This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
ACMMPR99.30 999.54 799.03 1699.66 1699.64 2699.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1599.72 6799.77 58
MCST-MVS99.11 2099.27 3298.93 2199.67 1399.33 9199.51 2098.31 999.28 3896.57 3599.10 3099.90 3399.71 299.19 3198.35 7799.82 1699.71 92
HFP-MVS99.32 899.53 999.07 1399.69 799.59 4599.63 1298.31 999.56 1197.37 2699.27 1999.97 899.70 399.35 2299.24 1799.71 7799.76 63
PGM-MVS98.86 3199.35 2798.29 3499.77 199.63 2999.67 595.63 4598.66 12095.27 5399.11 2899.82 4299.67 499.33 2499.19 2199.73 5999.74 75
SMA-MVScopyleft99.38 699.60 399.12 999.76 299.62 3399.39 2998.23 1899.52 1698.03 1799.45 1199.98 299.64 599.58 899.30 1199.68 9699.76 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS99.25 1299.50 1298.96 2098.79 5299.55 5399.33 3298.29 1299.75 197.96 1899.15 2499.95 1799.61 699.17 3299.06 2899.81 2299.84 25
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVScopyleft99.45 299.54 799.35 199.72 699.76 699.63 1298.37 299.63 799.03 398.95 3999.98 299.60 799.60 799.05 2999.74 5199.79 45
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CPTT-MVS99.14 1999.20 3699.06 1499.58 2599.53 5599.45 2597.80 3699.19 5398.32 1298.58 5799.95 1799.60 799.28 2698.20 8899.64 11799.69 98
TSAR-MVS + MP.99.27 1099.57 598.92 2298.78 5399.53 5599.72 298.11 2899.73 297.43 2599.15 2499.96 1299.59 999.73 199.07 2699.88 499.82 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
X-MVS98.93 2999.37 2398.42 3199.67 1399.62 3399.60 1598.15 2399.08 7293.81 8498.46 6499.95 1799.59 999.49 1399.21 2099.68 9699.75 71
CP-MVS99.27 1099.44 1799.08 1299.62 2299.58 4899.53 1898.16 2199.21 5097.79 2099.15 2499.96 1299.59 999.54 1198.86 4699.78 3499.74 75
AdaColmapbinary99.06 2498.98 5199.15 699.60 2499.30 9499.38 3098.16 2199.02 8198.55 798.71 5399.57 5699.58 1299.09 3797.84 10699.64 11799.36 154
ACMMP_NAP99.05 2599.45 1498.58 3099.73 599.60 4399.64 898.28 1399.23 4594.57 6699.35 1699.97 899.55 1399.63 398.66 5899.70 8599.74 75
MP-MVScopyleft99.07 2399.36 2498.74 2799.63 2099.57 5099.66 698.25 1499.00 8395.62 4598.97 3799.94 2599.54 1499.51 1298.79 5599.71 7799.73 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVScopyleft99.49 199.64 199.32 299.74 499.74 1199.75 198.34 499.56 1198.72 699.57 799.97 899.53 1599.65 299.25 1599.84 1299.77 58
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSLP-MVS++99.15 1899.24 3499.04 1599.52 3299.49 6399.09 4498.07 2999.37 2798.47 897.79 8299.89 3599.50 1698.93 4999.45 499.61 12599.76 63
CNVR-MVS99.23 1499.28 3199.17 599.65 1899.34 8899.46 2498.21 1999.28 3898.47 898.89 4499.94 2599.50 1699.42 1798.61 6199.73 5999.52 136
EC-MVSNet98.22 5199.44 1796.79 7595.62 12399.56 5199.01 5092.22 10099.17 5594.51 6999.41 1399.62 5299.49 1899.16 3499.26 1499.91 299.94 1
CSCG98.90 3098.93 5398.85 2499.75 399.72 1299.49 2196.58 4299.38 2598.05 1698.97 3797.87 7799.49 1897.78 12798.92 4199.78 3499.90 7
DeepC-MVS_fast98.34 199.17 1799.45 1498.85 2499.55 2999.37 8299.64 898.05 3199.53 1496.58 3498.93 4099.92 2899.49 1899.46 1499.32 1099.80 3099.64 115
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS97.63 498.33 4898.57 6298.04 4098.62 5699.65 2299.45 2598.15 2399.51 1792.80 10195.74 13096.44 9299.46 2199.37 1999.50 299.78 3499.81 35
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC99.05 2599.08 4199.02 1899.62 2299.38 7999.43 2898.21 1999.36 3097.66 2397.79 8299.90 3399.45 2299.17 3298.43 7199.77 3999.51 141
train_agg98.73 3599.11 3998.28 3599.36 3999.35 8699.48 2397.96 3398.83 10293.86 8398.70 5499.86 3899.44 2399.08 3998.38 7499.61 12599.58 124
3Dnovator+96.92 798.71 3699.05 4498.32 3399.53 3099.34 8899.06 4694.61 5899.65 597.49 2496.75 10599.86 3899.44 2398.78 6299.30 1199.81 2299.67 104
3Dnovator96.92 798.67 3799.05 4498.23 3799.57 2699.45 6899.11 4294.66 5799.69 396.80 3296.55 11599.61 5399.40 2598.87 5799.49 399.85 1099.66 108
CS-MVS-test98.58 4299.42 2097.60 5198.52 5799.91 198.60 6494.60 6099.37 2794.62 6599.40 1499.16 6199.39 2699.36 2098.85 4999.90 399.92 3
TSAR-MVS + GP.98.66 3999.36 2497.85 4497.16 8299.46 6699.03 4894.59 6199.09 7097.19 2999.73 399.95 1799.39 2698.95 4798.69 5799.75 4699.65 111
HPM-MVS++copyleft99.10 2199.30 3098.86 2399.69 799.48 6499.59 1698.34 499.26 4296.55 3699.10 3099.96 1299.36 2899.25 2798.37 7699.64 11799.66 108
PLCcopyleft97.93 299.02 2898.94 5299.11 1099.46 3499.24 10099.06 4697.96 3399.31 3499.16 197.90 8099.79 4599.36 2898.71 6998.12 9299.65 11399.52 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DVP-MVS++99.41 499.64 199.14 799.69 799.75 999.64 898.33 699.67 498.10 1399.66 499.99 199.33 3099.62 598.86 4699.74 5199.90 7
QAPM98.62 4099.04 4798.13 3899.57 2699.48 6499.17 3894.78 5499.57 1096.16 3996.73 10699.80 4399.33 3098.79 6199.29 1399.75 4699.64 115
PHI-MVS99.08 2299.43 1998.67 2899.15 4599.59 4599.11 4297.35 3999.14 6397.30 2799.44 1299.96 1299.32 3298.89 5499.39 799.79 3199.58 124
DPE-MVScopyleft99.39 599.55 699.20 499.63 2099.71 1599.66 698.33 699.29 3798.40 1199.64 599.98 299.31 3399.56 998.96 3899.85 1099.70 94
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNLPA99.03 2799.05 4499.01 1999.27 4399.22 10299.03 4897.98 3299.34 3299.00 498.25 7199.71 4999.31 3398.80 6098.82 5399.48 16299.17 165
MSP-MVS99.34 799.52 1099.14 799.68 1299.75 999.64 898.31 999.44 2198.10 1399.28 1899.98 299.30 3599.34 2399.05 2999.81 2299.79 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft99.25 1299.38 2299.09 1199.69 799.58 4899.56 1798.32 898.85 9797.87 1998.91 4299.92 2899.30 3599.45 1599.38 899.79 3199.58 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SED-MVS99.44 399.58 499.28 399.69 799.76 699.62 1498.35 399.51 1799.05 299.60 699.98 299.28 3799.61 698.83 5199.70 8599.77 58
OMC-MVS98.84 3299.01 5098.65 2999.39 3699.23 10199.22 3596.70 4199.40 2497.77 2197.89 8199.80 4399.21 3899.02 4398.65 5999.57 14799.07 172
TAPA-MVS97.53 598.41 4598.84 5797.91 4399.08 4799.33 9199.15 3997.13 4099.34 3293.20 9497.75 8499.19 6099.20 3998.66 7198.13 9199.66 10999.48 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS98.56 4399.32 2897.68 4798.28 6299.89 298.71 6194.53 6399.41 2395.43 4999.05 3598.66 6699.19 4099.21 2999.07 2699.93 199.94 1
thres600view796.69 10296.43 14897.00 7296.28 9999.67 1898.41 7493.99 7497.85 16094.29 7695.96 12485.91 17499.19 4098.26 9597.63 11399.82 1699.73 79
LS3D97.79 6098.25 7397.26 6098.40 5999.63 2999.53 1898.63 199.25 4488.13 13196.93 10294.14 12399.19 4099.14 3599.23 1899.69 8899.42 149
thres40096.71 10196.45 14697.02 6996.28 9999.63 2998.41 7494.00 7397.82 16194.42 7395.74 13086.26 17199.18 4398.20 9997.79 10999.81 2299.70 94
thres20096.76 9796.53 13897.03 6796.31 9699.67 1898.37 7793.99 7497.68 16694.49 7095.83 12986.77 16599.18 4398.26 9597.82 10799.82 1699.66 108
ACMMPcopyleft98.74 3499.03 4898.40 3299.36 3999.64 2699.20 3697.75 3798.82 10495.24 5498.85 4599.87 3799.17 4598.74 6797.50 11999.71 7799.76 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
sasdasda97.31 7697.81 9596.72 7696.20 10299.45 6898.21 8691.60 11299.22 4795.39 5098.48 6090.95 14199.16 4697.66 13499.05 2999.76 4199.90 7
canonicalmvs97.31 7697.81 9596.72 7696.20 10299.45 6898.21 8691.60 11299.22 4795.39 5098.48 6090.95 14199.16 4697.66 13499.05 2999.76 4199.90 7
tfpn200view996.75 9896.51 14097.03 6796.31 9699.67 1898.41 7493.99 7497.35 17194.52 6795.90 12686.93 16399.14 4898.26 9597.80 10899.82 1699.70 94
SteuartSystems-ACMMP99.20 1599.51 1198.83 2699.66 1699.66 2199.71 398.12 2799.14 6396.62 3399.16 2399.98 299.12 4999.63 399.19 2199.78 3499.83 29
Skip Steuart: Steuart Systems R&D Blog.
MSDG98.27 5098.29 7198.24 3699.20 4499.22 10299.20 3697.82 3599.37 2794.43 7295.90 12697.31 8399.12 4998.76 6498.35 7799.67 10499.14 169
CDPH-MVS98.41 4599.10 4097.61 5099.32 4299.36 8399.49 2196.15 4498.82 10491.82 11398.41 6599.66 5199.10 5198.93 4998.97 3799.75 4699.58 124
OpenMVScopyleft96.23 1197.95 5898.45 6797.35 5599.52 3299.42 7598.91 5394.61 5898.87 9492.24 11194.61 14399.05 6499.10 5198.64 7399.05 2999.74 5199.51 141
thres100view90096.72 10096.47 14497.00 7296.31 9699.52 5898.28 8394.01 7297.35 17194.52 6795.90 12686.93 16399.09 5398.07 10897.87 10499.81 2299.63 117
MGCFI-Net97.26 8197.79 9796.64 8296.17 10499.43 7398.14 9091.52 11799.23 4595.16 5698.48 6090.87 14399.07 5497.59 14099.02 3499.76 4199.91 6
TSAR-MVS + ACMM98.77 3399.45 1497.98 4299.37 3799.46 6699.44 2798.13 2699.65 592.30 10998.91 4299.95 1799.05 5599.42 1798.95 3999.58 14399.82 30
MVS_111021_LR98.67 3799.41 2197.81 4599.37 3799.53 5598.51 6795.52 4799.27 4094.85 6199.56 899.69 5099.04 5699.36 2098.88 4499.60 13399.58 124
HyFIR lowres test95.99 12196.56 13695.32 11097.99 6899.65 2296.54 14188.86 15598.44 13189.77 12784.14 21097.05 8799.03 5798.55 8398.19 8999.73 5999.86 21
PCF-MVS97.50 698.18 5398.35 7097.99 4198.65 5599.36 8398.94 5298.14 2598.59 12293.62 8996.61 11199.76 4899.03 5797.77 12897.45 12499.57 14798.89 180
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR98.59 4199.36 2497.68 4799.42 3599.61 3898.14 9094.81 5399.31 3495.00 5999.51 999.79 4599.00 5998.94 4898.83 5199.69 8899.57 129
EIA-MVS97.70 6598.78 5896.44 9095.72 11899.65 2298.14 9093.72 8298.30 13892.31 10898.63 5597.90 7698.97 6098.92 5198.30 8399.78 3499.80 37
casdiffmvspermissive96.93 9397.43 10996.34 9195.70 11999.50 6297.75 10593.22 9398.98 8592.64 10294.97 13991.71 13998.93 6198.62 7598.52 6699.82 1699.72 89
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SF-MVS99.18 1699.32 2899.03 1699.65 1899.41 7798.87 5498.24 1799.14 6398.73 599.11 2899.92 2898.92 6299.22 2898.84 5099.76 4199.56 130
baseline197.58 6898.05 8497.02 6996.21 10199.45 6897.71 10693.71 8398.47 13095.75 4498.78 4893.20 13398.91 6398.52 8598.44 6999.81 2299.53 133
casdiffmvs_mvgpermissive97.27 7997.97 9096.46 8995.83 11499.51 6198.42 7393.32 9098.34 13692.38 10795.64 13395.35 10798.91 6398.73 6898.45 6899.86 999.80 37
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETV-MVS98.05 5599.25 3396.65 8095.61 12499.61 3898.26 8593.52 8598.90 9393.74 8899.32 1799.20 5998.90 6599.21 2998.72 5699.87 899.79 45
Anonymous2023121197.10 8797.06 12497.14 6296.32 9599.52 5898.16 8993.76 7998.84 10195.98 4190.92 17394.58 11898.90 6597.72 13298.10 9499.71 7799.75 71
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7997.32 5698.84 5099.45 6899.28 3395.43 4899.48 1991.80 11494.83 14298.36 7298.90 6598.09 10597.85 10599.68 9699.15 166
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test250697.16 8496.68 13497.73 4696.95 8699.79 498.48 6894.42 6599.17 5597.74 2299.15 2480.93 20498.89 6899.03 4199.09 2499.88 499.62 119
ECVR-MVScopyleft97.27 7997.09 12197.48 5396.95 8699.79 498.48 6894.42 6599.17 5596.28 3893.54 15389.39 15298.89 6899.03 4199.09 2499.88 499.61 122
Anonymous20240521197.40 11096.45 9299.54 5498.08 9693.79 7898.24 14293.55 15294.41 11998.88 7098.04 11398.24 8699.75 4699.76 63
MAR-MVS97.71 6498.04 8597.32 5699.35 4198.91 11697.65 10991.68 11098.00 15097.01 3197.72 8694.83 11398.85 7198.44 9098.86 4699.41 17399.52 136
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test111197.09 8896.83 13197.39 5496.92 8899.81 398.44 7294.45 6499.17 5595.85 4392.10 16788.97 15398.78 7299.02 4399.11 2399.88 499.63 117
Fast-Effi-MVS+95.38 13396.52 13994.05 12894.15 15199.14 10697.24 12286.79 17698.53 12787.62 13794.51 14487.06 16098.76 7398.60 7998.04 9799.72 6799.77 58
DPM-MVS98.31 4998.53 6498.05 3998.76 5498.77 12499.13 4098.07 2999.10 6994.27 7796.70 10799.84 4198.70 7497.90 12198.11 9399.40 17599.28 157
Effi-MVS+95.81 12497.31 11794.06 12795.09 13999.35 8697.24 12288.22 16498.54 12685.38 15198.52 5888.68 15498.70 7498.32 9397.93 9999.74 5199.84 25
TSAR-MVS + COLMAP96.79 9696.55 13797.06 6597.70 7198.46 14899.07 4596.23 4399.38 2591.32 11798.80 4685.61 17698.69 7697.64 13896.92 13599.37 17799.06 173
EPP-MVSNet97.75 6398.71 6096.63 8395.68 12199.56 5197.51 11193.10 9699.22 4794.99 6097.18 9797.30 8498.65 7798.83 5898.93 4099.84 1299.92 3
CHOSEN 280x42097.99 5799.24 3496.53 8598.34 6099.61 3898.36 7989.80 14699.27 4095.08 5899.81 198.58 6898.64 7899.02 4398.92 4198.93 19199.48 145
ET-MVSNet_ETH3D96.17 11696.99 12695.21 11188.53 21498.54 14398.28 8392.61 9898.85 9793.60 9099.06 3490.39 14598.63 7995.98 18796.68 14099.61 12599.41 150
MVS_Test97.30 7898.54 6395.87 10195.74 11799.28 9598.19 8891.40 11999.18 5491.59 11598.17 7396.18 9798.63 7998.61 7698.55 6399.66 10999.78 51
DCV-MVSNet97.56 6998.36 6996.62 8496.44 9398.36 15798.37 7791.73 10999.11 6894.80 6298.36 6896.28 9598.60 8198.12 10298.44 6999.76 4199.87 18
GeoE95.98 12397.24 11994.51 11995.02 14199.38 7998.02 9887.86 17098.37 13487.86 13592.99 16593.54 12898.56 8298.61 7697.92 10099.73 5999.85 24
diffmvspermissive96.83 9597.33 11396.25 9295.76 11699.34 8898.06 9793.22 9399.43 2292.30 10996.90 10389.83 15198.55 8398.00 11698.14 9099.64 11799.70 94
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMMVS97.52 7098.39 6896.51 8795.82 11598.73 13197.80 10293.05 9798.76 11494.39 7599.07 3397.03 8898.55 8398.31 9497.61 11499.43 17099.21 164
RPSCF97.61 6798.16 8096.96 7498.10 6399.00 10998.84 5693.76 7999.45 2094.78 6399.39 1599.31 5898.53 8596.61 16695.43 17597.74 20497.93 198
IS_MVSNet97.86 5998.86 5596.68 7896.02 10599.72 1298.35 8093.37 8998.75 11794.01 7896.88 10498.40 7198.48 8699.09 3799.42 599.83 1599.80 37
PatchMatch-RL97.77 6298.25 7397.21 6199.11 4699.25 9897.06 13294.09 7198.72 11895.14 5798.47 6396.29 9498.43 8798.65 7297.44 12599.45 16698.94 175
CANet98.46 4499.16 3797.64 4998.48 5899.64 2699.35 3194.71 5699.53 1495.17 5597.63 8899.59 5498.38 8898.88 5698.99 3699.74 5199.86 21
CHOSEN 1792x268896.41 11096.99 12695.74 10498.01 6799.72 1297.70 10790.78 13199.13 6790.03 12487.35 20095.36 10698.33 8998.59 8198.91 4399.59 13999.87 18
FA-MVS(training)96.52 10998.29 7194.45 12195.88 11299.52 5897.66 10881.47 19898.94 8893.79 8795.54 13799.11 6298.29 9098.89 5496.49 14899.63 12299.52 136
thisisatest053097.23 8298.25 7396.05 9695.60 12699.59 4596.96 13493.23 9199.17 5592.60 10498.75 5196.19 9698.17 9198.19 10096.10 16199.72 6799.77 58
tttt051797.23 8298.24 7696.04 9795.60 12699.60 4396.94 13593.23 9199.15 6092.56 10598.74 5296.12 9998.17 9198.21 9896.10 16199.73 5999.78 51
ACMM96.26 996.67 10496.69 13396.66 7997.29 7998.46 14896.48 14495.09 5099.21 5093.19 9598.78 4886.73 16698.17 9197.84 12596.32 15399.74 5199.49 144
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet195.77 12596.41 14995.03 11293.42 16497.86 17397.11 12989.89 14398.53 12792.00 11289.17 18593.23 13298.15 9498.07 10898.34 7999.61 12599.69 98
DI_MVS_plusplus_trai96.90 9497.49 10496.21 9395.61 12499.40 7898.72 6092.11 10199.14 6392.98 10093.08 16395.14 10998.13 9598.05 11297.91 10299.74 5199.73 79
dmvs_re96.02 12096.49 14395.47 10893.49 16399.26 9797.25 12193.82 7797.51 16890.43 12197.52 9087.93 15698.12 9696.86 16396.59 14499.73 5999.76 63
MVS_030498.14 5499.03 4897.10 6398.05 6699.63 2999.27 3494.33 6899.63 793.06 9797.32 9299.05 6498.09 9798.82 5998.87 4599.81 2299.89 12
OPM-MVS96.22 11595.85 15796.65 8097.75 6998.54 14399.00 5195.53 4696.88 18489.88 12595.95 12586.46 17098.07 9897.65 13796.63 14299.67 10498.83 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PVSNet_BlendedMVS97.51 7197.71 9897.28 5898.06 6499.61 3897.31 11795.02 5199.08 7295.51 4798.05 7590.11 14698.07 9898.91 5298.40 7299.72 6799.78 51
PVSNet_Blended97.51 7197.71 9897.28 5898.06 6499.61 3897.31 11795.02 5199.08 7295.51 4798.05 7590.11 14698.07 9898.91 5298.40 7299.72 6799.78 51
CLD-MVS96.74 9996.51 14097.01 7196.71 9098.62 13798.73 5994.38 6798.94 8894.46 7197.33 9187.03 16198.07 9897.20 15596.87 13699.72 6799.54 132
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline97.45 7398.70 6195.99 10095.89 11099.36 8398.29 8291.37 12099.21 5092.99 9998.40 6696.87 8997.96 10298.60 7998.60 6299.42 17299.86 21
DELS-MVS98.19 5298.77 5997.52 5298.29 6199.71 1599.12 4194.58 6298.80 10795.38 5296.24 12098.24 7497.92 10399.06 4099.52 199.82 1699.79 45
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GBi-Net96.98 9198.00 8895.78 10293.81 15697.98 16698.09 9391.32 12198.80 10793.92 8097.21 9495.94 10297.89 10498.07 10898.34 7999.68 9699.67 104
test196.98 9198.00 8895.78 10293.81 15697.98 16698.09 9391.32 12198.80 10793.92 8097.21 9495.94 10297.89 10498.07 10898.34 7999.68 9699.67 104
FMVSNet296.64 10597.50 10395.63 10793.81 15697.98 16698.09 9390.87 12798.99 8493.48 9193.17 16095.25 10897.89 10498.63 7498.80 5499.68 9699.67 104
MDTV_nov1_ep1395.57 12897.48 10593.35 14695.43 13398.97 11397.19 12583.72 19698.92 9287.91 13497.75 8496.12 9997.88 10796.84 16595.64 17397.96 20298.10 194
UniMVSNet_ETH3D93.15 17292.33 20594.11 12693.91 15398.61 13994.81 17690.98 12697.06 18087.51 13882.27 21476.33 22097.87 10894.79 20297.47 12399.56 15099.81 35
IterMVS-LS96.12 11897.48 10594.53 11895.19 13897.56 19197.15 12689.19 15399.08 7288.23 13094.97 13994.73 11597.84 10997.86 12498.26 8599.60 13399.88 16
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LGP-MVS_train96.23 11496.89 12895.46 10997.32 7698.77 12498.81 5793.60 8498.58 12385.52 14999.08 3286.67 16797.83 11097.87 12397.51 11899.69 8899.73 79
SCA94.95 14097.44 10892.04 16195.55 12899.16 10496.26 14979.30 20899.02 8185.73 14898.18 7297.13 8697.69 11196.03 18594.91 18997.69 20797.65 200
HQP-MVS96.37 11196.58 13596.13 9597.31 7898.44 15098.45 7195.22 4998.86 9588.58 12998.33 6987.00 16297.67 11297.23 15396.56 14699.56 15099.62 119
FMVSNet397.02 9098.12 8295.73 10593.59 16297.98 16698.34 8191.32 12198.80 10793.92 8097.21 9495.94 10297.63 11398.61 7698.62 6099.61 12599.65 111
TPM-MVS99.57 2698.90 11798.79 5896.52 3798.62 5699.91 3197.56 11499.44 16899.28 157
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
CostFormer94.25 15694.88 16693.51 14195.43 13398.34 15896.21 15080.64 20197.94 15594.01 7898.30 7086.20 17397.52 11592.71 20992.69 20597.23 21398.02 196
FMVSNet595.42 13196.47 14494.20 12492.26 17695.99 21295.66 15787.15 17497.87 15893.46 9296.68 10893.79 12797.52 11597.10 15997.21 13099.11 18896.62 212
EPMVS95.05 13896.86 13092.94 15195.84 11398.96 11496.68 13779.87 20499.05 7890.15 12297.12 9895.99 10197.49 11795.17 19694.75 19497.59 20896.96 208
FC-MVSNet-train97.04 8997.91 9296.03 9896.00 10798.41 15396.53 14393.42 8699.04 8093.02 9898.03 7794.32 12197.47 11897.93 11997.77 11099.75 4699.88 16
CANet_DTU96.64 10599.08 4193.81 13197.10 8399.42 7598.85 5590.01 14099.31 3479.98 18399.78 299.10 6397.42 11998.35 9298.05 9699.47 16499.53 133
PatchmatchNetpermissive94.70 14597.08 12391.92 16695.53 12998.85 11995.77 15579.54 20698.95 8685.98 14598.52 5896.45 9097.39 12095.32 19394.09 19997.32 21097.38 203
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst93.86 16495.88 15591.50 17395.69 12098.62 13795.64 15879.41 20798.80 10783.76 15895.63 13496.13 9897.25 12192.92 20892.31 20797.27 21196.74 209
DeepPCF-MVS97.74 398.34 4799.46 1397.04 6698.82 5199.33 9196.28 14897.47 3899.58 994.70 6498.99 3699.85 4097.24 12299.55 1099.34 997.73 20699.56 130
ACMP96.25 1096.62 10796.72 13296.50 8896.96 8598.75 12897.80 10294.30 6998.85 9793.12 9698.78 4886.61 16897.23 12397.73 13196.61 14399.62 12399.71 92
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ADS-MVSNet94.65 14797.04 12591.88 16995.68 12198.99 11195.89 15379.03 21199.15 6085.81 14796.96 10098.21 7597.10 12494.48 20494.24 19897.74 20497.21 204
tfpnnormal93.85 16594.12 18093.54 14093.22 16598.24 16195.45 16291.96 10694.61 21183.91 15490.74 17581.75 20197.04 12597.49 14496.16 15999.68 9699.84 25
ACMH95.42 1495.27 13695.96 15394.45 12196.83 8998.78 12394.72 17991.67 11198.95 8686.82 14296.42 11783.67 18797.00 12697.48 14596.68 14099.69 8899.76 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+95.51 1395.40 13296.00 15194.70 11696.33 9498.79 12196.79 13691.32 12198.77 11387.18 13995.60 13585.46 17796.97 12797.15 15696.59 14499.59 13999.65 111
MIMVSNet94.49 15397.59 10290.87 18691.74 18898.70 13394.68 18178.73 21397.98 15183.71 15997.71 8794.81 11496.96 12897.97 11797.92 10099.40 17598.04 195
RPMNet94.66 14697.16 12091.75 17094.98 14298.59 14097.00 13378.37 21597.98 15183.78 15696.27 11994.09 12696.91 12997.36 14896.73 13899.48 16299.09 171
MVSTER97.16 8497.71 9896.52 8695.97 10998.48 14698.63 6392.10 10298.68 11995.96 4299.23 2091.79 13896.87 13098.76 6497.37 12899.57 14799.68 103
CR-MVSNet94.57 15297.34 11291.33 17794.90 14398.59 14097.15 12679.14 20997.98 15180.42 17996.59 11493.50 13096.85 13198.10 10397.49 12099.50 16199.15 166
PatchT93.96 16197.36 11190.00 19394.76 14798.65 13590.11 20978.57 21497.96 15480.42 17996.07 12294.10 12596.85 13198.10 10397.49 12099.26 18399.15 166
USDC94.26 15594.83 16793.59 13796.02 10598.44 15097.84 10088.65 15998.86 9582.73 16894.02 14880.56 20596.76 13397.28 15296.15 16099.55 15298.50 186
Effi-MVS+-dtu95.74 12698.04 8593.06 14993.92 15299.16 10497.90 9988.16 16699.07 7782.02 17198.02 7894.32 12196.74 13498.53 8497.56 11699.61 12599.62 119
IterMVS-SCA-FT94.89 14297.87 9391.42 17494.86 14597.70 17797.24 12284.88 19098.93 9075.74 19994.26 14798.25 7396.69 13598.52 8597.68 11299.10 18999.73 79
TinyColmap94.00 15994.35 17693.60 13695.89 11098.26 15997.49 11288.82 15698.56 12583.21 16291.28 17280.48 20796.68 13697.34 14996.26 15699.53 15898.24 192
pmmvs495.09 13795.90 15494.14 12592.29 17597.70 17795.45 16290.31 13798.60 12190.70 11993.25 15889.90 14996.67 13797.13 15795.42 17699.44 16899.28 157
IterMVS94.81 14497.71 9891.42 17494.83 14697.63 18497.38 11485.08 18798.93 9075.67 20094.02 14897.64 7996.66 13898.45 8897.60 11598.90 19299.72 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB93.20 1692.84 17794.92 16490.43 19092.83 16698.63 13697.08 13187.87 16997.91 15668.42 21793.54 15379.46 21496.62 13997.55 14297.40 12799.74 5199.92 3
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_NR-MVSNet94.59 15095.47 16093.55 13991.85 18597.89 17295.03 16792.00 10497.33 17386.12 14393.19 15987.29 15996.60 14096.12 18296.70 13999.72 6799.80 37
DU-MVS93.98 16094.44 17593.44 14291.66 19097.77 17495.03 16791.57 11497.17 17786.12 14393.13 16181.13 20396.60 14095.10 19897.01 13499.67 10499.80 37
tpm92.38 19194.79 16889.56 19794.30 15097.50 19494.24 19178.97 21297.72 16474.93 20497.97 7982.91 19396.60 14093.65 20794.81 19398.33 19898.98 174
SixPastTwentyTwo93.44 16995.32 16291.24 17992.11 17898.40 15492.77 19788.64 16098.09 14777.83 19293.51 15585.74 17596.52 14396.91 16294.89 19299.59 13999.73 79
PVSNet_Blended_VisFu97.41 7498.49 6696.15 9497.49 7299.76 696.02 15293.75 8199.26 4293.38 9393.73 15199.35 5796.47 14498.96 4698.46 6799.77 3999.90 7
baseline296.36 11297.82 9494.65 11794.60 14899.09 10796.45 14589.63 14898.36 13591.29 11897.60 8994.13 12496.37 14598.45 8897.70 11199.54 15699.41 150
Baseline_NR-MVSNet93.87 16393.98 18593.75 13291.66 19097.02 20495.53 16091.52 11797.16 17987.77 13687.93 19883.69 18696.35 14695.10 19897.23 12999.68 9699.73 79
dps94.63 14895.31 16393.84 13095.53 12998.71 13296.54 14180.12 20397.81 16397.21 2896.98 9992.37 13496.34 14792.46 21191.77 21197.26 21297.08 206
CDS-MVSNet96.59 10898.02 8794.92 11494.45 14998.96 11497.46 11391.75 10897.86 15990.07 12396.02 12397.25 8596.21 14898.04 11398.38 7499.60 13399.65 111
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS95.53 12996.50 14294.39 12393.86 15599.03 10896.67 13889.55 15097.33 17390.64 12093.02 16491.58 14096.21 14897.72 13297.43 12699.43 17099.36 154
MS-PatchMatch95.99 12197.26 11894.51 11997.46 7398.76 12797.27 11986.97 17599.09 7089.83 12693.51 15597.78 7896.18 15097.53 14395.71 17299.35 17898.41 188
TranMVSNet+NR-MVSNet93.67 16694.14 17893.13 14891.28 20497.58 18995.60 15991.97 10597.06 18084.05 15290.64 17882.22 19896.17 15194.94 20196.78 13799.69 8899.78 51
CP-MVSNet93.25 17194.00 18492.38 15591.65 19297.56 19194.38 18889.20 15296.05 20283.16 16389.51 18381.97 19996.16 15296.43 17296.56 14699.71 7799.89 12
UniMVSNet (Re)94.58 15195.34 16193.71 13492.25 17798.08 16594.97 16991.29 12597.03 18287.94 13393.97 15086.25 17296.07 15396.27 17995.97 16699.72 6799.79 45
tpm cat194.06 15794.90 16593.06 14995.42 13598.52 14596.64 13980.67 20097.82 16192.63 10393.39 15795.00 11196.06 15491.36 21591.58 21396.98 21496.66 211
v2v48292.77 18193.52 19591.90 16891.59 19597.63 18494.57 18690.31 13796.80 18879.22 18688.74 19081.55 20296.04 15595.26 19494.97 18899.66 10999.69 98
testgi95.67 12797.48 10593.56 13895.07 14099.00 10995.33 16588.47 16198.80 10786.90 14197.30 9392.33 13595.97 15697.66 13497.91 10299.60 13399.38 153
PS-CasMVS92.72 18293.36 19691.98 16491.62 19497.52 19394.13 19288.98 15495.94 20581.51 17487.35 20079.95 21195.91 15796.37 17496.49 14899.70 8599.89 12
v119292.43 18993.61 19191.05 18291.53 19697.43 19794.61 18487.99 16896.60 19276.72 19587.11 20282.74 19695.85 15896.35 17695.30 17999.60 13399.74 75
v192192092.36 19393.57 19290.94 18491.39 20097.39 19994.70 18087.63 17296.60 19276.63 19686.98 20382.89 19495.75 15996.26 18095.14 18499.55 15299.73 79
test0.0.03 196.69 10298.12 8295.01 11395.49 13198.99 11195.86 15490.82 12998.38 13392.54 10696.66 10997.33 8295.75 15997.75 13098.34 7999.60 13399.40 152
Vis-MVSNet (Re-imp)97.40 7598.89 5495.66 10695.99 10899.62 3397.82 10193.22 9398.82 10491.40 11696.94 10198.56 6995.70 16199.14 3599.41 699.79 3199.75 71
gm-plane-assit89.44 20692.82 20385.49 20891.37 20195.34 21579.55 22382.12 19791.68 21964.79 22187.98 19680.26 20895.66 16298.51 8797.56 11699.45 16698.41 188
v1092.79 18094.06 18291.31 17891.78 18797.29 20394.87 17486.10 18396.97 18379.82 18488.16 19484.56 18495.63 16396.33 17795.31 17899.65 11399.80 37
Fast-Effi-MVS+-dtu95.38 13398.20 7892.09 16093.91 15398.87 11897.35 11685.01 18999.08 7281.09 17598.10 7496.36 9395.62 16498.43 9197.03 13299.55 15299.50 143
PEN-MVS92.72 18293.20 19892.15 15991.29 20297.31 20194.67 18289.81 14496.19 19881.83 17288.58 19179.06 21595.61 16595.21 19596.27 15499.72 6799.82 30
pmmvs592.71 18494.27 17790.90 18591.42 19997.74 17693.23 19486.66 17995.99 20478.96 18991.45 17083.44 18995.55 16697.30 15195.05 18699.58 14398.93 176
test-LLR95.50 13097.32 11493.37 14495.49 13198.74 12996.44 14690.82 12998.18 14382.75 16696.60 11294.67 11695.54 16798.09 10596.00 16399.20 18598.93 176
TESTMET0.1,194.95 14097.32 11492.20 15892.62 16898.74 12996.44 14686.67 17898.18 14382.75 16696.60 11294.67 11695.54 16798.09 10596.00 16399.20 18598.93 176
v892.87 17693.87 18991.72 17292.05 17997.50 19494.79 17788.20 16596.85 18680.11 18290.01 18082.86 19595.48 16995.15 19794.90 19099.66 10999.80 37
EPNet98.05 5598.86 5597.10 6399.02 4899.43 7398.47 7094.73 5599.05 7895.62 4598.93 4097.62 8195.48 16998.59 8198.55 6399.29 18299.84 25
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test-mter94.86 14397.32 11492.00 16392.41 17398.82 12096.18 15186.35 18298.05 14882.28 16996.48 11694.39 12095.46 17198.17 10196.20 15799.32 18099.13 170
v114492.81 17894.03 18391.40 17691.68 18997.60 18894.73 17888.40 16296.71 18978.48 19088.14 19584.46 18595.45 17296.31 17895.22 18199.65 11399.76 63
V4293.05 17493.90 18892.04 16191.91 18297.66 18194.91 17189.91 14296.85 18680.58 17889.66 18283.43 19095.37 17395.03 20094.90 19099.59 13999.78 51
v14419292.38 19193.55 19491.00 18391.44 19897.47 19694.27 18987.41 17396.52 19478.03 19187.50 19982.65 19795.32 17495.82 19095.15 18399.55 15299.78 51
v124091.99 19693.33 19790.44 18991.29 20297.30 20294.25 19086.79 17696.43 19575.49 20286.34 20681.85 20095.29 17596.42 17395.22 18199.52 15999.73 79
NR-MVSNet94.01 15894.51 17393.44 14292.56 17097.77 17495.67 15691.57 11497.17 17785.84 14693.13 16180.53 20695.29 17597.01 16096.17 15899.69 8899.75 71
anonymousdsp93.12 17395.86 15689.93 19591.09 20598.25 16095.12 16685.08 18797.44 17073.30 20790.89 17490.78 14495.25 17797.91 12095.96 16799.71 7799.82 30
gg-mvs-nofinetune90.85 19994.14 17887.02 20494.89 14499.25 9898.64 6276.29 21988.24 22057.50 22479.93 21695.45 10595.18 17898.77 6398.07 9599.62 12399.24 162
MVS-HIRNet92.51 18595.97 15288.48 20193.73 15998.37 15690.33 20775.36 22198.32 13777.78 19389.15 18694.87 11295.14 17997.62 13996.39 15198.51 19497.11 205
MDTV_nov1_ep13_2view92.44 18795.66 15888.68 19991.05 20697.92 17092.17 20079.64 20598.83 10276.20 19791.45 17093.51 12995.04 18095.68 19193.70 20297.96 20298.53 185
DTE-MVSNet92.42 19092.85 20191.91 16790.87 20796.97 20594.53 18789.81 14495.86 20781.59 17388.83 18977.88 21895.01 18194.34 20596.35 15299.64 11799.73 79
pm-mvs194.27 15495.57 15992.75 15292.58 16998.13 16494.87 17490.71 13396.70 19083.78 15689.94 18189.85 15094.96 18297.58 14197.07 13199.61 12599.72 89
pmnet_mix0292.44 18794.68 17089.83 19692.46 17297.65 18389.92 21190.49 13698.76 11473.05 21091.78 16890.08 14894.86 18394.53 20391.94 21098.21 20098.01 197
PM-MVS89.55 20590.30 21088.67 20087.06 21595.60 21390.88 20484.51 19396.14 19975.75 19886.89 20463.47 22694.64 18496.85 16493.89 20099.17 18799.29 156
FC-MVSNet-test96.07 11997.94 9193.89 12993.60 16198.67 13496.62 14090.30 13998.76 11488.62 12895.57 13697.63 8094.48 18597.97 11797.48 12299.71 7799.52 136
WR-MVS_H93.54 16794.67 17192.22 15691.95 18197.91 17194.58 18588.75 15796.64 19183.88 15590.66 17785.13 18094.40 18696.54 17095.91 16899.73 5999.89 12
GA-MVS93.93 16296.31 15091.16 18193.61 16098.79 12195.39 16490.69 13498.25 14173.28 20896.15 12188.42 15594.39 18797.76 12995.35 17799.58 14399.45 147
TransMVSNet (Re)93.45 16894.08 18192.72 15392.83 16697.62 18794.94 17091.54 11695.65 20883.06 16488.93 18883.53 18894.25 18897.41 14697.03 13299.67 10498.40 191
UGNet97.66 6699.07 4396.01 9997.19 8199.65 2297.09 13093.39 8799.35 3194.40 7498.79 4799.59 5494.24 18998.04 11398.29 8499.73 5999.80 37
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs691.90 19792.53 20491.17 18091.81 18697.63 18493.23 19488.37 16393.43 21680.61 17777.32 21887.47 15894.12 19096.58 16895.72 17198.88 19399.53 133
EPNet_dtu96.30 11398.53 6493.70 13598.97 4998.24 16197.36 11594.23 7098.85 9779.18 18799.19 2198.47 7094.09 19197.89 12298.21 8798.39 19798.85 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UA-Net97.13 8699.14 3894.78 11597.21 8099.38 7997.56 11092.04 10398.48 12988.03 13298.39 6799.91 3194.03 19299.33 2499.23 1899.81 2299.25 161
pmmvs-eth3d89.81 20489.65 21290.00 19386.94 21695.38 21491.08 20286.39 18194.57 21282.27 17083.03 21364.94 22393.96 19396.57 16993.82 20199.35 17899.24 162
WR-MVS93.43 17094.48 17492.21 15791.52 19797.69 17994.66 18389.98 14196.86 18583.43 16090.12 17985.03 18193.94 19496.02 18695.82 16999.71 7799.82 30
CVMVSNet95.33 13597.09 12193.27 14795.23 13798.39 15595.49 16192.58 9997.71 16583.00 16594.44 14693.28 13193.92 19597.79 12698.54 6599.41 17399.45 147
N_pmnet92.21 19594.60 17289.42 19891.88 18397.38 20089.15 21389.74 14797.89 15773.75 20687.94 19792.23 13693.85 19696.10 18393.20 20498.15 20197.43 202
v7n91.61 19892.95 19990.04 19290.56 20897.69 17993.74 19385.59 18595.89 20676.95 19486.60 20578.60 21793.76 19797.01 16094.99 18799.65 11399.87 18
Vis-MVSNetpermissive96.16 11798.22 7793.75 13295.33 13699.70 1797.27 11990.85 12898.30 13885.51 15095.72 13296.45 9093.69 19898.70 7099.00 3599.84 1299.69 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest051594.61 14996.89 12891.95 16592.00 18098.47 14792.01 20190.73 13298.18 14383.96 15394.51 14495.13 11093.38 19997.38 14794.74 19599.61 12599.79 45
new_pmnet90.45 20392.84 20287.66 20288.96 21296.16 21188.71 21484.66 19197.56 16771.91 21485.60 20886.58 16993.28 20096.07 18493.54 20398.46 19594.39 216
pmmvs388.19 20891.27 20784.60 21085.60 21893.66 21885.68 21881.13 19992.36 21863.66 22389.51 18377.10 21993.22 20196.37 17492.40 20698.30 19997.46 201
EG-PatchMatch MVS92.45 18693.92 18790.72 18792.56 17098.43 15294.88 17384.54 19297.18 17679.55 18586.12 20783.23 19193.15 20297.22 15496.00 16399.67 10499.27 160
v14892.36 19392.88 20091.75 17091.63 19397.66 18192.64 19890.55 13596.09 20083.34 16188.19 19380.00 20992.74 20393.98 20694.58 19699.58 14399.69 98
MDA-MVSNet-bldmvs87.84 20989.22 21386.23 20681.74 22096.77 20883.74 21989.57 14994.50 21372.83 21296.64 11064.47 22592.71 20481.43 22092.28 20896.81 21598.47 187
DeepMVS_CXcopyleft96.85 20687.43 21689.27 15198.30 13875.55 20195.05 13879.47 21392.62 20589.48 21695.18 22095.96 213
CMPMVSbinary70.31 1890.74 20091.06 20890.36 19197.32 7697.43 19792.97 19687.82 17193.50 21575.34 20383.27 21284.90 18292.19 20692.64 21091.21 21496.50 21794.46 215
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet92.80 17994.76 16990.51 18891.88 18396.74 20992.48 19988.69 15896.21 19779.00 18891.51 16987.82 15791.83 20795.87 18996.27 15499.21 18498.92 179
MIMVSNet188.61 20790.68 20986.19 20781.56 22195.30 21687.78 21585.98 18494.19 21472.30 21378.84 21778.90 21690.06 20896.59 16795.47 17499.46 16595.49 214
new-patchmatchnet86.12 21187.30 21484.74 20986.92 21795.19 21783.57 22084.42 19492.67 21765.66 21880.32 21564.72 22489.41 20992.33 21389.21 21698.43 19696.69 210
test_method87.27 21091.58 20682.25 21275.65 22587.52 22486.81 21772.60 22297.51 16873.20 20985.07 20979.97 21088.69 21097.31 15095.24 18096.53 21698.41 188
TDRefinement93.04 17593.57 19292.41 15496.58 9198.77 12497.78 10491.96 10698.12 14680.84 17689.13 18779.87 21287.78 21196.44 17194.50 19799.54 15698.15 193
Gipumacopyleft81.40 21381.78 21680.96 21483.21 21985.61 22579.73 22276.25 22097.33 17364.21 22255.32 22255.55 22786.04 21292.43 21292.20 20996.32 21893.99 217
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Anonymous2023120690.70 20193.93 18686.92 20590.21 21196.79 20790.30 20886.61 18096.05 20269.25 21588.46 19284.86 18385.86 21397.11 15896.47 15099.30 18197.80 199
test20.0390.65 20293.71 19087.09 20390.44 20996.24 21089.74 21285.46 18695.59 20972.99 21190.68 17685.33 17884.41 21495.94 18895.10 18599.52 15997.06 207
IB-MVS93.96 1595.02 13996.44 14793.36 14597.05 8499.28 9590.43 20693.39 8798.02 14996.02 4094.92 14192.07 13783.52 21595.38 19295.82 16999.72 6799.59 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ambc80.99 21780.04 22390.84 21990.91 20396.09 20074.18 20562.81 22130.59 23282.44 21696.25 18191.77 21195.91 21998.56 184
FPMVS83.82 21284.61 21582.90 21190.39 21090.71 22090.85 20584.10 19595.47 21065.15 21983.44 21174.46 22175.48 21781.63 21979.42 22191.42 22287.14 221
EMVS68.12 21968.11 22168.14 21975.51 22671.76 22755.38 22977.20 21777.78 22337.79 22853.59 22343.61 22974.72 21867.05 22476.70 22388.27 22686.24 222
E-PMN68.30 21868.43 22068.15 21874.70 22771.56 22855.64 22877.24 21677.48 22439.46 22751.95 22541.68 23073.28 21970.65 22379.51 22088.61 22586.20 223
MVEpermissive67.97 1965.53 22067.43 22263.31 22059.33 22874.20 22653.09 23070.43 22366.27 22543.13 22645.98 22630.62 23170.65 22079.34 22286.30 21883.25 22789.33 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS277.26 21579.47 21874.70 21676.00 22488.37 22274.22 22476.34 21878.31 22254.13 22569.96 22052.50 22870.14 22184.83 21888.71 21797.35 20993.58 218
tmp_tt82.25 21297.73 7088.71 22180.18 22168.65 22499.15 6086.98 14099.47 1085.31 17968.35 22287.51 21783.81 21991.64 221
PMVScopyleft72.60 1776.39 21677.66 21974.92 21581.04 22269.37 22968.47 22680.54 20285.39 22165.07 22073.52 21972.91 22265.67 22380.35 22176.81 22288.71 22485.25 224
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WB-MVS81.36 21489.93 21171.35 21788.65 21387.85 22371.46 22588.12 16796.23 19632.21 22992.61 16683.00 19256.27 22491.92 21489.43 21591.39 22388.49 220
testmvs31.24 22140.15 22320.86 22212.61 22917.99 23025.16 23113.30 22548.42 22624.82 23053.07 22430.13 23328.47 22542.73 22537.65 22420.79 22851.04 225
test12326.75 22234.25 22418.01 2237.93 23017.18 23124.85 23212.36 22644.83 22716.52 23141.80 22718.10 23428.29 22633.08 22634.79 22518.10 22949.95 226
GG-mvs-BLEND69.11 21798.13 8135.26 2213.49 23198.20 16394.89 1722.38 22798.42 1325.82 23296.37 11898.60 675.97 22798.75 6697.98 9899.01 19098.61 183
uanet_test0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2320.00 2320.00 2330.00 2280.00 2280.00 2330.00 2280.00 2350.00 2280.00 2270.00 2260.00 2300.00 227
RE-MVS-def69.05 216
9.1499.79 45
SR-MVS99.67 1398.25 1499.94 25
our_test_392.30 17497.58 18990.09 210
MTAPA98.09 1599.97 8
MTMP98.46 1099.96 12
Patchmatch-RL test66.86 227
XVS97.42 7499.62 3398.59 6593.81 8499.95 1799.69 88
X-MVStestdata97.42 7499.62 3398.59 6593.81 8499.95 1799.69 88
mPP-MVS99.53 3099.89 35
NP-MVS98.57 124
Patchmtry98.59 14097.15 12679.14 20980.42 179