This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SMA-MVScopyleft77.32 782.51 771.26 775.43 1480.19 882.22 758.26 384.83 764.36 778.19 1583.46 663.61 881.00 180.28 183.66 489.62 6
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SteuartSystems-ACMMP75.23 1379.60 1570.13 1376.81 678.92 1281.74 857.99 675.30 2959.83 2575.69 1878.45 2460.48 2980.58 279.77 283.94 388.52 10
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS75.62 1279.91 1470.61 1075.76 1078.82 1481.66 957.12 1379.77 1663.04 1370.69 2481.15 1662.99 1180.23 579.54 383.11 889.16 8
ACMMP_NAP76.15 981.17 970.30 1174.09 2079.47 1081.59 1257.09 1481.38 1163.89 1079.02 1380.48 1962.24 1780.05 679.12 482.94 1188.64 9
HPM-MVS++copyleft76.01 1080.47 1270.81 976.60 874.96 3580.18 1758.36 281.96 1063.50 1178.80 1482.53 1164.40 678.74 1078.84 581.81 3287.46 18
SED-MVS79.21 184.74 272.75 178.66 281.96 282.94 458.16 486.82 267.66 188.29 486.15 366.42 280.41 478.65 682.65 1690.92 2
DVP-MVScopyleft78.77 284.89 171.62 478.04 382.05 181.64 1057.96 787.53 166.64 288.77 186.31 163.16 1079.99 778.56 782.31 2291.03 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS77.82 583.46 571.24 875.26 1680.22 782.95 357.85 885.90 364.79 588.54 383.43 766.24 378.21 1778.56 780.34 4589.39 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++78.76 384.44 372.14 276.63 781.93 382.92 558.10 585.86 466.53 387.86 586.16 266.45 180.46 378.53 982.19 2790.29 4
NCCC74.27 1977.83 2470.13 1375.70 1177.41 2280.51 1557.09 1478.25 2062.28 1765.54 3778.26 2562.18 1879.13 878.51 1083.01 1087.68 17
DeepC-MVS66.32 273.85 2278.10 2368.90 2267.92 4879.31 1178.16 2859.28 178.24 2161.13 1967.36 3576.10 3263.40 979.11 978.41 1183.52 588.16 13
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft74.31 1878.87 1868.99 2173.49 2378.56 1579.25 2256.51 1775.33 2760.69 2275.30 1979.12 2361.81 2077.78 2177.93 1282.18 2988.06 14
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS74.87 1578.86 2070.21 1273.99 2177.91 1880.36 1656.63 1678.41 1964.27 874.54 2077.75 2762.96 1278.70 1277.82 1383.02 986.91 21
ACMMPR73.79 2378.41 2168.40 2472.35 2777.79 1979.32 2056.38 1877.67 2358.30 3174.16 2176.66 2861.40 2278.32 1477.80 1482.68 1586.51 22
DPE-MVScopyleft78.11 483.84 471.42 577.82 581.32 482.92 557.81 984.04 863.19 1288.63 286.00 464.52 578.71 1177.63 1582.26 2390.57 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DeepPCF-MVS66.49 174.25 2080.97 1066.41 3167.75 5078.87 1375.61 3854.16 3384.86 658.22 3277.94 1681.01 1762.52 1578.34 1377.38 1680.16 4888.40 11
X-MVS71.18 3275.66 3265.96 3571.71 2976.96 2577.26 3255.88 2272.75 3754.48 4764.39 4374.47 3754.19 6577.84 2077.37 1782.21 2685.85 26
PGM-MVS72.89 2577.13 2667.94 2572.47 2677.25 2379.27 2154.63 2973.71 3457.95 3372.38 2275.33 3460.75 2778.25 1677.36 1882.57 1985.62 28
CSCG74.68 1679.22 1669.40 1775.69 1280.01 979.12 2352.83 4179.34 1763.99 970.49 2582.02 1260.35 3277.48 2477.22 1984.38 187.97 15
CP-MVS72.63 2776.95 2767.59 2670.67 3575.53 3377.95 3056.01 2175.65 2658.82 2869.16 2976.48 3060.46 3077.66 2277.20 2081.65 3686.97 20
DeepC-MVS_fast65.08 372.00 2976.11 2867.21 2868.93 4477.46 2176.54 3454.35 3174.92 3158.64 3065.18 3974.04 4262.62 1477.92 1977.02 2182.16 3086.21 23
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS77.58 682.93 671.35 677.86 480.55 683.38 157.61 1085.57 561.11 2086.10 782.98 864.76 478.29 1576.78 2283.40 690.20 5
DPM-MVS72.80 2675.90 2969.19 2075.51 1377.68 2081.62 1154.83 2675.96 2562.06 1863.96 4676.58 2958.55 4076.66 3276.77 2382.60 1883.68 40
CDPH-MVS71.47 3175.82 3166.41 3172.97 2577.15 2478.14 2954.71 2769.88 4653.07 5570.98 2374.83 3656.95 5276.22 3376.57 2482.62 1785.09 33
OPM-MVS69.33 3771.05 4567.32 2772.34 2875.70 3279.57 1956.34 1955.21 7453.81 5259.51 6368.96 5559.67 3477.61 2376.44 2582.19 2783.88 38
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMPcopyleft71.57 3075.84 3066.59 3070.30 3976.85 2878.46 2753.95 3473.52 3555.56 3870.13 2671.36 4758.55 4077.00 2776.23 2682.71 1485.81 27
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft75.80 1180.90 1169.86 1575.42 1578.48 1681.43 1357.44 1280.45 1459.32 2685.28 880.82 1863.96 776.89 2876.08 2781.58 3888.30 12
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
train_agg73.89 2178.25 2268.80 2375.25 1772.27 5079.75 1856.05 2074.87 3258.97 2781.83 1179.76 2161.05 2577.39 2576.01 2881.71 3585.61 29
MCST-MVS73.67 2477.39 2569.33 1876.26 978.19 1778.77 2554.54 3075.33 2759.99 2467.96 3179.23 2262.43 1678.00 1875.71 2984.02 287.30 19
TSAR-MVS + MP.75.22 1480.06 1369.56 1674.61 1872.74 4880.59 1455.70 2380.80 1362.65 1586.25 682.92 962.07 1976.89 2875.66 3081.77 3485.19 32
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS77.13 881.70 871.79 379.32 180.76 582.96 257.49 1182.82 964.79 583.69 1084.46 562.83 1377.13 2675.21 3183.35 787.85 16
3Dnovator+62.63 469.51 3572.62 3965.88 3668.21 4776.47 2973.50 4852.74 4270.85 4258.65 2955.97 7669.95 5061.11 2476.80 3075.09 3281.09 4183.23 43
MVS_030469.49 3673.96 3564.28 4467.92 4876.13 3174.90 4147.60 6863.29 5754.09 5167.44 3476.35 3159.53 3575.81 3775.03 3381.62 3783.70 39
ACMM60.30 767.58 4768.82 5966.13 3370.59 3672.01 5276.54 3454.26 3265.64 5254.78 4650.35 10561.72 8058.74 3875.79 3875.03 3381.88 3181.17 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS70.88 3375.02 3366.05 3471.69 3074.47 4077.51 3153.17 3872.89 3654.88 4470.03 2770.48 4957.26 4876.02 3575.01 3581.78 3386.21 23
CLD-MVS67.02 4971.57 4261.71 5171.01 3474.81 3771.62 5038.91 15871.86 4060.70 2164.97 4167.88 6351.88 9176.77 3174.98 3676.11 9469.75 122
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_111021_HR67.62 4670.39 4964.39 4369.77 4070.45 5771.44 5251.72 4760.77 6355.06 4262.14 5566.40 6658.13 4376.13 3474.79 3780.19 4782.04 48
MAR-MVS68.04 4470.74 4764.90 4171.68 3176.33 3074.63 4350.48 5563.81 5455.52 3954.88 8269.90 5157.39 4775.42 4174.79 3779.71 5080.03 55
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LGP-MVS_train68.87 3972.03 4165.18 3969.33 4274.03 4376.67 3353.88 3568.46 4752.05 5963.21 4863.89 6956.31 5575.99 3674.43 3982.83 1384.18 35
PHI-MVS69.27 3874.84 3462.76 5066.83 5374.83 3673.88 4649.32 6070.61 4350.93 6269.62 2874.84 3557.25 4975.53 3974.32 4078.35 6684.17 36
ACMP61.42 568.72 4271.37 4365.64 3769.06 4374.45 4175.88 3753.30 3768.10 4855.74 3761.53 5862.29 7656.97 5174.70 4674.23 4182.88 1284.31 34
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TSAR-MVS + GP.69.71 3473.92 3664.80 4268.27 4670.56 5571.90 4950.75 5171.38 4157.46 3568.68 3075.42 3360.10 3373.47 5173.99 4280.32 4683.97 37
SD-MVS74.43 1778.87 1869.26 1974.39 1973.70 4479.06 2455.24 2581.04 1262.71 1480.18 1282.61 1061.70 2175.43 4073.92 4382.44 2185.22 31
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + ACMM72.56 2879.07 1764.96 4073.24 2473.16 4778.50 2648.80 6679.34 1755.32 4085.04 981.49 1558.57 3975.06 4373.75 4475.35 10685.61 29
AdaColmapbinary67.89 4568.85 5866.77 2973.73 2274.30 4275.28 3953.58 3670.24 4457.59 3451.19 10259.19 9160.74 2875.33 4273.72 4579.69 5377.96 69
3Dnovator60.86 666.99 5170.32 5063.11 4866.63 5474.52 3871.56 5145.76 7767.37 5055.00 4354.31 8768.19 5958.49 4273.97 4973.63 4681.22 4080.23 54
CANet68.77 4073.01 3763.83 4568.30 4575.19 3473.73 4747.90 6763.86 5354.84 4567.51 3374.36 4057.62 4474.22 4873.57 4780.56 4382.36 45
DELS-MVS65.87 5370.30 5160.71 5464.05 7072.68 4970.90 5345.43 8157.49 6949.05 6964.43 4268.66 5655.11 6374.31 4773.02 4879.70 5181.51 49
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet65.14 5969.54 5560.00 5866.61 5567.67 7567.53 6355.32 2462.67 5946.22 7967.74 3265.93 6748.07 10972.17 5772.12 4976.28 9078.47 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CPTT-MVS68.76 4173.01 3763.81 4665.42 6073.66 4576.39 3652.08 4372.61 3850.33 6460.73 5972.65 4559.43 3673.32 5272.12 4979.19 5985.99 25
CS-MVS65.88 5269.71 5461.41 5261.76 8068.14 6767.65 6144.00 10559.14 6752.69 5665.19 3868.13 6060.90 2674.74 4571.58 5181.46 3981.04 52
Effi-MVS+63.28 6265.96 6960.17 5764.26 6668.06 6968.78 5845.71 7954.08 7746.64 7655.92 7763.13 7355.94 5970.38 7571.43 5279.68 5478.70 62
QAPM65.27 5569.49 5660.35 5565.43 5972.20 5165.69 8447.23 6963.46 5549.14 6753.56 8871.04 4857.01 5072.60 5671.41 5377.62 7082.14 47
ETV-MVS63.23 6366.08 6859.91 5963.13 7468.13 6867.62 6244.62 9253.39 8246.23 7858.74 6558.19 9457.45 4673.60 5071.38 5480.39 4479.13 59
DROMVSNet67.01 5070.27 5263.21 4767.21 5170.47 5669.01 5546.96 7159.16 6653.23 5464.01 4569.71 5360.37 3174.92 4471.24 5582.50 2082.41 44
canonicalmvs65.62 5472.06 4058.11 6863.94 7171.05 5364.49 9443.18 12674.08 3347.35 7264.17 4471.97 4651.17 9471.87 5870.74 5678.51 6480.56 53
EG-PatchMatch MVS56.98 10658.24 13055.50 9164.66 6368.62 6361.48 10543.63 11438.44 19141.44 10238.05 18146.18 15843.95 12771.71 6070.61 5777.87 6774.08 102
MSLP-MVS++68.17 4370.72 4865.19 3869.41 4170.64 5474.99 4045.76 7770.20 4560.17 2356.42 7473.01 4361.14 2372.80 5470.54 5879.70 5181.42 50
IB-MVS54.11 1158.36 9560.70 9655.62 9058.67 10068.02 7161.56 10343.15 12746.09 13844.06 9044.24 15250.99 12748.71 10366.70 12770.33 5977.60 7178.50 64
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
anonymousdsp52.84 13857.78 13447.06 15640.24 20158.95 14953.70 15833.54 19136.51 19832.69 14143.88 15445.40 16247.97 11067.17 11970.28 6074.22 11582.29 46
ACMH52.42 1358.24 9759.56 11756.70 8466.34 5769.59 5866.71 7249.12 6146.08 13928.90 15942.67 16941.20 18652.60 8371.39 6270.28 6076.51 8675.72 89
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IS_MVSNet57.95 10064.26 8050.60 12161.62 8265.25 10157.18 13045.42 8250.79 9726.49 17257.81 7060.05 8834.51 17371.24 6570.20 6278.36 6574.44 98
CS-MVS-test65.18 5768.70 6061.07 5361.92 7768.06 6967.09 6945.18 8558.47 6852.02 6065.76 3666.44 6559.24 3772.71 5570.05 6380.98 4279.40 58
PVSNet_Blended_VisFu63.65 6166.92 6259.83 6060.03 9273.44 4666.33 7548.95 6252.20 9350.81 6356.07 7560.25 8753.56 7173.23 5370.01 6479.30 5683.24 42
Vis-MVSNetpermissive58.48 9165.70 7150.06 12653.40 14567.20 8160.24 11443.32 12348.83 11530.23 15262.38 5461.61 8140.35 14571.03 6669.77 6572.82 13479.11 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test250655.82 11859.57 11651.46 11760.39 8964.55 10758.69 12248.87 6353.91 7826.99 16848.97 11141.72 18537.71 15770.96 6769.49 6676.08 9567.37 142
ECVR-MVScopyleft56.44 11360.74 9551.42 11860.39 8964.55 10758.69 12248.87 6353.91 7826.76 17045.55 14353.43 11537.71 15770.96 6769.49 6676.08 9567.32 144
Fast-Effi-MVS+60.36 7663.35 8356.87 8258.70 9965.86 9465.08 9037.11 17253.00 8745.36 8452.12 9656.07 10756.27 5671.28 6469.42 6878.71 6075.69 90
PCF-MVS59.98 867.32 4871.04 4662.97 4964.77 6274.49 3974.78 4249.54 5767.44 4954.39 5058.35 6872.81 4455.79 6171.54 6169.24 6978.57 6183.41 41
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EIA-MVS61.53 7463.79 8258.89 6563.82 7267.61 7665.35 8742.15 13649.98 10145.66 8257.47 7256.62 10156.59 5470.91 6969.15 7079.78 4974.80 96
EPP-MVSNet59.39 8165.45 7252.32 11460.96 8567.70 7458.42 12444.75 9049.71 10327.23 16759.03 6462.20 7743.34 13170.71 7069.13 7179.25 5879.63 57
test111155.24 12459.98 10949.71 12759.80 9564.10 11256.48 13749.34 5952.27 9221.56 18444.49 15051.96 12135.93 16870.59 7169.07 7275.13 10867.40 140
TranMVSNet+NR-MVSNet55.87 11660.14 10650.88 12059.46 9863.82 11357.93 12652.98 3948.94 11320.52 18752.87 9147.33 14536.81 16569.12 8569.03 7377.56 7369.89 121
ACMH+53.71 1259.26 8260.28 10158.06 6964.17 6868.46 6467.51 6450.93 5052.46 9135.83 13140.83 17445.12 16752.32 8669.88 7969.00 7477.59 7276.21 86
casdiffmvs_mvgpermissive65.26 5669.48 5760.33 5662.99 7569.34 6069.80 5445.27 8363.38 5651.11 6165.12 4069.75 5253.51 7371.74 5968.86 7579.33 5578.19 68
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet56.94 10861.14 9152.05 11660.02 9365.21 10257.44 12852.93 4049.37 10724.31 17954.62 8650.54 12839.04 14968.69 8868.84 7678.53 6370.72 115
OMC-MVS65.16 5871.35 4457.94 7252.95 14868.82 6269.00 5638.28 16679.89 1555.20 4162.76 5168.31 5856.14 5871.30 6368.70 7776.06 9879.67 56
NR-MVSNet55.35 12359.46 11850.56 12261.33 8362.97 11757.91 12751.80 4548.62 12120.59 18651.99 9744.73 17334.10 17668.58 9168.64 7877.66 6970.67 119
OpenMVScopyleft57.13 962.81 6565.75 7059.39 6266.47 5669.52 5964.26 9643.07 12861.34 6250.19 6547.29 12364.41 6854.60 6470.18 7768.62 7977.73 6878.89 61
ET-MVSNet_ETH3D58.38 9461.57 8954.67 9542.15 19865.26 9965.70 8243.82 10748.84 11442.34 9859.76 6247.76 13956.68 5367.02 12468.60 8077.33 7673.73 105
FC-MVSNet-train58.40 9363.15 8452.85 11064.29 6561.84 12355.98 14346.47 7353.06 8534.96 13461.95 5756.37 10539.49 14768.67 8968.36 8175.92 10071.81 110
MVS_111021_LR63.05 6466.43 6559.10 6461.33 8363.77 11465.87 8143.58 11560.20 6453.70 5362.09 5662.38 7555.84 6070.24 7668.08 8274.30 11478.28 67
GeoE62.43 6864.79 7759.68 6164.15 6967.17 8268.80 5744.42 9655.65 7347.38 7151.54 9962.51 7454.04 6869.99 7868.07 8379.28 5778.57 63
HyFIR lowres test56.87 10958.60 12754.84 9356.62 12569.27 6164.77 9242.21 13445.66 14237.50 12633.08 19257.47 9953.33 7865.46 14467.94 8474.60 11171.35 112
UniMVSNet (Re)55.15 12860.39 10049.03 13655.31 13064.59 10655.77 14450.63 5248.66 12020.95 18551.47 10050.40 12934.41 17567.81 10867.89 8577.11 8071.88 109
thisisatest053056.68 11059.68 11153.19 10652.97 14760.96 13359.41 11740.51 14848.26 12441.06 10752.67 9246.30 15549.78 9667.66 11267.83 8675.39 10474.07 103
tttt051756.53 11259.59 11352.95 10952.66 15060.99 13259.21 11940.51 14847.89 12740.40 11052.50 9546.04 15949.78 9667.75 11067.83 8675.15 10774.17 100
MSDG58.46 9258.97 12357.85 7666.27 5866.23 9267.72 6042.33 13253.43 8143.68 9143.39 16045.35 16349.75 9868.66 9067.77 8877.38 7467.96 137
DU-MVS55.41 12259.59 11350.54 12354.60 13662.97 11757.44 12851.80 4548.62 12124.31 17951.99 9747.00 14839.04 14968.11 10167.75 8976.03 9970.72 115
Anonymous20240521160.60 9763.44 7366.71 8961.00 11047.23 6950.62 9936.85 18460.63 8643.03 13569.17 8367.72 9075.41 10372.54 107
FA-MVS(training)60.00 7963.14 8556.33 8659.50 9764.30 11065.15 8938.75 16356.20 7145.77 8053.08 8956.45 10252.10 8969.04 8667.67 9176.69 8375.27 95
DCV-MVSNet59.49 8064.00 8154.23 9661.81 7864.33 10961.42 10643.77 10852.85 8838.94 11955.62 7962.15 7843.24 13469.39 8267.66 9276.22 9275.97 87
UGNet57.03 10565.25 7347.44 15546.54 18466.73 8656.30 13843.28 12450.06 10032.99 13862.57 5363.26 7233.31 17868.25 9667.58 9372.20 14678.29 66
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268855.85 11758.01 13153.33 10357.26 11962.82 11963.29 10241.55 13946.65 13438.34 12034.55 19053.50 11352.43 8567.10 12267.56 9467.13 16873.92 104
CANet_DTU58.88 8564.68 7852.12 11555.77 12866.75 8563.92 9737.04 17353.32 8337.45 12759.81 6161.81 7944.43 12668.25 9667.47 9574.12 11675.33 93
UA-Net58.50 9064.68 7851.30 11966.97 5267.13 8353.68 15945.65 8049.51 10631.58 14662.91 5068.47 5735.85 16968.20 9967.28 9674.03 11769.24 132
Effi-MVS+-dtu60.34 7762.32 8758.03 7164.31 6467.44 7965.99 7942.26 13349.55 10442.00 10148.92 11359.79 8956.27 5668.07 10367.03 9777.35 7575.45 92
GBi-Net55.20 12560.25 10249.31 13052.42 15161.44 12557.03 13144.04 10149.18 11030.47 14848.28 11558.19 9438.22 15268.05 10466.96 9873.69 12169.65 123
test155.20 12560.25 10249.31 13052.42 15161.44 12557.03 13144.04 10149.18 11030.47 14848.28 11558.19 9438.22 15268.05 10466.96 9873.69 12169.65 123
FMVSNet154.08 13358.68 12548.71 14050.90 16761.35 12856.73 13543.94 10645.91 14029.32 15842.72 16856.26 10637.70 15968.05 10466.96 9873.69 12169.50 127
thisisatest051553.85 13456.84 14150.37 12450.25 17158.17 15855.99 14239.90 15541.88 17138.16 12245.91 13745.30 16444.58 12566.15 13666.89 10173.36 12773.57 106
CDS-MVSNet52.42 14157.06 14047.02 15753.92 14358.30 15655.50 14746.47 7342.52 16829.38 15749.50 10852.85 11828.49 18866.70 12766.89 10168.34 16362.63 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER57.19 10461.11 9252.62 11250.82 16858.79 15061.55 10437.86 16948.81 11641.31 10457.43 7352.10 12048.60 10468.19 10066.75 10375.56 10275.68 91
MS-PatchMatch58.19 9960.20 10455.85 8965.17 6164.16 11164.82 9141.48 14050.95 9642.17 10045.38 14456.42 10348.08 10868.30 9566.70 10473.39 12569.46 130
DI_MVS_plusplus_trai61.88 7065.17 7458.06 6960.05 9165.26 9966.03 7844.22 9755.75 7246.73 7454.64 8568.12 6154.13 6769.13 8466.66 10577.18 7776.61 79
TSAR-MVS + COLMAP62.65 6769.90 5354.19 9746.31 18566.73 8665.49 8641.36 14176.57 2446.31 7776.80 1756.68 10053.27 8069.50 8166.65 10672.40 14376.36 85
Anonymous2023121157.71 10260.79 9454.13 9861.68 8165.81 9560.81 11143.70 11251.97 9439.67 11434.82 18963.59 7043.31 13268.55 9366.63 10775.59 10174.13 101
v114458.88 8560.16 10557.39 7858.03 10467.26 8067.14 6744.46 9445.17 14444.33 8947.81 12049.92 13253.20 8167.77 10966.62 10877.15 7876.58 80
v1059.17 8460.60 9757.50 7757.95 10566.73 8667.09 6944.11 9846.85 13245.42 8348.18 11951.07 12453.63 7067.84 10766.59 10976.79 8176.92 76
v119258.51 8959.66 11257.17 7957.82 10667.72 7366.21 7744.83 8944.15 15243.49 9246.68 12547.94 13653.55 7267.39 11666.51 11077.13 7977.20 74
LS3D60.20 7861.70 8858.45 6764.18 6767.77 7267.19 6548.84 6561.67 6141.27 10545.89 13851.81 12254.18 6668.78 8766.50 11175.03 10969.48 128
Fast-Effi-MVS+-dtu56.30 11459.29 12052.82 11158.64 10164.89 10365.56 8532.89 19545.80 14135.04 13345.89 13854.14 11249.41 9967.16 12066.45 11275.37 10570.69 117
MVS_Test62.40 6966.23 6757.94 7259.77 9664.77 10566.50 7441.76 13757.26 7049.33 6662.68 5267.47 6453.50 7568.57 9266.25 11376.77 8276.58 80
v7n55.67 11957.46 13853.59 10256.06 12665.29 9861.06 10943.26 12540.17 18237.99 12340.79 17545.27 16647.09 11367.67 11166.21 11476.08 9576.82 77
FMVSNet255.04 12959.95 11049.31 13052.42 15161.44 12557.03 13144.08 10049.55 10430.40 15146.89 12458.84 9238.22 15267.07 12366.21 11473.69 12169.65 123
casdiffmvspermissive64.09 6068.13 6159.37 6361.81 7868.32 6668.48 5944.45 9561.95 6049.12 6863.04 4969.67 5453.83 6970.46 7266.06 11678.55 6277.43 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v2v48258.69 8860.12 10857.03 8057.16 12266.05 9367.17 6643.52 11746.33 13645.19 8549.46 10951.02 12552.51 8467.30 11766.03 11776.61 8474.62 97
Baseline_NR-MVSNet53.50 13557.89 13248.37 14654.60 13659.25 14756.10 13951.84 4449.32 10817.92 19445.38 14447.68 14036.93 16468.11 10165.95 11872.84 13369.57 126
V4256.97 10760.14 10653.28 10448.16 17762.78 12066.30 7637.93 16847.44 12942.68 9648.19 11852.59 11951.90 9067.46 11565.94 11972.72 13676.55 82
v14419258.23 9859.40 11956.87 8257.56 10766.89 8465.70 8245.01 8744.06 15342.88 9446.61 12748.09 13553.49 7666.94 12565.90 12076.61 8477.29 72
v124057.55 10358.63 12656.29 8757.30 11866.48 9163.77 9844.56 9342.77 16642.48 9745.64 14146.28 15653.46 7766.32 13265.80 12176.16 9377.13 75
v192192057.89 10159.02 12256.58 8557.55 10866.66 9064.72 9344.70 9143.55 15642.73 9546.17 13546.93 14953.51 7366.78 12665.75 12276.29 8977.28 73
v858.88 8560.57 9956.92 8157.35 11565.69 9666.69 7342.64 13047.89 12745.77 8049.04 11052.98 11752.77 8267.51 11465.57 12376.26 9175.30 94
diffmvspermissive61.64 7166.55 6455.90 8856.63 12463.71 11567.13 6841.27 14259.49 6546.70 7563.93 4768.01 6250.46 9567.30 11765.51 12473.24 13177.87 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GA-MVS55.67 11958.33 12852.58 11355.23 13363.09 11661.08 10840.15 15442.95 16137.02 12952.61 9347.68 14047.51 11165.92 13865.35 12574.49 11370.68 118
IterMVS-LS58.30 9661.39 9054.71 9459.92 9458.40 15459.42 11643.64 11348.71 11840.25 11257.53 7158.55 9352.15 8865.42 14565.34 12672.85 13275.77 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PLCcopyleft52.09 1459.21 8362.47 8655.41 9253.24 14664.84 10464.47 9540.41 15265.92 5144.53 8846.19 13455.69 10855.33 6268.24 9865.30 12774.50 11271.09 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA62.78 6666.31 6658.65 6658.47 10268.41 6565.98 8041.22 14378.02 2256.04 3646.65 12659.50 9057.50 4569.67 8065.27 12872.70 13876.67 78
TransMVSNet (Re)51.92 14855.38 14747.88 15260.95 8659.90 14153.95 15645.14 8639.47 18524.85 17643.87 15546.51 15429.15 18567.55 11365.23 12973.26 13065.16 161
PVSNet_BlendedMVS61.63 7264.82 7557.91 7457.21 12067.55 7763.47 10046.08 7554.72 7552.46 5758.59 6660.73 8351.82 9270.46 7265.20 13076.44 8776.50 83
PVSNet_Blended61.63 7264.82 7557.91 7457.21 12067.55 7763.47 10046.08 7554.72 7552.46 5758.59 6660.73 8351.82 9270.46 7265.20 13076.44 8776.50 83
FMVSNet354.78 13059.58 11549.17 13352.37 15461.31 12956.72 13644.04 10149.18 11030.47 14848.28 11558.19 9438.09 15565.48 14365.20 13073.31 12869.45 131
UniMVSNet_ETH3D52.62 13955.98 14348.70 14151.04 16560.71 13556.87 13446.74 7242.52 16826.96 16942.50 17045.95 16037.87 15666.22 13465.15 13372.74 13568.78 135
TAPA-MVS54.74 1060.85 7566.61 6354.12 9947.38 18165.33 9765.35 8736.51 17575.16 3048.82 7054.70 8463.51 7153.31 7968.36 9464.97 13473.37 12674.27 99
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
WR-MVS48.78 16855.06 15041.45 18255.50 12960.40 13643.77 19749.99 5641.92 1708.10 21345.24 14745.56 16117.47 20261.57 16164.60 13573.85 11866.14 153
tfpn200view952.53 14055.51 14549.06 13557.31 11660.24 13755.42 14943.77 10842.85 16427.81 16343.00 16645.06 16937.32 16166.38 12964.54 13672.71 13766.54 146
thres40052.38 14355.51 14548.74 13957.49 11160.10 14055.45 14843.54 11642.90 16326.72 17143.34 16245.03 17136.61 16666.20 13564.53 13772.66 13966.43 147
gg-mvs-nofinetune49.07 16652.56 16645.00 16661.99 7659.78 14253.55 16141.63 13831.62 20712.08 20229.56 20153.28 11629.57 18466.27 13364.49 13871.19 15462.92 170
baseline255.89 11557.82 13353.64 10057.36 11461.09 13159.75 11540.45 15047.38 13041.26 10651.23 10146.90 15048.11 10765.63 14264.38 13974.90 11068.16 136
baseline154.48 13258.69 12449.57 12860.63 8858.29 15755.70 14544.95 8849.20 10929.62 15554.77 8354.75 11035.29 17067.15 12164.08 14071.21 15362.58 174
PEN-MVS49.21 16454.32 15443.24 17654.33 13959.26 14647.04 18351.37 4941.67 1729.97 20846.22 13341.80 18422.97 19860.52 16464.03 14173.73 12066.75 145
pm-mvs151.02 15255.55 14445.73 16154.16 14058.52 15250.92 16642.56 13140.32 18025.67 17443.66 15750.34 13030.06 18365.85 13963.97 14270.99 15566.21 150
thres20052.39 14255.37 14848.90 13757.39 11360.18 13855.60 14643.73 11042.93 16227.41 16543.35 16145.09 16836.61 16666.36 13063.92 14372.66 13965.78 156
pmmvs454.66 13156.07 14253.00 10854.63 13557.08 16560.43 11344.10 9951.69 9540.55 10946.55 13044.79 17245.95 11962.54 15563.66 14472.36 14466.20 151
thres100view90052.04 14654.81 15248.80 13857.31 11659.33 14555.30 15042.92 12942.85 16427.81 16343.00 16645.06 16936.99 16364.74 14863.51 14572.47 14265.21 160
tfpnnormal50.16 15852.19 17047.78 15456.86 12358.37 15554.15 15544.01 10438.35 19325.94 17336.10 18537.89 19934.50 17465.93 13763.42 14671.26 15265.28 159
Vis-MVSNet (Re-imp)50.37 15657.73 13641.80 18157.53 10954.35 17145.70 18945.24 8449.80 10213.43 20058.23 6956.42 10320.11 20162.96 15363.36 14768.76 16258.96 186
thres600view751.91 14955.14 14948.14 14857.43 11260.18 13854.60 15443.73 11042.61 16725.20 17543.10 16544.47 17635.19 17166.36 13063.28 14872.66 13966.01 154
pmmvs648.35 17051.64 17244.51 16951.92 15757.94 16149.44 17242.17 13534.45 20024.62 17828.87 20346.90 15029.07 18764.60 14963.08 14969.83 15965.68 157
COLMAP_ROBcopyleft46.52 1551.99 14754.86 15148.63 14249.13 17561.73 12460.53 11236.57 17453.14 8432.95 13937.10 18238.68 19740.49 14465.72 14063.08 14972.11 14764.60 164
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
gm-plane-assit44.74 18645.95 19443.33 17460.88 8746.79 19936.97 20832.24 19824.15 21311.79 20329.26 20232.97 20846.64 11465.09 14762.95 15171.45 15160.42 181
DTE-MVSNet48.03 17453.28 16141.91 18054.64 13457.50 16344.63 19651.66 4841.02 1767.97 21446.26 13240.90 18720.24 20060.45 16562.89 15272.33 14563.97 166
pmmvs-eth3d51.33 15052.25 16950.26 12550.82 16854.65 17056.03 14143.45 12243.51 15737.20 12839.20 17839.04 19642.28 13761.85 16062.78 15371.78 14964.72 163
LTVRE_ROB44.17 1647.06 18050.15 18343.44 17351.39 16058.42 15342.90 19943.51 11822.27 21514.85 19841.94 17334.57 20545.43 12062.28 15862.77 15462.56 18568.83 134
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EPNet_dtu52.05 14558.26 12944.81 16754.10 14150.09 18652.01 16440.82 14653.03 8627.41 16554.90 8157.96 9826.72 19062.97 15262.70 15567.78 16666.19 152
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v14855.58 12157.61 13753.20 10554.59 13861.86 12261.18 10738.70 16444.30 15142.25 9947.53 12150.24 13148.73 10265.15 14662.61 15673.79 11971.61 111
TDRefinement49.31 16152.44 16745.67 16330.44 21159.42 14459.24 11839.78 15648.76 11731.20 14735.73 18629.90 21142.81 13664.24 15062.59 15770.55 15666.43 147
CP-MVSNet48.37 16953.53 15842.34 17851.35 16158.01 16046.56 18450.54 5341.62 17310.61 20446.53 13140.68 19023.18 19658.71 17461.83 15871.81 14867.36 143
PS-CasMVS48.18 17153.25 16242.27 17951.26 16257.94 16146.51 18550.52 5441.30 17410.56 20545.35 14640.34 19223.04 19758.66 17561.79 15971.74 15067.38 141
IterMVS-SCA-FT52.18 14457.75 13545.68 16251.01 16662.06 12155.10 15234.75 18144.85 14532.86 14051.13 10351.22 12348.74 10162.47 15661.51 16051.61 20771.02 114
WR-MVS_H47.65 17553.67 15740.63 18551.45 15959.74 14344.71 19549.37 5840.69 1787.61 21546.04 13644.34 17817.32 20357.79 18061.18 16173.30 12965.86 155
USDC51.11 15153.71 15648.08 15044.76 19055.99 16853.01 16340.90 14452.49 9036.14 13044.67 14933.66 20743.27 13363.23 15161.10 16270.39 15864.82 162
SixPastTwentyTwo47.55 17750.25 18244.41 17047.30 18254.31 17247.81 17840.36 15333.76 20119.93 18943.75 15632.77 20942.07 13859.82 16760.94 16368.98 16066.37 149
IterMVS53.45 13657.12 13949.17 13349.23 17460.93 13459.05 12034.63 18344.53 14733.22 13651.09 10451.01 12648.38 10562.43 15760.79 16470.54 15769.05 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline55.19 12760.88 9348.55 14349.87 17258.10 15958.70 12134.75 18152.82 8939.48 11860.18 6060.86 8245.41 12161.05 16260.74 16563.10 18172.41 108
CR-MVSNet50.47 15452.61 16547.98 15149.03 17652.94 17548.27 17538.86 16044.41 14839.59 11544.34 15144.65 17546.63 11558.97 17160.31 16665.48 17362.66 171
PatchT48.08 17251.03 17744.64 16842.96 19550.12 18540.36 20435.09 17943.17 15939.59 11542.00 17239.96 19346.63 11558.97 17160.31 16663.21 18062.66 171
CMPMVSbinary37.70 1749.24 16352.71 16445.19 16445.97 18751.23 18247.44 18129.31 20043.04 16044.69 8634.45 19148.35 13443.64 12862.59 15459.82 16860.08 18969.48 128
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PatchMatch-RL50.11 15951.56 17348.43 14446.23 18651.94 17950.21 16938.62 16546.62 13537.51 12542.43 17139.38 19452.24 8760.98 16359.56 16965.76 17260.01 184
TinyColmap47.08 17847.56 19246.52 15842.35 19753.44 17451.77 16540.70 14743.44 15831.92 14429.78 20023.72 21745.04 12461.99 15959.54 17067.35 16761.03 178
PMMVS49.20 16554.28 15543.28 17534.13 20645.70 20148.98 17326.09 20846.31 13734.92 13555.22 8053.47 11447.48 11259.43 16859.04 17168.05 16560.77 179
pmmvs547.07 17951.02 17842.46 17745.18 18951.47 18148.23 17733.09 19438.17 19428.62 16146.60 12843.48 18030.74 18158.28 17758.63 17268.92 16160.48 180
CostFormer56.57 11159.13 12153.60 10157.52 11061.12 13066.94 7135.95 17753.44 8044.68 8755.87 7854.44 11148.21 10660.37 16658.33 17368.27 16470.33 120
ambc45.54 19850.66 17052.63 17840.99 20338.36 19224.67 17722.62 21013.94 22029.14 18665.71 14158.06 17458.60 19367.43 139
TAMVS44.02 18949.18 18637.99 19347.03 18345.97 20045.04 19228.47 20339.11 18820.23 18843.22 16448.52 13328.49 18858.15 17857.95 17558.71 19151.36 197
SCA50.99 15353.22 16348.40 14551.07 16456.78 16650.25 16839.05 15748.31 12341.38 10349.54 10746.70 15346.00 11858.31 17656.28 17662.65 18356.60 191
dps50.42 15551.20 17649.51 12955.88 12756.07 16753.73 15738.89 15943.66 15440.36 11145.66 14037.63 20145.23 12259.05 16956.18 17762.94 18260.16 182
MDA-MVSNet-bldmvs41.36 19443.15 20439.27 18928.74 21352.68 17744.95 19440.84 14532.89 20318.13 19331.61 19522.09 21838.97 15150.45 20656.11 17864.01 17856.23 192
MIMVSNet43.79 19048.53 18838.27 19141.46 19948.97 18950.81 16732.88 19644.55 14622.07 18232.05 19347.15 14624.76 19358.73 17356.09 17957.63 19652.14 195
test-mter45.30 18550.37 17939.38 18833.65 20846.99 19647.59 17918.59 21438.75 18928.00 16243.28 16346.82 15241.50 14157.28 18255.78 18066.93 17163.70 168
CVMVSNet46.38 18352.01 17139.81 18742.40 19650.26 18446.15 18637.68 17040.03 18315.09 19746.56 12947.56 14233.72 17756.50 18855.65 18163.80 17967.53 138
MDTV_nov1_ep13_2view47.62 17649.72 18545.18 16548.05 17853.70 17354.90 15333.80 18939.90 18429.79 15438.85 17941.89 18339.17 14858.99 17055.55 18265.34 17559.17 185
test-LLR49.28 16250.29 18048.10 14955.26 13147.16 19449.52 17043.48 12039.22 18631.98 14243.65 15847.93 13741.29 14256.80 18455.36 18367.08 16961.94 175
TESTMET0.1,146.09 18450.29 18041.18 18336.91 20447.16 19449.52 17020.32 21339.22 18631.98 14243.65 15847.93 13741.29 14256.80 18455.36 18367.08 16961.94 175
MDTV_nov1_ep1350.32 15752.43 16847.86 15349.87 17254.70 16958.10 12534.29 18545.59 14337.71 12447.44 12247.42 14441.86 13958.07 17955.21 18565.34 17558.56 187
FMVSNet540.96 19545.81 19635.29 20034.30 20544.55 20447.28 18228.84 20240.76 17721.62 18329.85 19942.44 18124.77 19257.53 18155.00 18654.93 19950.56 200
FC-MVSNet-test39.65 20148.35 18929.49 20544.43 19139.28 21130.23 21440.44 15143.59 1553.12 22153.00 9042.03 18210.02 21755.09 19554.77 18748.66 20950.71 199
test20.0340.38 20044.20 20035.92 19853.73 14449.05 18738.54 20643.49 11932.55 2049.54 20927.88 20439.12 19512.24 20956.28 18954.69 18857.96 19549.83 205
Anonymous2023120642.28 19245.89 19538.07 19251.96 15648.98 18843.66 19838.81 16238.74 19014.32 19926.74 20540.90 18720.94 19956.64 18754.67 18958.71 19154.59 193
CHOSEN 280x42040.80 19645.05 19935.84 19932.95 20929.57 21444.98 19323.71 21137.54 19618.42 19231.36 19647.07 14746.41 11756.71 18654.65 19048.55 21058.47 188
test0.0.03 143.15 19146.95 19338.72 19055.26 13150.56 18342.48 20043.48 12038.16 19515.11 19635.07 18844.69 17416.47 20455.95 19254.34 19159.54 19049.87 204
tpm cat153.30 13753.41 15953.17 10758.16 10359.15 14863.73 9938.27 16750.73 9846.98 7345.57 14244.00 17949.20 10055.90 19354.02 19262.65 18364.50 165
RPMNet46.41 18148.72 18743.72 17147.77 18052.94 17546.02 18833.92 18744.41 14831.82 14536.89 18337.42 20237.41 16053.88 19954.02 19265.37 17461.47 177
MIMVSNet135.51 20541.41 20528.63 20627.53 21543.36 20538.09 20733.82 18832.01 2056.77 21621.63 21135.43 20411.97 21155.05 19653.99 19453.59 20448.36 207
PatchmatchNetpermissive49.92 16051.29 17448.32 14751.83 15851.86 18053.38 16237.63 17147.90 12640.83 10848.54 11445.30 16445.19 12356.86 18353.99 19461.08 18854.57 194
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PM-MVS44.55 18848.13 19040.37 18632.85 21046.82 19846.11 18729.28 20140.48 17929.99 15339.98 17734.39 20641.80 14056.08 19153.88 19662.19 18665.31 158
testgi38.71 20243.64 20232.95 20252.30 15548.63 19035.59 21135.05 18031.58 2089.03 21230.29 19740.75 18911.19 21555.30 19453.47 19754.53 20245.48 208
RPSCF46.41 18154.42 15337.06 19525.70 21845.14 20245.39 19120.81 21262.79 5835.10 13244.92 14855.60 10943.56 12956.12 19052.45 19851.80 20663.91 167
pmmvs335.10 20638.47 20831.17 20426.37 21740.47 20734.51 21218.09 21524.75 21216.88 19523.05 20926.69 21332.69 17950.73 20551.60 19958.46 19451.98 196
GG-mvs-BLEND36.62 20453.39 16017.06 2120.01 22458.61 15148.63 1740.01 22147.13 1310.02 22543.98 15360.64 850.03 22054.92 19751.47 20053.64 20356.99 190
tpm48.82 16751.27 17545.96 16054.10 14147.35 19356.05 14030.23 19946.70 13343.21 9352.54 9447.55 14337.28 16254.11 19850.50 20154.90 20060.12 183
EU-MVSNet40.63 19845.65 19734.78 20139.11 20246.94 19740.02 20534.03 18633.50 20210.37 20635.57 18737.80 20023.65 19551.90 20150.21 20261.49 18763.62 169
tpmrst48.08 17249.88 18445.98 15952.71 14948.11 19153.62 16033.70 19048.70 11939.74 11348.96 11246.23 15740.29 14650.14 20749.28 20355.80 19757.71 189
Gipumacopyleft25.87 21026.91 21324.66 20928.98 21220.17 21720.46 21634.62 18429.55 2099.10 2104.91 2205.31 22415.76 20649.37 21049.10 20439.03 21329.95 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EPMVS44.66 18747.86 19140.92 18447.97 17944.70 20347.58 18033.27 19248.11 12529.58 15649.65 10644.38 17734.65 17251.71 20247.90 20552.49 20548.57 206
PMVScopyleft27.84 1833.81 20735.28 21132.09 20334.13 20624.81 21632.51 21326.48 20726.41 21119.37 19023.76 20824.02 21625.18 19150.78 20347.24 20654.89 20149.95 203
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet42.24 19341.15 20643.51 17244.06 19440.74 20635.77 21035.35 17835.38 19938.34 12025.63 20738.55 19843.48 13050.77 20447.03 20764.07 17749.98 202
FPMVS38.36 20340.41 20735.97 19738.92 20339.85 20945.50 19025.79 20941.13 17518.70 19130.10 19824.56 21531.86 18049.42 20946.80 20855.04 19851.03 198
pmnet_mix0240.48 19943.80 20136.61 19645.79 18840.45 20842.12 20133.18 19340.30 18124.11 18138.76 18037.11 20324.30 19452.97 20046.66 20950.17 20850.33 201
ADS-MVSNet40.67 19743.38 20337.50 19444.36 19239.79 21042.09 20232.67 19744.34 15028.87 16040.76 17640.37 19130.22 18248.34 21145.87 21046.81 21144.21 210
N_pmnet32.67 20936.85 21027.79 20840.55 20032.13 21335.80 20926.79 20637.24 1979.10 21032.02 19430.94 21016.30 20547.22 21241.21 21138.21 21437.21 211
new-patchmatchnet33.24 20837.20 20928.62 20744.32 19338.26 21229.68 21536.05 17631.97 2066.33 21726.59 20627.33 21211.12 21650.08 20841.05 21244.23 21245.15 209
new_pmnet23.19 21128.17 21217.37 21017.03 21924.92 21519.66 21716.16 21727.05 2104.42 21820.77 21219.20 21912.19 21037.71 21336.38 21334.77 21531.17 212
MVEpermissive12.28 1913.53 21515.72 21510.96 2157.39 22115.71 2196.05 22223.73 21010.29 2213.01 2225.77 2193.41 22511.91 21220.11 21529.79 21413.67 22024.98 214
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS215.84 21219.68 21411.35 21415.74 22016.95 21813.31 21817.64 21616.08 2170.36 22413.12 21411.47 2211.69 21928.82 21427.24 21519.38 21924.09 215
E-PMN15.09 21313.19 21717.30 21127.80 21412.62 2207.81 22127.54 20414.62 2193.19 2196.89 2172.52 22715.09 20715.93 21720.22 21622.38 21619.53 216
EMVS14.49 21412.45 21816.87 21327.02 21612.56 2218.13 22027.19 20515.05 2183.14 2206.69 2182.67 22615.08 20814.60 21918.05 21720.67 21717.56 218
tmp_tt5.40 2173.97 2222.35 2243.26 2240.44 22017.56 21612.09 20111.48 2167.14 2221.98 21815.68 21815.49 21810.69 221
test_method12.44 21614.66 2169.85 2161.30 2233.32 22313.00 2193.21 21822.42 21410.22 20714.13 21325.64 21411.43 21419.75 21611.61 21919.96 2185.79 219
testmvs0.01 2170.02 2190.00 2180.00 2250.00 2250.01 2260.00 2220.01 2220.00 2260.03 2220.00 2280.01 2210.01 2210.01 2200.00 2230.06 221
test1230.01 2170.02 2190.00 2180.00 2250.00 2250.00 2270.00 2220.01 2220.00 2260.04 2210.00 2280.01 2210.00 2220.01 2200.00 2230.07 220
uanet_test0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
sosnet-low-res0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
sosnet0.00 2190.00 2210.00 2180.00 2250.00 2250.00 2270.00 2220.00 2240.00 2260.00 2230.00 2280.00 2230.00 2220.00 2220.00 2230.00 222
RE-MVS-def33.01 137
9.1481.81 13
SR-MVS71.46 3354.67 2881.54 14
our_test_351.15 16357.31 16455.12 151
MTAPA65.14 480.20 20
MTMP62.63 1678.04 26
Patchmatch-RL test1.04 225
XVS70.49 3776.96 2574.36 4454.48 4774.47 3782.24 24
X-MVStestdata70.49 3776.96 2574.36 4454.48 4774.47 3782.24 24
mPP-MVS71.67 3274.36 40
NP-MVS72.00 39
Patchmtry47.61 19248.27 17538.86 16039.59 115
DeepMVS_CXcopyleft6.95 2225.98 2232.25 21911.73 2202.07 22311.85 2155.43 22311.75 21311.40 2208.10 22218.38 217