This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
ACMMPR99.30 999.54 799.03 1699.66 1699.64 2699.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1599.72 6499.77 56
MCST-MVS99.11 2099.27 3298.93 2199.67 1399.33 8999.51 2098.31 999.28 3896.57 3599.10 3099.90 3299.71 299.19 3198.35 7599.82 1699.71 89
HFP-MVS99.32 899.53 999.07 1399.69 799.59 4599.63 1298.31 999.56 1197.37 2699.27 1999.97 899.70 399.35 2299.24 1799.71 7499.76 61
PGM-MVS98.86 3199.35 2798.29 3499.77 199.63 2999.67 595.63 4598.66 11895.27 5199.11 2899.82 4199.67 499.33 2499.19 2199.73 5799.74 72
SMA-MVScopyleft99.38 699.60 399.12 999.76 299.62 3399.39 2998.23 1899.52 1698.03 1799.45 1199.98 299.64 599.58 899.30 1199.68 9399.76 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS99.25 1299.50 1298.96 2098.79 5199.55 5399.33 3298.29 1299.75 197.96 1899.15 2499.95 1799.61 699.17 3299.06 2899.81 2299.84 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVScopyleft99.45 299.54 799.35 199.72 699.76 699.63 1298.37 299.63 799.03 398.95 3999.98 299.60 799.60 799.05 2999.74 4999.79 43
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CPTT-MVS99.14 1999.20 3699.06 1499.58 2599.53 5599.45 2597.80 3699.19 5198.32 1298.58 5699.95 1799.60 799.28 2698.20 8699.64 11499.69 95
TSAR-MVS + MP.99.27 1099.57 598.92 2298.78 5299.53 5599.72 298.11 2899.73 297.43 2599.15 2499.96 1299.59 999.73 199.07 2699.88 499.82 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
X-MVS98.93 2999.37 2398.42 3199.67 1399.62 3399.60 1598.15 2399.08 7093.81 8198.46 6199.95 1799.59 999.49 1399.21 2099.68 9399.75 68
CP-MVS99.27 1099.44 1799.08 1299.62 2299.58 4899.53 1898.16 2199.21 4897.79 2099.15 2499.96 1299.59 999.54 1198.86 4499.78 3499.74 72
AdaColmapbinary99.06 2498.98 5199.15 699.60 2499.30 9299.38 3098.16 2199.02 7998.55 798.71 5399.57 5599.58 1299.09 3797.84 10499.64 11499.36 151
ACMMP_NAP99.05 2599.45 1498.58 3099.73 599.60 4399.64 898.28 1399.23 4594.57 6399.35 1699.97 899.55 1399.63 398.66 5699.70 8299.74 72
MP-MVScopyleft99.07 2399.36 2498.74 2799.63 2099.57 5099.66 698.25 1499.00 8195.62 4498.97 3799.94 2599.54 1499.51 1298.79 5399.71 7499.73 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVS99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 699.57 799.97 899.53 1599.65 299.25 1599.84 1299.77 56
MSLP-MVS++99.15 1899.24 3499.04 1599.52 3199.49 6399.09 4498.07 2999.37 2798.47 897.79 7999.89 3499.50 1698.93 4999.45 499.61 12299.76 61
CNVR-MVS99.23 1499.28 3199.17 599.65 1899.34 8699.46 2498.21 1999.28 3898.47 898.89 4499.94 2599.50 1699.42 1798.61 5999.73 5799.52 133
DROMVSNet98.22 5199.44 1796.79 7595.62 12099.56 5199.01 5092.22 9999.17 5394.51 6699.41 1399.62 5199.49 1899.16 3499.26 1499.91 299.94 1
CSCG98.90 3098.93 5398.85 2499.75 399.72 1299.49 2196.58 4299.38 2598.05 1698.97 3797.87 7699.49 1897.78 12798.92 3999.78 3499.90 6
DeepC-MVS_fast98.34 199.17 1799.45 1498.85 2499.55 2899.37 8099.64 898.05 3199.53 1496.58 3498.93 4099.92 2899.49 1899.46 1499.32 1099.80 3099.64 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS97.63 498.33 4898.57 6298.04 4098.62 5599.65 2299.45 2598.15 2399.51 1792.80 9895.74 12696.44 9199.46 2199.37 1999.50 299.78 3499.81 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC99.05 2599.08 4199.02 1899.62 2299.38 7799.43 2898.21 1999.36 3097.66 2397.79 7999.90 3299.45 2299.17 3298.43 6999.77 3999.51 138
train_agg98.73 3599.11 3998.28 3599.36 3899.35 8499.48 2397.96 3398.83 10093.86 8098.70 5499.86 3799.44 2399.08 3998.38 7299.61 12299.58 121
3Dnovator+96.92 798.71 3699.05 4498.32 3399.53 2999.34 8699.06 4694.61 5899.65 597.49 2496.75 10199.86 3799.44 2398.78 6299.30 1199.81 2299.67 101
3Dnovator96.92 798.67 3799.05 4498.23 3799.57 2699.45 6899.11 4294.66 5799.69 396.80 3296.55 11199.61 5299.40 2598.87 5799.49 399.85 1099.66 105
CS-MVS-test98.58 4299.42 2097.60 5198.52 5699.91 198.60 6394.60 6099.37 2794.62 6299.40 1499.16 6099.39 2699.36 2098.85 4799.90 399.92 3
TSAR-MVS + GP.98.66 3999.36 2497.85 4497.16 8199.46 6699.03 4894.59 6199.09 6897.19 2999.73 399.95 1799.39 2698.95 4798.69 5599.75 4499.65 108
HPM-MVS++copyleft99.10 2199.30 3098.86 2399.69 799.48 6499.59 1698.34 499.26 4296.55 3699.10 3099.96 1299.36 2899.25 2798.37 7499.64 11499.66 105
PLCcopyleft97.93 299.02 2898.94 5299.11 1099.46 3399.24 9799.06 4697.96 3399.31 3499.16 197.90 7799.79 4499.36 2898.71 6998.12 9099.65 11099.52 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DVP-MVS++99.41 499.64 199.14 799.69 799.75 999.64 898.33 699.67 498.10 1399.66 499.99 199.33 3099.62 598.86 4499.74 4999.90 6
QAPM98.62 4099.04 4798.13 3899.57 2699.48 6499.17 3894.78 5499.57 1096.16 3896.73 10299.80 4299.33 3098.79 6199.29 1399.75 4499.64 112
PHI-MVS99.08 2299.43 1998.67 2899.15 4499.59 4599.11 4297.35 3999.14 6197.30 2799.44 1299.96 1299.32 3298.89 5499.39 799.79 3199.58 121
DPE-MVScopyleft99.39 599.55 699.20 499.63 2099.71 1599.66 698.33 699.29 3798.40 1199.64 599.98 299.31 3399.56 998.96 3699.85 1099.70 91
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNLPA99.03 2799.05 4499.01 1999.27 4299.22 9999.03 4897.98 3299.34 3299.00 498.25 6899.71 4899.31 3398.80 6098.82 5199.48 15999.17 161
MSP-MVS99.34 799.52 1099.14 799.68 1299.75 999.64 898.31 999.44 2198.10 1399.28 1899.98 299.30 3599.34 2399.05 2999.81 2299.79 43
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft99.25 1299.38 2299.09 1199.69 799.58 4899.56 1798.32 898.85 9597.87 1998.91 4299.92 2899.30 3599.45 1599.38 899.79 3199.58 121
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SED-MVS99.44 399.58 499.28 399.69 799.76 699.62 1498.35 399.51 1799.05 299.60 699.98 299.28 3799.61 698.83 4999.70 8299.77 56
OMC-MVS98.84 3299.01 5098.65 2999.39 3599.23 9899.22 3596.70 4199.40 2497.77 2197.89 7899.80 4299.21 3899.02 4398.65 5799.57 14499.07 168
TAPA-MVS97.53 598.41 4598.84 5797.91 4399.08 4699.33 8999.15 3997.13 4099.34 3293.20 9197.75 8199.19 5999.20 3998.66 7198.13 8999.66 10699.48 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS98.56 4399.32 2897.68 4798.28 6199.89 298.71 6094.53 6399.41 2395.43 4899.05 3598.66 6599.19 4099.21 2999.07 2699.93 199.94 1
thres600view796.69 10096.43 14597.00 7296.28 9899.67 1898.41 7393.99 7497.85 15894.29 7395.96 12085.91 17099.19 4098.26 9597.63 11199.82 1699.73 76
LS3D97.79 6098.25 7397.26 6098.40 5899.63 2999.53 1898.63 199.25 4488.13 12796.93 9894.14 12299.19 4099.14 3599.23 1899.69 8599.42 146
thres40096.71 9996.45 14397.02 6996.28 9899.63 2998.41 7394.00 7397.82 15994.42 7095.74 12686.26 16799.18 4398.20 9997.79 10799.81 2299.70 91
thres20096.76 9596.53 13697.03 6796.31 9599.67 1898.37 7693.99 7497.68 16494.49 6795.83 12586.77 16199.18 4398.26 9597.82 10599.82 1699.66 105
ACMMPcopyleft98.74 3499.03 4898.40 3299.36 3899.64 2699.20 3697.75 3798.82 10295.24 5298.85 4599.87 3699.17 4598.74 6797.50 11799.71 7499.76 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
canonicalmvs97.31 7697.81 9596.72 7696.20 10199.45 6898.21 8591.60 11199.22 4695.39 4998.48 5990.95 14099.16 4697.66 13499.05 2999.76 4199.90 6
tfpn200view996.75 9696.51 13897.03 6796.31 9599.67 1898.41 7393.99 7497.35 16894.52 6495.90 12286.93 15999.14 4798.26 9597.80 10699.82 1699.70 91
SteuartSystems-ACMMP99.20 1599.51 1198.83 2699.66 1699.66 2199.71 398.12 2799.14 6196.62 3399.16 2399.98 299.12 4899.63 399.19 2199.78 3499.83 27
Skip Steuart: Steuart Systems R&D Blog.
MSDG98.27 5098.29 7198.24 3699.20 4399.22 9999.20 3697.82 3599.37 2794.43 6995.90 12297.31 8299.12 4898.76 6498.35 7599.67 10199.14 165
CDPH-MVS98.41 4599.10 4097.61 5099.32 4199.36 8199.49 2196.15 4498.82 10291.82 11098.41 6299.66 5099.10 5098.93 4998.97 3599.75 4499.58 121
OpenMVScopyleft96.23 1197.95 5898.45 6797.35 5599.52 3199.42 7398.91 5394.61 5898.87 9292.24 10894.61 13999.05 6399.10 5098.64 7399.05 2999.74 4999.51 138
thres100view90096.72 9896.47 14197.00 7296.31 9599.52 5898.28 8294.01 7297.35 16894.52 6495.90 12286.93 15999.09 5298.07 10897.87 10299.81 2299.63 114
TSAR-MVS + ACMM98.77 3399.45 1497.98 4299.37 3699.46 6699.44 2798.13 2699.65 592.30 10698.91 4299.95 1799.05 5399.42 1798.95 3799.58 14099.82 28
MVS_111021_LR98.67 3799.41 2197.81 4599.37 3699.53 5598.51 6695.52 4799.27 4094.85 5899.56 899.69 4999.04 5499.36 2098.88 4299.60 13099.58 121
HyFIR lowres test95.99 11896.56 13495.32 10797.99 6799.65 2296.54 13788.86 15298.44 12989.77 12384.14 20597.05 8699.03 5598.55 8398.19 8799.73 5799.86 19
PCF-MVS97.50 698.18 5398.35 7097.99 4198.65 5499.36 8198.94 5298.14 2598.59 12093.62 8696.61 10799.76 4799.03 5597.77 12897.45 12299.57 14498.89 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR98.59 4199.36 2497.68 4799.42 3499.61 3898.14 8894.81 5399.31 3495.00 5699.51 999.79 4499.00 5798.94 4898.83 4999.69 8599.57 126
EIA-MVS97.70 6598.78 5896.44 8895.72 11599.65 2298.14 8893.72 8198.30 13692.31 10598.63 5597.90 7598.97 5898.92 5198.30 8199.78 3499.80 35
casdiffmvspermissive96.93 9197.43 10796.34 8995.70 11699.50 6297.75 10293.22 9298.98 8392.64 9994.97 13591.71 13898.93 5998.62 7598.52 6499.82 1699.72 86
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SF-MVS99.18 1699.32 2899.03 1699.65 1899.41 7598.87 5498.24 1799.14 6198.73 599.11 2899.92 2898.92 6099.22 2898.84 4899.76 4199.56 127
baseline197.58 6898.05 8497.02 6996.21 10099.45 6897.71 10393.71 8298.47 12895.75 4398.78 4893.20 13298.91 6198.52 8598.44 6799.81 2299.53 130
casdiffmvs_mvgpermissive97.27 7897.97 9096.46 8795.83 11199.51 6198.42 7293.32 8998.34 13492.38 10495.64 12995.35 10698.91 6198.73 6898.45 6699.86 999.80 35
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS98.05 5599.25 3396.65 7995.61 12199.61 3898.26 8493.52 8498.90 9193.74 8599.32 1799.20 5898.90 6399.21 2998.72 5499.87 899.79 43
Anonymous2023121197.10 8597.06 12297.14 6296.32 9499.52 5898.16 8793.76 7898.84 9995.98 4090.92 16894.58 11798.90 6397.72 13298.10 9299.71 7499.75 68
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7997.32 5698.84 4999.45 6899.28 3395.43 4899.48 1991.80 11194.83 13898.36 7198.90 6398.09 10597.85 10399.68 9399.15 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test250697.16 8296.68 13297.73 4696.95 8599.79 498.48 6794.42 6599.17 5397.74 2299.15 2480.93 19998.89 6699.03 4199.09 2499.88 499.62 116
ECVR-MVScopyleft97.27 7897.09 11997.48 5396.95 8599.79 498.48 6794.42 6599.17 5396.28 3793.54 14989.39 14998.89 6699.03 4199.09 2499.88 499.61 119
Anonymous20240521197.40 10896.45 9199.54 5498.08 9393.79 7798.24 14093.55 14894.41 11898.88 6898.04 11398.24 8499.75 4499.76 61
MAR-MVS97.71 6498.04 8597.32 5699.35 4098.91 11397.65 10691.68 10998.00 14897.01 3197.72 8394.83 11298.85 6998.44 9098.86 4499.41 16999.52 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test111197.09 8696.83 12997.39 5496.92 8799.81 398.44 7194.45 6499.17 5395.85 4292.10 16288.97 15098.78 7099.02 4399.11 2399.88 499.63 114
Fast-Effi-MVS+95.38 13096.52 13794.05 12594.15 14899.14 10397.24 11886.79 17298.53 12587.62 13394.51 14087.06 15698.76 7198.60 7998.04 9599.72 6499.77 56
DPM-MVS98.31 4998.53 6498.05 3998.76 5398.77 12099.13 4098.07 2999.10 6794.27 7496.70 10399.84 4098.70 7297.90 12198.11 9199.40 17199.28 154
Effi-MVS+95.81 12197.31 11594.06 12495.09 13699.35 8497.24 11888.22 16198.54 12485.38 14798.52 5788.68 15198.70 7298.32 9397.93 9799.74 4999.84 23
TSAR-MVS + COLMAP96.79 9496.55 13597.06 6597.70 7098.46 14499.07 4596.23 4399.38 2591.32 11498.80 4685.61 17298.69 7497.64 13796.92 13399.37 17399.06 169
EPP-MVSNet97.75 6398.71 6096.63 8195.68 11899.56 5197.51 10893.10 9599.22 4694.99 5797.18 9397.30 8398.65 7598.83 5898.93 3899.84 1299.92 3
CHOSEN 280x42097.99 5799.24 3496.53 8398.34 5999.61 3898.36 7889.80 14399.27 4095.08 5599.81 198.58 6798.64 7699.02 4398.92 3998.93 18799.48 142
ET-MVSNet_ETH3D96.17 11496.99 12495.21 10888.53 20998.54 13998.28 8292.61 9798.85 9593.60 8799.06 3490.39 14298.63 7795.98 18496.68 13899.61 12299.41 147
MVS_Test97.30 7798.54 6395.87 9995.74 11499.28 9398.19 8691.40 11699.18 5291.59 11298.17 7096.18 9698.63 7798.61 7698.55 6199.66 10699.78 49
DCV-MVSNet97.56 6998.36 6996.62 8296.44 9298.36 15398.37 7691.73 10899.11 6694.80 5998.36 6596.28 9498.60 7998.12 10298.44 6799.76 4199.87 16
GeoE95.98 12097.24 11794.51 11695.02 13899.38 7798.02 9587.86 16698.37 13287.86 13192.99 16193.54 12798.56 8098.61 7697.92 9899.73 5799.85 22
diffmvspermissive96.83 9397.33 11196.25 9095.76 11399.34 8698.06 9493.22 9299.43 2292.30 10696.90 9989.83 14898.55 8198.00 11698.14 8899.64 11499.70 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMMVS97.52 7098.39 6896.51 8595.82 11298.73 12797.80 9993.05 9698.76 11294.39 7299.07 3397.03 8798.55 8198.31 9497.61 11299.43 16699.21 160
RPSCF97.61 6798.16 8096.96 7498.10 6299.00 10698.84 5693.76 7899.45 2094.78 6099.39 1599.31 5798.53 8396.61 16395.43 17297.74 20097.93 194
IS_MVSNet97.86 5998.86 5596.68 7796.02 10299.72 1298.35 7993.37 8898.75 11594.01 7596.88 10098.40 7098.48 8499.09 3799.42 599.83 1599.80 35
PatchMatch-RL97.77 6298.25 7397.21 6199.11 4599.25 9597.06 12894.09 7198.72 11695.14 5498.47 6096.29 9398.43 8598.65 7297.44 12399.45 16398.94 171
CANet98.46 4499.16 3797.64 4998.48 5799.64 2699.35 3194.71 5699.53 1495.17 5397.63 8599.59 5398.38 8698.88 5698.99 3499.74 4999.86 19
CHOSEN 1792x268896.41 10896.99 12495.74 10298.01 6699.72 1297.70 10490.78 12899.13 6590.03 12087.35 19595.36 10598.33 8798.59 8198.91 4199.59 13699.87 16
FA-MVS(training)96.52 10798.29 7194.45 11895.88 10999.52 5897.66 10581.47 19498.94 8693.79 8495.54 13399.11 6198.29 8898.89 5496.49 14599.63 11999.52 133
thisisatest053097.23 8098.25 7396.05 9495.60 12399.59 4596.96 13093.23 9099.17 5392.60 10198.75 5196.19 9598.17 8998.19 10096.10 15899.72 6499.77 56
tttt051797.23 8098.24 7696.04 9595.60 12399.60 4396.94 13193.23 9099.15 5892.56 10298.74 5296.12 9898.17 8998.21 9896.10 15899.73 5799.78 49
ACMM96.26 996.67 10296.69 13196.66 7897.29 7898.46 14496.48 14095.09 5099.21 4893.19 9298.78 4886.73 16298.17 8997.84 12596.32 15099.74 4999.49 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet195.77 12296.41 14695.03 10993.42 16097.86 16997.11 12589.89 14098.53 12592.00 10989.17 18093.23 13198.15 9298.07 10898.34 7799.61 12299.69 95
DI_MVS_plusplus_trai96.90 9297.49 10296.21 9195.61 12199.40 7698.72 5992.11 10099.14 6192.98 9793.08 15995.14 10898.13 9398.05 11297.91 10099.74 4999.73 76
MVS_030498.14 5499.03 4897.10 6398.05 6599.63 2999.27 3494.33 6899.63 793.06 9497.32 8899.05 6398.09 9498.82 5998.87 4399.81 2299.89 10
OPM-MVS96.22 11395.85 15496.65 7997.75 6898.54 13999.00 5195.53 4696.88 18189.88 12195.95 12186.46 16698.07 9597.65 13696.63 14099.67 10198.83 178
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PVSNet_BlendedMVS97.51 7197.71 9697.28 5898.06 6399.61 3897.31 11495.02 5199.08 7095.51 4698.05 7290.11 14398.07 9598.91 5298.40 7099.72 6499.78 49
PVSNet_Blended97.51 7197.71 9697.28 5898.06 6399.61 3897.31 11495.02 5199.08 7095.51 4698.05 7290.11 14398.07 9598.91 5298.40 7099.72 6499.78 49
CLD-MVS96.74 9796.51 13897.01 7196.71 8998.62 13398.73 5894.38 6798.94 8694.46 6897.33 8787.03 15798.07 9597.20 15396.87 13499.72 6499.54 129
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline97.45 7398.70 6195.99 9895.89 10799.36 8198.29 8191.37 11799.21 4892.99 9698.40 6396.87 8897.96 9998.60 7998.60 6099.42 16899.86 19
DELS-MVS98.19 5298.77 5997.52 5298.29 6099.71 1599.12 4194.58 6298.80 10595.38 5096.24 11698.24 7397.92 10099.06 4099.52 199.82 1699.79 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GBi-Net96.98 8998.00 8895.78 10093.81 15397.98 16298.09 9091.32 11898.80 10593.92 7797.21 9095.94 10197.89 10198.07 10898.34 7799.68 9399.67 101
test196.98 8998.00 8895.78 10093.81 15397.98 16298.09 9091.32 11898.80 10593.92 7797.21 9095.94 10197.89 10198.07 10898.34 7799.68 9399.67 101
FMVSNet296.64 10397.50 10195.63 10593.81 15397.98 16298.09 9090.87 12498.99 8293.48 8893.17 15695.25 10797.89 10198.63 7498.80 5299.68 9399.67 101
MDTV_nov1_ep1395.57 12597.48 10393.35 14395.43 13098.97 11097.19 12183.72 19298.92 9087.91 13097.75 8196.12 9897.88 10496.84 16295.64 17097.96 19898.10 190
UniMVSNet_ETH3D93.15 16992.33 20294.11 12393.91 15098.61 13594.81 17290.98 12397.06 17787.51 13482.27 20976.33 21597.87 10594.79 19997.47 12199.56 14799.81 33
IterMVS-LS96.12 11697.48 10394.53 11595.19 13597.56 18797.15 12289.19 15099.08 7088.23 12694.97 13594.73 11497.84 10697.86 12498.26 8399.60 13099.88 14
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LGP-MVS_train96.23 11296.89 12695.46 10697.32 7598.77 12098.81 5793.60 8398.58 12185.52 14599.08 3286.67 16397.83 10797.87 12397.51 11699.69 8599.73 76
SCA94.95 13797.44 10692.04 15895.55 12599.16 10196.26 14579.30 20499.02 7985.73 14498.18 6997.13 8597.69 10896.03 18294.91 18697.69 20397.65 196
HQP-MVS96.37 10996.58 13396.13 9397.31 7798.44 14698.45 7095.22 4998.86 9388.58 12598.33 6687.00 15897.67 10997.23 15196.56 14399.56 14799.62 116
FMVSNet397.02 8898.12 8295.73 10393.59 15997.98 16298.34 8091.32 11898.80 10593.92 7797.21 9095.94 10197.63 11098.61 7698.62 5899.61 12299.65 108
CostFormer94.25 15394.88 16393.51 13895.43 13098.34 15496.21 14680.64 19797.94 15394.01 7598.30 6786.20 16997.52 11192.71 20692.69 20297.23 20998.02 192
FMVSNet595.42 12896.47 14194.20 12192.26 17295.99 20895.66 15387.15 17097.87 15693.46 8996.68 10493.79 12697.52 11197.10 15797.21 12899.11 18496.62 208
EPMVS95.05 13596.86 12892.94 14895.84 11098.96 11196.68 13379.87 20099.05 7690.15 11897.12 9495.99 10097.49 11395.17 19394.75 19197.59 20496.96 204
FC-MVSNet-train97.04 8797.91 9296.03 9696.00 10498.41 14996.53 13993.42 8599.04 7893.02 9598.03 7494.32 12097.47 11497.93 11997.77 10899.75 4499.88 14
CANet_DTU96.64 10399.08 4193.81 12897.10 8299.42 7398.85 5590.01 13799.31 3479.98 17999.78 299.10 6297.42 11598.35 9298.05 9499.47 16199.53 130
PatchmatchNetpermissive94.70 14297.08 12191.92 16395.53 12698.85 11595.77 15179.54 20298.95 8485.98 14198.52 5796.45 8997.39 11695.32 19094.09 19697.32 20697.38 199
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst93.86 16195.88 15291.50 17095.69 11798.62 13395.64 15479.41 20398.80 10583.76 15495.63 13096.13 9797.25 11792.92 20592.31 20497.27 20796.74 205
DeepPCF-MVS97.74 398.34 4799.46 1397.04 6698.82 5099.33 8996.28 14497.47 3899.58 994.70 6198.99 3699.85 3997.24 11899.55 1099.34 997.73 20299.56 127
ACMP96.25 1096.62 10596.72 13096.50 8696.96 8498.75 12497.80 9994.30 6998.85 9593.12 9398.78 4886.61 16497.23 11997.73 13196.61 14199.62 12099.71 89
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ADS-MVSNet94.65 14497.04 12391.88 16695.68 11898.99 10895.89 14979.03 20799.15 5885.81 14396.96 9698.21 7497.10 12094.48 20194.24 19597.74 20097.21 200
tfpnnormal93.85 16294.12 17793.54 13793.22 16198.24 15795.45 15891.96 10594.61 20783.91 15090.74 17081.75 19697.04 12197.49 14296.16 15699.68 9399.84 23
ACMH95.42 1495.27 13395.96 15094.45 11896.83 8898.78 11994.72 17591.67 11098.95 8486.82 13896.42 11383.67 18397.00 12297.48 14396.68 13899.69 8599.76 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+95.51 1395.40 12996.00 14894.70 11396.33 9398.79 11796.79 13291.32 11898.77 11187.18 13595.60 13185.46 17396.97 12397.15 15496.59 14299.59 13699.65 108
MIMVSNet94.49 15097.59 10090.87 18391.74 18498.70 12994.68 17778.73 20997.98 14983.71 15597.71 8494.81 11396.96 12497.97 11797.92 9899.40 17198.04 191
RPMNet94.66 14397.16 11891.75 16794.98 13998.59 13697.00 12978.37 21197.98 14983.78 15296.27 11594.09 12596.91 12597.36 14696.73 13699.48 15999.09 167
MVSTER97.16 8297.71 9696.52 8495.97 10698.48 14298.63 6292.10 10198.68 11795.96 4199.23 2091.79 13796.87 12698.76 6497.37 12699.57 14499.68 100
CR-MVSNet94.57 14997.34 11091.33 17494.90 14098.59 13697.15 12279.14 20597.98 14980.42 17596.59 11093.50 12996.85 12798.10 10397.49 11899.50 15899.15 162
PatchT93.96 15897.36 10990.00 19094.76 14498.65 13190.11 20578.57 21097.96 15280.42 17596.07 11894.10 12496.85 12798.10 10397.49 11899.26 17999.15 162
USDC94.26 15294.83 16493.59 13496.02 10298.44 14697.84 9788.65 15698.86 9382.73 16494.02 14480.56 20096.76 12997.28 15096.15 15799.55 14998.50 182
Effi-MVS+-dtu95.74 12398.04 8593.06 14693.92 14999.16 10197.90 9688.16 16399.07 7582.02 16798.02 7594.32 12096.74 13098.53 8497.56 11499.61 12299.62 116
IterMVS-SCA-FT94.89 13997.87 9391.42 17194.86 14297.70 17397.24 11884.88 18698.93 8875.74 19594.26 14398.25 7296.69 13198.52 8597.68 11099.10 18599.73 76
TinyColmap94.00 15694.35 17393.60 13395.89 10798.26 15597.49 10988.82 15398.56 12383.21 15891.28 16780.48 20296.68 13297.34 14796.26 15399.53 15598.24 188
pmmvs495.09 13495.90 15194.14 12292.29 17197.70 17395.45 15890.31 13498.60 11990.70 11693.25 15489.90 14696.67 13397.13 15595.42 17399.44 16599.28 154
IterMVS94.81 14197.71 9691.42 17194.83 14397.63 18097.38 11185.08 18398.93 8875.67 19694.02 14497.64 7896.66 13498.45 8897.60 11398.90 18899.72 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB93.20 1692.84 17494.92 16190.43 18792.83 16298.63 13297.08 12787.87 16597.91 15468.42 21393.54 14979.46 20996.62 13597.55 14097.40 12599.74 4999.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_NR-MVSNet94.59 14795.47 15793.55 13691.85 18197.89 16895.03 16392.00 10397.33 17086.12 13993.19 15587.29 15596.60 13696.12 17996.70 13799.72 6499.80 35
DU-MVS93.98 15794.44 17293.44 13991.66 18697.77 17095.03 16391.57 11297.17 17486.12 13993.13 15781.13 19896.60 13695.10 19597.01 13299.67 10199.80 35
tpm92.38 18894.79 16589.56 19494.30 14797.50 19094.24 18778.97 20897.72 16274.93 20097.97 7682.91 18896.60 13693.65 20494.81 19098.33 19498.98 170
SixPastTwentyTwo93.44 16695.32 15991.24 17692.11 17498.40 15092.77 19388.64 15798.09 14577.83 18893.51 15185.74 17196.52 13996.91 16094.89 18999.59 13699.73 76
PVSNet_Blended_VisFu97.41 7498.49 6696.15 9297.49 7199.76 696.02 14893.75 8099.26 4293.38 9093.73 14799.35 5696.47 14098.96 4698.46 6599.77 3999.90 6
baseline296.36 11097.82 9494.65 11494.60 14599.09 10496.45 14189.63 14598.36 13391.29 11597.60 8694.13 12396.37 14198.45 8897.70 10999.54 15399.41 147
Baseline_NR-MVSNet93.87 16093.98 18293.75 12991.66 18697.02 20095.53 15691.52 11597.16 17687.77 13287.93 19383.69 18296.35 14295.10 19597.23 12799.68 9399.73 76
dps94.63 14595.31 16093.84 12795.53 12698.71 12896.54 13780.12 19997.81 16197.21 2896.98 9592.37 13396.34 14392.46 20891.77 20897.26 20897.08 202
CDS-MVSNet96.59 10698.02 8794.92 11194.45 14698.96 11197.46 11091.75 10797.86 15790.07 11996.02 11997.25 8496.21 14498.04 11398.38 7299.60 13099.65 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS95.53 12696.50 14094.39 12093.86 15299.03 10596.67 13489.55 14797.33 17090.64 11793.02 16091.58 13996.21 14497.72 13297.43 12499.43 16699.36 151
MS-PatchMatch95.99 11897.26 11694.51 11697.46 7298.76 12397.27 11686.97 17199.09 6889.83 12293.51 15197.78 7796.18 14697.53 14195.71 16999.35 17498.41 184
TranMVSNet+NR-MVSNet93.67 16394.14 17593.13 14591.28 20097.58 18595.60 15591.97 10497.06 17784.05 14890.64 17382.22 19396.17 14794.94 19896.78 13599.69 8599.78 49
CP-MVSNet93.25 16894.00 18192.38 15291.65 18897.56 18794.38 18489.20 14996.05 19883.16 15989.51 17881.97 19496.16 14896.43 16996.56 14399.71 7499.89 10
UniMVSNet (Re)94.58 14895.34 15893.71 13192.25 17398.08 16194.97 16591.29 12297.03 17987.94 12993.97 14686.25 16896.07 14996.27 17695.97 16399.72 6499.79 43
tpm cat194.06 15494.90 16293.06 14695.42 13298.52 14196.64 13580.67 19697.82 15992.63 10093.39 15395.00 11096.06 15091.36 21191.58 21096.98 21096.66 207
v2v48292.77 17893.52 19291.90 16591.59 19197.63 18094.57 18290.31 13496.80 18579.22 18288.74 18581.55 19796.04 15195.26 19194.97 18599.66 10699.69 95
testgi95.67 12497.48 10393.56 13595.07 13799.00 10695.33 16188.47 15898.80 10586.90 13797.30 8992.33 13495.97 15297.66 13497.91 10099.60 13099.38 150
PS-CasMVS92.72 17993.36 19391.98 16191.62 19097.52 18994.13 18888.98 15195.94 20181.51 17087.35 19579.95 20695.91 15396.37 17196.49 14599.70 8299.89 10
v119292.43 18693.61 18891.05 17991.53 19297.43 19394.61 18087.99 16496.60 18976.72 19187.11 19782.74 19195.85 15496.35 17395.30 17699.60 13099.74 72
v192192092.36 19093.57 18990.94 18191.39 19697.39 19594.70 17687.63 16896.60 18976.63 19286.98 19882.89 18995.75 15596.26 17795.14 18199.55 14999.73 76
test0.0.03 196.69 10098.12 8295.01 11095.49 12898.99 10895.86 15090.82 12698.38 13192.54 10396.66 10597.33 8195.75 15597.75 13098.34 7799.60 13099.40 149
Vis-MVSNet (Re-imp)97.40 7598.89 5495.66 10495.99 10599.62 3397.82 9893.22 9298.82 10291.40 11396.94 9798.56 6895.70 15799.14 3599.41 699.79 3199.75 68
gm-plane-assit89.44 20392.82 20085.49 20591.37 19795.34 21179.55 21982.12 19391.68 21564.79 21787.98 19180.26 20395.66 15898.51 8797.56 11499.45 16398.41 184
v1092.79 17794.06 17991.31 17591.78 18397.29 19994.87 17086.10 17996.97 18079.82 18088.16 18984.56 18095.63 15996.33 17495.31 17599.65 11099.80 35
Fast-Effi-MVS+-dtu95.38 13098.20 7892.09 15793.91 15098.87 11497.35 11385.01 18599.08 7081.09 17198.10 7196.36 9295.62 16098.43 9197.03 13099.55 14999.50 140
PEN-MVS92.72 17993.20 19592.15 15691.29 19897.31 19794.67 17889.81 14196.19 19481.83 16888.58 18679.06 21095.61 16195.21 19296.27 15199.72 6499.82 28
pmmvs592.71 18194.27 17490.90 18291.42 19597.74 17293.23 19086.66 17595.99 20078.96 18591.45 16583.44 18595.55 16297.30 14995.05 18399.58 14098.93 172
test-LLR95.50 12797.32 11293.37 14195.49 12898.74 12596.44 14290.82 12698.18 14182.75 16296.60 10894.67 11595.54 16398.09 10596.00 16099.20 18198.93 172
TESTMET0.1,194.95 13797.32 11292.20 15592.62 16498.74 12596.44 14286.67 17498.18 14182.75 16296.60 10894.67 11595.54 16398.09 10596.00 16099.20 18198.93 172
v892.87 17393.87 18691.72 16992.05 17597.50 19094.79 17388.20 16296.85 18380.11 17890.01 17582.86 19095.48 16595.15 19494.90 18799.66 10699.80 35
EPNet98.05 5598.86 5597.10 6399.02 4799.43 7298.47 6994.73 5599.05 7695.62 4498.93 4097.62 8095.48 16598.59 8198.55 6199.29 17899.84 23
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test-mter94.86 14097.32 11292.00 16092.41 16998.82 11696.18 14786.35 17898.05 14682.28 16596.48 11294.39 11995.46 16798.17 10196.20 15499.32 17699.13 166
v114492.81 17594.03 18091.40 17391.68 18597.60 18494.73 17488.40 15996.71 18678.48 18688.14 19084.46 18195.45 16896.31 17595.22 17899.65 11099.76 61
V4293.05 17193.90 18592.04 15891.91 17897.66 17794.91 16789.91 13996.85 18380.58 17489.66 17783.43 18695.37 16995.03 19794.90 18799.59 13699.78 49
v14419292.38 18893.55 19191.00 18091.44 19497.47 19294.27 18587.41 16996.52 19178.03 18787.50 19482.65 19295.32 17095.82 18795.15 18099.55 14999.78 49
v124091.99 19393.33 19490.44 18691.29 19897.30 19894.25 18686.79 17296.43 19275.49 19886.34 20181.85 19595.29 17196.42 17095.22 17899.52 15699.73 76
NR-MVSNet94.01 15594.51 17093.44 13992.56 16697.77 17095.67 15291.57 11297.17 17485.84 14293.13 15780.53 20195.29 17197.01 15896.17 15599.69 8599.75 68
anonymousdsp93.12 17095.86 15389.93 19291.09 20198.25 15695.12 16285.08 18397.44 16773.30 20390.89 16990.78 14195.25 17397.91 12095.96 16499.71 7499.82 28
gg-mvs-nofinetune90.85 19694.14 17587.02 20194.89 14199.25 9598.64 6176.29 21588.24 21657.50 22079.93 21195.45 10495.18 17498.77 6398.07 9399.62 12099.24 158
MVS-HIRNet92.51 18295.97 14988.48 19893.73 15698.37 15290.33 20375.36 21798.32 13577.78 18989.15 18194.87 11195.14 17597.62 13896.39 14898.51 19097.11 201
MDTV_nov1_ep13_2view92.44 18495.66 15588.68 19691.05 20297.92 16692.17 19679.64 20198.83 10076.20 19391.45 16593.51 12895.04 17695.68 18893.70 19997.96 19898.53 181
DTE-MVSNet92.42 18792.85 19891.91 16490.87 20396.97 20194.53 18389.81 14195.86 20381.59 16988.83 18477.88 21395.01 17794.34 20296.35 14999.64 11499.73 76
pm-mvs194.27 15195.57 15692.75 14992.58 16598.13 16094.87 17090.71 13096.70 18783.78 15289.94 17689.85 14794.96 17897.58 13997.07 12999.61 12299.72 86
pmnet_mix0292.44 18494.68 16789.83 19392.46 16897.65 17989.92 20790.49 13398.76 11273.05 20691.78 16390.08 14594.86 17994.53 20091.94 20798.21 19698.01 193
PM-MVS89.55 20290.30 20788.67 19787.06 21095.60 20990.88 20084.51 18996.14 19575.75 19486.89 19963.47 22194.64 18096.85 16193.89 19799.17 18399.29 153
FC-MVSNet-test96.07 11797.94 9193.89 12693.60 15898.67 13096.62 13690.30 13698.76 11288.62 12495.57 13297.63 7994.48 18197.97 11797.48 12099.71 7499.52 133
WR-MVS_H93.54 16494.67 16892.22 15391.95 17797.91 16794.58 18188.75 15496.64 18883.88 15190.66 17285.13 17694.40 18296.54 16795.91 16599.73 5799.89 10
GA-MVS93.93 15996.31 14791.16 17893.61 15798.79 11795.39 16090.69 13198.25 13973.28 20496.15 11788.42 15294.39 18397.76 12995.35 17499.58 14099.45 144
TransMVSNet (Re)93.45 16594.08 17892.72 15092.83 16297.62 18394.94 16691.54 11495.65 20483.06 16088.93 18383.53 18494.25 18497.41 14497.03 13099.67 10198.40 187
UGNet97.66 6699.07 4396.01 9797.19 8099.65 2297.09 12693.39 8699.35 3194.40 7198.79 4799.59 5394.24 18598.04 11398.29 8299.73 5799.80 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs691.90 19492.53 20191.17 17791.81 18297.63 18093.23 19088.37 16093.43 21280.61 17377.32 21387.47 15494.12 18696.58 16595.72 16898.88 18999.53 130
EPNet_dtu96.30 11198.53 6493.70 13298.97 4898.24 15797.36 11294.23 7098.85 9579.18 18399.19 2198.47 6994.09 18797.89 12298.21 8598.39 19398.85 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UA-Net97.13 8499.14 3894.78 11297.21 7999.38 7797.56 10792.04 10298.48 12788.03 12898.39 6499.91 3194.03 18899.33 2499.23 1899.81 2299.25 157
pmmvs-eth3d89.81 20189.65 20890.00 19086.94 21195.38 21091.08 19886.39 17794.57 20882.27 16683.03 20864.94 21893.96 18996.57 16693.82 19899.35 17499.24 158
WR-MVS93.43 16794.48 17192.21 15491.52 19397.69 17594.66 17989.98 13896.86 18283.43 15690.12 17485.03 17793.94 19096.02 18395.82 16699.71 7499.82 28
CVMVSNet95.33 13297.09 11993.27 14495.23 13498.39 15195.49 15792.58 9897.71 16383.00 16194.44 14293.28 13093.92 19197.79 12698.54 6399.41 16999.45 144
N_pmnet92.21 19294.60 16989.42 19591.88 17997.38 19689.15 20989.74 14497.89 15573.75 20287.94 19292.23 13593.85 19296.10 18093.20 20198.15 19797.43 198
v7n91.61 19592.95 19690.04 18990.56 20497.69 17593.74 18985.59 18195.89 20276.95 19086.60 20078.60 21293.76 19397.01 15894.99 18499.65 11099.87 16
Vis-MVSNetpermissive96.16 11598.22 7793.75 12995.33 13399.70 1797.27 11690.85 12598.30 13685.51 14695.72 12896.45 8993.69 19498.70 7099.00 3399.84 1299.69 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest051594.61 14696.89 12691.95 16292.00 17698.47 14392.01 19790.73 12998.18 14183.96 14994.51 14095.13 10993.38 19597.38 14594.74 19299.61 12299.79 43
new_pmnet90.45 20092.84 19987.66 19988.96 20896.16 20788.71 21084.66 18797.56 16571.91 21085.60 20386.58 16593.28 19696.07 18193.54 20098.46 19194.39 212
pmmvs388.19 20591.27 20484.60 20785.60 21393.66 21485.68 21481.13 19592.36 21463.66 21989.51 17877.10 21493.22 19796.37 17192.40 20398.30 19597.46 197
EG-PatchMatch MVS92.45 18393.92 18490.72 18492.56 16698.43 14894.88 16984.54 18897.18 17379.55 18186.12 20283.23 18793.15 19897.22 15296.00 16099.67 10199.27 156
v14892.36 19092.88 19791.75 16791.63 18997.66 17792.64 19490.55 13296.09 19683.34 15788.19 18880.00 20492.74 19993.98 20394.58 19399.58 14099.69 95
MDA-MVSNet-bldmvs87.84 20689.22 20986.23 20381.74 21596.77 20483.74 21589.57 14694.50 20972.83 20896.64 10664.47 22092.71 20081.43 21692.28 20596.81 21198.47 183
DeepMVS_CXcopyleft96.85 20287.43 21289.27 14898.30 13675.55 19795.05 13479.47 20892.62 20189.48 21295.18 21695.96 209
CMPMVSbinary70.31 1890.74 19791.06 20590.36 18897.32 7597.43 19392.97 19287.82 16793.50 21175.34 19983.27 20784.90 17892.19 20292.64 20791.21 21196.50 21394.46 211
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet92.80 17694.76 16690.51 18591.88 17996.74 20592.48 19588.69 15596.21 19379.00 18491.51 16487.82 15391.83 20395.87 18696.27 15199.21 18098.92 175
MIMVSNet188.61 20490.68 20686.19 20481.56 21695.30 21287.78 21185.98 18094.19 21072.30 20978.84 21278.90 21190.06 20496.59 16495.47 17199.46 16295.49 210
new-patchmatchnet86.12 20887.30 21084.74 20686.92 21295.19 21383.57 21684.42 19092.67 21365.66 21480.32 21064.72 21989.41 20592.33 21089.21 21298.43 19296.69 206
test_method87.27 20791.58 20382.25 20975.65 22087.52 21986.81 21372.60 21897.51 16673.20 20585.07 20479.97 20588.69 20697.31 14895.24 17796.53 21298.41 184
TDRefinement93.04 17293.57 18992.41 15196.58 9098.77 12097.78 10191.96 10598.12 14480.84 17289.13 18279.87 20787.78 20796.44 16894.50 19499.54 15398.15 189
Gipumacopyleft81.40 21081.78 21280.96 21183.21 21485.61 22079.73 21876.25 21697.33 17064.21 21855.32 21755.55 22286.04 20892.43 20992.20 20696.32 21493.99 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Anonymous2023120690.70 19893.93 18386.92 20290.21 20796.79 20390.30 20486.61 17696.05 19869.25 21188.46 18784.86 17985.86 20997.11 15696.47 14799.30 17797.80 195
test20.0390.65 19993.71 18787.09 20090.44 20596.24 20689.74 20885.46 18295.59 20572.99 20790.68 17185.33 17484.41 21095.94 18595.10 18299.52 15697.06 203
IB-MVS93.96 1595.02 13696.44 14493.36 14297.05 8399.28 9390.43 20293.39 8698.02 14796.02 3994.92 13792.07 13683.52 21195.38 18995.82 16699.72 6499.59 120
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ambc80.99 21380.04 21890.84 21590.91 19996.09 19674.18 20162.81 21630.59 22782.44 21296.25 17891.77 20895.91 21598.56 180
FPMVS83.82 20984.61 21182.90 20890.39 20690.71 21690.85 20184.10 19195.47 20665.15 21583.44 20674.46 21675.48 21381.63 21579.42 21791.42 21887.14 216
EMVS68.12 21568.11 21768.14 21575.51 22171.76 22255.38 22477.20 21377.78 21937.79 22453.59 21843.61 22474.72 21467.05 22076.70 21988.27 22186.24 217
E-PMN68.30 21468.43 21668.15 21474.70 22271.56 22355.64 22377.24 21277.48 22039.46 22351.95 22041.68 22573.28 21570.65 21979.51 21688.61 22086.20 218
MVEpermissive67.97 1965.53 21667.43 21863.31 21659.33 22374.20 22153.09 22570.43 21966.27 22143.13 22245.98 22130.62 22670.65 21679.34 21886.30 21483.25 22289.33 215
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS277.26 21179.47 21474.70 21376.00 21988.37 21874.22 22076.34 21478.31 21854.13 22169.96 21552.50 22370.14 21784.83 21488.71 21397.35 20593.58 214
tmp_tt82.25 20997.73 6988.71 21780.18 21768.65 22099.15 5886.98 13699.47 1085.31 17568.35 21887.51 21383.81 21591.64 217
PMVScopyleft72.60 1776.39 21277.66 21574.92 21281.04 21769.37 22468.47 22180.54 19885.39 21765.07 21673.52 21472.91 21765.67 21980.35 21776.81 21888.71 21985.25 219
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs31.24 21740.15 21920.86 21812.61 22417.99 22525.16 22613.30 22148.42 22224.82 22553.07 21930.13 22828.47 22042.73 22137.65 22020.79 22351.04 220
test12326.75 21834.25 22018.01 2197.93 22517.18 22624.85 22712.36 22244.83 22316.52 22641.80 22218.10 22928.29 22133.08 22234.79 22118.10 22449.95 221
GG-mvs-BLEND69.11 21398.13 8135.26 2173.49 22698.20 15994.89 1682.38 22398.42 1305.82 22796.37 11498.60 665.97 22298.75 6697.98 9699.01 18698.61 179
uanet_test0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet-low-res0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
sosnet0.00 2190.00 2210.00 2200.00 2270.00 2270.00 2280.00 2240.00 2240.00 2280.00 2230.00 2300.00 2230.00 2230.00 2220.00 2250.00 222
RE-MVS-def69.05 212
9.1499.79 44
SR-MVS99.67 1398.25 1499.94 25
our_test_392.30 17097.58 18590.09 206
MTAPA98.09 1599.97 8
MTMP98.46 1099.96 12
Patchmatch-RL test66.86 222
XVS97.42 7399.62 3398.59 6493.81 8199.95 1799.69 85
X-MVStestdata97.42 7399.62 3398.59 6493.81 8199.95 1799.69 85
mPP-MVS99.53 2999.89 34
NP-MVS98.57 122
Patchmtry98.59 13697.15 12279.14 20580.42 175