x42040.80 19945.05 20235.84 20232.95 21429.57 21944.98 19723.71 21537.54 19918.42 19631.36 20147.07 15146.41 11956.71 18954.65 19348.55 21458.47 192
test0.0.03 143.15 19446.95 19638.72 19355.26 13550.56 18742.48 20443.48 12038.16 19815.11 20035.07 19244.69 17816.47 20855.95 19554.34 19459.54 19449.87 208
tpm cat153.30 13953.41 16253.17 10858.16 10659.15 15163.73 10138.27 17150.73 10046.98 7545.57 14544.00 18349.20 10255.90 19654.02 19562.65 18764.50 169
RPMNet46.41 18448.72 19043.72 17447.77 18452.94 17846.02 19233.92 19144.41 15031.82 14836.89 18737.42 20637.41 16353.88 20254.02 19565.37 17861.47 181
MIMVSNet135.51 20841.41 20828.63 20927.53 22043.36 20938.09 21133.82 19232.01 2086.77 22021.63 21635.43 20811.97 21555.05 19953.99 19753.59 20848.36 211
PatchmatchNetpermissive49.92 16351.29 17748.32 15051.83 16251.86 18453.38 16637.63 17547.90 12840.83 11048.54 11745.30 16845.19 12556.86 18653.99 19761.08 19254.57 198
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PM-MVS44.55 19148.13 19340.37 18932.85 21546.82 20246.11 19129.28 20540.48 18229.99 15639.98 18134.39 21041.80 14356.08 19453.88 19962.19 19065.31 162
testgi38.71 20543.64 20532.95 20552.30 15948.63 19435.59 21535.05 18431.58 2119.03 21630.29 20240.75 19311.19 21955.30 19753.47 20054.53 20645.48 212
RPSCF46.41 18454.42 15637.06 19825.70 22345.14 20645.39 19520.81 21662.79 6035.10 13544.92 15155.60 11243.56 13156.12 19352.45 20151.80 21063.91 171
pmmvs335.10 20938.47 21131.17 20726.37 22240.47 21134.51 21618.09 21924.75 21616.88 19923.05 21426.69 21732.69 18350.73 20851.60 20258.46 19851.98 200
GG-mvs-BLEND36.62 20753.39 16317.06 2160.01 22958.61 15448.63 1780.01 22547.13 1330.02 23043.98 15760.64 880.03 22554.92 20051.47 20353.64 20756.99 194
tpm48.82 17051.27 17845.96 16354.10 14547.35 19756.05 14430.23 20346.70 13543.21 9552.54 9747.55 14737.28 16554.11 20150.50 20454.90 20460.12 187
EU-MVSNet40.63 20145.65 20034.78 20439.11 20746.94 20140.02 20934.03 19033.50 20510.37 21035.57 19137.80 20423.65 19951.90 20450.21 20561.49 19163.62 173
tpmrst48.08 17549.88 18745.98 16252.71 15348.11 19553.62 16433.70 19448.70 12139.74 11548.96 11546.23 16140.29 14950.14 21049.28 20655.80 20157.71 193
Gipumacopyleft25.87 21426.91 21724.66 21228.98 21720.17 22220.46 22034.62 18829.55 2129.10 2144.91 2255.31 22915.76 21049.37 21349.10 20739.03 21729.95 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EPMVS44.66 19047.86 19440.92 18747.97 18344.70 20747.58 18433.27 19648.11 12729.58 15949.65 10944.38 18134.65 17651.71 20547.90 20852.49 20948.57 210
PMVScopyleft27.84 1833.81 21035.28 21532.09 20634.13 21124.81 22132.51 21726.48 21126.41 21419.37 19423.76 21324.02 22025.18 19550.78 20647.24 20954.89 20549.95 207
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet42.24 19641.15 20943.51 17544.06 19840.74 21035.77 21435.35 18235.38 20238.34 12225.63 21238.55 20243.48 13250.77 20747.03 21064.07 18149.98 206
FPMVS38.36 20640.41 21035.97 20038.92 20839.85 21345.50 19425.79 21341.13 17818.70 19530.10 20324.56 21931.86 18449.42 21246.80 21155.04 20251.03 202
pmnet_mix0240.48 20243.80 20436.61 19945.79 19240.45 21242.12 20533.18 19740.30 18424.11 18538.76 18437.11 20724.30 19852.97 20346.66 21250.17 21250.33 205
ADS-MVSNet40.67 20043.38 20637.50 19744.36 19639.79 21442.09 20632.67 20144.34 15228.87 16340.76 18040.37 19530.22 18648.34 21545.87 21346.81 21544.21 214
WB-MVS29.70 21335.40 21423.05 21340.96 20439.59 21518.79 22240.20 15725.26 2151.88 22833.33 19621.97 2233.36 22248.69 21444.60 21433.11 22034.39 216
N_pmnet32.67 21236.85 21327.79 21140.55 20532.13 21835.80 21326.79 21037.24 2009.10 21432.02 19930.94 21416.30 20947.22 21641.21 21538.21 21837.21 215
new-patchmatchnet33.24 21137.20 21228.62 21044.32 19738.26 21729.68 21936.05 18031.97 2096.33 22126.59 21127.33 21611.12 22050.08 21141.05 21644.23 21645.15 213
new_pmnet23.19 21528.17 21617.37 21417.03 22424.92 22019.66 22116.16 22127.05 2134.42 22220.77 21719.20 22412.19 21437.71 21736.38 21734.77 21931.17 217
MVEpermissive12.28 1913.53 21915.72 21910.96 2197.39 22615.71 2246.05 22723.73 21410.29 2253.01 2265.77 2243.41 23011.91 21620.11 21929.79 21813.67 22524.98 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS215.84 21619.68 21811.35 21815.74 22516.95 22313.31 22317.64 22016.08 2210.36 22913.12 21911.47 2261.69 22428.82 21827.24 21919.38 22424.09 220
E-PMN15.09 21713.19 22117.30 21527.80 21912.62 2257.81 22627.54 20814.62 2233.19 2236.89 2222.52 23215.09 21115.93 22120.22 22022.38 22119.53 221
EMVS14.49 21812.45 22216.87 21727.02 22112.56 2268.13 22527.19 20915.05 2223.14 2246.69 2232.67 23115.08 21214.60 22318.05 22120.67 22217.56 223
tmp_tt5.40 2213.97 2272.35 2293.26 2290.44 22417.56 22012.09 20511.48 2217.14 2271.98 22315.68 22215.49 22210.69 226
test_method12.44 22014.66 2209.85 2201.30 2283.32 22813.00 2243.21 22222.42 21810.22 21114.13 21825.64 21811.43 21819.75 22011.61 22319.96 2235.79 224
testmvs0.01 2210.02 2230.00 2220.00 2300.00 2300.01 2310.00 2260.01 2260.00 2310.03 2270.00 2330.01 2260.01 2250.01 2240.00 2280.06 226
test1230.01 2210.02 2230.00 2220.00 2300.00 2300.00 2320.00 2260.01 2260.00 2310.04 2260.00 2330.01 2260.00 2260.01 2240.00 2280.07 225
uanet_test0.00 2230.00 2250.00 2220.00 2300.00 2300.00 2320.00 2260.00 2280.00 2310.00 2280.00 2330.00 2280.00 2260.00 2260.00 2280.00 227
sosnet-low-res0.00 2230.00 2250.00 2220.00 2300.00 2300.00 2320.00 2260.00 2280.00 2310.00 2280.00 2330.00 2280.00 2260.00 2260.00 2280.00 227
sosnet0.00 2230.00 2250.00 2220.00 2300.00 2300.00 2320.00 2260.00 2280.00 2310.00 2280.00 2330.00 2280.00 2260.00 2260.00 2280.00 227
TPM-MVS75.48 1476.70 2979.31 2162.34 1764.71 4277.88 2756.94 5381.88 3183.68 40
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
RE-MVS-def33.01 140
9.1481.81 13
SR-MVS71.46 3454.67 2881.54 14
our_test_351.15 16757.31 16755.12 155
MTAPA65.14 480.20 20
MTMP62.63 1678.04 26
Patchmatch-RL test1.04 230
XVS70.49 3876.96 2574.36 4554.48 4874.47 3882.24 24
X-MVStestdata70.49 3876.96 2574.36 4554.48 4874.47 3882.24 24
mPP-MVS71.67 3374.36 41
NP-MVS72.00 41
Patchmtry47.61 19648.27 17938.86 16439.59 117
DeepMVS_CXcopyleft6.95 2275.98 2282.25 22311.73 2242.07 22711.85 2205.43 22811.75 21711.40 2248.10 22718.38 222